

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

A new clinical classification of acute myocardial infarction

Citation for published version:

Lindahl, B & Mills, NL 2023, 'A new clinical classification of acute myocardial infarction', Nature Medicine. https://doi.org/10.1038/s41591-023-02513-2

Digital Object Identifier (DOI):

10.1038/s41591-023-02513-2

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Nature Medicine

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

1	PERSPECTIVE
2	
3	A new clinical classification of acute myocardial infarction
4	
5	Bertil Lindahl, MD ^{1,2} and Nicholas L Mills, MBChB ^{2,3†}
6 7 8 9	<i>Running title</i> – classification of myocardial infarction
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	¹ Department of Medical Sciences, University of Uppsala, Uppsala, Sweden ² BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom ³ Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
25	†Corresponding author: <u>nick.mills@ed.ac.uk</u>

26 Abstract

27	The existence of a universal definition of myocardial infarction – which involves
28	classification into multiple subtypes - has promoted the use of standard diagnostic
29	criteria across the world. However, this classification has not been applied consistently
30	in practice and is perceived by some as too complicated. Where there is diagnostic
31	uncertainty, patients have worse outcomes. This uncertainty has also impacted on the
32	validity of the diagnosis of myocardial infarction in clinical trials. To address these
33	issues and to encourage clinicians to recognise that different mechanisms of myocardial
34	infarction have differing treatment implications, we propose an alternative clinical
35	classification for consideration; one that recognises that myocardial infarction can arise
36	spontaneously, secondary to another condition, or as a complication of a cardiac
37	procedure. This classification is aligned with clinical practice and proposes more
38	objective and specific diagnostic criteria that, if agreed by international consensus,
39	could reduce diagnostic uncertainty in practice and research.
40	

41	The accurate diagnosis of acute myocardial infarction is essential to ensure timely treatment
42	to limit the extent of myocardial injury and prevent complications, such as heart failure or
43	sudden cardiac death. To standardise the diagnostic criteria for myocardial infarction and
44	encourage the application of these standards worldwide, the Universal Definition of
45	Myocardial Infarction was proposed and endorsed by the World Health Organisation and
46	major national and international cardiac societies (1-3). This has been an important global
47	effort, but like all scientific and medical standards, it requires regular review and revision as
48	new evidence emerges.

50	The current definition states that the term 'acute myocardial infarction' should be used when
51	there is acute myocardial injury with clinical evidence of myocardial ischaemia. Several
52	criteria must be met for a diagnosis of myocardial infarction – including a rise and/or fall in
53	circulating cardiac troponin with at least one value above the 99th percentile upper reference
54	limit – and the 2007 iteration introduced five subtypes of myocardial infarction (2) (Box 1).
55	Finally, the term myocardial injury was introduced to describe any elevation in cardiac
56	troponin above the 99 th percentile (4), irrespective of whether this is due to ischemic or non-
57	ischemic mechanisms.

58

59 Despite the logic of the latest definition of myocardial infarction, this classification has been 60 perceived by some as too complicated and adoption in clinical practice and in research has 61 been inconsistent. In this Perspective, we first outline the controversies and challenges that 62 have arisen in applying the current classification. We then propose an alternative clinical 63 classification with more objective diagnostic criteria, for consideration by the scientific 64 community. Lastly, we describe the steps required to achieve a new consensus.

66 Controversies and challenges with the current classification

Some recommendations from the current classification are considered controversial. Type 2 67 myocardial infarction (Box 1) currently encompasses both coronary mechanisms (such as 68 spontaneous dissection, embolism or vasospasm) and non-coronary mechanisms (resulting 69 70 from tachycardia, hypotension, hypoxia or anaemia), the latter of which can occur in patients 71 with or without underlying coronary artery disease. Different treatments are needed for each 72 of these scenarios, which has limited the utility of this diagnosis in practice. Furthermore, 73 there is often uncertainty in how to distinguish type 1 from type 2 myocardial infarction, and 74 type 2 myocardial infarction from non-ischemic myocardial injury in practice (5). Type 4 and 75 type 5 myocardial infarction are rarely applied to describe periprocedural complications in 76 practice and the diagnostic criteria are debated by cardiologists and cardiac surgeons alike ----77 with disagreement regarding the cut-off values for cardiac troponin elevation and whether 78 additional evidence of a complication is required (6). The following paragraphs expand on 79 key factors that have limited adoption and generated uncertainty. 80

First, the classical description of ischemic symptoms was derived from studies dominated by 81 82 patients with type 1 myocardial infarction. Studies have shown that classical symptoms (chest 83 pain radiating to the jaw, neck, back, arm or shoulder) are less common in patients with type 2 than in those with type 1 myocardial infarction (7). Dyspnoea is a particularly challenging 84 85 symptom in this context as it is common and has both ischemic and non-ischemic causes. 86 Furthermore, patients with type 2 myocardial infarction usually have other symptoms due the 87 condition triggering oxygen supply-demand imbalance, making it even more difficult to 88 determine whether symptoms are caused by myocardial ischemia.

90	Second, while electrocardiographic findings of ST-segment elevation or depression strongly
91	indicate an acute coronary event (such as type 1 or type 2 myocardial infarction due to
92	coronary causes), other less-specific changes on the electrocardiogram (or no changes at all)
93	are also common in both myocardial infarction and acute myocardial injury (8).
94	
95	Third, elevation in circulating cardiac troponin is a prerequisite for the diagnosis of
96	myocardial infarction. However, recent research has not only challenged the concept that
97	elevation of cardiac troponin always represents cardiomyocyte death (9), but also that cardiac
98	troponin elevation in the context of myocardial ischemia always represents necrosis (10). The
99	introduction of high-sensitivity cardiac troponin assays has enabled earlier diagnosis (11), but
100	has decreased the specificity of cardiac troponin for myocardial infarction (8). Furthermore,
101	elevation in cardiac troponin is an inevitable consequence of cardiac surgery (12,13) and is
102	common and often asymptomatic following coronary intervention (14). As such, the
103	diagnostic threshold for myocardial infarction following coronary intervention and cardiac
104	surgery is arbitrarily set at greater than 5- and 10-times the 99th percentile upper reference
105	limit, respectively (4).
106	
107	Fourth, it is not possible to distinguish type 1 from type 2 myocardial infarction due to
108	dissection, spasm or embolism without performing coronary angiography. If angiography is
109	not performed, patients with coronary causes of type 2 will almost certainly be classified
110	incorrectly as type 1 myocardial infarction. Similarly, since coronary angiography is seldom
111	performed in patients thought to have type 2 myocardial infarction (8, 15-17), an unknown
112	proportion will actually have had a type 1 myocardial infarction.

114	Finally, in the current classification, evidence of imbalance between myocardial oxygen
115	supply or demand is a prerequisite for a diagnosis of type 2 myocardial infarction, which
116	means that an underlying trigger must be identified. Sometimes the trigger is obvious, but
117	often the mechanism is unclear. The ischemic threshold will vary in relation to the duration
118	and magnitude of supply-demand imbalance, and the extent and severity of underlying
119	coronary artery disease (18). The current classification even allows for the diagnosis of type 2
120	myocardial infarction to be made in patients without coronary artery disease, despite this
121	being the hallmark of acute myocardial infarction for more than a century (19) and one of the
122	main determinants of long-term prognosis (20).
123	
124	These uncertainties arise every day in clinical practice and have important consequences for
125	patient care. Where there is diagnostic uncertainty, patients have worse outcomes (21). Many
126	patients fulfilling the criteria for type 2 myocardial infarction are not classified as such in
127	practice as the diagnosis is not considered important by some clinicians (22). Whilst there is a
128	wealth of evidence to guide how patients with type 1 myocardial infarction should be
129	managed, there is no evidence or agreement on how patients with type 2 myocardial
130	infarction or acute myocardial injury should be managed and no studies demonstrating that
131	recognition of these conditions has improved outcomes (23). The current classification is
132	perceived by some as too complicated and has resulted in a lack of agreement even among
133	experts. As such, the classification has been used and interpreted in different ways in the
134	development of early diagnostic pathways (24-27) and in clinical trials of coronary
135	revascularisation (28), making it difficult to compare findings between studies.

137 A new clinical classification of myocardial infarction

138	To address these uncertainties and encourage clinicians to recognise that there are different
139	mechanisms of myocardial infarction with differing treatment implications, we propose a
140	simplified clinical classification that recognises myocardial infarction can arise in three
141	clinical settings: spontaneously, secondary to another acute condition, or as a procedural
142	complication following percutaneous intervention or cardiac surgery (Figure 1). To increase
143	adoption in practice we propose diagnostic criteria that are more specific, less reliant on
144	symptoms and electrocardiographic changes, and more aligned with clinical practice (Table
145	1).

147	For the diagnosis of spontaneous myocardial infarction, the definition needs to be as sensitive
148	as possible, as failure to recognise an acute coronary syndrome may delay the initiation of
149	treatment resulting in a more substantial myocardial infarction with ventricular impairment or
150	cardiac death in the community. In contrast, for secondary or procedural myocardial
151	infarction, the diagnostic criteria should be more specific to minimise uncertainty, as cardiac
152	troponin elevation is common in these settings. Here, the diagnosis of myocardial infarction
153	should identify patients in whom there are clear treatment implications. The classification of
154	type 3 myocardial infarction (per the current definition) would become obsolete. If a patient
155	died suddenly from what was thought to be myocardial infarction prior to undergoing testing,
156	this would be classified as spontaneous, secondary, or procedural myocardial infarction
157	depending on the setting.
158	

158

159 Spontaneous myocardial infarction

In patients with the spontaneous onset of symptoms or signs suspicious of myocardial
ischemia, treatment is initiated on the assumption that atherothrombosis is the underlying
mechanism — and in the majority, this assumption is correct. However, there are other

163	causes of spontaneous presentation with myocardial infarction, including coronary dissection,
164	embolism, and vasospasm; or late stent thrombosis, restenosis and late graft failure in those
165	with prior revascularisation (29). In practice, clinicians should be encouraged to identify the
166	underlying coronary mechanism through angiography with or without adjunctive
167	intravascular imaging, and to tailor subsequent treatment accordingly.
168	
169	The terms ST-segment elevation and non-ST-segment elevation for spontaneous myocardial
170	infarction will remain useful to stratify patients at presentation and to indicate the timing of
171	coronary angiography. However, they are less useful to guide subsequent management than a
172	classification identifying the underlying coronary mechanism, as proposed here. In some
173	settings where the patient does not have ongoing symptoms or ST-segment elevation it may
174	be reasonable to treat for atherothrombosis without performing coronary angiography,
175	particularly if the risks of an invasive procedure are prohibitive or in healthcare settings
176	where access is limited, and especially if there is a high clinical likelihood this is the
177	underlying mechanism. In younger patients without traditional cardiovascular risk factors or
178	in those with prior revascularisation, alternative coronary mechanisms of spontaneous
179	myocardial infarction may be more likely and coronary angiography should be encouraged.
180	Irrespective of the coronary mechanism, the definition of spontaneous myocardial infarction
181	should prioritise sensitivity; therefore, clear symptoms or signs of myocardial ischemia with a
182	rise and/or fall in cardiac troponin above the 99th percentile upper reference limit may be
183	sufficient to make the diagnosis, and further imaging evidence of infarction may not be
184	required. However, if no coronary mechanism is evident following coronary angiography,
185	echocardiography or cardiac magnetic resonance imaging should be considered to clarify the
186	diagnosis or identify alternative causes of the presentation and acute myocardial injury, such
187	as takotsubo cardiomyopathy or myocarditis.

189 Secondary myocardial infarction

190	In patients with symptoms or signs that are suspicious of myocardial ischemia secondary to
191	another acute illness resulting in myocardial oxygen supply-demand imbalance, the initial
192	priority is to manage the acute illness. Cardiac troponin testing in acute illness identifies a
193	substantial proportion of patients with myocardial injury of uncertain cause or significance
194	(30). In this setting, specificity rather than sensitivity is important, and the diagnosis of
195	secondary myocardial infarction is likely to be better accepted by clinicians and patients if
196	injury was associated with functional consequences. The diagnosis of secondary myocardial
197	infarction should require the identification of new loss of viable myocardium or a regional
198	wall motion abnormality on echocardiography or cardiac magnetic resonance imaging. This
199	is one of several possible criteria for a diagnosis of myocardial infarction in the existing
200	universal definition (4), but it should be essential for the diagnosis of secondary myocardial
201	infarction. The only exception would be where myocardial ischemia or myocardial injury in
202	the context of another acute illness unmasks the presence of obstructive coronary artery
203	disease on invasive or computed tomography coronary angiography (18, 31). In both these
204	circumstances, the diagnosis of secondary myocardial infarction would have treatment
205	implications as secondary prevention, medical therapy or coronary revascularisation may
206	prevent recurrent symptoms and future cardiovascular events. However, most patients with
207	supply-demand imbalance will have neither new loss of viable myocardium nor obstructive
208	coronary artery disease. Here the term acute myocardial injury is a good description - similar
209	to acute kidney or liver injury – with prognostic implications, which should stimulate further
210	investigation but not be considered a definitive diagnosis.

211

212 Procedural myocardial infarction

Commented [KO1]: We reserve 'significant' for the statistical context; if this is not the case here, please rephrase (eg to 'substantial')

Commented [BL2R1]: ok

213	The use of more sensitive diagnostic criteria for procedural myocardial infarction proposed in
214	the universal definition, has not been embraced by practitioners or applied in clinical trials of
215	coronary revascularisation (6). In defining a procedural complication, specificity is more
216	important than sensitivity. The diagnosis of myocardial infarction is appropriate in patients
217	with an overt complication of coronary intervention or cardiac surgery, or in those where the
218	complication is less obvious but new left ventricular impairment or loss of viable
219	myocardium with a regional wall motion abnormality is identified. Coronary complications
220	following percutaneous coronary intervention are usually self-evident, but following cardiac
221	surgery, echocardiography to identify unrecognized procedural myocardial infarction should
222	be systematically performed in the post-operative period. Procedural myocardial infarction
223	defined in this way is important as it gives direct insight into the effectiveness of
224	revascularisation and may have treatment implications. Acute or subacute stent thrombosis
225	and early graft failure within 30 days are recognised complications of revascularization and
226	should be classified as procedural myocardial infarction (32). In contrast, late stent or graft
227	failure is often a consequence of <i>de novo</i> disease or non-compliance with anti-platelet therapy
228	and therefore should be classified as spontaneous myocardial infarction rather than a
229	procedural complication. Myocardial injury following a cardiac procedure has been
230	associated with poor prognosis in some studies (12), and could be used to support the
231	evaluation of quality of care, but alone it should not be considered a complication unless a
232	coronary mechanism or new regional wall motion abnormality or ventricular impairment is
233	identified on cardiac imaging.
234	

.. . .

234

235 Knowledge gaps and potential limitations

- 236 We acknowledge that further research is needed to evaluate the potential impact of this
- 237 proposed new definition of myocardial infarction on patient care and healthcare utilisation.

This could take advantage of existing clinical datasets from well characterised patient
populations to retrospectively compare the current classification with the proposed clinical
classification. However, prospective studies will also be needed, in which cardiac imaging is
performed systematically. Also, there are potential limitations of the proposed classification
that merit consideration.

243

244 First, although the proposal aims to simplify the classification of myocardial infarction and 245 remove the need for an alpha numeric subclassification that clinicians will not remember or 246 apply, we recognise the importance of identifying the different coronary mechanisms of spontaneous myocardial infarction. The majority of patients with spontaneous myocardial 247 248 infarction will have atherothrombosis and will receive a diagnosis of 'myocardial infarction due to atherothrombosis' or simply 'myocardial infarction' in practice. However, where 249 250 spontaneous myocardial infarction is a consequence of an alternative coronary mechanism, the final diagnosis would identify this, for example 'myocardial infarction due to coronary 251 252 embolism' or 'myocardial infarction due to late stent thrombosis'. 253 254 Second, we recognise that for a diagnosis of secondary myocardial infarction, it may be 255 challenging to determine whether a regional wall motion abnormality on imaging is old or 256 new. Where a patient is known to have coronary artery disease or previous myocardial 257 infarction, then comparison with previous imaging may be helpful. Where there is no prior 258 history, then the identification of any regional wall motion abnormality is important and 259 would have therapeutic implications. Whilst often it is possible to differentiate an acute from

- 260 chronic infarct pattern on echocardiography or magnetic resonance imaging (based on
- thinning of the myocardium or the presence of oedema), some clinical judgement will be
- 262 required.

264	Third, by defining more specific and objective criteria for the diagnosis for secondary
265	myocardial infarction, we do not wish to undermine the importance of recognising those with
266	acute myocardial injury. We hope that our proposal will encourage the use of cardiac imaging
267	in this setting and improve the care and outcomes of patients with and without secondary
268	myocardial infarction. Whilst imaging may rule out secondary myocardial infarction, it could
269	identify other important clinical diagnoses, such as heart failure or pulmonary embolism, or it
270	could identify patients with unobstructive coronary artery disease in whom the use of
271	secondary prevention may be beneficial.
272	
273	Future directions
274	This proposal is based on new research and our clinical observations; however, we
275	acknowledge that any change in practice will require a new international consensus as
276	changes to the current universal definition would have important implications for clinicians,
277	coders, researchers and clinical trialists. A new global task force will need to be convened
278	with input from a broad range of stakeholders including both patients and practicing
279	clinicians across a range of specialties, in addition to expertise in cardiac biomarkers,
280	coronary intervention, cardiac surgery, clinical trials, and international registries. Greater
281	diversity and wider representation are needed if we are to achieve consensus on the need for a
282	more applied classification.
283	
284	Once international consensus has been reached, it would be important to propose additional
285	supplementary codes beyond the primary classification within the eleventh revision of the
286	International Classification of Diseases (ICD-11). These supplementary codes would enable

287 standard hospital coding for the different mechanisms of spontaneous myocardial infarction

288	(e.g., BA82 for coronary artery dissection, BA85 for coronary vasospasm and others),
289	secondary myocardial infarction, and procedural myocardial infarction following
290	percutaneous intervention and cardiac surgery. These should be published in parallel to the
291	consensus statement and combined with educational initiatives, as well as a systematic
292	evaluation of the impact of implementation of a new classification of myocardial infarction
293	on patients and healthcare systems.
294	

295 Conclusion

- 296 The classification of myocardial infarction is important for patients, practice, and research.
- 297 We propose a new approach that prioritises sensitivity for patients with spontaneous coronary
- 298 events, and specificity for those with oxygen supply-demand imbalance secondary to other
- 299 conditions, or complications from coronary intervention or cardiac surgery. We argue that
- 300 such an approach may encourage adoption in practice and improve patient care, and we
- 301 encourage research and debate with the goal of a new international consensus.

302 **Contributors**

303 BL and NLM drafted and revised the manuscript critically for important intellectual content,

304 provided approval of the final version to be published and are accountable for the work.

305

306 Acknowledgments

- 307 BL was a member of the Task Force for the Universal Definition of Myocardial Infarction.
- 308 NLM is supported by a Chair Award (CH/F/21/90010), Programme Grant (RG/20/10/34966)
- 309 and a Research Excellent Award (RE/18/5/34216) from the British Heart Foundation.
- 310

J11 Declaration of interests

- 312 BL has no conflicts of interest to report. NLM reports research grants awarded to the University
- 313 of Edinburgh from Abbott Diagnostics and Siemens Healthineers, and honoraria from Abbott
- 314 Diagnostics, Siemens Healthineers, Roche Diagnostics and LumiraDx.

References

316	1.	The Joint European Society of Cardiology/American College of Cardiology
317		Committee. Myocardial infarction redefined-a consensus document of the Joint
318		European Society of Cardiology/American College of Cardiology Committee for the
319		Redefinition of Myocardial Infarction. Eur Heart J. 2000; 21:1502–1513.
320	2.	Thygesen K, Alpert JS, White HD; Joint ESC/ACCF/AHA/WHF Task Force for the
321		Redefinition of Myocardial Infarction, Jaffe AS, Apple FS, Galvani M, Katus HA,
322		Newby LK, Ravkilde J, Chaitman B, Clemmensen PM, Dellborg M, Hod H, Porela P,
323		Underwood R, Bax JJ, Beller GA, Bonow R, Van der Wall EE, Bassand JP, Wijns W,
324		Ferguson TB, Steg PG, Uretsky BF, Williams DO, Armstrong PW, Antman EM, Fox
325		KA, Hamm CW, Ohman EM, Simoons ML, Poole-Wilson PA, Gurfinkel EP, Lopez-
326		Sendon JL, Pais P, Mendis S, Zhu JR, Wallentin LC, Fernández-Avilés F, Fox KM,
327		Parkhomenko AN, Priori SG, Tendera M, Voipio-Pulkki LM, Vahanian A, Camm AJ,
328		De Caterina R, Dean V, Dickstein K, Filippatos G, Funck-Brentano C, Hellemans I,
329		Kristensen SD, McGregor K, Sechtem U, Silber S, Tendera M, Widimsky P,
330		Zamorano JL, Morais J, Brener S, Harrington R, Morrow D, Lim M, Martinez-Rios
331		MA, Steinhubl S, Levine GN, Gibler WB, Goff D, Tubaro M, Dudek D, Al-Attar N.
332		Universal definition of myocardial infarction. Circulation. 2007;116(22):2634-53.
333	3.	Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD; Joint
334		ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial
335		Infarction, Katus HA, Lindahl B, Morrow DA, Clemmensen PM, Johanson P, Hod H,
336		Underwood R, Bax JJ, Bonow RO, Pinto F, Gibbons RJ, Fox KA, Atar D, Newby
337		LK, Galvani M, Hamm CW, Uretsky BF, Steg PG, Wijns W, Bassand JP, Menasché
338		P, Ravkilde J, Ohman EM, Antman EM, Wallentin LC, Armstrong PW, Simoons ML,
339		Januzzi JL, Nieminen MS, Gheorghiade M, Filippatos G, Luepker RV, Fortmann SP,

340		Rosamond WD, Levy D, Wood D, Smith SC, Hu D, Lopez-Sendon JL, Robertson
341		RM, Weaver D, Tendera M, Bove AA, Parkhomenko AN, Vasilieva EJ, Mendis S.
342		Third universal definition of myocardial infarction. Circulation. 2012;126(16):2020-
343		35.
344	4.	Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD;
345		Executive Group on behalf of the Joint European Society of Cardiology
346		(ESC)/American College of Cardiology (ACC)/American Heart Association
347		(AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of
348		Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction.
349		Circulation. 2018;138(20):e618-e651.
350	5.	Gard A, Lindahl B, Batra G, Hjort M, Szummer K, Baron T. Diagnosing type 2
351		myocardial infarction in clinical routine. A validation study. Scand Cardiovasc J.
352		2019;53(5):259-265.
353	6.	Gregson J, Stone GW, Ben-Yehuda O, Redfors B, Kandzari DE, Morice MC, Leon
354		MB, Kosmidou I, Lembo NJ, Brown WM 3rd, Karmpaliotis D, Banning AP, Pomar J,
355		Sabaté M, Simonton CA, Dressler O, Kappetein AP, Sabik JF 3rd, Serruys PW,
356		Pocock SJ. Implications of Alternative Definitions of Peri-Procedural Myocardial
357		Infarction After Coronary Revascularization. J Am Coll Cardiol. 2020;76(14):1609-
358		1621.
359	7.	Neumann JT, Sörensen NA, Rübsamen N, Ojeda F, Renné T, Qaderi V, Teltrop E,
360		Kramer S, Quantius L, Zeller T, Karakas M, Blankenberg S, Westermann D.
361		Discrimination of patients with type 2 myocardial infarction. Eur Heart J.
362		2017;38(47):3514-3520.
363	8.	Chapman AR, Adamson PD, Shah ASV, Anand A, Strachan FE, Ferry AV, Lee KK,
364		Berry C, Findlay I, Cruikshank A, Reid A, Gray A, Collinson PO, Apple F,

365		McAllister DA, Maguire D, Fox KAA, Vallejos CA, Keerie C, Weir CJ, Newby DE,
366		Mills NL; High-STEACS Investigators. High-Sensitivity Cardiac Troponin and the
367		Universal Definition of Myocardial Infarction. Circulation. 2020;141(3):161-171.
368	9.	Hammarsten O, Mair J, Möckel M, Lindahl B, Jaffe AS. Possible mechanisms behind
369		cardiac troponin elevations. <i>Biomarkers</i> . 2018;23(8):725-734.
370	10	Árnadóttir A, Pedersen S, Hasselbalch RB, Goetze JP, Friis-Hansen LJ, Bloch-
371		Münster A, Jensen JS, Bundgaard H, Iversen K. Temporal release of high-sensitivity
372		cardiac troponin T and I and copeptin after brief induced coronary artery balloon
373		occlusion in humans. Circulation. 2021;143(11):1095-1104.
374	11	Shah AS, Anand A, Sandoval Y, Lee KK, Smith SW, Adamson PD, Chapman AR,
375		Langdon T, Sandeman D, Vaswani A, Strachan FE, Ferry A, Stirzaker AG, Reid A,
376		Gray AJ, Collinson PO, McAllister DA, Apple FS, Newby DE, Mills NL; High-
377		STEACS investigators. High-sensitivity cardiac troponin I at presentation in patients
378		with suspected acute coronary syndrome: a cohort study. Lancet.
379		2015;386(10012):2481-8.
380	12	Devereaux PJ, Lamy A, Chan MTV, Allard RV, Lomivorotov VV, Landoni G, Zheng
381		H, Paparella D, McGillion MH, Belley-Côté EP, Parlow JL, Underwood MJ, Wang
382		CY, Dvirnik N, Abubakirov M, Fominskiy E, Choi S, Fremes S, Monaco F, Urrútia
383		G, Maestre M, Hajjar LA, Hillis GS, Mills NL, Margari V, Mills JD, Billing JS,
384		Methangkool E, Polanczyk CA, Sant'Anna R, Shukevich D, Conen D, Kavsak PA,
385		McQueen MJ, Brady K, Spence J, Le Manach Y, Mian R, Lee SF, Bangdiwala SI,
386		Hussain S, Borges FK, Pettit S, Vincent J, Guyatt GH, Yusuf S, Alpert JS, White HD,
387		Whitlock RP; VISION Cardiac Surgery Investigators. High-Sensitivity Troponin I
388		after Cardiac Surgery and 30-Day Mortality. N Engl J Med. 2022;386(9):827-836.

389	13. Hinton J, Augustine M, Gabara L, Mariathas M, Allan R, Borca F, Nicholas Z,
390	Ikwuobe J, Gillett N, Kwok CS, Cook P, Grocott MPW, Mamas M, Curzen N.
391	Incidence and 1-year outcome of periprocedural myocardial infarction following
392	cardiac surgery: are the Universal Definition and Society for Cardiovascular
393	Angiography and Intervention criteria fit for purpose? Eur J Cardiothorac Surg.
394	2022;62(2):ezac019
395	14. Zeitouni M, Silvain J, Guedeney P, Kerneis M, Yan Y, Overtchouk P, Barthelemy O,
396	Hauguel-Moreau M, Choussat R, Helft G, Le Feuvre C, Collet JP, Montalescot G;
397	ACTION Study Group. Periprocedural myocardial infarction and injury in elective
398	coronary stenting. Eur Heart J. 2018;39(13):1100-1109.
399	15. Saaby L, Poulsen TS, Hosbond S, Larsen TB, Pyndt Diederichsen AC, Hallas J,
400	Thygesen K, Mickley H. Classification of myocardial infarction: frequency and
401	features of type 2 myocardial infarction. Am J Med. 2013;126(9):789-97.
402	16. McCarthy CP, Kolte D, Kennedy KF, Vaduganathan M, Wasfy JH, Januzzi JL Jr.
403	Patient Characteristics and Clinical Outcomes of Type 1 Versus Type 2 Myocardial
404	Infarction. J Am Coll Cardiol. 2021;77(7):848-857.
405	17. Eggers KM, Baron T, Chapman AR, Gard A, Lindahl B. Management and outcome
406	trends in type 2 myocardial infarction: an investigation from the SWEDEHEART
407	registry. Sci Rep. 2023;13(1):7194.
408	18. Bularga A, Hung J, Daghem M, Stewart S, Taggart C, Wereski R, Singh T, Meah
409	MN, Fujisawa T, Ferry AV, Chiong J, Jenkins WS, Strachan FE, Semple S, van Beek
410	EJR, Williams M, Dey D, Tuck C, Baker AH, Newby DE, Dweck MR, Mills NL,
411	Chapman AR. Coronary Artery and Cardiac Disease in Patients with Type 2
412	Myocardial Infarction: A Prospective Cohort Study. Circulation. 2022;145(16):1188-
413	1200.

414	19. Herrick, JB. Certain clinical features of sudden obstruction of the coronary arteries.
415	JAMA. 1912; 59:2015-2020.
416	20. Chapman AR, Shah ASV, Lee KK, Anand A, Francis O, Adamson P, McAllister DA,
417	Strachan FE, Newby DE, Mills NL. Long-term outcomes in patients with type 2
418	myocardial infarction and myocardial injury. Circulation. 2018;137(12):1236-1245.
419	21. Sepehrvand N, Zheng Y, Armstrong PW, Welsh R, Goodman SG, Tymchak W,
420	Khadour F, Chan M, Weiss D, Ezekowitz JA. Alignment of site versus adjudication
421	committee-based diagnosis with patient outcomes: Insights from the Providing Rapid
422	Out of Hospital Acute Cardiovascular Treatment 3 trial. Clin Trials. 2016;13(2):140-
423	8.
424	22. Gard A, Lindahl B, Baron T. Impact of clinical diagnosis of myocardial infarction in
425	patients with elevated cardiac troponin. Heart. 2023 May 22: heartjnl-2022-322298.
426	23. DeFilippis AP, Chapman AR, Mills NL, de Lemos JA, Arbab-Zadeh A, Newby LK,
427	Morrow DA. Assessment and Treatment of Patients with Type 2 Myocardial
428	Infarction and Acute Nonischemic Myocardial Injury. Circulation.
429	2019;140(20):1661-1678.
430	24. Mueller C, Giannitsis E, Christ M, Ordóñez-Llanos J, deFilippi C, McCord J, Body R,
431	Panteghini M, Jernberg T, Plebani M, Verschuren F, French J, Christenson R, Weiser
432	S, Bendig G, Dilba P, Lindahl B; TRAPID-AMI Investigators. Multicenter Evaluation
433	of a 0-Hour/1-Hour Algorithm in the Diagnosis of Myocardial Infarction With High-
434	Sensitivity Cardiac Troponin T. Ann Emerg Med. 2016;68(1):76-87.e4
435	25. Ljung L, Lindahl B, Eggers KM, Frick M, Linder R, Löfmark HB, Martinsson A,
436	Melki D, Sarkar N, Svensson P, Jernberg T. A Rule-Out Strategy Based on High-
437	Sensitivity Troponin and HEART Score Reduces Hospital Admissions. Ann Emerg
438	Med. 2019;73(5):491-499.

439	26. Anand A, Lee KK, Chapman AR, Ferry AV, Adamson PD, Strachan FE, Berry C,
440	Findlay I, Cruikshank A, Reid A, Collinson PO, Apple FS, McAllister DA, Maguire
441	D, Fox KAA, Newby DE, Tuck C, Harkess R, Keerie C, Weir CJ, Parker RA, Gray
442	A, Shah ASV, Mills NL; HiSTORIC Investigators. High-Sensitivity Cardiac
443	Troponin on Presentation to Rule Out Myocardial Infarction: A Stepped-Wedge
444	Cluster Randomized Controlled Trial. Circulation. 2021;143(23):2214-2224.
445	27. Doudesis D, Lee KK, Boeddinghaus J, Bularga A, Ferry AV, Tuck C, Lowry MTH,
446	Lopez-Ayala P, Nestelberger T, Koechlin L, Bernabeu MO, Neubeck L, Anand A,
447	Schulz K, Apple FS, Parsonage W, Greenslade JH, Cullen L, Pickering JW, Than
448	MP, Gray A, Mueller C, Mills NL; CoDE-ACS Investigators. Machine learning for
449	diagnosis of myocardial infarction using cardiac troponin concentrations. Nat Med.
450	2023;29(5):1201-1210.
451	28. Spitzer E, McFadden E, Vranckx P, Garcia-Garcia HM, Seltzer JH, Held C, de Vries
452	T, Menon V, Brown KJ, Soliman OII, Onuma Y, Lopes RD, Stone GW, Cutlip DE,
453	Serruys PW. Critical Appraisal of Contemporary Clinical Endpoint Definitions in
454	Coronary Intervention Trials: A Guidance Document. JACC Cardiovasc Interv.
455	2019;12(9):805-819.
456	29. de Lemos JA, Newby LK, Mills NL. A Proposal for Modest Revision of the
457	Definition of Type 1 and Type 2 Myocardial Infarction. Circulation.
458	2019;140(22):1773-1775.
459	30. Lee KK, Noaman A, Vaswani A, Gibbins M, Griffiths M, Chapman AR, Strachan F,
460	Anand A, McAllister DA, Newby DE, Gray AJ, Mills NL, Shah ASV. Prevalence,
461	Determinants, and Clinical Associations of High-Sensitivity Cardiac Troponin in

462 Patients Attending Emergency Departments. *Am J Med.* 2019;132(1): 110.e8-110.e21.

463	31. Baron T, Hambraeus K, Sundström J, Erlinge D, Jernberg T, Lindahl B; TOTAL-
464	AMI study group. Impact on Long-Term Mortality of Presence of Obstructive
465	Coronary Artery Disease and Classification of Myocardial Infarction. Am J Med.
466	2016;129(4):398-406.
467	32. Garcia-Garcia HM, McFadden EP, Farb A, Mehran R, Stone GW, Spertus J, Onuma
468	Y, Morel MA, van Es GA, Zuckerman B, Fearon WF, Taggart D, Kappetein AP,
469	Krucoff MW, Vranckx P, Windecker S, Cutlip D, Serruys PW; Academic Research
470	Consortium. Standardized End Point Definitions for Coronary Intervention Trials:
471	The Academic Research Consortium-2 Consensus Document. Circulation.

472 2018;137(24):2635-2650.

473 Box 1. The current standard: Universal definition of myocardial infarction.

474

The diagnosis requires a rise and/or fall in cardiac troponin with at least one value above the 99th percentile upper reference limit and any one of the following: symptoms of myocardial ischemia, new ischemic changes on the electrocardiogram, imaging evidence of new loss of viable

the following: symptoms of myocardial ischemia, new ischemic changes on the electrocardiogram, imaging
 myocardium or the identification of thrombosis on coronary angiography.

478

479 Type 1 myocardial infarction is limited to patients with coronary atherothrombosis and is specified when plaque rupture or erosion results in

480 partial or complete coronary occlusion, myocardial ischemia and necrosis. Type 2 myocardial infarction identifies patients where myocardial

481 ischemia and necrosis occur as a consequence of an imbalance between myocardial oxygen supply or demand unrelated to coronary

482 atherothrombosis. Type 3 myocardial infarction is defined as cardiac death where myocardial infarction is the likely cause, but the death

483 occurred before diagnostic testing could be performed. The classification was further updated in the third and fourth iterations (3-4), introducing

484 additional subgroups following percutaneous coronary intervention (type 4 a), stent or scaffold thrombosis (type 4b) or in-stent restenosis (type

485 4c), and to refine the criteria for myocardial infarction following cardiac surgery (type 5).

487 Table. Diagnostic Criteria for the Universal Definition and the Proposed Clinical Classification of Myocardial Infarction

Universal Definition	Proposed Clinical Definition	Rationale for change
Type 1 myocardial infarction	Spontaneous myocardial infarction	
Sensitivity prioritised, with the diagnosis based on a rise and or fall in cardiac troponin above the 99 th percentile with symptoms or signs of myocardial ischemia.	Sensitivity prioritised, with the diagnosis based on a rise and or fall in cardiac troponin above the 99 th percentile with symptoms or signs of myocardial ischemia.	Sensitivity is important to minimise the risk of misdiagnosis of all acute coronary mechanisms of myocardial infarction, not just those due to atherothrombosis.
Restricted to coronary atherothrombosis	Criteria broadened to include all acute coronary events: atherothrombosis, embolism, vasospasm, in-stent restenosis, late stent thrombosis and late graft failure.	Late stent and graft failure are often spontaneous due to <i>de novo</i> disease rather than procedural complications.
Type 2 myocardial infarction	Secondary myocardial infarction	
Sensitivity prioritised, with the diagnosis based on a rise and or fall in cardiac troponin above the 99 th percentile with symptoms or signs of myocardial ischemia.	Specificity prioritised, with the diagnosis based on loss of viable myocardium or new regional wall motion abnormality, or the presence of obstructive coronary artery disease.	Symptoms and signs of myocardial ischemia are challenging to differentiate from those due to a primary condition. Myocardial injury is common and may be caused by many different mechanisms.
Documentation of myocardial oxygen supply or demand imbalance is required, which includes spontaneous coronary dissection, embolism, and vasospasm, and those with other conditions without coronary artery disease.	Can occur in any acute illness where myocardial oxygen supply or demand imbalance could arise, but must have a functional consequence or unmask obstructive coronary artery disease.	Diagnostic criteria should be more specific to minimise uncertainty and identify patients in whom the diagnosis has clear treatment implications.

Type 3 myocardial infarction Cardiac death where myocardial infarction is the likely cause, but death occurs before diagnostic testing is performed.	No longer required.	No utility in clinical practice and death from myocardial infarction can occur due to multiple mechanisms prior to testing.
Type 4 a-c myocardial infarction	Procedural myocardial infarction	
Type 4a is based on an arbitrary elevation in cardiac troponin greater than 5-times the 99 th percentile if there are signs of myocardial ischemia, imaging evidence of new loss of viable myocardium or angiographic evidence of a procedural complication within 48 hours.	Specificity prioritised, with diagnosis requiring angiographic evidence of a complication of coronary intervention or cardiac surgery and new left ventricular impairment, loss of viable myocardium or a regional wall motion abnormality.	Cardiac troponin thresholds not evidence based and testing not performed in clinical practice following coronary intervention or cardiac surgery.
Type 4b due to stent thrombosis and type 4c due to restenosis can occur any time after the procedure. The same diagnostic criteria are applied as for type 1 myocardial infarction.	Definition broadened to include any stent or graft failure within 30 days of the procedure.	Captures all clinically important failure of coronary revascularisation within 30 days. Late stent or graft failure not considered complications of revascularisation.
Type 5 myocardial infarction		
Diagnosis based on an arbitrary elevation in cardiac troponin concentration greater than 10-times the 99 th percentile if new pathological Q-waves, imaging evidence of new loss of viable myocardium OR angiographic evidence of a graft occlusion within 48 hours.		Addresses inconsistencies between the criteria for diagnosing myocardial infarction following coronary intervention and cardiac surgery, allowing a fairer comparison of outcomes between approaches.

490 Figure legend

491

492 Figure 1. Proposal for a clinical classification of acute myocardial infarction

493 (A) Spontaneous myocardial infarction: whilst the initial impression is often confirmed following coronary angiography or echocardiography, other conditions can present similarly. If no coronary mechanism is evident, echocardiography or cardiac magnetic resonance imaging may be 494 495 required to identify alternative causes of acute myocardial injury, such as takotsubo cardiomyopathy or myocarditis. (B) Secondary myocardial infarction: the diagnosis of secondary myocardial infarction due to an alternative condition requires evidence of a new regional wall motion 496 497 abnormality or left ventricular impairment on echocardiography, or evidence of loss of viable myocardium on magnetic resonance imaging, or 498 the presence of obstructive coronary artery disease on invasive or computed tomography coronary angiography. Patients with acute myocardial injury in this setting for whom secondary myocardial infarction is thought unlikely or has been excluded, may benefit from cardiac imaging to 499 500 identify other non-ischemic structural heart diseases unmasked by acute illness. (C) Procedural myocardial infarction: Coronary complications 501 following percutaneous coronary intervention are usually self-evident, but following cardiac surgery routine echocardiography to recognise 502 asymptomatic procedural myocardial infarction should be performed in the post-operative period.