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We present an algorithm for generating curves filling the unit square; i.e. space-
filling curves, from any given planar substitution satisfying a mild condition. The 
proposed algorithm is mimicking construction steps of Lebesgue’s curve and is based 
on linear interpolation. Generated space-filling curves for some known substitutions 
are elucidated. Some of those substitutions further induce relatively dense fractal-
like sets in the plane, whenever some additional assumptions are satisfied.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

A space-filling curve of the plane is a continuous mapping defined from the unit interval to a subset of 
the plane that has a positive area. The origin of space-filling curve theory goes back to late 1800s. Cantor 
proved in 1878 that there exists a bijective map between any pair of finite dimensional smooth manifolds [2]. 
Cantor’s result was improved by Netto [9]. Netto showed in 1879 that such a map is necessarily discontinuous. 
Not being able to claim continuity and bijectivity simultaneously directed researchers to look for continuous 
surjections onto compact regions of the plane. Peano was first to discover a continuous map from the unit 
interval onto the unit square [10]. A year later, Hilbert constructed a space-filling curve through an infinite 
geometric iterative process [5]. Hilbert’s curve is assumed to be the first space-filling curve that is built by 
a geometric construction because there was no hint of a geometric construction in Peano’s approach.

Geometric interpretation of Hilbert’s space-filling curve is usually presented by approximating poly-
gons/curves (or approximants in short), a notion defined by Wunderlich [19]. There are numerous different 
versions of approximants of Hilbert’s curve [15, P:23]. One version of the approximants is elucidated in 
Fig. 1. First approximant γ1 : [0, 1] �→ [0, 1] × [0, 1] is iterated to a curve γ2 : [0, 1] �→ [0, 1] × [0, 1] which is 
formed by concatenation of 4 scaled replicas (up to orientation) of the first approximant. Second approxi-
mant γ2 is also substituted to third approximant γ3 : [0, 1] �→ [0, 1] × [0, 1] in the same fashion. This process 
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Fig. 1. First three approximating curves of Hilbert’s curve.

continues ad infinitum. The sequence of approximants {γi : i ∈ Z+} converges pointwisely to Hilbert’s 
curve.

More examples of space-filling curves were given shortly after Hilbert [8,6,16,11], one of which was given 
by Lebesgue [6]. Unlike Hilbert’s construction, Lebesgue defined a space-filling curve that is formed by linear 
interpolation over the map φ : Γc �→ [0, 1] × [0, 1] given in (1.1), where Γc is the middle-third Cantor set. 
The map φ is defined by ternary representations of points in the Cantor set, and is a continuous surjection 
onto the unit square.

φ (0.3 (2 · x1)(2 · x2)(2 · x3) . . . ) =
[
0.2 x1x3x5 . . . ,
0.2 x2x4x6 . . . ,

]
. (1.1)

Geometric interpretation of Lebesgue’s curve is clarified by Sagan [13,14]. Approximants of Lebesgue’s 
curve are analogous to iteration steps of the Morton order, first three of which are depicted in Fig. 2. 
Using the approximants, Sagan provided another proof in his book [15], showing that Lebesgue’s curve is 
a continuous surjection onto the unit square. This proof can be regarded as a geometric construction of 
Lebesgue’s curve. In this study we generalise this construction.

A tile t consists of a subset of Rn (n ∈ Z+) and an assigned label. We denote the associated subset by 
supp t and the label by l(t). We assume that for every tile t, supp t is homeomorphic to the closed unit 
disc. A planar substitution is a map defined over a collection of tiles in R2 such that it expands every tile 
by a fixed factor greater than 1, and divides each expanded tile into pieces, each of which is a translation 
of a tile. Throughout this paper we refer to planar substitutions as substitutions in short. In this document 
we introduce an algorithm producing space-filling curves from substitutions satisfying a weak condition, by 
mimicking the geometric construction of Lebesgue’s curve. We also show that relatively dense sets in the 
plane (i.e. sets that have non-empty intersection with any ball B(x, R) with centre x ∈ R2 and radius R, for 
some fixed R > 0) can be generated if some further conditions are satisfied. These sets also have fractal-like 
features in the sense that they can be dissected into countable pieces in which only finite number of them 
are distinct and others are congruent replicas of the distinct pieces.

The organisation of the paper is as follows. In Section 2, we provide relevant preliminary definitions and 
an example of a space-filling curve constructed through a substitution in detail. In Section 3, we define the 
space-filling curve generator algorithm (Theorem 3.1) and present examples of space-filling curves formed 
by this algorithm being applied over some of known substitutions (or their variations). Lastly, in Section 4, 
we explain and illustrate with an example how substitutions induce fractal-like sets that are relatively dense 
in R2.

2. Methodology

In this section we explain how to generalise the geometric construction of Lebesgue’s curve with an 
example in detail.
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Fig. 2. First three iterations of the Morton order.

2.1. Substitutions

The material in this section is classical and can be found in textbooks such as [12].
Let R2 denote the Euclidean plane. We define the following:

1. A tile t consists of a subset of R2 that is homeomorphic to the closed unit disc, and a label l(t) that 
distinguishes t from any other identical sets. The associated subset of t is denoted by supp t. We call 
supp t the support of t.

2. A patch P is a finite collection of tiles so that
(i)

⋃
t∈P

supp t is homeomorphic to the closed unit disc,

(ii) int (supp t) ∩ int (supp t′) = ∅ for each distinct t, t′ ∈ P .
Support of a patch P is union of supports of its tiles. It is denoted by supp P ; i.e. supp P =

⋃
t∈P

supp t.

3. For a given tile t, a vector x ∈ R2 and a non-zero scalar λ �= 0, we create new tiles t + x and λt by 
relations supp (t +x) = (supp t) +x, l(t +x) = l(t), and supp (λt) = λsupp t, l(λt) = l(t), respectively. 
We say t +x is a translation of t and λt is a scaled copy of t. Similarly, for a given patch P , a vector x ∈ R2

and a non-zero scalar λ �= 0, we create new patches P + x and λP by relations P + x = {t + x : t ∈ P}
and {λt : t ∈ P}, respectively. We say P + x is a translation of P and λP is a scaled copy of P .

Definition 2.1. Suppose P is a given collection of tiles. Let P∗ denote the set of all patches consisting of 
tiles that are translations of tiles in P. A map ω : P �→ P∗ is called a (planar) substitution if there exists 
λ > 1 such that supp ω(p) = λ · supp ω(p) for all p ∈ P.

We call λ the expansion factor of ω. We say that ω is a finite substitution if, in addition, P has a finite 
size.

Definition 2.2. For a given substitution ω : P �→ P∗, the patch ωn(p) for p ∈ P and n ∈ Z+ is called an 
n-supertile of ω. It is also convenient to define that every tile in P is a 0-supertile of ω; i.e. ω0(p) := p for 
p ∈ P.

An example of a substitution is given in Fig. 3. It is defined over two intervals [0, (1 +
√

5)/2] and [0, 1]
with labels a, b, respectively. The interval [0, (1 +

√
5)/2] with label a is substituted into a patch consisting 

of two intervals [0, (1 +
√

5)/2] and [(1 +
√

5)/2, (3 +
√

5)/2] with labels a, b, respectively. The interval 
[0, 1] with label b is substituted into a patch consisting of a single interval [0, (1 +

√
5)/2] with label a. 

This substitution is called the Fibonacci substitution. Expansion factor for the Fibonacci substitution is the 
golden mean (1 +

√
5)/2. By taking the Cartesian product of two Fibonacci substitutions, we get another 

substitution that is illustrated in Fig. 4. Throughout the document we denote the Fibonacci substitution 
by μ, the Cartesian product of two Fibonacci substitutions by ν and their associated domains by Pμ, Pν , 
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0 1+
√

5
2 0 1+

√
5

2
3+

√
5

2

a a b

0 1

b a

0 1+
√

5
2

Fig. 3. The Fibonacci substitution μ.

a a

a b

b

dc c

b

dc

a

a

(0, 0) (0, 0)

(0, 1+
√

5
2 )

(0, 3+
√

5
2 )

(0, 0) (0, 0)

(0, 1)

(0, 3+
√

5
2 )

( 3+
√

5
2 , 0)( 1+

√
5

2 , 0)

( 1+
√

5
2 , 0) ( 3+

√
5

2 , 0) (0, 0) (1, 0)

(0, 0) (1, 0)

(0, 1+
√

5
2 )

(0, 0)

(0, 0)

(0, 3+
√

5
2 )

(0, 1+
√

5
2 )

( 1+
√

5
2 , 0)

( 1+
√

5
2 , 0)

(0, 1)

Fig. 4. The substitution ν.

respectively. The domain Pν consists of four tiles pa, pb, pc, pd such that pi is the tile with l(pi) = i for 
i ∈ {a, b, c, d}.

Remark 2.3 (Powers of substitutions). Let ω : P �→ P∗ be a given substitution with an expansion factor λ. 
Range of ω does not necessarily contain its domain and ω2 = ω ◦ ω may be ill-defined. Therefore, we define 
an extension ω′ : P + R2 �→ P∗ by ω′(p + x) = ω(p) + λ · x for p ∈ P and x ∈ R2, and define (ω′)n(p) for 
p ∈ P and n ≥ 2 recursively as follows:

(ω′)n(p) :=
⋃

t∈(ω′)n−1(p)

ω′(t).

Powers of (ω′)n for n ∈ Z+ are well-defined. We use ω and ω′ interchangeably, when there is no confusion 
of taking powers of substitutions.

2.2. Total order structures by ν through ordered Bratteli diagrams

A fundamental ingredient of Sagan’s geometric construction of Lebesgue’s curve is approximating poly-
gons [13,14]. For that, we define total orders over supertiles of ν using Bratteli diagrams [1,4]. These total 
order structures are key feature to form such approximating polygons. We start with defining basic termi-
nology for Bratteli diagrams.

Definition 2.4 (Bratteli diagrams). A directed graph B = (V, E) is called a Bratteli diagram if the vertex 
set V and the edge set E can be partitioned into infinite collection of mutually disjoint non-empty sets 
{V (i) : i = 0, 1, . . . } and {E(i) : i = 1, . . . } respectively such that

i. V (0) is a singleton,
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ii. There exist range r : E �→ V and source s : E �→ V maps so that s−1(v) �= ∅ for every v ∈ V and 
r−1(v) �= ∅ for every v ∈ V \V (0).

The vertex at level-0 is called the root vertex.

Bratteli diagrams can be demonstrated by diagrammatic representation by levels i = 0, 1, 2, . . . with V (i)
vertex set at level-i and E(i) edge set at level-i with downward-oriented arrows connecting vertices between 
levels i − 1 and i for i ∈ Z+. In this document, we further assume that each vertex v in a Bratteli diagram 
carries a label denoted by l(v). An example of a diagrammatic representation of a Bratteli diagram is given 
in Fig. 5. Note that the diagram repeats after the first level. Such diagrams are called stationary Bratteli 
diagrams.

Definition 2.5 (Paths). A path P on a Bratteli diagram B = (E, V ) is a collection of edges {ei ∈ E : i =
1, . . . , n} with s(ei) = r(ei−1) for each i = 2, . . . , n −1. We denote the path P by e1 ◦e2 ◦ · · ·◦en. We assume 
that all paths are non-backtracking.

Range r and source s maps for edges can be extended for paths in a natural way. For any path P =
e1 ◦ · · · ◦ en on a Bratteli diagram (V, E), we define range r : P �→ V and source s : P �→ V maps so that 
r(P ) := r(en) and s(P ) := s(e1).

Definition 2.6 (Boundary of Bratteli diagrams). The collection ∂B of all (non-backtracking) infinite paths 
starting at the root vertex of a Bratteli diagram B is a Cantor set under the product topology. We call ∂B
the boundary of B.

Definition 2.7 (Ancestors and descendants). Let v1, v2 be two vertices in a Bratteli diagram (V, E). Suppose 
there is a path P with s(P ) = v1 and r(P ) = v2. We call v1 an ancestor of v2 with respect to P and v2 a 
descendant of v1 with respect to P . If, in addition, there is an edge e ∈ E so that s(e) = v1 and r(e) = v2, 
then we say v1 is a parent of v2 and v2 is a child of v1.

Substitutions to Bratteli diagrams A Bratteli diagram Bω = (V, E) can be constructed from a given sub-
stitution ω whenever vertices (which are endowed with labels) correspond to tiles in the substitution and 
an edge connecting vertices a ∈ V (i − 1) with b ∈ V (i) indicates existence of a tile associated with vertex b
appearing in the substitution of a tile associated with vertex a. For example, the Bratteli diagram given in 
Fig. 5 is induced from the substitution ν.

Definition 2.8 (Ordered Bratteli diagrams). An ordered Bratteli Diagram is a Bratteli diagram (V, E) with 
a partial order ≤ on E such that every set s−1({v}) for v ∈ V is totally ordered. It is denoted by (V, E, ≤).

An example of an ordered (stationary) Bratteli diagram is shown in Fig. 6. It is the Bratteli diagram 
given in Fig. 5 with a partial order defined over its edges. The order structures between edges are apparent 
by the numbers attached to them, and repeat after the first level.

Remark 2.9. The usual construction of order structure for an ordered Bratteli diagrams is defined through 
pre-images of vertices by the range map. In this study, we rather use pre-images of vertices by the source 
map because we are interested in defining order structures on descendants of vertices.

Definition 2.10. Let (V, E, ≤) be a given ordered Bratteli diagram. Suppose Sk,n denote the set of all paths 
P with s(P ) ∈ V (k) and r(P ) ∈ V (n) for some k, n ∈ N with 0 ≤ k < n. We define a (lexicographic) total 
order over Sk,n as follows:
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a

a

a

b

b

c

c

d

d

E(1)

E(2)

V (0)

V (1)

V (2)

Fig. 5. A Bratteli diagram with E(j + 1) = E(2) and V (j) = V (1) for all j ∈ Z+.

(ek+1, ek+2, . . . , en) < (fk+1, fk+2, . . . , fn)

whenever em < fm for m = min{i : ei �= fi}, and (ek+1, ek+2, . . . , en) = (fk+1, fk+2, . . . , fn) whenever 
ei = fi for all i ∈ {k + 1, . . . , n}.

Total orders induced by ν Paths in S0,i for the ordered Bratteli diagram shown in Fig. 6 correspond to tiles 
of νi(pa) for every i ∈ Z+. As such, a lexicographic total order may be defined between tiles of νi(pa) through 
total order between paths in S0,i. For instance, total orders between tiles of 1-supertiles and 2-supertiles of 
ν are demonstrated in Fig. 7. Associated order structures are elucidated by the numbers attached to tiles 
in the figure.

Partitions of the unit square by ν For every k ∈ N, λ−k−1 · νk(pa) is a partition of the unit square with 
the convention that ν0(pa) := pa. The scaled patch λ−k−1 · νk(pa) consists of F2

k+2 rectangle tiles, where 

Fk+2 is (k + 2)-th Fibonacci number. Denote those tiles by J 1
k , . . . , J

F2
k+2

k consecutively using total orders 
between supertiles of ν. Then {J i

k : i = 1, . . . , F2
k+2} is a partition of the unit square for each k ∈ N. For 

example, {J 1
0 }, {J 1

1 , . . . , J 4
1 } and {J 1

2 , . . . , J 9
2 } are demonstrated in Fig. 8.

2.3. A construction of a Cantor set by ν

Consider the iteration rules shown in Fig. 9. The rules are defined for 4 different interval types of arbitrary 
length and demonstrate how to subdivide each interval type. Start with the interval S0 = [0, 1] attached 
with label a. Iterating it according to the given rules generates 4 subintervals with distinct labels a, b, c, d, 
respectively. Let S1 denote the union of those 4 subintervals. For each generated subinterval, apply the rules 
in Fig. 9 and denote union of those subintervals as S2, and so on so forth.

Lemma 2.11. The set Γ =
∞⋂
i=0

Si is a Cantor set (i.e. totally disconnected, compact and perfect), when we 

ignore labels attached to Si’s.
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a

a

a

b

b

c

c

d

d

1 2 3 4

1 2 3
4 1 2 1 2

1

Fig. 6. An ordered Bratteli diagram with E(j + 1) = E(2) and V (j) = V (1) for all j ∈ Z+.

1 3

2 4

1 3

2 4

5 6

7

8

9

1 2

1

2

3

4

5

6

1

2

1

2

3

4

5 6

1

1

2

3

4

Fig. 7. The total orders between the tiles of 1-supertiles and 2-supertiles of ν.

Proof. Proof follows by the fact that length of (disconnected) subintervals appearing in n-th step, for 
n ∈ Z+, decreases to zero as n → ∞. �

First few steps of the construction of Γ are shown in Fig. 10.

Remark 2.12. There is a natural correspondence between the boundary of the Bratteli diagram shown in 
Fig. 6, and Γ in Lemma 2.11, where each infinite path in the diagram corresponds to a singleton in Γ. This 
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J 1
0

(0, 0) (1, 0)

(0, 1) (1, 1)

(0, 0) (1, 0)

(0, 1) (1, 1)

(0, 0) (1, 0)

(0, 1) (1, 1)

J 1
1

J 2
1

J 3
1

J 4
1

J 1
2

J 2
2

J 3
2

J 4
2

J 5
2 J 6

2

J 7
2

J 8
2

J 9
2

Fig. 8. A sequence of partitions of the unit square.

x y

x y

x y

x y

a

x y6x+y
7

5x+2y
7

4x+3y
7

3x+4y
7

2x+5y
7

x+6y
7

a b c d

b

x y2x+y
3

x+2y
3

a c

c

x y2x+y
3

x+2y
3

a b

d

yx+y
2

a

Fig. 9. An iteration rule.

can be seen whenever each vertex in the diagram is associated with a closed interval [x, y] ⊆ [0, 1] with the 
help of iteration rules in Fig. 9 as follows:

i. The root vertex (which has a label a) is associated with [0, 1].
ii. If a vertex has a label a and is associated with [x, y] then it has 4 children vertices with labels a, b, c, d that 

are associated with intervals 
[
x,

6x + y

7

]
, 
[
5x + 2y

7 ,
4x + 3y

7

]
, 
[
3x + 4y

7 ,
2x + 5y

7

]
and 

[
x + 6y

7 , y

]
re-

spectively.
iii. If a vertex has a label b and is associated with [x, y] then it has 2 children vertices with labels a, c that 

are associated with intervals 
[
x,

2x + y

3

]
and 

[
x + 2y

3 , y

]
respectively.

iv. If a vertex has a label c and is associated with [x, y] then it has 2 children vertices with labels a, b that 

are associated with intervals 
[
x,

2x + y

3

]
and 

[
x + 2y

3 , y

]
respectively.

v. If a vertex has a label d and is associated with [x, y] then it has one child vertex with label a that is 

associated with interval 
[
x + y

, y

]
.
2
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0 1

0 1

0 1

Fig. 10. Construction steps of Γ.

0 1

0 1

0 1

I1
0

I1
1 I2

1 I3
1 I4

1

I1
2 I2

2 I3
2 I4

2 I5
2 I6

2 I7
2 I8

2 I9
2

Fig. 11. Intervals I1
0 , I1

1 , . . . , I4
1 and I1

2 , . . . ,I9
2 are demonstrated.

An infinite path P = e1 ◦ e2 ◦ . . . passes through an infinite sequence of vertices s(e1), r(e1), r(e2), . . . which 
corresponds to a sequence of closed intervals I1, I2, . . . with lim

n→∞
In = 0. Hence, P can be identified with a 

unique singleton {xP } =
∞⋂
i=1

Ii by Cantor’s intersection theorem.

2.4. A space-filling curve by ν

Notice that there exist F2
k+2 many disjoint intervals in the n-th step (with the convention that [0,1] is 

the 0-th step) of construction of Γ, for every n ∈ N. Denote these intervals by I1
k , . . . , I

F2
k+2

k , from left to 
right respectively. The intervals I1

0 , I1
1 , . . . , I4

1 and I1
2 , . . . , I9

2 are demonstrated in Fig. 11.
For every n ∈ N, fn : {Ik

n : k = 1, . . . , F2
n+2} �→ {J k

n : k = 1, . . . , F2
n+2} defined by fn(Ik

n) = J k
n for 

k = 1, . . . , F2
n+2, is a bijection. Using this bijective correspondence, we define a space-filling curve as follows.

Let x ∈ Γ be fixed. For every n ∈ N, there exists a unique kn ∈ {1, . . . , F2
n+2} such that x ∈ Ikn

n . In fact, 

{x} =
∞⋂

n=1
Ikn
n by Cantor’s intersection theorem. Similarly, 

∞⋂
n=1

J kn
n = {y} for some unique y ∈ [0, 1] × [0, 1]. 

Then f : Γ �→ [0, 1] × [0, 1] with f(x) = y where {x} =
∞⋂

n=1
Ikn
n and {y} =

∞⋂
n=1

J kn
n is well-defined.

Theorem 2.13. The map f : Γ �→ [0, 1] × [0, 1] is a continuous surjection.
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Fig. 12. First four approximants of F .

Proof. For any y ∈ [0, 1] × [0, 1], choose a sequence mn so that {y} =
∞⋂

n=1
Jmn
n . Note that such a sequence 

exists but not necessarily unique. Notice also that 
∞⋂
n=1

Imn
n is a unique point. In fact, f(

∞⋂
n=1

Imn
n ) = y and 

f is a surjection. Next we prove f is continuous.
For each n ∈ Z+, define the following:

gn = max
j∈{1,...,F2

n+2}

{
l(Ij

n) : l(Ij
n) denote length of Ij

n

}
,

hn = max
j∈{1,...,F2

n+2}

{
diam(J j

n) : diam(J j
n) denote diameter of J j

n

}
.

We have gn ↓ 0 and hn ↓ 0 as n → ∞. Let x ∈ Γ be fixed and let ε > 0 be given. Choose N ∈ Z+ sufficiently 
large so that hN < ε. Set δ = gN/2. If y ∈ Γ with |x − y| < δ, then x, y ∈ Ij0

N for some j0 ∈ {1, . . . , F2
N+2}. 

That is, f(x), f(y) ∈ J j0
N and ||f(x) − f(y)|| < ε. Thus, f is continuous. �

The continuous surjection f : Γ �→ [0, 1] × [0, 1] extends to a space-filling curve F : [0, 1] �→ [0, 1] × [0, 1]
by linear interpolation (See [13] for details of such process).

A geometrisation of F For each n ∈ Z+, mark the centre of every rectangle in λ−n−1 · νn(pa). Denote 

these points by x(J j
n) for j = 1, . . . , F2

n+2. Join the points x(J 1
n ), x(J 2

n ), . . . , x(J F2
n+2

n ) with straight lines, 
respectively. The constructed directed curve is called the n-th approximant of F . First four approximants 
of F are shown in Fig. 12. (Fig. 13.)

3. A space-filling curve generator algorithm

In this section we generalise the argument presented in Section 2.

Theorem 3.1. Let P be a given finite collection of tiles in R2. Suppose ω is a substitution defined over P
such that max{diam(t) : t ∈ λ−nωn(p), p ∈ P} ↓ 0 as n → ∞, where diam(t) denote diameter of supp t

and λ denote expansion factor of ω. Then for each p ∈ P, there exists a Cantor set Γω,p ⊆ [0, 1] and a 
continuous surjection fω,p : Γω,p �→ supp p so that fω,p extends to a space-filling curve Fω,p : [0, 1] �→ supp p

by linear interpolation.

Proof. Let P be a finite collection of tiles. Suppose ω : P �→ P∗ is a substitution with an expansion factor 
λ > 1 such that max{diam(t) : t ∈ λ−nωn(q), q ∈ P} ↓ 0 as n → ∞. Assume without loss of generality 
|ω(q)| > 1 for all q ∈ P.

Let p ∈ P be fixed. Define an ordered Bratteli diagram Bω = (V, E, ≤) from ω so that every vertex v ∈ V

is associated with qv ∈ P, the root vertex is associated with p ∈ P and every edge e ∈ E indicates a copy 
of qr(e) appears in ω(qs(e)). Assume that {J k

p,n : k = 1, . . . , |ωn(p)|} denotes the collection of rectangle tiles 
in λ−n · ωn(p) for each n ∈ N such that

J 1
p,n < J 2

p,n < · · · < J |ωn(p)|
p,n



M.İ. Özkaraca / J. Math. Anal. Appl. 530 (2024) 127654 11
Fig. 13. 7th approximant of F .

with respect to order induced by B.
The boundary ∂Bω is a Cantor set under the product topology. It can be embedded into a Cantor set 

Γω,p ⊆ [0, 1] whenever each infinite path is identified with a unique point in [0, 1] by associating every vertex 
v ∈ V with a closed interval [a, b] such that

i. The root vertex is associated with [0, 1]
ii. If a vertex v ∈ V is associated with [a, b] and e1, . . . , er ∈ E are all edges with source v so that e1 ≤

e2 ≤ · · · ≤ er (with respect to B), then vertex r(ei) is associated with subinterval 
[
a, a + (b− a) 2i− 1

2r − 1

]

for i = 1, 2, . . . , r.

Denote the intervals appearing in n-th step (with the convention that [0,1] is 0-th step) of construction of 
Γω,p by I1

p,n, . . . , I
|ωn(p)|
p,n , from left to right respectively (as like in Fig. 11). For each n ∈ Z+, fp,n : {Ik

p,n :
k = 1, . . . , |ωn(p)|} �→ {J k

p,n : k = 1, . . . , |ωn(p)|} defined by fp,n(Ik
p,n) = J k

p,n for k = 1, . . . , |ωn(p)| is a 

well-defined bijection. For each x ∈ Γω,p and n ∈ N, there exists kp,n ∈ {1, . . . , |ωn(p)|} such that x ∈ Ikp,n
p,n . 

In particular, {x} =
∞⋂

n=1
Ikp,n
p,n by Cantor’s intersection theorem. By the same token, there exists y ∈ supp p

such that {y} =
∞⋂

n=1
J kp,n
p,n . This process induces a surjection fω,p : Γω,p �→ supp p with fω,p(x) = y where 

x and y are as defined above. Next we prove that fω,p is continuous.
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For each n ∈ Z+, define the following:

gp,n = max
j∈{1,...,|ωn(p)|}

{
l(Ij

p,n) : l(Ij
p,n) denote length of Ij

p,n

}
,

hp,n = max
j∈{1,...,|ωn(p)|}

{
diam(J j

p,n) : diam(J j
p,n) denote diameter of J j

p,n

}
.

We have that gp,n ↓ 0 and hp,n ↓ 0 as n → ∞. Choose x ∈ Γω,p and ε > 0. Pick Np ∈ Z+ sufficiently large so 
that hp,Np

< ε. Set δ = gp,Np

2 . If y ∈ Γω,p with |x − y| < δ, then x, y ∈ Ij0
p,Np

for some j0 ∈ {1, . . . , |ωNp(p)|}. 
That is, f(x), f(y) ∈ J j0

p,Np
and ||f(x) − f(y)|| < ε. Thus, fω,p is continuous, and extends to a space-filling 

curve Fω,p : [0, 1] �→ supp p by linear interpolation. �
Theorem 3.1 can be regarded as an algorithm. Precisely, for every finite substitution ω : P �→ P∗ satisfying 

the condition in Theorem 3.1 and a tile p ∈ P, the following steps form a space-filling curve.
Step − 1 : Choose k ∈ Z+ such that |ωk(q)| > 1 for every q ∈ P.

Remark 3.2. Replace ω with ωk for following steps. We assume without loss of generality k = 1 for the 
following steps.

Step − 2 : Define an ordered Bratteli diagram Bω = (V, E, ≤) from ω with every vertex v ∈ V is 
associated with qv ∈ P, the root vertex is associated with p ∈ P and every edge e ∈ E indicates a copy of 
qr(e) appears in ω(qs(e)).

Step − 3 : Define an order structure between scaled tiles in supertiles λ−n · ωn(p) using B.
Step − 4 : Embed the Cantor set ∂B into Γω,p ⊆ [0, 1] by associating each infinite path with a distinct 

point in [0, 1].
Step − 5 : Define a bijection between intervals appearing in the n-th construction step of Γω,p and scaled 

tiles in λ−n · ωn(p), for each n ∈ Z+.
Step − 6 : Construct a continuous surjection fω,p : Γω,p �→ supp p using the bijective correspondences 

described in Step - 5.
Step − 7 : Construct a space-filling curve Fω,p : [0, 1] �→ supp p by linear interpolation over fω,p.

The Vershik map Proof of Theorem 3.1 would still hold even if fp,n : Γω,p �→ supp p would be replaced 
with fp,n ◦ h : Γω,p �→ supp p for any homeomorphism h : Γω,p �→ Γω,p. In particular, interpolation of 
fp,n ◦ h generates a (different) space-filling curve which is a deformation of the original. The Vershik map
is a homeomorphism on the boundary of an ordered Bratteli diagram, whenever the diagram satisfies some 
mild conditions, and is conjugate to shifting a sequence by 1 whenever infinite paths are encoded as infinite 
sequences using lexicographic order structure induced from the Bratteli diagram [17,18]. In this paper, 
we have not studied deformations of constructed space-filling curves by the Vershik map, because their 
geometric interpretations are not obvious.

3.1. Space-filling curve examples

In Section 3.1 we apply the algorithm induced from Theorem 3.1 using some of known substitutions. The 
substitutions provided in this section, as well as a vast collection of other substitutions, can be found in [3]. 
The generated space-filling curves are elucidated by their associated approximants (Definition 3.3).

Definition 3.3. Let Fω,p be a space-filling curve constructed by the algorithm in Section 3. With the same 
notations in the proof of Theorem 3.1, for each n ∈ Z+ and j ∈ {1, . . . , |ωn(p)|}, denote the centre of J j

p,n by 

x(J j
p.n). The directed curve formed by joining points x(J 1

p.n), x(J 2
p.n), . . . , x(J |ωn(p)|

p.n ) successively is called 
n-th approximant of Fω,p.
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A B

A B

B A

B A

A B

Fig. 14. 2-dimensional Thue-Morse substitution.

A

A

A

B

B

1 2 4
3

1 2 4
3 2

1 3 4

Fig. 15. An ordered stationary Bratteli diagram induced from 2-dimensional Thue-Morse substitution. Only level-0 and level-1 are 
presented.

A B

1 3

2 4

1 3

2 4

Fig. 16. Total orders over 1-supertiles of 2DTM.

Example 3.4 (Thue-Morse). The substitution given in Fig. 14 is called 2-dimensional Thue-Morse substi-
tution (2DTM in short). It is defined over two unit squares with labels A, B. Expansion factor for this 
substitution is 2. Choose a square tile with label A in order to input it to the algorithm.

Fig. 15 shows an ordered (stationary) Bratteli diagram defined from Thue-Morse substitution. Tiles 
between 1-supertiles of 2DTM can be totally ordered using the order structure of the diagram, as elucidated 
by numbers in Fig. 16. This can also be represented by curves depicted in Fig. 17 where the total order 
is defined according to which tile is visited first by the curve. The space-filling curve generated by the 
algorithm is nothing but the Lebesgue’s curve.

Hereafter, we explain total order structures solely through directed curves (as like in Fig. 17) and bypass 
the step of defining ordered Bratteli diagrams. The associated total orders are defined according to which 
tile is visited first.

Next define another order structure over 1-supertiles of 2DTM by the curves shown in Fig. 18. Let 
FA
tm denote the space-filling curve formed by the algorithm (by inputting a tile with label A). First four 



14 M.İ. Özkaraca / J. Math. Anal. Appl. 530 (2024) 127654
A B

Fig. 17. Total orders defined through curves for the 1-supertiles of 2DTM.

A B

Fig. 18. Total orders over 1-supertiles of 2DTM.

Fig. 19. First four approximants of FA
tm.

Fig. 20. 4th approximants of FA
tm and Lebesgue’s curve, respectively.

approximants of FA
tm are shown in Fig. 19. Comparison of 4th approximants of FA

tm and the Lebesgue’s 
curve is shown in Fig. 20.

Example 3.5 (Equithirds-variant). Consider the substitution depicted in Fig. 21. It is a variation of Equithirds 
substitution [3]. It is defined over two different shapes; an equilateral triangle with side length 1 and an 
isosceles triangle with side lengths 1, 1, 

√
3. Its expansion factor is 

√
3. The curves shown in Fig. 22 describe 

total orders over its 1-supertiles. Let F i
eq denote the space-filling curve produced by the algorithm from 

tile with label i for i ∈ {A+, A−, B+, B−}. First four approximants of FB+

eq are shown in Fig. 23. We 

modify approximants of FB+

eq to be closed curves for demonstration purposes, by connecting end points of 
its approximants with a straight line and fill associated closed regions as illustrated in Fig. 24 and Fig. 25.

Next we describe geometry of approximants of FA+

eq . First four approximants of FB+

eq are shown in Fig. 26. 
Notice that FA+

eq (0) �= FA+

eq (1). Let prA+ denote rotation of pA+ by π such that longer edges of pA+ and prA+

merge. Suppose FA+
r

eq is the space-filling curve generated by the algorithm using pr + . Since FA+

eq (0) = F
A+

r
eq (1)
A



A+ A−B−A− A− B+A+ A+

B+ B−
A− A+

A− A− A+ A+

Fig. 21. Equithirds-variant.

A+ A−

B+ B−

Fig. 22. Total orders over the 1-supertiles of Equithirds-variant.

Fig. 23. First four approximants of FB+

eq .

Fig. 24. 1st, 3rd, 5th and 7th approximants of FB+

eq . The 7th approximant is scaled up for illustration purposes.

and FA+

eq (1) = F
A+

r
eq (0), we can concatenate FA+

eq with FA+
r

eq in order to define another space-filling curve 

FA
eq with FA

eq(0) = FA
eq(1). Approximants of FA+

eq will be visualised through approximants of FA
eq because 

we can modify the approximants of FA
eq to be closed curves as shown in Fig. 27. Associated filled regions of 

first 8 approximant curves are shown in Fig. 28 and Fig. 29.
M.İ. Özkaraca / J. Math. Anal. Appl. 530 (2024) 127654 15
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Fig. 25. 2nd, 4th, 6th and 8th approximants of FB+

eq . The 8th approximant is scaled up for illustration purposes.

Fig. 26. First four approximants of FA+

eq .

Fig. 27. First four approximants of FA
eq where their end points are joined with a line.

Fig. 28. Filled versions of 1st, 3rd, 5th and 7th approximants of FA
eq. The 7th approximant is scaled up for demonstration purposes.
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Fig. 29. Filled versions of 2nd, 4th, 6th and 8th approximants of FA
eq. The 8th approximant is scaled up for demonstration purposes.

Fig. 30. Pinwheel-variant substitution.

For the following two substitution examples, we will use the algorithm (Theorem 3.1) to create space-
filling curves over patches instead of tiles, similar to construction of FA

eq, for demonstration purposes.

Example 3.6 (Pinwheel-variant). The substitution given in Fig. 30 is defined over four tiles and their rota-
tions. It is a variation of Pinwheel substitution [3]. Every tile in the substitution is a right triangle with side 
lengths 1, 2, 

√
5. Expansion factor for this substitution is 

√
5. The curves in Fig. 31 define total orders over 

1-supertiles of this substitution. Let R1, R2 denote rhombus and rectangle shown in Fig. 32. Using the algo-
rithm together with the defined total orders, we can produce two space-filling curves F 1

pin, F
2
pin over R1, R2, 

respectively. Fig. 33 indicates the first two approximants of F 1
pin and F 2

pin. Observe that F i
pin(0) = F i

pin(1)
for i = 1, 2. Fig. 34 and Fig. 35 demonstrates first 5 approximants of F 1

pin, whereas Fig. 36 and Fig. 37
illustrates first 6 approximants of F 2

pin.

Example 3.7 (Penrose-Robinson-variant). Start with the substitution given in Fig. 38. Its domain consists 
of 12 tiles and their rotations, which are congruent copy of two different shapes; an isosceles triangle with 
side lengths 1, 1, (1 +

√
5)/2 and an isosceles triangle with side lengths 1, 1, (

√
5−1)/2. Expansion factor for 

this substitution is the golden mean (1 +
√

5)/2. It is a variation of Penrose-Robinson substitution [3]. We 
generate space-filling curves Fstar, Fdeca using the described total orders in Fig. 39. They fill supports of the 
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Fig. 31. Total orders over 1-supertiles of the Pinwheel-variant substitution.

Fig. 32. The regions R1 and R2, from left to right respectively.

Fig. 33. First two approximants of F 1
pin and F 2

pin.

Fig. 34. 1st, 3rd and 5th approximants of F 1
pin - filled version. The 5th approximant is scaled up for illustration purposes.

patches shown in Fig. 40, respectively, such that Fstar(0) = Fstar(1) and Fdeca(0) = Fdeca(1). Approximants 
of Fstar and Fdeca are shown in Fig. 41, Fig. 42 and Fig. 43.
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Fig. 35. 2nd and 4th approximants of F 1
pin - filled version.

Fig. 36. 1st, 3rd and 5th approximants of F 2
pin - filled version. The 5th approximant is scaled up for illustration purposes.

Fig. 37. 2nd, 4th and 6th approximants of F 2
pin - filled version. The 6th approximant is scaled up for illustration purposes.

4. Substitutions to fractal-like relatively dense sets

Definition 4.1. A substitution ω : P �→ P∗ is called primitive if there exists k ∈ Z+ such that ωk(p) contains 
a copy of q for every p, q ∈ P.
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Fig. 38. Penrose-Robinson-variant substitution. 1-supertiles are scaled down for demonstration.

Fig. 39. Total orders over 1-supertiles of the Penrose-Robinson-variant substitution.

Fig. 40. A star and a decagon.

Fig. 41. First four approximants of Fstar - filled version.

Fig. 42. First four approximants of Fdeca - filled version.

Primitive substitutions induce tessellations of the plane, called tilings.

Definition 4.2 (Tilings). A tiling T is a countable collection of tiles {tn : n ∈ Z+} so that 
⋃
t∈T

supp t = R2

and int(supp ti)∩int(supp tj) = ∅ whenever i �= j.

Lemma 4.3. [12, Theorem 1.4] Any primitive substitution induces a tessellation of the plane.
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Fig. 43. 6th approximants of Fstar and Fdeca, from left to right.

Proof. Assume that ω : P �→ P∗ is a primitive substitution. Let p ∈ P be given. There exists n ∈ Z+ and 
x ∈ R2 such that {p + x} ⊆ ωn(p + x) and supp p + x ∩ ∂supp (ωn(p + x)) = ∅. That is, a translation of p
appears ‘inside’ of the patch ωn(p + x). Hence,

{p + x} ⊆ ωn(p + x) ⊆ ω2.n(p + x) ⊆ ω3.n(p + x) ⊆ . . .

is an infinite sequence of nested patches such that 
∞⋃
i=1

ωi.n(p + x) is a tessellation of the plane. �
We use the same idea to produce fractal-like relatively dense sets in the plane.

A relatively dense set in R2 Consider the iterative rule shown in Fig. 44. There are three types of tiles up to 
rotation; a rectangle with side lengths 

√
3 and 4, an equilateral triangle with side length 

√
3, and an 12-gon 

with alternatingly aligned side lengths 
√

3, 1 and equal internal angles (150◦). Observe that iteration of a 
rectangle tile contains a copy of itself at its centre. This induces a nested collection of patches as depicted 
in Fig. 45. Nested patches expand in every direction in the plane as iterated, and thereby limit of their 
supports gives rise to a relatively dense set in the plane. We denote the generated relatively dense set by 
Heq.

Corollary 4.4. The set Heq is relatively dense in R2.

Notice that patches appearing in iteration steps of the triangle tile given in Fig. 46 are scaled versions of 
odd-indexed approximants of FB+

eq shown in Fig. 24. Similarly, patches appearing in iteration steps of the 
rectangle tile given in Fig. 45 are scaled and rotated versions of odd-indexed approximants of FA

eq shown in 
Fig. 28. In particular, iterative construction of Heq is analogue to construction of (rotated version of) FA

eq.
The set Heq contains only three types of tiles up to rotation and translation. It has a fractal-like feature 

in the sense that it is constructed through nested sequence of patches, each of which is a collection of tiles 
that are congruent copy of either of the three tiles. Next, we generalise this construction.

Proposition 4.5. Let ω : P �→ P∗ be a given substitution defined over a finite collection P with an expansion 
factor λ > 1 such that max{diam(t) : t ∈ λ−nωn(p), p ∈ P} ↓ 0 as n → ∞, where diam(t) is the diameter of 
supp t. Suppose F : [0, 1] �→ supp p is a Lebesgue-type space-filling curve generated by the method explained 
in Theorem 3.1 and fills supp p for some p ∈ P. Assume that F (0) = F (1) and {Fn : n ∈ Z+} is the 
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Fig. 44. An iteration rule for Heq.

collection of approximants of F (defined on λ−nωn(p)) generated by filling the associated closed regions (i.e. 
Fn’s are sets in R2). Assume further there exists x ∈ R2 and k ∈ Z+ so that

(1) p + x ∈ ωk(p + x) and supp (p + x) ∩ ∂supp ωk(p + x) = ∅,
(2) F1 + x ⊆ λk(Fk+1 + x) (i.e. a copy of F1 appears in scaled version of Fk+1),
(3) Fn visits two (scaled) tiles in λ−nωn(p) subsequently only if they share a common edge, for every n ∈ Z+.

Then

i. Fn.k+1 + x ⊆ λn(F(n+1)k+1 + x) for every n ∈ Z+.

ii. F =
∞⋃

n=0
λn.k(Fn.k+1 + x) is a relatively dense set in the plane.

iii. F can be partitioned into collection of sets {Am : m ∈ Z+} so that there are only finitely many different 
sets in the collection (up to translation and rotation). Precisely,
(a)

⋃
m
Am = F ,

(b) int(Ai) ∩int(Aj) = ∅ whenever i �= j, where int(Ai), int(Aj) are interiors of Ai and Aj, respectively,
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Fig. 45. An iterative construction of Heq.

(c) There are finite number of indices m1, . . .ms ∈ Z+ for some s ∈ Z+ such that for each m ∈ Z+

there exists rm ∈ {m1, . . . , ms} and xm ∈ R2 with Am = Arm + xm.

Proof. i. We get {p + x} ⊆ ωn(p + x) ⊆ ω2n(p + x) ⊆ . . . , by (1). So, we can conclude by (2) that

F1 + x ⊆ λn(Fn+1 + x) ⊆ λ2n(F2n+1 + x) ⊆ λ3n(F3n+1 + x) ⊆ . . . .

ii. We have that the collection T =
⋃
i=1

ωin(p + x) is a covering of the plane by (1), using the argument 

provided in the proof of Lemma 4.3. Note that F =
∞⋃
i=0

λin(Fin+1 + x) visits every tile in T . Thus, F is 

relatively dense in R2 because there are only finite different tiles in P.
iii. For each t ∈ T , define At = F ∩supp t. Then F =

⋃
t∈T

At. Furthermore, int(Ati) ∩int(Atj ) = ∅ whenever 

ti �= tj , where int(Ati), int(Atj ) are interiors of Ati , Atj , respectively. By (3) and the fact that |P| is 
finite, there are only finitely many indices t1, . . . , tm for some m ∈ Z+ such that for each t ∈ T , there 
exists st ∈ {t1, . . . , tm} and xt ∈ R2 with At = Ast + xt. �

Remark 4.6. Condition iii-(c) in Proposition 4.5 is analogue to definition of fractals by Mandelbrot [7]. In 
particular, condition iii-(c) assures that there are only finite number of dissections of F , whose collection 
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Fig. 46. Iteration process of the triangle tile in Fig. 44.

is denoted by P (analogue to tile set P), such that F can be written as a countable union of sets, each of 
which is a translational copy of the defined dissections of F (i.e. each of which is a congruent copy of a tile 
in P).
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