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Modeling impedance boundary conditions and acoustic barriers
using the immersed boundary method: The three-dimensional
casea)

Stefan Bilbaob)

Acoustics and Audio Group, University of Edinburgh, Room 2.10 Alison House, 12 Nicolson Square, Edinburgh EH8 9DF,
United Kingdom

ABSTRACT:
One of the main challenges in time domain wave-based acoustics is the accurate simulation of both boundary condi-

tions and barriers capable of reflecting and transmitting energy. Such scattering structures are generally of irregular

geometry and characterised in terms of frequency-dependent reflectances and transittances. Conditions for numerical

stability can be difficult to obtain in either case. Immersed boundary methods, which are heavily used in computa-

tional fluid dynamics applications, replace boundaries by discrete driving terms, avoiding volumetric meshing and

staircasing approaches altogether. The main contribution of this article is a unified numerical treatment of both

impedance boundary conditions and barriers capable of transmitting energy and suitable for use in the setting of

wave-based acoustics. It is framed in terms of the immersed boundary method within a finite difference time domain

scheme, using a dual set of matched discrete driving terms in both the conservation of mass and momentum equa-

tions that can be tuned against a desired reflectance or transmittance. Numerical results in three dimensions are pre-

sented, illustrating non-porous barriers and impedance boundary conditions, and highlight important features such as

spurious leakage through an immersed boundary. A brief demonstration of conditions for numerical stability of the

immersed boundary method in this context is provided in an appendix. VC 2023 Author(s). All article content, except
where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0020635

(Received 16 March 2023; revised 19 July 2023; accepted 27 July 2023; published online 11 August 2023)

[Editor: Lauri Savioja] Pages: 874–885

I. INTRODUCTION

Volumetric wave-based time domain simulation for

applications in room and architectural acoustics has a long

history. Many frameworks have emerged, including finite

difference time domain (FDTD) methods,1–3 finite volume

time domain (FVTD) methods,4 pseudospectral time domain

(PSTD) methods,5 and methods of the finite element family,

including spectral elements6 and discontinuous Galerkin

methods.7 For such methods, there is a full volumetric

meshing of the space, and the solution is computed recur-

sively using a time-stepping procedure.

One of the main challenges is the accurate representa-

tion of bounding geometries and the accompanying condi-

tions, usually frequency-dependent. There are two main

categories: (1) boundary conditions, which do not permit

transmission of energy through a surface and are usually

characterised by an impedance (examples are outer wall

conditions and also interior boundaries of scattering objects,

such as the human head, or thin two-sided barriers that do

not allow transmission) and (2) an interior two-sided barrier

allowing transmission, characterised in terms of reflection

and transmission coefficients. Not covered here are bound-

aries or barriers with in-plane dynamics. These include non-

locally reactive boundary conditions8 as well as scattering

from objects such as Kirchhoff plates.9

One approach used in both cases above, when FVTD or

methods of the finite element family are employed, is form-

fitting volumetric meshing. FVTD has been used in this

way4 for impedance boundary conditions of type 1, and dis-

continuous Galerkin methods have recently been used to

model transmission through a barrier of type 2 above.10

However, unless the boundary aligns neatly with a struc-

tured meshing, such as a Cartesian grid, the meshing proce-

dure can become an involved and computationally intensive

preprocessing stage, possibly extending into the interior of

the domain, as illustrated in a recent paper.10 While suitable

for small geometries, or in two dimensions (2D), this

approach becomes infeasible for large volumes in three

dimensions (3D) at near audio rates, where mesh sizes

become very small (approximately 1 cm). Another more

basic technique is to make use of jagged “staircased”

approximations to a given boundary surface. This extremely

efficient approach is often used within FDTD methods, but

it has been shown to produce poor results, both in terms of

the coherence of reflected responses and due to the overesti-

mation of boundary surfaces.4 It has also been used in the

a)Preliminary results of this work were presented in “Impedance boundaries

and transmission in wave-based acoustics using the immersed boundary

method,” International Congress on Acoustics, Gyeongju, South Korea,

October 2022.
b)Electronic mail: sbilbao@ed.ac.uk
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simulation of scattering from the human head using FDTD,

although the grid spacing and time step must be chosen to

be very small to achieve good results.11 Staircasing methods

have also been proposed for barriers of type 2 in FDTD and

demonstrated in the case of a barrier aligned with a

Cartesian grid.12 (Cut-cell techniques,13,14 not employed in

acoustics to the knowledge of this author, form a middle

ground between volumetric meshing and staircasing.)

Conditions for numerical stability under such terminating

conditions can be demonstrated in some cases, such as

FVTD, or staircased FDTD as a special case of FVTD,4,15

but are not often investigated in detail.

In immersed boundary methods,16–18 the boundary is

replaced by a finite collection of field-dependent driving

terms, and, thus, volumetric meshing and staircasing are

avoided entirely, and operation is over a regular grid. Such

methods have been employed extensively in nonlinear fluid

dynamics problems19,20 as well as in linear acoustics.21 In

most applications, the driving terms appear in the equation

describing conservation of momentum and have the inter-

pretation of forces. This is natural in the context of incom-

pressible flow19,20,22–24—the main setting in which

immersed boundaries are employed (with some excep-

tions18,25). In acoustics, however, even under linearized con-

ditions—the starting point in virtual acoustics—flow is

compressible. There is, thus, the opportunity to introduce

additional driving terms in the equation describing conser-

vation of mass and with the interpretation of a mass source.

It has been shown in the one-dimensional (1D) case26 that it

is possible to use this pair of driving terms together to emu-

late general acoustic barriers, including the special case of a

non-transmitting impedance boundary condition, within a

single unified framework. When extended to 3D, this gener-

alizes considerably the approach presented recently27 in the

context of wave-based virtual acoustics. In this linearized

case, a full stability analysis is possible—provided the

approach to the time domain discretisation of frequency

domain boundary and barrier conditions is passivity-

preserving, the immersed boundary has no impact on the

stability of the resulting method.

This article is a continuation of a more fundamental

study of the immersed boundary in 1D acoustics.26 Acoustic

wave propagation in three dimensions is introduced in Sec.

II, alongside a formulation of the immersed boundary

method, defined over arbitrary surfaces, including dual driv-

ing distributions in the mass and momentum conservation

equations. These distributions are related to acoustic field

variables through a pair of arbitrary passive (positive real)

immittance distributions. The resulting system is then

reduced to a finite number of driving terms in preparation

for discretisation. FDTD methods are introduced in Sec. III,

including discrete representations of the Dirac delta function

and a specialised numerical integration rule for the simula-

tion of the immittances. Although the resulting scheme is

formally implicit, fast linear system solution techniques that

exploit matrix structure are available. Numerical results are

presented in Sec. IV, in the case of rectangular acoustic

barriers and panels and scattering from a sphere under a

variety of boundary conditions. Some concluding remarks

appear in Sec. V. A brief stability analysis of the immersed

boundary in discrete time appears in the Appendix.

Preliminary results have appeared at the International

Congress on Acoustics in 2022.28

II. IMMERSED BOUNDARIES IN THREE-
DIMENSIONAL ACOUSTICS

In free space, the equations of linear acoustics in three

dimensions may be written as

1

qc2
@tpþr � v ¼ 0; q@tvþrp ¼ 0: (1)

Here, pðx; tÞ and vðx; tÞ ¼ ½v1ðx; tÞ; v2ðx; tÞ; v3ðx; tÞ� are the

acoustic pressure in Pa and vector particle velocity in m�s–1,

respectively; both are functions of spatial coordinates

x ¼ ½x1; x2; x3� 2 R3 and time t � 0. r and r� represent the

three-dimensional gradient and divergence operations, respec-

tively. c is the wave speed, in m�s–1, and q is density, in

kg�m–3; both are assumed constant here. From these constants,

the acoustic impedance and admittance of air may be defined as

Z0¢qc; Y0¢1=Z0 ¼ 1=qc: (2)

A. Immersed boundary

The immersed boundary formulation presented in the

1D case in the companion paper26 may be extended directly

to 3D in the following way. Suppose that an immersed

boundary, assumed infinitely thin, is defined over a two-

dimensional orientable surface X � R3. See Fig. 1 (left).

With each n 2 X is associated a normal vector nðnÞ. The

immersed boundary formulation is now

1

qc2
@tpþr�vþ

ðð
X
vDðn;tÞdð3Þðx�nÞdn¼dð3Þðx�xsÞu;

q@tvþrpþ
ðð

X
pDðn;tÞnðnÞdð3Þðx�nÞdn¼0:

(3)

FIG. 1. (Color online) (Left) A surface X embedded in R3. (Right)

Subdivision into K flat patches, with surface areas SðkÞ, at coordinates nðkÞ,
indicated by dots, and normal vectors nðkÞ indicated by lines, for

k ¼ 1;…;K.
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An external source term, of strength u(t) in m3�s–1 is

included and acts pointwise at location x ¼ xs. dð3Þ repre-

sents a three-dimensional Dirac delta function. Initial condi-

tions are assumed to be quiescent. Note that (3) is more

general than other formulations employed for the same sys-

tem21,27 due to the presence of vD.

Here, the scalar driving terms pDðn; tÞ and vDðn; tÞ are

defined for n 2 X. The associated field variables upon which

they depend are written as �pðn; tÞ and �vðn; tÞ,

�pðn; tÞ ¼
ððð

R3
pðx; tÞdð3Þðx� nÞdx; (4a)

�vðn; tÞ ¼ nðnÞ �
ððð

R3
vðx; tÞdð3Þðx� nÞdx: (4b)

Define the Laplace transform f̂ ðn; sÞ of f ðn; tÞ; n 2 X as

f̂ ðn; sÞ ¼
ð1

0

f ðn; tÞe�stdt; (5)

where s is a complex frequency variable. The relationships

between driving functions pD; vD and field variables �p; �v
can be expressed, in the Laplace domain, as

p̂Dðn; sÞ ¼ 2Z0zvðn; sÞ�̂vðn; sÞ; (6a)

v̂Dðn; sÞ ¼ 2Y0ypðn; sÞ�̂pðn; sÞ; (6b)

for nondimensional impedance zvðn; sÞ and admittance

ypðn; sÞ distributions defined over n 2 X. (The additional

factors of 2 are employed here to simplify subsequent calcu-

lations, as in the 1D case.26)

B. Positive realness of immittances and special cases

A function w(s) of a complex variable s is called posi-

tive real29 if it satisfies

Re wðsÞð Þ � 0 when ReðsÞ � 0; (7a)

Im wðsÞð Þ ¼ 0 when ImðsÞ ¼ 0: (7b)

Positive real functions are constrained to be rational accord-

ing to some definitions,29 so that

wðsÞ ¼

XP

�¼0

g�s
�

XQ

�¼0

f�s
�

(8)

for some coefficients g�; � ¼ 0;…;P and f�; � ¼ 0;…;Q.

A flexible special case of interest in acoustics is the form

wðsÞ ¼ aþ bsþ c=s; (9)

which is positive real for a; b; c � 0.

Both ypðn; sÞ and zvðn; sÞ are assumed to be positive real

pointwise, for all n 2 X, although their forms can vary with

location over X. As in the one-dimensional case,26 if

ypðn; sÞ ¼ 0 8n 2 X; (10)

then the boundary is of non-porous type. If

zvðn; sÞ ¼ 1=ypðn; sÞ 8n 2 X; (11)

then the surface acts as an impedance boundary with no

transmission and of surface impedance zvðn; sÞ.

C. Reduction over a surface mesh

As a preparatory step to discretisation, the driving terms

in system (3) must be approximated by sums of a finite num-

ber of driving terms. Suppose that X is decomposed into K
non-overlapping subdomains XðkÞ; k ¼ 1;…;K. Each sub-

domain is centered at coordinates nðkÞ, with surface area

SðkÞ ¼ jXðkÞj. The resolution of the subdomains is assumed

sufficiently fine that each XðkÞ is effectively flat (while not

larger than the grid spacing), with normal vector nðkÞ. (Note

that the formalism presented below is insensitive to the

choice of either nðkÞ or �nðkÞ.) See Fig. 1 (right). System (3)

may then be approximated as

1

qc2
@tpþr � vþ

XK

k¼1

vðkÞD dð3Þðx� nðkÞÞSðkÞ

¼ dð3Þðx� xsÞu;

q@tvþrpþ
XK

k¼1

p
ðkÞ
D nðkÞdð3Þðx� nðkÞÞSðkÞ ¼ 0: (12a)

Here, vðkÞD ðtÞ and p
ðkÞ
D ðtÞ; k ¼ 1;…;K are scalar driving func-

tions. They are related to interpolated field values �pðkÞðtÞ
and �vðkÞðtÞ by an approximation to (4) as

�pðkÞðtÞ ¼
ððð

R3
pðx; tÞdð3Þðx� nðkÞÞdx;

�vðkÞðtÞ ¼ nðkÞ �
ððð

R3
vðx; tÞdð3Þðx� nðkÞÞdx: (12b)

Finally, the relationships (6) are approximated as

p̂
ðkÞ
D ðsÞ ¼ 2Z0zðkÞv ðsÞ�̂v

ðkÞðsÞ;

v̂ðkÞD ðsÞ ¼ 2Y0yðkÞp ðsÞ�̂p
ðkÞðsÞ: (12c)

Here, z
ðkÞ
v ðsÞ and y

ðkÞ
p ðsÞ are the immittances associated with

the kth surface patch, k ¼ 1;…;K. Both are assumed to be

positive real rational functions, of the form

zðkÞv sð Þ ¼

XPðkÞv

�¼0

gðkÞv;�s
�

XQðkÞv

�¼0

fðkÞv;�s
�

; yðkÞp sð Þ ¼

XPðkÞp

�¼0

gðkÞp;�s
�

XQðkÞp

�¼0

fðkÞp;�s
�

; (13)

with associated coefficients gðkÞv;�; � ¼ 0;…;P
ðkÞ
v ; fðkÞv;� ; �

¼ 0;…;Q
ðkÞ
v ; gðkÞp;� ; � ¼ 0;…;P

ðkÞ
p , and fðkÞp;� ; � ¼ 0;…;Q

ðkÞ
p ,
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for k ¼ 1;…;K. Notice in particular that the coefficients

and even orders of the polynomials in the rational functions

above can vary with the surface patch index k, meaning that

the character of the immersed boundary can vary from one

point to another. System (12), alongside definitions (13), is

the point of departure for time domain simulation.

III. FDTD METHOD

The development of FDTD methods in 3D closely fol-

lows the 1D case26 and is presented in brief here, using the

system (1) in free space as a starting point.

Interleaved time domain methods are commonly used

to simulate the first-order system (1) directly.1,2 A starting

point is the definition of a grid function pn
l , for integer n � 0

and integer-valued vector l 2 Z3, intended to approximate

pðx; tÞ at x ¼ lX and t¼ nT, where X is the grid spacing in

m, and T is the time step in s. An interleaved grid function

v
nþ1=2
l ¼ ½vnþ1=2

1;l ; vnþ1=2
2;l ; vnþ1=2

3;l �, again for integer-valued 3-

vectors l, approximates the velocity. Despite the uniform

spatial indexing, used here for simplicity, the three compo-

nents vnþ1=2
l;l ; l ¼ 1; 2; 3 are not co-located; rather, vnþ1=2

l;l
represents an approximation to vlðx; tÞ at t ¼ ðnþ 1=2ÞT
and x ¼ ðl� ð1=2ÞelÞX, where el is a unit vector in direc-

tion xl. See Fig. 2.

Time difference operators are as defined in the 1D

case.26 For a grid function f n
l , the difference operators D6

t

and averaging operators M6
t are defined as

D6
t f n

l ¼ 6 f n61
l � f n

l

� �
; M6

t f n
l ¼

1

2
f n61
l þ f n

l

� �
: (14)

ð1=TÞD6
t is an approximation to @t and holds equally when

applied to a grid function defined at interleaved time steps

nþ 1=2. Basic spatial difference operators may be defined,

with reference to a grid function f n
l , as

D6
l f n

l ¼ 6 f n
l6el
� f n

l

� �
; l ¼ 1; 2; 3: (15)

This definition holds similarly when applied to a time inter-

leaved grid function f
nþ1=2
l . Approximations D6 to the gra-

dient r follow as

D6 ¼ D6
1 ;D

6
2 ;D

6
3

� �
: (16)

A basic FDTD scheme for (1), describing the free field prob-

lem, then follows as

1

qc2T
Dþt pn

l þ
1

X
Dþ � vnþ1=2

l ¼ 0; (17a)

q
T

D�t v
nþ1=2
l þ 1

X
D�pn

l ¼ 0: (17b)

At this stage, it is useful to constrain the computational

domain of the problem to be finite. Suppose that Np and Nv

are the total numbers of grid points required to represent the

pressure grid values pn
l and all components of the velocity

v
nþ1=2
l . Then we may define the consolidated vectors pn and

vnþ1=2, of sizes Np � 1 and Nv � 1, respectively. (The most

direct way to do this, given a grid function indexed over a

parallelepipedal volume, is to extract consecutive 1D vec-

tors in one dimension across regular indexing in the two

remaining dimensions. All such orderings lead to equivalent

results.) The discrete divergence operation Dþ� and gradient

operation D� can be represented as matrices Dþ and D�, of

sizes Np � Nv and Nv � Np, respectively. Furthermore, it is

often the case that D� ¼ �ðDþÞ>, as, e.g., under Neumann

or periodic conditions over the domain boundary. As the

focus here is on the immersed boundary method and the

problem interior, this property will be assumed to hold here.

Thus, the scheme (17) may be written in vector-matrix form

as

Dþt pn þ Z0kDþvnþ1=2 ¼ 0;

D�t vnþ1=2 þ Y0kD�pn ¼ 0: (18)

Note the appearance of the characteristic impedance Z0 and

admittance Y0 as defined in (2), as well as the Courant num-

ber k, defined as k ¼ cT=X. For this scheme, the numerical

stability condition is

k � 1=
ffiffiffi
3
p

: (19)

A. Approximations to the three-dimensional Dirac
delta function and matrix representations

Instances of the three-dimensional Dirac delta function

appear in both (12a) as a driving term and (12b) as an inter-

polant. Approximations are, thus, required over four distinct

grids, for the four components of p and v, at the locations

nðkÞ ¼ ½nðkÞ1 ; nðkÞ2 ; nðkÞ3 �; k ¼ 1;…;K. Over the pressure grid

(see Fig. 2), the approximation will be of the form of a grid

function jp;lðnðkÞÞ, where

1

X3
jp;lðnðkÞÞu dð3Þðx� nðkÞÞ; k ¼ 1;…;K: (20)

FIG. 2. (Color online) Interleaved computational grid, showing the loca-

tions of pressure grid function pn
l and the components of the particle veloc-

ity v
nþ1=2
l separately. Those grid points with a common index l are

indicated in yellow.
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Similarly to the 1D case,26 a factor of 1=X3 has been

extracted so that, to correspond to an approximation to a

Dirac delta function, a minimum requirement (or moment

condition) is that the elements of jp;l sum to unity. It is sim-

plest to construct such approximations as Cartesian products

of 1D approximations to the Dirac delta function

jp;llðnðkÞl Þ; l ¼ 1; 2; 3, such as those described in detail in the

companion paper,26 so that

jp;lðnðkÞÞ ¼ jp;l1ðn
ðkÞ
1 Þjp;l2ðn

ðkÞ
2 Þjp;l3ðn

ðkÞ
3 Þ: (21)

Examples are the raised cosine distribution,30 heavily used

in immersed boundary applications, and polynomial interpo-

lants, including the triangular distribution.18,23 Other non-

separable designs are available in 3D and can have superior

performance, although they require a more involved design

procedure.31 Following from the vector-matrix representa-

tion described above in Sec. III, the approximation to the kth

Dirac delta function over the pressure grid may be repre-

sented as an Np � 1 vector jðkÞp , according to the reordering

described above in Sec. III. All K such vectors may be

arranged in an Np � K matrix Jp ¼ ½jð1Þp ;…; jðKÞp �. See the

companion paper26 for more on the 1D construction of these

vectors.

Similarly, approximations to the Dirac delta functions

may be constructed over the three distinct grids for the

velocity components (see Fig. 2), giving, for the kth Dirac

delta function, k ¼ 1;…;K, the three approximants

jðkÞv;l; l ¼ 1; 2; 3. From these, and incorporating the compo-

nents of the normal vectors nðkÞ ¼ ½nðkÞ1 ; n
ðkÞ
2 ; n

ðkÞ
3 �, one may

construct the Nv � K matrix Nv as

Nv ¼
n
ð1Þ
1 j
ð1Þ
v;1 � � � n

ðKÞ
1 j

ðKÞ
v;1

n
ð1Þ
2 j
ð1Þ
v;2 � � � n

ðKÞ
2 j

ðKÞ
v;2

n
ð1Þ
3 j
ð1Þ
v;3 � � � n

ðKÞ
3 j

ðKÞ
v;3

2
664

3
775: (22)

It is also useful to introduce the K�K diagonal matrix S,

the diagonal elements of which are defined as

S½ �kk ¼ SðkÞ=X2; k ¼ 1;…;K; (23)

consisting of the patch areas SðkÞ scaled against the square of

the grid spacing X. These values give a simple measure of

the density of the driving terms relative to the underlying

three-dimensional grid for the acoustic field.

Finally, an approximation to the Dirac delta function

employed to drive the system at coordinates x ¼ xs in (12a)

may be constructed as the Np � 1 vector js.

B. Immersed boundary immittances

Discretisation of a single immersed boundary driving

term has been dealt with in the companion article.26 The

present case of discretisation of a collection of such terms as

in system (12) follows immediately, as the individual driv-

ing terms p
ðkÞ
D ; vðkÞD are related pointwise to the interpolated

field values �vðkÞ; �pðkÞ, through (12c). Consider the

immittance definitions in (13). When transformed to the

time domain, and under zero initial conditions, the following

ordinary differential equations result:

XQðkÞv

�¼0

fðkÞv;�

d�

dt�
p
ðkÞ
D ¼ 2Z0

XPðkÞv

�¼0

gðkÞv;�

d�

dt�
�vðkÞ; (24a)

XQðkÞp

�¼0

fðkÞp;�

d�

dt�
vðkÞD ¼ 2Y0

XPðkÞp

�¼0

gðkÞp;�

d�

dt�
�pðkÞ; (24b)

for k ¼ 1;…;K. Under trapezoidal numerical integration,

through the substitution d=dt! ð1=TÞD�
t , where

D�
t ¼ ðMþt Þ

�1Dþt ¼ ðM�t Þ
�1D�t ; (25)

and M6
t are as defined in (14), these ODEs become

XQðkÞv

�¼0

fðkÞv;�ðD�
t Þ

�

T�
p
ðkÞ;nþ1=2

D ¼ 2Z0

XPðkÞv

�¼0

gðkÞv;�ðD�
t Þ

�

T�
�vðkÞ;nþ1=2;

XQðkÞp

�¼0

fðkÞp;�ðD�
t Þ

�

T�
vðkÞ;nD ¼ 2Y0

XPðkÞp

�¼0

gðkÞp;�ðD�
t Þ

�

T�
�pðkÞ;n: (26)

Ultimately, as in the 1D case as described in the companion

paper,26 the following relations may be derived:

p
ðkÞ;nþ1=2

D ¼ Z0c
ðkÞ
v �vðkÞ;nþ1=2 þ qðkÞ;n�1=2

v ;

vðkÞ;nD ¼ Y0c
ðkÞ
p �pðkÞ;n þ qðkÞ;n�1

p : (27)

Here, for positive real immittances, cðkÞv and cðkÞp ; k
¼ 1;…;K are non-negative constants, and q

ðkÞ;n�1=2
v and

q
ðkÞ;n�1
p contain previously computed values of the interpo-

lated field values and jumps at the K driving locations.

C. Complete scheme

Introduce now the K � 1 vectors �pn and �vnþ1=2, repre-

senting interpolated field values, and p
nþ1=2

D and vn
D, repre-

senting pressure and normal velocity jumps across the

surface X at the driving locations. The complete scheme

approximating (12) may be written in a compact vector-

matrix form. For (12a), one has

Dþt pn þ Z0k Dþvnþ1=2 þ JpSMþt vn
D

� �
¼ Z0k

X2
jsM

þ
t un;

D�t vnþ1=2 þ Y0k D�pn þ NvSM�t p
nþ1=2

D

� �
¼ 0: (28a)

The use of the averaging operators M6
t above, defined

earlier in (14), serves to center the approximations, leading

to second-order accuracy—it is also crucial to the analysis

of numerical stability, as explained in detail in the

Appendix. Equation (12b) may be approximated as

�pn ¼ J>p pn; �vnþ1=2 ¼ N>v vnþ1=2: (28b)
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Finally, the immittance relationships in (27) can be written

as

p
nþ1=2

D ¼ Z0Cv�v
nþ1=2þqn�1=2

v ; vn
D ¼ Y0Cp�pnþqn�1

p :

(28c)

Here, Cv and Cp are diagonal K�K matrices containing the

coefficients cðkÞv and cðkÞp ; k ¼ 1;…;K on their respective

diagonals. The values q
ðkÞ;n�1=2
v and q

ðkÞ;n�1
p have been con-

solidated into the K � 1 vectors qn�1=2
v and qn�1

p ,

respectively.

As in the 1D case,26 the scheme (28) may be reduced to

a pair of updates as

Appnþ1 ¼ Bppn � Z0kDþvnþ1=2

�Z0kJpSMþt qn�1
p þ Z0k

X2
jsu

n; (29a)

Avv
nþ1=2 ¼ Bvv

n�1=2 � Y0kD�pn

�Y0kNvSM�t qn�1=2
v : (29b)

Defining the Np � K matrix Wp ¼
ffiffiffiffiffiffiffiffi
k=2

p
JpS1=2C1=2

p and the

Nv � K matrix Wv ¼
ffiffiffiffiffiffiffiffi
k=2

p
NvS

1=2C1=2
v , one has, for the

matrices Ap; Bp in (29),

Ap ¼ INp
þWpW>

p ; Bp ¼ INp
�WpW>

p : (30)

This is of the form the identity plus a rank-K perturbation.

The Woodbury identity32 may be employed to arrive at an

explicit inverse for Ap,

A�1
p ¼ INp

�Wp IK þW>
p Wp

� ��1

W>
p : (31)

Thus, a K�K linear system solution is required. A similar

argument follows for the construction of Av and Bv. Notice,

however, that, for local Dirac delta function approximations,

Wp and Wv will in general be sparse, and, thus, sparse

matrix inversion methods may be useful.33

The determination of numerical stability conditions for

the scheme (28) is more involved than in the case of imped-

ance boundary termination for FDTD or FVTD methods15

or for immersed boundaries where only a driving term pD is

present27—the usual case in immersed boundary methods. It

can be accomplished in the Laplace domain in discrete time

to determine bounds on system poles such that solutions are

non-increasing. In the present case, the standard CFL condi-

tion (19) is very nearly recovered (without the case of equal-

ity, which is unimportant in practice) and is unaffected by

the inclusion of the immersed boundary. See the Appendix.

IV. NUMERICAL RESULTS

All simulations are run using the scheme (29),

using c¼ 344 m�s–1 and q ¼ 1:18 kg�m–3, and with a time

step of T ¼ 2� 10�5 s. The Courant number was chosen as

close to the bound (19) as possible (here, k ¼ 0:5754). The

computational domain is a cube of side length 2.2 m,

with first-order absorbing boundary conditions34 employed.

In all examples, the ratio of the surface patch area to X2

is near 1, and approximations to the Dirac delta function

are of fifth-order Lagrangian type.26 The source term un is

Gaussian, with effective 60 dB bandwidth26 f60 in Hz and

maximum amplitude 10�3 m3�s.

A. Square barrier

Consider first a square barrier, of side length 1 m and

nominally oriented with the x3 axis, so that n ¼ ½0; 0; 1�.
The immittances zv and ym are assumed frequency-

dependent but constant over the barrier surface. Patches are

square-shaped, with the patch side length subdividing the

barrier side length evenly. In Fig. 3, snapshots of the time

evolution of the acoustic field are shown, where the source

location is xs ¼ ð0; 0; 0:3Þ m. Here, the immittances are cho-

sen as ypðsÞ ¼ 1=wðsÞ; zvðsÞ ¼ wðsÞ, uniformly over the bar-

rier, where w(s) is as defined in (9) in terms of the

parameters a, b, and c. This corresponds to an impedance

boundary condition, with no transmission. Four cases are

shown, illustrating different impedance boundary condition

types: resistive, inertial, stiff, and resonant, with both mass

and stiffness effects. Faintly visible in the latter three cases

are leakage effects. As in the 1D case,26 the amount of leak-

age depends on the bandwidth of the excitation; in this case,

a high bandwidth excitation of f60 ¼ 4 kHz has been chosen

to exhibit this effect.

As a further illustration, consider again the resonant

impedance boundary condition, now under the more realistic

use case of different orientations of the barrier relative to

the Cartesian grid. See Fig. 4. Notice that the leakage, still

faintly visible, exhibits a dependence on the rotation of the

barrier. There is, thus, clearly an interaction between the

direction-dependent numerical dispersion of the FDTD

scheme35 and the immersed boundary.

Alongside these qualitative illustrations, it is useful to

perform comparisons against a known solution. While exact

solutions are difficult to obtain in the present case of an

impedance boundary condition over a barrier of finite size, it

is possible to compare results against solutions obtained

using a more basic FDTD discretisation over a cube, with an

impedance boundary over one face.4 Thus, the solutions

should match, over the interval preceding the arrival of

waves diffracting around the barrier, as is easily visible in

Fig. 3. See Fig. 5 (left), illustrating a source/receiver config-

uration, with a single source, located directly above the

immersed boundary center, and three outputs taken, labeled

A, B, and C: Points A and B are located on the same side of

the barrier as the source, and point C is on the opposite side

of the immersed boundary and is intended to capture spuri-

ous leakage in this case of an impedance boundary condi-

tion. Comparisons are shown with the reference solution,

calculated with a time step of T ¼ 5� 10�6 s, for three dif-

ferent orientations of the immersed boundary with respect to
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the Cartesian axes. In all cases, the match is very good; spu-

rious leakage at point C is small and highly dependent on

the orientation of the immersed boundary, confirming intu-

itions drawn from the examination of Fig. 4.

Finally, results in Fig. 6 are shown, under conditions

similar to those in Fig. 3 for zv, but now under the condition

that yp¼ 0, corresponding to a barrier with no normal

velocity jump across it and capable of transmitting energy,

as described in the comapnion paper.26

B. Spherical barrier

One use of wave-based acoustic simulation methods,

such as FDTD, is the simulation of head-related impulse

FIG. 3. (Color online) Time evolution of the acoustic field, for an immersed boundary operating as an impedance boundary condition, and over a square

region of side length 1 m, oriented with the positive x3, and centered at x1 ¼ x2 ¼ x3 ¼ 0. Snapshots are shown in the ðx1; x3Þ plane, for different choices of

immittance parameters as indicated in each row. Here, and in subsequent figures, red/blue colorings correspond to high and low pressures, respectively,

scaled to their maximum values for a given snapshot. The barrier cross section, of infinitesimal thickness, is indicated as a black line.

FIG. 4. (Color online) Time evolution of the acoustic field, for an immersed boundary operating as an impedance boundary condition, and over a square

region of side length 1 m, under different orientations: unrotated (top row) and rotated by p=6 (middle row) and p=4 (bottom row) radians about the x2 axis.

The impedance boundary is of the resonant type as shown in the last row of Fig. 3. The barrier cross section, of infinitesimal thickness, is indicated as a black

line. Locations where spurious leakage through this immersed boundary are visible, indicated by crosses.
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responses and transfer functions, given a known head geom-

etry. This can be very challenging, due to the irregularity of

this geometry.11 The spherical barrier is a useful simplified

test case in the context of the modeling of diffraction around

the human head.36 In previous work, an immersed boundary

emulating a rigid boundary condition over a sphere was

demonstrated.27 Here, however, it is shown that the model

can be generalised to include any impedance over the sur-

face of the sphere.37

Consider a sphere, of radius R m, centered at x ¼ 0.

Assume an exterior problem setting. A family of well-

known boundary conditions can be written as

pþ Z0avn ¼ 0 over jxj ¼ R; (32)

where vn ¼ v � x=jxj is the outward normal component of

the velocity over the sphere and for constant a � 0. When

a ¼ þ1, a rigid or Neumann condition results. When a¼ 0,

the sphere is referred to as of the “pressure release” type. In

general, the condition above is resistive.

In Fig. 7, plots of the time evolution of the acoustic field

are shown, for a sphere with R¼ 0.25 m. An immersed bound-

ary is used, with zv ¼ 1=yp ¼ a, corresponding to an impedance

boundary condition. The ratio of the patch area to X2 is approxi-

mately 1, and a spiral-based sampling method38 is used to tesse-

late the sphere surface—patch areas are, to a very high degree

of accuracy, the total surface area of the sphere divided by the

number of patches. The source, with f60 ¼ 4 kHz, is located at

xs ¼ ð0; 0; 0:4Þ m. Results are shown for the rigid, pressure

FIG. 5. (Color online) (Left) Immersed boundary configuration, for an infinitesimally thin square barrier of side length 1 m, oriented with the x3 axis, and

shown in cross section (a black line) in the ðx2; x3Þ plane. The source location xs is indicated, as well as output coordinates at A, B, and C. Outputs at points

A, B, and C are plotted in their respective panels, for different rotations of the immersed boundary with respect to the Cartesian axes. In the case of points A

and B, a reference solution is also plotted. Outputs at point C illustrate spurious leakage through the immersed boundary.

FIG. 6. (Color online) Time evolution of the acoustic field, for an immersed boundary operating as a non-porous barrier, characterised by an impedance zv,

with parameters as indicated, and with admittance yp¼ 0. The barrier cross section, of infinitesimal thickness, is indicated as a black line.
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release, and resistive cases, with a¼ 1. Notice in particular the

small amount of leakage visible within the sphere, particularly

under rigid conditions. As before, a source signal with a high

bandwidth has been chosen to illustrate this effect.

Exact solutions to the scattered acoustic field from a rigid

sphere under a point source excitation are given by Hao et al.39

and may be easily extended to the case of the more general con-

dition (32) given above. Given a source excitation u(t), applied

at x ¼ xs, and a pressure signal poðtÞ drawn from the acoustic

field at x ¼ xo, with R � jxoj � jxsj, the solution, in free space,

may be written as poðtÞ ¼ HðtÞ 	 uðtÞ. The operator * indicates

a convolution, and the kernel H(t) may be recovered from the

inverse Fourier transform of the following closed form expres-

sion for its transform ĤðxÞ, where x is the transform variable,

an angular frequency in rad�s–1:

ĤðxÞ ¼ ixq
4pc

X1
l¼0

ð2lþ 1ÞPlðcos ðhÞÞhð2Þl Hsð Þ

� �jl Hoð Þ þ h
ð2Þ
l Hoð Þ jl Hð Þ þ iaj0l Hð Þ

h
ð2Þ
l Hð Þ þ iah

ð2Þ0
l Hð Þ

 !
:

(33)

Here, H ¼ xR=c; Hs ¼ xjxsj=c; Ho ¼ xjxoj=c, and h is the

angle between xs and xo, such that cos ðhÞ ¼ xs � xo=jxsjjxoj. jl
and h

ð2Þ
l are the lth-order spherical Bessel function and spheri-

cal Hankel function of the second kind, respectively, j0l and

h
ð2Þ0
l are their derivatives, and Pl is the lth Legendre polyno-

mial. The Fourier transform convention follows that of

Ahrens.40 A similar expression to the above is available in the

case R � jxsj � jxoj. In practice, the infinite sum above must

be truncated to a finite number of terms—here, 150, giving

accuracy to one part in 1013 in all the simulation results below.

Comparisons between outputs taken from the com-

puted field using the immersed boundary and exact solu-

tions are shown in Fig. 8, for three outputs (labeled A, B,

and C), drawn from a circle of radius 0.3 m in the ðx1; x3Þ
plane, on the near, lateral, and far sides of the sphere rela-

tive to the source location. Results are good in all cases, and

in particular on the far side of the sphere, where the results

are far superior to those obtained using standard FDTD

boundary modeling methods, such as staircasing (detailed

comparisons are presented in the case of a rigid sphere in

recent work27).

FIG. 7. (Color online) Time evolution of the acoustic field, for an immersed boundary operating as a non-porous barrier over a sphere, and for a point source,

under different boundary conditions, as indicated.

FIG. 8. (Color online) (Left) Cross section of a spherical immersed boundary, in the ðx1; x3Þ plane, with source location xs and output locations A, B, and C as indicated.

(Right) Computed outputs (in green) and reference solutions (in black) at the three output locations, under rigid, pressure release, and resistive (a¼ 1) conditions.
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To illustrate convergence behavior, under realistic

conditions, consider output drawn from point C as illus-

trated in Fig. 8, on the far side of the sphere—the most

stringent case. Conditions are assumed to be of rigid type.

For a pressure waveform pn
out drawn from point C, and

given the exact solution pn
exact, computed using (33), and

over Nf samples, with time step T, define the normalized

error as

Error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNf

n¼0

T pn
out � pn

exactð Þ2

XNf

n¼0

T pn
exactð Þ2

vuuuuuuut : (34)

In Fig. 9, the error is plotted as function of time step, for

steps corresponding to sampling rates ranging from 10 to

75 kHz in 5 kHz increments—first-order convergence is eas-

ily seen here. In addition to interpolation errors due to the

approximation of the delta functions in the immersed bound-

ary formulation, as well as numerical dispersion errors of

the scheme, there are various factors that will influence the

convergence rate, including (a) source and receiver interpo-

lation errors and (b) slight variations in the Courant number

due to the truncation of the number of grid points along

each side dimension to an integer. These are not accounted

for here.

V. CONCLUDING REMARKS

An immersed boundary method, specialised for use

within room and architectural acoustics, has been demon-

strated here. It is capable of simulating both impedance

boundary conditions and barriers capable of acoustic trans-

mission. The passive nature of scattering has been exploited

to arrive at a framework for which there is no risk of numer-

ical instability, beyond that of the numerical method operat-

ing in free space.

One of the main additional advantages of immersed

boundary methods (besides the main advantage of the avoid-

ance of volumetric meshing) is that they can be posed

independently of the particular numerical method chosen.

The methods in this article have been presented in a rela-

tively agnostic form—basic FDTD methods are employed,

but the results are more general and can extend to a much

wider family of simulation techniques, including all those

mentioned in Sec. I. All that is required is discrete represen-

tations of the Dirac delta function, of which only a few vari-

eties have been discussed here. On the other hand, the

stability analysis presented here (see the Appendix) is more

restricted: The extension to other numerical methods will

hinge on paired approximations to the gradient and diver-

gence operations (and the maximal eigenvalue of the result-

ing negative discrete Laplacian) as well as the use of

matched approximations to the Dirac delta function for both

driving terms and field interpolation—a known

requirement.22

The immersed boundary presented here has been used

within a first-order system in pressure and velocity. More

usual in wave-based and virtual acoustics is the numerical

solution of the second-order wave equation in pressure

alone—reducing the amount of storage required by a factor

of approximately 2 in 3D. It would be of great interest to

formulate the immersed boundary directly in terms of the

second-order wave equation. Related to this is the question

of the factorisablity of the discrete Laplacian into a gradient/

divergence pair. The stability analysis in the Appendix relies

on this, but for some of the most efficient and low-

dispersion higher-order accurate wave equation solvers,41,42

the discrete Laplacian is constructed directly and may not

necessarily be factorisable. However, in the stability analy-

sis, it is the maximal eigenvalue of the negative discrete

Laplacian that determines the stability condition, so it may

be expected that such analysis will extend to the case of the

second-order wave equation.

One of the main computational costs is a K�K linear

system solution at each time step, where K is the number of

driving terms. For small scattering objects within a large

space, this cost is very small in comparison with that

required to update the field over the problem interior. There

is a resemblance to the cost of boundary element method

(BEM) calculation, but this is only superficial—in this case,

the linear system to be solved is a constant, simple to com-

pute and extremely sparse, in comparison with BEM, where

the linear system is frequency-dependent, entries are in gen-

eral difficult to compute, and the system is not sparse, unless

fast multipole methods are employed.43 The source of the

linear system here is the use of the passivity-preserving inte-

gration rule used to model boundary/barrier immittances

and to ensure numerical stability as a whole for the

immersed boundary—see the Appendix. It would be possi-

ble to employ a different integration rule, in which case the

linear system solution could be avoided, but at the cost of

more extensive stability analysis. Here, however, the safest

approach has been taken.

Not provided here is a full formal analysis of the errors

incurred by the immersed boundary method—this is a very

large undertaking, and well beyond the scope of this more

FIG. 9. Error, as defined in (34), for results of the simulation as described

in the caption to Fig. 8, at point C, relative to the exact solution, at time

steps as indicated.
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applied article. Beyond the general numerical dispersion

characteristics of the scheme, among the many factors that

must be taken into consideration are (a) patch size relative

to the underlying Cartesian grid spacing; (b) the use of flat

patches to represent a curved surface, leading to some

approximation error in terms of the total surface area of a

given barrier; (c) the placement of a delta function within a

given surface patch; and (d) the type of interpolant used.
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APPENDIX: NUMERICAL STABILITY

The analysis of numerical stability for the immersed

boundary method as presented in Sec. III C is very similar to

that of the 1D case26 and is presented in brief here. As

before, and as in previous work on related scenarios,15,27 it

relies on the determination of conditions under which all

system poles have a non-positive real part.

Consider systems (28a) and (28b), alongside the K
impedance relationships in (12c). Assume complex sinusoi-

dal time dependence for all variables at frequency

sd ¼ rd þ jxd, and, in particular, pn ¼ p̂esdnT ; vnþ1=2

¼ v̂esdT=2esdnT and un ¼ ûesdnT , for complex amplitudes

p̂; v̂, and û. After consolidation, the following system

results:

H
p̂

v̂

" #
¼

k
X2

jsû

0

2
4

3
5; (A1)

where H ¼ H0 þHIB, with

H0 ¼
2wY0INp

k
h

Dþ

k
h

D� 2wZ0INv

2
6664

3
7775;

HIB ¼
QpYpQ>p 0

0 QvZvQ
>
v

2
4

3
5: (A2)

Here, in H0, which encapsulates the behavior of scheme

(28) in free space, w ¼ tanhðsdT=2Þ; h ¼ coshðsdT=2Þ, and

INp
and INv are identity matrices of sizes Np � Np and

Nv � Nv, respectively. HIB, which encodes the behavior of

the immersed boundary, depends on the constant matrices

Qp and Qv defined by

Qp ¼
ffiffiffiffiffiffiffiffiffiffi
2Y0k

p
JpS1=2; Qv ¼

ffiffiffiffiffiffiffiffiffiffi
2Z0k

p
NvS

1=2: (A3)

The diagonal K�K matrices Yp and Zp contain the immit-

tances y
ðkÞ
p ðwÞ and z

ðkÞ
v ðwÞ; k ¼ 1;…;K on their diagonals,

respectively. These immittances are obtained through the

approximation s! wðsdÞ, corresponding to the trapezoid

rule. Positive realness is preserved through this mapping so

that, for any such discrete time immittance wðwÞ obtained

from a positive real immittance w(s),

Re wðwÞð Þ � 0 when ReðsdÞ � 0; (A4a)

Im wðwÞð Þ ¼ 0 when ImðsdÞ ¼ 0: (A4b)

The natural frequencies of the system (A2) are deter-

mined by the zeros of HðsdÞ, or the frequencies �sd

¼ �rd þ j�xd at which H drops rank. For numerical stability,

it is necessary that �rd � 0. To examine this, suppose that H

does drop rank at a frequency �sd with �rd > 0. It follows that

there must exist complex-valued column vectors f 2 C
Np

and g 2 C
Nv , not both zero, for which

W¢ f	 g	
� �

H
f

g

" #
¼ f	 g	½ �H0

f

g

	 

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

W0

þ f	 g	½ �HIB
f

g

	 

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

WIB

¼ 0; (A5)

where here, 	 indicates conjugate transposition. The two

terms in (A5) above can be examined separately.

For W0, the analysis is identical to that in the 1D case,26

under the replacement of D�x with D�, and the following

bound results:

ReðW0Þ > 0 when k < 2=eðD�Þ; (A6)

where eðD�Þ is the largest singular value of the matrix D�.

Considering WIB in (A5), define the K � 1 vectors ~f ¼ Q>p f

and ~g ¼ Q>v g. Thus,

WIB ¼ ~f
	
Yp

~f þ ~g	Zv~g ¼
XK

k¼1

yðkÞp j~f kj
2 þ zðkÞv j~gkj

2: (A7)

Because y
ðkÞ
p and z

ðkÞ
v ; k ¼ 1;…;K are positive real, for

Reð�sdÞ > 0 it follows that

ReðWIBÞ ¼
XK

k¼1

ReðyðkÞp Þj~f kj
2 þReðzðkÞv Þj~gkj

2 � 0: (A8)

Finally, from (A6) and (A8),

ReðWÞ > 0 when k < 2=eðD�Þ: (A9)

As a result, (A5) does not hold for any �sd with �rd > 0, and,

thus, scheme (28) has no system poles exhibiting exponen-

tial growth.

For D6 defined as in Sec. III, and under periodic or

Neumann conditions, eðD�Þ ¼
ffiffiffiffiffi
12
p

, and (A9) reduces to

k < 1=
ffiffiffi
3
p

: (A10)

As in the 1D case,26 this achieves the CFL condition (19)

for the scheme defined in free space, with the case of equal-

ity ruled out.
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