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Abstract

In high-energy heavy-ion collisions, protons and neutrons melt and form the quark-gluon
plasma. The modification of jets, propagating through this deconfined medium, has been
extensively studied at the CERN-LHC, and the BNL-RHIC colliders experiments. Over
the last decade, extensive knowledge has piled up in the theory of jet modification. This
thesis presents a consistent and state-of-the-art perspective of jet modification based on
perturbative QCD. Considering recent progress toward a more accurate description of jets
in high-energy physics, jet modification in the medium is reviewed by focusing on their
all-order perturbative structure and defining the accuracy of quenched jet observables.



iv Abstract



Abstrakt på norsk

Under tung-ion-kollisjonar med høg energi smeltar protonar og nøytronar saman og dan-
nar eit kvark-gluon-plasma. Modifiseringa av jeter, som forplantar seg gjennom det
avgrensa mediet, har vorte grundig forska på ved CERN-LHC, og BNL-RHIC i kol-
lisjonseksperiment. I løpet av det siste tiåret har man samla opp omfattande kunnskap
om teorien om jet-modifikasjonar. Denne avhandlinga presenterer eit konsistent og topp-
moderne perspektiv på jet-modifikasjonar basert på perturbasjons-QCD. Tatt i betrak-
tning nylege framsteg mot ei meir nøyaktig forklaring av jeter i høgenergifysikk, vert
jet-modifikasjonar i mediet gjennomgått ved å fokusera på deira perturbasjonsstruktur
i alle orden og definere grannsemda til observerbare jet-strålar.
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Chapter 1

Introduction

The Large Hadron Collider (LHC) at CERN is currently the most advanced experiment
to study the energy frontier of physics. By colliding particles with higher and higher
energies, one can investigate smaller and smaller distances inside them, and eventually
resolve new particles and interactions.1 Experiments in the energy frontier taught us
about the existence of most particles, starting with the atomic nuclei and their con-
stituents: protons (1917) and neutrons (1932). More recently discovering quarks (1968)
and gluons (1979), which build up hadrons such as the proton and neutron themselves.
Since the 1970s, the Standard Model (SM) of particle physics has been established, com-
bining electromagnetic, weak, and strong forces in a unique framework. Nowadays, the
SM is mastered by the high-energy physics community.

Proton-proton (pp) collisions at the LHC happen at such high energy, it resolves their
inner structure: quarks and gluons. Furthermore, due to the high energy (see also
Einstein’s famous formula E = mc2), hundreds of new particles are created in these col-
lisions. The Standard Model is challenged daily in the LHC experiments and by the
whole high-energy community. Researchers try to find flaws between SM predictions
and experimental observations. These predictions rely on small couplings (or rare inter-
actions) of the underlying theories. For the weak and electromagnetic interaction, this is
the clear case. It is not that obvious for the strong interaction that describes quarks and
gluons (partons). Luckily, the strong interaction is asymptotically free, meaning the cou-
pling decreases as one goes to more energetic scatterings. This decrease was observed,

1Let us take two clocks. If we smash them together, they will break apart. By studying the outgoing
pieces, in principle, one could reconstruct how clocks work. Relating to particle physics, it is easy to see
the importance of high energy. It is necessary to break the clocks/particles apart to study their inner
structure. One can break the clock into smaller pieces by going higher energies to learn more details.
Later we will see that confinement in this picture translates to observing outgoing intact clocks instead
of broken pieces.
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for example, in high-energy electron-positron (e−e+) collisions. One of the consequences
of asymptotic freedom is that the protons consist of three independent, point-like parti-
cles (quarks) that have been measured in electron-proton (ep) collisions. On the other
hand, for lower energy scatterings, the coupling increases, and it makes calculations dif-
ficult. In this thesis, we will see how to avoid this problem. The coupling cannot grow
forever as we do not observe infinitely many hadrons.

The theory of quarks and gluons is called quantum chromodynamics (QCD), as partons
interact through their color charge that is similar to electric charge. Finally, low-energy
quarks and gluons are separately not observed. This phenomenon is referred to as color
confinement, as low-energy partons are captured in color-charge-neutral groups.

Both SM predictions and experimental analyses rely heavily on jets. Jets are collimated
sprays of hadrons appearing in the detectors after high-energy collisions. They are
usually a sign of the creation of a colored parton, which emits further ones and undergoes
a parton shower. Eventually, these partons transform, due to color confinement, into
detectable hadrons (hadronize) much before they reach the detectors. Most collision
events at the LHC (or at least those which are studied) contain jets, and therefore their
reconstruction and description are essential.

The LHC was built for a better understanding of the electroweak (EW) sector of the SM.
Electroweak particles, e.g. H, W , and Z bosons, can decay into quarks and initiate jets.
Jets, therefore, can be used to study EW processes. Moreover, the substructure of jets
can distinguish between the different jet-initiating processes. For example, weak bosons
and b-quarks typically decay into two light quarks and produce two jets often ending up
in a single fat jet. The Higgs boson and top quarks produce 3 jets that can end up an
even fatter single jet. Jet substructure can distinguish EW decays.

Moreover, the general picture of a scattering that involves beyond the standard model
(BSM) physics, is the creation of some new particle that decays into EW bosons and
quarks and induces jets.2 Therefore, discovering a new particle reduces to a classification
task, separating signal from background events by analyzing the topology of events and
the substructure of jets as it is sketched in Fig. 1.1. The SM background, therefore, has
to be described precisely for future discoveries.

Other than protons, the nuclei of heavy ions (Pb, and Au) also collide at LHC and
Relativistic Heavy-Ion Collider (RHIC) at BNL. As large nuclei consist of hundreds of
protons and neutrons, these collisions are approximately the superposition of hadron
collisions resulting in tens of thousands of detected particles. Jets are found in heavy-ion

2There are BSM analyses which rather focus on leptonic decays, or missing energy detection and
therefore the do not need jets.
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Figure 1.1: The sketch of the creation and detection of a BSM particle using jets. The
figure is borrowed from Ref. [1].

collisions too, showing the fundamental presence of strong interaction. They sit on top
of a large background as most nucleon scattering produces low-energy (mini) jets. The
probability of creating a high-energy jet is rapidly decreasing with the jet energy. The
background is comparable with the jet energy, and therefore, it is a highly nontrivial
task to analyze jets in this environment. Figure. 1.2 shows a typical event containing
two back-to-back jets in pp and PbPb collisions. The latter has a huge background in
which the jets are much less visible. The histograms denote the deposited energy in that
particular direction.

A phenomenological separation of particles is usually made to distinguish between jet and
background particles. Particles with high energy � 5 GeV are hard probes, originate from
a hard scattering or a jet, and therefore have a perturbative origin. On the other side,
bulk particles are soft � 5 GeV and non-perturbative.3 Surprisingly, the most successful
phenomenological description of bulk particles comes from relativistic hydrodynamics.
It was concluded therefore, heavy-ion collisions form the quark-gluon plasma (QGP).

How do we know that the created matter is fluid? The angular and momentum correla-
tions among outgoing bulk particles show long-range correlations (Δφ ∼ π

2
) referred to

as flow [3]. Measurements show a strong correlation between the flow and the centrality
(impact parameter) of collisions. The spatial anisotropy in the initial state transforms
into an angular (and momentum) correlation of outgoing particles. This correlation is a
characteristic feature of fluid motion.4

3In the collision experiment, the distinction between these two regions is not black or white, and
one has to be more rigorous when defining a systematic separation of jets and background (similar to
grooming in jet physics).

4Take the example of colliding water droplets: in the collision, they form a drop, that oscillates after
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Figure 1.2: A typical collision event containing jets in pp and in PbPb collisions in the
CMS experiment, from Ref. [2].

How do we know that the created liquid is the quark-gluon plasma? As fluids are close
to local thermal equilibrium, one can study the phase diagram of nuclear matter. Lattice
techniques are ideal to evaluate the thermal properties of strongly interacting matter. It
has been shown that the phase transition from interacting hadron gas to the deconfined
QGP is around 150 MeV. From the hydrodynamic description (or by fitting the bulk’s
energy spectrum), one can also phenomenologically extract the local temperature of
the liquid, which is higher than the transition temperature. Simulations showed that
the local temperature of the created plasma is at most 500 MeV. This temperature is
roughly the typical non-perturbative scale of QCD, ΛQCD = 250 MeV. The QGP created
in current experiments is, therefore, strongly coupled.

Jets in heavy-ion collisions are modified as they form inside the quark-gluon plasma.
Experiments measure less energetic hadrons and jets in heavy-ion than in pp collisions.
This phenomenon is referred to as jet suppression or jet quenching. The modern inter-
pretation of quenching is that jets transfer energy to the QGP, and shift towards lower
energy.

In this thesis, the theory of jets will be introduced by focusing on their all-order pertur-
bative structure. We will see that jets and their substructure provide a direct comparison
between experimental observables and first principle calculations. We also present the
state-of-the-art picture of jet modification in the quark-gluon plasma.

its creation. This oscillation (angular correlation) is the flow, and its magnitude depends on the size of
the initial deformation.



Chapter 2

Resumming multiple emissions in
high-energy collisions

This chapter introduces the underlying theory of jets, focusing on perturbative QCD at
fixed and to all orders. We study the infrared structure of QCD diagrams, and that
amplitudes with multiple legs factorize in the infrared limit. This factorization makes
possible the all-order treatment of multiparticle production and, thus, the description of
jets with high accuracy.

As a practical introduction to jet substructure calculation, by the end of the chapter,
dynamically groomed jet observables will be evaluated at fixed and to all orders in per-
turbation theory for the first time, reviewing essential ingredients of state-of-the-art
resummation and their contribution to accuracy. Finally, a novel analysis will be in-
troduced on quark/gluon jet discrimination, lifting the veil on neural network classifiers
whose superior performance originates in uncontrolled physics (e.g. uncontrolled loga-
rithms and non-perturbative physics).

2.1 Some notation to start with

Quick summary of QCD

This section quickly summarizes the most fundamental properties of QCD. We introduce
quark and gluon fields, the QCD Lagrangian, perturbation theory, running coupling,
and renormalization. As these formulas are in many textbooks1, the reader can skip this
section, however, it is necessary to fix notations in the beginning.

1A particularly good book in quantum field theory is in Ref. [4].



6 Resumming multiple emissions in high-energy collisions

Let us quickly summarize the most essential ingredient of jet physics, the QCD La-
grangian, which is

LQCD =
∑
f

q̄fj (x)[iγ
μDμ −mf ]jkq

f
k (x)−

1

4
F μνaF a

μν , (2.1)

where qfi (x) is the quark field, with f = (u, d, s, . . . ) flavor, i = (1, . . . , Nc) color, and
mf mass (zero in this thesis). As quarks are Dirac spinors, the γμ gamma matrices act
on their field, satisfying the algebra {γμ, γν} = 2gμνI4, where the Minkowski metric is
gμν = diag(1,−1,−1,−1) and I4 is the 4×4 identity of the spinor fields. The Lagrangian
is invariant under the SU(Nc) gauge transformation giving rise to gluons and interactions.
The Aa

μ(x) is the gluon gauge field a = (1, . . . , N2
c − 1), and its field strength is F a

μν =

∂μA
a
ν − ∂νA

a
μ + gfabcAa

μA
b
ν , where fabctc = −i[ta, tb] are SU(Nc) algebra generators. The

covariant derivative results in the coupling between quark and gluon fields that is, Dμ =

∂μ − igtaAa
μ(x), where g is the QCD coupling, and the color matrices ta = λa/2, with λa

Gell-Mann matrices a = (1, . . . , N2
c − 1) acting on the color fields.

By assuming small coupling (g � 1), one can define perturbation theory and corre-
sponding Feynman rules. These rules will not be reviewed here, but one can find them
in Ref. [4].

The QCD Lagrangian has several interesting features. Ultraviolet (UV) divergences can
be removed by renormalizing the parameters mf and g. The renormalization procedure
makes the coupling run (momentum dependent) following the equation

Q2dαs(Q
2)

dQ2
= −β(Q2)αs(Q

2) , (2.2)

where αs =
g2

4π
. The running coupling at 1-loop is

αs(Q
2) =

αs

1 + β0αs ln(Q2/Q2
0)

, (2.3)

where in the MS scheme β0 = 11CA−2nf
12π

, and αs = αs(Q
2
0) is an experimental input to

fix the value. It does not matter if Q2 < Q2
0, and usually αs(m

2
Z) = 0.1184 is taken.

For Λ2
QCD = Q2

0 exp[−1/(β0αs)], one gets the textbook form of the running coupling,
αs(Q

2) = 1/[β0 ln(Q
2/Λ2

QCD)]. For high energies, Q � ΛQCD ≈ 0.25 GeV, the coupling
is small αs � 1 that is referred to as asymptotic freedom, where ΛQCD is the non-
perturbative scale of QCD.

The QCD beta function can also be evaluated at higher orders β = β0 +αs(Q
2)β1 + . . . .

At 2-loop order β1 =
17C2

A−5CAnf−3CFnf

24π2 in the MS scheme. One can make an expansion
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in αs, resulting in an implicit equation for αs(Q
2),

αs(Q
2) =

[
1

αs

+ β0 ln
Q2

Q2
0

− β1

β0

ln

(
αs(Q

2)

αs

β0 + β1αs

β0 + β1αs(Q2)

)]−1

. (2.4)

By evaluating at first-order successive approximation, one gets the approximate formula
for 2-loop running coupling

αs(Q
2) =

αs

1 + αsβ0 ln(Q2/Q2
0)

[
1− αs

β1

β0

ln(1 + αsβ0 ln(Q
2/Q2

0))

1 + αsβ0 ln(Q2/Q2
0)

]
, (2.5)

where all terms are neglected with corrections O(α3
s). The Eq. (2.5) is useful to perform

all-order resummation and to understand higher-order running effects. For example,
Eq. (2.5) trivially shows that the 2-loop correction is suppressed by additional αs � 1.

Thrust as a typical observable

This chapter will use the notation of a typical/general event shape observable. As this
might be abstract for those who are not familiar with the notation, we introduce the
thrust and will always come back to this as an example. The thrust is defined for a
whole event as

T = max
�n

∑
i |�pi · �n|∑
i |�pi|

≈ max
�n

∑
i |�pi · �n|
Q

(2.6)

where pμi = (Ei, �pi) are the final state momenta, and in the second step masses are
neglected. The maximizing vector �n �→ �nT is the thrust axis, that separates the event
into left and right hemispheres perpendicular to it. When T ≈ 1

2
, the event is spherical,

while it is back-to-back-jet-like for T ≈ 1 and �nT ∼ maxi �pi. As the two-jet limit is
the leading order contribution (we will see later in Fig. 2.2), it will be useful to define
1-thrust as

vT ≡ 1− T ≈ 1− |�qL · �nT |+ |�qR · �nT |
Q

=
q2L
Q

+
q2R
Q

+O
(
q2Lq

2
R

Q4

)
, (2.7)

where we evaluated Eq. (2.6) using the thrust axis �nT , and the hemisphere momenta are
qL/R =

∑
j∈SL/R

pj. The thrust is, therefore, the sum of hemisphere masses that is the
event shape generalization of the jet mass. The last term in the last step is the recoil
between the two hemispheres will be neglected. For additional soft or collinear emissions,
vT ≈ 0, while for hard 3-jet-like corrections, it is vT ∼ 1.

We will see the importance of an observable to be soft and collinear safe. One can
show that the thrust satisfies the criteria of (i) introducing a soft particle with arbitrary
orientation (λkμ), the thrust will change as Δτ ∼ λ that vanishes in the λ → 0 limit.
(ii) introducing a collinear splitting with arbitrary energy (pi → pi1 + pi2), the definition
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of �nT would only change if pi1 and pi2 ends in different hemispheres, that is not possible
in the �pi1 ‖ �pi2 limit.

2.2 Generalities on perturbative calculations

High-energy proton-proton collisions (pp) are well described in the collinear factorization
theorem [1, 5]. This theory relies on asymptotic freedom and separates low-energy (non-
perturbative) from high-energy (perturbative) dynamics2. Figuratively, the exclusive
cross-section of h1 + h2 → 1, . . . , n process in the collinear factorization looks as

σn =
∑
a,b

fh1
a ⊗ fh2

b ⊗ σab→n(Q
2) +O

(
Λ2

QCD

Q2

)
, (2.8)

where fh1
a denotes the a parton’s distribution in h1 hadron, σab→n is the partonic cross-

section with n final state partons, and
∑

,⊗ denote general sums and integrals over
internal states. The Q2 is the scale that appears in the hard scattering. The power of
Eq. (2.8) relies on the fact, the matrix element is independent of the incoming hadronic
states. Vice versa, the parton distribution functions are non-perturbative but indepen-
dent of the scattering process (universal). By parametrizing the non-perturbative parton
distribution functions in experiments (e.g. in electron-proton collisions (ep)), one can
universally use them to predict pp collisions. The last term includes corrections to the
factorized picture including non-perturbative effects, and we will discuss them later.3

The task left for theorists is to calculate the scattering amplitudes for different processes.
This is usually done in the fixed-order expansion scheme of the strong coupling (αs � 1),
that formally is

σn = σn,0 + αsσn,1 + α2
sσn,2 + . . . . (2.9)

The σn,0 denotes the leading order (LO) Born-level cross-section with n final states, and
σn,i contains the next-toi-leading order (NiLO) correction. The NiLO term includes n+ i

emissions where i of them are integrated out.

2A typical LHC collision involves the whole Standard Model. Our goal is to understand jets, thus,
we focus on the most essential ingredient.

3A similar, complementing argument exists for hadronic final states. There, the partonic cross
section is combined with non-perturbative fragmentation functions, which describe the probability of an
outgoing parton c ending up in a hadron. Fragmentation functions are similarly universal and can be
parametrized experimentally (e.g. in e−e+ collision). Fragmentation functions are not used frequently
in jet physics, as jets contain multiparton final states. Hadronization corrections to jets are more
differential than the relatively simple fragmentation function.



2.2 Generalities on perturbative calculations 9

Even though Feynman rules can be completely automated, evaluating the expansion in
Eq. (2.9) is highly non-trivial. Different kinds of divergences appear. Loop diagrams
exhibit ultra-violet (UV) divergences, that are removable by redefining (renormalizing)
the coupling and quark masses. Infrared divergences also appear in both real and virtual
diagrams.4 These divergences only cancel for special observables which are referred to
as infrared safe (IRC safe).

Take a general observable v, that is v → 0 in the back-to-back jet limit (e.g. 1-
thrust). This observable is defined through some combination of final state momenta
v ≡ V (p1, . . . , pn). The corresponding distribution is

1

σ

dσ

dv
=

∞∑
n=2

1

σ

∫
dσn(p1, . . . , pn) · δ(v − V (p1, . . . , pn)) , (2.10)

where σn is the exclusive probability with n final states, and the
∫
δ(. . . ) sets the mea-

surement. The IRC safety condition is given by the premise that v cannot change by
adding extra final state particles with infinitesimally small energy or angle. For exam-
ple, multiplicities are usually not IRC-safe, as adding extra particles change their value.
Several codes are available to calculate IRC safe scattering amplitudes up to NNLO
accuracy [6, 7].

When there is no hierarchy of scales, the fixed-order expansion scheme works extremely
well. In the observable, this is presented as v ∼ 1. In the case of the thrust, 3-jet-like
corrections give a hemisphere mass that is roughly the scale in the hard scattering vT ∼
q2
L/R

Q2 ≈ 1. On the other hand, when there is a big gap between the exchanged momentum
in the hard-scattering and the measured observable large logarithmic subseries appear
in the perturbative expansion. In the case of the thrust, soft and collinear emissions
contribute at vT ∼ q2

L/R

Q2 � 1. This is connected with the infrared structure of QCD.
Real and virtual diagrams both exhibit IRC divergences, which cancel and leave large
infrared logarithms behind in the form of ln 1

v
. Then αsL

2 > 1, even for αs � 1 (L = ln 1
v
)

and the perturbative expansion, presented in Eq. (2.9), breaks down. The cumulative
cross-section (physical probability) then can be written in a more general form

Σ(v) =

∫ v

0

dv′
1

σ

dσ

dv′

= 1 + αs(σ12L
2 + σ11L+ σ10) + α2

s(σ24L
4 + σ23L

3 + . . . ) + . . . . (2.11)

The most dominant terms are αn
sL

2n, double-logarithmic (DL), while αn
sL

2n−i are the

4Infrared divergences include both soft and collinear (IR&C) divergences. Sometimes, soft diver-
gences also referred to as infrared divergence and can be confusing.
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v

dv

Figure 2.1: The distribution of a typical event shape observable. Fixed order and all
logarithmic order resummed formulas constrain different values of the observable. Non-
perturbative effects are also illustrated. The figure is from Ref. [11].

NiDL corrections.5 Keeping all DL terms (i.e. resuming the most dominant logarithmic
subseries), one gets a more accurate description of the observable for v < exp[−α

1/2
s ],

while for bigger v, the fixed order expansion is satisfactory. This all-order treatment
of large logarithms is referred to as resummation. In more general, resummation in jet
physics is referred to as evaluating subseries of the perturbative expansion.

Similar to fixed-order expansion, theorists have to calculate observables at higher log-
arithmic accuracy. As mentioned, all-order resummation is needed when emissions are
soft or collinear. This typically happens at small values of the observable (but not that
small to reach non-perturbative dynamics). Several algorithms and parton showers are
available to resum multiple emissions [8–10]. The theoretical argument behind the ex-
perimental observation of jets is a bunch of collinear partons detected as hadrons.

The distribution of a typical observable is shown in Fig. 2.1. The fixed order expansion
gives a good description for v ∼ 1, and diverges in the infrared limit (v → 0). The all-
order, logarithmic resummed result gives a better, finite description for v � 1, but above
the non-perturbative limit. The final result is the combination of all-order logarithmic
resummation, fixed-order matching, and non-perturbative corrections.

The fixed order and resummed expansions denote the same physical phenomenon, how-

5Some observables (e.g. thrust) can be written in the exponential form σ(v) = σ0g0 exp[Lg1(αsL) +
g2(αsL) + . . . ]. Therefore historically the naming is defined on the exponent resulting in the leading-
logarithmic scheme that is NiLL for gi+1.
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e−

e+

γ∗
q

q̄

e−

e+

γ∗
q

q̄

g

e−

e+

γ∗
q

q̄

g

e−

e+

γ∗
q

q̄

g

Figure 2.2: Selection of matrix-elements of e−e+ → qq̄g at NLO: LO term (upper left
corner), the virtual correction (upper right corner), and real emission diagrams (lower
line). Additional virtual diagrams are present when the loop is on the (anti)quark leg.

ever, they are valid in different regions of the phase space, and therefore they are com-
plementary. At the end of this chapter, we will test the general statement we made in
this section and apply them in LHC phenomenology for different examples.

2.3 Infrared divergences

Jets appear as a bunch of collimated hadrons measured in the detectors. To understand
jets, one has to study scattering amplitudes with multi-particle final states preferably
at higher orders of pQCD. As we will see, when final-state particles become soft or
collinear with each other, matrix elements may exhibit divergences. This seems to be
worrisome as the QCD coupling grows in this infrared region. The QCD perturbation
theory, therefore, loses its predictive power and becomes meaningless at small energy
(long distances). Can we rely on perturbative calculations of cross-sections? The answer
is NO in general. A subset of observables, however, are well-defined in the perturbation
theory to all orders (free of IRC divergences) and thus calculable at any order in pQCD.
For reviews on perturbative expansions to all-order and IRC safety, see Refs. [1, 8, 12].
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Let us recall NLO corrections to the 2-jet production in electron-positron annihilation
(e−e+) from Ref. [12]. We calculate real and virtual contributions of e−e+ → qq̄g and
integrate out the final-state gluon. The total cross-section at LO (e−e+ → qq̄) can be
written as σqq̄,0(s) = 4πα

3s
Nc

∑
q e

2
q, where the fine structure constant α, quark electric

charge eq, number of colors Nc, and center-of-mass energy s = (pq + pq̄)
2 (first diagram

in Fig. 2.2). After summing and averaging over the final and initial state spins, the real
contribution is (corresponding to the second line in Fig. 2.2),

∑
spin

|Mreal|2 ∼
(
sqg
sq̄g

+
sq̄g
sqg

+
2sqq̄sqq̄g
sqgsq̄g

)
, (2.12)

where sij = (pi + pj)
2, sijk = (pi + pj + pk)

2. The first two terms are direct emissions
(the same emitting parton captures the gluon in the complex conjugate), while the third
term is the cross terms. The above amplitude becomes singular when Eg → 0 (soft pole)
or when θqg, θq̄g → 0 (collinear pole). There are two collinear poles as the gluon can be
collinear with either pq or pq̄.

Let us rewrite Eq. (2.12) if the emitted gluon is soft (Eg → 0),

∑
spin

|Mreal|2 ≈ |Mqq̄|24παsμ
2ε2CF

pq · pq̄
(pq · pg)(pq̄ · pg) , (2.13)

showing that the soft gluon emission factories from the LO matrix element Mqq̄. The
momentum ratio in Eq. (2.13) is referred to as the soft antenna emission factor. Factor-
ization is present in the virtual term too. Furthermore, a similar formula can be written
in the collinear limit. There the antenna factor is replaced by the DGLAP (or collinear)
splitting functions.

By studying the angular structure of Eq. (2.13), one can use the covariant phase space
element [dpg] =

d3pg
(2π)32Eg

=
E2

gdEgdφd cos θ

(2π)32Eg
and integrate out the azimuth of the emitted

gluon. The cross-section of the real contribution in the soft and collinear limit is then

σreal
qq̄g = σqq̄ · αs

2π

2CF

Eg

2

θ2qg
Θ(θqq̄ − θqg) · dEgdθ

2
qg . (2.14)

The kinematic factor 2CF

Eg
is the soft limit of the DGLAP splitting function, and 2

θ2qg
is

the collinear limit of the antenna formula. The last Θ function tells that the soft gluon
is emitted at smaller angles than the qq̄ dipole, and it originates from the interference of
real diagrams and it is a result of color conservation [5, 13]. The factorization and the
angular ordering hold for multiple gluon emissions, resulting in the so-called coherent
branching algorithm. This algorithm is the basis of resumming multiple emissions [14],
and therefore, analytic calculations and numeric parton showers.
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When the gluon momentum in Eq. (2.14) is integrated out, one has to evaluate
∫ Emax

0

dEg

Eg

and
∫ θmax

0

dθ2qg
θ2qg

. This is usually the case for inclusive observables. Both of these integrals
are logarithmically divergent for real (and virtual) diagrams. When can we get finite
results?

Let us calculate the inclusive e−e+ → qq̄ + X cross-section as an example, where the
gluon momentum is integrated out. The real and virtual contributions can be written as

αsσ
real
qq̄+X,1 = σqq̄,0

αs

2π

CF

Γ(1− ε)

(
4πμ2

s

)ε(
2

ε2
+

3

ε
− π2 +

19

2
+O(ε)

)
,

αsσ
virt
qq̄+X,1 = σqq̄,0

αs

2π

CF

Γ(1− ε)

(
4πμ2

s

)ε(
− 2

ε2
− 3

ε
+ π2 − 8 +O(ε)

)
. (2.15)

As we saw in Eq. (2.12), integrating out the gluon will give divergences when the gluon
energy is small, or it is collinear with any of the q/q̄. To obtain a finite result, we use
dimensional regularization to regulate these infrared divergences,6 d = 4 − 2ε, ε < 0.
Renormalization also proceeded, with its scale μ in the 1-loop running coupling, so we
have already removed the UV divergence. The IRC logarithmic divergences appear as
poles in ε → 0 both in real and virtual terms. These singularities are the same between
the real and virtual terms, and they cancel in the inclusive cross-section,

σqq̄+X = σqq̄,0

(
1 + αs

3CF

4π
+O(α2

s)

)
. (2.16)

Here, Eq. (2.16) corresponds to the inclusive form of the exclusive n �→ qq̄ cross-section
in Eq. (2.9), and inclusive cross-sections are generally absent of infrared divergences.
Logarithmic divergences are canceled in a peculiar way, no large logarithms are left
behind as is the case for many other observables as we will see later.

Finally, let us see how logarithmic divergences paper in general inclusive observables.
Collecting real and virtual terms together from Eq. (2.15) (before integrating the gluon
momentum), the NLO distribution of a general v observable can be written as

1

σqq̄,1

dσ

dv
=

1

2s

∫
[dpq][dpq̄]|Mqq̄|2δ(v − V (pq, pq̄))

+
1

2s

∫
[dpq][dpq̄]|Mqq̄|2

∫
[dpg]8παsCF

pq · qq̄
(pq · pg)(pq̄ · pg)

× [δ(v − V (pq, pq̄, pg))− δ(v − V (pq, pq̄))] . (2.17)

Here, we introduced the measurement function V (p1, . . . , pi) that tells how to calculate

6Dimensional regularization with ε > 0 can be used to regulate UV divergences.
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v from i final-state particles.7 The first line describes the qq̄ (LO Born) cross-section and
the measurement of these 2 final states. The second line uses the factorized limit of the
soft gluon emission, and V measures on 3 particles, while the last negative term is from
the virtual corrections, and therefore, it acts on the 2-particle phase space. The

∫
[dp]

phase space integration is used accordingly to how many final states are present. We
saw both real and virtual NLO correction terms diverge logarithmically in Eq. (2.15),
and therefore v is well defined only if the last line in Eq. (2.17) cancels in the IRC limit.
Generally, for a well-defined observable, Vi has to satisfy (where i now labels the number
of final state particles)

Vm+1(. . . , pi, pj, . . . ) → Vm(. . . , pi + pj, . . . ) , pi || pj , (2.18)

Vm+1(. . . , pi, . . . ) → Vm(. . . , pi−1, pi+1, . . . ) , pi → 0 . (2.19)

Then the observable v is IRC safe [8]. For example, inclusive observables Vi ≡ 1 are
IRC safe as we saw σ in Eq. (2.16). Even though, IRC divergences cancel for these
observables, large (but finite) logarithms can still remain. As both soft and collinear
limits diverge logarithmically, each emission contributes at most 2 large logs. This is the
reasoning behind the αn

sL
2n terms in Eq. (2.11).

2.4 Factorization in the soft and collinear limits

In the previous section, we showed the factorization of a e−e+ → qq̄g scattering separately
in the soft and collinear limit. In this section, we recall that all scattering amplitude
factorizes in the infrared corner of the emission phase space. Following Ref. [15], we show
that the dipole factorization formula reproduces the correct factorization in both soft
and collinear limits. The dipole factorization is the basis of modern fixed-order pQCD
calculations and parton showers.

Take a scattering process with m final states. Corrections to this include an extra final-
state particle. The |Mm+1|2 has a singular structure on the momentum pj, when (i)
pj is soft, and (ii) when pj is collinear with any of the other final state particles (a
generalization of Eq. (2.12)). Surprisingly the singular behavior is independent of the
exact scattering process, and it has an opposite sign between real and virtual terms. A
factorization formula can be formally written in these two corners of the phase space [15],

|Mm+1|2 → |Mm|2 ⊗Dij,k . (2.20)

7For thrust, VT (pq, pq̄) = max�n
|�pq·�n|+|�pq̄·�n|

|�pq|+|�pq̄| , and VT (pq, pq̄, pg) = max�n
|�pq·�n|+|�pq̄·�n|+|�pg·�n|

|�pq|+|�pq̄|+|�pg| .
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1

m + 1

... ≈

1

m + 1

i

j

k

...

...

∑
{ij,k}

m + 1 m

Figure 2.3: The pictorial representation of the dipole factorization formula Eq. (2.20).

Here, Dij,k contains the singular factor, and it only depends on the momenta and quan-
tum numbers of three partons i, j, k. The i and j are the “emitters” while k is the
“spectator”, which is why Eq. (2.20) is called the dipole factorization formula. A sketch
of this factorization is shown in Fig. 2.3, where the box denotes Dij,k.

To illustrate the derivation of Eq. (2.20), take the soft limit first. In this case pμj = λq

with q arbitrary 4-momentum, and λ → 0. The matrix element square in this limit is

|Mm+1|2 ≈ − 1

λ2
4πμ2εαs m〈1, . . . , ����j, . . . ,m+ 1|[Jμ(q)]†Jμ(q)|1, . . . , ����j, . . . ,m+ 1〉m .

(2.21)

The bra-ket denotes the projection onto the final states where pj was removed. The
renormalization scale μ comes from the renormalization of the coupling in the MS scheme.
The formula with dimensional regulator (d = 4 − 2ε). The eikonal current is Jμ(q) =∑m

i=1 Ti
pμi
piq

, where Ti is the color charge operator. The soft singularity represents in
the λ−2 pole that is the generalization of the one we found in Eq. (2.15). The matrix
element |Mm+1|2 decouples from |Mm|2 = m〈. . . || . . . 〉m. The square of the eikonal
currents can be written as [Jμ(q)]†Jμ(q) =

∑
k,i Tk · Ti

pkpi
(pkq)(piq)

. The evaluation of color
states involves non-diagonal components, therefore, the factorization is not complete.
Additional singularity appears in the collinear limit if pk||q or pi||q. To represent all
poles, we rewrite it in the following way

|Mm+1|2 ≈ − 1

λ2
8πμ2εαs

∑
i

1

piq

∑
k �=i

m〈1, . . . ,m+ 1|Tk · Ti
pk · pi

(pi + pk)q
|1, . . . ,m+ 1〉m .

(2.22)
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Now both soft λ−2, and collinear 1/(piq) singularities are shown at the same time. The
dipole structure also emerges: the radiated soft gluon is q, while the direction of the
collinear singularity denotes the emitter pi. The spectator pk accounts for the color
correlation. The dipole structure is pictorially represented in Fig. 2.3.

The factorization in the collinear limit works in a similar way, however, one has to define
the collinear direction with care. We use the so-called Sudakov momentum decomposi-
tion. In this representation pi (emitter) and pj (emission) final-state particles become
collinear when k⊥ → 0 and

pμi = zpμ + kμ
⊥ − k2

⊥
z

nμ

2p · n , (2.23)

pμj = (1− z)pμ − kμ
⊥ − k2

⊥
1− z

nμ

2p · n , (2.24)

2pi · pj =
k2⊥

z(1−z)
, and p2i,j = 0. The pj assigns the collinear direction, while n is an

auxiliary light-like vector to complete the momentum decomposition. In the collinear
limit (k⊥ → 0), therefore,

|Mm+1|2 → 1

pipj
4πμ2εαs m〈1, . . . ,m+ 1|P̂(ij),i(z, k⊥; ε)|1, . . . ,m+ 1〉m . (2.25)

In the final state, i and j have been combined into one (ij). The P̂ (z, k⊥; ε) is the
collinear DGLAP splitting function in dimensional regularization. For example, if it is
a q → qg splitting,

〈s|P̂qg(z, k⊥; ε)|s′〉 = δss′CF

[
1 + (1− z)2

z
− εz

]
. (2.26)

The collinear singularity is presented as 1
piq

∼ 1
k2⊥

, while the soft ones sits in the splitting
function at z → 0, 1 as 1

z
and 1

1−z
.

In summary, we presented how multi-parton final-states factorize in the soft or collinear
limits separately. Factorization lets us perform Markov chain algorithms to calculate soft
and collinear final states with many particles by iterating soft and collinear splittings.
The dipole factorization formula is especially useful, as it reproduces both soft and
collinear limits, and therefore modern parton showers are all based on some form of the
dipole formulae.
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2.5 Jets and their substructure

Previous sections introduced fixed-order expansion and all-order logarithmic resumma-
tion in the description of event shapes. In this section, we apply this knowledge to jets
and their substructure. As jets are represented in the majority of LHC analyses and
they serve as a bridge between experimental measurements and fundamental theoretical
calculations. For theory reviews see Refs. [1, 11, 16], while for experimental overview see
Refs. [17].

Jets are defined through the jet-finder (or -reconstruction) algorithm. This algorithm
has to translate into an IRC-safe observable, V (p1, . . . , pn), to result in theoretically
meaningful objects [16]. The most used, generalized kt family of jet finders, is based on
the iterative 2 → 1 recombination of particles minimizing a distance measure [18]

dij = min(p2pt,i, p
2p
t,j)

ΔR2
ij

R2
, (2.27)

where pt,i, pt,j, are the transverse momenta of two jet particles, ΔRij the distance between
them in the azimuth-rapidity plane. Additionally, diB = p2pt,i is the distance from the
“beam”. Typical parameters of the jet finders are the cone size of jets R, exponent p,
recombination scheme of particles, the cutoff parameter of how many jets one wants in a
collision event, or what is the smallest jet momentum pt one accept in an analysis. One
can easily see the IRC safety of Eq. (2.27). In the soft limit pt,j → 0, it pj combines
with the closest particle, without changing its energy. In the collinear limit ΔRij → 0,
combining the particles immediately.

Many jet observables are borrowed from event shapes, for example, jet shapes, angu-
larities, or energy-energy correlation functions. The jet mass m2

jet = (
∑

i∈jet pi)
2 is very

similar to the thrust, that sums hemisphere masses. A practical aspect of jets is their
typically small cone size R < 1; thus, collinear splittings and their factorization are the
main interest.

An important difference between event shape observables and jets is that the latter is
restricted to a region of phase space (namely a finite cone in the (η, φ) plane). This
phase space cut makes all jets observable to be non-global [19]: they are sensitive to
some emissions while ignoring others. A jet therefore seemingly does not know about
emissions happening outside of its cone. This is an incorrect picture of jets and it is
generalizable to all orders in perturbation theory. It is more correct to interpret them
as a (global) event shape observable that is projected onto several jets. An example of
their limitation is the following, a real gluon emission is treated differently if is in/out of
the jet cone, while the virtual emission does not know if it is in/out of the jet (remember
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Eq. (2.17)). This results in the incomplete cancellation of IRC divergences and the
appearance of large non-global logarithms. These corrections cannot be described by
iterating soft and collinear splitting inside jets. One can only resum them by going back
to the event shape picture, and treating jets accordingly (emissions can appear in the
jet cone from outside of it).

Furthermore, most of our formulas involve final state partons. Jets, and event shapes,
however, are measured on hadrons. Can we relate parton-level calculations to measuring
hadrons? The answer is NO in general. The factorization formula we started with in
Eq. (2.8) has corrections. A typical correction, for example, goes as (ΛQCD/Q)p, where
p > 0 is some power depending on the observable. When Q is big, corrections are
subleading, and the factorized, perturbative (parton-level) description is well justified.
When we take an event shape observable, a new scale gets introduced that is v itself
(e.g. hemisphere mass for the thrust). The perturbative expansion and therefore is
well defined if all scales are well separated Λ2

QCD � v · Q2 � Q2. Non-perturbative
correction arises then v ·Q2 ∼ Λ2

QCD, meaning either the jet energy (roughly Q) is small,
or the observable is deeply in the infrared v → 0. Non-perturbative corrections such
as hadronization are suppressed for high-energy jets AND not “too-small” observables.
This was illustrated in Fig. 2.1.

Including non-global logarithms and non-perturbative corrections are possible, but it
is usually complicated. To reduce corrections, additional grooming techniques will be
introduced in the next section.

2.6 Applications

Previous sections quickly summarized fixed and all-order logarithmic resummed pertur-
bative QCD calculations. In this section, two applications of these calculations will be
applied to LHC phenomenology. Firstly, in Sec. 2.6.1, we will see a high-order calcu-
lation of a novel jet substructure observable. Finally, in Sec. 2.6.2, we will see how
all-order perturbative expansion presents and helps with the interpretability of neural
network-based jet classifiers.

2.6.1 Dynamical grooming

Although most jet observables are IRC-safe by construction, observables can still be
sensitive to non-perturbative effects such as hadronization. Grooming techniques have
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been introduced to suppress non-perturbative corrections. Grooming is similar to IRC
safety, but it uses a finite, not-too-low scale below which it prevents emissions. It pre-
vents emissions that would be non-perturbative. For example, SoftDrop grooming [20]
removes emissions from jets which zi < zcutθ

β
i , where zi is the splitting energy fraction,

and θi is the splitting angle compared to the jet axis. For finite grooming parameter zcut,
the resulting jet becomes less sensitive to non-perturbative effects. Furthermore, groom-
ing reduces wide-angle emissions in jets which are typically non-global corrections and
challenging to handle.

Similar to grooming, tagging emissions is also a powerful tool in jet physics. For example,
heavy EW objects (W,Z or Higgs boson) typically decay to quarks and initiate jets. Due
to their big boost, quarks get collinear producing a single fat jet. The jet substructure
can disentangle these fat jets from single-parton-initiated ones (QCD background). In a
tagging setup, SoftDrop, for example, discards emissions below the cut zi < zcutθ

β
i and

returns with the kinematics of the widest angle splitting. This emission is a good proxy
for the original hard scale that characterizes the jet-initiating scattering process.

In our work [21], we studied a new observable, and grooming technique called dynamical
grooming [22, 23]. It is defined through the procedure

1. Find a jet with anti-kt algorithm [24];

2. Recluster the jet constituents with the C/A algorithm [25, 26];

3. Go through the reconstruction history and return with the kinematics of the emis-
sion that is the “hardest”

κ(a) = max
i,j∈jet

ptiptj
(pti + ptj)2

pti
pt,jet

(
ΔRij

R

)a

. (2.28)

Here, pti and ptj are the transverse momenta and angle θij = ΔRij/R of the splitting
((ij) → i + j). The reclustering in the 2nd step reorganizes the branching history in
an angular-ordered way reducing some of the non-global logarithms. For IRC safety,
a > 0 is necessary. Putting it in words, DyG returns the “hardest” emission inside the
jet, where the hardness is max zθa. For example, splitting with the biggest transverse
momentum is κ(a=1) = kt, or with the biggest mass κ(a=2) = m2. In the case of κ(−∞),
DyG returns the widest angle emission similar to SoftDrop without any cuts on the phase
space. Dynamical grooming is, in fact, a tagging procedure, but it was named to be a
groomer as it discards many soft emissions inside the jet. Possible applications of DyG
are in EW boson tagging, or in heavy-ion collisions. DyG can tag emissions that formed
early vs. late in the medium by setting a = 2, which corresponds to inverse formation
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time. The DyG can also be used to tag splittings that are perturbative (κ(a) ∼ Q),
medium-involved (κ(a) ∼ Qmed), or non-perturbative (κ(a) ∼ ΛQCD).

To illustrate the all-order structure of DyG observables, we recall its form in the soft
and collinear (double-logarithmic) limit. In this limit, Eq. (2.28) simplifies to maxi ziθ

a
i ,

where we neglected the degradation of the leading particle’s energy, and the relative
angle is measured to the jet axis. At leading order, there is, at most, one emission inside
the jet that is trivially the hardest

1

σ

dσLO

dvg

∣∣∣∣
a

=

∫ 1

0

dκ(a) 1

σ

dσLO

dvg

∣∣∣∣
κ(a)

=

∫ 1

0

dκ

∫
dθdzP̃i(z, θ)

[
δ(κ(a) − zθa)δ(vg − V (z, θ))− δ(vg)

]
. (2.29)

In the first line, we made it explicit that the tagged emission is with κ(a) = zθa, and
then integrated over the hardness. The second line uses the LO probability of the split-
ting i → i+ g and the measurement function. The observable vg can be for example the
angle (δ(θg− θ)) or the transverse momentum (δ(kt,g− zθ)) of the hardest splitting. The
last term with −δ(vg) is the virtual contribution to the zero-bin as it has no emission
inside the jet. At higher orders in the IRC limit, the n particle final state can be writ-
ten as independent angular-ordered emissions. This is the so-called coherent branching
algorithm (see Sec. 2.3). It results in the distribution of κ(a) hardest splittings

1

σ

dσDLA

dvg

∣∣∣∣
κ(a)

=
∞∑
n=0

1

n!

n∏
m=1

∫
dθmdzmP̃i(zm, θm)Θ(θm > θm+1)

·
[
δ(κ(a) −max

m
(zmθ

a
m))δ(vg − V ({z1, θ1}, . . . , {zn, θn}))− δ(vg)

]m
.

(2.30)

The first line represents n independent, angular-ordered gluon emissions, where n! is
necessary as gluons are indistinguishable. The second line contains the DyG criterium
and the measurement function. The last negative terms are again the virtual ones.8 The
virtual corrections can be resummed trivially, resulting exp[− ∫ dθdzP̃ (z, θ)].9 Let us de-
note the hardest emission with (zg, θg). The deltas simplify δ(κ(a)−zgθ

a
g)δ(vg−V (zg, θg)).

Therefore, the deltas became independent of all integrals
∫
dθmdzm, and therefore all

8Equation (2.30) is somewhat symbolic in the interpretation of the δn function, as any of the n
emissions can be real or virtual. Equation (2.30) accounts for all of their combinations. Our derivation
is complete, however, describing an infinite sum of diagrams in a two-line expression is challenging.

9Recall the definition of exponential functions

eA+B =
∑
n

1

n!
(A+B)n ≡

∑
n

1

n!
An ·
∑
m

1

m!
Bm = eA · eB . (2.31)
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m �= g can be resummed trivially. This results in exp[
∫
dθdzP̃ (z, θ)Θ(κ(a)− zθa)], where

we kept in mind that these emissions are softer than κ(a). The two exponential factors
can be combined, resulting

1

σ

dσDLA

dvg

∣∣∣∣
κ(a)

=

∫
dθgdzgP̃ (zg, θg)δ(κ

(a) − zgθ
a
g)δ(vg − V (zg, θg))e

− ∫
dθdzP̃ (z,θ)Θ(zθa−κ(a))

+ δ(vg)e
− ∫

dθdzP̃ (z,θ) . (2.32)

Here, the second line comes again from virtual terms exclusively, representing the no
emission inside the jet probability. This term only contributes to normalization. As we
will self-normalize, we omit this term from now on. Finally, let us take the hardness
integral

∫
dκ(a), and simplify the notation by introducing the Sudakov factor. The

resulting cross-section is the starting point in Ref. [21]

1

σ

dσDLA

dvg

∣∣∣∣
a

=

∫ 1

0

dκ(a) 1

σ

dσDLA

dvg

∣∣∣∣
κ(a)

(2.33)

=

∫ 1

0

dκ(a)

∫ 1

0

dθg

∫ 1

0

dzgP̃i(zg, θg)Δi(zgθ
a
g)δ(κ

(a) − zgθ
a
g)δ(vg − V (zg, θg)) ,

where the LO splitting probability and the no-emission Sudakov factor in the soft and
collinear limit are

P̃i(z, θ) =
αs

π

2Ci

θz
, (2.34)

lnΔi(κ
(a)) = −

∫ 1

0

dθ′
∫ 1

0

dz′P̃i(z
′, θ′)Θ(z′θ′a − κ(a)) . (2.35)

The Sudakov factor prevents emissions harder than κ(a) in the jet. Finally, the observable
is, for example, the transverse momentum V (z, θ) = zθ ≡ kt,g, or angle V (z, θ) = θ ≡ θg

of the hardest splitting. Illustratively, Eq. (2.33) tags an emission (z, θ) inside the jet,
while the Sudakov factor makes sure there is no harder emission than (z, θ). Finally, V
measures vg observable, and all possible hardness is integrated over. This is sketched in
Fig. 2.4.

To study the all-order perturbative structure of DyG observables, we use the cumulative
cross-section (physical probability), that we introduced in Eq. (2.11). The transverse
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Figure 2.4: The phase space of a dynamically groomed observable. The boundary on
the left side is the jet cone (θ < R), while the diagonal border is the maximal splitting
energy (z < 1). Left: the blue bullet represents the tagged hardest splitting (P̃i(z, θ) in
Eq. (2.33)). The red-shaded area has no emissions, and it represents the Sudakov factor
(Δi(κ

(a)) in Eq. (2.33)). Right: The illustration of integrating to all possible hardness,
while θg observable kept fixed (

∫
dzdθδ(vg − θg) in Eq. (2.33)).

momentum of the a-hardest splitting is

Σ(kt,g|a) =
∫ kt,g

0

dk′
t,g

1

σ

dσ

dk′
t,g

1

a− 1

[
ae

ᾱL2

a − e−aᾱL2 −
√
πaᾱL2

[
erf

(
−
√

ᾱL2

a

)
− erf

(
−
√
aᾱL2

)]]

≈ 1− ᾱL2 +
1 + a+ a2

6a
(ᾱL2)2 +O(α3

sL
6) , (2.36)

where ᾱ = αsCi

π
, and L = ln 1

kt,g
. The result is finite for a > 0 (collinear safety).

The second line shows that Eq. (2.33) resums (αsL
2)n double-logarithms to all order10.

We expected the DL structure, as the coherent branching algorithm involves soft and
collinear emissions. Both limits diverge logarithmically. As DyG is IRC-safe, these
divergences cancel between real and virtual diagrams. The observable is left with large
logarithms. The IRC limits contribute to one logarithm at every αs order, and therefore
we resumed both logarithms. Similarly, the angle of the a-hardest splitting is

Σ(θg|a) = e−aᾱL2 −
√
πaᾱL2

[
erf
(
−
√
aᾱL2

)
+ 1
]

≈ 1−
√
πaᾱL2 + aᾱL2 +O(α2

sL
4) , (2.37)

where L = ln 1
θg

, and again the double-logarithmic resummation is presented. Surpris-

10As Σ does not exponentiate, the traditional N iLL counting is not applicable here.
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Figure 2.5: The fixed order, N2DL resummed and mathced kt,g distribution for different
hardness criteria. Reprinted from Ref. [21].

ingly, we see a non-analytic behavior in the √
αs term. This non-analyticity is known

for Sudakov safe observables, which lack IRC safety, and thus they are meaningless at
fixed-order. Their all-order form is, however, meaningful. The understanding behind the
appearance of the non-analytic terms is not complete yet [27, 28].

As we showed, the coherent branching algorithm is powerful to resum double logarithms.
Based on the more general factorization in Sec. 2.4, achieving higher logarithmic accuracy
is also possible by relaxing the soft or collinear logarithms. For event shapes, this is
referred to as the CAESAR and ARES algorithms [8, 9] that can be applied for jets too.
Let us recall the NpDL resummation scheme from Eq. (2.11). If our targeted accuracy is
N2DL (αn

sL
2n−2), one needs the following additional ingredients in the coherent branching

algorithm:

• Kinematics: use the full definition of Eq. (2.28).

• Double-logarithmic approximation: using 1-loop splitting functions in the
soft-collinear limit with fixed coupling resums DL terms αn

sL
2n, for n ≥ 1.

• Hard-collinear splitting: releasing the soft limit in the 1-loop splitting function
by δP̃ hc

i (z, θ) = P̃i(z > e−Bi , θ), with Bq = 2
CF

, Bg = 11
12

− nf
Tr

3CA
. It gives

corrections as αn
sL

2n−1 for n ≥ 1.

• 1-loop running coupling: the 1-loop running coupling was introduced in
Eq. (2.3). The correct scale is the transverse momentum of the splitting Q =

zθpt,jet. It gives corrections as αn
sL

2n−1 for n ≥ 2.

• 2-loop running coupling: the 2-loop running coupling was introduced in
Eq. (2.5). It gives corrections as αn

sL
2n−2 for n ≥ 1.
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• 2-loop splitting function: the soft limit of the 2-loop splitting function can be
included as an effective coupling (CMW scheme [14]), δαCMW

s = α2�
s − K

2π
(α1�

s )
2,

K = (67
18

− π2

6
)CA − 5nf

9
. It gives corrections as αn

sL
2n−2 for n ≥ 3.

• Non-global soft splittings: jets are non-global observables (see Sec 2.5). Partons
outside of the studied jet cone can influence the jet substructure, for example, a
wide-angle soft emission of another jet can pollute ours. These emissions interfere
with the jet clustering algorithm resulting in clustering (or boundary) logarithms.
Event shape techniques to resum them. It gives corrections as αs, and αn

sL
2n−2 for

n ≥ 2.

• Matching: similar to non-global logarithms, one needs the global picture to cor-
rectly describe the jet cross-section. We use the dijet cross-section at LO that fixes
terms at O(αs). For this, we used MadGraph5 [7] and performed logR match-
ing [29]. An important detail is that Sudakov safe observables (like θg) do not
have the fixed-order expansion, and their matching is, therefore, opened question.
We performed the matching on the double differential d2σ/(dzgdθg) IRC-safe coun-
terpart [27] that is the joint probability of measuring (zg, θg) simultaneously.

In Fig. 2.5, there are examples for the N2DL resummation of the kt,g distribution for
two different hardness criteria: hardest transverse momentum (a = 1) and mass (a = 2)
in the jet. The same observable is also shown at LO using MadGraph, and the effect
of matching changing the tail. There is a shift in the endpoint of the kt,g distribution
in Fig. 2.5. This comes from the fact that we performed the resummation neglecting
the energy degradation (1 − z) term in Eq. (2.28) and corrected it after the matching.
This is a standard trick in the matching of observables that are not bounded by 1
(0 ≤ vg ≤ vg,max < 1).

Finally, to compare with the ALICE measurement [30], non-perturbative effects have
to be considered. For example, at a relatively low pcht,jet = 70 GeV, non-perturbative
corrections become significant even for groomed observables. We used Pythia8 [31]
and HERWIG7 [32], which both include some modeling of these non-perturbative effects
tuned to describe LHC data. We extracted the modification between parton and hadron,
and parton and charged hadron distributions and corrected our analytics. The resulting
kt,g and θg distributions are in Fig. 2.6 for the same two hardness presented in the
previous plot. The plots show sizeable non-perturbative (NP) corrections, coming from
the relatively low jet momentum. As one goes to higher jet pt, these corrections vanish.
All in all, there is a good agreement between our all-order perturbative QCD calculation
and the measured distributions from the ALICE collaboration [30].



2.6 Applications 25

0.5 2.0 4.0 6.0 8.0
kt,g[GeV]

10−2

10−1

100

1 σ
dσ dk

t,
g
[G

eV
−1

]

DyG – a = 1

ALICE

LO+N2DL’

LO+N2DL’+NP

0.5 2.0 4.0 6.0 8.0
kt,g[GeV]

60 < pch
T < 80 GeV

|η| < 0.5, anti-k⊥(R = 0.4)

DyG – a = 2

0.0 0.2 0.4 0.6 0.8
θg

0

1

2

3

4

1 σ
dσ dθ

g

DyG – a = 1

ALICE

LO+N2DL’

LO+N2DL’+NP

0.0 0.2 0.4 0.6 0.8 1.0
θg

60 < pch
T < 80 GeV

|η| < 0.5, anti-k⊥(R = 0.4)

DyG – a = 2

Figure 2.6: The kt,g and θg distributions for different hardness criteria. Non-perturbative
effects are important in such low jet momentum. Reprinted from Ref. [21].
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2.6.2 Quark and gluon-jet classification at NLL accuracy

Distinguishing quark-jets from gluon-jets is an essential task in LHC phenomenology.
New particles from beyond the Standard Model (BSM) typically decay to quarks and
fragment into jets, while the background is typically gluon jet dominated [1, 11, 17]. A
highly accurate description of the QCD background is, therefore, necessary. The naive
definition of quark and gluon jets at LO coincides with the flavor of the jet initiating
parton. This picture becomes ambiguous at higher orders, as quarks and gluons can
transform into each other through successive splittings. Moreover, other jets in the event
can influence the assigned flavor. A more rigorous definition of the jet flavor is needed,
which, again, goes back to defining jet flavor as an event shape observable [33–35].

Clearly, experiments would like to distinguish quark and gluon jets and understand the
background with high precision for BSM searches. Usually, quark/gluon-jet classifiers
(or taggers) are based on one or many jet substructure observables (e.g., jet mass, jet
shape), which are sensitive to quark and gluon emissions in different regions of the phase
space. For example, gluon jets are typically wider than quarks and have more emissions
inside them due to their different color factors Ci. Cuts are defined on the observable to
make quark or gluon jet enriched samples. There are tremendous theoretical efforts in
improving taggers on the perturbative ground. In vain, the simplest neural network (NN)
based classifiers outperform any perturbative attempt, and therefore they are widely
preferred in LHC analyses [11, 17].

Classifiers are based on the quark/gluon jet tagging likelihood ratio. It is the ratio of
probabilities of the given jet being quark or gluon-like. As the likelihood is an exclusive
probability (see Eq. (2.9)), we calculated it at NLL accuracy [36]. This likelihood ratio is
the ideal discriminant at NLL accuracy. Practically it means that any other discriminant
(including well-trained NN ones) will, at best, recover the ideal likelihood’s performance
in the strict NLL limit. This hypothesis can prove that NN classifiers learn NLL physical
features during their training. Moreover, outperforming the ideal discriminant (in the
not strict NLL limit) would prove that NN learns beyond NLL features from the training
samples, which are usually out of control.

Accessing the NLL limit numerically in parton showers has been explored recently. In
Ref. [37], the authors developed the PanScales parton shower that can take numerically
the limit αs → 0, while keeping the product fixed αsL = fix. For a given value of the
observable L = ln 1

v
. This limit removes any higher-order term than NLL (αn

sL
n) in the

all-order expansion (see Eq. (2.11)).

To calculate the quark/gluon-jet likelihood ratio at NLL (in the strongly ordered limit),
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Figure 2.7: Left: The performance of our NLL tree discriminant compared to other an-
alytic tagging methods. Right: The performance of different analytic and ML classifiers
on strictly NLL jet shower samples. Reprinted from Ref. [36].

we used similar ingredients presented in Sec. 2.6.1 also see Ref. [38]. Our discriminant
uses the exclusive probability of the jet reclustering tree. The full tree provides enough
information to fix all NLL terms11. The likelihood ratio is

Ltree =
pg(Ltree)

pq(Ltree)
, (2.38)

Here Ltree denotes the binary clustering tree of a jet with the kinematics of each splitting.
The pi(Ltree) is the probability of the jet tree to originate from i parton.12 The probability
is calculated as follows. Branchings are described with DGLAP splitting functions, and
between each branching additional splittings are prohibited using Sudakov no-emission
probability. Further complications in the algorithm are the degradation of energy and
the possibility of quark/gluon flipping during the splitting process.

The left panel in Fig. 2.7 compares the performance of different analytic q/g classifiers,
where εi is the tagging efficiency, and the higher the significance is better. Our NLL
likelihood ratio gives the best signal significance and thus outperforms other analytic
methods. In the test, we used Pythia8 [31] generated jet samples. The flavor is defined
through the quark recoiled to Z boson.

11For example, the SoftDrop multiplicity (nSD), or the primary declustering tree (Lund plane) would
not give enough information for a complete NLL description. They give enough for a LL description.

12Other likelihood can be constructed by using, for example, the primary tree Lprimary, Lund plane
density [39], or SoftDrop multiplicity.
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Figure 2.8: Left: The performance of different q/g classifiers trained and tested on
Pythia8 jets. Right: Same as the ratio plot on the left side, for different steps in the
numeric NLL limit. Reprinted from Ref. [36].

For the machine-learning tagger, we used the Lund-Net graph neural network (GNN) [40]
and LundPlane long, short-term memory network (LSTM) [39]. We extended LundNet
for the full clustering tree, matching the NLL requirements similar to the analytic NLL
discriminant.13 Firstly, we trained and tested the classifiers on pure NLL-generated jet
samples. This sample matches the ingredients of our analytic calculation. After the
successful training, the ML-based classifiers recover their analytic counterparts, as it
is shown in the right panel of Fig. 2.7. The axes are the quark and gluon tagging effi-
ciency (ROC) curve, the higher the better. Therefore, we proved our original hypothesis:
the exclusive probability is the ideal discriminant at NLL accuracy, and not even NN
can outperform it. Using the full tree over primary declustering trivially gives better
performance as it has much more knowledge of the system.

In the next step, we retrained the NN classifiers on the more realistic Pythia8 samples.
The ML classifiers outperform our analytic discriminates discriminating Pythia8 jets see
the left panel in Fig. 2.8. The ordering in the performance remained as expected: nSD

< primary tree < full tree. What is the origin of the huge improvement of the ML
classifiers?

To understand the gain in the performance, we performed numerous studies in Ref. [36],

13We also used the ML classifiers using only primary declustering (GNN and LSTM) and Lund plane
density (LSTM).
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among others, the state-of-the-art NLL test. In the strict NLL limit, our analytic tree
discriminant is ideal. Improvements in the NN performance must come from fitting
uncontrolled higher-order terms in the all-order expansion. For example, the DGLAP
splitting function includes terms that contribute beyond NLL accuracy. Including the full
DGLAP splitting function in the parton shower will not improve the accuracy, as they
capture only parts beyond NLL terms. Beyond NLL terms are also present in the 2-loop
coupling (see Eq. (2.5)). These uncontrolled higher-order terms and so hadronization
were present in the Pythia8 samples during the training procedure that the NN could
learn about.

To test this hypothesis, we generated jet samples for which αs → 0 and αs ln(kt,cut/Q) =

fix, where kt,cut is the minimum transverse momentum we allow in a jet, and Q is the
scale of the hard scattering. This NLL limit, therefore, numerically removes uncontrolled,
higher-order terms. The right panel in Fig. 2.8 shows ML taggers converging to their
ideal analytic counterpart in the numerical NLL limit. ML classifiers, therefore, not only
learn NLL physical features, but on top, they also learn about higher-order terms which
are uncontrolled. The gain in performance, therefore, must come with the worsening of
resilience as we presented in Ref. [36].

2.7 Conclusions of vacuum physics

In this chapter, we introduced the underlying theory of jets, focusing on perturbative
QCD at fixed, and to all orders. We presented the importance of soft and collinear
emissions. Scattering amplitudes factorize in the soft and collinear limit making possible
the all-order treatment of large logarithms and thus, the description of jets.

As an introduction to practical jet calculations, we performed fixed, and all-order re-
summation of dynamically groomed jet observables. We introduced different ingredients
to achieve high accuracy that we applied to LHC phenomenology by performing predic-
tions to ALICE measurements. Section 2.6.1 serves as an overview of methods and tools
necessary for producing state-of-the-art analytics for most jet substructure observables.
The practical knowledge that is accumulated here will benefit us when we turn to jet
modification in heavy-ion collisions.

Finally, in Sec. 2.6.2, we formulated a quark-gluon jet classification task in perturbative
QCD. We also introduced the corresponding Machine Learning framework. We showed
that, in the strict NLL accuracy limit, the pQCD-based classifier sets an upper limit on
the performance. A well-trained neural network can recover this performance. Using
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the novel NLL accuracy limit of parton showers, we showed that any gain in the ML
classifier’s performance originates from fitting model-dependent and uncontrolled physics
implemented in event generators. Section 2.6.2 serves as a benchmark for testing ML
algorithms and defining the accuracy of NN classifiers.



Chapter 3

Resumming multiple emissions in
heavy-ion collisions

In this chapter, we review the current status of jet modification in the quark-gluon
plasma. We introduce the corresponding Lagrangian and show medium effects reduce
to external currents. We list phenomenological models describing these background
currents. These new currents modify the common perturbative QCD by introducing new
“in-medium” Feynman rules by including scatterings with the background constituents.

We evaluate the in-medium Feynman diagrams following the footsteps of Ch. 2. We
study the non-trivial infrared structure of medium-induced branchings and show the
importance of their all-order treatment (or resummation). We review the factorization
of multiple emissions in the medium and medium-induced cascades. We also overview the
interference effects between vacuum and medium emissions, introducing the factorized
picture of in-medium jet evolution. In this chapter, we review current developments
and their possible impact on the factorized picture. We sketch the all-order expansion
structure of quenched jet observables for the first time.

Finally, as applications of the novel jet quenching formalism, we will calculate jet ob-
servables, measured in heavy-ion collisions. First, we focus on the energy loss of jets,
describing the nuclear modification factor of jets. Then we put the factorized picture
of jet quenching to the test by promoting and calculating dynamically groomed jet sub-
structure to test color coherence in the quark-gluon plasma. Moreover, during these
calculations, we illustrate how the all-order resummation structure defined accuracy for
quenched jet observables.
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3.1 Jet particles in the quark-gluon plasma

In the previous chapter, we saw that when the scale of the hard scattering is large
compared to the non-perturbative scale (Qhard � Qnp), perturbation theory is applicable
as the coupling is small αs(Qhard) � 1. Furthermore, in this wide separation of scales,
there is a big phase space for soft and collinear emissions that has to be resumed. This
resummation leads to multi-parton production and the experimental observation of jets.
In heavy-ion collisions, at least one further scale Qmed presents that characterizes the
interaction among the plasma constituents. For high-energy jets, Qhard � Qmed, and
therefore the jet-medium coupling is expected to be suppressed by powers of Qmed/Qhard

similar to the correction in Eq. (2.8). We introduce the theory corresponding to this
separation in the following.1

3.1.1 The Lagrangian of heavy-ion collisions

As both jets and the quark-gluon plasma consist of colored partons, the QCD Lagrangian
(Eq. (2.1)) governs all dynamics. By separating hard (or h) from soft medium (med or
m) modes, one can divide the Lagrangian from Eq. (2.1) to

L = Lh[qh, Ah] + Lm[qm, Am] + Lh−m[qh, Ah, qm, Am] . (3.1)

Here we used the separation of the quark and gluon fields, q = qh+qm, and A = Ah+Am.
The Lhard is equivalent with the QCD Lagrangian Eq. (2.1) that we investigated in detail
in Ch. 2 resulting in the description of jets. In jet quenching terminology, this term is
referred to as “vacuum physics”. The Lmed describes the dynamics of the medium,
and it is unknown in general. If one assumes a plasma with very high temperature
Tmed � ΛQCD, high-temperature perturbation theory can be used to describe medium
dynamics [46, 47]. The high-temperature limit corresponds to the weakly coupled picture
of the quark-gluon plasma as the running coupling is small g(Tmed) � 1. Furthermore,
heavy-ion collision experiments showed that the temperature of the created plasma is
not very high (Tmed ∼ ΛQCD), and therefore alternative descriptions based on strong
coupling (e.g., hydrodynamics) is more favored [48, 49].2 Finally, Lhard−med describes
the interaction between jet and medium. Even if the medium is non-perturbative, its
interaction with the jet still can be perturbative if the exchanged momentum is high

1The medium modification of jets should fit well in the framework of soft-collinear effective theory
(SCET) [41, 42]. Until now, however, existing formulations are typically focused on a small or dilute
medium which has limited applicability in LHC phenomenology [43–45]. The formalism presented here
includes this physics.

2The description of the medium is not in the scope of this thesis work, even though it is an extremely
rich and interesting field. Several exciting works are reviewed in Refs. [50–53].
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enough.

As we neglect the dynamics of the background Lmed in this thesis, we integrate out the
medium fields (qm, Am). This is a fundamental and not trivial step in constructing effec-
tive field theories.3 Integrated out the medium fields, the corresponding part of the La-
grangian transforms into two external currents Lm+Lh−m = −gq̄h〈Ĵ〉Amqh−gAh〈Ĵ〉qmAh.
The Lagrangian no longer depends on the medium fields, as those transformed into ex-
ternal currents, which are complicated operators of hard fields, space time, spin, and
color.

The sketched derivation above is the modern picture established by the series of works
in Refs. [56, 57] and referred to as BDMPS-Z formalism. It was reformulated later with
effective Feynman rules in Ref. [58]. This formalism simplifies the medium fields to an
external classical gauge field A0(x) and performs a series of simplifications on 〈Ĵ〉Am as
we will see. The Lagrangian in this formalism is

L = Lh + ig
∑
f

q̄fh(x)��A0(x)q
f
h(x)− g(∂μAν

h(x))A0,μ(x)Ah,ν(h) , (3.2)

where the first term is “vacuum” physics. The second and third terms are the inter-
action between hard partons and the external current, which are taken to be 〈Ĵ〉Am ≈
−iγμtaAa

0,μ(x), and 〈Ĵ〉qm ≈ fabc∂μAν,a
h (x)Ab

0,μ(x)A
c
h,ν(x). The external field, A0(x), is

assumed to be independent of the hard field and so it is a space-time dependent density.
In general, Am and A0 are different, and Eq. (3.2) could include higher order terms, com-
ing from the operator expansion of the currents 〈Ĵ〉. These terms are usually neglected,
and A0 = Am is referred to as the “classical” approximation.4

Equation (3.2) is more than a natural formula in the weak coupling picture. Keeping
explicitly the current, it is also valid for strong couplings. Let us point out that the
coupling g in the interaction term in Eq. (3.2) is the same QCD coupling that presents
in Lhard. The numerical value of it is different because it is evaluated at typically different
energy scales. Furthermore, A0 scales with a background density that is high. Therefore,
the overall expansion parameter in a jet-medium perturbation theory is ∼ gA0, as we
will see.

3The modern formulation of this step relies on density matrices, referred to as open quantum systems.
This description has been applied to the quenching of heavy quarks and diluted medium [54, 55].

4In words, the classical approximation neglects the partonic dynamics of the external field. In our
derivation, this corresponds to integrating out the medium fields. This approximation also neglects
higher-order couplings with a medium background. Considering only the tree-level interaction with the
external field is well justified for small couplings.
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3.1.2 The background field

Before we arrive at the jet-medium Feynman rules, let us discuss first what we know
about the classical current of the medium background field 〈Jμ

a (x)〉Am (or A0). We
will use light-cone (LC) coordinates and the corresponding gauge A+,a

m = 0.5 In the
weakly coupled picture, the external current is sourced by the density of independent
color charges 〈Jμ

a 〉Am ≈ uμρa(x), where ρ is the color charge density and uμ(x) is their
4-momentum. The corresponding Euler–Lagrange equation can be solved, simplifying
the index structure to 〈Jμ

a 〉Am ≈ δμ−ρ(x+,x, x− ≈ 0) [60]. The background field does not
scatter on itself, and therefore, medium and hard fields are loosely connected. Practically,
the highly boosted jet particles quickly propagate through the medium and experience
mostly its x− ≈ 0 state.6 This can also be seen by considering the Heisenberg uncertainty
x− ∼ 1

p+
, when p+ is large, x− becomes small. The remaining part of the Yang–Mills

equation is ∂2A−,a
0 = −gρa(x+,x), resulting

A−,a
0 (x+,x) = g

∫
k

e−ik·x

k2
ρa(x+,k) . (3.3)

Physically this means that the density of independent color charges sources the back-
ground current/field very similar to the Poisson equation for the electric field in the
presence of external electric charge density.

The color charge density ρa(x
+,x) is a statistical field as it varies in every collision.

Assuming independent color charges, we treat ρ as a stochastic field. The density has a
vanishing average as the plasma’s total color charge is zero. Keeping only the variance
of ρ, it will follow Gaussian statistics, p(ρ) = exp[− ∫

x
ρ(x) · ρ(x)/(2n(x))], where n is

the variance of ρ, or in words, the average of non-vanishing color-charge fluctuation. It
results in trivial correlations among the non-interacting charges

〈ρa(x+,x)ρb(y
+,y)〉 = nδabδ(x

+ − y+)δ(x− y) . (3.4)

Applying Eq. (3.4) to the background fields, one gets

〈A−
0,a(x

+,x)A−
0,b(y

+,y)〉 = nδabδ(x
+ − y+)γ(x− y) , (3.5)

5Assuming a parton traversing in the z-direction, the LC coordinates are (t, �x) �→ (x+, x−,x), where
x± = (t±z)/

√
2, and x = (x, y), also x·y = x+y−+x−y+−x·y. In momentum space p± = (E±pz)/

√
2,

and (E, �p) �→ (p+, p−,p). For more about quantum field theories in LC coordinates, see Ref. [59].
6The above statement is well justified for static medium and pA collisions in the forward region. To

extend this picture for a longitudinally expanding medium, one has to revisit this assumption in the
future. As we said, we neglect the dynamics of the medium in this thesis.
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where
γ(x) = g2

∫
k

e−ik·x

k4
, (3.6)

that is the inverse Fourier transform of Coulomb scatterings. Physically, Eq. (3.4) means
that the color charge density ρ, consisting of independent charges has no correlations.
This current generates a background gauge field Am with a non-trivial (Gaussian) cor-
relation. Equation (3.6) is not well defined as it diverges in the infrared (k → 0) and
needs to be regulated.

Interestingly, in the weak coupling/high-temperature medium assumption, one ends up
with the same Eq. (3.5), where the correlations result from thermal fluctuations. In
this thermal limit, the infrared divergence is naturally regulated by Debye screening,
resulting in [61]

Ncnγ
HTL(k) =

4πq̂HTL
0

k2(k2 +m2
D)

, (3.7)

where the average accumulated transverse momentum square by unit length is q̂HTL
0 =

Ncg2m2
DT

4π
. The Debye mass is a collective effect of color charges polarizing their surround-

ing in the plasma, and therefore, behaving as collective modes. The effective (or screened)
mass of a color-charge is then mD ∼ gT , and plasma temperature is T . As we men-
tioned, the high-temperature assumption is not justified experimentally, and therefore,
higher-order corrections can play an important role [62]. Efforts have been made to solve
the finite-temperature formalism using non-perturbative techniques [62, 63]. An impor-
tant recent result is the lattice determination of the scattering potential γ(k). Based on
Ref. [64], the LO and NLO HTL scattering potential correctly describes the Coulomb
tail ∼ k−4, however, non-perturbative effects dominate soft scatterings (k2 � m2

D) for
realistic temperatures Tmed ≈ 200− 500 GeV.

Furthermore, in the other weakly coupled picture, the Gyulassy–Wang model [65], scat-
tering centers are described with Yukawa-like interactions that also regularize the in-
frared

Ncnγ
GW(k) =

4πq̂GW
0

(k2 + μ2)2
, (3.8)

where 4πq̂GW
0 = Ncg

2n, and μ are Yukawa-like screening masses. This has the same
Coulomb tail at high k, and it results in a different soft scattering limit.

Finally, as we mentioned, current operators are more general than their perturbative
expansion in the weak coupling limit. How would a non-perturbative, hydrodynamic
system be coupled to hard fields? It is tempting, for example, to replace the current with
the hydrodynamic current. Higher precision in the gradient expansion would constrain
the accuracy of the jet modification then. We entered, however, the territory of the
medium dynamics that we certainly do not want to worry about in this thesis.
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To summarize this section, we sketched an effective field theory in which soft medium
modes are integrated out, resulting in background currents. Phenomenology constrains
the background currents. Our picture is advantageous, as it is independent of the mi-
croscopic description of the background that is either not known, or non-perturbative.
Our theory (as any EFTs), therefore, needs phenomenological input.

3.1.3 Effective Feynman rules in the medium

Most quantum field theories in light-cone coordinates are in Ref. [59]. Additionally, in
the presence of the background, the propagators are no longer diagonal in momentum
space, as multiple interactions with the medium can change the transverse momentum
of particles. We also use mixed Fourier representation to keep track of “time” (t ≡ x+):
4-vectors in this mixed space are (p+, p− �→ x+,p) in momentum space and (x+, x− �→
p+,x) in spatial space, where the different components connect through the Fourier
phase ip · x = i(p+x− + p−x+ − p · x). After considering multiple scatterings in the
medium, the dressed propagators read as [58, 66]7

(x+
0 , p

+
0 ,x0) (x+, p+0 ,x)

(λ0/s0) (λ/s)

=
1

2p+0
(x|G0(x

+, x+
0 ; p

+
0 )|x0)δ

λλ0 , (3.10)

=
1

2p+0
(x|Gji

F (x
+, x+

0 ; p
+
0 )|x0)δ

ss0 , (3.11)

=
1

2p+0
(x|Gba

A (x+, x+
0 ; p

+
0 )|x0)δ

λλ0 , (3.12)

where p+0 , spin, and helicity are all conserved during propagation between two spacetime
points (x0, x). The free propagator is

(x|G0(x
+, x+

0 ; p
+
0 )|x0) = Θ(x+ − x+

0 )
p+0

2πi(x+ − x+
0 )

exp

[
i
p+0
2

(x− x0)
2

x+ − x+
0

]
, (3.13)

7Propagators are referred to be “dressed” as they include infinitely many scatterings on the back-
ground. They could also be “resummed”. We avoid this terminology here and keep the word resumma-
tion for emissions, and not scatterings. Driagammatically it is

= + + + . . . . (3.9)

As a simplification, we use single lines and omit the usual double-line notation of dressing.
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and the propagators in the path integral representation are

(x|GA/F (x
+, x+

0 ; p
+
0 )|x0) =

∫
Dr e

i
p+0
2

∫ x+

x+0
dt ṙ2

UA/F (x
+, x+

0 ; r) , (3.14)

where the Wilson line is

UA/F (x
+, x+

0 ; r) = T exp

[
ig

∫ x+

x+
0

dt A−
0 (t, r(t))

]
. (3.15)

Here the Wilson line UA/F resums multiple interactions with the background field through
the time-ordered path integral. For gluons (adjoint representation) A−

0 = −ifabcA−
0,c, and

for quarks (fundamental representation) A−
0 = taijA

−
0,a, while [ta, tb] = ifabctc with fabc

structure constans of SU(3). The form of the Wilson line in Eq. (3.15) is remarkable, as it
has the same form for quarks and gluons(up to their different color representation. This
simple form is the result of the choice that has been made in the currents in Eq. (3.2),
and the background correlator in Eq. (3.5). The propagator in mixed momentum space
is defined through the Fourier transform

(p|G(x+, x+
0 ; p

+
0 )|p0) =

∫
x,x0

e−ip·x+ip0·x0(x|G(x+, x+
0 ; p

+
0 )|x0) , (3.16)

that is for the free propagator is (p|G0(x
+, x+

0 ; p
+
0 )|p0) = (2π)2δ(p− p0) exp[−i

p2
0

2p+0
(x+ −

x+
0 )].

The vertices after combining with the incoming/outgoing spinor and helicity states
are [66]

k, z, λ

p, 1− z, j, s′

i, s

= V ij
ss′λ(q, z)

=
2ieδij√
z(1− z)

δss′ [δλs + (1− z)δλ−s′ ] q · ε∗λ , (3.17)

k, z, a, λ

p, 1− z, j, s′

i, s

= V ija
ss′λ(q, z)

= −2igtaij
1

z
√
1− z

δs′s [δλs + (1− z)δλ−s] q · ε∗λ , (3.18)



38 Resumming multiple emissions in heavy-ion collisions

k, z, c, λ

p, 1− z, b, λ′

a, λ0

= V abc
λ0λ′λ(q; z)

= −2igfabc

[
1

z
(q · ε∗λ)δλ0λ′ +

1

1− z
(q · ε∗λ′)δλ0λ − (q · ελ0)δλ′λ

]
,

(3.19)

where q = k − zp, the transverse-, and the +-momentum is conserved, and all vertices
comes with a time integral

∫
dt. In spatial space, the momentum gets replaced by

the spatial derivative, while momentum conservation joins the endpoints, thus q �→
−i
∫
w
(∂xk

− z∂xp)xk=xp=w. The spinor and helicity states are ε(k)λ/ε
∗(k)λ for gluons,

and us(p)/ūs(p) for quarks, and v̄s(p)/vs(p) for antiquarks. It is useful to know the sum
of gluon polarization

∑
λ ε

μ
λ(k)ε

∗,μ
λ (k) = gμν .

The in/outgoing lines are the same as the propagators, without the 1
2p+0

factor. There
are no additional spinor or helicity components, as these are included in the vertices as
we will see later. Longitudinal gluons are usually neglected, as they only contribute to
“instantaneous” 4-particle interactions. These terms were studied in detail in Ref. [67].
The relevant sum is, therefore, in the transverse polarization vectors

∑
λ ε

i
λ(k)ε

∗,j
λ (k) =

δij.

In summary, the EFT we introduced in the previous sections leads to new, in-medium
Feynman rules. There is a new vertex between the hard partons and the background. As
the background current has a relatively simple form, dressed hard propagators can easily
account for multiple scatterings using Wilson lines. The in-medium Feynman rules then
consist of dressed hard propagators and vertices among dressed external lines.

3.1.4 Momentum broadening in medium:

A simple application of the medium Feynman rules presented in Sec. 3.1.3 is the in-
medium propagation of a gluon. We follow Ref. [58]. In the vacuum, this would be
trivial as the gluon remains unchanged during its propagation. The matrix element in
medium is

Mb
λ(k) =

∫
k0

(k|Gba
A (x+, x+

0 ; k
+)|k0) ε

∗
λ · Ja

λ(k0, x
+
0 ) (3.20)
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where J is some arbitrary process that creates the hard gluon, and it is multiplied by
the outgoing gluon leg. The complex conjugate is

M̄b
λ(k) =

∫
k̄0

(k̄0|G†āb
A (x+

0 , x
+; k+)|k) ελ · J∗ā

λ (k0, x
+
0 ) . (3.21)

The amplitude square then is

1

N2
c − 1

∑
λ,b

|Mb
λ(k)|2 =

1

N2
c − 1

∫
k0,k̄0

Tr(k|GA(x
+, x+

0 ; k
+)|k0)(k̄0|G†

A(x
+
0 , x

+; k+)|k)

· |Jλ(k0, x
+
0 )|2

=

∫
k0,k̄0

(k;k|S(2)(x+, x+
0 ; k

+)|k0; k̄0) |Jλ(k0, x
+
0 )|2 , (3.22)

where we averaged for the incoming color. We used the summation property of helicity
states and the fact that the color is the same in the matrix element and its complex
conjugate at every time (a = ā) resulting in the color trace. This comes from the
δ(x+ − y+) in the Gaussian correlator (Eq. (3.5)). In the last line, we introduced the
2-point function. One can evaluate the path integrals in the 2-point function in spatial
space8

(x;x|S(2)(x+, x+
0 ; k

+)|x0; x̄0)

=

∫ x

x0

Dr

∫ x

x̄0

Dr̄ exp

[
ik+

2

∫ x+

x+
0

dt (ṙ2 − ˙̄r2)− Ncn

2
γ(r − r̄)

]

= (x|G0(x
+, x+

0 ; k
+)|x0)(x̄0|G†

0(x
+
0 , x

+; k+)|x) exp
[
−Ncn

2

∫ x+

x+
0

dt γ(ucl(t))

]
, (3.23)

where the classical path is ucl(t) = x0 − x̄0 − x0−x̄0

x+−x+
0

(t − x+
0 ). After taking the Fourier

transform, it is

(k;k|S(2)(x+, x+
0 ; k

+)|k0; k̄0) = (2π)2δ(k0 − k̄0)Pbroad(k − k0, x
+ − x+

0 ) , (3.24)

Pbroad(Δk,Δt) =

∫
u

e−u·Δp · exp
[
−Ncn

2
γ(u)Δt

]
. (3.25)

Inserting this into Eq. (3.22), the differential cross-section of a single gluon propagating
in the medium is simply the broadening

dσg

dΩk

=

∫
k0

Pbroad(k − k0, x
+ − x+

0 ) ·
dσ0

dΩk0

, (3.26)

8The easiest way to evaluate the path integral is to read off the Lagrangian L = ik+

2 (ṙ2 − ˙̄r2) −
Ncn
2 γ(r − r̄), and solve the corresponding equation of motion. Then, insert it back into the path

integral.
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where the incoming cross-section is dσ0/dΩk0 = |Ja(p0)|, and the phase space element is
dΩk = 1

(2π)3
dk+d2k
2k+

. When the broadening is evaluated, one has to choose a background
model for γ(u) and evaluate the integrals. See Refs. [68] for an overview of the broadening
of several medium models.

3.1.5 Medium-induced emissions

We apply the medium Feynman rules to a splitting in the medium. The q → qg matrix
element is

Mia
sλ(p, k) =

1

Nc

∫
k′,p′,p0

∫ ∞

0

dt
1

2p+0
(k|Gab

A (tL, t; zp
+
0 )|k′)

· (p|Gii′
F (tL, t; (1− z)p+0 )|p′ − k′)V i′ib

s′sλ(k
′ − zp′, z)(p′|Gi′j

F (t, t0; p
+
0 )|p0)Mj

s′(p0) . (3.27)

By going backward, M(p0) is the arbitrary creation of the initial quark, then a quark
propagator 1

2p+0
GF , that is multiplied with the vertex V , and outgoing quark and gluon

lines GF · GA. All intermediate momenta and indices are summed over. After taking the
amplitude square, evaluating multiple path integrals is highly not trivial. The color rota-
tions in the Wilson lines complicate the evaluation, and therefore, we take the large-Nc

approximation, leaving behind O(1/N2
c ) corrections [69]. An interesting property of

medium-induced emissions is the lack of collinear singularity. This is clearly different
in the vacuum, where the collinear singularity was presented in Sec. 2.3. It is possible
to integrate out the transverse momentum of medium-induced emission resulting in the
spectrum [56, 70–73] (our notation follows Refs. [74, 75]),

ω
dI

dω
=

2αsCR

ω2
Re

∫ ∞

0

dt2

∫ t2

0

dt1 ∂x · ∂y
[K(x, t2;y, t1)−K0(x, t2;y, t1)

]
x=y=0

, (3.28)

where ω is the energy of the induced emission (rigorously, it is k+).9 Vacuum emissions
have been subtracted with the second term, and the 3-point function K satisfies the 2+1
dimensional Schrödinger equation[

i∂t +
∂2
x

2ω
+ iv(x, t)

]
K(x, t;y, t0) = iδ(t− t0)δ(x− y) , (3.29)

where the imaginary potential is10

v(x, t) =

∫
q

σ(q, t)
(
1− eiq·x

)
. (3.30)

9In the soft limit zp+0 → ω, and (1− z)p+0 → p+0 = E, in Eq. (3.27).
10We use the shorthand notation,

∫
p
=
∫

d4p
(2π)4 ,

∫
p
=
∫

d2p
(2π)2 , and

∫
x
=
∫
d2x.
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Here σ(q, t) = Ncn(x)γ(k) is proportional to the in-medium elastic scattering cross
section, where n(x) is the density of scattering centers.

Equation (3.28) is a leading order result in αs, but it includes interactions with the
medium to all orders in g2n which is hidden in Eq. (3.28). It is presented in the soft limit
ω � E, where E is the emitter’s energy (rigorously p+0 ), keeping only the leading number
of color terms (neglecting O(1/N2

c )). It is valid for any slowly varying potential v(x, t),
but here we focus on a homogeneous medium with fixed length L (rigorously x+). The jet-
medium scatterings are modeled through the GW model σ(q, t < L) = 4πq̂0/(k

2 + μ2)2,
where the mean free path among scatterings is inversely proportional with the medium
density and λ = (

∫
q
σtot)

−1 = μ2/q̂0.

Equation (3.28) has been extensively studied in the literature as it is the essential in-
gredient of any jet-quenching calculation. It is viewed as a master formula, and the
available analytic solutions are approximations of this “full” solution in different limits.
For example,

• The BDMPS-Z limit [56, 57] approximates the scattering potential with its soft
limit v(x) ≈ 1

4
q̂0x

2, allowing to solve the Schrödinger equation (and thus the
path integrals) analytically. We refer to this as the harmonic oscillator (HO)
approximation. The resulting spectrum recovers Eq. (3.28) in the soft limit for a
big enough medium (ω → 0 and L � λ).

• The GLV-W formula [71, 76] instead of resumming medium interactions, it expands
and truncates in the number of scatterings. We refer to this as opacity expansion
(OE). It recovers Eq. (3.28) if the medium is small (L � λ), and if the induced
emission is hard (ω → ∞).

More recently, numerical solutions of Eq. (3.28) became available, illustrating the inter-
polation between the two limiting analytic solutions [77–79]. The numerical analyses
showed that the limiting cases are good approximations of the full formula, however, the
phase space structure was not entirely understood. These findings motivated a series of
recent efforts searching for a better analytic understanding of Eq. (3.28).

• In Refs. [74, 80], the authors constructed a perturbation theory, which combines
the all-order HO resummation with a finite number of hard scatterings similar
to the OE. They separated the scattering potential to harmonic oscillator plus
corrections v(x, t) = vHO(x, t)+ δv(x, t). The HO part is solved analytically, while
δv is treated as a perturbation. We refer to this as improved opacity expansion
(IOE).
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In Ref. [75], we constructed a framework of different analytical expansion schemes to
solve Eq. (3.28) analytically to all orders (in the medium scatterings). By studying
Eq. (3.28), we identified the phase space structure illustrated in Fig. 3.1. The emission
phase space consists of the energy of the induced emission ω and the length of the
medium t. Different regions in Fig. 3.1 show the dominant scattering process that induced
the emission. Hard emissions with ω > ωc(t) = 1

2
q̂t2 are triggered by a single hard

scattering on the medium (the green region in the figure). The opacity expansion is
a good description of this region. Surprisingly, this regime extends for large medium
L � λ (where λ ∼ μ2/q̂0 is the mean free path of scatterings). Physically, this is
possible because the high energy of the emission forces harder scatterings, effectively
reducing the probability of multiple scatterings. See also that γ(q) decays fast for large
q2. In the region ωBH = 1

2
μ2λ < ω < ωc(t) emissions are induced by multiple soft

scatterings in the medium, and therefore, the harmonic oscillator scatterings play the
dominant physics (red region). These emissions typically have long formation times,
and scatterings “add up” to a single coherent scattering during the formation. The IOE
showed that corrections from rare, hard scatterings are also important and enhance the
value of q̂0 �→ q̂(ω). Finally, soft emissions ω < ωBH are still triggered by soft scatterings.
The number of scattering is very few, even for large medium. This region is referred to
as Bethe–Heitler emissions by the QED analog (blue region). The diagrammatic sketch
of the induced emission and the corresponding scattering process is in Fig. 3.1. The
shaded blob represents formation time.

• In Ref. [75], we constructed an all-order perturbation theory describing very soft
emissions for the first time. It is similar to the opacity expansion as it truncates in
the number of real scatterings (second term in Eq. (3.30)), while it resums virtual
scatterings (first term in Eq. (3.30)) to all orders. Therefore it accounts for the no
scattering probability to all orders (similar to the no emission probability Sudakov
factor in jet physics). We refer to this formalism as resumed opacity expansion
(ROE).

In Fig. 3.2, we compare our analytic description of Eq. (3.28) to the numerical solution
from Ref. [78]. The three different panels correspond to three different medium sizes,
where the mean free path is λ = 0.06 fm. The plot range includes very low energies
to illustrate the separation between the different regions, even though pQCD should
break down below � 1 GeV. Different colors correspond to different phase space regions
from Fig. 3.1, while the dotted lines are different analytic limits (first-order opacity (or
GLV limit), harmonic oscillator (BDMPS-Z limit), and first-order ROE (Bethe–Heitler
limit)). As our framework combines different perturbation expansions, we truncated our
formulas at first order in the plots (Nr = 1 in ROE, and HO+NHO in the IOE) even
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Figure 3.1: The emission phase-space of medium-induced emissions, and the correspond-
ing dominant scattering process that triggers the emission. Reprinted from Ref. [75].

though nothing would prevent us from going to higher orders. This “first order” result
already captures most of the full solution, resulting in 10% deviation from the numerical
solution on the boundary of the expansion schemes that decreases as one goes to higher
orders.

Equation (3.28) includes several approximations that could be relaxed. First, when we
integrated the transverse momentum, we neglected the kinematic constraint, which re-
stricts the angle θ < π. Finite-z and flavor-changing corrections are available in Ref. [75].
The finite number of color corrections are available in Ref. [69]. Next-to-leading order
α2
s corrections are available in the HO limit [81] and in the OE [82]. Finite quark mass
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Figure 3.2: The medium-induced emission spectrum Eq. (3.28) for different medium
lengths, and using different analytic approximations compared to the numerical solution.
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corrections are available in the HO [83] and OE limits [84]. Regarding the medium
potential γ(k), solutions are available beyond the HTL and GW models, including non-
perturbative effects [79, 85]. Finally, the dynamical medium was also studied, result-
ing in longitudinally expanding formulas [86, 87] and so plasma with transverse struc-
ture [88–90]. Considering these corrections, the simple physical interpretation presented
in Fig. 3.1 has to be studied in the future.

As one can see, many improvements accumulated for medium-induced emission recently,
however, these corrections are uncontrolled as no one could define a hierarchy among
them. In the next section, we will sketch a hierarchy of importance among these correc-
tions using the knowledge we accessed in Ch. 2.

3.2 Infrared divergences in the medium

Let us first summarize, the limiting behavior of the spectrum Eq. (3.28) in different
regions of the phase space11

ω
dI

dω

∣∣∣∣
L	λ

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2ᾱL

λ
ln
(
ωBH
ω

)
, for ω � ωBH ,

ᾱ
√

2ωc

ω
, for ωBH � ω � ωc ,

π
2
ᾱL

λ
ω̄c

ω
, for ωc � ω ,

(3.31)

where ᾱ = Ciαs

π
ωBH = 1

2
μ2λ, ωc = 1

2
q̂L2 ω̄c = 1

2
μ2L, and λ = μ2

q̂0
. The different colors

denote different regions in Fig. 3.1. We do not forget that medium-induced emissions
lack collinear singularity that made it possible to integrate the transverse momentum of
the emitted gluon. Various shapes of the soft divergence are present in Eq. (3.31) and
therefore, we expect the necessity of resummation similar to Ch. 2. A simple way to
see this is by integrating out ω that is proportional to the number of induced emissions.
When this number is large � 1, corrections from multiple emissions have to be included,∫ ∞

ωmin

dω
dI

dω
≈ ᾱ

L

λ
ln2 ωBH

ωmin

+ 2
3
2 ᾱ

(√
ωc

ωBH
− ln

L

λ

)
+ πᾱ

(
1− q̂0

q̂
ln

L

λ

)
, (3.32)

11As a reminder, there are also virtual emission diagrams in the medium that are usually neglected
in most notations. These terms are crucial, however, to preserving unitarity. Luckily, virtual emissions
come with the same functional form as real ones with an additional negative sign. For the LO induced
spectrum it is −δ(ω)

∫
dω dI

dω .
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where we used the corresponding phase space boundaries ωBH and ωc(L). In the soft limit
ω < E → ∞ can be safely taken. Let us study the different contributions separately:12

• HO region: the contribution of this region can be rewritten as ∼ ᾱ(L
λ
− ln L

λ
+ . . . ).

For large medium (L � λ) the first term dominates and shows the importance of
multiple emissions as it makes the multiplicity big even for ᾱ � 1. Even the second
term is enhanced and therefore the HO region definitely requires resummation.

• OE region: the divergence is milder in this region. The first two terms are not
enhanced for a large medium as E � L

λ
ω̄c. Surprisingly, the last term has a length

logarithm similar to the HO region. This term, however, is suppressed compared
to the HO region by q̂0/q̂ � 1 (this ratio is the result of including single hard
corrections in the bare q̂0 parameter in the IOE formalism). The resummation of
hard-scattering-induced emissions is needed, but it is subleading compared to the
HO region.

• BH region: emissions from ω < ωBH results both length and double logarithmic
enhancement ln2 ωBH

ωmin
. Clearly, if the medium is big L � λ and/or ωBH � ωmin the

integral becomes very large, and resummation is needed. This region is usually
neglected in phenomenology studies as ωBH is already non-perturbatively small
energy and so formally ωBH ≈ ωmin.

Including corrections to the induced spectrum will not necessarily change the pole struc-
ture of limω→0

dI
dω

. These corrections will clearly not be enhanced in Eq. (3.32), and there-
fore they are not important in terms of resummation. Other corrections, e.g. finite-z,
running αs, etc., might change the pole-structure and therefore have a large contribution
in Eq. (3.32). Their relative importance can be studied by reading off their contribution
to the multiplicity. In Sec. 2.2, we went a bit further than the multiplicity and we showed
how wold this happens on the level of an observable. We will extend this educated guess
in the next sections.

12In the vacuum, the multiplicity would look like∫ R

0

dθ

∫ 1

0

dz P̃ (z, θ)Θ(kt = zθpt > kt,min) ≈ ᾱ ln2
(
Qhard

Qnp

)
+O(αs log) , (3.33)

where splitting function in the IRC limit is P̃ (z, θ) ≈ 2ᾱ
zθ + ..., and Qhard

Qnp
= ptR

kt,min
. The higher order

terms in the multiplicity are coming from corrections to the splitting function beyond the IRC limit
such as hard collinear emissions, running coupling, etc.
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3.3 Factorization in the soft limit in the medium

To build on the analogy of vacuum resummation, we treat Eq. (3.28) as our LOm 1 → 2

cross-section. This consists of the first order in αs (from Lhard), but all orders in q̂0 (from
Lhard−med). We saw that it has an interesting infrared structure (i) it lacks collinear
divergence, and (ii) it has a soft divergence with a non-trivial shape. We identified
regions of the phase space, where different divergences emerge. We showed how the
different regions of the infrared pole contribute to power and logarithmic enhancements
in the multiplicity, which requires all-order resummation.

To perform resummation, we have to evaluate multi-parton final states in the medium.
We will follow in the footsteps of vacuum resummation. In Sec. 2.4, we showed that
the |Mm+1|2 cross-section factorizes to |Mm|2 ⊗ Dij,k in the soft and collinear limit.
This calculation is waiting to be done in the medium. Two gluon emissions have been
addressed, already, showing its factorization in Ref. [91]. The authors used the strongly
ordered, double soft limit (ω2 � ω1 � E) in the harmonic oscillator approximation. In
this limit, |M1→3|2 ≈

∑
conf |M1→2|2|M1→2|2+O(corr.), where the summation runs over

all possible emission configurations. The factorization of multiple legs was also argued in
the same work. The resulting resummation picture was introduced and solved in several
later works Refs. [92–95], and more recently see in Refs. [96–98].

Reference [81, 99–101] went further by extracting corrections to the factorization beyond
the soft limit ω2 ∼ ω1 ∼ E limit similarly in the HO approximation. The leading or-
der goes as dI

dω
= O(ω

−3/2
1 ω

−3/2
2 ), while the first correction comes is Δ dI

dω
= O(ω−1

1 ω
−3/2
2 ).

This correction should be absorbed in the LOm splitting in the future. They also ex-
tracted NLOm corrections to the splitting function, which leads to the running of the
coupling αs and additional running of the q̂. These results are now awaiting their appli-
cation in a resummation framework [102, 103]. An important limitation of these studies
is that they neglect vacuum physics, consider a medium with infinite size, and stick to
the harmonic oscillator approximation.

Ideally, 2-induced emission calculations should be done for the more general scattering
potential γ(k) to relax the harmonic oscillator approximation. Until that, one can use
formation time arguments, showing that the most dominant contributions of the Bethe–
Heitler and opacity expansion regions factorize in the strongly ordered, soft limit (see
Sec. 4.2 in Ref. [75]). This factorization, however, is not essential as the resummation
of these regions contributes to the multiplicity (accuracy) at much higher orders (see
Eq. (3.32)).
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3.4 Medium-induced cascade

In the previous sections, we explained it is necessary to consider medium-induced emis-
sions to all orders and to resum many of them. In vacuum physics, this phenomenon
results in jets, which are experimentally observable objects. Based on analogy, where are
medium-induced jets in heavy-ion collisions? Do experiments reconstruct them? The
answer is less trivial than one would think:

• Medium-induced emissions lack collinear singularity, and therefore they happen at
wider angles than vacuum emissions. For the same reason, they are not collimated,
and therefore, jet reconstruction algorithms will not cluster them to vacuum jets
or together.

• When a vacuum jet is reconstructed with cone size R = 0.2 − 0.4, that angle
is small compared to the typical angle where multiple medium-induced emissions
happen. The typical angle for emissions that drives energy out of the cone is
θ ∼ θc

α2
s
≈ 1, where θc ≈ 0.01, and will be introduced in the next section. Therefore,

most medium-induced emissions are out of the jet cone [94, 98, 104]. Therefore,
medium-induced emissions barely contaminate vacuum jets.

• Opening up the jet cone to R = 1, more medium-induced emissions will contribute
to the jet. Multiple branchings of medium-induced emissions, however, degrading
energy extremely efficiently to Qmed and below [93, 95]. Therefore, many induced
emissions will disappear in background subtraction, driving us out of the context
of this thesis.

Now we can understand why the heavy-ion community does not talk about medium-
induced jets. Medium-induced cascade is a more correct terminology as it happens
at wide angles and degrades energy rapidly. Figure 3.3 shows the sketches of a jet
versus a cascade. The lines denote both quarks and gluons, while the red lines are
medium-induced splittings. Vacuum branchings are collinear and thus form a jet, while
medium-induced emissions are at wide angles and their rate rapidly accelerates.

The arguments above deal with absolutes: jets with infinitely high energies, medium
with infinitely large lengths, etc. In collider experiments, the picture is not black and
white, as the scales are not that separated. It is required to go beyond leading behavior
arguments. In Ref. [75], we looked at how the finite length of the medium and not-so-
soft induced emissions will change the resumed fragmentation function as a first step in
addressing more realistic setups.
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jet medium-induced cascade

Figure 3.3: The sketch of a jet and a medium-induced cascade.

Using the unified picture from Sec. 3.1.5 and the factorization argument from Sec. 3.3,
one can write the energy distribution of induced-emissions as

∂

∂t
D(x, t) =

∫ 1

x

dzK
(
z,

x

z
E, t
)
D
(x
z
, t
)
−
∫ 1

0

dzK(z, xE, t)D(x, t) , (3.34)

where the fragmentation function is D(x, t) = xdN(t)
dx

, with x = ω
E

, and E is the energy
of the initiator. The branching kernel is the emission rate K(z, E, t) = 2 ∂

∂t
dI
dz

∣∣
E

, and the
incoming hard parton is D(x, t = 0) = δ(1 − x). We solved Eq. (3.34) in different ap-
proximations, which are in Fig. 3.4 in different time steps. At early times, D(x) peaks
close to x ≈ 1, as the initial parton has not lost much energy. This peak reduces and
disappears at later times. The full solution uses our unified medium-induced emission
kernel, where the color shading corresponds to the regions in Fig. 3.1. The curve pre-
sented with D0 contains the strict soft limit of dI

dω
and assumes infinite medium and,

therefore, it only resums terms that are O(αs
L
λ
) (see Eq. (3.32)). In a phase space pic-

ture, D0 would assume the whole (ω, t) plane to be red. Compared to the full solution,
it gives a good approximation if the propagation in the medium is long enough, and the
emitted energy overlaps with the HO region (red region). The difference is also obvious
if the medium is not large or one is interested in hard emissions x � 1. The curves HO
and HO+NHO are the first two orders of the improved opacity expansion and include
finite-z, finite length, and other corrections. They correctly capture the full solution in
the red+green combined region.
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Figure 3.4: The fragmentation function of the medium-induced cascade initiated by a
hard parton at different time-steps. Reprinted from Ref. [75].

Figure 3.4 shows how to improve energy loss models in the future, as most models include
only the HO approximation or the opacity expansion (green region) exclusively. Based
on Eq. (3.32) and Fig. 3.4, it becomes obvious, neglecting the HO region, one would miss
leading effects in the energy loss. One could progress further, and show analytically the
accuracy of D(x, t) in the different approximations as we did in Ref. [75], which we skip
for now.

3.5 Jets and their substructure in the medium

The previous chapter introduced how multiple collinear emissions in vacuum form jets.
Jets are also observed in heavy-ion collisions, although, their distribution and substruc-
ture are modified [49, 105, 106]. These modifications have various physical origins, and
here we will focus on changes related to medium-induced emissions.13 As we mentioned,
the cascade of medium-induced emissions lacks collinear singularity, and therefore they
appear at a typically large angle outside of the jet cone. The fundamental effect of
medium-induced cascades on jets is decreasing their energy.

At higher orders, medium-induced emissions can also modify jet substructure. Interfer-
ence between vacuum and medium-induced emissions becomes important, and therefore,
the transverse momentum of induced emissions has to be kept d3I

dωd2k
. Most works are

based on the harmonic oscillator approximation and the soft emission limit [107–111].
Works which studied these interference effects are referred to as color-coherence stud-

13In the formalism introduced in Ch. 3, we only consider a single medium scale Qmed and neglect
the medium dynamics Lmed. In a collider experiment, more scales are present, which vary dynamically.
The evolution of the medium also contaminates jets in a non-trivial way. The formalism established
here cannot be complete. Our formalism should be valid for narrow jets with very high energy, where
non-perturbative effects are less important.
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ies. They showed that the color connection of a color-dipole decoheres by the time
td = [4/(q̂θ2qq̄)]

1/3 due to multiple scatterings in the medium, where the initial angle of
the dipole is θqq̄. Therefore, not every scattering in the medium changes colors right
away.

This simple phenomenon has several important consequences:14

• Emissions formed much before the decoherence time tf � td are unaffected by the
medium. They form through a vacuum process in the angular ordered fashion and
are referred to as vacuum-like emissions. They appear in the red region in Fig. 3.5.

• Early vacuum-like emissions, after propagating td in the medium (for large medium
td � L), will become color-independent of each other (decohere). They will source
medium-induced emissions, and thus energy loss, independently. The energy loss
of a jet will, therefore, correlate with the jet multiplicity in a non-trivial way [113].
See also Sec. 3.6.1.

• There exists a critical resolution angle θc when td = L (vertical red line in Fig. 3.5).
If the splitting is narrow (θ � θc), the medium will not resolve its constituents,
and therefore, it loses less energy as a single color charge. Wide splittings, on the
other hand, get resolved by the medium and trigger more energy loss.

• Medium-induced emissions happen in a very short time scale, which is quick enough
that no vacuum process will occur during this time. As the branching process
accelerates, the whole medium-induced cascade will finish without any vacuum
interruption [93].

• Emissions formed slow tf � L are again unaffected by the medium in the angular
ordered fashion (right side of the blue line in Fig. 3.5). As these emissions formed
after their ancestors are decohered, the available phase space gets “reopened” [96,
114, 115].

The picture presented above is the factorized picture or 2-, or 3-stages of in-medium jet
evolution, and it is the basis of any modern jet quenching model. The presented picture
is also a sketch for the numeric interpretation, see in Refs. [96, 114]. In the future,
it is necessary to include corrections to the factorized picture from the unified picture
presented in Sec. 3.1.5.

Even though most models agree with the factorized picture, the exact shape of the
14An excellent summary of the vacuum-medium interference effects (including derivations) is in

Ref. [112], or its shorter version is in Ref. [96].
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Figure 3.5: The sketch of the vacuum-like emission phase space after including its
medium modification.

resolved phase space region and the medium-induced branching process vary between
models. In Sec. 3.6.2, we construct an observable to distinguish between the models.

3.6 Applications

This section reviews two works that apply the formalism from Ch. 3 to perform jet
quenching phenomenology. We will particularly focus on understanding the accuracy
presented in the calculations.

3.6.1 Jet energy-loss and the quenched jet spectrum

A relatively simple application of medium-induced emissions is calculating the radiative
energy loss of jets. In Ref. [116], we used a simplified version of the unified picture
presented in Sec. 3.1.5 to compute corrections to the harmonic oscillator approximation
by including hard scattering induced emissions. We applied this to calculate the nuclear
modification factor RAA in dijet and Z+jet events.

We write the jet spectrum in the medium as the vacuum spectrum shifted by lost energy,

dσmed
R

dpT
=
∑
i=q,g

∫ ∞

0

dε Ei(ε, p′T , R)
dσvac

R,i

dp′T

∣∣∣∣
p′T=pT+ε

, (3.35)
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where σvac
R,i is the vacuum spectrum of jets with cone size R and i initiator flavor. The

Ei(ε, p′T , R) is the probability to lose energy ε. This model clearly does not say anything
about the change in the jet substructure. The modification due to energy loss is then

Rmed(pT ) =
dσmed

R

dpT

/
dσvac

R

dpT
≈
∑
i=q,g

∫ ∞

0

dε Ei(ε, pT + ε, R)e
− n

pT
ε
, (3.36)

where in the second step we assumed a steeply falling vacuum spectrum (dσvac

dpT
∼ p−n

T ,
where n � 1), and therefore dσvac

d(pT+ε)
≈ dσvac

dpT
e
− n

pT
ε. Formally, Eq. (3.36) is a Laplace

transform of the energy loss probability.

At LOm, the radiative energy loss distribution consists of a single medium-induced emis-
sion is

Ei(ε, p′T , R) ≈ dI>,i

dω
δ(ε− ω) + δ(ε)

[
1−
∫

dω
dI>,i

dω

]
, (3.37)

where the second term is from virtual terms, and the probability explicitly conserves.
The out-of-cone emission spectrum is

dI>,i

dω
=

∫
k

d3Ii
dωd2k

Θ

(
θ ≈ |k|

ω
> R

)
. (3.38)

The jet loses energy only if the emission goes out of the jet cone. The p′T is the energy
of the initial parton. The soft limit (see Eq. (3.31)) is independent of p′T . Previously,
in Eq. (3.32), we showed that the integral of the induced spectrum is large

∫
dI � 1,

and therefore, it is necessary to consider multiple emissions. This is also the case for
Eq. (3.37) as in the ε → 0 limit, the integral is unregulated, and thus multiple soft
emissions will appear.

To account for multiple emissions, assume parton i to emit multiple independent induced
gluons (following the factorization argument from Sec. 3.3), one can write the energy loss
as [117, 118]

E (0)
i (ε, R) =

∞∑
n=0

1

n!

[
n∏

m=1

∫
dωm

dI>,i

dωm

]
δ

(
ε−

n∑
m=1

ωm

)
e−

∫
dω

dI>,i
dω , (3.39)

where n is the number of induced emissions (the n! symmetry factor comes from in-
distinguishable gluons), and the radiated energy adds up to ε. In this limit, the p′T
dependence is negligible. The last exponential factor comes from virtual terms on which
we already performed the summation. This formula should remind the reader of the co-
herent branching algorithm and Eq. (2.30). In Mellin space, the energy-loss distribution
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simplifies as the sum in the delta function is

δ

(
ε−

n∑
m=1

ωm

)
=

∫
C

dμ

2πi
eμε

k∏
l=1

e−μωl , (3.40)

resulting in the simple analytical expression referred to as quenching weight,

Q(0)
i (ν,R) =

∫ ∞

0

dε E (0)
i (ε, R)e−νε = exp

[∫
dω

dI>,i

dω

(
e−νω − 1

)]
. (3.41)

Equation (3.41) and the nuclear modification Eq. (3.36) are very similar, one only has
to take ν �→ n

pT
.

As we showed in Eq. (3.32), the leading terms of
∫
dI = O(αs

L
λ
) +O(αs ln

L
λ
) + . . . . By

resumming multiple independent emissions (neglecting the cone size for the moment),
we roughly exponentiate the multiplicity and arrive at an expression that is (O(αs

L
λ
) +

O(αs ln
L
λ
) + . . . )n. Of course, we did not capture all of these orders correctly! Taking

the vacuum analogy: at LO, the integral of the splitting function is O(αs log
2) + ....

The argument of the logarithm is irrelevant for now. By resumming many independent
emissions, one gets terms with O(αn

s ), but we know emissions are independent only
in the IRC limit. Therefore we correctly capture terms that are O(αn

s log
2n). When

the logarithm is big (big phase space for IRC emissions Qhard � Qnp), IRC-logarithm-
enhanced terms dominate.

To understand which terms we captured correctly, we saw that, Ref. [91, 100] suggest
independent emissions for large medium in the soft limit (ω � E and L � λ). This
is valid for both HO terms presented in Eq. (3.32). Therefore, we expect Eq. (3.41) to
capture correctly terms which are

αn
s

(
L

λ

)n

, αn
s

(
L

λ

)n−1

ln
L

λ
, . . . , αn

s ln
n L

λ
, (3.42)

where n = 1, 2, . . . , and λ = μ2/q̂0. We neglected higher-order terms, which do not nec-
essarily factorize. Equation (3.42) is the first sketch of defining all-order accuracy for
medium-induced observables. We expect factorization to hold for other BH and hard
scattering too, however, these have been proven only through formation time arguments.
We neglected them for the moment as the extension would be trivial. Moreover, using
the pioneering work of Ref. [100], higher-order terms could also be included in the fac-
torization, achieving higher accuracy.

Based on Sec. 3.5, we know that not every jet constituents source energy loss, only
those resolved by the medium. We would like to include this resolution criterion in the
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energy loss distribution. If the jet only consists of 2-particles (created through a vacuum
splitting),

Ei(ε, p′T , R) ≈
∫

dε0 E (0)

i,p′t,R
(ε0)

∫
dP̃i(1−Θres)δ(ε− ε0)

+

∫
dε0 E (0)

i,(1−z)p′t,R
(ε0)

∫
dP̃iΘres

∫
dε1E (0)

g,zp′t,R
(ε1)δ(ε− ε0 − ε1)

−
∫

dε0 E (0)

i,p′t,R
(ε0)

∫
dP̃iδ(ε− ε0) , (3.43)

where
∫
dP̃i =

∫
dθ
∫
dzP̃ vac

i (z, θ) is the LO vacuum-like emission and its integral over
all possible kinematics. The Θres = Θ(tf < td < L) is the resolution criterion that
corresponds to the red region in Fig. 3.5. The first line describes an unresolved emission.
The initiator loses the energy. The second line describes a resolved emission, and thus
both legs lose energy independently. The third line includes the virtual term, and it
has no phase space constraint. By generalizing for an arbitrary number of vacuum-like
emissions, one gets

Ei,p′t,R(ε) =
∫

dε0 E (0)

i,p′t,R
(ε0)

∞∑
n=0

1

n!

n∏
m=1

∫
dP̃mdεmΘres

[
E (0)

g,zp′t,R
(εm)δ(ε− ε0 −

∑
m

εm)− 1

]
.

(3.44)

The physical interpretation of Eq. (3.45) is that E (0) single parton energy loss gets cor-
rection from additional vacuum-like emissions inside the jet, which are in the resolved
region. At double logarithmic accuracy, these emissions are always soft gluons and
(1− z)p′t ≈ p′t. In Mellin space, it takes the simple form

Qi(ν,R) = Q(0)
i (ν) exp

[∫
dθdz

dP̃

dθdz
Θres

(
Q(0)

g

(ν
z

)
− 1
)]

. (3.45)

Sometimes Eq. (3.45) is referred to as resummed quenching weight, where the resumma-
tion refers to vacuum-like emissions (as in Eq. (3.41) multiple medium-induced emissions
were already resummed).

The gluon quenching weight is shown in Fig. 3.6 for different pT = n
ν

(with constant
spectrum slope) and for different jet cone sizes R. At high jet pT , the lost energy is
relatively small (Q ≈ 1), while at lower pT , energy loss becomes more dominant. For
Q(0), it is clear that opening up the jet cone recovers some of the lost energy, and therefore
Q(0) gets closer to 1. For the resummed quenching weight Q, two effects compete for 1)
opening the cone recaptures some of the lost energy, and 2) a wider cone containing more
resolved, vacuum-like emissions, sourcing more energy loss. The overall effect results in
a mild cone size dependence.
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Figure 3.6: The pT and jet cone size dependence of the single parton quenching weight
Q(0) from Eq. (3.41) and the resumed quenching weight Q from Eq. (3.45). Reprinted
from Ref. [116].

Let us examine what kind of terms are resummed in Eq. (3.45). We have already iden-
tified the expansion of Q(0) in Eq. (3.42). At leading resumed order it is O(αs

L
λ
)n. The

vacuum integral at leading double logarithmic accuracy is
∫
dP = O(αs log

2). Therefore,
Eq. (3.45) combines both vacuum and medium terms in a non-trivial way,

[O(αs log
2) +O(αs log) +O(αs) + ...

]n · [O(αs
L

λ

)
+O
(
αs ln

L

λ

)
+ ...

]m
, (3.46)

where n,m = 1, 2, .... To understand which terms are captured correctly, one has to use
Secs. 2.3-2.4, and 3.2-3.3 that we delay for a future work. As the medium resolution
criterium results in the non-trivial combination of vacuum and medium emissions, color-
coherence is the first, non-trivial interference in our jet modification theory. Moreover,
Eq. (3.46) is the first sketch of the all-order expansion of a quenched jet observable.

Finally, to extend Eq. (3.45) to LHC phenomenology, several other effects are necessary
to include: realistic vacuum spectrum, quark/gluon fraction, and nuclear modification
of the PDF. Including all of these effects, in Ref. [116] (see also Ref. [119] where they
focused more on medium fluctuations), we made predictions for dijet and Z+jet RAA. It
is shown on the left of Fig. 3.7. It is interesting comparing these seemingly different RAA

as they have the same medium in the collision. Therefore, the energy loss probability,
nPDFs, medium recoil, and other background pollution are all the same. Differences
originate in the vacuum spectrum σvac, and therefore, they represent different biases (n)
and different q/g fractions. Typically, the dijet spectrum falls steeper (favoring small
energy loss), while it has more gluons which lose more energy due to their larger color
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Figure 3.7: Using the quenching weight for LHC phenomenology. Left: predicting the
nuclear modification factor for dijet and Z+jet events for different jet cone sizes. Right:
quark initiated jet fraction before and after quenching. Reprinted from Ref. [116].

factor (Cg

Cq
= 9

4
). Overall gluon quenching dominates, and dijets have more quenching.

We illustrate this on the right side of Fig. 3.7, which shows the quark/gluon jet ratio in
pp and after quenching. In both cases, the quark fraction increases as gluons jets are
reduced due to the bias effect.

3.6.2 Dynamical grooming in heavy-ion collisions

As another application of the presented jet modification framework, we review Ref. [120].
In this work, we put the factorized picture of jet energy loss (Sec. 3.5) to the test. As
mentioned, modern jet quenching models are based on a factorized picture. The exact
shape of the modified phase space (red region in Fig. 3.5) and the induced emission
kernel dI

dω
are different. We aimed to construct an observable, sensitive to the critical

resolution angle θc. This angle is present in models which account for the interference
between vacuum and medium emissions in the multiple soft scattering (HO) regime.
This might sound peculiar, but as we saw in Sec. 3.2, effects from the HO region are the
most dominant, and this interference is a lowest-order interference between vacuum and
medium emissions.

We wanted an observable that is not sensitive to the medium background while it is sen-
sitive to differences in splitting angles. Our requirement leads us to the angle distribution
of the hardest emission inside the jet (dynamically groomed θg). We have already in-
troduced dynamical grooming in Sec. 2.6.1. In brief, dynamical grooming loops through
branchings in a jet and identifies the hardest branching, where the hardness is defined
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through κ(a) = zθa, where a is the grooming parameter. DyG returns the hardest branch-
ing, one can study its kinematics, for example, the angle, transverse momentum, etc. As
it is a groomer, it is not only less sensitive to non-perturbative physics but reduces con-
tributions coming from the background as we will show. Based on Sec. 2.6.1, the angular
distribution of the hardest splitting in the vacuum is then

1

σ

dσ

dθg

∣∣∣∣
a

=

∫
dzg P̃i(zg, θg)Δi(κ = zgθ

a
g) , (3.47)

≈ 1

θg

√
ᾱπa
[
erf
(√

ᾱa ln θg
)
+ 1
]
, (3.48)

where P̃ is the 1 → 2 branching probability, and Δ(κ) denotes the no harder emission
than κ probability. In the second line, we evaluated the integral at double logarithmic
accuracy. The θg distribution at DLA is shown in Fig. 3.9.

The medium modification of a groomed observable comes from several sources, most
importantly, energy loss. The energy loss will depend on the jet substructure. When
the hardest tagged emission is narrow (θg � θc), it is unresolved by the medium. The
initiator loses energy only. When the tagged emission is wide (θg � θc), it gets resolved,
and both legs will independently lose energy. Furthermore, softer, untagged, emissions
will also contribute to energy loss, but only if they are resolved by the medium.

Extending our energy loss probability from Eq. (3.44), let us assume that we tagged the
hardest splitting with (zg, θg) that is κ = zgθ

a
g (blue dot in Fig. 3.9). We are interested

in the energy loss of this system by including a softer vacuum-like emission

Ei,p′t,R(ε|κ) ≈
∫

dε0 E (0)

i,p′t,R
(ε0)

∫
dP̃1Θ(κ− z1ϑ

a
1)(1−Θres)δ(ε− ε0)

+

∫
dε0 E (0)

i,p′t,R
(ε0)

∫
dP̃1Θ(κ− z1ϑ

a
1)Θres

∫
dε1E (0)

g,z1pt,R
(ε1)δ(ε− ε0 − ε1)

−
∫

dε0 E (0)

i,p′t,R
(ε0)

∫
dP̃1δ(ε− ε0) . (3.49)

Here Θ(κ − zϑa) sets the emission to be softer than κ. The first line is an unresolved
emission by the medium, and it loses energy through the initiator. In the second line, the
emission is resolved, and thus, both legs will lose energy. Here, we simplified (1−z1)p

′
t →

p′t. The last line is the virtual term which has no phase space constraint. By taking the
κ → 1 limit, one reproduces the unconstrained probability in Eq. (3.44).15 Generalizing

15The energy loss of the hardest emission also has to be included, that is E(0)
i,pt,R

(ε0) if θg < θc, and∫
dε′′0 E(0)

i,pt,R
(ε′0)E(0)

g,pt,R
(ε′′0)δ(ε0 − ε′0 − ε′′0) it θg > θc.
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Figure 3.8: The emission phase space of dynamically groomed vacuum-like emissions,
modified by the medium.

for an arbitrary number of independent emissions,

Ei,pt,R(ε|κ) =
∫

dε0 E (0)
i,pt,R

(ε0)
∞∑
n=0

1

n!

n∏
m=1

∫
dεmdP̃mΔ(κ)

·Θ(κ− zmϑ
a
m)Θres

[
E (0)
g,zmpt,R

(εm)δ(ε− ε0 −
∑
m

εm)− 1

]
. (3.50)

The interpretation is simple: emissions softer than κ AND resolved source further energy
loss. These sources are in the red region in Fig. 3.8. Its Laplace transformation is

Qi(ν|κ) = Q(0)
i (ν)Δ(κ) exp

[∫
dθdz

dP
dθdz

ΘresΘ(κ− zϑa)
(
Q(0)

g

(ν
z

)
− 1
)]

. (3.51)

The Δ(κ) no emission probability makes sure there is no harder emission inside the jet
than κ.

By comparing our substructure independent energy loss from Eq. (3.44) with Eq. (3.51),
one sees that the main difference relies on the Θ(κ− zθa) condition. The description of
Q(0) and P̃ (z, θ) are unchanged, and therefore the only difference in the accuracy comes
from the reduction of the vacuum-like emission phase space. This will change leading
vacuum terms O(αs log

2) in Eq. (3.46).

The tagged hardest branching can be medium-induced. This is subleading when κ(a) ∼ 1

because hard medium-induced emissions are rare. Capturing these subleading correc-
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Figure 3.9: Left: The angular distribution of the hardest branching at double-logarithmic
accuracy (Eq. (3.47)) for different hardness definitions zθa. Right: the medium modifi-
cation of the angular distribution (Eq. (3.55) for different grooming parameters a and
its ratio to vacuum. Reprinted from Ref. [120].

tions, we follow similar steps as in Eq. (3.47). The medium-induced spectrum is

d2I

dzdθ
≈ ᾱ

√
2ωc

z3pt
· 2θz

2p2t
q̂L

Γ

(
0,

z2p2t θ
2

q̂L

)
·Θ(ωc − zpt) , (3.52)

which is valid in the soft small angle (z � 1 and k2 = z2θ2p2t � q̂L) limit. We can
use the small angle approximation for dI here, as the jet cone is typically narrow. The
corresponding no-emission probability is

Δmie(κ) = exp

[
−
∫

dθ

∫
dz

d2I

dzdθ
Θ

(
z
θa

Ra
− κ

)]
. (3.53)

Therefore the overall probability of tagging the hardest splitting is

Pmed
i (zg, θg|a) =

(
P̃ vac
i (zg, θg|a) + Imie(zg, θg)

)
Δvac

i (κ)Δmie(κ) . (3.54)

Finally, including energy loss results in

1

σ

dσ

dθg

∣∣∣∣
a

=
∑
i=q,g

∫
dε

dσi

d(pt + ε)

∫
dzgP

med
i (zg, θg|a)Ei,pt,R(ε|zgθag) . (3.55)

The resulted θg distribution is showed in Fig. 3.9.

The simple quenching model presented in Eq. (3.55) correctly captures asymptotic prop-
erties of the θg observable if the jet energy is very high and the medium size is large.
Corrections coming from finite jet-pt, finite medium length, fluctuating medium, and
pollution from the background particles will not vanish out the nice peak in Fig. 3.9.
To show this, we studied different Monte Carlo (MC) event generators, which include
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Figure 3.10: The angular distribution of the hardest branching in the jet using the Hybrid
model for two different jet cone sizes, with and without medium response. Reprinted
from Ref. [120].

non-perturbative effects. These MCs include, e.g., hadronization, dynamical and fluc-
tuating medium, medium recoil, and medium pollution of jets, and therefore, they are
ideal for testing our observable. The Hybrid model, for example, implements a simi-
lar factorization picture presented in Sec. 3.5, but the energy-loss is modeled through
AdS/CFT correspondence [114, 121]. The lost energy is deposited to hydrodynamics as
external source terms [122]. The results of these MC analyses are shown in Fig. 3.10.
On the left, one can see the enhancement of wide-angle splittings around ∼ 0.7, coming
from the medium response. Therefore, the grooming was not enough to reduce medium
background effects. On the right panel, we decreased the jet cone size to R = 0.2. The
resulting θg distribution is now free of medium recoil. Dynamical grooming did its job
by making the observable less sensitive to contamination from the medium background.
There is a clear enhancement of small, and suppression of wide-angle emissions similar
to our prediction in Fig. 3.9.

3.7 Conclusion of medium physics

In this chapter, we introduced the underlying theory of jet modification in the quark-
gluon plasma. We focused on constructing our framework by relying the least on the
dynamics of the medium. The created effective theory is based on perturbative QCD in
a colored background that provides in-medium Feynman diagrams. We evaluated these
diagrams showing that the medium induces extra emissions.

Following the guidelines of Ch. 2, we studied the infrared property of the emissions iden-
tifying the importance of multiple soft emissions. We acknowledge, similar to vacuum,
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medium-induced emissions factorize in the strongly ordered soft limit. This makes possi-
ble the all-order resummation of medium-induced emissions and thus the description of
their cascade. We argued why this cascade is fundamentally different from jets and there-
fore they are the main source of jet energy loss in the medium. We reviewed interference
effects between vacuum and medium emissions that are necessary for jet quenching phe-
nomenology. Finally, we presented the factorized picture of in-medium jet modification
that is the basis of all modern jet quenching models.

As an application of the presented formalism, we first calculated the jet energy loss,
which is essential for making predictions about the jet nuclear modification factor. We
introduced the bias effect, and we showed how the bias effect change between dijet
and Z+jet events. Finally, we reviewed a dedicated measurement to test the factorized
picture of jet quenching and to observe the critical resolution angle that is a fundamental
property of the quark-gluon plasma. We showed using dynamic grooming one is able
to reduce the non-perturbative effect especially medium response which is an important
effect in decreasing the signal strength.

During the construction of the in-medium jet theory, we tried to illustrate what is the
accuracy of the medium, and how it looks in an all-order expansion. We reviewed many
recent progressions in the theory of jet modification, and we organized these results in
terms of their contribution to accuracy. As an application of the introduced formalism,
we calculated jet energy loss, and we introduced for the first time how the accuracy mani-
fests in quenched jet observables such as the nuclear modification factor and substructure
observables.
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Chapter 4

Outlook

As we have already summarized the two main chapters of this thesis in Secs. 2.7 and 3.7,
we refer back to these sections, and here we give an outlook instead. We give a personal
overview of which questions are important to address in the future. Several points from
here were already discussed in this thesis, but we did not address them in detail.

In the BDMPS-Z formalism that is presented in this thesis, the medium is simplified
to a homogeneous brick. The derivations presented in Ch. 3, however, is obviously
more general than that, and therefore, more realistic plasma was studied by several
works [86, 88–90, 123, 124]. These works lack the possible definition of a systematic
all-order expansion and thus all-order accuracy. They use the phenomenologic energy-
momentum tensor T μν(x) of the medium as an input that is unconstrained by theory. To
overcome this issue, one has to understand how to define the accuracy of hydrodynamic
fields and their evolution. Do hydrodynamic fields converge in the gradient expansion?
Is it easier to address this question in the weak coupling picture?

An obvious extension of the accuracy sketch in Ch. 3 involves the introduction of infrared
power counting to in-medium diagrams. One expects m+1 diagrams to factorize, similar
to vacuum physics. Borrowing techniques from advanced jet physics should make it possi-
ble to include higher-order corrections to the factorization of medium-induced emissions.
Going to higher accuracy is necessary to study beyond leading effects, such as the quench-
ing of heavy-quark jets [83, 125, 126], or jet quenching in a smaller plasma [127–129].

The current implementation of medium-induced cascades is on the level of leading loga-
rithms founded in the 90’. There are several developments in parton shower simulations
to which energy loss codes have to catch up, starting with implementing the dipole
picture, global recoil, fixed order matching, and finite-Nc corrections.
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Once the all-order expansion structure is well defined, one can use it for testing different
jet quenching models. In the E,L → ∞ and αs → 0 numerical limit, one can fix different
terms in Eq. (3.32) (e.g. αs

L
λ
, or αs ln

L
λ
) and see if models correctly reproduce these

limits. This numeric accuracy test is a recent rapidly spreading technique in jet physics,
from which jet quenching modeling could benefit [36, 37, 130, 131].

Last but not least, the physics involving electron-ion collisions (EIC) is very similar to
jet quenching where instead of collinear logarithms, the focus is on the soft ones. Jet
modification in a nuclear deep-inelastic scattering uses the same formalism presented in
Ch. 3. Most developments presented in this thesis can be directly applied there.
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1 Introduction

Jet physics aims at pinning down the microscopic properties of Quantum Chromodynamics
(QCD [1]. In the context of heavy-ion physics, the modification of jets with respect to their
vacuum counterparts is regarded as an experimental evidence for the formation of a dense,
thermal medium, namely the Quark-Gluon plasma [2].

– 1 –



J
H
E
P
0
7
(
2
0
2
1
)
0
2
0

Nowadays, most of the efforts in the field from a theoretical point of view, both from
an analytic perspective and with machine learning tools (see ref. [3] for a review), are
directed towards studying the space-time structure of a jet by characterising its radiation
pattern through jet substructure observables, i.e. constructed from one (e.g. zg [4, 5]), or
a few branchings (e.g. N-subjettiness [6] or the Lund jet plane [7, 8]) at most. In this
paper we focus on the former category where typically the one branching that defines the
observable is selected in a region of phase space where perturbative QCD calculations are
applicable, that is, far away from the soft and wide angle sector. This tagging task is
handled by so-called ‘grooming methods’ through which the hard and collinear core of the
jet is isolated. The way this general goal is achieved differs from one groomer to the other,
e.g. Modified Mass Drop Tagger(mMDT) [9] or its extension Soft Drop (SD) [4] selects
the splitting whose momentum sharing fraction obeys z > zcutθβ, while trimming [10]
first reclusters a jet into subjets with a smaller radius Rsub and then keep only those
subjets whose psubjet

t > zcutp
jet
t . In the previous expressions (zcut, β and Rsub) are free

parameters that need to be tuned with Monte-Carlo simulations to achieve an optimal
performance [11]. These methodological differences leave their imprint into the analytic
behavior of the observables that they define [12, 13]. For example, as we shall see in more
detail in what follows, due to the presence of an explicit zcut in the Soft Drop grooming
condition this method is free of non-global logarithms in the resummation function. This
fact has enable to push the accuracy of the calculation of Soft Drop groomed observables
up to next-to-leading log accuracy in p + p [14–21] and even next-to-next-to-leading log in
e+ + e− [22–24]. It is then clear that the usefulness of a given grooming method should
not be judged only on the basis of its resilience to non-perturbative physics, but also on its
analytic structure from a pQCD point of view. This paper aims at deepening our analytic
understanding of jet substructure observables as defined by a novel grooming technique
that has been recently introduced and dubbed ‘Dynamical Grooming’ (DyG) [25–27].

The Dynamical Grooming method consists in identifying the ‘hardest’ branching in a
jet tree as a proxy for the physical jet scale. The hardness measure is given by

κ(a) = 1
pt,jet

z(1 − z)ptθ
a (1.1)

where a is a continuous free parameter that has to be larger than zero in order to guarantee
collinear safety. For certain values of a in eq. (1.1), the hardness measure translates into
familiar kinematical quantities, e.g κ(1) = kt, where kt is the transverse momentum of the
splitting, or κ(2) =m2, with m being the branching mass. In addition, we define θ=ΔR/R

where ΔR is the angular separation between the sub-jets and R corresponds to the cone size.
The hardest splitting is obtained after re-clustering the jet sample with Cambridge/Aachen
algorithm [28] and finding the node with the largest κ in the clustering sequence. In
fact, it can be proven through analytical arguments [29] that it is sufficient to look for
the hardest splitting along the primary Lund plane of the jet, i.e. following the branch
with the larger transverse momentum at each de-clustering step.1 First steps towards

1We have numerically checked that our results are robust if we look for the hardest splitting in the whole
tree and not only on the primary branch.

– 2 –



J
H
E
P
0
7
(
2
0
2
1
)
0
2
0

the calculation from first-principles in perturbative QCD of the probability distribution of
the momentum sharing fraction, zg, the mass and the relative transverse momentum, kt,g,
of the hardest splitting were presented in the original Dynamical Grooming paper in the
resummation region, i.e. when zg(kt,g) � 1 [25]. Interestingly, it was found that similarly to
the Soft Drop case, the zg distribution pertains to a special class of jet observables known
as Sudakov safe [5, 30]. Together with the modified leading-log calculation of DyG jet
substructure observables, a Monte-Carlo study of the impact of non-perturbative physics
was presented in ref. [25]. An overall similar performance than Soft Drop was shown,
but with a remarkable resilience to hadronization in some cases like the zg distribution
as tagged by a = 1. This novel idea has triggered the interest of the ALICE collaboration
that has recently conducted some preliminary measurements on the zg, θg [31], and kt,g [32]
distributions at

√
s = 5.02 TeV in the jet transverse momentum bin of 60 < pch

t < 80 GeV.
As we will see, the low pt reach of the ALICE detector challenges the analytic description
of such data set given that non-perturbative effects are sizeable. In addition, first steps
towards the experimental use of DyG in heavy-ion collisions were reported in ref. [33].

From an analytic point of view the purposes of this paper are multifold: (i) understand
the resummation structure of Dynamical Grooming observables and propose a definition for
their logarithmic accuracy which circumvents their non-exponentiating nature (double log,
next-to-double log, etc) (ii) advance the resummation of zg and kt,g from modified-leading
logarithm [25] to next-to-next-to double logarithmic accuracy,2 as well as presenting for
the first time the resummation of θg, (iii) highlight the absence of clustering logarithms
in dynamically groomed observables, (iv) perform a fixed-order matching for all three
dynamically groomed observables. This last point is not trivial for the pair of Sudakov
safe observables and we propose a novel method to match the resummed and fixed-order
distributions. All these ingredients are contained in section 2. After a few sanity checks
on the analytic side, in section 3.1 we compare our results to Monte-Carlo simulations at
parton level in a high-pt setup, where non-perturbative effects are mild. Next, in section 3.2,
we present the first comparison between an analytic calculation and the preliminary ALICE
data for (zg, θg and kt,g). In addition, Monte-Carlo studies with different general purpose
event generators are performed showing the impact of different details in the definition of
the Dynamical Grooming method in appendices B, C. The discriminating power of these
type of jet substructure observables with respect to different hadronization models and
parton showers are shown in appendix E.

2 Theoretical analysis of dynamically groomed observables

In this section, we present the all-order perturbative calculation of dynamically groomed
observables in the κ(a) � 1 region3 and their matching to fixed order results applicable
when κ(a) ∼1. In the soft limit, z �1 and the (1−z) factor can be removed from eq. (1.1).
Furthermore, as the hardest splitting takes place along the primary branch, we neglect

2For a precise definition of NpDL accuracy, see eq. (2.26) and the discussion below.
3At low enough values of κ the calculation is dominated by non-perturbative effects. Therefore, strictly

speaking our resummation is valid when κNP �κ�1.

– 3 –
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momentum degradation such that pt =pt,jet. Therefore, instead of eq. (1.1), the definition
κ(a) =zθa is adopted throughout this section, and we sometimes omit the a superscript to
lighter the notation.4

2.1 Double-logarithmic estimation and basic properties

We shortly revisit the baseline calculation performed in ref. [25]. In the κ � 1 limit, the
two-dimensional probability distribution of a splitting, with kinematic variables (z, θ), to
be hardest in the clustering sequence is given by

d2Pi(z, θ|a)
dθdz

= P̃i(z, θ)Δi(κ|a) , (2.1)

where i indicates the flavor of the jet initiating parton. The two ingredients entering the
right-hand side of the previous equation are actually connected through

ln Δi(κ|a) = −
∫ 1

0
dz′

∫ 1

0
dθ′P̃i(z′, θ′)Θ

(
z′θ′a − κ(a)

)
. (2.2)

In physical terms, the branching kernel, P̃ (z, θ), represents the probability of a splitting
with (z, θ) to occur, while Δ(κ|a) is the so-called Sudakov form factor and vetoes all harder
emissions, i.e. those with κ′ > κ. From eq. (2.2), it is easy to see that a > 0 is required to
regulate the collinear singularity. The normalised probability distribution to measure an
observable κ(b,c) =zbθc on the κ(a) tagged splitting is given by

1
σ

dσ

dκ(b,c)

∣∣∣∣
a

=
∫ 1

0
dθ

∫ 1

0
dz Pi(z, θ|a)δ

(
zbθc − κ(b,c)) , (2.3)

where a sum over flavors including the proper quark/gluon fraction is implicit. The ob-
servables that we focus on are obtained from eq. (2.3) by setting: (b = 1, c = 0) for zg,
(b=0, c=1) for θg, and (b=1, c=1) for kt,g.

We start by considering branchings in the soft-collinear limit (z � 1 and θ � 1)
that generate terms with powers of αs ln2(κ(b,c)) in eq. (2.1). That is, we achieve double
logarithmic accuracy (DLA) in the language of logarithmic resummation, as we will see
below. The soft-collinear limit of the branching kernel reads

P̃i(z, θ) = αs

θπ
Pi(z) , (2.4)

where Pi is the leading-order Altarelli-Parisi splitting function that, in this approximation,
is given by

Pi(z) = 2Ci

z
, (2.5)

with Ci being the color factor of the jet initiator parton; Ci = CA for gluons, and CF for
quarks. The running of the strong coupling is beyond DLA and therefore we fix to its value
at the jet scale, i.e. αs ≡αs(pt,jetR). In this limit, the Sudakov reduces to

ln Δi(κ|a) = −
∫ 1

κ
dz′

∫ 1

(κ/z′)1/a

dθ′

θ′
αs

π

2Ci

z
= − ᾱ

a
ln2 κ , (2.6)

4One can rigorously prove that 1−z corrections are beyond our targeted accuracy (see appendix B).
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where ᾱ=Ciαs/π. By plugging eq. (2.6) into eq. (2.3), we obtain the momentum sharing
fraction of the tagged splitting

1
σ

dσ

dzg
= 1

zg

√
ᾱπ

a

[
erf

(√
ᾱ

a
ln zg

)
+ 1

]
, (2.7)

its opening angle

1
σ

dσ

dθg
= 1

θg

√
ᾱπa

[
erf

(√
ᾱa ln(θg)

)
+ 1

]
, (2.8)

and its relative transverse momentum

1
σ

dσ

dkt,g
= 1

kt,g

√
ᾱπa

a − 1

[
erf

(√
ᾱ

a
ln(kt,g)

)
− erf

(√
ᾱa ln(kt,g)

)]
. (2.9)

Location of the peak. An important feature of eqs. (2.7)–(2.9) is the value at which
they are cut off. Its location can be obtained by taking the derivative of e.g. eq. (2.8)

d
dθg

(
1
σ

dσ

dθg

)
=

√
ᾱa

1
θ2

g

[
−

√
π
(
1 − erf(

√
x)

)
+ 2

√
x exp(−x)
ln(1/θg)

]
, (2.10)

where x ≡ ᾱa ln2(1/θg). Then, the maximum value of the distribution, θmax, satisfies the
implicit equation

2
√

x exp(−x)√
π(1 − erf(

√
x)) = ln

( 1
θmax

)
. (2.11)

If θmax � 1, the left hand side can be approximated by its asymptotic behaviour (x → ∞)

2
√

x exp(−x)√
π(1 − erf(

√
x)) � 2x , (2.12)

such that
ln

( 1
θmax

)
= 1

2aᾱ
+ O(1) . (2.13)

This equation indicates that the smaller the value of a, the deeper the tagged splitting is on
the angular ordered shower, i.e. at smaller angles. In other words, at fixed θg, larger values
of a lead to a bigger Sudakov suppression. Therefore, the distribution shifts to larger θg

for larger a. Thus, eq. (2.13) confirms and provides an analytic explanation for the result
reported in ref. [25] on the location of the tagged branching in the jet tree using Pythia [34]
simulations. Notice that, in order to solve the implicit equation for the peak position, we
have assumed that θmax � 1. This approximation holds for not too large values of a.
Otherwise, the smallness of ᾱ can be compensated by a in the product aᾱ appearing in
eq. (2.13) and θmax ∼ 1.

Following similar steps for the maximum of the momentum sharing fraction, we obtain5

ln
( 1

zmax

)
= a

2ᾱ
+ O(1) . (2.14)

Again, the previous expression is valid as long as a is not too small.
5Notice that this equation can be also obtained by applying the a �→1/a transformation in eq. (2.13).
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Finally, in the case of kt,g, we find that

ln
(

1
kt,max

)
= asgn(a−1)

2ᾱ
+ O(1) . (2.15)

This analytic estimate confirms the ordering observed numerically in figure 9 of ref. [25],
i.e. the a=0.1 curve is peaked at a smaller kt than the a=2 case is, being a=1 the curve
peaking at the largest value.

Infra-red and collinear safety. The first step towards boosting the accuracy of our
calculation is to analyse the IRC (un)safety of the observables that we are dealing with.
As we have already mentioned, and was shown in ref. [25], dynamically groomed observables
are collinear unsafe for a≤0. For a>0, while kt,g is a standard IRC safe observable, both zg

and θg are Sudakov safe only [5]. This means that the all-order resummation encompassed
in the Sudakov form factor regulates the singularities that appear at each order in αs when
θg → 0 or zg → 0. Notice that for θg, this behavior represents a stark difference with
respect to Soft Drop grooming, where this observable is, in fact, IRC safe [4]. This can be
understood as a result of the zcut that appears in the Soft Drop condition and regulates
the soft singularity. In turn, Dynamical Grooming does not introduce any sharp cut-off on
the radiation phase-space and thus nothing forbids the hardest splitting to be in the soft
(z ∼ 0) region.

A well-known consequence of Sudakov safety [5, 30] is that the zg and θg-distributions
have an ill-defined expansion in (integer) powers of αs. To illustrate this fact, we introduce
the cumulative distribution, that defines the probability to measure an observable below a
certain value ν, i.e.

Σ(ν) =
∫ ν

0
dν ′ 1

σ

dσ

dν ′ . (2.16)

The kt,g cumulative distribution at DLA reads

Σ(kt,g) = 1
a − 1

[
a exp

(
− ᾱ

a
ln2(kt,g)

)
− exp

(
−ᾱa ln2(kt,g)

)

+
√

πaᾱ ln(kt,g)
[
erf

(√
ᾱ

a
ln kt,g

)
− erf

(√
ᾱa ln kt,g

)] ]
, (2.17)

and its expansion in αs (or equivalently in ᾱ)

Σ(kt,g) = 1 − ᾱ ln2
(

1
kt,g

)
+ 1 + a + a2

6a
ᾱ2 ln4

(
1

kt,g

)
+ O(ᾱ3) . (2.18)

From the previous expression, it is clear that Σ(kt,g) admits an analytic expansion in ᾱ, as
it is expected for an IRC safe observable.

In contrast, the θg-cumulative distribution is

Σ(θg) = exp
(

−ᾱa ln2
(

1
θg

))
−

√
ᾱπa ln

(
1
θg

)[
erf

(
−

√
ᾱa ln

(
1
θg

))
+ 1

]
, (2.19)
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and its expansion in powers of ᾱ is given by

Σ(θg) = 1 −
√

ᾱπa ln
(

1
θg

)
+ ᾱa ln2

(
1
θg

)
+ O(ᾱ2) . (2.20)

In this case, the resumming function is not analytic as the second term in eq. (2.20) is of
order

√
ᾱ. The non-analyticity on the dynamically groomed θg is caused uniquely by the√

ᾱ term. That is, all other powers of ᾱ appearing in eq. (2.20) are integer and the function

Σ(θg) +
√

ᾱπa ln
(

1
θg

)
(2.21)

is, in fact, analytic. The same arguments apply to zg where again one can utilise the
a 
→ 1/a transformation, to confirm that

Σ(zg) +
√

ᾱπ

a
ln

(
1
zg

)
(2.22)

has an analytic dependence on ᾱ at any perturbative order. Interestingly, this αs-expansion
of zg is remarkably different from its Soft Drop counterpart when β > 0. For Soft Drop,
the expansion is driven by α

n/2
s terms where the integer n≥1 [5]. Whether this is a purely

mathematical statement, or an explanation in physical terms exists, is beyond our degree
of understanding and further work is required to clarify it.

To sum up, in this section we have shown that the opening angle and momentum shar-
ing fraction of the splitting tagged by Dynamical Grooming are unconventional observables
from a pQCD point of view. The Sudakov safety of the zg and θg distributions leads to
an ambiguous definition of the logarithmic accuracy in their resummation, as was noted
in ref. [30]. Furthermore, the standard matching to fixed-order calculations is not trivial
due to the non-analyticity of the resummed result. In this context, a careful definition of
logarithmic accuracy in the resummation is required and will be provided next.

2.2 Revisiting the meaning of accuracy: from IRC to Sudakov safe observables

We start by considering a general resummed formula for an IRC safe distribution obtained
with Dynamical Grooming. Following our previous notation, we denote κ(b,c) the observable
that we measure on the splitting whose hardness, κ(a) = zθa, is the largest in the shower.
The cumulative distribution to measure κ(b,c) �1 reads

Σ(κ(b,c)) =
∫ 1

0
dz

∫ 1

0
dθ P̃ (z, θ)Δ(κ|a)Θ(κ(b,c) − zbθc) , (2.23)

where we have omitted the flavour index for simplicity. An important comment regarding
the values of (a, b, c) is in order. Only when b ≤ 1 and c ≤ a, the hierarchy κ(a) ≤ κ(b,c) ≤ 1
is satisfied and thus Δ(κ|a) can be accurately computed through resummation techniques.
Any other combination of (a, b, c) leads to a situation in which κ(b,c) �1 does not necessarily
imply κa �1 such that fixed order contributions to Δ(κ|a) become relevant.
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Having these constraints in mind, we derive the Sudakov safe distributions of zg ≡κ(1,0)

and θg ≡κ(0,1) as two limits of eq. (2.23), i.e.

Σ(zg) = lim
c→0

Σ(κ(1,c)) , (2.24)

and
Σ(θg) = lim

b→0
Σ(κ(b,1)) . (2.25)

The key point is that we define the accuracy of zg and θg through the accuracy of the
IRC safe distribution Σ(κ(b,c)). For instance, we shall state that Σ(zg) is known at DLA,
if Σ(κ(b,c)) is known at the same degree of accuracy for all c > 0, or at least in the neigh-
bourhood of c = 0. Our prescription to define the accuracy of Sudakov safe observables
follows the spirit of ref. [30]. However, instead of defining the accuracy of the Sudakov-safe
observable by marginalization of an IRC safe double differential distribution, we exploit
the IRC safety of the κ(b,c) observable itself. It’s important to realise that the perturbative
expansion of the Sudakov safe observables is only defined after taking first the appropriate
limit on Σ(κ(b,c)) as given by eqs. (2.24), (2.25). If these steps are taken in reverse order,
i.e. expanding Σ(κ(b,c)) in powers of αs first and subsequently taking the limit of b(c) → 0,
one can show that the correct αs-expansion, given by eqs. (2.20)–(2.22) at DLA, is not
recovered. In short, these two operations do not commute.

The perturbative expansion of Σ(κ(b,c)) can be written as

Σ(κ(b,c)) =
∞∑

n=0
αn

s

2n∑
m=0

cnm lnm(κ(b,c)) , (2.26)

where the cnm coefficients have to be determined. Then, we adopt the following conven-
tion [35, 36]: the logarithmic accuracy of Σ(κ(b,c)) is said to be NpDL if the cnm coefficients
are known for all n and 2n − p ≤ m ≤ 2n. Notice that in many other jet substructure
calculations it is customary to define the logarithmic accuracy at the level of ln Σ instead
of on the cumulative distribution itself. The reason why we use Σ(κ(b,c)) is because, in
general, due to the marginalisation procedure stated in eq. (2.23) the resummation of DyG
observables does not exponentiate [37, 38] as it clear from eq. (2.17). This no exponenti-
ation property is part of other jet substructure observables such as subjet multiplicities.
Yet, there is a specific case for which it does: when b = 1 and c = a. That is, when the
kinematic variable used for tagging coincides with the measured observable. For instance,
select the splitting with the largest kt in the shower, and compute its kt-distribution. In
this case, the cumulative distribution is simply the Sudakov form factor, i.e.

Σ(κ(1,a)) = Δ(κ|a) (2.27)

that is equivalent to the plain distribution.
A natural question at this point is how does one relate the cnm coefficients with the

accuracy of P̃ (z, θ) and Δ(κ|a). In other words, which are the relevant terms that one
needs to include in the branching kernel and in the Sudakov form factor in order to reach
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a given accuracy? To answer this question we rely on the exponentiate property of Δ(κ|a),
to write its logarithmic structure in the traditional form6 [38]

Δ(κ|a) =

⎛⎝1 +
∑
n≥1

αn
s Cn

⎞⎠ eln(κ)g1(x)+g2(x)+αsg3(x)+O(αn+2
s lnn κ) , (2.28)

with Cn being constant coefficients, gi analytic functions

gi(x) =
∞∑

i=1
gijxj , (2.29)

and x ≡ αs ln κ. In the NpLL type of counting, the resuming function g1 would be referred
as LL, g2 as NLL and so on. Our targeted accuracy is N2DL in the rest of the paper, with
the possibility of keeping sub-leading terms. After expanding eq. (2.28) in powers of αs we
realize that one has to account for the following gnm coefficients at the corresponding level
of accuracy

DL(p = 0) : g11 , (2.30)
NDL(p = 1) : g11, g12, g21 , (2.31)

N2DL(p = 2) : g11, g12, g13, g21, g22, C1 . (2.32)

The g11 was already computed in section 2.1 where we accounted for soft and collinear
emissions only

g11 = − Ci

aπ
. (2.33)

The other coefficients and their physical interpretation are provided in the following section
up to N2DL. Given that the constant C1 term is related to the interplay between the
resummation and fixed-order calculations, we postpone its discussion to section 2.3.2 and
neglect it in the resummation-related part.

Turning to the terms that are needed in P̃ (z, θ), we start by working out the plain case
(b=1 and c=a). The exponentiation property of the resummation, in this particular case,
leads to a one-to-one mapping between the terms in the Sudakov and in the branching
kernel. More concretely, following eq. (2.23) one gets

−
∫ 1

0
dz

∫ 1

0
dθP̃ (z, θ)Θ(zθa − κ) = ln(κ)g1(αs ln κ) + g2(αs ln κ) + · · · , (2.34)

that reduces in the N2DL case to

−
∫ 1

0
dz

∫ 1

0
dθP̃ (z, θ)Θ(zθa − κ) = ln(κ)(g11x + g12x2 + g13x3) + g21x + g22x2 , (2.35)

where, again, x ≡ αs ln κ. The previous equation, derived exploiting the exponentiation
property of the plain case, is sufficient to reach N2DL for all values of (b, c). Using eq. (2.35)

6Notice that, in contrast to some cases in the literature, the g-functions contain both collinear and soft,
non-global terms, i.e. we do not write a separate S factor as in [38].
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with any b and c may produce power suppressed or sub-leading (p≥3) logarithmic correc-
tions in front of αn

s ln2n−2(κ) terms, that are nevertheless negligible in the resummation
region. The physical insight behind the ‘universality’ of eq. (2.35) relates to the fact that
P̃ (z, θ) is just a probability to have a splitting with a given z and θ. Thus, the branching
kernel should be a priori independent of both a and the observable we measure on this
branching.

2.3 kt,g at LO+N2DL accuracy

After this rather formal discussion, we would like to shed light on our statements through
an explicit calculation. Namely, we compute the IRC safe kt,g distribution in the small
jet radius limit at N2DL accuracy on the resummation side and include its matching to a
fixed-order calculation at leading order, thus achieving a solid analytic description for all
values of kt,g.

2.3.1 Resummation

From the general formula given by eq. (2.23) it is straightforward to calculate the cumula-
tive kt,g distribution by setting b=c=1. It reads,

Σ(kt,g) =
∫ 1

0
dz

∫ 1

0
dθP̃ (z, θ)Δ(κ|a)Θ(kt,g − zθ) (2.36)

such that the differential cross section is

1
σ0

dσ

dkt,g
= dΣ(kt,g)

dkt,g
(2.37)

where σ0 represents the Born level total cross-section. In what follows, we calculate the
necessary gnm coefficients that enter in the Sudakov form factor and the branching kernel,
see eqs. (2.28), (2.35), and organise them according to the underlying physical effect.

Hard-collinear emissions. Due to its simplicity, the first term that we add to our
calculation is the one arising from including hard-collinear corrections (z ∼ 1, θ � 1) in
the splitting function. This amounts to take into account the finite part of the splitting
functions as follows:

P
(h−c)
i (z) = 2Ci

z
Θ

(
e−Bi − z

)
, (2.38)

where Bq =2/CF , Bg =11/12 − nf Tr/(3CA), Tr =1/2, and we fix the number of flavors to
nf =5. The analytic integration of the new finite piece that appears both in the Sudakov
and the branching kernel is useful to illustrate the point about sub-leading terms that
appear naturally in the calculation. In fact,

−
∫ 1

0
dz

∫ 1

0

dθ

θ

αs

π
P

(h−c)
i (z)Θ(zθa − κ) = −αsCi

πa
(Bi + ln(κ))2 . (2.39)

From the previous equation one can easily read off the g21 coefficient

g21 = −2CiBi

aπ
, (2.40)
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while the term proportional to Bi and no ln(κ) dependence is sub-leading, although might
be large when a � 1. Strictly speaking, this latter contribution is not required to reach
N2DL in our calculation, but we will check its numerical impact by the end of this section.
Notice that since there is no soft singularity for flavor switching splittings, they contribute
as a power correction to κ(a) in our Sudakov form factor and we do not include them
here. This argument is valid as long as κ � 1 along the lines of the role played by ycut in
appendix B of ref. [12].

Running coupling. Up to now, we have fixed the coupling in order to achieve compact,
fully analytic expression. However beyond DLA, the running of the coupling has to be
taken into account. At 1-loop in perturbation theory it is given by:

α1�
s (kt) = αs

1 + 2β0αs ln
(

kt
Q

) (2.41)

= αs

[
1 − 2β0αs ln

(
kt

Q

)
+ 4β2

0α2
s ln2

(
kt

Q

)]
+ O(α4

s) , (2.42)

with the reference value αs ≡ αs(Q) is set at the jet scale Q ≡ pt,jetR, β0 = (11CA −
4nf Tr)/(12π) and kt =zθpt,jet.

Next, we integrate analytically the branching kernel with the 1-loop running coupling

−
∫ 1

0
dz

∫ 1

0
dθ

α1�
s (kt)
πθ

Pi(z)Θ(zθa − κ) =

ln κ

(
g11αs ln κ + 2Ciβ0(1 + a)

3a2π
α2

s ln2 κ − 2Ciβ
2
0(1 + a + a2)

3a3π
α3

s ln3 κ

)

+ g21αs ln(κ) + 2BiCiβ0
a2π

α2
s ln2 κ + O(N3DL) . (2.43)

Note that in the previous expression we have only kept the relevant terms up to N2DL, as
indicated by the O(N3DL) notation. Now, we can identify the terms corresponding to the
soft and collinear piece of the splitting function to be

g12 = 2β0Ci(1 + a)
3a2π

, (2.44)

g13 = −2β2
0Ci(1 + a + a2)

3a3π
, (2.45)

while the hard-collinear correction results into

g1
22 = 2BiCiβ0

a2π
. (2.46)

In the last equation, the upper subscript in the coefficient indicates that this is not the
only term that contributes to the g22 coefficient, i.e. g22 =∑

i gi
22.

To achieve N2DL accuracy, we need to go to the next order in the running coupling.
We work in the CMW scheme [39] which enables to include also the 2-loop contribution of
the splitting functions in the soft limit. Then, the running of the coupling at two loops is
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given by

α2�
s (kt) = αs

1 + 2αsβ0 ln(kt
Q )

− β1α2
s

β0

ln(1 + 2αsβ0 ln(kt
Q ))

[1 + 2αsβ0 ln(kt
Q )]2

+ K

2π

α2
s

[1 + 2α2
sβ0 ln(kt

Q )]2
, (2.47)

with β1 = (17C2
A −5CAnf −3Cf )/(24π2) and K = (67/18−π2/6)CA −5nf /9. Again, we

can integrate the branching kernel with the 2-loop running coupling to identify another
contribution to the g22 coefficient:

g2
22 = − KCi

2aπ2 . (2.48)

Soft emissions at large angles. The dynamically groomed kt,g pertains to the category
of so-called non-global observables,7 i.e. it is sensitive to a certain region of the radiation
phase space. As such it is affected by a particularly complex class of logarithms known as
non-global logs [40–42]. A typical configuration that can give rise to these contributions is
a collection of large angle gluons outside the jet which subsequently radiate softer gluons
inside. In order to understand how this topology contributes to the kt,g distribution, we
first calculate the lowest O(α2

s) term coming from such configurations. For illustrative
purposes, we start with the calculation of the leading non-global logarithm in e+e− annihi-
lation, in which the color structure of the event is simpler. We discuss the straightforward
generalization to p + p collisions in the following paragraph. Once again, we rely on the
small-R limit and sketch how to lift this approximation in the next section.

The calculation of the non-global contribution at O(α2
s) is standard: one calculates the

cross-section for two correlated gluon emissions strongly ordered in energy, with the first
emission outside the jet and the second inside. For Dynamical Grooming, one can rely on
the fact that the gluon inside the jet is necessarily the hardest, since it is the only one at
this order. Thus, the double differential distribution for having a dynamically groomed zg

and θg value from a non-global configuration initiated by a qq̄ dipole is:

1
σ0

d2σNG

dzgd cos(Rg)

= 4CF CA

(
αs

2π

)2 ∫ pT

0

dω1
ω1

∫ ω1

0

dω2
ω2

∫ 1

−1
d cos R1

∫ 1

−1
d cos R2 Ω(cos R1, cos R2)

Θ(cos(R) − cos(R1))Θ(cos(R2) − cos(R))δ
(

zg − ω2
pT

)
δ(cos(R2) − cos(Rg))

= 4CF CA

(
αs

2π

)2 1
zg

ln
(

1
zg

)
Θ(cos(Rg) − cos(R))

∫ cos(R)

−1
d cos R1 Ω(cos R1, cos Rg) ,

(2.49)

where the first Θ-function in the second line enforces the first gluon to be outside the jet,
while the second Θ-function constrains the tagged emission to be inside. Note that this is
the real term only.8 The function Ω is the azimuthal average of the real cross-section for

7This also applies to zg and θg.
8In principle the lower bound in the integration range of cos R1 depends on the jet selection. However,

in the small R approximation (see the discussion thereafter), those corrections are power of R suppressed.
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gnm Physical origin

g11 = − Ci

aπ
Soft and collinear

g12 = 2β0Ci(1 + a)
3a2π

Soft and collinear + α1�
s (kt)

g13 = −2β2
0Ci(1 + a + a2)

3a3π
Soft and collinear + α1�

s (kt)

g21 = −2CiBi

aπ
Hard and collinear

g22 = 2CiBiβ0
a2π

− KCi

2aπ2 − π2

3
CiCA

(2π)2 Hard and collinear +α1�
s (kt), α2�

s (kt), non-global soft

Table 1. Relevant coefficients for the Sudakov form factor at N2DL accuracy.

correlated double gluon emission from a quark [3]:

Ω(cos R1, cos R2) = 2
(cos(R2) − cos(R1))(1 − cos(R1))(1 + cos(R2)) . (2.50)

The Rg =θgR integral in eq. (2.49) is non-singular in the collinear limit, so that one can per-
form the two angular integrals exactly to get the leading term in the soft and R → 0 limit:

1
σ0

dσNG

dzg
= 2CF CA

(
αs

2π

)2 1
zg

ln
(

1
zg

)
π2

3 . (2.51)

In the previous equation, the soft singularity when zg → 0 induces a single log contribution
which has to be taken into account at N2DL as part of the g2 function in eq. (2.28).

In p + p collisions, the situation is a priori more involved. Each Born level partonic
configuration needs to be broken into distinct hard dipoles. However, as shown in ref. [17],
only the dipoles involving the measured jet matter in the small R limit (i.e. neglecting terms
proportional to θn), and all such contributions are enhanced by the same π2/3 factor as in
the e+e− result in eq. (2.51). Consequently, the non-global contribution to the resummed
distributions factorize according to the flavour of the jet, in the same way as the collinear
piece calculated above. In other words, by imposing the small R limit we can use the e+e−

result from eq. (2.51) for the p + p case. By doing so, we can extract the last piece of the
g22 coefficient, namely

g3
22 = −π2

3
CiCA

(2π)2 . (2.52)

At this point let us summarize the main ingredients obtained so far in a compact way
that shall facilitate the reproducibility of our results. At N2DL accuracy, and in the small-
R limit, the Sudakov form factor given by eq. (2.28) involves the coefficients provided in
table 1.
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Equivalently, using eq. (2.35) we arrive to the following, non unique expression for the
branching kernel

P̃ (z, θ) = 2αsCi

πzθ
(1 − 2αsβ0 ln(μKzθ) + 4α2

sβ2
0 ln2(μKzθ)) + 2αsCiBi

πθ
(1 − 2αsβ0 ln(μKθ))

+ K

2π

2Ciα
2
s

πzθ
− 2CiCA

(
αs

2π

)2 π2

3
ln(μKz)

z
. (2.53)

In order to estimate the uncertainty of the resummation, we have introduced the dimen-
sionless multiplicative factor μK that will be varied between 0.5 and 2. A subtle issue9

concerning this μK variation is that the first non-trivial correction that arises after inte-
grating over (z, θ) eq. (2.53) is given by ∝ α2

s ln2(κ) ln(μK). This is of the same order as
the corresponding K-term, i.e. ∝ α2

s ln2(κ)K. To overcome the non-desirable variation of
a gnm coefficient, we vary μK under the condition that the K term is constant, i.e. K is
shift to K + 4πβ0 ln(μK) in the calculation (and similarly when considering varition of the
renormalization scale Q).

Note that the approximations made to derive the coefficients inside the Sudakov factor
Δ(κ|a) and the branching kernel P̃ lead to a differential cross-section which is not necessar-
ily normalized to the Born jet cross-section. To restore the correct normalization, one can
simply divide the cumulative distribution eq. (2.36) by Σ(1). This overall normalization
factor is a non-logarithmic correction which does not spoil our targeted accuracy.

Lastly, we would like to draw the reader’s attention to the fact that multiple gluon
emissions were not considered in this calculation. Generically speaking, at leading loga-
rithmic accuracy, a single emission dominates jet substructure observables. This strong
ordering might be broken beyond leading-log, like in the jet mass case, such that an arbi-
trary number of emissions give comparable contributions to the final measured value. The
region of phase space for which this happens has to be determined on an observable basis
thus increasing the complexity of analytic calculations. In the Dynamical Grooming case,
multiple emissions do not have to be considered for the observables computed in this paper.
This property is a direct consequence of how the method is built. That is, dynamically
groomed observables in tagging mode are not additive but defined on the hardest emission
and thus it is the only one that contributes to all orders in the resummation.

N2DL and N2DL’. Insofar, we have provided the minimal set of gnm coefficients that
lead us to N2DL accuracy. For that purpose we have neglected all terms that are not
logarithmically enhanced. In order to gauge the impact of these sub-leading contributions,
we will also provide results with the ‘complete’ branching kernel, i.e.

P̃ (z, θ) =
[

2α2�
s (μKzθQ)Ci

πzθ
− 2CiCA

π2

3

(
αs

2π

)2 ln(μKz)
z

]
Θ

(
e−Bi − z

)
, (2.54)

and the Sudakov Δ(κ|a) calculated exactly from this complete branching kernel whose
explicit expression can be found in appendix A. Note that the resulting differential cross-
section is then normalized by construction. The running of the coupling is neglected in

9We are grateful to Gregory Soyez for pointing this out.
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the non-global term for simplicity, adding it would enable to account for part of the full
resummation of the non-global soft function [40]. We will refer to this resummation as
N2DL’, where the prime indicates that the resummation actually includes some of the sub-
leading logarithmic corrections with p≥3. That said, we emphasize that in all rigour, both
ways of doing the resummation — either ‘minimally’ using eq. (2.53) and the coefficients
in table 1 in the Sudakov or with the complete branching kernel given by eq. (2.54) —
reach the same N2DL logarithmic level accuracy, and not more.10 Therefore, we will use
this resummation scheme freedom to leverage our uncertainty.

Beyond N2DL and the small-R limit Before we move on to the fixed-order section,
we would like to sketch which steps have to be taken in order to extend the calculation
that we have just presented.

In the first place, if the small-R constraint is lifted, one has to account for process
dependent terms that enter the calculation as a power series in the jet radius. Physical
scenarios that lead to such contributions involve soft and large angle emissions that end
up being clustered in the reconstructed jet. For example, a splitting originated from the
initial state partons can be tagged by Dynamical Grooming and induce single logarithmic
terms suppressed by powers of the jet radius R in the resummation. The difficulty with
soft emissions at large angles comes from the fact that such emissions have a complicated
color structure which depend on the full Born level event and not only on the Casimir
factor of the measured jets. In order to handle such corrections, which are expected to be
important for R ∼ 1, one could decide to rely on the large Nc limit and decompose each
Born processes into different colour flows, as done in refs. [8, 40] in the context of the Lund
plane density. Then, each color flow corresponds to a superposition of hard dipoles, which
can radiate a soft large angle gluon into the measured jet. In practical terms, adding these
contributions would promote the jet flavour dependence of P̃ (z, θ) and Δi(κ|a) to a color
flow one. Once these new terms are taken into account N2DL accuracy is reached beyond
the small jet radius limit, but in the large Nc approximation. If one does not resort to the
large Nc limit, one has to deal with matrix formulae in color space, as in ref. [17]. It is
however unclear if the simple structure of eq. (2.36) remains when the exponentiation has
a matrix form and it deserves a dedicated study.

From the non-global logarithms side, their full resummation is required if a higher
accuracy in the resummation is intended. This is a complicated task for the κ(b,c) observable
in p + p collisions, even in the large Nc limit. With the latter approximation, one could
resort to the same numerical method as in ref. [17] (see also ref. [18] for the θg distribution
defined with Soft Drop).

2.3.2 Matching to fixed-order

In order to produce reliable predictions when kt,g = O(1) and to achieve N2DL via the
C1 term, the resummed distribution obtained in the previous section needs to be matched
with a fixed-order calculation. Several matching schemes are available in the literature. For

10Indeed, a complete N3DL resummation would require at least the first term in the analytic expansion
of the g3 (NNLL) function inside Δ(κ|a).
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our purposes, it is clearly desirable to have a matching scheme satisfying the two following
conditions: (i) the matching scheme should produce ‘for free’ the C1 term, (ii) the matching
scheme should preserve the fixed order endpoint of the distribution at ktg,max = 0.5. Two
possible matching schemes that satisfy these requirements are the multiplicative and the
log(R) matching [37, 43]. In what follows, we shall use multiplicative matching at leading
order (O(αs)) and discuss how to extend it to next-to-leading order (O(α2

s)).
As the colour structure of the resummation is tremendously simplified within our

targeted accuracy, i.e. it only depends on the jet flavor. The matching formula can be
decomposed accordingly as follows [43]:

ΣLO+N2DL(kt,g) = 1
σ0+σ1

⎧⎨⎩ ∑
i=q,g

Σ̃N2DL
i (kt,g)

(
1+

ΣLO
i (kt,g)−Σ̃N2DL

i,1 (kt,g)
σ0,i

)
+ΣLO

else(kt,g)

⎫⎬⎭ .

(2.55)

We proceed to describe the ingredients entering the previous equation, except the mean-
ing of the last term that will become clear later on. First, σ0 and σ1 are the inclusive
dijet cross-section at leading order and next-to-leading order respectively. The Σ̃i is the
resummed cumulative kt,g cross-section for i-jets, that shares the same endpoint, ktg,max,
as the fixed order distribution. At a given accuracy, this is achieved through the following
transformation:11

Σ̃i(kt,g) = σ0,iΣi

[
exp

(
− log

(
1

kt,g
− 1

ktg,max
+ 1

))]
. (2.56)

Notice that, besides the shift in the endpoint, we have multiplied the resummed cumulative
distribution by σ0,i in order to ensure that Σ̃N2DL and ΣLO have the same units. Following
up with the pieces entering eq. (2.55), Σ̃N2DL

i,1 is the O(αs) term in the expansion of Σ̃N2DL
i ,

while ΣLO
i is the leading order distribution defined as

ΣLO
i (kt,g) = σ1,i −

∫ 1

kt,g

dk′
t,g

dσLO
i

dk′
t,g

. (2.57)

Regarding the normalization, we find that, by construction, ΣLO+N2DL(ktg,max)=1.
One can check that the limiting behavior of the matched distribution is correct. Indeed,

eq. (2.55) gives back the LO distribution for kt,g ∼ ktg,max. In turn, when kt,g � 1 the
distribution behaves like

ΣLO+N2DL(kt,g) � 1
σ0 + σ1

∑
i=q,g

Σ̃N2DL
i (kt,g)(1 + αsC1,i) , (2.58)

where the C1 term is given by its standard definition:

αsC1,i = lim
kt,g→0

ΣLO
i (kt,g) − Σ̃N2DL

i,1 (kt,g)
σ0,i

. (2.59)

11When the resummed distribution has an endpoint different from 1, eq. (2.56) needs to be modified
accordingly. In particular, when using the calculation of Σ at N2DL′, the +1 inside the logarithm is
replaced by exp(Bq).
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Thus, eq. (2.58) shows that the matched distribution reproduces the resummed result in
its regime of validity. In our calculation, C1 is a constant up to R2-suppressed single
logarithmic contributions.

In practice, the LO kt,g differential cross-section and the LO and NLO jet cross-sections
σ0 and σ1 are obtained using MadGraph5 [44] (in fixed order mode) with CT10nlo PDF
set [45]. The factorisation scale for the PDF convolution is set to μF Q, with μF a di-
mensionless factor introduced to estimate the uncertainty relative to this prescription. For
a given jet selection [pt,min, pt,max], a unique generation cut is imposed in the fixed order
calculation. Namely, the sum of the transverse momenta of the partons is required to be
larger than pt,min and one asks for at least one jet with pt >pt,min/4. We have checked that
the resulting cross-sections are insensitive to the precise value of these cuts. The reference
value of the strong coupling at the jet scale, αs(μRQ), is evaluated in the MS scheme. The
μR is a dimensionless factor used to gauge the uncertainty with respect to the renormal-
ization scale. When the pt selection is broad, such as in the ATLAS set-up detailed in the
following section, the pt range is divided into smaller bins in which the inclusive jet and ktg

cross-sections are calculated. The extension of eq. (2.55) in this case is straightforward.
The last ingredient in eq. (2.55) involves the decomposition according to the flavour

of the jet. This is done in an IRC safe way for both the kt,g differential and inclusive jet
cross-section. More concretely, at LO the jets have at most two constituents. Then, when
the jet has zero or one net flavour, the jet is tagged as a gluon or quark jet, respectively.
Otherwise, whenever the jet is multi-flavored, i.e. it contains two (anti)-quarks of different
flavor, it pertains to what we call the ‘else’ category. The LO kt,g differential cross-section
for these multi-flavored jets goes to zero at small kt,g and contributes to the full match
result via the ΣLO

else(kt,g) term in eq. (2.55).
Finally, as for the resummation part, we would like to comment on how to further

extend the matching procedure to higher accuracy. In this case, the equivalent of the
multiplicative matching formula eq. (2.55) at NLO can be found in ref. [43] and it involves
the NLO kt,g differential cross-section. The latter can be obtained by generating 3-jet events
at NLO with MadGraph, or any other code dedicated to matrix element calculations. Even
if there is no conceptual difficulty in promoting our matching to NLO, we postpone it for
further studies given that its quantitative impact on the resulting distributions could be as
sizeable as the missing power of R suppressed terms on the resummation. Therefore, we
believe that these two endeavors should be pursued simultaneously and must be included
for refining our phenomenological studies presented in section 3.

2.3.3 Results

Once the analytic framework has been presented, we proceed to show some numeric results
for high-pt jets (800<pt <1000 GeV) at top LHC energy

√
s=13 TeV with cone size R=0.4.

The central value of the following curves is obtained with μF =μR =1. Further, the error
bars are obtained by varying a factor of two the following parameters in the calculation:
factorization and renormalization scales through the 7-point rule [46], the parameter μK

that controls the scale at which the strong coupling runs (see eq. (2.53)) and, in the case of
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800 < pT < 1000 GeV, |η| < 1.5

anti-k⊥(R = 0.4)
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Figure 1. The kt,g-distribution computed in different ways: at leading-order with MadGraph,
resumed at N2DL as given by eq. (2.35) and table 1, first order expansion of the resumed result,
and the matched distribution (see eq. (2.55)) for a = 1 (left) and a = 2 (right). The normalization
factor σjet reduces to σ0 +σ1 for the resummed and matched distributions and to σ0 in the other
two cases.

N2DL’, the freezing scale μfr used to avoid the Landau pole in eq. (A.1). Then, we combine
the various uncertainties by taking the envelope of all distributions.

In figure 1 we present four distributions of kt,g: (i) the fixed-order result, (ii) the
resummed result at N2DL, (iii) the O(αs) expansion of the latter and (iv) the matched
distribution at LO+N2DL. It is clear from this figure that the matching procedure works
as expected, i.e. the LO+N2DL recovers the N2DL result at small kt,g, while it tends
towards the leading-order curve in the opposite regime. In addition, the endpoint of the
resummation is shifted by the matching procedure to the fixed-order one at kt,g =0.5. By
comparing the fixed-order result and the first term in the αs-expansion of the resummed
result, we can get a hint on the size of the O(Rn) logarithmically enhanced terms that
we have so far neglected. In fact, the difference between the O(αs) term of the N2DL
curve and the exact leading order result converges towards a constant at small kt,g. This
indicates that these power suppressed terms enter with a small coefficient in the cumulative
distribution and can be safely neglected for the setup studied in this work. All the previous
statements hold for both values of a. In particular, the fixed order result is independent of
a because there is only one splitting tagged.

Next, we compare in figure 2 the two prescriptions to perform the resummation that we
have discussed above, i.e. keeping uniquely the logarithmically enhanced terms at N2DL or
including sub-leading corrections (N2DL’). In the large kt,g regime, we observe no difference
between the LO+N2DL and the LO+N2DL’ as it is expected since in this limit the fixed-
order contribution dominates the matched result. This is no longer the case for kt,g �
1, where details of the resummation structure do matter. An important remark is that
the discrepancy between the two curves diminishes when increasing the parameter a that
determines the hardness condition in the grooming algorithm. We attribute this to the a-
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Figure 2. The kt,g-distribution with a minimal N2DL resummation (see eq. (2.53) and table 1),
and including sub-leading contributions N2DL’ (see eq. (2.54) and appendix A). Both curves are
normalized to σ0+σ1.

scaling of the gnm parameters that, as one can see in table 1, satisfies gnm ∼ 1/a. Hence, the
larger the value of a is, the smaller the coefficients in front of the higher order terms are and
the narrower the difference between N2DL and N2DL’ becomes. In the phenomenological
section, we will include the differences between N2DL and N2DL’ as part of our uncertainty
band given that, from a logarithmic counting point of view, there is no preferred option.

2.4 zg, θg at LO+N2DL accuracy

As discussed at length in section 2.1, the momentum sharing fraction, zg, and opening
angle, θg, of the splitting tagged by Dynamical Grooming are Sudakov safe observables. In
eqs. (2.24)–(2.25), we defined their distribution as the limit of the IRC safe kt,g distribution.
This allows us to follow the same logic as in the previous section to obtain the resummation
part of their distribution. In turn, the fixed-order result is not even well defined, as shown
in eqs. (2.22) and (2.20), and thus the matching strategy differs to that presented in
section 2.3.2. In what follows, we provide the necessary ingredients to reach LO+N2DL
accuracy in the small-R limit.

2.4.1 Boundary logarithms for the θg distribution

In the case of zg, the resummation proceeds in exactly the same fashion as for kt,g. In turn,
for θg, another source of logarithmic enhancement appears, caused by the interplay between
the anti-k⊥ algorithm [47] used to cluster the jet, and the C/A algorithm to decluster it
in the Dynamical Grooming procedure. These so-called clustering boundary logarithms [8]
are of the form:

α2
s

1
z

ln
(1

z

)
ln

(
R

R − Rg

)
, (2.60)

where the double logarithmic enhancement becomes important when Rg → R (θg ≡Rg/R

close to 1).
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Boundary logarithms arise from a non-global configuration where the first emission is
outside the anti-k⊥ jet, while the second is inside and almost collinear to the first one.
In this situation, C/A algorithm would cluster these two emissions together, as part of
the jet. As such, their leading contribution to the branching kernel can be obtained from
the same calculation as the one done in eq. (2.49), but focusing in the regime where
θ1 �θ2 �R�1 [8, 48], such that:

Ω(θ1, θ2) � 4
θ2

1(θ2
1 − θ2

2) , (2.61)

and

1
σ0

d2σNG,cl

dzgdθg
� 4CF CA

(
αs

2π

)2 1
zg

ln
(

1
zg

)
R2

∫ ∞

R
dθ1θ1θg Ω(θ1, θgR)

= 8CRCA

(
αs

2π

)2 1
zg

ln
(

1
zg

)
1
θg

ln
(

1
1 − θ2

g

)
(2.62)

� 8CRCA

(
αs

2π

)2 1
zg

ln
(

1
zg

)
1
θg

ln
(

1
1 − θg

)
. (2.63)

The upper boundary in the θ1 integral can be safely sent to ∞ since the integral is dom-
inated by the region θ1 � θ2 � R. To get the last line, we have kept the dominant
contribution at θg ∼ 1.

As stated above, this O(α2
s)-contribution is enhanced by two soft logarithms of the

type ln(zg)/zg and one boundary logarithm ln(1−θg). However, the logarithmic divergence
associated with θg ∼1 is integrable in a neighbourhood of 1. Consequently, as long as one
deals with an observable in which the angle Rg ∼ R is integrated out between some lower
bound and 1 (such as zg or kt,g distributions), the boundary divergence is harmless. More
precisely, its integral over θg should give back the soft single logarithmic divergence that
was part of our treatment of non-global configurations. This argument also applies to the
Sudakov factor, since vetoing all emissions with hardness larger than κ translates into the
following integral ∫ 1

0
dz′

∫ 1

0
dθ′ 1

σ0

d2σNG,cl

dz′dθ′ Θ(z′θ′a − κ) , (2.64)

where it is clear that θ′ is always marginalized in the neighbourhood of 1. In other words,
the Dynamical Grooming procedure lowers the singularity associated with boundary log-
arithms from double- to single-log, and this single-log term is already taken into account
by the coefficient g3

22 in the Sudakov.
From that perspective, the θg distribution is peculiar since the Rg → R logarithmic

divergence from eq. (2.63) is not integrated out. To effectively include boundary logarithms
for the θg distribution, we replace the last term in the branching kernel P̃ (z, θ) given in
eq. (2.53) by

− 2CiCA

(
αs

2π

)2 π2

3
ln z

z
→ −8CiCA

(
αs

2π

)2 ln z

z

1
θg

ln
(

1
1 − θg

)
Θ(θg − θ̄) , (2.65)

– 20 –



J
H
E
P
0
7
(
2
0
2
1
)
0
2
0

with θ̄ defined such that ∫ 1

θ̄

dθg

θg
ln

(
1

1 − θg

)
= π2

12 . (2.66)

Numerically, one finds θ̄ � 0.66. The step function guarantees that the single logarithmic
term from soft non-global configurations is correctly accounted for within our targeted
accuracy and without double counting.12 Such a constraint is also physically expected
since boundary logarithms come from the region where θg ∼1 by definition.

Finally, we would like to discuss how this new logarithmic divergence affects the loga-
rithmic counting provided in section 2.2. For the θg distribution, we have found two sources
of logarithmic enhancement that are either of the form ln(θg) or ln(1−θg). Since the veto
factor in Δ(κ|a) suppresses boundary logarithms, there is only one power of ln(1−θg) that
appears in the αs expansion of the θg distribution and it comes from the α2

s result given
by eq. (2.65). In order to have the correct logarithms at N2DL in front of this single
power of ln(1−θg), it is enough to solely include the first one-loop correction in the run-
ning coupling α2

s →α2
s(1−4αsβ0 log(z)) and the hard-collinear correction at fixed coupling

1/z →Θ(e−Bi −z)/z in eq. (2.65).

2.4.2 Comparison between the resummation structure of Soft Drop and
Dynamical Grooming

The idea of studying the momentum sharing fraction and opening angle of a given splitting
in the shower was originally proposed in ref. [4]. In this work, the splitting at issue was
selected through the Soft Drop procedure, that is, the first branching in the de-clustering
sequence that satisfies z > zcutθβ. These observables, (zg, θg), have been measured ex-
perimentally [31, 49] and resummed to modified-leading log [50] and next-to-leading log
accuracy [18], respectively. An important comment at this point is that Soft Drop observ-
ables do exponentiate and, therefore, a NpLL counting applies. Hence, strictly speaking, an
apples-to-apples comparison on the resummation structure for Soft Drop and Dynamical
Grooming does not exist.

We have identified one major simplification in the resummation structure of θg when it
is defined through the Dynamical Grooming procedure instead of with Soft Drop: Dynam-
ical Grooming is free of clustering logarithms. Let us briefly recap how these contributions
arise for two correlated emissions [42]. Consider the emission of a gluon, p1, off a hard quark
p0 together with a secondary emission, p2, off p1. These two emissions have commensurate
angles θ01 ∼θ02, while their energies (and thus transverse momentum) are strongly ordered
z2 �z1 (kt,2 �kt,1). The C/A algorithm will miss-cluster the secondary gluon as a primary
if θ02 <θ12, with θ12 being the relative distance between the two emissions. Then, if p2 is a
real emission it will trigger the Soft Drop condition, even though z1 z2, and consequently
θ02 = θg. In turn, if p2 is virtual, the tagged splitting would be p1 and θ1 = θg. This
mismatch between the real and virtual contributions lead to a tower of logarithms at NLL

12The spirit of the step function is essentially the same as in our treatment of hard collinear emissions via
the effective splitting function given by eq. (2.38) Another way of including boundary logarithms without
double counting is to use directly eq. (2.62) (without step function) since − ∫ 1

0 dθ ln(1−θ2)/θ =π2/12.
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that were numerically computed, in the large Nc-limit, in ref. [18] for θg, as defined by Soft
Drop, and also discussed in the context of the Lund plane in ref. [8]. In the Dynamical
Grooming case, even if some secondary emissions can be ‘wrongly’ pushed by the C/A
algorithm into the primary Lund plane, it will never be the hardest given that z1 z2 and,
therefore, κ1 =z1θa

1 will be larger than κ2 =z2θa
2 even if the angles are commensurate. The

only effect of these emissions on DyG, beyond N2DL, would be a small contribution to the
pt degradation of the primary branch.

From the non-global logarithms side, that affect not only zg but also kt,g, we have
shown in section 2.3, that they are proportional to ln(zg) for Dynamical Grooming. In the
Soft Drop case, the soft singularity is cured by the definition of the grooming condition.
That is, non-global logs enter in the Soft Drop calculation as ∝ ln(zcutθβ) and thus have a
smaller impact that in the DyG option.

Therefore, the cleanest grooming procedure from a theoretical point of view in order
to avoid the resummation of both non-global and clustering logarithms at NLL would be
to combine the two methods. Then, the grooming procedure would be a two-step process:
first, one removes all emissions with z < zcut and then one looks for the hardest one in
the Dynamical Grooming sense. This possibility will be further studied in an upcoming
publication [51].

2.4.3 Matching to fixed-order

The first leading order matching scheme for Sudakov safe observables was proposed in
ref. [30]. It is based on constructing a n-dimensional IRC safe distribution, that we dub ‘IRC
safe companion’, and re-defining the Sudakov safe observable by an appropriate marginal-
ization. In our case, the 2-dimensional IRC safe distribution would be d2σ/dzgdθg, that
can be interpreted as the joint probability distribution for having a tagged branching with
momentum sharing fraction zg and (normalised) opening angle θg. Although zg and θg are
Sudakov safe observables by themselves, measuring them simultaneously, i.e. zg in a given
bin of θg or vice versa, restores IRC safety.

To define a matching scheme for a Sudakov safe observable, one then rely on the match-
ing of the IRC safe companion. Such matching can be done for instance in a multiplicative
way,

d2σLO+N2DL
i = d2σLO

i × d2σN2DL
i

d2σN2DL
i,1

. (2.67)

This formula guarantees that d2σLO+N2DL
i has exactly the same O(αs) coefficient as the

LO result and reproduces the resumed calculation in the kinematic region enhanced by
large logarithms. Notice also that at LO, d2σLO

i coincides with the primary Lund plane
density. We would like to point out that this matching scheme applies to jets with a given
flavour i. As we shall see, this simplifies the resulting formula as our resummed result
depends on the jet’s flavour via the Casimir factor of the jet. At LO, such a decomposition
is trivial, as explained in section 2.3.2. However, beyond LO, this requires to determine in
an IRC safe manner the jet’s flavour. This can be done using, for instance, the flavour-kt

clustering algorithm [52].
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Once d2σLO+N2DL
i is known, the zg or θg distributions are computed by marginalization.

In the case of zg, for example, this amounts to

1
σ

dσLO+N2DL

dzg
= 1

σ

∑
i=q,g

∫ 1

0
dz

∫ 1

0
dθ

d2σLO+N2DL
i

dzdθ
δ(z − zg) , (2.68)

where σ is the inclusive jet cross-section. An important feature of Sudakov safe observables
is hidden behind the apparent simplicity of eq. (2.68). In fact, not all matching schemes for
the IRC safe companion lead to a well-defined integral after marginalization. For instance,
choosing an additive matching,

d2σLO+N2DL
i =

[
d2σLO

i − d2σ
N2DL,(1)
i

]
+ d2σN2DL

i , (2.69)

induces a collinear divergent term (the one inside the bracket) which is not cured by the
Sudakov. On the contrary, the integral in eq. (2.68) is well defined because the Sudakov
factor in d2σN2DL

i shields the θ=0 logarithmic divergence.
We now turn the concrete implementation of eq. (2.68) used in this paper. In principle

we could compute d2σLO
i using MadGraph as in our matched calculation of kt,g. However,

we decide here to take another path that we find more enlightening from the physics point
of view and, at the same time, easier to implement numerically. Namely, in the small jet
radius limit that we consider throughout this paper, it is possible to provide an explicit
analytic expression for d2σLO

i . Up to powers of θg corrections, it reads

d2σLO
i

dzgdθg
� σ0,i

2αsCi

π

1
θg

P i(zg) + O(θn
g ) , (2.70)

where P i is the symmetrized splitting function of a parton i: P i(z) = Pi(z)+Pi(1 − z),
summed over all decay channels. Matching our resummed distribution to this form of the
LO result is then straightforward as it amounts to replace 2CiΘ(e−Bi −z)/z in P̃ (z, θ)
(eq. (2.54)) by 2CiP i(z).13

In figure 3, we show a comparison between the exact result of d2σLO
i /dzgdθg obtained

through MadGraph and the approximation given by eq. (2.70). In addition, we compare
these two options with the one that we get after replacing the full symmetrized splitting
function by its soft limit in eq. (2.70). More concretely, we have computed d2σLO

i for the
gluon channel in the three ways that we have just mentioned and show the zg and θg-
projections for two bins of θg and zg, respectively. We see that eq. (2.70) matches the exact
leading order result while the soft limit of the splitting function is not enough to accurately
reproduce the MadGraph output throughout the whole range of zg. Similar conclusions
can be drawn by analysing the θg-projection of d2σLO

i . Both for zg and θg, the deviation of
eq. (2.70) to the exact result remains below 5%. We have deliberately chosen a low pt bin
to ensure that using P i as a proxy for d2σLO

i is valid in the regime in which the ALICE
measurement has been recorded.

We decide to normalize the zg and θg distributions to the Born level cross-section, σ0,
in contrast to the kt,g case where the NLO correction to the inclusive jet cross section, σ1,

13See also refs. [5, 50] for a similar trick in the calculation of the Soft Drop zg distribution.
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Figure 3. Left: zg differential distribution at leading order in αs for the gluon channel in a bin
of θg computed in three different ways: with MadGraph (gray), using the splitting function as a
proxy for the leading order result, see eq. (2.70), either with the leading order expression of Pi(z)
(solid, red) or taking the soft limit (dashed, red). Right: same as left panel but for θg.

was taken into account. For ktg, the reason we included this correction is to account for
the C1 term, but in principle, a LO matched cross-section can safely be normalized by the
Born cross-section without spoiling the targeted accuracy. For Sudakov safe cross-sections
such as zg and θg, the question of finding a matching scheme which makes possible the
inclusion of the NLO correction to σ in a consistent way with respect to the resummation
counterpart is in fact closely related to the C1 problem that we proceed to tackle.

The C1 term in Sudakov safe observables. The impossibility to perturbatively ex-
pand Sudakov safe observables in powers of αs invalidates the definition of the C1 term
given by eq. (2.59). Up to now, the question on whether a ‘C1-like’ contribution to the
resummation exists for this type of observables has not even been addressed in the lit-
erature. In this paper, we would like to outline a new, dedicated matching scheme for
Sudakov safe observables. The main difference with respect to the original proposal by the
authors in ref. [30] is to rely on an IRC safe cross-section which is one-dimensional. This
IRC safe companion is built from the Sudakov safe distribution with an additional cut on
the kinematic variable that is integrated out. More explicitly, for the dynamically groomed
zg distribution, one defines the IRC safe cumulative distribution Σ(zg|θcut) using the same
grooming procedure, but with an additional cut-off on the angle of the splitting, θg, that
is denoted θcut. Then, our matching formula is:

ΣLO+N2DL(zg) = ΣLO+N2DL(zg|θcut) + ΣN2DL(zg) − ΣN2DL(zg|θcut) , (2.71)

with ΣLO+N2DL(zg|θcut) defined using multiplicative matching as in eq. (2.55).14 Notice
that the normalization of ΣLO+N2DL(zg) to σ0 +σ1 is ensured. Clearly, this formula has
an explicit dependance on θcut, but it is the price to pay in order to define a C1-like

14The generalization of eq. (2.71) to θg and beyond leading order is straightforward.
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contribution to the logarithmic resummation of Sudakov safe cross-sections. That said,
if θcut is low enough the distribution is not sensitive to its value over a large zg domain.
To understand this, recall that the Sudakov form factor in ΣN2DL(zg) provides a natural
cut-off, θc, on the angular integration of the branching kernel that scales at DLA with
θc �exp(−1/

√
ᾱa) see eq. (2.13) (also in ref. [25]). Thus, if θcut is chosen smaller than θc,

we expect that
ΣN2DL(zg) = ΣN2DL(zg|θcut) (2.72)

for zg � θa
cut. Consequently, far from the resummation region, the dominant term in

eq. (2.71) is ΣLO+N2DL(zg|θcut) which correctly captures the large zg ∼ 0.5 domain. On
the contrary, in the small zg limit (but not smaller than θa

cut), we obtain:

ΣLO+N2DL(zg) � ΣN2DL(zg) + αsC1(θcut)ΣN2DL(zg) . (2.73)

The second term in the previous equation is a correction to our resummed formula, which
looks like a C1 term. It depends on the value of θcut as a reminiscence of the non
IRC safety of the zg distribution. To see that, one notices that up to a constant fac-
tor, C1(θcut)∝ ln(θcut). Since θcut cannot be larger than θc, the C1 correction is actually of
order O(αs/

√
αsa)=O(

√
αs/a), at least. There are two interesting features in this scaling

behavior. First, the appearance of the square root of αs is characteristic of Sudakov safe
quantities. Second, we observe how C1 can become sizeable for a � 1. The latter point
reminds us that introducing and ad-hoc parameter, θcut, in the matching scheme comes
with some associated difficulties. In short, from the resummation point of view, one would
like θcut to be as small as possible such that eq. (2.72) holds. However, the smallness of θcut
can lead to a sizeable C1 correction in eq. (2.73), thus spoiling the correct asymptotic limit.
A clear trade-off exists and the concrete value of θcut in the proposed matching scheme
and its applicability to phenomenological applications deserve further investigation. We
emphasize that the proposed scheme has not been used in the results of this paper.

2.4.4 Results

Following the reasoning of the kt,g section, we would like to highlight some features of the
zg and θg analytic distributions before moving on to the comparison against Monte-Carlo
simulations and ALICE preliminary data. In the left panel of figure 4, we quantify the
difference between the double-log calculation of the zg distribution and the LO+N2DL’.
The purpose of this figure is to highlight the deviation of the zg-distribution from the 1/z

behavior when higher orders in the resummation are included. Indeed, we have shown in
eq. (2.14), the zg-distribution has a dynamically generated cut-off at zcut ∼ e−a/ᾱ. For
z > zcut, it was shown in ref. [25] that the distribution falls off like the soft limit of the
Altarelli-Parisi splitting function. We observe that NDL and N2DL contributions such as
the running of the strong coupling or the presence of non-global logarithms induce an almost
50% difference with respect to the DLA result. This should be taken into account when
interpreting the experimental data specially when searching for modifications in heavy-ion
measurements [53, 54].

In the right panel of figure 4, we asses the impact of the boundary logarithms in the
θg distribution that were discussed in section 2.4.1. As expected, they only matter at large
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Figure 4. Left: zg-distribution for a = 1 (red) and a = 2 (blue) at two different accuracies, DLA
and LO+N2DL’ and their ratio. Right: θg-distribution for a = 1 (red) and a = 2 (blue) with and
without boundary logarithms in the LO+N2DL’ result and their ratio.

angles and diverge when θg → 1. Their contribution amounts to a 10−20% and is therefore
mandatory to include them if a theory-to-data comparison is aimed.

3 Phenomenology at LHC energies

The analytic calculations that we have presented above rely mainly on two approximations:
the narrow jet limit and the use of the Altarelli-Parisi splitting function in the matching as a
proxy for the leading order result in the case of zg and θg. In order to evaluate the goodness
of such approximations, we test our analytic results against parton level simulations in
realistic experimental conditions together with the available experimental data. The results
are presented for two values of a in the Dynamical Grooming condition: a = 1 and a = 2.
The reason why we do not consider smaller values of a and, in particular, a=0.1 as done in
the ALICE measurement, is because non-perturbative phenomena, beyond the reach of our
analytic pQCD calculation, notably affect dynamically groomed observables when a < 1.
In addition, we utilise the N2DL’ prescription on the resummation side.

3.1 Analytics vs. Monte-Carlo parton level

In this section, we compare our analytic calculation for (kt,g, zg, θg) to parton level simula-
tions of dijet events with Pythia8.235 [34] and Herwig7.1.2 [55]. For the latter we use both
the default angular-ordered shower that we denote ‘Herwig7-AO’ [56] and the dipole-type
shower, ‘Herwig7-Dip’, based on ref. [57]. Given that non-perturbative effects are reduced
when going to larger pt, we study an experimental setup, that lies within the ATLAS ca-
pabilities [49], where the comparison to pQCD calculations are deemed to be cleaner. The
centre of mass energy is set to

√
s = 13 TeV, jets are clustered with the anti-k⊥ algorithm

with R = 0.4 and re-clustered with Cambridge/Aachen using FastJet3.3.1 [58]. The anal-
ysis is performed on those jets that satisfy: 800 < pt < 1000 GeV and |η| < 1.5. For the
Monte-Carlo studies, we used the DyG condition given by eq. (1.1).
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We show the comparison between our analytic result and parton level Monte-Carlo
simulations with Pythia8 and Herwig7 for the relative transverse momentum of the dy-
namically groomed splitting in figure 5. A crucial point to understand the fixed-order
dominated regime, i.e. kt,g � 10−1, is that in the default setting of both Monte-Carlos, the
parton shower starts off a leading-order 2→2 matrix element.15 Therefore, the fixed-order
contribution to the kt,g distribution is exactly zero for these event generators. Hence, at
large kt,g, an exact agreement between our analytic result, dominated by the exact NLO
matrix element, and the Monte-Carlos, where kt,g is exclusively generated by the parton
shower, is not expected. Nevertheless, both event generators use at the very least the
leading order Altarelli-Parisi splitting functions. As we have discussed in section 2.4.3, the
use of the full splitting function in the resummation (or, similarly, in the parton shower)
effectively reproduces the fixed-order result in the narrow jet limit. Then, part of the
higher-order corrections to the Born-level process are incorporated through the splitting
function in the parton shower. This can explain the nice agreement between the analytic
result and the Monte-Carlo curves for kt,g �10−1.

On the resummation side, both showers in Herwig are in relatively good agreement and
notably differ from Pythia. This is, a priori, rather counterintuitive based on the nature
of the three parton showers that we are evaluating. The dipole-style Herwig shower and
the Pythia one use a Catani-Seymour like [59] dipole map, transverse momentum ordering
and implement a local recoil scheme. In turn, Herwig7-AO evolves through 1→2 splittings
by means of a generalised angular variable and employs a global recoil scheme. Based
on these general arguments, one would expect Herwig7-Dip and Pythia showers to deliver
somewhat similar results. The opposite behavior observed in figure 5 points out to a more
general Pythia-to-Herwig difference rather than to the showers themselves. We identify
the scale at which the QCD shower is stopped to be the source of this discrepancy. In fact,
in the default setting, Pythia imposes a relatively low infra-red cut-off of 0.5 GeV, while
Herwig uses a more conservative scale of ∼ 1 GeV that is common to both showers [60].
Then, more phase-space is available for radiation in the Pythia case and this leads to the
differences observed on the low kt,g side in figure 5. Thus, we conclude that the small-
kt,g part of the differential distribution is sensitive to the way the infra-red is handled
and thus to hadronisation. This point will be further emphasized in the following section.
Moreover, any higher order term contained in the Monte-Carlo and not present at N2DL
in the resummation, e.g. energy-momentum conservation, would affect the low kt,g regime.

In what concerns the comparison between MCs and the analytic result, an enhance-
ment at low kt,g values appears. A very similar trend is observed in figure 11 of appendix B
where we evaluate the impact of removing the 1−z in the hardness variable κ (see eq. (1.1))
for the Monte-Carlo results. We remind the reader that this factor is a sub-leading, non-
logarithmic correction in our analytic calculation at N2DL accuracy. However, this mis-
match in the κ definition on the analytics and the Monte-Carlos amounts to a ∼ 10% differ-
ence on the low kt,g regime and is, therefore, partly responsible for the bump at kt,g ∼10−3.

15The αs counting might be misleading at this point. Notice that what we refer to as LO in the analytic
result is actually a NLO contribution in the sense that it enters at order αs, i.e. we consider p + p → jj

at NLO.
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Figure 5. Theory to parton level comparison of kt,g in the ATLAS-like scenario for a=1 (left) and
a=2 (right) in the Dynamical Grooming condition, see eq. (1.1).

The distribution of the opening angle θg is displayed in figure 6. On the Monte-Carlo
side, we again observe a strong sensitivity to the momentum scale at which the shower
is cut-off. In fact, no significant differences are observed between the angle tagged by
Herwig7-AO and Herwig7-Dip, thus indicating a strong dominance of the choice of IR-
scale. In particular, we have checked that the small angle bump for a = 2 disappears if
the infra-red scale is lowered down in Herwig. We have pinned down two other sources for
the analytic-to-Monte-Carlo discrepancy. The first one concerns again the 1−z factor in
the definition of κ. In figure 11 in appendix B, we quantify this effect and observe that
the small θg region can be distorted by ∼ 20−40%, depending on the value of a. The
enhancement of θg at large angles in the MCs with respect to the analytic curve could be
explained by the O(θn

g ) terms that we have neglected all along our calculation, both on
the resummation side and also on the matching procedure where power suppressed terms
in the fixed order result were ignored. On the other hand, it is not guaranteed that the
branching kernels implemented in the Monte-Carlos recover the exact soft and large angle
limit. Then, we conclude that the disagreement between the analytic calculation of the
θg-distribution and the parton shower results can be understood as a result of the choice
of the infra-red scale, the finite z corrections in the κ definition and the jet clustering
procedure, being the first one the strongest effect.

Finally, the momentum sharing splitting fraction zg is presented in figure 7. We clearly
observe the presence of the dynamically generated cut-off that separates the fall-off of the
distributions from the flattening. The latter starts earlier for a=2 given that zcut is smaller
in this case, see eq. (2.14). The agreement between the theory calculation and the Monte-
Carlos is reasonable in the intermediate regime of 10−2 <zg <10−1. Outside this interval,
the recoil factor in the hardness definition is responsible for both the depletion at large
zg in the MC’s with respect to the analytic as well as for the excess at small-z, as can be
seen in appendix B. In addition, the reduced phase space for emissions at infra-red scales
in Herwig as compared to Pythia is manifest and further studied in appendix D.
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3.2 Comparison to preliminary ALICE data

In this section, we scrutinise our analytic calculation against preliminary measurements
of DyG observables [31, 32]. The experimental analysis is performed at

√
s = 5.02 TeV

on jets clustered with the anti-k⊥ algorithm with R = 0.4. An important aspect is that
only charged jets that satisfy 60 < pch

t < 80 GeV and |η| < 0.5 are considered. In the
analytic calculation, no distinction is made between charged and neutral particles, thus
a method to translate the charged pt bin of the data into its full counterpart has to be
designed. A few possibilities exist to tackle this problem. One could be to identify via
Monte-Carlo simulations the transverse momentum bin that, after subtracting the neutral
component, yields most of the jets in the 60 < pt < 80 GeV interval. We have carried out
this exercise and found that 80% of the jets that fulfil 64.5 < pt < 102.5 GeV, fall in the
60 < pch

t < 80 GeV category. Another option is to absorb this pt-shift from charged to full
jets into a non-perturbative factor that also accounts for the effect of hadronization, initial
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state radiation and multi-parton interactions. This latter is the approach followed in this
paper (see also ref. [8]) and works as follows. We perform the analytic calculation in the
same pt-bin as where the experimental measurement is carried out, i.e. 60 < pt < 80 GeV.
Then, to construct the non-perturbative factor two samples have to be generated with
Monte-Carlo. The first one includes all non-perturbative effects and only charged particles
are clustered. Then, the Dynamical Grooming analysis is performed on the charged jets
that satisfy 60 < pch

t < 80 GeV. The second sample is generated as parton level events.
Again, we select jets in the same pt-bin as the theoretical calculation, i.e. 60< pt < 80 GeV,
without any charge selection. Then, our non-perturbative factor is defined as the ratio
of the charged hadron level sample and the parton level one, both computed in the same
transverse momentum bin. These results are plotted in appendix D, where further details
on the role of the infra-red cutoff in the parton shower are provided. Finally, the theoretical
results are multiplied by this phenomenological parameter. Then, the theoretical error band
includes both the uncertainty of the non-perturbative factor and the analytic uncertainties
characterised in the end of section 2.3.3. We label these results as ‘LO+N2DL’+NP’.

Like in the previous section, we start the discussion with the kt,g distribution shown in
figure 8. To begin with, an important remark is that a mismatch exists between how the
kt,g is defined in the analytic calculation, i.e. kt,g =zgRg,16 and in ALICE’s measurement,
where kt,g = zg sin(Rg)pt. As we have already mentioned, pt degradation is ignored in
our calculation because the hardest branching is located on the primary Lund plane at our
degree of accuracy. Then, to accommodate the pt dependence of the experimental definition
we simply multiply our analytic result by the lower bound of the pt bin, 60 GeV in this
case. We have checked that changing this factor by any other value within the explored
pt-bin leads to variations that are well covered by our uncertainty bands. The functional
form of the angular dependence of the two kt,g definitions is a bit more delicate. This
is so because considering sin(Rg) instead of Rg brings additional power-corrections in the
calculation that we have so far neglected based on our narrow jet approximation. Besides
this fact, we observe in figure 8 that the data points are only described by the theoretical
calculation if the non-perturbative factor, displayed in figure 13, is included. In particular,
its role is most prominent for the first bin and generates a large uncertainty. This is yet
another manifestation of the different methods that Pythia and Herwig employ to regulate
the infra-red sector in the shower. We also provide the Monte-Carlo to data comparison
in appendix E and find that all three explored setups result into 10−20% deviations with
respect to the data both for a = 1 and a = 2. Therefore, we conclude that the agreement
between the analytic result presented in this paper and ALICE data is satisfactory in spite
of the low pt selection where hadronization effects are very large.

Turning to θg, represented in figure 9, we observe that the ad-hoc non-perturbative
factor completely dominates the result in the first bin for a = 1. The a-dependence of
these results is also interesting from the point of view of missing terms in the analytic
calculation. Indeed, we see a deficit in the analytic result for splittings with angles θg >0.6

16Notice that in the previous section we have used kt,g = zgθg and now we replace θg by Rg = θgR to
follow ALICE convention.
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Figure 8. Comparison between the analytic result obtained in this paper and the preliminary
ALICE data [32] of kt,g.
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Figure 9. Same as figure 8 for θg. The experimental data was obtained from [31].

that disappears for the a = 2. We have already mentioned that the gnm coefficients are
inversely proportional to a and thus higher-order terms would impact less the a=2 result
than the a = 1 one. In addition, the discrepancy appears in the region where the power-
suppressed terms that we have neglected all along the calculation based on the narrow jet
approximation, i.e. contributions of O(θn

g ), may matter. An obvious way to confirm this
hypothesis would be either to include them or, alternatively, to make a jet radius scan of
this observable on the experimental side.

To end up this phenomenological section, we present the theory-to-data comparison for
the momentum sharing fraction in figure 10. In this scenario, the non-perturbative factor
is prominent at small zg, but has a relatively mild effect for zg >0.2. In fact, in this interval
both the LO+N2DL’ and LO+N2DL’+NP results agree with the data within uncertainties.
Clearly, this observable together with kt,g are the ones for which our theoretical calculation
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Figure 10. Same as figure 9 for zg.

results provides the best description of the experimental measurements. This is a remark-
able result given that the Sudakov nature of this observable complicates its theoretical
analysis in many different ways, as we have discussed throughout the paper. The Monte-
Carlo results are also consistent with the experimental measurement (see appendix E).

4 Conclusions and outlook

The work presented in this paper follows the current global effort towards a precise the-
oretical description of jet substructure observables that will help us to deepen our un-
derstanding of the space-time evolution of QCD jets, both in vacuum and in heavy-ion
collisions. In particular, we have focused on three substructure observables defined on the
splitting selected by the Dynamical Grooming method, that is, the hardest one in the jet
tree. These three observables are the momentum sharing fraction zg, the opening angle θg

and the relative transverse momentum kt,g. Out of the three, kt,g is the only infra-red and
collinearly safe observable. Then, the definition of logarithmic accuracy for zg and θg is
far from trivial and we extensively discuss a possible approach to tackle the problem that
consists in defining the accuracy of the Sudakov safe observable in terms of the cumulative
distribution of an IRC safe companion. In this way, we demonstrate that the resummation
of dynamically groomed observables does not exponentiate, in general, and that a logarith-
mic counting at the level of the cumulative distribution is therefore better suited. Further,
we present all the necessary ingredients to reach next-to-next-to-double logarithmic accu-
racy in the narrow jet limit. This includes: (i) the resummation of collinear logarithms
arising from the running of the coupling and the hard-collinear correction to the splitting
function, (ii) the contribution of non-global logarithms at O(α2

s) and (iii) the O(α2
s) contri-

bution of boundary logarithms in the case of θg. Remarkably, neither clustering logarithms
nor multiple emissions affect these dynamically groomed distributions. We make use of a
matching scheme that naturally includes the C1 term and allows us to recover the exact
leading-order result, computed with MadGraph, for large values of kt,g. On the Sudakov
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safe cases, we employ the full splitting function as a proxy for the fixed-order result and
propose a dedicated matching scheme that depends on an ad-hoc cut-off. All in all, we
achieve LO+N2DL accuracy in our analytic computation.

The analytic framework is tested against three different parton-level Monte-Carlo sim-
ulations at high-pt: Pythia8, angular-ordered, and dipole-style showers in Herwig. In the
resummation dominated regime, we find a strong dependence of the Monte-Carlo results on
the transverse momentum cut-off at which the parton shower stops. This value is smaller
for Pythia (∼ 0.5 GeV) than for Herwig (∼ 1 GeV) by default and, as such, more radia-
tion is allowed in the former case. The analytic result regulates the infra-red singularity
through a freezing of the running coupling below 1 GeV and, therefore, allows for emissions
with all possible transverse momenta. Due to this fact, it is reasonable that the analytic
result is closer to Pythia than to Herwig. Even in the region in which the analytic calcu-
lation reduces to the fixed-order contribution, the parton shower is fully responsible of the
Monte-Carlo results, given that a leading-order matrix element is implemented by default.
Despite this mismatch, an overall good agreement is found for the three jet substructure
observables that we attribute to the use of the full splitting function in the parton showers
that, as we have stated, generates the correct matrix element in the narrow jet limit.

Our last step is to compare the analytic predictions against the preliminary ALICE
data. To do so, we supplement the perturbative results with a non-perturbative factor ex-
tracted from Monte-Carlo simulations with Pythia and Herwig that accounts for the use of
charged tracks, hadronisation and underlying event. This ingredient is particularly crucial
in this experimental setup given that only low-pt jets, i.e. pch

t � 200 GeV are measurable
by the ALICE detector. In fact, it dominates the theoretical prediction in the lower bins
of the kt,g, zg and θg distributions. A quantitative description of kt,g and zg is achieved
up to 5−10% deviations in some bins. In the case of θg, we find deviations of up to 15%
in the moderately large angle region. This is precisely the regime in which we have less
confidence in our result considering that we have neglected all power suppressed terms of
the type O(θn

g ).
The natural extension of this work is to go beyond the small-R limit and develop a nu-

merical routine to account for the resummation of non-global and boundary logarithms. No-
tice that, as far as we are aware, the latter has yet never been achieved in the literature. On
the collinear side of the resummation, we could include the recoil of the hard branch, make
use of the NLO splitting function together with higher orders in the running coupling. Fur-
ther, promoting our leading-order matching to NLO is straightforward from a conceptual
point of view in the case of kt,g and would improve the agreement with data/parton level
MC simulations both at low and high pt and reduce the theoretical uncertainties. Regarding
the Sudakov safe observables, we would like to understand the feasibility of the dedicated
matching scheme proposed in this paper and, specifically, quantify its dependence on the ad-
hoc cut off. Finally, it would be insightful to compare these analytic results for dynamically
groomed observables to the newly developed parton showers that aim at achieving pertur-
bative control beyond leading double logarithmic accuracy and leading color [35, 36, 61].
From an experimental perspective, these theoretical efforts would highly benefit from a
high-pt measurement where non-perturbative corrections are deemed to be milder.
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Beyond the possible improvements of the p + p calculation, we would like to discuss
two further extensions in terms of collision systems: e + p (and eventually e + A), relevant
for the future Electron Ion Collider and heavy-ion collisions. The former, despite the
relatively low number of constituents per jet [62], provides a cleaner environment with
respect to p + p given that both multi-parton interactions and the underlying event will
have a residual effect. On the heavy-ion side, dynamically groomed observables can be
used to characterise the properties of an in-medium parton shower. In particular, the
θg distribution can be used to experimentally measure the critical resolution angle of the
Quark-Gluon Plasma [63], while deviations at large kt,g from respect to the vacuum baseline
could suggest rare, hard scatterings between the propagating parton and the medium.
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A Details of analytic calculations at N2DL’

The purpose of this section is to provide the analytic Sudakov form factor needed to achieve
N2DL’ accuracy as explained in section 2.3. To that end, we need to perform the following
integral:

− ln(Δi(κ|a)) = 2Ci

π

∫ e−Bi

0

dz

z

∫ 1

0

dθ

θ
αs(μKzθQ)Θ(zθa − κ) , (A.1)

with Q = pt,jetR and the coupling is frozen in the infra-red as αs(kt) = α2�
s (kt)Θ(kt −

μfr) + αs(μfr)Θ(μfr − kt). We would like to point out that this choice is completely ad-
hoc and one could think of a more general functional form for the infra-red description
of the coupling and systematically study its impact on jet substructure observables. We
will investigate this possibility in future studies. In the perturbative domain kt > μfr, the
two-loop running coupling α2�

s (kt) is given by eq. (2.47) with the reference αs value taken
at the renormalization scale μRQ.

We define the following dimensionless variable: λκ = 2αsβ0 ln(κ), λB = −2αsβ0Bi,
λK = 2αsβ0 ln(μK/μR) and λfr = 2αsβ0 ln(μfr/(μKQ)), and the following functions:

W (x) = −x + x ln(x) , (A.2)
V (x) = ln(x)(2 + ln(x)) . (A.3)
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Due to the presence of the constant kt = μfr line in the (z, θ) phase space, the formulae
depend on whether a is larger or smaller than 1.

Case a > 1. If λκ ≥ λfr:

− ln Δi(κ|a) = Ci

2παsβ2
0

[
W (1 + λK + λB) + 1

a − 1
(
W (1 + λK + λκ)

−aW

(
1 + λK + a − 1

a
λB + λκ

a

))]
+ Ciβ1

4πβ3
0

[
V (1 + λK + λB) + 1

a − 1
(
V (1 + λK + λκ)

−aV

(
1 + λK + a − 1

a
λB + λκ

a

))]
− CiK

4π2β2
0

[
ln(1 + λK + λB) + 1

a − 1
(

ln(1 + λK + λκ)

−a ln
(

1 + λK + a − 1
a

λB + λκ

a

))]
. (A.4)

If λκ ≤ aλfr + (1 − a)λB:

− ln Δi(κ|a) = Ci

2παsβ2
0

[
−λB + λfr + (1 + λB + λK) ln

(1 + λB + λK

1 + λfr + λK

)]
+ Ciβ1

4πβ3
0

[
V (1 + λB + λK) − 2λB − 2λfr + 2(1 + λB + λK) ln(1 + λfr + λK)

1 + λfr + λK

+ ln2(1 + λK + λfr)
]

− CiK

4π2β2
0

[
λfr − λB

1 + λfr + λK
+ ln

(1 + λB + λK

1 + λfr + λK

)]

+ 2CRαs(μfr)
4πα2

sβ2
0

[
(1 − a)λB

2 + 2aλBλfr − 2λBλκ − aλfr
2 + λκ

2

2a

]
. (A.5)

If aλfr + (1 − a)λB < λκ < λfr:

− ln Δi(κ|a) = Ci

2παsβ2
0

[
λfr − λκ

1 − a
ln(1 + λK + λfr) + W (1 + λK + λB)

1
a − 1

(
W (1 + λK + λfr) − aW

(
1 + λK + a − 1

a
λB + λκ

a

))]
+ Ciβ1

4πβ3
0

[2(λfr − λκ)
1 − a

(1 + ln(1 + λK + λfr))
1 + λK + λfr

+ V (1 + λK + λB)

1
a − 1

(
V (1 + λK + λfr) − aV

(
1 + λK + a − 1

a
λB + λκ

a

))]
− CiK

4π2β2
0

[
λfr − λκ

1 − a

1
1 + λK + λfr

+ ln(1 + λK + λB)

1
a − 1

(
ln(1 + λK + λfr) − a ln

(
1 + λK + a − 1

a
λB + λκ

a

))]
+ CRαs(μfr)

2πα2
sβ2

0

(λfr − λκ)2

2(a − 1) . (A.6)
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Case a = 1. It is straightforward, albeit tedious, to take the limit a → 1 of the previous
formulae. If λκ > λfr,

− ln Δi(κ|1) = Ci

2παsβ2
0

[
−λB + λκ + (1 + λB + λK) ln

(1 + λB + λK

1 + λκ + λK

)]
+ Ciβ1

4πβ3
0

[
V (1 + λB + λK) − 2λB − 2λκ + 2(1 + λB + λK) ln(1 + λκ + λK)

1 + λκ + λK

+ ln2(1 + λK + λκ)
]

− CiK

4π2β2
0

[
λκ − λB

1 + λκ + λK
+ ln

(1 + λB + λK

1 + λκ + λK

)]
, (A.7)

and if λκ < λfr

− ln Δi(κ|1) = Ci

2παsβ2
0

[
−λB + λfr + (1 + λB + λK) ln

(1 + λB + λK

1 + λfr + λK

)]
+ Ciβ1

4πβ3
0

[
V (1 + λB + λK) − 2λB − 2λfr + 2(1 + λB + λK) ln(1 + λfr + λK)

1 + λfr + λK

+ ln2(1 + λK + λfr)
]

− CiK

4π2β2
0

[
λfr − λB

1 + λfr + λK
+ ln

(1 + λB + λK

1 + λfr + λK

)]
+ CRαs(μfr)

2πα2
sβ2

0

[
(λfr − λκ)(λB − λfr) + 1

2(λfr − λκ)2
]

. (A.8)

Case a < 1. For completeness, we provide also the formulae when a < 1. For some values
of λκ, they can be related to the expression in the a > 1 case. If λκ ≥ aλfr + (1 − a)λB,
Δ(κ|a < 1) is given by the expression of Δ(κ|a > 1) when λκ > λfr. In a similar way, when
λκ < λfr, Δ(κ|a < 1) is given by the expression of Δ(κ|a > 1) when λκ ≤ aλfr + (1 − a)λB.
In the remaining κ domain, λfr ≤ λκ ≤ aλfr + (1 − a)λB, one finds

− lnΔi(κ|a) = Ci

2παsβ2
0

[(1−a)λB +aλfr −λκ

a−1 ln(1+λK +λfr)+W (1+λK +λB)

1
a−1(W (1+λK +λκ)−aW (1+λK +λfr))

]
+ Ciβ1

4πβ3
0

[2((1−a)λB +aλfr −λκ)
a−1

(1+ln(1+λK +λfr))
1+λK +λfr

+V (1+λK +λB)

1
a−1(V (1+λK +λκ)−aV (1+λK +λfr))

]
− CiK

4π2β2
0

[(1−a)λB +aλfr −λκ

a−1
1

1+λK +λfr
+ln(1+λK +λB)

1
a−1(ln(1+λK +λκ)−a ln(1+λK +λfr))

]

+ CRαs(μfr)
2πα2

sβ2
0

[
((1−a)λB +aλfr −λκ)2

2a(1−a)

]
. (A.9)
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The non-global term. On top of eq. (A.1), the Sudakov factor receives a contribution
from soft non-global emissions of the form

− ln(ΔNG
i (κ|a)) = 2CiCA

(
αs

2π

)2 π2

3

∫ e−B

0

dz

z
ln

( 1
μKz

)∫ 1

0
dθΘ(zθa−κ) (A.10)

= CiCA

(
αs

2π

)2 π2

3 ln2(μKκ)+CiCA

(
αs

2π

)2 π2

3
[
−ln2

(
μKe−B

)
+2a2

(
1−κ1/aeB/a

)
+2a

(
ln(κμK)−ln

(
e−BμK

))
κ1/aeB/a

]
. (A.11)

In this expression, we have separated the single-log term from the pure αs or power cor-
rections in κ which can be neglected to N2DL accuracy.

B The size of finite z corrections in the definition of κ

In this appendix, we evaluate the impact of not neglecting the 1−z factor on the definition
of κ in eq. (1.1). From an analytic point of view, this is a sub-leading, non logarithmic
correction and thus not needed to reach N2DL. For example, at the level of the Sudakov
Δ(κ|a), the 1 − z in the definition of k⊥ = z(1 − z)pT θ for the running coupling scale
induces a N3DL correction of the form:

δ ln(Δ(κ|a)) = 4α2
sβ0Ci

π

∫ 1

0

dz′

z′

∫ 1

0

dθ′

θ′ log(1 − z′)Θ(z′θ′a − κ) (B.1)

= 4α2
sβ0Ci

πa

(
π2

6 ln(κ) + ζ(3) + O(κ)
)

(B.2)

where we have used αs(k⊥) � αs(zpT θ)(1 − 2αsβ0 ln(1 − z)) at our order of interest. In the
same way, one can determine the magnitude of the leading correction induced by 1 − z in
the definition of κ = z(1 − z)(ΔR/R)a by using the double logarithmic formula (2.6) for
the Sudakov, with the veto constraint including the 1 − z factor:

ln(Δ(κ|a)) = −2αsCi

π

∫ 1

0

dz′

z′

∫ 1

0

dθ′

θ′ Θ(z′(1 − z′)θ′a − κ) (B.3)

= −αsCi

πa

(
ln2(κ) − π2

3 + O(κ)
)

(B.4)

The correction to the double logarithmic result is therefore a sub-leading non logarithmic
correction.

That said, we would like to understand its impact on Monte-Carlo results in the ex-
perimental setups explored in this paper. The results are presented in figure 11 while their
implications are commented over the main text.
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Figure 11. Impact of including or not the recoil factor in the hardness variable definition as a
function of a for dijet events at parton level in Pythia with

√
s=13 TeV for kt,g (top), θg (center)

and zg (bottom).
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C Impact of jet clustering algorithms

Throughout the main text we have determined dynamically groomed substructure observ-
ables for jets found with an initial anti-kt clustering and subsequently re-clustered with
Cambridge/Aachen. This two-step process has advantages from an experimental point of
view. However, from a theoretical perspective we have seen in section 2.4.1 that this two-
step process induces boundary logarithms in the calculation. In this appendix, we would
like to investigate at the Monte-Carlo level if the observables are modified when defining
the jets only with C/A. This is shown in figure 12. Interestingly, we observe how the bump
at large angles whose origin we have discussed in the main text disappears when clustering
with C/A. Nevertheless, the impact of these two jet clustering strategies is mild for all cases.

D Non-perturbative corrections with Pythia and Herwig

In order to compare our analytic predictions with ALICE’s experimental data, we add non-
perturbative effects through a single parameter extracted from Monte-Carlo simulations.
This factor, thoroughly explained in section 3.2, is provided in figure 13, where we took
the ratio of MCs before and after hadronisation. Besides the default settings of Pythia
and Herwig, we show two additional curves in which the parton shower cutoff, denoted
as μparton

NP , in Herwig is changed from its default value of 1 GeV to the number used in
Pythia where μparton

NP =0.5 GeV. Note that changing this factor does not necessarily imply
a one-to-one correspondence between the two event generators. The value of this factor,
like any other hadronisation-related parameter, is tuned to data. Then, one cannot vary
it when running the Monte-Carlo at hadron level because its predictive power would be
negatively affected. Therefore, we only vary this factor for the parton level result, that is,
for the denominator of our non-perturbative factor.

The point of the variation of the parton shower stopping is to demonstrate the sen-
sitivity of the dynamically groomed observables to that scale, and the limitations of this
method for incorporating hadronisation corrections into analytic calculations. This is man-
ifest in figure 13, where the hadron-to-parton ratio varies from 0.5 to 2.5 for those settings
that share the same value of μparton

NP , while it explodes for the default Herwig-AO and
Herwig-Dip in the limit of non-perturbative values of (kt,g, zg, θg). In the latter case, the
reason for the rapid growth of the non-perturbative factor, e.g. in the low kt regime, is
rooted in the fact that the parton-level shower does not generate splittings below μparton

NP ,
while hadronization and underlying event populate this part of the phase-space. In terms
of Lund planes, the area covered by the parton-level result and the hadron level one are
clearly distinct in Herwig. This effect is less pronounced whenever μparton

NP is low, as in
default Pythia. This is explicitly shown in figure 14.

As we have already mentioned, there is no preferred value of μparton
NP when running

parton level simulations and the large variations encountered in the non-perturbative factor
simply indicate that the parton-level results are out of their regime of applicability. Then,
we decide to use the average of the Monte-Carlo generators with the same value of μparton

NP
as the central value of the non-perturbative factor. The uncertainty band is obtained from
the envelope of the five MC settings.
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Figure 12. Impact of different clustering strategies in kt,g as a function of a for dijet events at
parton level in PYTHIA with

√
s=13 TeV for kt,g (top), θg (center) and zg (bottom).

– 40 –



J
H
E
P
0
7
(
2
0
2
1
)
0
2
0

2 4 6
kt,g[GeV]

0.0

2.5

5.0

7.5

10.0

ha
dr

on
pa

rt
on

DyG – a = 1

Pythia8
Herwig7–AO

μ
parton
NP = 0.5 GeV

Herwig7–Dip

μ
parton
NP = 0.5 GeV

2 4 6
kt,g[GeV]

60 < pch
T < 80 GeV

|η| < 0.5, anti-k⊥(R = 0.4)

DyG – a = 2

0.0 0.2 0.4 0.6 0.8
θg

0

5

10

15

ha
dr

on
pa

rt
on

0.0 0.2 0.4 0.6 0.8 1.0
θg

0.0 0.1 0.2 0.3 0.4
zg

2

4

6

8

ha
dr

on
pa

rt
on

0.0 0.1 0.2 0.3 0.4 0.5
zg

Figure 13. Ratio of hadron-to-parton level distributions for kt,g (top), θg (middle) and zg (bot-
tom) with five different Monte-Carlo settings: Pythia8 (dotted, purple), Herwig7-AO with default
parameters (orange, dashed) and with the shower cut-off set to 0.5 GeV at parton level only (orange,
loosely dashed), Herwig7-Dip with default parameters (gold, dotted dashed) and with the shower
cut-off set to 0.5 GeV at parton level only (gold, loosely dotted dashed).
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Figure 14. Lund planes generated by the three Monte-Carlo setups used in this work, Herwig7-Dip
(top), Herwig-AO (center) and Pythia8 (bottom), with ALICE kinematics and a=1.

E Monte-Carlo description of (zg, θg, kt,g) data

In this appendix we compare the three Monte-Carlo settings that we explore through this
paper, i.e. Pythia8, Herwig7-AO and Herwig7-Dip, to the preliminary ALICE data. The
results are shown in figure 15. Notice that through these comparisons we are testing simul-
taneously the parton shower, i.e. dipole-style or angular-ordered, and the hadronization
mechanism, i.e. Lund string or cluster models. In the case of kt,g, no significant differences
are observed among all Monte-Carlos. For θg, Herwig7-Dip provides the best description
of the data from small to large angles. All three Monte-Carlo settings are able to capture
the data in the intermediate range of this measurement 0.4<θg <0.7 and differences only
appear in the tails of figure 15, where the hadronization mechanism seems to dominate for
θg <0.4. Finally, all Monte-Carlos show a significant depletion at 0.2<zg <0.3 that is ame-
liorated for a=1. Pythia achieves the best theory-to-data ratio, but its not obvious for this
observable to disentangle between parton-shower dominated differences and hadronization
mechanisms.
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Figure 15. Monte-Carlo to data comparison of kt,g (top), θg (middle) and zg (bottom) for a = 1
(left) and a=2 (right) in the Dynamical Grooming condition, see eq. (1.1). In the bottom panels,
the theory-to-data ratios, computed using the same binning as the data, are presented.
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1 Introduction

Quarks and gluons, the constituents of the proton, are fundamental entities of essential
relevance for physics at the Large Hadron Collider (LHC) at CERN. While these particles
are ubiquitous at hadron colliders, they are never observed directly, but rather fragment and
hadronise immediately into collimated sprays of colourless hadrons. These decay products
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are referred to as jets and are generally defined through the application of a sequential
recombination algorithm (see e.g. [1, 2]).

As most of the jets observed at collider experiments arise from the fragmentation of a
light parton, a detailed understanding of their properties is crucial for experimental analy-
ses. In this context, many experimental studies make use of tools that reliably identify the
flavour of jets, e.g. to enhance signals from new physics (decaying predominantly to quarks)
from QCD backgrounds (producing predominantly gluon jets). Since quark and gluon
branch into one another, it is highly non-trivial to even define what is meant by a “quark
jet” or a “gluon jet” (see, for example, the discussion in ref. [3], as well as refs. [4, 5]). As a
direct consequence, it is delicate to introduce a properly-defined flavoured jet algorithm [6].

Over the past decade, jet substructure, the study of the internal dynamics of jets, has
proven a useful approach to study the decay of heavy particles at and above the electroweak
scale, providing a promising avenue to search for signs of new physics beyond the Standard
Model (see [2, 7, 8] for recent reviews). While jet substructure has applications in many
directions including for example precision measurements in QCD and the study of the
quark-gluon plasma produced in heavy-ion collisions, recent years have seen an increasing
interest in leveraging progress in deep learning to a range of jet tagging problems [9–18].

Several jet substructure techniques have been introduced to address the question of
quark/gluon discrimination. This includes jet-shape based observables like jet angulari-
ties [19, 20], energy-energy correlation functions [21] or the jet charge [22–24], counting
observables like the charged track multiplicity or the Iterative Soft Drop multiplicity [25],
as well as a series of recent deep-learning-based approaches using a range of network ar-
chitectures and inputs [26–30]. Other techniques, such as jet topics [4, 31, 32], are based
on a statistical ensemble of events and are directly meant to obtain separate distributions
for quarks and gluons. These are not discussed here as we instead target quark/gluon
discriminants working on individual jets.

Recently, the Lund Jet Plane has been introduced [33] as a powerful technique to
tackle a wide range of jet substructure applications. For example, the primary Lund plane
density has been measured by the ATLAS [34] and ALICE [35] collaborations highlighting,
for example, differences between general-purpose Monte-Carlo event generators. This Lund
plane density is amenable to precision calculations in perturbative QCD [36], showing an
agreement with the ATLAS measurement. Finally, Lund-plane variables can be used as
inputs to machine-learning tagger [30, 33].

In this paper, we will use the Lund plane approach to study quark/gluon discrimi-
nation. We will do this using both an analytic approach and machine-learning tagging
methods. In both cases, we will build two taggers: one based on information from pri-
mary Lund declusterings only, and a second based on the full Lund declustering tree. Our
analytic approach is based on a resummed calculation of the likelihood ratio at the single-
logarithmic accuracy, i.e. matching the logarithmic accuracy obtained in ref. [36] for the
primary Lund plane density. We note that likelihood ratios have already been relied upon
in the context of boosted-jet discrimination, for example, shower deconstruction [37–39].
Our machine-learning taggers follow the guidelines from refs. [30, 33]. One of the main
novelties of this work is that we will aim to gain a first-principles understanding of the
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behaviour of the neural network by comparing it with our analytic discriminants in specific
limits where the analytic approach is known to be optimal. This provides cross-validation
of both approaches, shedding light on the importance of subleading effects in the analytic
tagger and providing information on the convergence of deep-learning methods.

The paper is organised as follows. In section 2 we describe the Lund plane which will
serve as framework for this study. We describe the analytic strongly angular-ordered Lund-
plane discriminant in section 3, both for the primary Lund plane and for the full clustering
tree. We discuss the inclusion of clustering logarithms in section 4. The baseline machine
learning models used in our comparisons are described in section 5, and we provide a
validation of the analytic discriminants against these models using a toy shower in section 6.
Finally, we perform an in-depth comparison of the performance and resilience of a wide
range of methods on full Monte Carlo simulations in section 7, showing that our approaches
are either better or on par with state-of-the-art methods both in terms of discriminating
power and in terms of resilience.

The code implementing our analytic quark-gluon discriminant based on Lund declus-
terings is available at https://gitlab.com/gsoyez/lund-quark-gluon.

2 Lund plane(s) and baseline discriminants

In order to fix once and for all the notations to be used throughout this paper, we briefly re-
mind the reader of how the primary Lund plane declusterings are constructed [33]. We also
introduce a generalisation beyond the primary plane that instead keeps the full declustering
tree that we exploit later in this paper.

Primary Lund declusterings. For a given jet, we first recluster its constituents with
the Cambridge/Aachen algorithm [40, 41].1 We then build the list of primary declusterings
as follows:

1. start with j being the full reclustered jet;

2. undo the last step of the clustering, j → j1 + j2, giving two subjets j1 and j2. We
assume without loss of generality that j1 is the “harder branch” i.e. that pt1 > pt2.

3. We define the set of coordinates T = {Δ, kt, z, ψ, . . . } for this branching:

Δ =
√

(y1 − y2)2 + (φ1 − φ2)2, kt = pt2Δ,

z = pt2
pt1 + pt2

, ψ = tan−1 y2 − y1
φ2 − φ1

. (2.1)

4. Iterate by going back to step 2 with j ← j1.

This produces a tuple, ordered from the first declustering to the last,

Lprimary = [T1, . . . , Ti, . . . , Tn] (2.2)

that we refer to as the primary Lund declusterings associated with the jet j.
1The reason why we use the Cambridge/Aachen algorithm instead of other algorithms of the generalised-

kt family [42] algorithm, is discussed in section 2.4 of ref. [33].
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The averaged primary Lund plane density is then simply defined as the average number
of declusterings for a given ln Δ and ln kt:

ρ(Δ, kt) = 1
Njets

d2N

d ln Δ d ln kt
. (2.3)

This quantity has been measured by the ATLAS collaboration in ref. [34] (see also ref. [43]
for a preliminary ALICE measurement) and studied analytically in ref. [36].

Lund declustering tree. Instead of focusing only on following the hardest branch
through the declustering, one can retain the full Cambridge/Aachen tree structure yielding
an associated tree of Lund variables:

Ltree(j) = [(T (j), Ltree(j1), Ltree(j2))] (2.4)

where the tree, Ltree(j), associated with a jet j has a set T (j) of Lund coordinates associated
with the branching j → j1 + j2, with pt1 > pt2, as well as sub-trees Ltree(j1) and Ltree(j2)
associated with j1 and j2 respectively. Note that this structure can be flattened into a tuple

Ltree(j) = [(T1, ihard,1, isoft,1) , . . . , (Ti, ihard,i, isoft,i) , . . . , (Tn, ihard,n, isoft,n)] , (2.5)

where ihard,i (resp. isoft,i) indicate the index in the tuple for the next branching along the
hard (resp. soft) branch, or 0 in the lack thereof.

Iterated Soft Drop multiplicity. The iterated Soft Drop multiplicity [25] can be
straightforwardly defined from the tuple of primary Lund declusterings as the number of
declusterings satisfying a given Soft Drop [44, 45] condition zi > zcut(Δi/R)β with R the jet
radius and zcut and β the Soft Drop parameters, with β < 0. A standard choice is to take
β = −1 so as to effectively use Soft Drop to impose a cut on zΔ which is similar to a kt scale.
In this paper, we define the iterated Soft Drop multiplicity as the number of primary declus-
terings above a fixed kt cut. This is motivated by the fact that a dimensionful kt cut is more
adequate than a cut on zΔ to separate between a perturbative region (kt > kt,cut) and a
non-perturbative region (kt < kt,cut).2 The use of a kt cut will also be used with all the other
methods introduced in this paper, allowing for a direct comparison of their performance.

Analytically, one can show that the Iterated Soft Drop multiplicity is the optimal
quark-gluon discriminant in the double-logarithmic approximation (see below for a proof).

Baseline discriminant: the average Lund-plane density. The baseline approach
we will consider throughout this paper is the one that was introduced in ref. [33]. We first
compute the average primary Lund plane densities ρq,g(Δ, kt) separately for the quarks
and gluons samples, respectively. For a given jet with Lund declusterings {(Δi, kt,i)}, we
then define a likelihood ratio

Ldensity =
∏

i

ρg(Δi, kt,i)
ρq(Δi, kt,i)

. (2.6)

In practice, the average densities ρq,g(Δ, kt) are computed in bins of ln Δ and ln kt.
2The fundamental physics motivation behind this choice is that, in a resummed calculation in perturba-

tive QCD, the scale entering the strong coupling is typically the kt of the emission.
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This approach has already shown to give good results when applied to discriminating
boosted W bosons from QCD jets. The application to quark-gluon discrimination con-
sidered in this paper is actually simpler as it does not involve a separate isolation and
treatment of a hard two-prong decay as was the case in [33] for boosted W tagging.

Eq. (2.6) would be an optimal discriminant if the Lund plane declusterings were inde-
pendent. We know that this is not the case in practice due to effects such as the energy lost
by the leading parton, flavour changes and clustering effects, as discussed in [36]. However,
we still expect this approach to yield a better performance than the Iterated Soft Drop
multiplicity as it captures some aspects of the quark and gluon radiation patterns beyond
the soft-collinear approximation. Throughout this paper, we will consider quark-gluon tag-
ging using the average Lund plane density as a reference approach from which we want to
build more performant discriminants.

3 Analytic discriminants in the Lund-plane with strong angular ordering

3.1 Generic considerations

In this section, we introduce a series of quark-gluon discriminants based on a first-principles
treatment of the Lund plane declusterings in perturbative QCD. The performance of these
new tools will be assessed later in sections 6 and 7.

The core idea is to explicitly compute the likelihood ratio

L = pg(L)
pq(L) , (3.1)

for a set of Lund declusterings L — either primary-only or including the full tree — where
pq,g(L) denotes the probability to observe the given set of Lund declusterings assuming the
jet is either initiated by a quark or by a gluon.3 For this procedure to be infrared-and-
collinear safe, we only consider emissions above a given (relative) transverse momentum
cut, i.e. require kt ≥ kt,cut.

In the (double-logarithmic) soft-collinear limit, emissions are independent and the
single-emission probability for quarks and gluons only differ by the overall colour factor
(CF for a quark, CA for a gluon). For n primary emissions Ti, one therefore has

LLL =
∏

i

pg(Ti)
pq(Ti)

=
(

CA

CF

)n

. (3.2)

This shows that the likelihood ratio is only a (monotonic) function of n and hence that the
iterated Soft Drop multiplicity is the optimal discriminant at leading (double) logarithmic
accuracy. In this limit, additional, non-primary, declusterings in the full Lund tree all come
with a factor CA and therefore do not contribute to eq. (3.2).

In what follows, we want to extend this result to single-logarithmic accuracy, as what
was done in [36] for the average primary Lund plane density. For this, several single-
logarithmic effects have to be taken into account: (i) corrections to the running of the

3Throughout this paper, we do not distinguish between quarks and anti-quarks.
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strong coupling, (ii) collinear effects stemming either from splittings where the flavour of
the leading parton changes or from finite z splittings, (iii) clustering effects where the exact
Cambridge/Aachen clustering has to be taken into account for multiple soft emissions at
commensurate angles, and (iv) effects of multiple soft emissions at large angles.

In the (soft-collinear) limit where emissions are independent, running coupling effects
— (i) in the above list — do not change the double-logarithmic result in eq. (3.2) as both
the quark and gluon probabilities are multiplied by αs taken at the same scale, namely
the (relative) kt of the emission. Running-coupling corrections will nevertheless appear
together with the other single-logarithmic contributions and this is discussed below.

Next, the effect of soft-wide-angle radiation — (iv) in the above list — depends on the
details of the hard process that underlines the samples of quark and gluon jets. These con-
tributions would, for example, be different in “quark jets” in qg → Zq and qq → qq events
(see e.g. the discussion in refs. [3, 46]). In this paper, we will focus on universal aspects
in the collinear limit and therefore neglect these contributions which scale like the square
of the jet radius. (For phenomenological applications in section 7, we will therefore use
R = 0.4.) Beyond the small-radius limit, soft-wide-angle effects would have to be included.
In this case, one should consider the approach where one has to discriminate a specific
“quark-enriched” signal process from a specific “gluon-enriched” background process. This
study goes beyond the scope of this paper. It would nevertheless be interesting, in a follow-
up study, to investigate if the analytic techniques developed in this paper could be used to
assess the process-dependence of quark-gluon tagging, potentially in combination with the
concept of jet topics [31].

In a similar spirit, fixed-order (e.g. NLO) corrections to the underlying hard process
would also be process-specific and, as such, fall beyond the scope of this paper. That said,
if we were to address a process-specific tagging using our analytic techniques, NLO effects
would become relevant in two cases. Firstly, in the context of our resummed approach,
the would start contributing one order beyond our single-logarithmic approach. Secondly,
exact fixed-order corrections would impact the region of large quark and gluon tagging
efficiencies (see e.g. the discussion in ref. [5]).

Clustering effects are delicate to handle in an analytic calculation as even in the large-
Nc limit they, in principle, require the full matrix angular dependence for an arbitrary
number of emissions strongly-ordered in energy. Since we can expect that collinear effects,
and flavour-changing contributions in particular, are numerically dominant in the context
of quark-gluon discrimination, we will as a first step neglect clustering effects. In other
words, in this section we work in the regime where emissions are strongly ordered in angle
and derive a quark-gluon discriminant either using only primary emissions, section 3.2, or
using the full clustering tree, section 3.3.

We come back to the question of clustering logarithms in section 4. We will see
explicitly in our Monte Carlo simulations in section 7 that clustering effects have a smaller
numerical impact on quark-gluon discrimination than the collinear enhancements.
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3.2 Optimal discriminant for primary Lund declusterings

We start by considering only the primary Lund plane declusterings {(Δi, kt,i)} with kt ≥
kt,cut. For these, we want to compute the likelihood ratio

Lprimary = pg({Δi, kt,i, zi, . . . })
pq({Δi, kt,i, zi, . . . }) , (3.3)

at single logarithmic accuracy in perturbative QCD, in the limit where the emissions are
strongly ordered in angle, i.e. that Δ1  Δ2  · · ·  Δn. In this limit, we should include
in eq. (3.3) the contributions associated either with the running of the strong QCD coupling
effects, or with any hard-collinear effect.

The quark and gluon probability distributions can be computed iteratively starting
from the first (largest-angle) splitting. A key point to take into account is the fact that
collinear branchings can change the flavour of the leading branch, either through a g → qq̄

splitting, or through a q → qg splitting where the emitted gluon is harder than the final
quark. At each splitting, we should therefore keep track of the flavour of the leading parton
as well as of its splitting fraction z and its relative transverse momentum kt. It is convenient
to introduce a matrix

p
(i)
ab ≡

(
p(qi|q0) p(qi|g0)
p(gi|q0) p(gi|g0)

)
, (3.4)

where p(bi|a0) denotes the probability that the harder branch has flavour b after the ith

declustering, given that it started (at step “0”) with a jet of flavour a. This matrix is
initialised as p

(0)
ab = δab and is recursively constructed from step i − 1 to step i for each of

the i = 1, . . . , n Lund declusterings.

Assuming that just before branching i the jet has flavour a, the probability after
branching i should include two effects: (i) the probability that the splitting has the observed
kinematic properties Δi, zi, . . . , potentially including a change of the leading flavour, and
(ii) a Sudakov factor implementing the fact that no emission has occurred between the
previous angle Δi−1 and Δi (with Δ0 ≡ R), and with kt > kt,cut. This Sudakov resums
the virtual corrections between Δi−1 and Δi. This leads to the recursion

p
(i)
ab = αs(kti)

πΔi

(
P̃qq(zi) P̃qg(zi)
P̃gq(zi) P̃gg(zi)

)(
S

(i−1,1)
q 0

0 S
(i−1,1)
g

)
p

(i−1)
ab . (3.5)

In this expression, the splitting kernels P̃ab are directly related to the Altarelli-Parisi split-
ting functions with the extra requirement that since the declustering procedure follows the
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hardest branch one should impose zi < 1
2 :4

P̃qq = Pgq(z)Θ
(

z <
1
2

)
= CF

1+(1−z)2

z
Θ

(
z <

1
2

)
, (3.6a)

P̃gq = Pqq(z)Θ
(

z <
1
2

)
= CF

1+z2

1−z
Θ

(
z <

1
2

)
, (3.6b)

P̃qg = [Pqg(z)+Pqg(1−z)]Θ
(

z <
1
2

)
= 2nf TR[z2 +(1−z)2]Θ

(
z <

1
2

)
, (3.6c)

P̃gg = [Pgg(z)+Pgg(1−z)]Θ
(

z <
1
2

)
= 2CA

[1−z

z
+ z

1−z
+z(1−z)

]
Θ

(
z <

1
2

)
. (3.6d)

The Sudakov factors, S
(i−1,i)
q,g , between the angle of the last splitting Δi−1 and the angle of

the current splitting Δi is computed as

S
(i−1,i)
f = exp

[
−

∫ Δi−1

Δi

dΔ
Δ

∫
dz

αs(ptizΔ)
π

Pf (zi)Θ(ptizΔ > kt,cut)
]

, (3.7)

with Pf the total splitting function for a parton of flavour f and pti the transverse mo-
mentum (with respect to the beam) of parton i before splitting. The kt of the emission is
taken as ptizΔ which is equivalent to our definition in eq. (2.1) in the collinear limit.5 This
Sudakov is evaluated at next-to-leading logarithmic (NLL) accuracy with Δi � Δi−1, and
we find

S
(i−1,i)
f = exp

{
− Cf

2παsβ2
0

[
(1 − λi−1) ln 1 − λi−1

1 − λcut
− (1 − λi) ln 1 − λi

1 − λcut
− λi + λi−1

− αsβ1
β0

(1
2 ln2(1 − λi) − 1

2 ln2(1 − λi−1) + λi − λi−1
1 − λcut

ln(1 − λcut)
)

+
(

αsK

2π
− αsβ1

β0

)(
λi − λi−1
1 − λcut

− ln 1 − λi−1
1 − λi

)]}
, (3.8)

with αs ≡ αs(pt,jetR),

λi−1 = 2αsβ0

(
ln R

xΔi−1
− Bf

)
, β0 = 11CA − 4nf TR

12π
, (3.9a)

λi = 2αsβ0

(
ln R

xΔi
− Bf

)
, β1 = 17C2

A − 5CAnf − 3CF nf

24π2 , (3.9b)

λcut = 2αsβ0 ln pt,jetR

kt,cut
, K =

(
67
18 − π2

6

)
CA − 5

9nf , (3.9c)

Bq = −3
4 Bg = −11CA − 4nf TR

12CA
, (3.9d)

4We have chosen notations where the indices of the P̃ kernels represent the flavour of the hard branch,
so as to make the matrix product in eq. (3.5) more obvious. As a consequence, these indices do not
always match with the standard indices in the Altarelli-Parisi kernels where the indices instead refer to
the flavour of the emitted parton with momentum fraction z. Finally, our probability distributions are
taken differentially in Δi and zi. The specific choice of variables is however irrelevant for the problem of
quark-gluon classification as it cancels in the likelihood ratio.

5Conversely, the value of pti can be deduced from Δi, kti and zi using pti = kti/(ziΔi).
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and x defined as the momentum fraction of the total jet momentum carried by the subjet j

before branching i. We note that in the rare occurrences where the Lund declusterings are
not ordered in angle — which cannot be ruled out with the Cambridge/Aachen declustering
procedure — we set the Sudakov to Sf = 1. We also point out that the contribution from
hard-collinear splitting to the above expressions have been computed by setting an upper
bound eBf on the z integration in (3.7). This is correct at NLL accuracy. Although it has
the drawback to insert uncontrolled subleading corrections — compared to the traditional
expression which can be recovered by keeping only the first non-trivial term in Bf — it
has the advantage of having a clean endpoint, i.e. Sf = 1 for λi−1 ≤ λcut.

If we introduce the short-hand notations P̃
(i)
ab and S

(i,i−1)
ab ≡ δabS

(i,i−1)
a for the full split-

ting matrix and Sudakov matrix, the probabilities after including all the Lund declusterings
takes the form

p(final) = S(n+1,n)P̃ (n)S(n,n−1) . . . P̃ (i)S(i,i−1) . . . P̃ (1)S(1,0)p(0), (3.10)

where the leftmost factor in the right-hand side takes into account the fact that there are no
more emissions between the angle of the last declustering, Δn, and the smallest angle acces-
sible after the last splitting: Δn+1 ≡ Δmin = kt,cut/ptn with ptn the transverse momentum
(with respect to the beam) of the leading parton after the last declustering. Eq. (3.10) has
the simple physical interpretation of successive primary branchings, producing the factors
P̃ (i), interleaved with Sudakov factors, S(i,i−1), which resum virtual corrections between
two primary emissions. Finally, the probabilities associated with an initial quark or gluon
jet are given by

pq({Δi, kt,i, zi, . . . }) = p(final)(q|q0) + p(final)(g|q0), (3.11a)

pg({Δi, kt,i, zi, . . . }) = p(final)(q|g0) + p(final)(g|g0), (3.11b)

translating the fact that we are inclusive over all flavours of the final leading parton.
The probabilities in eqs. (3.11) can be directly inserted in (3.3) to obtain a quark-

gluon discriminant. It is, by construction, the optimal discriminant at single-logarithmic
accuracy in the limit where the declusterings are strongly ordered in angle. Since the above
procedure keeps track of the flavour and momentum fraction x of the leading parton at
each step, it takes into account the possible correlations between the different declusterings,
hence going beyond the independent-emission assumption used with the average Lund plane
density (section 2, eq. (2.6)).

3.3 Extension to the full clustering tree

While non-primary (secondary, tertiary, . . . ) declusterings have no impact at leading-
logarithmic accuracy, they start carrying information at our single-logarithmic accuracy.
Generalising the approach from the previous section to the full clustering tree is mostly a
technical step. This time, we therefore settle to compute

Ltree = pg(Ltree)
pq(Ltree)

(3.12)

in the strongly angular-ordered limit.
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This is again done recursively over the full (de-)clustering tree. For this, consider a
declustering jparent → jhard + jsoft, with kinematic variables T , i.e. with an angle Δ, a soft
momentum fraction z and relative transverse momentum kt. The probabilities associated
with the parent jet can be deduced from those of the subjets as follows:

pq(Lparent) = Sq(Δprev, Δ)
[
P̃qq(z)pq(Lhard)pg(Lsoft) + P̃gq(z)pg(Lhard)pq(Lsoft)

]
(3.13a)

pg(Lparent) = Sg(Δprev, Δ)
[
P̃gg(z)pg(Lhard)pg(Lsoft) + P̃qg(z)pq(Lhard)pq(Lsoft)

]
(3.13b)

where Δprev is the angle at which the last declustering before the one under consideration
happened (with Δprev = R for the first declustering). As in section 3.2, S(Δprev, Δ) is a
Sudakov factor imposing that no other emission with kt > kt,cut occurred since the last
declustering at an angle Δprev, cf. eq. (3.8).6 The splitting kernels P̃ab are the same as in
eq. (3.6). These expressions have the same form as eq. (3.5) except that, at each step, they
also include the probability for the soft branch.

This recursion is applied until each branch can no longer be declustered in which case,
if the last splitting has occurred at an angle Δlast, one then just includes a factor

pq(L = ∅) = Sq(Δlast, Δmin), (3.14a)
pg(L = ∅) = Sg(Δlast, Δmin), (3.14b)

where, as for the primary case, Δmin = kt,cut/pt for a final branch of momentum pt.

4 Beyond strong angular ordering: including clustering logarithms

4.1 Generic considerations

We conclude this section on analytic methods by discussing the inclusion of clustering
logarithms in our approach. These logarithms arise from situations where we have at least
two emissions with commensurate angles and the exact Cambridge/Aachen clustering has
to be considered in order to label the emissions as primary, secondary, ternary, etc. When
the emissions at commensurate angles are strongly ordered in energy, this leads to single-
logarithmic contributions (see e.g. [36]).

In practice, the Cambridge/Aachen clustering can produce clusterings which are not
in agreement with the naive physical expectation. Consider for example a quark-initiated
jet with two gluon emissions. The harder emission is emitted from the quark and comes
with a colour factor CF . The softer emission can either be seen as emitted from the quark,
with a colour factor CF , or as emitted from the gluon, with a colour factor CA. When the
two emission angles are similar, the actual Cambridge/Aachen clustering will sometimes
cluster the second gluon in the C2

F contribution with the first gluon, yielding a secondary
Lund declustering, or, conversely, cluster the second gluon from the CF CA contribution
with the hard quark, yielding a primary declustering.

6Although we have only made explicit the angular dependence, the Sudakov factors also depend on the
prong momenta.
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In order to compute these contributions, we need the full angular structure of the
matrix elements for an arbitrary number of emissions at commensurate angles. When
computing the average Lund plane density, this can be addressed, at least in the large-Nc

limit, by a Monte Carlo integration similar to the one used to resum non-global logarithms
in [47]. (See [48] for an approach valid at finite Nc.)

In our quark-gluon-discrimination application, one would have to keep track of all the
possible colour configuration with which an emission can be radiated by the full set of
emissions at larger transverse momentum (or, at our accuracy, at larger energies). This
is beyond what can be practically achieved. Instead, we will adopt a simplified approach
where we apply a matrix-element correction which only describes correctly situations where
(any number of) pairs of emissions are at commensurate angles. This is similar in spirit
to the NODS scheme introduced in [49] to implement subleading-Nc corrections in parton
showers.7

4.2 Clustering logarithm with the full Lund tree

Since clustering logarithms have an explicit dependence on radiation in/from different
leaves, we first consider the situation where the quark-gluon tagging is done using the
full Lund declustering tree. The case where only primary radiation is considered will be
discussed in section 4.3 below.

In our approximation where we only allow for two emissions at commensurate angles,
we then consider two declusterings T1 ≡ {Δ1, kt1, z1, ψ1} and T2 ≡ {Δ2, kt2, z2, ψ2}, with
Δ1 ∼ Δ2 � 1. Since clustering corrections happen for two emissions at similar angles
and we only aim at describing the configurations where we have only pairs of particles
at commensurate angles, we can assume that T1 and T2 correspond to consecutive Lund
declusterings and that all the other emissions are at widely different angles. We can further
assume that T1 happens before T2 in the sequence of declusterings, i.e. Δ1 > Δ2. Our
approach is to modify the emission probability in eq. (3.12) for T2 to include corrections
due to the presence of T1.

There are two main kinematic configurations to consider: either T1 and T2 are both
reconstructed as consecutive “primary” emissions from the same hard branch, or T2 is
reconstructed as a “secondary” emission from T1.8 In the “primary” case, we can either
have z2 � z1 (kt2 � kt1) or z2  z1 (kt2  kt1), while in the “secondary” case we can
assume z2 � z1 (kt2 � kt1). This is illustrated by the Lund diagrams in figure 1. At
single-logarithmic accuracy, the clustering correction is computed in the flavour channel
where both emissions are gluons. The distinction between the primary and secondary
cases is decided by the Cambridge/Aachen clustering. In both cases, if CR is the colour
factor of the common hard branch, the matrix element corresponding to a given clustering

7Note the key difference that the NODS method produces the correct behaviour at large-Nc for any
number of emissions at commensurate angles. The matrix-element correction only applies to subleading-Nc

corrections. In our case, the correct behaviour is only guaranteed for pairs of emissions at commensurate
angles even in the large-Nc limit.

8Primary and secondary are here counted from the hard branch common to both emissions, even if this
one can be anywhere in the Lund tree.

– 11 –



J
H
E
P
0
8
(
2
0
2
2
)
1
7
7

primary, z2 � z1

1

2

1

2

1

2

(a)

primary, z2 � z1

1

2

2

1

2

1

(b)

secondary

1

2

1

2

1

2

(c)

Figure 1. Schematic representation of the three kinematic configurations affected by clustering
logarithms. We consider two consecutive declusterings T1 and T2 with T2 occurring after T1 in the
Lund sequence. If T2 is reconstructed as “primary” (i.e. in the same plane as T1) it can either be
much softer (case (a)) or much harder (case (b)) than T1. Case (c) describes the situation where
T2 is reconstructed as a secondary emission from T1, and hence can be considered much softer.

sequence will have a contribution proportional to C2
R and one proportional to CRCA. In

the strongly-angular-ordered limit, only the first term (C2
R) contributes to the “primary”

clustering and only the second term (CRCA) to the “secondary” clustering. The gluon-
emission diagrams shown in figure 1 represent the two contributions for each clustering
case. The first particles to cluster are highlighted in blue.

Let us first handle the case where T1 and T2 are both “primary” emissions. Say the
parent parton has a colour factor CR. If z1  z2, the CR d2Δ2/Δ2

2 behaviour which
corresponds to the collinear limit in section 3.3 should be replaced by the full soft-gluon
radiation squared matrix element[

CA

2
1

Δ2
12

+ CA

2
Δ2

1
Δ2

12Δ2
2

+
(

CR − CA

2

) 1
Δ2

2

]
d2Δ2, (4.1)

where Δ2
12 = Δ2

1 + Δ2
2 − 2Δ1Δ2 cos(ψ2 − ψ1) is the angle between the two emitted gluons.

This means that, in the gluon emission part of eq. (3.5), we should apply a correction factor

Ωprim = 1 + CA

2CR

(
Δ2

2
Δ2

12
+ Δ2

1
Δ2

12
− 1

)
. (4.2)

It is straightforward to show that the “primary” case with z1 � z2, gives the same cor-
rection Ωprim. As expected, Ωprim → 1 when Δ1  Δ2 (or when Δ1 � Δ2) so that
the strongly-ordered limit is recovered. Since both emissions are primary, we never have
Δ12 � Δ1, Δ2.

We now turn to the “secondary” case where T2 is emitted from the soft branch of T1.
Here, Δ2 is the angle between the emissions T1 and T2, i.e. Δ2 ≡ Δ12, and we denote by
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(a) (b)

Figure 2. Clustering correction factors Ωprim (primary) and Ωsec (secondary) for quark (left)
and gluon (right) leading partons. The black regions correspond to the kinematic regions where
emissions are not clustered in the indicated Lund plane.

Δ02 = Δ2
1 + Δ2

2 − 2Δ1Δ2 cos(ψ2 − ψ1) the angle between T2 and the hard branch of T1. In
the collinear limit this would correspond to a factor CA/Δ2

2 which has to be replaced by
the full angular structure

CA

2
1

Δ2
2

+ CA

2
Δ2

1
Δ2

02Δ2
2

+
(

CR − CA

2

) 1
Δ2

02
, (4.3)

yielding a correction factor

Ωsec = 1
2

(
1 + Δ2

1
Δ2

02
+ Δ2

2
Δ2

02

)
+ CR

CA

Δ2
2

Δ2
02

. (4.4)

Without surprise, Ωsec → 1 if Δ2 � Δ1, recovering the strongly-ordered case. The correc-
tion factors Ωprim and Ωsec are plotted in figure 2. We see that they are indeed localised
around the region where both emissions have commensurate angles. They tend to be larger
for quarks than for gluons.

It is interesting to notice that the above correction which accounts for clustering log-
arithms introduces a dependence on the azimuthal angle ψ. It is the only dependence on
ψ at the single logarithmic accuracy.

In principle, the Sudakov factors should also receive single-logarithmic corrections due
to clustering effects. Since clustering logarithms only affect flavour-diagonal emissions of
two soft gluons (at least within our approximations), it is however relatively straightforward
to convince oneself that these corrections only lead to a reshuffling of some contributions be-
tween different factors in the overall probability distribution and can therefore be neglected.
This can be understood as follows. Suppose one has a parton emitting a gluon “1” at an
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angle Δ1. In our approach, that the previous emission occurred at an angle Δ0 and that
the following emissions on the hard and soft branches occur at angles Δ2,hard and Δ2,soft
respectively. In the strongly-ordered limit, emission “1” is involved in three contributions
to the Sudakov: one between Δ1 and Δ0, one between Δ2,hard and Δ1, and one between
Δ2,soft and Δ1. Within our approximation, if we want to compute the corrections to the
Sudakov at angles commensurate with Δ1, we can assume that all the other emissions are
at widely separate angles, i.e. Δ2,hard, Δ2,soft � Δ1 � Δ0. To compute the overall Sudakov
factor, summed over the three regions described above, one should integrate the exact ma-
trix element, including the full angular structure. Within our approximation where we only
target correctness for two emissions at commensurate angles, this integral is proportional to
CR log(Δ0/Δ2,hard) + CA log(Δ1/Δ2,soft), which is the same as the strongly-ordered limit.

In practice, inserting corrections factors due to clustering logarithms in eq. (3.13)
requires some care as it depends whether the Lund declustering, T , that it implements
comes from following the hard or the soft branch at the previous declustering. First, at our
single-logarithmic accuracy, clustering corrections are only non-trivial for two successive
gluon emissions. Then, say that the previous branching, happening at an angle Δprev is
denoted by Tprev. If T follows Tprev along the harder branch, we only apply a correction
for the contributions where Tprev did not have a flavour change. The correction is then
applied only for the flavour-diagonal contribution with a colour factor CR being CF or CA

depending on the flavour of the hard parton. Conversely, if T follows Tprev along the softer
branch, only the flavour-diagonal term in pg(Lparent) receives a correction with a colour
factor CR given by the flavour of the hard branch at the branching Tprev.

It is interesting to note that the correction factors Ωprim and Ωsec explicitly depend
on the azimuthal angles of the declusterings, which is new compared to the strongly-
angular-ordered case. If we want to consider only the Δ, z and kt variables for each Lund
declusterings (see the discussion in section 7 below), we can integrate out the φ dependence,
averaging over the domain allowed by the fact that the declustering T1 is undone before
T2. We denote these azimuthally-averaged correction factors by Ω̄prim and Ω̄sec. They only
depend on the ratio x = Δ2/Δ1 and are found to be

Ω̄prim
x<1/2= 1 + CA

CR

x2

1 − x2 (4.5a)

x>1/2= 1 + CA

2CR

⎡⎣ 1 + x2

|1 − x2|
1 − 2

π tan−1
(

1+x
|1−x|

√
2x−1
2x+1

)
1 − 2

π tan−1
(√

2x−1
2x+1

)
⎤⎦ (4.5b)

Ω̄sec
x<1/2= 1 + CR

CA

x2

1 − x2 (4.5c)

x>1/2= 1
2 +

[
sgn(1 − x2)

2 + CR

CA

x2

|1 − x2|

] 1 − 2
π tan−1

(
1+x

|1−x|
√

2x−1
2x+1

)
1 − 2

π tan−1
(√

2x−1
2x+1

) . (4.5d)

4.3 Clustering logarithms with primary radiation only

Our last analytic step is to include the effect of clustering logarithms in the Lund quark-
gluon discriminant which only uses primary declusterings. We do this in an approximation
where we only allow for pairs of emissions to be at commensurate angles.
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As for the full Lund tree, two types of corrections should be included: corrections
to the matrix element for the radiation of two soft gluons at commensurate angles, and
potential corrections to the Sudakov factor. Corrections to the real radiation are trivial:
the splitting factors P̃qq(zi) and P̃gg(zi) in eq. (3.5) should be multiplied by a factor Ωprim
(eq. (4.2)), respectively with CR = CF and CR = CA.

Since we are no longer including a Sudakov factor for the soft branch, our previous
argument saying that the overall Sudakov factor was not affected by clustering effects no
longer holds. Let us therefore again consider a gluon emission “1” at an angle Δ1 and
relative transverse momentum kt1. In the soft-gluon limit, the total Sudakov factor at
(relative) transverse momentum scales smaller than kt1 should use the full matrix element
for radiation from the system including both the parent parton and emission “1”, i.e.

− log S
(i−1,i)
f =

∫ kt1

kt,cut

αs(kt)
π2

∫
d2Δ2

[(
CR − CA

2

) 1
Δ2

2
+ CA

2
1

Δ2
12

+ CA

2
Δ2

1
Δ2

2Δ2
12

]
× [1 − Θ(Δ12 < Δ1)Θ(Δ12 > Δ2)] , (4.6)

where the square bracket in the second line imposes that “2” is clustered as a primary
emission. This gives a correction compared to the strongly-angular-ordered case which is
found to be9

− δ log S
(i−1,i)
f = (CA − CR)ξ

[∫ kt1

kt,cut

αs(kt)
π

]
, (4.7)

with ξ = 0.323006. Note that this contribution happens to vanish when the parent parton
is a gluon (CR = CA).

5 Machine learning approaches

5.1 Primary Lund plane and LSTM

A natural approach to adopt is the Deep-Learning technique used in the original study of
the primary Lund Plane [33], which was already showing an excellent discriminating power
in the context of boosted W tagging. Here we only consider the long short-term memory
(LSTM) [50] network architecture as it showed the best performance in [33].

In practice, we input the list of Lund declusterings {(ln Δi, ln kti)} to an LSTM of
dimension 128 connected to a dropout layer (with rate 20%), with a final dense layer of
dimension two and softmax activation. The network weights are initialised with a He
uniform variance scaling initialiser [51], and the training is performed using an Adam opti-
misation algorithm [52] with a batch size of 128, a learning rate of 0.0005 and a categorical
cross-entropy loss function. Our model is implemented using TensorFlow v2.1.0.

The data sample is split into a training sample (80%), a validation sample (10%) and
a testing sample (10%). We train over a maximum of 50 epochs, with an early stopping
when the performance does not increase over four epochs.

9This result is essentially the same as the O(α2
s) clustering logarithms contribution to the primary Lund

plane density found in [36] (see eq. (3.25) there).

– 15 –



J
H
E
P
0
8
(
2
0
2
2
)
1
7
7

For each configuration, we have run five independent trainings. For the quality mea-
sures reported below, the central value is obtained by averaging over the five runs and the
uncertainty band is taken as their envelope.

5.2 Full Lund tree and Lund-Net

In order to take full advantage of the information contained in secondary leaves of the Lund
plane, we consider the Lund-Net model introduced in ref. [30] and its associated code [53].

As input, we transform the tree of Lund declusterings into a graph, with the kine-
matic variables T of a declustering serving as attributes of a node on the graph. The
Cambridge/Aachen clustering sequence is used to form bidirectional edges along the nodes
connected in the Lund tree.

The graph architecture uses an EdgeConv operation [54], which applies a multi-layer
perceptron (MLP) to each incoming edge of a node, using combined features of the node
pairs as inputs, producing a learned edge feature. This initial shared MLP consists of
two layers, each consisting of a dense network with batch normalisation [55] and ReLU
activation [56], which are followed by an aggregation step taking an element-wise average
of the learned edge features of the incoming edges as well as a shortcut connection [57].
The same MLP is applied to all nodes, leading to updated node features but keeping
the structure of the graph unchanged. The Lund-Net architecture consists of six such
EdgeConv blocks stacked together, and the number of channels of the MLPs are (32, 32),
(32, 32), (64, 64), (64, 64), (128, 128) and (128, 128). Their output is concatenated for each
node, and processed by a MLP with 384 channels, to which a global average pooling is
applied to extract information from all nodes in the graph. This is followed by a final
fully connected layer with 256 units and a dropout layer with rate 10%, with a softmax
output giving the result of the classification. The Lund-Net model is implemented with
the Deep Graph Library 0.5.3 [58] using the PyTorch 1.7.1 [59] backend, and training is
performed for 30 epochs, using an Adam optimiser [52] to minimise the cross entropy loss.
An initial learning rate of 0.001 is used, which is lowered by a factor 10 after the 10th and
20th epochs. As for the LSTM approach, the data sample is randomly split in 80/10/10%
training/validation/testing samples, and we take the average and envelope of five runs.

In this paper, the inputs for each Lund declustering include, by default, ln Δ, ln kt, ln z

and ψ. In section 6 which probes the collinear limit of our discriminants, the azimuthal
angle is irrelevant and therefore not included in any of our approaches. Furthermore, in
section 7.4 we discuss the effect of adding particle-ID information to the inputs, and in
section 7.5 we discuss the effect of the azimuthal angle ψ. When imposing a cut on the
(relative) transverse momentum, only the Lund declusterings with kt above the cut are
included in the data sample.

6 Validation in a pure-collinear (toy) parton shower

Before turning to a full Monte Carlo-based assessment of the discriminating performance
of the tools introduced in the previous sections, we provide a cross-validation between the
analytic and deep-learning approaches. To do this, we use a setup in which our analytic
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approach in sections 3.2 and 3.3 corresponds to the exact likelihood-ratio discriminant.
This is achieved by generating events directly in the strong-angular-ordered limit, where
our analytic approach from section 3 becomes exact: for simplicity, we use a fixed-coupling
approximation, a fixed initial jet pt of 1 TeV (with R=1)10 and a fixed cut on emissions
kt,cut = 1 GeV. We generate pure-quark and pure-gluon samples by starting the simulation
with either an initial hard quark or an initial hard gluon. We simulate branchings using
the full Altarelli-Parisi splitting functions, keeping track at each emission of the angle Δ
and energy fraction z of the emission. In the strict collinear limit, a parton of momentum
pt branches in two partons of momenta (1 − z)pt an zpt, so the transverse momentum of
each parton in the cascade — or, equivalently, its fraction of the initial jet pt — can be
deduced from the angles (Δi) and momentum fractions (zi) at each branching. In practice,
we have used (a slightly adapted version of)11 the microjet code [60] to simulate events
with strong angular ordering. The Lund declusterings are taken directly from the event
trees, without any reclustering with the Cambridge/Aachen jet algorithm. This guarantees
the absence of clustering logarithms.

Our analytic approaches to quark-gluon discrimination are applied as described in
sections 3.2 and 3.3 except for two details: (i) they have been adapted to use a fixed-
coupling approximation, and (ii) the Sudakov factor in eq. (3.7) has been computed keeping
the full splitting function so as to guarantee that the resulting probability distributions
match exactly that of the generated sample, including corrections strictly beyond our
single-logarithmic approximation. With a fixed-coupling approximation, the calculation of
the Sudakov exponent is relatively straightforward and expressions are given in appendix A
for completeness.

With this setup in mind, we want to check that the machine learning (ML) approach
using an LSTM network trained on primary Lund declusterings (section 5.1) converges to
the same performance as what is given by the analytic approach in section 3.2. Similarly,
we expect that the Lund-Net approach from section 5.2, trained on full Lund trees, gives
the same performance as that of the analytic discriminant based on the full Lund tree
in section 3.3. We also want to check that these new tools offer a better discriminating
power than what is obtained using either the Iterated Soft Drop multiplicity or the average
primary Lund plane density (see section 2).

In practice, we use a sample of 106 events generated with our adapted version of the
microjet code, with αs fixed either to 0.1 or to 0.5. These samples are either used to
compute the analytic discriminant,12 eqs. (3.3) or (3.12) or as inputs to train/validate/test
our neural-network-based models. For the methods using machine-learning, the event
sample is split in 80/10/10% training/validation/testing samples. This is repeated five

10Since we work in the pure collinear limit, the jet radius just plays the role of a reference scale for the
logarithms of the angles, i.e. large-angle corrections scaling like powers of R are absent. The precise value
of R is therefore irrelevant and we chose R = 1 for simplicity.

11Our adaptation compared to the original work in [60] mostly consists in imposing a kt cutoff (instead of
a small cut on z, as well as to keep the full tree of the generated cascade rather than just the final particles.

12For αs = 0.1, our analytic results have been obtained with a sample size of 107 events instead of the
default sample of 106 events. This shows no visually observable differences on the results presented here.
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Figure 3. Area under the ROC curve (AUC) as a function of dimension of the network. The
networks converge to the optimal (analytic) discriminant above ≈ 32 nodes, proving that the
networks learned all the features of the microjet samples.

times for 5 different subdivisions and we take the average and envelope of these five runs
respectively as an estimate of the performance and of the associated uncertainty. The
quark and gluon efficiencies, εq and εg, are defined as the fraction of the events in the
quark and gluon samples, respectively, which pass a cut on the analytic likelihood ratio or
on the network discriminant.

Since the analytic models reproduce the exact likelihood ratio for these collinear sam-
ples, they are expected to provide the optimal discriminants. We first study how the area
under the ROC curve (AUC) evolves as a function of the dimension of the LSTM or Edge-
Conv block in our machine-learning setup, varied between 2 and 256 nodes,13 compared to
the expected exact analytic result. This is shown in figure 3. Here, the AUC is defined as
the area under the (εq, εg) curve, meaning that a lower AUC means a better discriminating
power. It is remarkable that for a network dimension of 32 or above, the neural network is
able to reproduce the expected optimal discriminant to within at most 1%, for both values
of αs. If we look at the full ROC curves, figure 4, we see again the same level of agree-
ment. The larger uncertainty at smaller quark efficiencies is expectable as only a fraction
of the background events pass the tagger. Based on figures 3 and 4, we note a hierar-
chy between the classifiers with Lund-based methods performing better than the Iterated
SoftDrop multiplicity and, among the Lund-based methods, the ones using the full tree
information performing better that the ones using only primary declusterings. Improving
the (logarithmic) accuracy of the analytic approach and exploiting more jet substructure

13For Lund-Net, the dimension refers to the size of the first MLP in the initial EdgeConv block, keeping
the scaling of the successive layers identical to the one in section 5.2.
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(a) αs = 0.1. (b) αs = 0.5.

Figure 4. The ROC curves for the analytic and ML classifiers for the microjet sample. For this
sample, our analytic approach is exact, showing that the neural networks capture the full (single-
logarithmic) information in the training sample.

information both lead to a performance increase. Furthermore, the performance differences
are enhanced as one opens up the phase space to include more emissions (or increase αs).

To further investigate the � 1% difference between the Lund-Net and analytic results
for αs = 0.5, we show in figure 5 the performance this time as a function of the size of the
training sample (keeping the size of the validation and testing samples to 105 jets). The
shaded band around the analytic expectation represent the statistical fluctuations obtained
by splitting the full 106 event sample in 10 subsamples of 105 events, running our analytic
discriminant independently on each subsample. For a testing sample size of 105 jets and
εq = 0.1, we only keep ∼ 0.1%, i.e. ∼ 100, of the gluon jets which is compatible with the
∼ 10% observed statistical uncertainty. One sees that within the statistical uncertainties,
the performance of the Lund-Net approach matches that of the analytic expectation for a
training sample of 4 × 105 events or more. This is seen both for the AUC, figure 5a and for
the ROC curves, figure 5b. In the latter case, the convergence is slightly slower at small
εq = 0.1, as one could have expected.

Before we close this section, we note that additional tests targetting the asymptotic
single-logarithmic limit of full Monte Carlo simulations will be carried on in section 7.6.

– 19 –



J
H
E
P
0
8
(
2
0
2
2
)
1
7
7

(a) AUC. (b) ROC curves.

Figure 5. Convergence of the ML-based Lund taggers as a function of the training sample size
for the AUC (a) and ROC curve (b). The ML testing phase is always performed on the same 100k
events and the shaded band around the analytic results is the fluctuations across different samples of
100k events. The optimal performance is reached for training sample sizes of 400k events and above.

7 Full Monte Carlo simulations

7.1 Setup

We now move to testing the performance of Lund-plane-based quark-gluon discriminants
with full Monte Carlo samples. For our reference quark and gluon samples, we simulated
respectively Z+q and Z+g events with Pythia v8.24 [61, 62] with multi-parton interactions
enabled with the Monash13 tune [63]. For the Z + q sample, only light quark flavours (u,
d and s) have been included. The Z boson is set to decay to invisible neutrinos. Jets
are then reconstructed on the remaining final-state using the anti-kt algorithm [42] with
R = 0.4, as implemented in FastJet [64, 65]. We select at most the two hardest jets
within |y| < 2.5 and keep only the ones with 500 < pt < 550 GeV. For each selected jet,
we recluster its constituents with the Cambridge/Aachen algorithm and we construct the
Lund declusterings following the recipe described in section 2. The studies described below
are performed with quarks and gluon samples of 106 jets each.

To probe the resilience of our quark-gluon discriminants against various effects we
have generated additional event samples. The first one uses the same setup as above with
hadronisation and multi-parton interactions switched off, hence probing the influence of
non-perturbative effects. The second uses dijet events, qq → qq with light quark flavours
and gg → gg, and is meant to probe the dependence on the hard process. The third one
uses the same setup as the reference sample (Z+jet with non-perturbative effects enabled),
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this time generated with Herwig v7.2.0 [66, 67] so as to probe the dependence on the Monte
Carlo generator.

Since our goal in this paper is to address “universal” aspects of quark-gluon tagging
(recall the discussion in section 2), one can consider that varying the Monte Carlo generator
and the hard process yielding the quark and gluon samples provide a picture of how much
freedom there is beyond these universal aspects. For a practical analysis where one would
consider specific signal and background processes, this discussion would have to be revisited
and it would be interesting to include samples including full NLO matrix elements matched
with parton shower, using tools such as MC@NLO [68], Powheg [69–71] or Sherpa [72, 73].

We test a total of six quark-gluon discriminants: the Iterated Soft Drop multiplicity
(nSD) and the discriminant based on the average Lund plane density (Lund density), both
described in section 2, our new analytic discriminants using either the primary declusterings
only (analytic(prim), sections 3.2 and 4.3) or the full declustering tree (analytic(tree),
sections 3.3 and 4.2), and the deep-learning approaches using either only the primary
Lund declusterings (Lund+LSTM (prim)) or the full Lund tree (Lund-Net (tree)) both
described in section 5.

For the analytic models, clustering contributions are included with their dependence
on the azimuthal angle ψ. We further discuss the influence of clustering logarithms and of
the azimuthal angle ψ in section 7.5 below. Our analytic models are only considered in the
presence of a kt cut on the Lund declusterings, guaranteeing infrared-and-collinear safety.

As in the previous section, for the methods using machine learning, the event sample
is subdivided into 8×105 training jets, 105 evaluation jets and 105 testing jets. We use five
different subdivisions of the full sample to assess the uncertainties on the performance. For
the discriminant based on the average Lund plane density, we use the first 9×105 events to
build a (binned) estimate of ρq.g(Δ, kt) and the 105 remaining events as a testing sample.

7.2 Tagging performance

We first look at the performance of our taggers. In this section we use our reference Monte
Carlo sample, i.e. Z+jet events generated with Pythia with hadronisation and multi-parton
interactions enabled. Figure 6 shows the area under the ROC curve as a function of the kt

cut applied on Lund declusterings, and figure 7 shows the ROC curves themselves for two
specific choices of the cut: no cut (figure 7a) or kt > 1 GeV (figure 7b).

Leaving aside for now the methods based on deep learning, we see the expected pattern.
First, the average Lund density brings a small improvement compared to the Iterated
SoftDrop approach. It is interesting to notice that while the performance of the Lund
density approach flattens as the kt cut is lowered, that of ISD gets worse at small kt

cuts. Since the Iterated SoftDrop multiplicity and our analytic approaches are based on
perturbative QCD arguments, one might have anticipated their performance degradation
for low values of the kt cut. In particular, since our analytic models include the running of
the strong coupling with kt, they become unstable as we approach the Landau pole. The
average Lund density approach however directly uses the Pythia sample to estimate the
likelihood and is therefore free of these effects.
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Figure 6. Area under the ROC curve (AUC) obtained using Z+jet events simulated with Pythia.
All the Lund-plane based quark-gluon discriminants studied in the paper are shown: the Iterated
Soft Drop multiplicity (nSD), the likelihood based on the average primary Lund-plane density, and
our new analytic and ML-based discriminants using either primary Lund branchings of the full
Lund declustering tree. The AUC is plotted as a function of the minimum transverse momentum,
kt, cut imposed on the Lund declusterings.

Let us now focus on our analytic discriminants. Compared to the average density
we see a ∼ 5% improvement in the AUC when using only the primary declusterings,
reaching 9% for kt,cut = 1 GeV. As visible in figure 7b, this improvement increases towards
smaller quark efficiency where it can reach 30−50% for εq in the 0.2−0.5 range. Adding
the information from the full clustering tree, this improvement in AUC increases slightly,
reaches e.g. ∼ 12% for kt,cut = 1 GeV. Looking at the ROC curve, this improvement is
seen mostly at large εq with limited impact at smaller εq. As for ISD, the performance of
our analytic models worsens for small kt cuts, below 1 GeV. This is most likely due to a
breakdown of the perturbative approach.

If we now turn to the Lund methods using deep learning, we see a clear improvement
in discriminating power for all kt cuts and across all values of the quark efficiency. The
AUC is reduced (i.e. improved) by 20−40% for a cut on kt below 1 GeV and the gluon
rejection factor is improved by a factor between 2 and 3 for εq in the 0.2−0.5 range.

A striking feature of the machine-learning-based approaches in figures 6 and 7, espe-
cially compared to the results shown in the collinear sample in section 6, is that they show
a substantial performance improvement compared to the analytic models. There can be
several explanations for this. Of course, since our analytic approach is purely perturba-
tive, differences can be of non-perturbative origin. This is certainly the case at very small
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(a) All kt. (b) kt > 1 GeV.

Figure 7. ROC curves corresponding to the AUC showed in figure 6. The left plot corresponds
to all Lund declustering being included while for the right plot a kt cut of 1 GeV has been applied.
Since the methods anchored in perturbative QCD are meant to be effective in the region where
perturbative QCD applies, they are only shown on the right plot.

values of kt,cut where our perturbative approach breaks down when the performance of the
machine-learning-based approaches keeps improving. However, the gain is already visible
at values of the kt cut close to 10 GeV, where non-perturbative corrections are relatively
small. From a pure perturbative perspective, there are at last three possible explanations
as to why the machine learning approaches may outperform our analytic discriminant.

First, our treatment of clustering logarithms is only correct for pairs of emissions at
commensurate angles so we should expect corrections even in the single-logarithmic limit.

Secondly, our analytic discriminant works in the limit of small angles, where quark-
gluon discrimination can be thought of as universal (at least within our single-logarithmic
approximation). The deep-learning methods will learn additional information, starting at
the single-logarithmic accuracy, from radiation at large angle. Since this information is
process-dependent, one should expect this gain in performance to come at the expense of
an enlarged sensitivity to the hard process. We will come back to this point in section 7.3.

Lastly, there can be effects of subleading perturbative corrections that are not included
in our analytic approach. These can either be subleading logarithmic corrections beyond
single logarithms, or finite, fixed-order, corrections which would induce additional correla-
tions between the Lund declusterings that are neglected at our analytic accuracy but that
the neural network training would pick. In section 7.6, we show that if we take a more
asymptotic regime, the gap between the analytic and deep-learning approaches shrink,
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strongly suggesting that the differences seen in figures 6 and 7 is not dominated by our
simplified treatment of clustering logarithms.

We should also point out that subleading logarithmic corrections, or fixed-order correc-
tions, are not fully included in Monte-Carlo event generators like Pythia. The improvement
seen with deep-learning approaches should therefore be taken with caution.14

Of course, to this list of perturbative effects, one should also add non-perturbative
corrections which, while beyond the reach of our analytic approach, are captured by the
neural networks.

7.3 Resilience

The discriminating power of a quark-gluon tagger is not necessarily the only quality feature
we may want to require. Indeed, our extraction of the tagging performance is obtained for
a specific event sample which can have its own limitations or simply be different from the
event sample used in later practical applications.

Ideally, one would want a tagger to be resilient, i.e. to show a degree of insensitivity
to potential mismodelling aspects or to specific details of an event sample. For example, if
we want to be able to describe a tagger from first-principles perturbative QCD, we would
want to limit its sensitivity to the modelling of non-perturbative effects. In a similar spirit,
we want to limit the sensitivity of a tagger to the details of the event generator used to
obtain the event sample. More specifically, in the context of quark-gluon discrimination,
we want our taggers to be insensitive to the details of the (hard) processes contributing
to the signal and background(s) we try to separate. This last point is intimately related
to the intrinsic ill-defined nature of quark-gluon tagging. In this context, resilience can be
seen as a measure of universality.15

In this section, we therefore investigate the resilience of our tagger against the three
effects listed above: (i) non-perturbative effects, (ii) the choice of the hard process and,
(iii) the choice of a Monte Carlo event generator. The first is probed by comparing our
reference sample to a sample generated at parton level, i.e. with hadronisation and multi-
parton interactions switched off (see section 7.1 for details). For the second we use either
our reference Z + jet sample or a sample of dijet event, and for the third, we compare our
default Pythia8 sample to a Herwig7 sample.

For the analytic models, we apply them directly to the different event samples, ob-
taining in each case the quark and gluon efficiency as a function of the cut on the model’s
output, i.e. either the Iterated Soft Drop multiplicity, or the analytic likelihood ratio for
the “Lund density” approach or for our new primary or full analytic discriminants. For

14It is tempting to argue that Monte Carlo event generators implement a more precise kinematics than the
approximate one used in our analytic approach. For example, the Sudakov factor in the analytic calculations
only retains the contributions up to single logarithms. For the fixed-coupling toy microjet sample used in
section 6, we had instead kept the full z dependence of the splitting function in the Sudakov factor. We
have checked that the effect of keeping the full splitting instead of keeping only the terms relevant at the
single-logarithmic accuracy is, at most, 0.5%. This is clearly insufficient to explain the differences between
the analytic and machine-learning approaches observed here.

15The idea of being resilient against details of the hard process however extends to tagging applications
beyond quark-gluon discrimination.
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machine-learning approaches, we have trained the networks on our reference Pythia8 Z+jet
sample with hadronisation and multi-parton interactions, and applied the resulting network
to the other event samples.

For a given fully-specified tagger, i.e. a tagging method and cut on its output (a.k.a.
a working point), one obtains quark and gluon efficiencies ε

(ref)
q,g and ε

(alt)
q,g , respectively for

the reference and alternative event samples. The resilience of the taggers is then simply
defined as the inverse of the relative change between the two samples:

ζ =

⎡⎣(2(ε(alt)
q − ε

(ref)
q )

ε
(alt)
q + ε

(ref)
q

)2

+
(

2(ε(alt)
g − ε

(ref)
g )

ε
(alt)
g + ε

(ref)
g

)2⎤⎦−1

. (7.1)

With this choice, a bigger ζ corresponds to a more resilient tagger. We should then select a
working point at which we evaluate the performance and resilience of a tagger. In practice,
we take the point at which the tagging performance, defined as the significance εq/

√
εg, is

maximal for the reference sample. This is typically realised for ε ∼ 0.3−0.5. The resulting
performance (significance) and resilience are denoted by Πbest and ζbest, respectively. Ide-
ally, we therefore seek for a tagger with large Πbest and ζbest. We have tested that selecting
instead a fixed quark efficiency, e.g. εq = 0.5, produces similar results.16 That said, while
quantitative arguments can be made about the relative discriminating performance of our
taggers, it is more delicate to reach such a precise quantitative discussion of resilience. The
discussion below therefore tries to remain mostly at a qualitative level, i.e. noting that
taggers with larger resilience are likely to have less modelling uncertainties. It would be
interesting — and clearly beyond the scope of this paper — to perform a dedicated study
of resilience.

We want to study how resilience and performance behave for our discriminants, varying
the kt cut on Lund declusterings. Our results are presented in figure 8, for the three types
of resilience we want to investigate: resilience against the specifics of the hard process
(figure 8a), resilience against non-perturbative effects (figure 8b), and resilience against
the choice of the event generator (figure 8c). To guide the eye, the results corresponding to
a kt cut of 1 GeV are represented with filled symbols, with all the other results using open
symbols. For all three resiliences, the usual trade-off is observed: as we increase the kt cut,
performance decreases and resilience increases. Overall, our analytic models and our Deep
Learning results show a similar behaviour, although a given performance-resilience point is
achieved for a different kt cut for different taggers. Our analytic models however appear as
slightly more resilient to non-perturbative effects than their machine-learning equivalents.

Compared to the Iterative Soft Drop and Lund density approaches, one sees that the
analytic model typically bring a gain in performance without sacrificing in resilience.

Focusing on the results with a kt cut of 1 GeV, it is interesting to see that the machine-
learning-based techniques reach a larger performance, as already seen in figures 6 and 7, at
the expense of having a smaller resilience. This hints towards the interpretation that this

16In general, one can argue that the lower εq values should be ignored because they are subject to large
statistical fluctuations. The large and low εq values are also impractical because they do not yield a large
discriminating power.
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(a) (b)

(c)

Figure 8. Plots of performance as a function of resilience for different discriminants. The curves
are obtained by scanning over a range of accessible kt,cut values. The filled symbols correspond to
a kt cut of 1 GeV. Different plots correspond to different probes of resilience: (a) probes the sample
dependence (replacing the Z+jet sample with a dijet sample, (b) probes non-perturbative effects
(using parton-level simulations instead of full simulations with hadronisation and multi-parton inter-
actions) and (c) probes the effect of the Monte Carlo generator (using Herwig 7 instead of Pythia 8).

gain in performance is obtained by the neural networks exploiting information (i) going
beyond the “universal” collinear behaviour (worse resilience against the choice of hard
process), (ii) in non-perturbative effects (worse resilience against hadronisation and MPI),
and (iii) specific to the modelling of the events (worse resilience against the choice of event
generator). In all three cases, increasing the kt cut by a few hundred MeVs would result
in a behaviour very similar to the one of the analytic model, both in terms of performance
and in terms of resilience.

Finally, if all one cares about is performance, machine-learning discriminants using
the full information in the Lund tree show the best result, albeit at the expense of a poor
resilience. This should at least be kept in mind when using a quark-gluon discriminant for
potentially different applications, or when assessing uncertainties associated with a tagger.
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7.4 Comparison with other approaches

In this section, we compare the performance of our Lund-plane-based taggers to that of
other existing taggers.

We therefore select our taggers based on the full Lund tree: the Lund-Net tagger with
no kt cut and the analytic discriminant (“analytic(tree)” in previous figures) with a kt cut
of 1 GeV (referred to as “Lund NLL” in this section), and compare them to a series of
pre-existing discriminants. We first consider benchmark jet shapes:

• angularities [19, 20], defined as the following sum over the jet constituents λα =
(∑i∈jet pt,iΔRα

i,jet)/(Rα ∑
i∈jet pt,i). We work with α = 1, sometimes referred to as

width or girth.

• energy-energy correlation functions [21], defined as the following sum over pairs of
jet constituents EECβ = (∑i,j∈jet pt,ipt,jΔRβ

ij)/[Rβ(∑i∈jet pt,i)2]. In this case, we will
set β = 1/2.

• to probe the effect of a kt cut similar to the one we introduce in the Lund plane
techniques, we have considered the case where the angularities and energy-correlation
function are defined on the Lund declusterings (primary and secondary) above a given
kt cut. We recall that in this case, we expect that the Iterative Soft Drop multiplicity
and our analytic Lund-tree discriminant are respectively optimal at leading and next-
to-leading logarithmic accuracy in QCD.

In all cases, a cut is applied on one of these jet shapes and the full ROC curve is obtained
by varying the cut. We then consider a series of recent machine-learning-based quark-gluon
discriminants (for which we also apply a cut on the network output):

• Particle-Net described in ref. [28], based on point clouds. In practice, we have di-
rectly used the ParticleNet code available from [74], modifying the provided keras
example to use our event sample. We have used a batch size of 1000 and kept the
best model over a training of 50 epochs. Note that this model includes the particle
ID in the network inputs.

• Particle-Flow Networks (PFN) from ref. [27]. This includes the rapidity, azimuth
(both relative to the jet axis) and transverse momentum information of each jet
constituent. Each particle is mapped into a per-particle latent space. The sum over
all particles of these spaces is then mapped onto a final discriminating variable. We
have also considered the so-called PFN-ID approach where the particle IDs are also
included. In practice, we have used the code provided in the EnergyFlow package [75],
modifying the examples to use our event samples and training over 60 epochs.

• Energy-Flow Networks (EFN) also from [27] and again only adapted from the example
given in the EnergyFlow package to our needs. The approach is similar to that of
the PFN above except that the latent space uses IRC-safe information through a
weighting proportional to the pt of each particle.
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Finally, we also consider the Lund-Net approach, labelled “Lund-Net(+ID)” where each
Lund tuple (ln Δ, ln kt, ln z, Ψ) is supplemented by one additional integers for each of the
two subjets j1 and j2 and determined as follows: if the subjet has a single constituent we
use the PDG ID of the constituent, otherwise we set the integer to 0. The idea is similar
to having particle identification added from the PFN to the PFN-ID approach.17

Our findings are presented in figure 9, for the signal significance (top row), and for
the trade-off between significance and resilience against the choice of Monte-Carlo event
generator (bottom row). Focusing first on the signal significance for analytic discriminants,
figure 9a, we see relatively different patterns between the shape-based observables λ1 and
EEC0.5 and the Lund-based observables, with the performance peaking at larger values
of the quark efficiency in the latter case, with shape-based observables reaching a better
overall performance. However, computing the EEC and λ using the Lund declusterings with
a kt above 1 GeV, i.e. with the same input information in all cases, we see that our analytic
Lund discriminant shows indeed an improvement at all quark efficiencies compared to the
shape-based discriminants. A similar pattern is seen in the resilience plot on figure 9c with
the Lund analytic model with a 1-GeV kt cut being intermediate between the jet shape
with a 1-GeV kt cut and with no kt cut. It is interesting to notice that the addition of
particle ID information to the Lund-Net approach improves the performance at low kt cut,
or with no kt cut at all, but changes neither the performance nor the resilience once a larger
kt cut is applied. This is most likely due to the fact that all the input subjets have more
than one constituent and hence the ID information is 0. This contrasts with the findings in
ref. [30], where the addition of the jet mass had a negative impact on resilience at large kt

cuts. At low resilience (large significance), the jet shapes give a slightly better performance
vs. significance behaviour than our Lund-plane approach. Focusing instead on the AUC
— the bottom-right table in figure 9 — we see that our analytic Lund-tree approach does
a better job than the other jet shapes (i.e. a lower AUC), including jet shapes computed
on the full set of constituents.

Moving to machine-learning-based models, figure 9b, we see a significance pattern
mostly similar across different models. The performance of Lund-based models is on par
with the one obtained from Particle-Net. Compared to energy/particle flow approaches,
our Lund-based results show a slightly better performance than the EFN and PFN results,
but fall slightly lower than the performance of PFN-ID. Adding the particle ID informa-
tion using our Lund-Net(+ID) approach recovers a performance similar to the PFN-ID
approach, although with a marginally smaller average peak performance. If we instead
look at the AUC, we see that the Lund-Net(+ID) reaches the best performance (lowest
AUC), marginally better that the PFN-ID and Lund-Net approaches, then followed by the
Particle-Net model. While the PFN-ID method shows a small performance improvement
at mid signal efficiency, the Lund-Net(+ID) setup has a small advantage at small and large
signal efficiencies.18 The observed differences are however of a size similar to the statisti-

17In an experimental context, complete particle-ID information would not be available. One could however
separate charged tracks from neutral energy deposits in calorimeters, with potential additional information
such as heavy quarks or electromagnetic v. hadronic calorimeters.

18Including the particle ID information in a more coherent way, e.g. as a separate information that is fed
to the final dense layers, one might be able to make up the difference with PFN-ID at mid quark efficiencies.
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(a) (b)

(c)

model AUC
nSD (kt >1 GeV) 0.1658
Lund NLL (kt >1 GeV) 0.1441
EEC0.5 (all kt) 0.2074
EEC0.5 (kt >1 GeV) 0.2150
λ1 (all kt) 0.2270
λ1 (kt >1 GeV) 0.2371
Lund-Net 0.0858 ± 0.0007
Lund-Net(+ID) 0.0835 ± 0.0005
Particle-Net 0.0871 ± 0.0009
PFN 0.0994 ± 0.0009
PFN-ID 0.0853 ± 0.0005
EFN 0.1080 ± 0.0010

Figure 9. Comparison of the Lund-plane-based approaches with other models. Explicit plots of
the signal significance εq/

√
εg are shown in the upper plots, first for analytic discriminants, figure

(a), then for machine-learning-based approaches, figure (b). The bottom panel, figure (c), shows
the corresponding performance v. resilience plot, where the resilience is measured with respect to
the choice of Monte Carlo generator (cf. section 7.3). The table on the bottom-right corner gives
the area under the ROC curve (AUC) for the different models (lower is batter). For the ML-based
models, the uncertainty is half the difference between the minimal and maximal values obtained
over 5 different runs.
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Figure 10. Plots showing the ratio of the ROC curve with and without azimuthal-angle dependence
and/or clustering logarithms. The plots of the left column include only primary declusterings
while the plots of the right column include the full declustering tree. The bottom plots include
declusterings above a 1-GeV kt cut, while the top plots include all relative transverse momenta. In
all cases, the ROC curve is normalised to the ML Results including azimuthal-angle dependence.

cal fluctuations observed in our simulations (only shown, on the significance plot, for the
Lund-Net(+ID) and PFN-ID for the sake of readability).

Finally, from figure 9c, we see a similar degree of resilience for all machine-learning-
based approaches. Again, it would be interesting to train energy/particle flow networks or
the ParticleNet network on Lund declusterings above a certain kt cut (or using another cut
definition) to study the performance versus resilience trade-off in a broader perspective.

7.5 Effect of clustering logarithms and of azimuthal angles

All the results presented so far have included the dependence on the Lund azimuthal angles
ψi. Since it is known that these are not properly described at single-logarithmic accuracy
by the standard dipole showers (including Pythia8) [76], we want to briefly investigate
their impact on discriminating power. Additionally, from our analytic perspective, the
dependence on the Lund azimuthal angles ψi only comes in through the clustering loga-
rithms. This therefore gives us an explicit opportunity to investigate the numerical impact
of including clustering logarithms into our analytic discriminants.

In figure 10, we show the background rejection, 1/εg, including either only primary
declusterings (left column) of the full declustering tree (right column), as obtained using
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our reference Pythia 8 Z+jet sample with hadronisation and multi-parton interactions.
The top row, with only machine-learning results, corresponds to the case without a kt cut
while the bottom row, with both ML and analytic results, includes only the declusterings
with kt ≥ 1 GeV. To increase readability, we show in all cases, the ratio relative to what is
obtained with the corresponding ML model — LSTM or Lund depending on whether only
the primary or all the declusterings are used — including the ψ dependence.

We first discuss the ML results, presented in figure 10 either with (solid, black) or with-
out (dashed, green) ψ information. We see that including the ψ information brings a 5−15%
performance gain, mostly at intermediate quark efficiency. This gain is larger at lower kt

where non-perturbative effects are larger. When a 1-GeV kt cut is imposed, we also show
the results of our analytic quark-gluon taggers, again using either primary-only information
(left column), or using the full declustering tree (right column). In each case, three results
are given: including the ψ angles (solid, blue), not including the ψ angles but including the
(ψ-averaged) clustering logarithms from eq. (4.5) (dashed, red), or including neither the ψ

angles, nor the clustering logarithms (dotted, magenta). We again see a ∼ 10% increase in
performance brought by the inclusion of azimuthal angles. The fact that these performance
gains are of similar magnitude in the deep-learning and analytic approaches indicates that
our simplified treatment of clustering logarithms is a decent approximation.

Finally, when the azimuthal angles are not included, we see that the influence of
clustering logarithms is small.

7.6 Asymptotic single-logarithmic limit

In this final study, we want to further study the differences between the analytic and
ML results. Our aim is here to take a limit where subleading effects decrease. Since
our analytic approach technically resums double and single logarithms of log(ptR/kt,cut),
we want to proceed in a similar way as for the NLL-accuracy tests in [76], i.e, take the
limit αs(ptR) → 0, log(ptR/kt,cut) → ∞ while keeping αs(ptR) log(ptR/kt,cut) constant.
The main idea behind this limit is that subleading-logarithmic contributions as well as
fixed-order contributions are suppressed as αs → 0.

Generating and analysing events over an exponentially increasing range of scales poses
a series of numerical challenges which, in practice, make it unreachable for standard Monte
Carlo event generators like Pythia8. We have therefore used instead the PanScales e+e−

code developed precisely to overcome these challenges in ref. [76]. We have therefore
generated e+e− → Z → qq̄ (quark) events and e+e− → H → gg (gluon) events with a
centre-of-mass energy Q, fixing αs(Q) log(Q/kt,cut) = 0.32 and taking αs(Q) to be either
0.04, 0.02, 0.01, corresponding to L = log(Q/kt,cut) of either 8, 16, or 32. In all cases, we
have used the PanLocal shower in its antenna variant with the β parameter set to 1/2.
Subleading colour corrections are included using the Nested Ordered Double-Soft (NODS)
scheme as described in [49]. This produces event samples with a single-logarithmic accuracy
with the exception of the subleading-Nc corrections for which the NODS method only
guarantees the correct behaviour for (any number of) pairs of emissions at commensurate
angles. We reconstruct the e+e− Lund declusterings in each of the event hemispheres.
The e+e− reconstruction follows an almost-trivial adaptation of the hadronic collisions
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(a) (b)

Figure 11. Dependence of (a) the AUC, and (b) the ROC curve on L = log(Q/kt,cut) fixing αsL =
0.32. The results are obtained with an e+e− parton-level setup using the PanLocal PanScales shower
which is NLL-accurate. Different curves show different methods and we see that the analytic and ML
models converge to one another as we tale the asymptotic limit L → ∞, αs → 0, αsL = constant.
For the plots on the right column, we take the ratio of the ROC curves to the Lund-Net results.

technique described in section 2, except perhaps for the reconstruction of the azimuthal
angle ψ which is described in details in [76].

Both our analytic methods and the approaches based on Machine Learning can be
straightforwardly applied to these new sets of events. We therefore study the same set of
quark-gluon discriminants as in section 7.2. The contribution from clustering logarithms
is included in our analytic models and information from the Lund azimuthal angles is
included both in the analytic and ML approaches.

Our results are presented in figure 11 for the AUC, figure 11a and for the ROC curves,
figure 11b. For the latter, we have normalised the gluon rejection rate ε−1

g to the Lund-
Net rejection rate. One can see from these plots that the difference between the analytic
and Machine-Learning-based methods decrease when increasing L (decreasing αs) at fixed
αsL. This is true separately for the approaches using only primary declusterings (“ana-
lytic(prim)” and “Lund+LSTM”) and for the approaches using the full declustering tree
(“analytic(tree)” and “Lund-Net”). At the same time, the performance gain compared to
the Iterated SoftDrop multiplicity increases.

Before closing this section, we want to address a last point about the azimuthal angle
dependence and single-logarithmic accuracy. It has been pointed out in ref. [76] that, due to
non-physical recoil effects, dipole showers such as Pythia or Dire, would generate a spurious
dependence on ψ, potentially biasing the assessment of quark-gluon classification. Using
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the machinery described in this section, we have studied potential differences between the
Pythia shower and the PanScales showers which are free of this effect [76]. Within the few-
percent accuracy of our studies we have not been able to isolate a clearly-visible impact of
this effect.

8 Conclusions

This paper addresses the question of quark/gluon discrimination using the Lund-plane
approach to characterise the substructure of jets. Our main result is that it is possible to
compute the quark-gluon likelihood ratio from the first principles in QCD. The calculation
is done at the single-logarithmic accuracy, including all collinear contributions as well
as clustering effects for any number of pairs of emissions at commensurate angles. This
automatically provides us with an optimal quark/gluon tagger at the same accuracy.

As expectable, this tagger shows an improved performance either compared to using the
average Lund plane density to build the likelihood ratio, or compared to the Iterated Soft
Drop multiplicity which corresponds to the optimal quark/gluon discriminant at leading
(double) logarithmic accuracy. Most of the improvement (� 10% for the AUC compared
to nSD) is already captured when including only primary declusterings, but the effect
of additional declustering in subsidiary Lund planes (∼ 3%) is clearly visible, especially
at larger quark efficiencies. The gain in performance can be attributed to the better
treatment of the kinematics of each emission, e.g. through the full Altarelli-Parisi splitting
functions, through the full antenna pattern for emissions at commensurate angles, and to
a better treatment of the correlations between emissions, e.g. by taking into account the
energy of the emitting parton or by including clustering effects. Furthermore, this gain in
performance is accompanied by a gain in resilience against effects beyond our perturbative
calculation. In this context, we have studied three specific effects: the dependence against
non-perturbative effects, the dependence against the specific choice of quark/gluon enriched
samples used as benchmarks, and the choice of Monte Carlo event generator.

In section 7.4, we have compared our Lund-based approach to other typical
quark/gluon taggers using jet substructure, like angularities or energy correlation functions.
Focusing for simplicity on the case where all the taggers are applied to Lund decluster-
ings with a kt above 1 GeV to reduce non-perturbative effects, we see that the Lund-based
likelihood approach gives a gain in performance, especially at large quark efficiency, while
maintaining a similar degree of resilience.19

The second set of results in this paper is the extensive study of quark/gluon taggers us-
ing deep-learning techniques combined with Lund declustering information. When applied
to the full set of declusterings in a jet, our ML-based tagger reaches a performance (and
resilience) comparable to that obtained with Particle-Flow networks [27], and marginally
better than what is achieved by Particle-Net [28]. Compared to the analytic results, our
ML-tagger gives a clearly visible performance gain, even when considering declusterings
above a given kt cut. This gain in performance, however, comes at a price in all the forms

19If the jet shapes are computed on the full jet, they yield a larger significance at smaller quark efficiency
at the expense of a reduced resilience against non-perturbative effects.
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of resilience we have studied, especially the sensitivity to hadronisation and multi-parton
interactions.

One of the key points of this paper is the direct comparison between the analytic
and deep-learning approaches. Since our tagger targets the optimal discriminant in the
single-logarithmic approximation one can directly compare its performance with that of
the deep-learning models. We first did that in the strongly angular-ordered limit where
our analytic calculation is exact. The results in section 6 indicate a convergence of the deep-
learning taggers to the optimal performance as long as the size of the network is taken large
enough. Beyond the collinear limit, where our analytic treatment is only approximate, the
deep-learning approach shows a better performance. However, if we move progressively
to the single-logarithmic asymptotic limit (αs → 0 at fixed αs log(Q/kt,cut) the difference
between the two approaches drastically reduces as we showed in section 7.6. At the same
time, the gain in performance compared to leading-logarithmic-accurate taggers — i.e. the
average Lund density and the Iterated Soft Drop multiplicity — increases.

The above observations strongly suggest that the gain in performance observed for
deep-learning taggers (in addition to our analytic tagger) in phenomenological Monte Carlo
applications come predominantly either from subleading effects (beyond single logarithms),
from large-angle soft emissions (not included in our analytic calculation), or from non-
perturbative effects.

This points towards several interesting physics considerations. First, subleading log-
arithmic effects, albeit present in data, are not properly included in any parton shower
Monte Carlo generator today. Conclusions regarding subdominant logarithmic effects
should therefore be taken carefully. In this context, it would be interesting in the future
to further investigate potential differences between standard dipole showers (like Pythia)
which are known to have failures at the single-logarithmic accuracy, or even at leading-log
for subleading colour effects, and the PanScales showers which are NLL-accurate.

Then, large-angle soft emissions are process-dependent and should therefore be treated
carefully when applied outside the configurations where they have been tested and cali-
brated. In the future, it would be interesting to see if an analytic treatment similar to the
one adopted in this paper could allow for quantitative assessment of the process-dependence
of quark/gluon discrimination (see also ref. [46] for a Monte-Carlo-based study).

Finally, non-perturbative effects come with non-negligible modelling uncertainties
and should therefore also be taken carefully. The ability to progressively reduce non-
perturbative effects by increasing the kt cut-off on Lund declusterings could help further
investigating the impact of non-perturbative effects, and the associated systematic uncer-
tainties, in a practical context.

In conclusion, we have seen that Lund-plane declusterings were useful to define a
variety of quark/gluon discriminants, bridging regions targetting high discriminating
performance and regions where a high-precision degree of control can be reached from
first-principles QCD.
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A Sudakov factors with exact splitting functions

In section 6, we have used an event sample generated in the strong-angular-ordered limit to
compare the performance of our analytic discriminants (also in the limit of strong angular
ordering, see section 3 to that of deep-learning-based discriminants. To guarantee that the
analytic approach reproduces the exact likelihood ratio, we have kept the full Altarelli-
Parisi splitting functions in the Sudakov (using a fixed-coupling approximation). If we
have a hard parton of momentum xpt (with pt the initial transverse momentum of the jet)
and flavour f , and compute the Sudakov factor between an angle Δi−1 and Δi, we find:

− log S
(i−1,i)
f = 2αsCf

pi

[
log2 x1

2 − log2 x2
2 + Bf log x2

x1
+ Li2(x1) − Li2(x2) + δRf

]
, (A.1)

with

x1 = kt,cut
xΔi−1pt

, Bq = −3
4 , (A.2)

x2 = kt,cut
xΔipt

, Bg = −11CA − 4nf TR

12CA
, (A.3)

and

δRq = 3
2(x2 − x1), (A.4)

δRg = 3
2(x2 − x1) +

(1
2 − nf TR

CA

)[
(x2 − x1) − 1

2(x2
2 − x2

1) + 2
9(x3

2 − x3
1)
]

. (A.5)
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1 Introduction

At high-energy particle colliders, such as the LHC at CERN, the exchanged momentum
is large enough to resolve and scatter fundamental partonic constituents of the matter.
These violent scatterings deviate the partonic constituents of nucleons and allow for intense
bremsstrahlung radiation that ultimately result in collimated bunches of hadronic particles
and energy. These so-called jets open a new perspective on the understanding of strong
interactions at intermediate energy scales between the scale of the hard partonic scattering
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and the hadronization scale. Jets can be calculated with high-precision within perturbative
QCD both in electron-positron and proton-proton collisions [1–3].

For accelerated heavy nuclei, processes involving large momentum exchanges between
the incoming partons have additionally the potential to be well-calibrated probes of the
hot and dense quark-gluon plasma (QGP) that is formed in the aftermath of such violent
collisions. In this context, jets are particularly interesting since their typical formation
time-scales overlap with the time-scales governing the creation and evolution of the QGP,
suggesting potentially substantial jet-medium interactions. While the strong separation of
the medium scale and the jet scale motivates a perturbative description of hard jet-medium
interactions, many aspects of this processes are in the realm of non-perturbative physics
and have to be modeled on the phenomenological level. A satisfactory description of jet
production in heavy-ion collisions would therefore allow us to separate perturbative from
non-perturbative phenomena. Besides, a well-controlled scale separation is an indispensable
insight when studying, e.g., jet-medium coupling, thermalization, or medium modifications
of hadronization.

Jet studies have a rich history and a wide selection of observables have been discussed.
This includes measurements of fully reconstructed jets and their substructure, for recent
reviews see [1, 2, 4]. A fundamental observable is the momentum spectrum of jets for dif-
ferent reconstruction parameters R [5, 6]. The nuclear modification factor RAA, compares
the spectrum in heavy-ion collisions (AA) to proton-proton (pp) at the same reconstructed
jet pT . However, jets that interact with a surrounding medium lose energy and end up
with smaller pT . Therefore — and it is not emphasized enough — the jet selection for RAA
compares two jet populations originated at different pT . The equal pT selection induces
a bias in the observables because the probability of creating a jet is steeply falling with
pT [7, 8]. This bias is explored in great detail below.

Recently, there has been efforts toward mitigating such bias effects by investigating
novel observables or by using machine learning techniques [9]. One alternative, that we
will investigate in detail in the current work, is to introduce a quantile procedure [10] to
reconstruct a pT that is closer to the initial jet pT before quenching sets in. In contrast to
RAA, the quantile procedure uses the tail-cumulative of the jet spectrum and momentum
ratio to reduce the bias coming from the steepness of the spectrum. We demonstrate the
properties of the quantile procedure within a versatile framework to incorporate quenching
effects and explain its robustness for the first time.

To improve the calibration of hard probes in heavy-ion collisions, new measurements
have been suggested, e.g., involving boson+jet events [11–14]. Bosons suffer little mod-
ification in the medium, and their momenta are strongly correlated with the initiator of
the recoiling jet. The jet spectrum in boson+jet events is slightly different from inclusive
QCD jets, and we will use it to illustrate the bias on the quenching. Moreover, quark- and
gluon-jet contributions in the inclusive and boson+jet samples differ. This can be used for
quark-gluon jet discrimination in a model-independent fashion [15]. Using arguments on
the cumulative, we improve the statistics of the classification task. Parallel with the works
mentioned above, some numerical studies has also appeared using Bayesian and machine
learning techniques to extract the energy loss properties from data [16].
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During the evolution of jets inside a QGP, their constituents scatter elastically and
inelastically on the medium. The scatterings redistribute energy to larger angles out of the
jet cone, resulting in energy loss. The inelastic (or radiative) part describes the emissions
induced by the medium (medium-induced emissions, or MIE for short). The MIE has well-
known limits: (i) in the multiple soft scattering limit, the scattering centers act coherently,
resulting in suppression of emissions (QCD analog of the Landau-Pomeranchuk-Migdal
effect), captured by the BDMPSZ formula, which describes the induced emission of soft
gluons [17–19]; whil (ii) the single hard scattering limit is captured by the GLV formula,
which describes emissions of harder gluons [20]. Beyond the analytic limits, MIE is also
amenable to direct numerical methods, such as in refs. [21–23]. Recently, there has also been
a progression in the better understanding of the two regimes and the scales involved [24–26].
In our work, we adopt the latter strategy to explore the impact of the MIE spectrum. The
MIE can be resummed accounting for multiple induced emissions. The resulting formalism
is the quenching weight [27, 28]. It is easy to generalize for all jet constituents, including
coherence effects [29], spectrum shapes, and elastic energy loss. Within this framework,
we show the appearance of the spectrum bias.

The paper is organized as follows. In section 2, we define our novel framework to
calculate the jet spectrum in heavy-ion collisions. In section 3, we show, for the first
time, the properties of the cumulative spectrum, and we apply the quantile procedure. In
section 4 we give predictions for measurements, considering cone size dependence for the
single-inclusive jet sample produced in dijet and boson+jet events (we focus concretely
on Z+jet). We also show how to use cumulative arguments to improve quark-gluon dis-
crimination. Beside,. in appendix D, we use the quenching weight formalism for elastic
scatterings and in the hybrid weak/strong-coupling model.

2 Quenching effects in the spectrum

The main observable considered in this work is the single-inclusive spectrum of recon-
structed jets in heavy-ion collisions. In this work, we will both consider jets produced in
conventional QCD processes, that is dijet events, and jets produced in conjunction with a
photon or weak boson, so-called boson-jet events. In the context of high-energy collisions, it
is natural to assume a factorization of the partonic hard cross-section from the subsequent
medium processes. This can be justified by invoking the large separation of momentum
scales involved in jet production; typically the hard scattering Qhard ∼ 103 GeV, is much
bigger than the jet scale Qjet ∼ pT R ∼ 102 GeV, where pT is the reconstructed transverse
momentum of the jet and R is jet cone parameter. These scales are much bigger than the
typical medium scale, for instance, the temperature of the medium T ∼ 0.5 GeV. Hence,
one can write the medium modification of the vacuum jet spectrum due to energy loss [27],

dσmed
R

dpT
(pT ) =

∫ ∞

0
dε P>(ε) dσvac

R

dp′
T

∣∣∣∣∣
p′

T =pT +ε

. (2.1)

The P>(ε) describes the probability of a vacuum jet to distribute (or lose) energy out of
the jet cone. Above, dσvac

R /dpT refers to the partonic cross-section to produce a jet with
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R in the collinear factorization and can be calculated up to high precision [5, 6]. In this
work, instead, we extract the spectrum using a Monte Carlo event generator, see section 4
for further details.

The vacuum spectrum is well approximated by a power-law, dσvac
R /dpT ∝ 1/pn

T , and is
steeply falling, i.e. n  1. Therefore, we approximate dσvac

R (pT + ε)/dpT = A (pT + ε)−n ≈
e−nε/pT dσvac(pT )/dpT , where A is a constant and n ≡ n(pT , R) is the power index of the
spectrum. In the last step, we additionally assumed that ε � pT . The cone-size dependent
nuclear modification factor defined as

Rmed(pT , R) ≡ dσmed
R

dpT

/
dσvac

R

dpT
, (2.2)

is consequently related to the quenching factor Q(ν ≡ n/pT ), which is the Laplace trans-
form of P>(ε), i.e.

Rmed(pT , R) ≈
∫ ∞

0
dε P>(ε) e− nε

pT ≡ Q>(ν) . (2.3)

This approximation is precise within at most a few percent for realistic parameters in a wide
kinematic range 10 < pT < 1000 GeV that we consider here. Therefore, in what follows,
we simply identify Rmed = Q>. For further details on such corrections, see appendix A.
In order to go from Rmed to the experimentally measured RAA, one needs to include a pT -
dependent quark and gluon jet production. Other differences are mostly due to geometry
(for a review see ref. [30]), and cold nuclear effects (nPDF), that we include in section 4.

The energy loss distribution P>(ε) — and therefore the quenching factor Q>(ν) —
depends on vacuum jet properties (like the jet pT and the cone size R) and the properties of
the medium (e.g., medium length L, and the jet transport coefficient q̂). Its normalization
condition,

∫ ∞
0 dε P>(ε) = 1, translates to Q>(0) = 1. The assumptions underlying eq. (2.2)

are quite robust for a wide range of applications. Therefore, one is flexible in defining the
precise nature of the energy loss distribution P>(ε). The introduction of a probability
distribution to describe effects of quenching in heavy-ion collisions has a long history in
the analysis of single-inclusive hadron [27, 28, 31] and jet spectra [29, 32–34].

We will derive the quenching factor Q> of the jet in several steps. First, we consider
the induced radiation spectrum of a single color-charge propagating through the medium
and how to account for their multiple emissions. We thus arrive at the quenching factor
for a single parton, Q(0)

> (ν). Next, we consider the effect of jet fragmentation which leads
to multiple vacuum-like emissions on short time-scales inside the jets. Partons from these
emissions contribute to the quenching of the full jet. This is accounted for by the so-
called collimator function that provides a fully resummed quenching factor Q>(ν). The
corresponding jet quenching probability distribution can then be found via an inverse
Laplace transform, but we will not pursue this further in this work.

In our numerical results in section 4, we will also include elastic energy loss, since it
potentially can contribute to the ∼ 10 − 30% level to the final jet suppression factor. As
we said, the formulation above is quite general and allows to separately formulate a) the
mechanism of quenching, and b) the phase space where the jet is affected. In appendix D,
therefore, we show how to formulate other energy loss models in terms of quenching weights.
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2.1 Constructing the quenching weight

We construct the radiative energy loss distribution P>(ε) (or the quenching factor Q>(pT ))
of a jet starting from a single parton, that we denote P(0)

> (ε). For the radiation of a single
medium-induced gluon, this energy loss probability is simply given by

P(0)
> (ε) ≈ dI>

dω

∣∣∣∣
ω=ε

+ δ(ε)
[
1 −

∫ ∞

0
dω

dI>

dω

]
, (2.4)

where dI>/dω is the spectrum of medium-induced gluon radiation spectrum that emerges
at angles larger than the jet cone, or

dI>

dω
=

∫ ∞

(ωR)2
dk2 dI

dω dk2 . (2.5)

This is an important difference with respect to the more common use of the quenching
weights applied to single-hadron spectra in refs. [27, 28]. The first term in eq. (2.4) describes
an emission, while the second term is a virtual correction and provides the normalization.
Our starting point in section 2.2 is to discuss the specific details of this induced-emission
spectrum. Accounting for multiple such emissions in course of the medium propagation
allows us to derive the single parton quenching weight in section 2.3.

Then, having derived how one parton contributes to the energy loss of the whole jet,
we next turn to the calculation of how multiple partons in the jet, resolved by the medium
during their fragmentation process, add up to the total quenching effect. This will be
described in section 2.4.

2.2 The medium induced gluon spectrum at finite cone

The medium-induced spectrum from multiple scattering in a QCD medium was derived in-
dependently by Zakharov [18, 35] and Baier-Dokshitzer-Mueller-Peigne-Schiff (BDMPS) [17,
19, 36], see also refs. [37, 38]. In the limit of soft gluon emission with ω energy and k trans-
verse momentum, this spectrum can be written as

ω
dI

dωd2k
= αsCR

(2π)2ω2 2Re
∫ ∞

0
dt1

∫ ∞

t1
dt2

∫
d2x e−

∫ ∞
t2

ds v(x,s)

× ∂x · ∂yK(x, t2; y, t1)
∣∣
y=0 , (2.6)

where CR = CF if the radiator is a quark (CA for gluon), the path integral is

K(t2, x; t1, y) =
∫ r(t2)=x

r(t1)=y
Dr exp

{∫ t2

t1
ds

[
i
ω

2 ṙ2 − v(r, s)
]}

, (2.7)

and
v(x, t) = Nc

∫ d2q

(2π)2
d2σel
d2q

(
1 − eix·q) , (2.8)

is related to the elastic scattering potential in medium. The leading logarithmic behavior
of the scattering potential reads for any hard Coulomb tailed elastic potential,

v(x, t)LL = 1
4 q̂0(t)x2 log

( 1
x2μ2∗

)
+ O

(
x4μ2

∗
)

, (2.9)
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where q̂0(t) is a local transport coefficient and μ∗ is related to the infrared scale that
regularizes the in-medium scattering potential d2σel/d2q. For example, the Gyulassy-Wang
scattering potential [39], describes scattering off a plasma made up of Yukawa-screened
quasi-particles, reads

d2σel
d2q

∣∣∣∣∣
GW

= g4n(t)
(q2 + μ2)2 , (2.10)

where μ is a screening mass, and n(t) is the density of scattering centers in the medium.
In this case q̂0(t) = 4πα2

sNcn(t), and μ2∗ = μ2e−1+2γE /4.
The path integral in eq. (2.7) can be solved numerically, see e.g. in refs. [21–23], but

analytic solutions are available in limiting cases. Here, two of the most frequent schemes are
discussed. In the “harmonic oscillator” (HO) approximation, valid when the logarithm is
slowly varying around a constant scale, i.e. μ2∗ � 1/x2 ∼ Q2, one can absorb the logarithm
in the definition of the transport coefficient so that v(x) ≈ q̂x2/4. This corresponds to a
purely Gaussian momentum broadening in transverse momentum given by 〈k2〉 = q̂t during
the propagation in the medium. In this case, eq. (2.7) describes a harmonic oscillator with
imaginary frequency Ω2 = q̂/(2iω) in transverse to the propagation, and whose solution
is well known. This approximation, however, fails to describe the hard tail of medium
emissions. On the other hand, one can also truncate the resummation of medium scatterings
at a fixed order N , giving rise to the so-called “opacity expansion” [20, 40]. The N = 1
approximation amounts to considering a single, incoherent scattering with the medium
during the propagation.

A discussion of the regions of validity of these approaches was recently addressed in
refs. [24–26, 41]. In the soft scattering regime, the formation time of emissions tf = 2ω/k2

becomes modified due to Gaussian broadening, i.e. tf ∼
√

2ω/q̂. For emissions with large
formation times tf ∼ L correspond to ω ∼ q̂L2/2 ≡ ωc. It follows that emissions with
ω > ωc cannot be produced by soft collisions and Gaussian broadening, and are dominated
by a single, hard scattering with the medium constituents. Similarly, at short formation
times of the order of the medium mean free path t ∼ λ � L, or ω ∼ q̂λ2/2 = ωBH � ωc,
the spectrum is again dominated by single scattering [40, 41]. Since this latter regime gives
a small contribution to energy loss, we will not discuss it further here.

Recently, the contribution of hard emissions has been shown to matter for precision
comparisons with high-pT single-hadron spectra at RHIC and LHC [42]. A systematic
procedure to calculate the spectrum for a large range of relevant emission energies ω >

ωBH was developed in the so-called “improved opacity expansion” (IOE) [24–26]. This
framework rewrites the leading-log scattering potential form eq. (2.9) as

vLL(x, t) = 1
4 q̂0x2

[
log

(
Q2

c

μ2∗

)
+ log

( 1
Q2

cx2

)]
= vHO(x, t) + δv(x, t) , (2.11)

where Qc is a separation scale of the harmonic potential. In the limit of Qc  μ∗, one
can then expand the solution of the path integral in eq. (2.7) around the HO solution
with an effective q̂(Q2

c) and treat hard scatterings with the medium, given by δv(x, s), as
higher-order perturbations. This approach is systematically improvable and, up to next-
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to-next-to-leading order in this expansion, the effective q̂ parameter is given by [26]

q̂(Q2
c) = q̂0 ln

(
Q2

c

μ2∗

)⎡⎣1 + 1.013
ln

(
Q2

c

μ2∗

) + 0.318
ln2

(
Q2

c

μ2∗

)
⎤⎦ , (2.12)

where the scale Q2
c is itself found through an implicit equation, Q4

c = q̂0ω ln(Q2
c/μ2∗). This

equation has solution, if ω ≥ ωmin ≡ 2eμ4
�/q̂0, when Q2

c = μ2
� exp[−W−1(2μ4

�/(wq̂0))/2],
where Wi(x) is the Lambert function on the ith branch. Since jet quenching is not sensitive
to the details of very soft gluon emissions, in our numerical results we freeze the logarithms
at 1, i.e. ln Q2

c/μ2∗ ≥ 1.
The IOE has so far only been developed for the spectrum integrated over transverse mo-

menta, i.e. dI/dω, and for the momentum broadening of a single particle in the medium [43].
Since the contributions to jet energy loss rely on out-of-cone emissions, cf. eq. (2.5), we
instead have to consider the matching of the partially integrated spectrum dI>/dω between
the multiple-scattering HO and single-scattering N = 1 regimes. We use the quenching
parameter q̂ from eq. (2.12) which correctly connects the q̂0 parameter from the elastic po-
tential with the multiple scattering formalism. We propose a simple interpolation scheme
that relies on a single matching scale ω�, that is related to the broadening of soft gluons
and will be defined below. At small gluon energies, below the matching scale, the spec-
trum is described by the HO approach with the effective q̂. Above the matching scale, the
spectrum is given by the N = 1 spectrum.

We will treat the medium as a “brick” of constant q̂0 and fixed length L. In the
absence of the cone constraint, a natural matching scale is ω� ∼ ωc ≡ q̂L2/2. For the out-
of-cone spectrum, the effect of broadening after emission cannot be neglected. For Gaussian
broadening that presents in HO, a particle emitted at initial time accumulates 〈k2〉 ∼ q̂L

after propagating through the medium. This corresponds to an angle θ ∼
√

q̂L/ω in the
small-angle approximation. Demanding that this angle is larger than the jet cone R for
energy loss, a cut-off in energy arises ω < ωR ≡

√
q̂L/R, above which the HO spectrum falls

rapidly. For more details, see appendix B. It turns out that a relatively smooth matching
between the HO and N = 1 regimes is achieved by choosing

ω� = min
(
ωc, ωR

)
, (2.13)

where ωc and ωR are defined with the effective q̂ parameter in eq. (2.12). For our final
results, see the left and right panels in figure 1. The postulated matching works ex-
tremely well, up to some negligible discontinuities in the spectrum. The uncertainty in
this matching procedure is small compare to other approximation that we will make in the
following sections.

The regime of soft gluon emissions, ω < ω�, is dominated by multiple scattering where
we can employ the HO approximation. The spectrum in this approximation is given by

ω
dIHO

dω d2k
= ᾱ

π
Im

[
Rin-in + Rin-out

]
, (2.14)
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where ᾱ = αsCR/π and the two factors read [44]

Rin-in =
∫ L

0
dt

(1 + i)
√

ωq̂ cot(Ωt)
q̂(L − t) − (1 + i)

√
ωq̂ cot(Ωt) exp

[
− k2

q̂(L − t) − (1 + i)
√

ωq̂ cot(Ωt)

]
,

(2.15)

Rin-out =
∫ L

0
dt

1
cos2(Ωt) exp

[
−i

k2

2ωΩ tan(Ωt)
]

, (2.16)

where Ω = (1 − i)
√

q̂/ω/2. The integrated spectrum in eq. (2.5) reads then

ω
dIHO

>

dω
= ᾱ

ω
Im

[
Rin-in

> + Rin-out
>

]
, (2.17)

where now

Rin-in
> =

∫ L

0
dt (1 + i)

√
ωq̂ cot(Ωt) exp

[
− (ωR)2

q̂(L − t) − (1 + i)
√

ωq̂ cot(Ωt)

]
, (2.18)

Rin-out
> = −

∫ L

0
dt

(1 + i)
√

q̂ω

cos(Ωt) sin(Ωt) exp
[
−i

(ωR)2

2ωΩ tan(Ωt)
]

, (2.19)

We find that in the R → 0 limit, eq. (2.17) yields

ω
dIHO

dω
= 2ᾱ ln

∣∣∣∣cos(1 − i)
√

ωc

2ω

∣∣∣∣ . (2.20)

which is the celebrated BDMPS-Z spectrum [18, 19].
As discussed above, at ω > ω�, the HO spectrum has to be corrected with the single

hard gluon emission spectrum (N = 1) [24–26], for which

ω
dIN=1

dωd2k
= 8πᾱNc

∫ L

0
dt

∫ d2q

(2π)2
d2σel
d2q

k · q

k2(k − q)2

[
1 − cos (k − q)2

2ω
t

]
. (2.21)

Using eq. (2.5) and the Gyulassy-Wang potential from eq. (2.10), we immediately find that
the integrated spectrum reads

ω
dIN=1

>

dω
= ᾱ

q̂0L2

ω

∫ ∞

0
du

u − sin u

u2
1

[(ζ + u + y)2 − 4ζu]1/2 , (2.22)

where ζ ≡ ωR2L/2 and y = μ2L/(2ω). Again, for R → 0, we recover the familiar form of
the integrated N = 1 spectrum [20, 28],

ω
dIN=1

dω
= ᾱ

q̂0L2

ω

∫ ∞

0
du

u − sin u

u2
1

u + y
, (2.23)

as expected.
The full spectrum is therefore postulated to be well approximated by the following

interpolation,
dI>

dω
= Θ

(
ω� − ω

)dIHO
>

dω
+ Θ

(
ω − ω�

)dIN=1
>

dω
, (2.24)
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Medium parameter Value
αs 0.3
T0 0.45 GeV
q̂0 0.095 GeV3

L 4 fm

Table 1. Choice of medium parameters corresponding to 0-10% central PbPb collisions with√
sNN = 5.02 TeV.

where all parameters in the HO spectrum and in the matching scales contain the effective
q̂, given in eq. (2.12). Note that the spectrum dI>/dω depends on the initial energy only
in the combination ω = x(1 − x)E ≈ xE.

At this point, we pause to discuss the choice of medium parameters. We choose the
medium coupling to be fixed at αs = αmed = 0.3, corresponding to gmed ≈ 1.94. The
IR cutoff scale is μ ≡

√
2/3gmedT0 ≈ 0.71 GeV, and ωmin ≈ 1.5 GeV. The remaining

parameters are chosen to reflect the conditions in 0–10% central PbPb events at √
sNN =

5.02 TeV, see table 1. As demonstrated below, this parameter set gives a good description
of the experimentally measured jet suppression factor, see section 4. Since our work does
not deal with the precise description of experimental data, we have not attempted to fix
these parameters from a model of the underlying medium nor fitted them to experimental
data, which was done in [34]. This choice finally leads to a matching scale Q2

c = (1−100)μ2
�

and q̂ = (1 − 5)q̂0, depending on ω, in the IOE-matched spectrum eq. (2.24).
The MIE spectrum is shown in figure 1 for quarks (left) and for gluons (right). The

matching points ω∗ from eq. (2.13) are shown with bullets and below (above) the spectrum
is the HO (N = 1) spectrum. The matching works very well capturing the cone size
dependence, however it is not perfectly smooth (see R = 0). It is good enough to study
the integral of this spectrum, presented in the quenching factor. With different colors the
cone size dependence points out, it is less probable to lose energy by opening the cone (i.e.,
recapturing emissions). The difference in the quark and gluon spectrum is the color factor
CA/CF = 9/4, and thus gluons lose more energy. The dotted line in figure 1, represents
the energy scale which below secondary branching start to dominate [37], corresponding to
ω ∼ α2

s q̂L2, see eq. (2.29) (for more details, see the next subsection). Finally, the grey band
in figure 1 corresponds to emissions with ω ∼ ωBH, which are given by the Bethe-Heitler
spectrum [40, 41]. In what follows, we will neglect such emissions since these emissions do
not contribute significantly to jet energy loss at high-pT [27, 28].

2.3 Single-parton contribution to out-of-cone energy loss

When the number of medium-induced gluon emissions becomes large,
∫ ∞

ω dω dI
/
dω >

1, one needs to go beyond (2.4) and account for multiple emissions to the energy loss
distribution. Assuming independent emissions, we can treat it as a Poisson process. This
allows to define a probability distribution of radiating energy ε off a single parton at angles
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Figure 1. The out of cone emission spectrum, matched at NNLO for quarks (left) and gluons
(right) from eq. (2.24) for different cone sizes. The dash-dotted (dashed) grey lines are the HO
(N = 1) spectra, the bullets show the matching points ω∗. The dotted line shows the region ωs

below in which emitted gluons thermalize during the broadening. The hatched band shows where
ω < T0, considered and neglected as background.

larger than the jet cone. This probability distribution reads

P(0)
> (ε) =

∞∑
n=0

1
n!

⎡⎣ n∏
j=1

∫
dωj

dI>

dωj

⎤⎦ δ

⎛⎝ε −
n∑

j=1
ωj

⎞⎠ exp
[
−

∫
dω

dI>

dω

]
, (2.25)

where the parton radiates n soft gluons with ωj energies summing up to ε, and there
is a Sudakov exponential factor to resum virtual contributions [27]. In eq. (2.25), we
only account for the primary emissions off the leading particle and neglect any secondary
splittings. Performing the Laplace transform, the quenching factor of a single parton
emitting multiple gluons can be calculated using

Q(0)
> (ν) ≡

∫ ∞

0
dε P(0)

> (ε) e−νε = exp
[
−

∫ ∞

0
dω

dI>

dω

(
1 − e−νω)] , (2.26)

where ν = n/pT .
It is here worth emphasizing the role of the hard emissions described by the N = 1

spectrum. Neglecting for the moment broadening, i.e. setting R = 0 in eq. (2.22), the
spectrum at large ω > ωc  μ2L/2 is simply

dIN=1

dω

∣∣∣∣∣
ω>ωc

= ᾱπ

4
q̂0L2

ω2 . (2.27)

The resulting single-parton quenching factor for this regime behaves as

Q(0),N=1
> (ν) = exp

[
− ᾱπ

2
q̂0
q̂

(
1 − e−νωc + νωcΓ(0, νωc)

)]
, (2.28)

where Γ(s, x) =
∫ ∞

x dt ts−1e−t is the upper incomplete gamma function. At low pT , i.e.
pT � nωc, the quenching becomes at most Q(0),N=1(ν)|pT 	nωc ≈ 1−αsCRq̂0/(2q̂) constant
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factor. Hence, we conclude that the impact of hard radiation at LHC, where we expect
q̂ > q̂0, is relatively small. However, at high-pT , i.e. pT  nωc, where the leading behavior
is Q(0)(ν) ≈ Q(0),N=1(ν)|pT 
nωc ≈ 1 − αs

4 CR q̂0L2ν(1 − γE − ln νωc), it becomes more
important. Also, since hard radiation takes place at small angles, the effect is even smaller
at R > 0.

Equation (2.26) also includes contributions from small energy gluons, and an important
modification should be included to improve their description in the medium. As mentioned
above, gluons emitted with energy ωBH < ω < ωs, where

ωs ≡ π

(
Ncαs

π

)2
q̂0L2 , (2.29)

will thermalize quasi-instantaneously in the plasma via multiple branching [37]. Their
energy will basically be redistributed randomly over a cone with characteristic opening
angle Rrec ∼ π/2. Hence, instead of losing energy ω out of the cone, the jet loses ω[1 −
(R/Rrec)2], where the second power comes from the area proportionality. This process
describes the thermalization of soft jet particles. Moreover, if Rrec(ω, η, φ), where (η, φ)
describes the jet direction with respect to the reaction plane, one could use it to describe
back-propagation of the thermalized energy to the cone, and thus medium response. The
dashed line in figure 1 shows the location of ωs ≈ 8.5 GeV for our parameters. Depending
on the medium and jet parameters, this scale can be below or above the matching scale
ω�. In ref. [34], the importance of Rrec was studied and small dependence in the result was
observed and thus we used Rrec = π/2.

Finally, after neglecting emissions below the Bethe-Heitler energy (we assume that it
is given by the plasma temperature ωBH = T0), our final form for the quenching factor of
a single parton inside the jet is therefore

Q(0)
> (ν) = exp

[
−

∫ ∞

T0
dω

dI>

dω

(
1 − e

−νω

(
1−Θ(ωs−ω) R2

R2rec

))]
, (2.30)

where the cone size dependence is implicit in the integration limits of the out-of-cone
spectrum. The single parton quenching factor eq. (2.30) is shown in figure 2 with dashed
lines for quark and gluon initiators. By opening the cone, the emitted energy gets gradually
recovered, and thus the quenching factor becomes closer to 1. The difference in between
quark and gluon initiators is Q(0)

>,g = (Q(0)
>,q)CA/CF , resulting more quenching for gluon. We

expect our description to be less valid at smaller energies.

2.4 Quenching the whole jet

Having derived how one parton contributes to the energy loss of the whole jet, we next
turn to the calculation of how multiple partons in the jet, resolved by the medium during
their fragmentation process, add up to the total quenching effect.

Due to the large phase space for radiation between the jet scale ∼ pT R and the
hadronization scale ∼ ΛQCD, the jet forms through multiple emissions. It can be estimated,
from formation time arguments, that many of these emissions occur while the parton(s)
are interacting with the surrounding medium [29]. In the limit of complete decoherence,
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the constituents are expected to lose energy independently, following an incoherent super-
position of single-particle quenching factors in eq. (2.30). However, one has account for
coherence effects leading to a finite resolution power of the medium. As long as two par-
tons are closer to each other than the medium resolution length, the medium cannot resolve
them individually. The two partons are affected coherently (as a whole color charge) by
medium interactions and, in particular, by induced energy loss [45]. The relevant time-scale
can be estimated by comparing the size of a dipole, that in the small-angle approximation
roughly scales as r⊥ ∼ θt (where θ is the angle of the dipole and t is the propagation time),
to the resolution length of the medium, that scales as λ⊥ ∼ 1/〈k2

⊥〉1/2 ∼ 1/
√

q̂t, where we
assume Gaussian transverse-momentum broadening. The two transverse sizes are equal at
the decoherence time td ∼ (q̂θ2)−1/3.

This condition can be translated to emission times: emissions with formation times
smaller than the medium decoherence time tf < td are vacuum-like. In other words, they
are generated according to the probability distribution to split in the vacuum. The core
constituents should ultimately be resolved while they are still in the medium, i.e. td < L.
Therefore, jet constituents produced in the phase space delimited by tf � td � L, will be
resolved by the medium and are affected by quenching. The rest of the phase space stays
unaffected.

These two effects (vacuum fragmentation and medium resolution) are captured by the
collimator function C(pT , R) [29], which is a function of the jet and medium scales. It takes
into account the additional energy loss of resolved vacuum-like emissions in the medium
(see also ref. [46] for an application to heavy-quark jets). The total quenching of the jet
is therefore given as a product of the quenching of the total charge of the jet and the
collimator, that is

Q>,i(pT , R) = Q(0)
>,i

(
n

pT

)
Ci(pT , R) , (2.31)

where i = q, g indicates the dependence on the color charge. This is what we refer to as the
fully resummed quenching factor of a jet. The functions Ci obey a set of coupled, non-linear
evolution equations, see in ref. [29]. Here, we use its linear approximation, where the quark
and gluon solutions decouple, resulting in the resummation of all primary emissions off the
initiator. This allows to write the solution explicitly as

Ci(pT , R) = exp
[
−

∫ R

0

dθ

θ

∫ 1

0
dz

αs(k⊥)
π

Pgi(z)Θres
(
Q(0)

>,g(n/pT ) − 1
)]

, (2.32)

where αs is the 1-loop running coupling, the relative transverse momentum is k⊥ = z(1 −
z)pT θ, and Pgi(z) is the Altarelli-Parisi LO splitting function. The finiteness of the integrals
is ensured by the phase space measure Θres = Θ(L − td)Θ(td − tf), with the corresponding
times tf = 2z(1 − z)pT /k2

⊥ and td = [12/(q̂0θ2)]1/3. At large pT , pT � q̂0L2, this implies
that the angular integral is directly regulated by θ > θc, where θc = [12/(q̂0L3)]1/2. In
the opposite case, pT � q̂0L2, the angular integral is regulated by θ � (q̂/p3

T )1/4. Finally,
if θc > R the jet is completely coherent and C(pT , R) = 1. The color dependence of
the collimator is not trivial. Color dependence appears in the splitting function Pgi and
bare quenching weight Q(0)

>,i, through the Casimir factors CR, and, most complicatedly, in
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Figure 2. The nuclear modification factor using the matched radiation spectrum for single parton
quenching form eq. (2.30) (dashed line), and quenching the whole jet with coherence effects from
eq. (2.31) (solid line). Quark jets on the left and gluon jets on the right panel with different
cone sizes.

the spectrum power indices ni(pT ). Therefore, the exact quark/gluon dependence of the
collimator is process and nPDF dependent.

This linearized version of the collimator function is analytically calculable, which is a
big advantage in comparison to the full, non-linear version. We also tested against the full
non-linear solution, which resulted in small, <10%, deviations even for big R ∼ 1 cones.

The resummed quenching weight Q>,i(pT , R) is shown in figure 2 with solid lines for
quarks (left) and gluons (right) for different cone sizes. It results in more quenching (with
the same medium parameters) compared to the single-parton quenching factor because
there are more jet constituents that contribute to the total energy loss. The R-dependence
is a result of two competing effects: a) the recapture of medium-induced gluons by opening
the cone, and b) the opening of phase space for vacuum-like emissions that source additional
energy loss. The combination of these effects balances out, leading to a very mild cone
size dependence. For a full discussion of the uncertainties related to the choice of medium
scales and parameters involved in the quenching, see also ref. [34].

We would like to emphasize the flexibility of the collimator function Ci, which is inde-
pendent of the particulars of the model of energy loss employed in the previous sections.
One could start with other models for single-parton quenching Q(0) and the resolved phase
space Θres, and then use the collimator to describe the quenching of the multiple resolved
sources inside the jet. As a concrete example, we provide an alternative calculation in the
context of the hybrid weak- and strong-coupling model [47] in appendix D.

3 Quenching effects in the cumulative spectrum

The jet suppression factor, defined in eq. (2.2), compares the jet spectra in heavy-ion
collisions (medium), to that in proton-proton collisions (vacuum) at the same final pT . In
this section, we turn to the discussion of other observables that could be constructed from
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the inclusive jet spectra measured in these two systems. One alternative is to compare the
cumulative of the jet spectra (i.e., integrated above a fixed pT cut). The cumulative is less
affected by the initial shape of the hard spectrum and has better statistical uncertainties.
Another approach is to estimate the pT -shift necessary to match the pp and AA spectra.
This is closely related to the typical amount of energy lost by a jet. Both of these procedures
are straightforwardly related to the quenching factors entering the jet spectrum and will
be discussed in further detail in section 3.3. Now, we turn to an observable that combines
the strength of the two examples given above, namely the quantile procedure.

3.1 The quantile ratio

The quantile procedure was introduced in ref. [10] and aims to unfold the average momen-
tum shift 〈ε〉 between vacuum and quenched jets. First, let us introduce the tail cumulative
of the spectrum,

Σ(pT , R) ≡
∫ ∞

pT

dp′
T

dσR

dp′
T

, (3.1)

which is a probability after dividing with the full integral. The quantile procedure com-
pares the medium and the vacuum spectrum at equal probabilities, Σmed(pq,med

T , R) =
Σvac(pq,vac

T , R). In heavy-ion collisions, for a fixed pq,med
T , this condition allows identifying

the corresponding pq,vac
T . Finally, the quantile momentum ratio is defined as

Qmed(pq,med
T ) ≡ pq,med

T

pq,vac
T

∣∣∣∣∣
Σ

. (3.2)

Therefore, pq,vac
T is the momentum of vacuum jets above which vacuum and medium jets

have equal probability to be produced.
For a quick estimate, let us assume a steeply falling spectrum with a fixed power

n = const, and neglect the R-dependence of the quenching. The tail cumulative cross-
sections in vacuum and in medium (see eq. (2.1)–(2.2)) are simply

Σvac (pq,vac
T )|n=const = 1

n − 1 (pq,vac
T )1−n

, (3.3)

Σmed
(
pq,med

T

)∣∣∣
n=const

=
∫ ∞

pmed
T

dpT p−n
T Q(n/pT ) .

This results in the quantile momentum ratio

Qmed(pq,med
T )

∣∣∣
n=const

= pq,med
T

[
(n − 1)

∫ ∞

pq,med
T

dpT p−n
T Q(n/pT )

] 1
n−1

. (3.4)

To get the feeling for this quantity, it is instructive to consider a few simplified scenarios
for the quenching factor Q(n/pT ). First, for a constant quenching factor Q(n/pT ) = Q0,
the quantile ratio is a trivial function of the quenching factor Qmed = Q1/(n−1)

0 . Next, we
will consider the single-parton quenching factor obtained by using the soft limit (ω � ωc

in eq. (2.20)) of the BDMPS-Z spectrum, which is derived in appendix B. The interplay
between the jet cone and the broadening introduces a characteristic energy scale ωR =√

q̂L/R which defines two regimes that we discuss below:
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• For pT � nωR, it scales parametrically as Q(0)
> (pT ) = exp[−

√
ω1n/pT ] where ω1 =

8ᾱ2πωc is a characteristic energy scale of the medium. In this case the quantile ratio
becomes

Qmed(pT ) ≈ exp
[
−
√

ω1/((n − 1)pT )
]

=
[
Q(0)

> (pT )
] 1√

n(n−1) . (3.5)

• In the high-pT regime, pT  nωR, we instead have Q(0)
> = exp[−ω2n/pT ] with

ω2 = 2ᾱ
√

2ωcωR. This pT dependence is similar to that of medium-induced single
hard scattering, cf. eq. (2.28), and elastic drag, cf. eq. (4.6). The quantile reads

Qmed(pT ) =
[

n − 1
yn−1 γ (n − 1, y)

] 1
n−1

, (3.6)

where y = nω2/pT is the scaling variable and γ(s, x) = Γ(s) − Γ(s, x) is the lower
incomplete gamma function.

Both the quantile ratio Qmed, and the jet suppression factor Rmed depends identically on
a dimensionless ratio of a medium scale over the jet transverse momentum. Strikingly,
the main difference resides in the n dependence. It turns out that the relation between
quantile and quenching factor Qmed � Q1/(n−1)

> holds approximately also for pT -dependent
quenching factors — at least for the case of fixed n. In particular, given that ln Q(0)

> ∝
1 − nω2/pT at pT  nωR, we should expect a reduced sensitivity of the quantile to the
details of the initial spectrum at high-pT , i.e. ln Qmed ∝ 1 − ω2/pT .

Here, we have mostly focused on the contribution from the out-of-cone, soft radiation
spectrum to quenching. However, both quenching by hard emissions, see eq. (2.28) and
discussion below, and elastic energy loss, see appendix D.1, behave in a similar fashion. For
a single parton species, we should therefore expect to see a universal behavior, independent
of the hard spectrum of the quenching at high-pT .

We study the onset of the independence of the power-index of the hard spectrum n in
figure 3. In these plots, we have computed the single-parton quenching factor Q(0)

> for a
single parton species, in this case quarks, using as input the full radiative spectrum from
eq. (2.24), which encompass both soft and hard medium-induced emissions (dashed lines).
We also plot the resummed quenching factor Q>, given in eq. (2.31), (solid lines). On the
left in figure 3, we plot quenching factor Rmed(pT ) for a wide range of constant n values,
3 ≤ n ≤ 9. Strikingly, the amount of quenching varies significantly with n as a function of
pT , encapsulating the strong bias effects. The quantile ratio, on the other hand, plotted on
the right in figure 3, is remarkably resilient to the details of the hard spectrum. This holds
both for the single-parton quenching factor, which was expected based on the discussion
above, and the fully resummed Q>.

This robustness to the details of the hard, partonic spectrum was observed but not
derived analytically in the original paper [10]. It is the result of the combined effect of using
a momentum ratio, and using the cumulative distribution instead of the spectrum. Note,
however, that we have observed scaling for quark and gluon contribution independently
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Figure 3. The quenching factor (left) and the quantile ratio (right) for quarks only, using single par-
ton quenching (dashed lines) and quenching the whole jet (solid lines) for different spectrum power.

which only makes sense for pure samples of quark and gluon jets.1 For realistic situations,
e.g. dijet or boson-jet events, one has first to add up these contributions to the total
spectrum (cf. eq. (4.2)), before computing the cumulative. In this case, the scaling features
of the quantile ratio are not necessarily as transparent. We will discuss these issues in more
detail in section 4.

In order to make contact with the main objective of this paper, namely to provide
predictions for the quantile in heavy-ion collisions at the LHC, we round off this section
by studying the R-dependence of the quantile for pure quark and gluon jets in figure 4
for fixed n = 5 and medium parameters given in table 1. As before, the dashed lines
correspond to using eq. (2.30) for the quenching factor, which assumes that the whole
jet is quenched as a single parton, while the solid lines employ the resummed quenching
factor eq. (2.31). The single parton quenching trivially results in less modification and thus
smaller momentum shift and quantile ratio for the same medium parameters. Generally,
the qualitative features follows the naive expectation Qmed � Q1/(n−1)

> , cf. figure 2. The
R-dependence is analogous to our previous discussion; less quenching results in a quenching
factor closer to 1, and thus a smaller difference between the quantile momenta.

3.2 Statistical advantage of the cumulative spectrum

Using the tail-cumulative distribution has certain advantages in statistical analysis. For
a steeply falling distribution f(pT ) ∼ p−n

T (like the hadronic or jet spectrum), there are
fewer and fewer entries in the higher pT bins. This results in a rapid increase of the relative
statistical uncertainty with pT such as Δf/f(pT ) ∼ p

n/2
T (NΔpT )−1/2, where N is the total

number of hits, and ΔpT is the size of a bin. By using Σf (pT ) ≡
∫ ∞

pT
dx f(x) tail-cumulative

distribution, the sum of the higher bins results in less uncertainty ΔΣf /Σf (pT ) ∼
p

−1/2
T Δf/f(pT ). This can be further slowed down using ΔpT (pT ) ∼ pT logarithmic binning,

1The scaling of the “gluon quantile” follows the same trends as for the quarks in figure 3, the only
difference being the Casimir scaling of the quenching factors, Qq,> = (Qg,>)4/9.
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Figure 4. The quantile ratio using the eq. (2.30) for a single parton quenching (dashed line) and
quenching the whole jet with coherence effects from eq. (2.31) (solid line). Quark jets on the left
and gluon jets on the right panel for different cone sizes.

resulting in Δf/f ∼ p
(n−1)/2
T and ΔΣf /Σf ∼ p

(n−2)/2
T . It is also true that the cumulative

is equivalent to the original distribution, therefore for a given set of statistical samples the
tail-cumulative distribution could be advantageous.2

We would like to note, however, that one also has to consider systematic uncertainties.
Some of them cancel in ratio observables, such as the nuclear modification factor RAA.
This cancellation is less trivial in the cumulative case.

3.3 Other types of observables based on the spectrum

So far we have discussed the nuclear modification factor and the quantile procedure. But
other observables related to the jet spectrum could also be defined (see also in refs. [10, 27,
48]). We demonstrate the relation between these observables within the quenching weight
formalism and show how these observables are related to the quenching factor Q(n/pT ) (or
Rmed) and the quantile ratio Qmed below.

• Pseudo-quantile [10]: is a version of the quantile procedure which matches directly the
spectrum instead of the cumulative, dσmed/dp̃q,med

T ≡ dσvac/dp̃q,vac
T . The condition

relates the two momenta, i.e. p̃q,vac
T (p̃q,med

T ). We obtain then,

Q̃med
(
p̃q,med

T

)
≡ p̃q,med

T

p̃q,vac
T

∣∣∣∣∣
σ

≈
[
Q>

(
p̃q,med

T

) ]− 1
n(p̃med

T
) . (3.7)

Because of the momentum ratio, this observable has similar n dependence to the
quantile ratio, and therefore it is more robust against the initial spectrum. The
statistical uncertainty, however, is similar to the Rmed since bins are not summed. It
is equivalent with the momentum shift parameter.

2Up to truncation in the domain or co-domain of the distribution.
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• Momentum shift [27, 48]: is another interpretation of the pseudo-quantile, defined by
demanding

dσmed(pT )
dpT

≡ dσvac(pT + S(pT ))
dpT

. (3.8)

The trivial connection between the definitions is pvac
T = pT + S(pT ), therefore

Q̃med(pT ) = 1 + S(pT )
pT

. (3.9)

Therefore, the pseudo-quantile and the momentum shift are equivalent. The spectrum
shift can also be expressed with the quenching factor,

S(pT ) = pT

[
Q>(pT )− 1

n(pT ) − 1
]

, (3.10)

expressing the connection between the pseudo-quantile Q̃med and the shift parame-
ter S(pT ).

A different definition of the momentum shift parameter was used by the PHENIX
collaboration Sloss(pT ) [48]. Their definition, however, assumes n = const and pos-
tulates Sloss(pT ) = S0pT . The S(pT ) and Q̃(pT ) are more general. We found to
be necessary to consider changing power n(pT ) in the spectrum, see section 4 and
appendix A.

• Cumulative-Rmed (or pseudo-ratio [10]): is similar to the Rmed but uses the ratio of
the cumulative spectrum instead,

R̃med(pT ) ≡ Σmed(pT )
Σvac(pT ) , (3.11)

where the cumulative of the spectrum is defined in eq. (3.1), and where we have
suppressed the R dependence for now. The integral reduces bias effects from the
initial spectrum and improves the statistics as we showed in section 3.2. For a pT -
independent quenching weight, as in the single-parton P(ε) in the soft BDMPS-Z
limit, the cumulative R̃med can be written as

R̃med =
∫ ∞

0
dε P(ε)Σvac(pT + ε)

Σvac(pT ) . (3.12)

A deviation from this expectation indicates a pT dependence of the quenching weight.
Furthermore, for a spectrum with constant n, where Σvac(pT + ε)/Σvac(pT ) = (1 +
ε/pT )1−n, we simply get that R̃med = Q((n − 1)/pT ). Finally, a trivial connection
between the R̃med and the quantile ratio for constant n is R̃med(pT ) ≈ Qmed(pT )n−1.

In conclusion, we demonstrated the relationship between the different observables one
can construct from the jet spectrum. It turns out that the quantile procedure is partic-
ularly appealing due to the reduced sensitivity to the hard spectrum and because of the
improvement of the statistical uncertainties.
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4 Predictions

In the previous sections, we introduced the quenching weight formalism and showed the
way one can construct the quenched jet spectrum and its cumulative. In this section, we
extend our formalism to provide more reliable predictions for measurements in heavy-ion
collisions.

4.1 Including the realistic spectrum and elastic energy loss

A realistic calculation of quenching effects has to include the partonic cross-section for jet
production. This is evaluated at the hard scale of the collision, Qhard ∼ pT . The jet spec-
trum at a given cone size is computed then by including a DGLAP evolution to the scale
Qjet ∼ pT R [5, 49, 50]. Alternatively, the partonic cross-section that results in a jet with a
given cone can be parameterized using a Monte Carlo event generator in which the partonic
cross-section and the parton shower are matched. In our study, we generate events with
Pythia8 [51] to fit the pT -dependence of the spectrum with reconstruction parameter R, for
quark-, and gluon-initiated jets. The large-angle DGLAP radiation results in additional
R-dependence of the RAA, through the recapture of vacuum radiation. The spectrum pa-
rameterization, therefore, includes the vacuum radiation recaptured by the cone, resulting
in an additional R dependence [52], see appendix C and figure 10, in particular. Currently,
we restrict our study to inclusive jets in dijet samples, generated in pp, and 0–10% cen-
tral PbPb collision at √

sNN = 5.02 TeV, with pT = 20 − 1000 GeV and |η| < 2.8, similar
to the kinematics used by ATLAS [53].3 The details of the event generation (excluding
ISR, MPI and including the effect of nuclear PDFs in Pb, jet selection, and quark/gluon
flavor assignment procedure) are described in appendix C. We also describe the proposed
functional form, following ref. [32], to fit the spectral indices nq(pT , R) and ng(pT , R), that
automatically parameterizes the (pT , R) dependence of the quark-gluon fraction.

The nuclear modification factor RAA, defined as

RAA(pT ) = dNAA(pT , R)/dpT

Ncoll dσpp(pT , R)/dpT
, (4.1)

where Ncoll gives the number of collisions in the nuclear overlap at a given impact parameter
and we identify dNAA/Ncoll = dσAA. The main difference between this ratio and the
previously defined Rmed, defined in eq. (2.2), is the addition of both quark and gluon jets
with their respective quenching factors and the nPDFs. As a result, in our framework,
we get

RAA(pT , R) =

⎡⎣ ∑
i=q,g

Qi

(
pT , R; nAA0

i (pT , R)
) dσAA0

i

dpT
(pT , R)

⎤⎦/ ∑
i=q,g

dσpp
i

dpT
(pT , R) , (4.2)

where the extracted spectra are dσ
pp/AA0
i (pT , R)/dpT , (i = q, g), and we have explicitly

written out the dependence of the quenching factor on the spectral index nAA0
i (pT , R).

3We refer the dijet RAA as single-inclusive because jets contribute independently.
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Similarly, the cumulative spectrum in vacuum and medium are given by

Σpp(pq
T , R) =

∫ ∞

pq
T

dpT

∑
i=q,g

dσpp
i

dpT
(pT , R) , (4.3)

ΣAA(pq
T , R) =

∫ ∞

pq
T

dpT

∑
j=q,g

Qj

(
pT , R, nAA0

i (pT , R)
) dσAA0

j

dpT
(pT , R) . (4.4)

The quantile is finally defined as,

QAA = pq,AA
T

pq,pp
T

, (4.5)

where the two momenta are determined from the condition Σpp(pq,pp
T , R) = ΣAA(pq,AA

T , R).
In section 2, we focused our discussion on the quenching effects emerging from medium-

induced radiation and broadening. However, for realistic predictions we should also in-
clude quenching from elastic scattering. Elastic energy loss is described by the trans-
port coefficient ê, which is related to q̂ through Einstein’s fluctuation-dissipation relation
êg = q̂/(4T ) for gluons and êq = êgCF /Nc for quarks [54, 55]. Here, T = T0 is the local
temperature of the plasma. We model the single-particle energy loss distribution simply as
P(ε) = δ(ε − êL), where the flavor index is suppressed. Assuming that the energy lost in
elastic processes thermalize instantaneously, we also build in the possibility to recover part
of this energy through the phenomenological parameter Rrec, see eq. (2.30). This finally
results in a single-parton quenching factor from elastic energy loss, given by

Q(0)
el (ν) = exp

[
−êLnν

(
1 − R2

R2
rec

)]
. (4.6)

The criteria for resolving the partons in the jet are based on geometry and are therefore
assumed to be identical for elastic and radiative processes. Therefore, the complete single-
particle quenching factor Q(0)

> , appearing in eqs. (2.31)–(2.32), should be replaced by

Q(0)
> (pT ) = Q(0)

>,rad(pT ) Q(0)
>,el(pT ) , (4.7)

where Q(0)
>,rad(pT ) is given by eq. (2.30) and Q(0)

>,el(pT ) is given by eq. (4.6). Including elastic
effects has an important effect on the magnitude of the total quenching factor. For further
detalils see appendix D.1 and figure 11.

4.2 Numerical results for dijet events

The single-inclusive jet RAA, generated from a sample of dijet events, for a set of cone
sizes, 0.2 < R < 1, is shown in the left panel of figure 5 (solid curves). In the current work,
the medium is treated as a static brick with fixed q̂0 and length L, see table 1 for details
that is generally a good approximation even for expanding media, see ref. [56]. There is a
notable change of the curves at high pT due to the inclusion of nPDFs (see also in figure 10
in appendix C for only the nPDF effects). The overall R dependence is very modest and
will be discussed in more detail shortly.
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Figure 5. The RAA (left panel) and QAA (right panel) from eqs. (4.2) and (4.5), respectively, for
single-inclusive jets in dijets events in 0–10% PbPb collision at √

sNN =5.02 TeV. The parameters
are chosen to reproduce the R = 0.4 ATLAS [53] measurement. Data from ALICE [57] and CMS [58]
are also shown.

The parameters of the calculation are tuned to the measured inclusive jet data from
ATLAS [53] at pT � 100 GeV and R = 0.4 with |η| < 2.8, cf. table 1, resulting in good
agreement between data and theory for the whole pT range. The measured inclusive jet
RAA from ALICE [57] for R = 0.2 and R = 0.4 are also shown in figure 5, where the
rapidity range for the jet selection |η| < 0.5 is slightly different. The recent CMS [58]
results are also shown in figure 5 for various R, where the rapidity is |η| < 2. We would
like to note, there is a disagreement between the ATLAS and CMS data that was not
pointed out in the CMS’ latter publication. We would like to also note that the magnitude
of RAA(pT ) in any BDMPS-Z type of calculation is mostly sensitive to the combination
ωs ∼ α2

medq̂0L2, as observed in refs. [27, 59]. The slope of the RAA(pT ) is quite robust
to changes in the parameters.4 Given our simplified modeling of the medium, we do not
attempt to reproduce the centrality dependence of the jet RAA at high-pT which will be
left to future work, see also in ref. [34].

Having constrained the medium parameters with RAA, we now turn to the predictions
for the quantile momentum ratio which is showed in the right panel of figure 5. There is no
drastic change due to the nPDFs in comparison to the RAA at high-pT , demonstrating the
robustness of the quantile procedure against modifications in the partonic cross-section.
The shape of the curves and even the R dependence is very similar to the RAA and is well
captured by the approximate relation QAA ∼ R

1/(n−1)
AA . To date, there are no experimental

measurements of the quantile ratio.
Our formalism accounts for the cone size dependence of jet quenching through compet-

ing effects related to the early vacuum shower and medium-induced elastic and radiative
processes. On the one hand, by opening the cone, one captures more of the particles that

4By including event-by-event fluctuations in the jet position and path length, the slope becomes flatter
in ref. [34].
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Figure 6. Same plots as in figure 5, but taking the ratio of different cone sizes to enhance the
differences between single and multi-parton quenching. On the x-axis of the right panel we used
pq,AA

T instead of pq,pp
T from previous.

are affected by medium interactions and thus recover the lost energy. This is manifested
as a suppression of the spectrum dI>/dω at ω >

√
q̂L/R in figure 1, meaning it is less

probable to lose energy. For R ∼ Rrec all quasi-thermalized modes, both in the radiative
spectrum (ω < ωs) and due to elastic collisions, are recaptured within the jet cone. On
the other hand, opening the reconstructed jet cone results in more phase space for vacuum
fragmentation at an early stage of the evolution. This leads to a higher multiplicity of
vacuum-like emissions and, therefore, more sources for energy loss.

The overall effect is a relative cancellation of the R dependence (see figure 5). figure 6
shows the RAA (left) and quantile ratio (right) at a given R divided by the R = 0.2 results.
As an illustration, here the dashed curves are the results obtained by using the single-
parton quenching factors Q

(0)
> , which amounts of treating the whole jet as a completely

coherent single parton that is not resolved by medium interactions. Their R-dependence
reflects directly the effect of recapturing energy at large angles without sourcing more
energy loss though vacuum fragmentation. The full curves are for the full quenching factors
which leads to a more complicated R dependence where, several effects contribute, such as
vacuum fragmentation and its recapture, color coherence effects and the thermalization of
the medium-induced emissions. This ratio was measured by ALICE [57] (for |η| < 0.5), and
CMS [58] (for |η| < 2), showing great agreement with our model. Reference [58] compares
many theory prediction and we can say, currently, our model has the best agreement.

The main differences between the “bare”, and “resummed” quenching factors is at
lower pT ∼ 50 − 100 GeV. As we mentioned, in our model the RAA is mostly sensitive
to the ωs ∼ α2

medq̂0L2 combination of the parameters. A precise measurement on the R-
dependence would help to constraint more parameters. The right side of figure 6 shows the
R-dependence of the quantile ratio. It is much less sensitive to the jet cone.

– 22 –



J
H
E
P
1
0
(
2
0
2
1
)
0
3
8

Figure 7. The RAA and QAA from eqs. (4.2) and (4.5) for single-inclusive jets from dijet and Z+jet
events in 0–10% PbPb collision at 5.02 TeV, keeping the same parameters as in figure 5. On the
x-axis of the right panel we used pq,AA

T instead of pq,pp
T like in previous plots.

4.3 Differences between dijets and Z+jets

At first glance, there should be no difference in the quenching mechanism in dijet and
boson+jet events.5 However, their RAA are not expected to be the same. In this subsection
we explain why, and what are the consequences for quark and gluon classification. The
Z+jet process is used as an illustration. We also show how can one use the cumulative
distribution for quark-gluon discrimination to perform better statistics.

4.3.1 Difference in the RAA

In recent years, a lot of effort has been put to measure and understand the boson+jet
processes both in pp and AA collisions. Firstly, it is a favorable process for quark-, and
gluon-jet discrimination, because it provides a natural definition of the initial jet flavor.
Secondly, measuring the boson momentum, one gets a label on the initial momentum of the
recoiling jet. This is especially advantageous in heavy-ion collisions, where the quenching of
bosons is suppressed,6 and one, therefore, gains knowledge about the jet before final-state
interactions with the medium.

Here, we focus on Z+jet process, but the arguments are valid for other boson+jet
processes. We generated the Z+jet events with Pythia and identified jets using the same
cuts as in the dijet study. Further details on the event generation and parameterization
are summarized in appendix C. We include the corresponding spectrum using eq. (4.2)
and the result is shown in figure 7. Dijet and boson+jet processes have different spectra
and thus their bias is different on the energy loss distribution. As discussed before, this
appears through the spectrum power n(pT ) in the quenching factor. For dijets n ≈ 6,

5The so-called “surface bias” is in our context built in due to the bias from the initial steeply falling
spectrum.

6The electro-weak bosons can still interact with the background for example through electromagnetism.
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for Z+jets n ≈ 4, therefore based on the approximate RAA ∼ exp(−2
√

πᾱ2ωcn/pT ), the
bigger the power, the stronger is the quenching. To stress this, the dijet-, and Z+jet-RAA
ratio is also shown. The ratio of two exponential remains to be exponential that looks
linear on the semi-log scale. Moreover, dijets are gluon dominated, while Z+jets are quark
dominated, see in figure 10 in appendix C. Therefore we expect Z+jets to have smaller
quenching, which is in agreement with figure 7. The pT dependence of the power is also
different, resulting in a different slope of RAA as high-pT . Note also that the Z+jet quark
contribution is relatively constant in pT in contrast to the increasing quark contribution
in dijets. Since the quenching roughly scales with the color charge (gluons have more
quenching), at higher pT , Z+jets has stronger quenching, which is in agreement with the
smaller slope in the plot. Although the Z+jet and dijet spectra are different, the relative
R dependence is similar.

The quantile ratio is also shown in the right panel of figure 7. The difference is smaller
between dijets and Z+jets than for the nuclear modification factor, pointing out the reduced
sensitivity to the details of the initial spectrum (see also figure 10). Using the cumulative
spectrum, and the ratio of momenta, one gets much less sensitive to the initial shape of the
spectrum. The degree of scaling the initial spectrum of the quantile is nevertheless not as
ideal as for the results in figure 3. This can be traced to the fact that the single inclusive jets
in neither dijet nor Z+jet events are pure samples of quark-, or gluon-initiated jets. The
different admixture of parton species, as well as the different level of quenching of the two
both, contribute to delaying the onset of scaling effects up to higher transverse momenta.
One also has to point out that figure 3 was obtained by assuming n =const, while for
realistic calculations nq and ng are complicated functions of pT and differ significantly for
dijet and Z+jet events, see figure 10.

All in all, our results are also qualitatively similar to the ones observed in ref. [10].
Similarly to dijets, the R-dependence is very similar to the Z+jet RAA and is to a great
degree captured by the approximate relation QAA ∼ R

1/(n−1)
AA .

4.3.2 Improving quark-gluon discrimination

As mentioned above, jets recoiling from a boson (γ or Z/W ) is the preferred process for
quark-gluon (q/g) discrimination, because the hard scattering naturally defines the initial
flavor of the jet at leading order in perturbation theory. Most q/g discriminators apply cut
on jet substructure observables, e.g., jet mass or soft-drop multiplicity, to classify jets, see
in refs. [1, 60]. While the best performance is achieved by machine learning algorithms,
these nonetheless rely on training sets resulting in model dependence. In pp, however,
the main description of jets is predominantly perturbative or it can be made perturbative
with grooming. Model dependence, therefore, is not as crucial as for heavy-ions, where the
description is not yet unique and where non-perturbative effects are more prominent.

The recently introduced topic modeling [15, 61, 62] is a data-driven method that is
largely model independent, and its outstanding performance was demonstrated for event
generator samples both in pp and AA. For this reason, it is also applicable to heavy-ions.
There are some caveats of the classifier; (i) it works only with certain observables for which
quarks and gluons are mutually irreducible (usually counting-type observables [63, 64]), (ii)
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it is heavily limited by statistical uncertainty, (iii) the performance is limited by the cuts
on the phase space, and (iv) it works on statistical samples.

Topic modeling aims to un-mix the sample probability distributions (e.g., dijet and bo-
son+jet samples) to a common basis (quark and gluon distribution). Consider, for example,

pZj(x) = fZj
q pq(x) + (1 − fZj

q )pg(x) ,

p2j(x) = f2j
q pq(x) + (1 − f2j

q )pg(x) , (4.8)

where p(x) is a probability density of some observable for which eq. (4.8) is true (mutual
reducibility), and f

Zj/2j
q and f

Zj/2j
g are the weight factors. To un-mix, one uses the fact

that phase-space of x exists, where either the dijet or boson+jet (and thus the quark or
gluon) dominates the distribution. This usually happens on the domain border of the
observable (e.g., small/big jet multiplicity) [63, 64]. With this, called anchor-bin, one can
statistically decouple the basis using pZj(x) − κp2j(x) ≥ 0,

pq(x) = pZj(x) − κ(Zj|2j)p2j(x)
1 − κ(Zj|2j) ,

pg(x) = p2j(x) − κ(2j|Zj)pZj(x)
1 − κ(2j|Zj) , (4.9)

where the reducibility factor is

κ(i|j) ≡ inf
x

pi(x)
pj(x) , (4.10)

where i, j = Zj, 2j.
Equation (4.9) is true if eq. (4.8) is possible, and both infx pq(x)/pg(x) = 0 and

infx pg(x)/pq(x) = 0. However, for real data it has a finite minimum. The minimum
is typically on the edge of the x distribution, and thus the extraction of κ is limited by the
statistical uncertainty of this corner bin. Because of the linearity, one could integrate both
sides of eq. (4.8), and rewrite eq. (4.9) using the cumulative distribution of p(x),

κ̃(Zj|2j) ≡ inf
x

∫ ∞
x dx pZj(x)∫ ∞
x dx p2j(x) , (4.11)

κ̃(2j|Zj) ≡ inf
x

∫ x
0 dx p2j(x)∫ x
0 dx pZj(x) . (4.12)

Our cumulative method improves the statistical uncertainty by definition (see section 3.2)
that can be trivially tested with arbitrary combined distributions.7 We would like to note
the cumulative in this subsection refers to the p(x) distribution, and has nothing to do
with the cumulative of the jet spectrum.

Unfortunately, the jet spectrum is not mutually irreducible. One can see this from
eq. (4.2), where the quenching factor depends on the quark/gluon spectrum through their
n indices. However, the medium modified quark-gluon ratio of the jet spectrum is important
for any quark-gluon discriminator, and thus we provide it in figure 8, for both dijets

7Ref. [62] mentions the possibility to use the cumulative instead of the binned histogram.
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Figure 8. The quark and gluon ratio before and after quenching for dijets and Z+jets in pp and
PbPb.

and Z+jets. We observe that at high-pT the ratio barely changes, however, at lower pT

quarks start to dominate. This is the result of the stronger quenching of gluons, effectively
suppressing them in the samples. For future quark-gluon classification, this suppression
effect indicates that the Z+jet quark-gluon ratio will be less different from the dijet ratio,
making the separation, unfortunately, harder, in line with what was observed in ref. [65].

5 Conclusion

In heavy-ion collisions, the steeply falling jet spectrum, convolved with the probability
for quenching, biases the measured jet observables. In this paper, we studied the origin
of this bias and its presence in recently suggested observables, e.g., the quantile ratio
and its comparison of single-inclusive jet spectra in dijet and boson+jet events in heavy-
ion collisions.

We developed a novel analytic framework based on quenching factors to construct the
jet spectrum in heavy-ion collisions. Starting from single parton energy loss, we showed the
necessity to include the full medium-induced radiation spectrum, including both multiple-
soft (described by the BDMPS-Z spectrum) and single-hard (included in the GLV spec-
trum) scattering regimes. By keeping track of the jet cone size, the energy is only lost
if the emissions propagate out of the cone. We also account for the quenching of mul-
tiple jet partons resolved by the medium interactions through the collimator function,
see eq. (2.31). Therefore, opening the cone, vacuum-like jet fragmentation sources more
partons to quench, resulting in a relative cancellation of the cone-size dependence. It is
also important to use realistic jet spectrum for predictions by including the pT dependent
spectrum power n(pT ), pT -dependent quark-gluon jet ratio, and nPDFs. We revealed the
importance of elastic energy loss, and also included it in our quenching framework for jets.

Different observables have been introduced to study the jet spectrum in heavy-ion col-
lisions, e.g., spectrum shift, cumulative-RAA, quantile or pseudo-quantile procedure. We
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showed their relation to the nuclear modification factor, to each other, and elucidated
their dependence on the jet momentum pT , the spectrum power n, and the jet cone size
R. The cumulative-based observables reduce statistical uncertainty, and the momentum-
ratio-based ones change the spectrum power dependence. The quantile momentum ratio
maximizes both of these advantages, and we provided predictions for its cone-size de-
pendence for the first time. Our approximate formula for the quantile momentum ratio
QAA ∼ R

1/(n−1)
AA captures the rough properties of the observable: it is similar to RAA, with

reduced spectrum power index n.
Finally, we demonstrated the bias effect by comparing quenched dijet and Z+jet spec-

tra. For a pure sample of quark or gluon jets, the quenching factors for single-partons
scale like

− ln Q(0)
> ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ᾱ

√
q̂L2n

pT
for pT � nωR

ᾱ

√
ωRq̂L2 n

pT
for pT  nωR

, (5.1)

where ωR =
√

q̂L/R. This qualitative behavior is also numerically confirmed for the
resummed quenching factor Q>. As a direct manifestation of the bias effect, i.e. the n-
dependence in eq. (5.1), the jet spectrum in Z+jet events, which is less steep, results in a
smaller nuclear modification factor RAA than for dijet events, see figure 3 (left). In other
words, the steeper the spectrum the stronger the effect of quenching.

The quantile ratio QAA is much more resilient to details of the hard spectrum, both the
actual values of n and of the relative admixture of quarks and gluons. For pure samples
of quark-, and gluon-jets, the behavior in eq. (5.1) predicts an almost ideal scaling at
pT  nωR, which was largely confirmed in figure 3 for n =const. For realistic samples of
jets in dijet and Z+jet events, however, the universal behavior of the quantile ratio can
only be expected to be approximate, see figure 7 (right).

The dijet and Z+jet events are also useful for quark and gluon discrimination. Follow-
ing our cumulative spectrum experiences, we improved quark-, and gluon-jet discrimination
based on topics modeling in general. However, due to the n-dependence of the quenching
factors, quarks and gluons in the jet spectrum are not mutually irreducible. We will return
to the challenging of quark/gluon discrimination in heavy-ion collisions in future work.

Many of the assumptions underlying the concrete realization behind our numerical
results in section 2 are already implemented in varying degrees in various phenomenological
Monte Carlo models. Our framework, therefore, provides theoretical tools to organize the
effects of quark/gluon contributions, jet fragmentation, and finally, the details of medium
interactions. In the BDMPS-Z framework, these are, to a first approximation, all controlled
by a single transport coefficient q̂.
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A Corrections to the Laplace transformation and to the running power

Our objective in this paper, is to compute the ratio of medium to vacuum inclusive jet
spectra, which can be written as (see eqs. (2.1)–(2.2))

Rmed(pT ) =
∫ ∞

0
dε P(ε)

(
1 + ε

pT

)−n

, (A.1)

where we omit the R dependence for now, and assume that n = const. In eq. (2.3), we
took the (1 + ε/pT )−n ≈ exp(−nε/pT ) approximation. We can, however, easily include
corrections to this by noting that

Rmed(pT ) =
∫ ∞

0
dε P(ε)

[
1 + (νε)2

2n
− (νε)3

3n2 + O
(
(νε)4)] e−νε

=
[
1 + ν2

2n

∂2

∂ν2 + ν3

3n2
∂3

∂ν3 + O
(
ν4∂4

ν

)]
Q(ν) , (A.2)

where Q(ν) ≡
∫ ∞

0 dε P(ε)e−νε is the Laplace transform of the energy loss distribution and
ν = n/pT . In this appendix, we investigate the impact of these higher-order corrections
for a concrete example that can be solved analytically, namely the energy loss distribution
obtained in the strictly soft limit of the BDMPS-Z spectrum. It is given by

P(ε) =
√

ωs

ε3 e− πωs
ε , (A.3)

which only depends on the energy scale ωs and is properly normalized. In this case, its
Laplace transform is Q = exp(−2√

πωsν). We can, in fact find any of the terms in eq. (A.2)
by noticing that

Im ≡ ∂m

∂νm
Q(ν) = (−1)m2

(
ν

π

) 1−2m
4

ω
1+2m

4
s Km− 1

2
(2√

πωsν) , (A.4)

where Km(x) is the modified Bessel function of the second kind and I0 = Q(ν). We can
therefore write

Rmed(pT ) =
∞∑

m=0
cmIm , (A.5)

where, c0 = 1, c1 = 0, c2 = ν2/(2n), c3 = ν3/(3n2) and so forth, by assuming Rmed(pT ) to
be analytic function. On the left of figure 9, we study the corrections by comparing to the
exact value from eq. (A.1). The parameters we use are ωs = 5 GeV and ωs = 10 GeV and
n = 5. For the realistic choice of ωs � 5 GeV, the leading behaviour is already of the order
of O(10−2), even at low pT ∼ 100 GeV.

– 28 –



J
H
E
P
1
0
(
2
0
2
1
)
0
3
8

102 103 104

pT [GeV]

0.90

0.92

0.94

0.96

0.98

1.00
R
at
io

to
th
e
ex
ac
t

O(1)

O(∂2
ν)

O(∂3
ν)

ωs = 5 GeV, n = 5

ωs = 10 GeV, n = 5

101 102 103 104

pT [GeV]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Q(
ra
d
)

>
,q

(p
T
)

q̂0 = 0.08 GeV3, L = 4 fm, μ = 0.45 GeV

αmed = 0.3, T0 = 0.45 GeV, n = 5, R = 0.4

Laplace transform

with correction

Figure 9. Ratio of the truncated expansion of Rmed from eq. (A.2) to the exact value for the soft
BDMPS-Z model from eq. (A.1) (left), and the same with the full quenching weight from eq. (2.31).

Finally, the effect of the corrections from eq. (A.2) for the realistic quenching weight
employed in the main body of the paper is showcased in figure 9 (right) up to the lead-
ing correction O(∂2

ν). The sign of the correction depends on the concavity/convexity of
the quenching weight (note the second derivative in pT in eq. (A.2)). For our choice of
parameters, the correction is tiny < O(10−3), and can safely be neglected.

The conclusions from above also hold if we consider a pT dependent power n(pT ) of
the hard spectrum. One can trivially replace n 
→ n(pT ) in the quenching weight capturing
most of the effects of the running power. The correction to this simple replacement is

Rmed(pT ) ≈
[(

1 − 1
pT

∂n

∂pT

∂2

∂ν2

)(
1 + ln(pT ) ∂n

∂pT

∂

∂ν

)]
Q(ν) , (A.6)

resulting in negligible � O(10−3) corrections similar to the corrections to the Laplace
transformation.

B pT -scaling of the out-of-cone emission quenching factor

Consider the BDMPS-Z spectrum in the soft limit. In the short formation-time approxi-
mation the emission and subsequent broadening of a soft gluon factorizes, and we can write

ω
dI

dωdk2
⊥dt

= ᾱ

√
q̂

ω
P(k⊥, L − t) , (B.1)

where P(k⊥, L − t) is the probability for a particle emitted at time t to acquire transverse
momentum k⊥ = ωθ through elastic scattering up to the end of the medium L. In the
Gaussian approximation, it reads

P(k⊥, L − t) = 4π

q̂(L − t)e− k2
⊥

q̂(L−t) . (B.2)
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For this simplified ansatz, the out-of-cone spectrum reads

dI>

dω
= ᾱ

√
q̂L2

ω
B
(

ω2

ω2
R

)
, (B.3)

where ωR =
√

q̂L/R and the broadening factor B is given by

B(y) = 1
L

∫ L

0
dt

∫ ∞

(ωR2)
dk2

⊥ P(k⊥, L − t) = e−y − yΓ(0, y) , (B.4)

where y = ω2/ω2
R. Therefore, eq. (B.3) falls rapidly for ω > ωR, and thus we used ωR in

the matching definition in eq. (2.13). The single-parton quenching factor reads then

ln Q(0)
> (ν) = −ᾱ

√
2ωcν

∫ ∞

0
dx

1
x3/2

(
1 − e−x)B

(
x2

x2
R

)
,

≈ −ᾱ
√

2ωcν

∫ xR

0
dx

1
x3/2

(
1 − e−x) (B.5)

where we changed variables to x = ων and xR ≡ ωRν. We will solve this integral in two
limiting cases, namely xR � 1 and xR  1. In the former case, which corresponds to the
high-pT regime where pT  ωRn, we can expand the terms in the bracket and find

ln Q(0)
> (ν)

∣∣∣
xR	1

= −2ᾱ
√

2ωcωRν . (B.6)

In the opposite limit, for pT � ωRn, we can extend the upper integration limit to infinity,
to obtain

ln Q(0)
> (ν)

∣∣∣
xR
1

= −2ᾱ
√

2πωcν , (B.7)

which is independent of the jet cone.

C Generating and parametrizing the jet spectrum

As we mentioned in section 2, the partonic cross-section to produce a jet with a given pT

and R is perturbatively calculable in the collinear factorization up to high precision [5, 6].
In our work, instead, we extract the spectrum using the Pythia8.235 event generator [51].
To generate dijet events we used default settings and tunes with HardQCD:All both in
pp and in 0–10% PbPb collision at 5.02 TeV. This results in LO 2 → 2 matrix elements.
The nPDF was EPS09LO which has a relatively important effect on the RAA, see in
figure 10. The ISR, MPI, and hadronization were turned off to focus on final state radiation
only. We reconstructed jets using anti-kt algorithm with FastJet3 [66] for R = 0 − 1,
pT,jet = 10 − 1000 GeV and |ηjet| < 2.8, similar to the kinematic cuts of ATLAS.8 To
label the flavors of the jets, we compared them to the outgoing partons from the hard
scattering, and we kept the closest in angle if it was less than 2R. We only associated one
jet (the hardest) with an initiator, and thus we only kept the two hardest associated jets.

8At this rapidity selection and jet cones, the ISR and MPI could contribute to jet production, that we
address in a future study.
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Figure 10. Left: the parametrized quark jet contribution in pp and in PbPb using the nPDF in
Pythia. Middle: the quenching factors for quarks and gluons resulting from nPDFs (no quenching).
Right: the quantile ratio resulting from nPDFs alone.

This selection detail becomes important for small R jets, where more than one jet can
be reconstructed for one initiator. We kept those events in which there no jet passing the
criteria, which are important in the proper RAA ratio (before quenching). We parametrized
the spectrum following [32],

dσ
pp/AA
i

dpT
(pT , R) = c0

(
pT

p0

)−n
pp/AA
i (pT ,R)

, (C.1)

n
pp/AA
i (pT , R) =

∑
n=1

cn logn
(

pT

p0

)
, (C.2)

where i is the flavor of the initiator of the jet and {p0, cn} are (pT , R, i, pp/AA) dependent
fitting parameters. We kept terms up to n = 3, achieving < 3% relative deviation. The
resulted parametrization is showed in figure 10. On the left, there is the quark contribution,
which increases with pT . The cone size dependence shows, gluons are emitted at larger
angles even in the vacuum. On the middle the RAA is shown, resulted by the nPDF (no
quenching on the plot). The inclusive jet spectrum would be similar to the dijets keeping
not only the two hardest jets, however, the flavor assignment would be less trivial especially
for smaller cone sizes, therefore we preferred to use the dijet samples.9 On the right, the
quantile ratio is shown resulted only from the nPDF effects. One can see that the ratio
is close to 1, in contrast to the quenching observed in figure 5. The pT dependence is
also different compared to quenching. At high pT � 300 GeV, the nPDF suppresses the
spectrum (because of the EMC effect, see the RAA in the middle), resulting QAA < 1,
while at pT ≈ 20 − 300 GeV, the nPDF enhances the spectrum (due to anti-shadowing),
resulting QAA > 1, see [68] for more details.

For the Z+jet samples, we followed the logic from previous. We used however the
WeakBosonAndParton:qg2gmZq and WeakBosonAndParton:qqbar2gmZg processes and we
forced the Z-boson to decay invisibly. In this case, we kept only the hardest recoiling jet
if it fulfilled the same criteria as before. In the Z+jet case, the spectrum power is smaller
in comparison to dijets nZj ≈ 4 < n2j ≈ 6. The quark and gluon ratio is different, in
comparison to dijets, but the cone size dependence is similar, see on the left in figure 10.

9For a recent development on jet flavor definition, see ref. [67].
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In both cases, opening the cone, one captures more gluons meaning, they are radiated at
larger angles. The RAA resulted from the nPDF is also shown in figure 10, relatively similar
for both dijet and Z+jet processes. The quark/gluon content is however slightly different.
On the right, the quantile ratio is also shown to be similar to dijets.

D Other models

As we mentioned in section 2 the quenching weight and collimator formalism are indepen-
dent of the energy loss description. To illustrate this we show how to use this formalism
to describe quenching of elastic scattering and within the strong coupling approximation.

D.1 Momentum shift and elastic energy loss

The simplest example for the jet energy loss probability P(ε) is to take a momentum shift
of vacuum jets P(ε) = δ(ε−S(pT )), resulting equivalent definition to the old fashioned mo-
mentum shift parameter dσmed(pT )/dpT ≡ dσvac(pT + S(pT ))/dpT [27, 48]. By expanding
the steeply falling spectrum in S(pT ) � pT ,

dσmed
dpT

(pT ) =
∞∑
n

〈εn〉 dn

dpn
T

(dσvac
dpT

)
≈ dσvac

dpT
(pT + 〈ε〉) , (D.1)

where we used 〈εi〉 ≈ 〈ε〉i. The shift parameter is roughly the mean energy loss

S(pT ) ≈ 〈ε〉 =
∫

dε ε P(ε) ≡ ΔE . (D.2)

The quenching factor in the simple power-law case is

Rmed(pT ) = p
n(pT )−n(pT +S(pT ))
T

[
1 + S(pT )

pT

]−n(pT +S(pT ))
, (D.3)

which is well approximated by Rmed(pT ) ≈ [1 + S(pT )/pT ]−n(pT ) (see in appendix A). The
quantile ratio is straightforward by using eq. (3.2) with Q = [1 + S(pT )/pT ]−n(pT ). In the
constant power approximation it is

Qmed(pT ) ≈ pT

[
(n − 1)

∫ ∞

pT

dp (pT + S(pT ))−n
]− 1

1−n

. (D.4)

The elastic scattering is approximated by a constant momentum shift Pel,i(ε) = δ(ε −
êiL), where ê = −d〈E〉/dt ≈ Ciq̂0/(4NcT0), and T0 ≈ 0.45 GeV [55, 69]. This can be
translated to an additional quenching weight compared to the form eq. (2.30),

Q(0)
>,el(pT , R) = exp

[
− êL n

pT

(
1 − R2

R2
rec

)]
, (D.5)

where we included some energy recapture through the second term with Rrec = π/2.
Therefore in total Q(0)

>,tot = Q(0)
>,radQ(0)

>,el. This factor runs slower with pT than the BDMPS-
Z, similar to the “N = 1” (or GLV) spectrum. We can also include the elastic energy
loss of each jet constituent, by using the collimator function form eq. (2.32), Q>,tot =
Q>,radQ>,el. Figure 11 shows eq. (D.5) with dashed lines and with the collimator with full
lines, indicating the importance of elastic scattering in the overall quenching. Therefore
we included this effect in section 4.
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Figure 11. The quenching factor of elastic scatterings from eq. (D.5) and with the collimator from
eq. (2.32).

D.2 Hybrid weak-, strong-coupling

In the strong coupling approximation, the energy loss is assumed to be described by a
semi-classical string falling inside a black hole horizon [70]. This model does not use
dI/dω because there are no emitted gluons, and thus the energy loss is directly connected
with P(0)(ε). The average lost energy of a single parton traversing through an L sized, T

temperature strongly coupled medium is

ΔE

E
= 1 − 2

π

⎡⎣ L

xs

√
1 −

(
L

xs

)2
+ cos−1

(
L

xs

)⎤⎦ , (D.6)

where E is the initial energy, xs = E1/3/(2κscT 4/3) is the stopping length and κsc =
1.05 g1/3N

1/6
c . Using the definition of momentum shift from eq. (D.2), the single parton

quenching is estimated by

Q(0)(pT ) =

⎡⎣2 − 2
π

⎛⎝ L

xs

√
1 −

(
L

xs

)2
+ cos−1

(
L

xs

)⎞⎠⎤⎦−n

, (D.7)

where the pT dependence is presented in xs. For high pT , Q(0)(pT ) ≈ 1 −
32nκ3

scL
3T 4/(3πpT ) the same pT dependence obtained from GLV (see eq. (2.28) and be-

low). We did not include here the broadening in and out of the cone due to the lack of
particles, however, one could include the linearized hydro response through Rrec(η, φ). We
include multi parton quenching and thus the R-dependence by using the collimator from
eq. (2.32). We used eq. (D.7) as Q(0)(pT ), and for Θres we used the resolution condition used
in the hybrid model [71], tf < td = (θμ)−1 < L, where μ = πT/2 is the IR screening scale
used in the hybrid model (the Debye mass would be gT ). eq. (D.7) is shown in figure 12
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Figure 12. The quenching and the quantile ratio in the strong coupling assumption with the
proper quark and gluon mixture using eq. (D.7) and including the collimator to consider multi-
parton effects from eq. (2.32).

with the Pythia spectrum, resulting similar quenching to the GLV assumption. The curves
in figure 12 similar to the results in [72] without the medium response, where the sharp
cutoff is where the medium fully absorbs the jet (the stopping length). The R-dependence
is simplified in our case, because we neglected the medium response. We also estimate the
quantile ratio using eq. (D.3). The parameters are T = 0.27 GeV, L = 4 fm and κsc = 0.4.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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We explore the ability of a recently proposed jet substructure technique, dynamical grooming, to pin
down the properties of the quark-gluon plasma formed in ultrarelativistic heavy-ion collisions. In particular,
we compute, both analytically and via Monte Carlo simulations, the opening angle θg of the hardest
splitting in the jet as defined by dynamical grooming. Our calculation, grounded in perturbative QCD
(pQCD), accounts for the factorization in time between vacuum-like and medium-induced processes in the
double logarithmic approximation. We observe that the dominant scale in the θg distribution is the
decoherence angle θc which characterizes the resolution power of the medium to propagating color probes.
This feature also persists in strong coupling models for jet quenching. We further propose for potential
experimental measurements a suitable combination of the dynamical grooming condition and the jet radius
that leads to a pQCD-dominated observable with a very small sensitivity (≤ 10%) to medium response.

DOI: 10.1103/PhysRevD.105.114046

I. JET SUBSTRUCTURE IN HEAVY-ION
COLLISIONS

The use of jet substructure techniques in heavy-ion
collisions is ramping up; see Refs. [1,2] and references
therein. From a theoretical viewpoint, there are certain
advantages when considering observables defined in terms
of one or a few jet constituents with respect to global ones
such as fragmentation functions [3–5] or jet shapes [6–9].
In particular, jet substructure observables can be engineered
to enhance the sensitivity to certain regions of the radiation
phase space where perturbative QCD effects dominate, thus
enabling first principles calculations. Experimentally, fully
corrected jet substructure measurements are now available
in heavy-ion collisions both at RHIC and LHC energies
[10,11]. They are highly complementary to the rich data set
recorded in pp collisions both for low [12,13] and high-pt
jets (e.g., Refs. [14,15]).
Up to now, the jet substructure program in the heavy-ion

community has strongly focused on SoftDrop (SD) observ-
ables [16,17]. They are defined in terms of the kinematics
of the first branching in an angular-ordered splitting tree

whose momentum sharing1 z satisfies the so-called
SoftDrop condition, z > zcutθβ, where θ is the relative
angle of the branching and (zcut; β) are free parameters. One
of such observables is the distribution of z values that pass
the SD cut. In vacuum, the zg distribution for β ¼ 0 is
known to scale as the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi splitting function [18–20] to lowest order in pertur-
bative QCD (pQCD), i.e., dσ=dzg ∼ 1=zg [21,22]. In the
medium, several ingredients are expected to play a role.
On the one hand, assuming that the interaction between
the high energetic jet and the medium is dominated by
multiple, soft scatterings, an enhancement of low-zg split-
tings is expected due to the ∝ z−3=2 scaling of the medium-
induced radiative spectrum [23,24]. On the other hand,
incoherent energy loss leads to more asymmetric splittings
being suppressed with respect to the vacuum baseline [25].
These two competing effects are, in general, hard to
disentangle and their relative magnitude will depend on
the jet pt together with the parameters of the grooming
condition; see Ref. [26]. The first zg measurement in
heavy-ion collisions by CMS showed a steeper zg distri-
bution with respect to the vacuum baseline [27]. The
theoretical interpretation of this softening remains unclear
given that the data has been quantitatively reproduced by
models whose in-medium dynamics are disparate; e.g.,
Refs. [28,29] related the enhancement of soft particles to
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the medium-modified splitting functions while Ref. [30]
proposed a medium-response based description of the data.
In addition, no obvious modification of the zg distribution
has been observed at RHIC energies [12]. The simulta-
neous description of both data sets has been provided in
Ref. [31] where it was argued that the energy dependence
of the zg distribution was dominated by the density of the
quark-gluon plasma (QGP) together with coherent energy
loss. Nevertheless, a back of the envelope calculation
shows that the kt of the splitting probed by the RHIC
measurement can be as large as kt ∝ zptR, that is kt ¼
1 GeV for pt ¼ 25 GeV, R ¼ 0.4 and z ¼ 0.1. Thus,
nonperturbative dynamics are expected to play a role
and a purely pQCD approach might not be well suited.
Along these lines, the impact of the fluctuating thermal
background on the zg distribution, among other observ-
ables, has been recently assessed in Refs. [1,32]. The
authors showed that mistagged splittings can induce a non-
negligible contribution [Oð10%Þ] that mimics a jet quench-
ing signal. This fact lead ALICE to increase the value of zcut
from the standard value in pp, i.e., zcut ¼ 0.1, to 0.2 in their
recent publication [11]. Also, in this recent measurement,
the zg is integrated over all possible angles of the splitting.
These two combined ingredients, i.e., the enhanced zcut and
the integration over the angles, result in an unmodified zg
distribution.
Another SoftDrop observable that has been studied in the

context of jet quenching is the opening angle of the
SD splitting, θg. The physics motivation in this case is
related to the intrinsic medium angular scale θc that
divides the radiation phase space into resolved and unre-
solved splittings [33–35]. In a nutshell, splittings with
θ > θc lose more energy than those with θ < θc. Then,
the steeply falling nature of the jet pt spectrum leads to
a filtering effect such that only quasicollinear splittings
pass the selection cut and thus a narrowing of the θg
distribution when compared to pp is to be expected [36].
There is a competing effect that leads to a broadening of the
θg distribution, namely transverse momentum diffusion of
each of the resolved branches when θg > θc [37]. Recent
measurements by ALICE [11] indicate an overall narrow-
ing of the θg distribution with respect to pp. The physics
mechanism driving this observation is far from being
settled given that models with [38] and without a color
(de)coherence mechanism [37,39,40] are able to semi-
quantitatively describe the data.
Overall, out of the theoretical curves presented in

Ref. [11], the models that correctly reproduce both zg
and θg data are (i) JetMed [26,38], where the coherence
angle is built in, (ii) the Hybrid [39] with a fully incoherent
energy loss picture and (iii) the JetScape [40] result using
MATTERþ LBT [41,42], a model completely agnostic to
θc. Given the lack of consensus in the theoretical inter-
pretation of the SoftDrop measurements, a natural question
is whether instead of merely adopting jet substructure

techniques that were designed by the pp community,
one should develop specific tools best suited to in-medium
jet physics. As we have already mentioned, the necessity to
double the value of zcut to mitigate the impact of the
underlying event highlights the specificities of heavy-ion
collisions. Another example along this direction of thought
is Ref. [43] where a jet clustering algorithm that uses as
metric the formation time of the splitting was explored.
Regarding groomers, Ref. [44] proposed the dynamical
grooming procedure which relies on identifying the hardest
splitting in the QCD shower as defined by the maximal
value of the so-called “hardness” variable

κðaÞ ¼ 1

pt;jet
zð1 − zÞpt

�
θ

R

�
a
; ð1Þ

where a > 0 is a continuous free parameter and ðpt;jet; RÞ is
the transverse momentum and cone size of the jet. The most
natural values of a from a heavy-ion perspective are
a ¼ 1; 2. Indeed, when setting a ¼ 1 the splitting with
the largest transverse momentum, kt, is selected. This
choice is interesting from the point of view of probing
the quasiparticle nature of the QGP. In short, rare, hard
scatterings between the propagating color probe and the
medium lead to a ∝ 1=k4t scaling of the kt distribution’s tail.
Thus, an enhancement in the distribution at large kt could
serve as the smoking gun for Rutherford-like scatterings
[45,46]. Further, selecting a ¼ 2 corresponds to the split-
ting with the shortest formation time. These splittings will
likely be resolved by the medium and therefore larger in-
medium modifications with respect to the vacuum dynam-
ics are expected. One could then subdivide a sample of jets
into short and large formation time splittings and compare
the size of the modifications with respect to the pp
result [43].
So far, the dynamical grooming technique has only been

applied to pp physics both theoretically and experimen-
tally. In particular, Ref. [47] presented a thorough exami-
nation of the analytic structure of dynamically groomed
observables that led to a quantitative description of the
ALICE preliminary data [48,49]. Equipped with a solid
understanding of the vacuum benchmark, we extend the
theoretical calculation to in-medium jet physics. In this
paper, we focus on the angle of the splitting tagged by
dynamical grooming, while the relative kt will be presented
in a separate publication [50]. The goal of this paper is to
showcase the main physics ingredients that enter into the
theoretical calculation of θg and ease the interpretation of
Monte Carlo results. In particular, we demonstrate that this
observable is highly sensitive to the quark-gluon plasma
resolution angle.
The analytic calculation is presented in Sec. II. After a

brief reminder of the vacuum calculation, we move on to
the in-medium theoretical analysis in Sec. II B. We build up
our toy in-medium shower incrementally such that the
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impact of each ingredient in the θg distribution can be
clearly disentangled. The final theoretical curves can be
found in Sec. II C where we make use of the Kolmogorov-
Smirnov metric to quantify the discriminating power of the
observable. Then, we compare our analytic estimates to a
pQCD-based Monte Carlo in Sec. III A. We show that the
effects that we observe are qualitatively robust even in a
strong coupling description of the medium by using the
Hybrid model. Finally, in Sec. III C, we evaluate the impact
of the medium response using state-of-the-art jet quenching
Monte Carlo generators and present a systematic study of
the best setup to enhance the impact of pQCD physics on
this observable experimentally. We conclude and outline
some additional ideas in Sec. IV. The numerical routines
used in this publication can be found in Ref. [51].

II. THEORETICAL SETUP

We begin by formulating the dynamical grooming
technique in its most general terms, i.e., independently
of whether the emission takes place in vacuum or in the
medium. Here, we provide the main formulas and refer the
reader to Refs. [44,47] for a more detailed discussion on
their derivation. Our main assumption is that wework in the
soft and collinear limit such that z, θ ≪ 1 and we can
neglect momentum degradation along the jet primary
branch. Then, Eq. (1) reduces to

κðaÞ ¼ z

�
θ

R

�
a
: ð2Þ

Next, we take the κ ≪ 1 limit in order for resummation
techniques to apply [47]. The probability distribution for a
splitting to be the hardest in a QCD jet can be written as

d2Pðz; θjaÞ
dzdθ

¼ d2P̃ðz; θÞ
dzdθ

ΔðκjaÞ; ð3Þ

where d2P̃ðz; θÞ is a branching kernel that represents the
probability of a splitting with (z, θ) to take place along the
jet fragmentation and ΔðκjaÞ is a Sudakov form factor that
is the probability of no emission with hardness larger than
κðaÞ. These two functions are related by

lnΔðκjaÞ ¼ −
Z

1

0

dz0
Z

R

0

dθ0
d2P̃ðz0; θ0Þ
dz0dθ0

× Θðz0ðθ0=RÞa − κðaÞÞ: ð4Þ

Although left implicit, note that the branching kernel and,
thereby, the Sudakov form factor appearing in Eqs. (3) and
(4) depend on the color representation of the jet-initiating
parton. In addition, to guarantee the collinear safety of the
Sudakov form factor, we require a > 0.
In this work, we are interested in the angular distri-

bution of the splitting tagged by dynamical grooming. It is

obtained directly from Eq. (3) by marginalizing over z.
That is,

1

σ

dσ
dθg

����
a

¼
Z

1

0

dz
d2Pðz; θjaÞ

dzdθ
δðθ − θgÞ: ð5Þ

Note that this differential distribution is self-normalized by
definition.
The purpose of the next sections is to compute Eq. (5) for

vacuum and in-medium jets.

A. Vacuum recap

In the double-logarithmic approximation (DLA) on
which we rely throughout this paper2 it is sufficient to
consider the branching kernel in the soft (z ≪ 1) and
collinear (θ ≪ 1) limit,

d2P̃vacðz; θÞ
dzdθ

¼ 2αsCR

π

1

zθ
; ð6Þ

where CR is the Casimir factor of the representation of the
leading parton. At this level of accuracy, the strong
coupling constant is fixed to the hardest transverse momen-
tum scale of the problem Q ¼ pt;jetR, namely αs ≡ αsðQÞ.
The remaining integrations in Eq. (5) can be carried out
analytically and yield

1

σ

dσ
dθg

¼ 1

θg

ffiffiffiffiffiffiffiffi
ᾱπa

p �
erf

� ffiffiffiffiffiffi
ᾱa

p
ln

�
θg
R

��
þ 1

�
; ð7Þ

with ᾱ≡ αsCR=π. This distribution is shown in Fig. 1 as a
function of the grooming parameter a. We observe that the
lower the value of a, the more collinear the “hardest” (or
tagged) splitting is. In fact, this is confirmed analytically
after taking the first derivative of Eq. (7), and we obtain the
maximum of the distribution to be

ln

�
1

θmax

�
¼ 1

2aᾱ
þOð1Þ: ð8Þ

To conclude this vacuum recap, we would like to empha-
size that the regions of phase space that the θg observable
explores are heavily correlated with the choice of a. In
particular, setting a ≥ 1 leads to the observable being
sensitive to wide angle dynamics. This observation will
play an important role in the next section, where we extend
the calculation to account for in-medium jet evolution.

B. In-medium calculation

After more than two decades of active theoretical work,
our understanding of how to describe the fragmentation
process of a highly energetic parton in the medium has

2See Ref. [47] for a higher-order computation.
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significantly improved. One of the building blocks of an in-
medium parton shower is the medium-induced radiative
spectrum. Recently, it has been computed beyond its two
asymptotic limits: (i) rare, hard [52] and (ii) multiple, soft
scatterings [23,24] between the jet and the medium con-
stituents. A few numerical approaches can be found in
Refs. [53–56], while a novel expansion scheme has been
proposed at the analytic level [57] and applied to some global
observables in Refs. [58,59]. Significant advances have been
made on the evolution of this gluonic cascade [60–63] and its
cross-talk with the vacuum evolution [38]. In addition,
semianalytic approaches [58,64] are now incorporating
realistic collision geometries and local medium properties
from the hydrodynamic evolution of the medium.
In this work, we make three major simplifications to

facilitate analytic manipulations. First, we restrict ourselves
to the double logarithmic limit of pQCD. In this limit, there is
a factorization in time between vacuum-like emissions
(enhanced by large soft and collinear logarithms) and
medium-induced emissions [38]. Further, we treat the
medium as a static brick of length L. This allows us to
neglect the time dependence of the quenching parameter, i.e.,
q̂ðtÞ≡ q̂ΘðL − tÞ. In the first part of this section, L is taken
as a constant, while by the end of it we evaluate the impact of
its fluctuations by using a probability distribution that
mimics the collision geometry. Last, we describe the jet-
medium interaction in the multiple soft, scattering approxi-
mation. That is, we only account for inelastic collisions with
low-momentum exchanges between the propagating parton
and the medium constituents. These interactions lead to
medium-induced emissions together with a Gaussian dif-
fusion in transverse space characterized by the momentum
scale Q2

s ≡ q̂L.
Within this simplified scenario, the phase space for

the first branching can be sketched in a Lund-plane

representation [65] as the one provided in Fig. 2, where
we use the transverse momentum k⊥ of the emission and its
opening angle θ as coordinates. We can approximate the
quantum-mechanical formation time of the emission as
tf ≃ 2=ðk⊥θÞ ¼ 2=ðωθ2Þ. Let us discuss the different
regions in Fig. 2.

(i) Blue region: The most obvious constraint on the
radiative phase space is generated by the finite
length of the medium; emissions with tf > L are
created outside of it and thus their fragmentation
process develops as in vacuum.

(ii) Red and purple regions: On the other hand, branch-
ings with tf < L can be classified into two categories:
vacuum-like (VLEs) andmedium-induced (MIEs). In
this case, the relevant scale arises by considering that
any emission inside the medium has a minimum
transverse momentum set by the one acquired via
multiple soft collisions during its formation time:

k2⊥ ≥ k2⊥;med ≡ q̂tf: ð9Þ

Emissions which saturate this constraint, k⊥ ¼
k⊥;med, are medium-induced, while emissions with
k2⊥ ≫ k⊥;med are vacuum-like.3 In terms of formation
time, the latter condition becomes tf ≪ tmed

f with
the formation time of a medium-induced emission
given by

tmed
f ¼

ffiffiffiffiffiffiffiffiffiffiffi
2ω=q̂

p
: ð10Þ

FIG. 1. θg distribution in vacuum for various values of the
dynamical grooming parameter a. The peak position of the
distribution scales as 1=a.

FIG. 2. Schematic Lund plane representation of the relevant
regions of phase space for an in-medium jet. The physical
meaning of the different lines is explained in the main text.

3Large-k⊥ emissions can also be triggered by single hard
collisions with a medium scattering center, but we neglect this
kind of contribution in this study.
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Therefore, vacuum-like emissions have much shorter
formation times than medium-induced ones. Con-
sequently, vacuum-like emissions are vetoed in the
tmed
f < tf ≪ L region, i.e., the purple area in Fig. 2
[38]. Besides tmed

f , there is yet one more scale that
plays a prominent role in this paper, i.e., the
decoherence angle θc givenby (see e.g.,Refs. [25,34])

θc ¼
2ffiffiffiffiffiffiffiffi
q̂L3

p : ð11Þ

As we have already mentioned, this angular scale
separates resolved from unresolved emissions. The
purple region contains branchings with θ > θc. As
such, the two prongs act as independent emitters after
the splitting.

(3) Green region: In this area, splittings are typically
vacuum-like, but are never resolved by the medium
given that θ < θc. These emissions lose energy as a
single color charge.

In what follows, we present analytic estimates for the
dynamically groomed θg distributions of splittings gener-
ated in the regions of phase space that we have discussed
above. We would like to remark that it is not the aim of this
paper to provide precise analytic predictions, but rather to
illustrate the main physics ingredients that enter into the
theoretical calculation of θg in order to facilitate an
interpretation of the Monte Carlo results that will be shown
by the end of this manuscript.

1. Vacuum-like emissions

Formally, the only leading-logarithmic effect of the
medium on the dynamically groomed distributions is
caused by the veto constraint on vacuum-like emissions
in the presence of a dense medium (see purple region in
Fig. 2). As we have described above, emissions whose
formation time satisfies tmed

f < tf < L and whose angle is
θ > θc are vetoed, and therefore, Eq. (3) is amended
accordingly:

d2Pvle

dzdθ
¼ d2P̃vacðz; θÞ

dzdθ
Θ∉vetoðz; θÞΔ∉vetoðκjaÞ; ð12Þ

where d2P̃vacðz; θÞ is given by Eq. (6). In this case, the
Sudakov form factor reads

lnΔ∉vetoðκjaÞ ¼ −
Z

1

0

dz0
Z

R

0

dθ0
d2P̃vacðz0; θ0Þ

dz0dθ0

× Θ∉vetoðz0; θ0ÞΘðz0ðθ0=RÞa − κÞ; ð13Þ

with

Θ∉vetoðz; θÞ ¼ 1 − Θðθ − θcÞΘðtf − tmed
f ÞΘðL − tfÞ

¼ 1 − Θðθ − θcÞΘð2q̂ − z3p3
t θ

4Þ
× Θðzptθ

2L − 2Þ: ð14Þ

Note that these medium boundaries are known at double
logarithmic accuracy only, meaning that the numerical
prefactors (such as the factors of 2 in the veto constraint)
are not under control and have been chosen in this way
for convenience. Consequently, one can perfectly neglect
single logarithmic terms such as hard collinear or running
coupling corrections in Eq. (12) since our calculation cannot
be more accurate than double-log due to medium-related
uncertainties in the phase space for vacuum-like emissions.
The calculation of Eq. (13) is provided in Appendix A.

The integral over z0 is done analytically, while the remain-
ing integral over θ0 is performed numerically to avoid the
difficulties related to the complicated shape of the inte-
gration domain. In Fig. 3, we present the impact of the
veto constraint on the θg distribution. The kinematic para-
meters are chosen to resemble an ALICE-like setup4:
αs ¼ 0.2; R ¼ 0.4; pt ¼ 100 GeV=c, L ¼ 4 fm and q̂ ¼
1.5 GeV2=fm. The medium parameters are tuned such that
our final theoretical result agrees with the nuclear modi-
fication, RAA, in the ALICE jet selection window [66]. In
addition, the jet pt always refers to the final transverse
momentum, i.e., after quenching, although when energy
loss is absent this value coincides with the pt of the
initiator. We observe how the presence of the veto region
leads to a relative narrowing of the distribution for
a ¼ 1; 2. This is expected given that the veto region mainly
prohibits large angle emissions and thus, collinear radiation
is enhanced. Due to the self-normalization of the observ-
able, this leads to a depletion of wide angle splittings. In the
case of a ¼ 0.1, the effect is negligible since it tags narrow
splittings by construction. Overall, the effects are only
sizable for θg=R ≪ 1. Our main interest in this paper is to
design an observable that enhances the sensitivity to the
critical angle θc and that is the reason why we choose an
angular observable such as the θg distribution. If instead
one would like to maximize the impact of the veto region, it
would be more convenient to explore observables with
large values of a, like the groomed mass (m2

g ∼ zθ2), such
that the tagging condition is parallel to the tmed line
in Fig. 2.

2. Medium-induced emissions

The dynamically tagged splitting can also be a medium-
induced emission. The differential probability for these
type of emissions, within a multiple scattering description

4Note that the factorized picture described in Fig. 2 is best
suited for large-pt jets and, therefore, the ALICE-like kinematics
is not optimal.
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of the parton-medium interaction, is given by a convolu-
tion of the BDMPS-Z energy spectrum with the angular
distribution Bðz; θÞ produced via transverse momentum
broadening, i.e.,

d2P̃mie

dzdθ
≈

k⊥≪Qs
ω≪ωc

ᾱs;med

ffiffiffiffiffiffiffiffiffi
2ωc

z3pt

s
Θðωc − zptÞBðz; θÞ; ð15Þ

where ωc ¼ q̂L2=2 is the maximum energy that an emis-
sion can acquire as it corresponds to tmed

f ¼ L. In principle,
the emission’s energy is also bounded from below by the
Bethe-Heitler frequency ωBH ∝ μ4=q̂, where μ is an infra-
red regulator of the order of the Debye mass (∼1 GeV).
That said, these soft emissions are suppressed by the
Sudakov form factor in DyG (Dynamically Groomed)
observables and, consequently, this infrared physics is
irrelevant. In this formula, the strong coupling constant
αs;med should be evaluated at the typical transverse momen-
tum scale of a medium-induced emission, k⊥;med. However,
following the vacuum calculation, we shall consider αs;med

as a constant parameter to be fixed, just like the other free
parameters, by comparing our analytic model to the jet RAA
observable in a given pt;jet window. Note that αs;med can be
distinct from its vacuum counterpart αs.
The factorization of the exact spectrum into the product

of the time-averaged broadening distribution and the
energy spectrum is only valid in the soft ω ≪ ωc and
collinear limit k2⊥ ≪ Q2

s ¼ q̂L, i.e., for short-formation
time emissions compared to the medium size. Such
emissions can happen anywhere along the jet path length.
Therefore, Bðz; θÞ describes the transverse diffusion of the

emission and is given by the average over the emission time
t ∈ ½0; L� of a Gaussian distribution in k⊥ ≃ ωθ with
variance q̂ðL − tÞ, i.e.,

Bðz; θÞ ¼ 1

L

Z
L

0

dt
2ω2θ

q̂ðL − tÞ e
− ω2θ2

q̂ðL−tÞ

¼ 2θ
z2p2

t

Q2
s
Γ
�
0;
z2p2

t θ
2

Q2
s

�
ð16Þ

where Γða; zÞ ¼ R∞
z dtta−1e−t is the incomplete Gamma

function. This distribution peaks at the transverse momen-
tum scale Qs.
Although not realistic from a physics point of view, let

us consider a jet evolving via primary medium-induced
emissions only (without VLEs), distributed according to
Eq. (15). Then, the probability distribution for a medium-
induced splitting to be the hardest in the shower is given by

d2Pmie

dzdθ
¼ d2P̃mieðz; θÞ

dzdθ
ΔmieðκjaÞ ð17Þ

with the in-medium Sudakov form factor related to the
medium-induced branching kernel as in Eq. (4). A straight-
forward calculation gives (for κ < ωc=pT)

lnΔmieðκjaÞ ¼ −
Z

1

0

dz0
Z

R

0

dθ0
d2Pmie

dz0dθ0
Θðz0ðθ0=RÞa − κÞ

¼ −ᾱs;med

ffiffiffiffiffiffiffiffi
2ωc

pT

s Z
ωc=pT

κ

dz0

z03=2

×

�
z02χΓð0; z02χÞ

−
�
κ

z0

�
2=a

z02χΓ
�
0;

�
κ

z0

�
2=a

z02χ
�

− expð−z02χÞ þ exp

�
−
�
κ

z0

�
2=a

z02χ
��

;

ð18Þ

with χ ¼ Q2=Q2
s and Q2 ¼ p2

t R2. Note that with Eq. (17),
the normalization of d2Pmie is not guaranteed. Indeed,
when taking the limit κ → 0 in Eq. (18) the Sudakov does
not vanish, as it is the case for vacuum emissions, but rather
tends to a constant. This difference arises from the absence
of a collinear singularity in the medium-induced case.
Therefore, in order to maintain the probabilistic interpre-
tation of Eq. (17), one needs to divide by 1 − Δð0Þ.
In Fig. 4, we represent the θg distribution computed with

medium-induced emissions only. We observe how the
small-θg behavior is strongly modified with respect to its
vacuum counterpart (see Fig. 3) in the a → 0 limit. This
behavior is related to the absence of collinear singularities

FIG. 3. θg distribution for gluon jets in medium including only
vacuum-like emissions in the phase space of Fig. 2, for various
values of the dynamical grooming parameter a. The lower panel
shows the ratio to the pure vacuum expectation presented in
Fig. 1. The veto region forbids some of the wide angle emissions
and thus enhances emissions with small θg.
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in the medium-induced branching kernel due to the broad-
ening term.
Combining vacuum-like and medium-induced emissions.

At this stage, we can construct the probability distribution
for a splitting to be the hardest accounting for both vacuum-
like and medium-induced emissions. Our formula is
grounded on the factorization in time between the two
types of processes that holds within the DLA. This
factorization states that in-medium vacuum-like emissions
occur first, in an angular-ordered way, followed by time-
ordered medium-induced emissions [38]. Further, we
impose the following pair of approximations:
(1) Transverse momentum broadening after the emis-

sion process is neglected for the in-medium vacuum-
like splittings. This would shift the final value of θg
by a typical angle of order Qs=ω which is indeed
negligible in the in-medium region above the line
k⊥ ¼ Qs in Fig. 2. Below this line, this approxima-
tion is less justified, and the effect of transverse
momentum broadening in jet substructure observ-
ables deserves further studies.

(2) Only relatively hard, primary, medium-induced
emissions remain inside the jet cone. In principle,
these emissions trigger medium-induced cascades
that rapidly develop a turbulent behavior leading to
the multiplication of soft gluons with energy below
the multiple branching scale ωbr ∼ α2s;medωc [67–69].
Our approximation is valid if these gluons (with
ω≲ ωbr) are deviated outside the jet cone. Since the
typical angle of a gluon in the multiple branching
regime is θbr ∼ ðq̂=ðα2s;medω

3ÞÞ1=4 [70,71], the con-
dition on the jet radius isR≲ θc=α2s;med. For our choice
ofmediumparameters, onegetsθc=α2s;med ∼ 0.7which
is indeed larger than the cone sizes studied here.

Under these approximations, the probability distribution
for a splitting to be the hardest in the full shower can be
written as

d2Pmedðz; θjaÞ ¼ ðd2P̃vacðz; θÞΘ∉veto þ d2P̃mieðz; θÞÞ
× Δ∉vetoðκjaÞΔmieðκjaÞ: ð19Þ

The interpretation of the previous formula is quite trans-
parent from a physical point of view. The tagged splitting
can be either a vacuum or a medium-induced emission and,
for both cases, one has to ensure that emissions of any
type with a κ0 > κ are vetoed. We would like to remark
that Eq. (19) can only be taken, at best, as a proxy for a
realistic in-medium shower. The Lund plane density of the
branching kernels in Eq. (19), i.e., d2P̃vacðz; θÞΘ∉veto þ
d2P̃mieðz; θÞ, can be found in the left panel of Fig. 5. In this
representation, the vacuum branching kernel is completely
uniform except for the fact that it does not populate the
veto region. In contrast, due to momentum broadening,
medium-induced emissions have a typical transverse
momentum of k⊥ ∼Qs in the multiple, soft scattering
approximation and thus the enhancement is observed in
Fig. 5 around this scale.
The difference between the toy shower and the vacuum

result is shown in the right panel of Fig. 5. An interesting
point to notice is that the average value of the tagged θg
increases when including the medium-induced component.
Indeed, at small θg, the MIEs cause the distributions to go
to zero faster because of the absence of a collinear
singularity in their emission kernel, leading to a depletion
when compared to VLEs. The transition angle at which we
observe an enhancement depends on the value of a: it will
be below (a ≪ 1) or above [a ∼Oð1Þ] the critical reso-
lution angle θc. This is reflected in the lower panel of the
plot where we clearly observe that the ratio between the toy
shower and the vacuum result goes below 1 at an angle
whose value increases with increasing values of a.

3. Energy loss

Up to now, we have ignored one of the main distinctive
features of in-medium jet propagation, that is, jet energy
loss. We have shown in the previous section that the angular
distribution of medium-induced emissions is broader than
the corresponding vacuum one. Therefore, a “vacuum” jet
with a given cone R and transverse momentum pt0, will
lose energy due to MIEs radiated out of the cone, i.e., with
θ > R. The main effect of the large angle energy loss
consists in a redistribution of jets with given values of zg
and θg due to differential energy loss. In other terms, the
energy loss by a given jet triggered by a parton with initial
transverse momentum pt0 depends on the zg and θg values
of the jet after evolution. As the hard spectrum tends to
bias towards jets losing less energy than average, this

FIG. 4. θg distribution for gluon jets using only medium-
induced emissions from Eq. (17). The small-θg behavior is
dominated by the broadening term.
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differential energy loss redistributes the amount of jets
tagged by ðzg; θgÞ.
We now write a general formula that encompasses this

idea. We call Ei;pt0;Rðεjzg; θgÞ the conditional probability for
an i-initiated jet to radiate energy ε out of the jet cone R,
knowing that the jet has a dynamically groomed hard
branch with kinematic ðzg; θgÞ. Then, the θg distribution for
jets having a final transverse momentum pt is

1

σ

dσ
dθg

����
pt

¼ N −1
med

Z
dε

X
i∈fq;gg

dσi
dðpt þ εÞ

×
Z

dzgPmed
i ðzg; θgÞEi;pt;Rðεjzg; θgÞ; ð20Þ

where dσi is the cross section for producing a jet with flavor
i whose extraction is discussed in Appendix B. Further,
N med is a normalization factor given by

N medðptÞ ¼
X

i∈fq;gg

Z
dε

dσi
dðpt þ εÞ Ei;pt;RðεÞ; ð21Þ

since using the law of total probability,

Ei;pt;RðεÞ≡
Z

dθgdzgEi;pt;Rðεjzg; θgÞPmed
i ðz; θgÞ; ð22Þ

where Ei;pt0;RðεÞ is the probability for an i jet to lose an
energy ε without any knowledge of its substructure. Notice
that we use Pmed in Eq. (20), i.e., we quench not only
vacuum-like emissions, but also intrajet medium-induced
ones. Physically speaking, N med corresponds to the jet
cross section.

Given the steeply falling nature of the jet spectrum, i.e.,
dσ=dpt ∼ p−n

t with n ≫ 1, one can write dσ=dðpt þ εÞ ≈
dσ=dpt expð− nε

pt
Þ such that Eq. (20) becomes

1

σ

dσ
dθg

����
pt

¼ N −1
med

X
i∈fq;gg

dσi
dpt

Z
dzgPmed

i ðzg; θgÞ

×
Z

dεEi;pt;Rðεjzg; θgÞe−
nε
pt : ð23Þ

The last line of the previous equation is the Laplace
transform of the conditional energy loss probability.
Next, we need to specify the energy loss probability

distribution Ei;pt;Rðεjzg; θgÞ. In the double logarithmic
approximation, the jet is dominated by the hardest emis-
sion—the one tagged by dynamical grooming—and is thus
made of two subjets. Neglecting the intrajet multiplicity of
the subjets, their energy loss probability can be approxi-
mated by that of a single parton5 with flavor i, out of a cone

with opening R, denoted by Pð1Þ
i;RðεÞ. In terms of Pð1Þ, the

energy loss probability of this two-prong system can be
written as

Ei;pt;Rðεjzg; θgÞ
¼ ð1 − Θresðzg; θgÞÞPð1Þ

i;RðεÞ þ Θresðzg; θgÞ

×
Z

∞

0

dε1

Z
∞

0

dε2P
ð1Þ
i;Rðε1ÞPð1Þ

g;Rðε2Þδðε − ε1 − ε2Þ; ð24Þ

where the resolution condition reads

FIG. 5. Left: phase-space density of the branching kernel in the toy shower given by Eq. (19). It is interesting to notice that medium-
induced emissions refill the veto region. Right: θg distribution for gluon jets using both vacuum-like and medium-induced emissions for
various values of the DyG parameter a. The combined effect of VLE and MIE favors wider emissions.

5We do not take into account the fact that the opening angles of
the two subjets are different from R and depend on θg.
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Θresðzg; θgÞ ¼ Θðθg − θcÞΘðzgθgpt − k⊥;medÞ; ð25Þ

and it selects splittings in the red region of Fig. 2. Then,
Eq. (24) simply states that if the two-prong system is
resolved by the medium, the jet energy loss is the sum of
the energy losses of each subjet. On the other hand, if the
two prongs are not resolved, the full jet loses energy as a
single subjet with the color charge of its initiator. Plugging
Eq. (24) into Eq. (23) yields

1

σ

dσ
dθg

����
pt

¼N −1
med

X
i∈fq;gg

dσhi
dpt

Z
dzgPmed

i ðzg;θgÞ

× ½ð1−ΘresÞQiðpt;RÞþΘresQgðpt;RÞQiðpt;RÞ�;
ð26Þ

where we have defined

Qiðpt; RÞ≡
Z

∞

0

dεPð1Þ
i;RðεÞ exp

�
−
nε
pt

�
: ð27Þ

The last step is to find an approximation for the function

Pð1Þ
i;RðεÞ or equivalently, the quenching weight Qiðpt; RÞ.

Neglecting the intrajet activity of the subjet, Pð1Þ
i;RðεÞ can be

approximated by the energy loss probability distribution of
a single parton of flavor i out of a cone of size R. Evaluating
the Laplace transform, we arrive at the well-known
expression for the quenching weight [72,73]:

Qiðpt; RÞ ¼ exp

�Z
∞

R
dθ

Z
1

0

dz
d2P̃mie

dθdz
ðe−nω

pt − 1Þ
�
: ð28Þ

At this point, an important remark is in order. We have
argued that d2P̃mie accurately describes the intrajet
medium-induced activity. Then, at first glance, it might
seem contradictory to use this very same branching kernel
to estimate the number of gluons that are deviated outside
the jet cone. The physical reason behind this apparent
contradiction was presented in Refs. [67,74] (see Ref. [69]
for a review). It is related to the turbulent behavior of the
medium-induced cascade that efficiently degrades the
initial energy into very soft quanta. This turbulent cascade
has a fixed point which is identical to the BDMPS-Z
spectrum that gives the z dependence of d2P̃mie and
explains, a posteriori, why Eq. (28) is a good estimation.
As argued previously, the typical angle of soft gluons in

the multiple branching regime is θbrðωÞ. Therefore, the
criterion for a medium-induced gluon to be deviated out of
the jet cone is θbrðωÞ > R or Qs=ω > R. The latter
condition corresponds to the case of a relatively hard
emission with ω > ωbr. For the values of R we consider,
the second condition overwhelms the first one, so that we
can safely approximate the angular dependence of d2P̃mie

by δðθ −Qs=ωÞ. Then, the quenching weight reads

lnQiðpt; RÞ ¼
2αs;medCi

π

ffiffiffiffiffiffiffiffiffiffi
2ωc

ωmax

s
ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πνωmax
p

× Erfð ffiffiffiffiffiffiffiffiffiffiffiffi
νωmax

p Þ − e−νωmaxÞ; ð29Þ

with ωmax ¼ minðQs=R;ωcÞ and ν ¼ n=pt. Note that
recent works have gone beyond the single parton energy
loss picture for global observables by resuming the effects
of the fluctuating substructure on the total energy loss
[58,59,75]. We will extend that formalism to jet substruc-
ture observables in a separate publication [50].
We have checked that this quenching weight gives

reasonable values for the RAA ratio of jet cross sections
with our choice of medium parameters. As alluded to
above, the jet cross section in Pb-Pb is given by N med,
which can be obtained either from Eqs. (21)–(22) or from
Eq. (26) thanks to the self-normalization of the θg dis-
tribution. In both cases, we observe a mild a dependence of
this jet cross section, as a consequence of the main
underlying approximation of Eq. (24), namely the fact
that we neglect the vacuum-like multiplicity of the resolved
or unresolved subjets. This uncertainty in the jet cross
section is harmless for the shape of the θg distributions,
which are self-normalized by construction.
In Fig. 6, the quenched θg distributions are displayed.

The most remarkable feature of these distributions is the
keen transition at θg ¼ θc. This arises due to several
reasons that we proceed to analyze. To start with, our
energy loss model, i.e., Eq. (24), contains a sharp dis-
tinction between resolved and unresolved splittings that
translates into branchings with θ ≥ θc losing more energy
than those with θ ≤ θc. Then, the steeply falling nature of
the spectrum drastically reduces the possibilities of these
wide angle branchings that lost a substantial amount of
energy to end up in the selected pt window. That is, the

FIG. 6. θg distribution obtained with Eq. (26). Including
differential energy loss results in a sharp transition in the
distributions at θc.
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least quenched jets, i.e., those splittings with θ ≤ θc (the
green region in Fig. 2), dominate the θg distribution and
therefore a narrowing is expected. This is a well-known
effect typically referred to as “selection bias” or “filtering
effect”; see e.g., Refs. [59,76–78] for a possible way out.
This feature also explains the a dependence of the ratio
in the bottom panel. In fact, we have shown in Eq. (8)
that the maximum of the θg distribution for vacuum
splittings is inversely proportional to a. This estimate is
still correct when including medium-induced emissions.
Therefore, when a ≥ 1 the probability of tagging a wide
splitting is larger than selecting a narrow one. However,
once energy loss is included, those very few narrow
splittings will lose significantly less energy than their
wide angle counterparts. Consequently, their probability
is enhanced with respect to vacuum and the ratio goes
above one. On the other hand, when a ≤ 1 small angle
splittings are typically selected. Following the same
reasoning, the very few large angle splittings will be
even more suppressed than in vacuum due to incoherent
energy loss.
Finally, we would like to comment on the effect of the

quark/gluon fraction resulting from the sum over flavors
in Eq. (26). In the vacuum, we expect quark-initiated jets
to have a narrower θg distribution than gluon-initiated jets
[see e.g., Eq. (8)]. Therefore, the θg distribution is also
sensitive to the different quark-gluon fraction of the hard
spectrum in Pb-Pb collisions compared to pp, but as
shown in Appendix B, the overall effect is very mild.
That said, once large angle jet energy loss is included,
since quark jets lose less energy than gluon jets, we
expect a filtering effect towards quark-initiated jets,
leading to an even narrower θg distribution. This effect
is accounted for in our analytic calculation and in Fig. 6.
To disentangle these two filtering effects, i.e., (i) towards
coherent, “unresolved” jets and (ii) quark-initiated jets, an
interesting possibility is to measure the θg distribution in
Z=γ þ jet events [59,76,79].

4. Path-length fluctuations

So far, we assumed that the medium is a homogeneous
brick of fixed length. In this section we discuss how to
extend our toy theoretical model to account for the fact
that in a realistic heavy-ion collision the hard scattering
that produces the jet can take place anywhere inside
the geometric overlap area between the two colliding
nuclei.
Note that our homogenous brick model also ignores the

rapid expansion of the medium and the fluctuations of q̂
along different path lengths. Regarding the expansion of
the medium, previous studies showed that a simple
Bjorken-like expansion of the medium is well captured
by rescaling the jet quenching parameter q̂ of a homo-
geneous brick [80,81], q̂≡ kq̂ðtÞk1=2, where kfðtÞk1=2

stands for the 1=2-norm of the function fðtÞ with compact
support. This scaling is a consequence of the local nature
of the medium-induced emissions in the multiple soft
scattering regime ω ≪ ωc.

6 Since we do not consider
medium-induced emissions harder than ωc, we invoke
this scaling to extend our results to the Bjorken expansion
case. Beyond the purely longitudinal expansion scenario,
a simple rescaling of q̂ does not capture the medium
dynamics. Overall, the impact of a more realistic medium
description will be studied numerically in Sec. III.
We point out that this scaling applies for the medium-

induced emission process for which we can invoke the
argument of locality. It is not the case for θc, since this
angular scale comes from the decoherence of a color
singlet dipole traveling through the medium over a
distance L. However, θc also obeys an approximate
scaling law that relates static and expanding medium.
This scaling law is tantamount to replacing q̂ → q̂ðLÞ in
the definition of θc [81]. For a Bjorken expansion, this
rescaling of q̂ differs by a factor of 2 with respect to the
rescaling of q̂ that describes medium-induced emissions.
Since in the DLA, we do not control overall prefactors,
we decided not to study this alternative scaling for the
VLE phase space in our qualitative analysis.
To capture the fluctuation in the path length of the jet

for central collisions, we propose the following model:
(i) the interaction region is approximated by a circle of
radius R ¼ 4 fm around the center of the collision,
(ii) random ðx; yÞ coordinates of hard scatterings are
sampled uniformly in the interaction region, (iii) each
creation point is connected with a hard-scattering leading-
order matrix element from Pythia8 [83] (Monash13
tune [84]) in proton-proton collisions, assigning the
4-momenta of the outgoing legs and (iv) the path
lengths are determined by the intersection of the path
with the edge of the interaction region. The distribution
of the resulting path lengths is shown in the left panel of
Fig. 7, centered around 4 fm; however, hLi ¼ 3.75 fm
due to the asymmetry of the distribution. Even though
this model is overly simplistic, it is sufficient to
qualitatively understand the effects of the path length
fluctuations on the θg distribution. More precise phe-
nomenology would require accounting for the nuclear
thickness function and the precise shape of the inter-
action region across various centrality classes similar
to Ref. [58].
The θg distribution obtained with the medium-induced

branching kernel [see Eq. (17)] and a fluctuating path
length is presented in the right panel of Fig. 7. The ratio to

6This scaling is therefore distinct from the one discovered in
Ref. [82] that works for processes dominated by the most
energetic medium-induced emissions (ω ∼ ωc). As shown in
Ref. [81], it is also violated by VLEs via a change of the phase
space boundaries that we neglect in this study.
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the average L result is displayed in the bottom panel. The
enhancement of large θg values is rooted in the asymmetric
nature of the path-length distribution; see left panel of
Fig. 7. More concretely, shorter than average path lengths
are more probable. This automatically translates into a
distribution of θc values that tend to be larger than average
due to the θc ∝ L−3=2 scaling. Consequently, the θg dis-
tribution gets broader when path length fluctuations are
included.

C. Final theoretical results

Finally, we present our theoretical curves including all
the ingredients discussed in the previous paragraphs in
Fig. 8. Compared to Fig. 6, we observe that the main effect
of introducing the path length fluctuations is to smoothen
the transition (peak) around the critical angle θc.
Consequently, the peak of the medium modified θg dis-
tribution is shifted towards slightly smaller values of the
opening angle; however the peak still persists. It is easy to
observe by eye that there are choices of the dynamical
grooming parameter a which enhance the relative differ-
ence between the medium and the vacuum θg distributions.
For a ∼ 2, we do not see a significant deviation, whereas
values of a close to 1 give a pronounced peak around the
mean value of θc which is not present in the vacuum
distribution. Therefore, we expect that measuring the
dynamically groomed jet radius with a ∼ 1 will provide
clear evidence of the existence of a characteristic (de)
coherence angle.
In order to gauge the sensitivity of the θg observable

to medium physics in a more quantitative way, we
choose the Kolmogorov-Smirnov metric as a measure
of the differences between the vacuum and in-medium

distributions. The Kolmogorov-Smirnov (KS) distance,7

D, is defined as

D ¼ max
0≤θg≤R

jΣvacðθgÞ − ΣmedðθgÞj; ð30Þ

where Σ denotes the cumulative distribution

ΣðθgÞ ¼
Z

θg

0

dθ0
1

σ

dσ
dθ0

: ð31Þ

That is, the KS metric corresponds to the maximal
distance between the cumulated spectra. The larger D
is, the more distinct the two distributions are and,
consequently, the larger the discriminating power of θg
is. We choose to use this more involved metric instead of
the usual ratio because of the strong differences in shape
between the medium and vacuum distributions. In Fig. 9,
we display the value of the Kolmogorov-Smirnov dis-
tance resulting from our analytic calculation of the θg
distribution for several values of the grooming parameter
a. We observe a nonmonotonic behavior with a and the
largest distance corresponds to a ¼ 0.3. The other inter-
esting feature of this plot, which we shall also observe in
Monte Carlo simulations, is the reduction of the
Kolmogorov-Smirnov distance once path length fluctua-
tions are included, as a consequence of a smoother
transition between coherent and incoherent subjet energy
loss.
To summarize and conclude this analytic section, we

emphasize that our pQCD-motivated theoretical model,

FIG. 7. Left: probability distribution of the fluctuating jet path length in a simplified scenario described in the main text. Right: θg
distribution for various values of the dynamical grooming parameter a when including medium-induced emissions only and path-length
fluctuations. The fluctuations smoothen the sharp transition around θc. The asymmetric nature of the jet path length distribution results
in a nonflat ratio.

7The authors would like to thank Marta Verweij for suggesting
this metric in a different context.
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relies on the factorization between VLEs and MIEs in the
DLA and the multiple soft scattering approximation. We
predict a significant modification of the θg distribution
around the critical angle θc, as a consequence of multiple
imprints of different physical mechanisms. The most
dominant effect is the filtering towards fully coherent
jets. The second important result is that, by pursuing an
analytic approach, we are able to provide theoretical
guidance on the optimal values of the DyG parameter a
that maximize the discrimination power of this observable
in order to probe the physics of color (de)coherence
experimentally.

III. MONTE CARLO SIMULATIONS

In this section, we numerically explore the θg distribution
with three state-of-the-art jet quenching Monte Carlo codes:
JetMed [38], the Hybrid model [85] and Jewel [86,87]. In all

cases, we generate dijet events at
ffiffiffi
s

p ¼ 5.02 TeV in Pbþ Pb
collisions.8 For each event, particles are clustered on an
event-by-event basis into anti-kt jets [88] with R ¼ 0.4 and
reclustered with the Cambridge/Aachen [89] algorithm to
obtain an angular-ordered clustering sequence. The analysis
is performed on jets with transverse momenta 75 < pt <
100 GeV and rapidities jyj < 1.

A. JetMed

To begin with, we present results for the Monte Carlo
framework that is closest in spirit to the semianalytic model
presented in the previous section. The Monte Carlo JetMed

FIG. 8. θg distribution for the toy model given by Eq. (26) for various values of the DyG parameter a in vacuum (solid, blue) and in the
medium with (dashed, red) and without (dotted, gray) path length fluctuations.

8Actually, we only generated the JetMed events by our-
selves. We have obtained the Jewel samples from https://
jetquenchingtools.github.io, while the Hybrid events have been
kindly provided by Daniel Pablos.
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is a parton shower based on the factorization between
vacuum-like emissions and medium-induced emissions
that holds in the double-logarithmic approximation for
the former and multiple soft scattering approximation for
the latter. The main differences to be expected between
the analytic approach and the numerical results concern
(i) the inclusion of part of the single logarithmic corrections
to the vacuum-like shower, through the running of the QCD
coupling and the hard collinear emissions, (ii) the proper
resummation of the medium-induced emissions with for-
mation time tmed

f ≪ L in the multiple branching regime,
(iii) the relaxation of the quenching weight approximation
since the jet energy loss is provided for free in a parton
shower approach and (iv) accounting for the transverse
momentum broadening after emission that leads to a shift in
the final θg value of the tagged subjet. Notice that we have
extended the original code to include jet path length
fluctuations using the same model of the geometry as in
the analytics.
The resulting θg distributions for JetMed are displayed

in Fig. 10. Let us start the discussion with the vacuum
curves. A clear quantitative discrepancy at small θg exists
between them and the analytic ones presented in Fig. 1.
The main source of this difference is the choice of fixed
coupling in the analytic result that moves the vacuum peak
towards smaller θg. Including running coupling correc-
tions in the analytic calculation is relatively simple;
however we opt to not do it since the logic of this paper
is to present results at double logarithmic accuracy.
Regarding the medium, we observe the same trends as
in the analytic calculation: for a ≤ 1 they are strongly
peaked at the average critical angle θc, the relevant
angular scale in the problem. The peak around θc becomes
broader when including jet path length fluctuations,

similar to what is observed in the analytical results in
Fig. 8. An important observation is that the medium
curves are overall shifted towards larger angles, due to
transverse momentum broadening, while they are still
peaked around hθci for a < 1.
The Kolmogorov-Smirnov distance between the vacuum

and medium distributions is shown in the left panel of
Fig. 11. Through this metric we confirm the analytic
observation of a nonmonotonic behavior of the KS distance
with a. The higher-order corrections included in JetMed
slightly shift the value of a at which the maximal KS
distance is achieved, i.e., a ¼ 0.3 at the DLA and a ¼ 0.5
in JetMed. In addition, path-length fluctuations also reduce
the discriminating power of this observable as was the case
in the analytic calculation.
In order to enhance the sensitivity to jet quenching

effects a rather small value of a, i.e., a ≤ 1, must be chosen.
However, one should keep in mind that the lower a is, the
larger the nonperturbative corrections to the vacuum dis-
tribution are [47]. Hence, there is a trade-off between
maximizing the KS distance and minimizing the impact
of hadronization corrections. From Fig. 11, we con-
clude that values of a between ∼0.5 and ∼0.7 fulfill these
requirements.
We would like to remark that this optimization exercise

is relatively simple in the case of dynamical grooming
given that it has a single free parameter and, as noted in
Ref. [44], the θg distribution is invariant under the a → 1=a
transformation. This last point immediately reduces the
range of a values to scan. Obviously, one could also
calculate D in the two-dimensional parameter space
spanned by the SoftDrop condition. However, not only
the increased dimensionality but also the possible degen-
eracy between pairs of (zcut; β) complicate the analysis.

B. Strong vs weak coupling approach

Throughout this manuscript, we have considered a very
specific model of the in-medium shower founded on two
basic pillars: a weak coupling description of the medium
and the multiple soft scattering approximation. Then, a
natural question to ask is: do the observed features of the
θg distribution arise only in this model or are these
features general enough so that any model with some
notion of angular dependent energy loss leaves the same
footprints in the θg distribution? To address this point we
make use of the Hybrid model. It is beyond the scope of
this paper to provide a thorough description of all the
ingredients assembled in this code, but we would like to
highlight some of the differences in the phase space of
emissions with respect to the discussion surround-
ing Fig. 2.
In the strong coupling description of the medium, the

existence of a finite resolution length was first considered
in Ref. [90]. However, this property does not appear
naturally as it is the case in the weak-coupling scenario,

FIG. 9. Kolmogorov-Smirnov distance defined in Eq. (30) as a
function of the dynamical grooming parameter a for the theo-
retical results with (squares) and without (circles) jet path length
fluctuations. The bigger the KS value, the easier it is to
discriminate between vacuum and medium distributions.
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FIG. 10. θg distribution for various values of the DyG parameter awith JetMed in vacuum (solid, blue) and in the mediumwith (dashed,
red) and without (dotted, gray) jet path length fluctuations. The medium distribution exhibits a peak around the coherence angle θc.

FIG. 11. Kolmogorov-Smirnov distance defined in Eq. (30) as a function of the dynamical grooming parameter a with the JetMed
parton shower (left) and the Hybrid model (right). The weak and strong coupling descriptions of the jet-medium interaction are in
qualitative agreement.
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but rather has to be introduced by hand as a free parameter
called Lres in the Hybrid model. From a physics point of
view, Lres corresponds to the minimal distance between
two color charges such that they interact with the
medium independently. This resolution length is inversely
proportional to the local temperature of the medium, the
only scale in the problem, and the coefficient of pro-
portionality cannot be computed from first principles but
only estimated. In this work we explore three different
values of Lres. The fully incoherent case is considered
by setting Lres ¼ 0. The opposite scenario in which the
jet is treated as a single object corresponds to Lres ¼ ∞.
Finally, we take an intermediate value of Lres ¼ 2=ðπTÞ,
with T being the local temperature of the plasma. In spite
of sharing the same concept of “resolution of colored
prongs by the plasma”, we would like to emphasize that
Lres and θc are intrinsically different, but lead to
qualitatively similar bias effects. Notably, there is no

critical angular scale in the Hybrid model, and therefore
there is no angular selection bias as in the weak coupling
picture discussed so far. The effect of a finite Lres is
simply to increase the amount of energy lost by jets due
to an increase of resolved sources which undergo strong
coupling energy loss. This induces a selection bias in a
similar way to JetMed, but for a different reason. Another
important difference with respect to JetMed is the fact
that no medium-induced branching kernel exists in the
Hybrid model, i.e., the splitting probability is the same as
in vacuum. On top of that, we consider hadronized
samples and switch off the medium response for the
purpose of this section.
We show the dynamically groomed jet radius dis-

tributions in Fig. 12 for the aforementioned values of
the screening length Lres. There are two cases for which
no angular scale is present in the energy loss mechanism:
Lres ¼ 0 and Lres ¼ ∞. Clearly, the Lres ¼ ∞ results

FIG. 12. θg distribution for various values of the DyG parameter a with the Hybrid and no medium response. The fully coherent
energy loss (Lres ¼ ∞) scenario closely resembles the vacuum distribution.
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closely resemble the vacuum distributions. The interpreta-
tion of this result is quite transparent: in the Lres ¼ ∞ case
only the parent parton loses energy and therefore the
filtering effect is drastically reduced. Naturally, the
orthogonal scenario where all individual splittings are
resolved by the medium, i.e., Lres ¼ 0, exhibits the
biggest modification with respect to the vacuum bench-
mark. The intermediate case of Lres ¼ 2=ðπTÞ is in quan-
titative agreement with the JetMed results. This allows us to
conclude that the proposed observable is agnostic to the
fine details of the energy loss mechanism or the physical
origin of the resolution scale. If measured experimentally,
this observable has enough discriminatory power to dis-
card (or confirm) a fully coherent scenario (Lres ¼ ∞).
However, it would be hard to disentangle the Lres ¼ 0 and
0 ≤ Lres ≤ ∞ cases. To that end, further constraints on
the model from other observables are required, e.g., fit
the parameters to describe the RAA and predict the θg
distribution.
Notice, that, in contrast to JetMed, this Monte Carlo uses

a realistic hydrodynamical profile. Remarkably, the nar-
rowing of the distribution is not washed out by either the
medium expansion or its geometrical fluctuations. This is
confirmed by the values of the Kolmogorov-Smirnov
metric shown in the right panel of Fig. 11. That said,
we observe that the optimal value of a shifts from 0.5≲
a≲ 0.7 in JetMed to 0.7≲ a≲ 1 in the Hybrid model
with Lres ¼ 2π=T.

C. Impact of medium response

The final effect that we would like to quantify is the
impact of the medium backreaction in our proposed
observable. To that end, we make use of two independent
models of medium response: the ones implemented in
the Jewel and Hybrid models. Technically, in order to
avoid double counting of the thermal particles’ momenta,

we implemented the GridSub1 method described in
Ref. [8] for Jewel9 and the background subtraction
technique presented in Appendix A of Ref. [39] in the
Hybrid case. Further, in both models hadronization is
switched on. One last remark before presenting the
results is that in Jewel the radiation for unresolved
emissions is not considered. Then, there is no coherence
angle θc in this model and the θg distribution would be
mainly sensitive to the filtering effect due to the finite
size of the medium. In some sense, it is closest to the
Lres ¼ 0 in the Hybrid calculation that we have pre-
sented above.
In Fig. 13, we present the θg distributions for the

optimal value of a according to the Kolmogorov-Smirnov
tests performed in the previous section. Further, in the
case of the Hybrid model, we fix Lres ¼ 0 given that it
showed the biggest difference with respect to the vacuum
baseline. First of all, the vacuum curves between the two
models are in quantitative agreement as expected since
they are both based on the Pythia parton shower. The
quenched curves without medium response of the two jet
quenching Monte Carlo generators also match. However,
once medium response is taken into account the two
results differ. Qualitatively, an enhancement of wide-
angle splittings is observed. Since particles originated
from the medium backreaction are inherently soft, they
can only affect this DyG observable if they appear at
large enough angles. Their contribution is sizably differ-
ent in the explored models. More concretely, in the Jewel
case medium response completely distorts the shape of
the distribution and creates a bump at the edge of the jet
cone, while in the Hybrid case the impact is more

FIG. 13. θg distribution for the Jewel (left) and the Hybrid (with Lres ¼ 0) models including medium response for a ¼ 0.7 in the DyG
condition. The medium response introduces an enhancement of partons towards wider angles.

9We use a grid resolution value of 0.05. We have checked that
our results do not change when varying this parameter up and
down by a factor of 2.

CAUCAL, SOTO-ONTOSO, and TAKACS PHYS. REV. D 105, 114046 (2022)

114046-16



moderate but brings the medium and vacuum distribu-
tions closer. The signal created by the wake particles
clearly pollutes the interpretation of the KS distance in
terms of probing Lres. Turning the argument around,
these results suggest the potential of this observable to
discriminate between different models of the medium
backreaction. However, the large-angle domain is also
contaminated by the fluctuating underlying event in
heavy-ion collisions, as was shown in Ref. [32]. In this
work, we are interested in designing a pQCD-dominated
observable and therefore we proceed to present two
possible ways of reducing the impact of soft physics,
i.e., both the medium backreaction and the thermal
background: (i) using smaller jet radii and (ii) selecting
semiperipheral events.10

1. Jet radius dependence

Several experimental measurements of jet substruc-
ture [7,11,91,92] have used small-R jets in order to
reduce the impact of combinatorial jets. From the
theoretical point of view, describing the cone-size
dependence of jet quenching is an active field of research
[58,93]. The impact of reducing the jet radius from
R ¼ 0.4 to R ¼ 0.2 on the θg distribution is shown in
Fig. 14. Clearly, tagging soft, thermal particles in
narrower jets is less probable than in Fig. 13. In the
case of the Hybrid model this choice is extremely
efficient in minimizing the influence of medium
response. The last statement is true for all values of
the dynamical grooming parameter a. On the other hand,
reducing the jet radius is not enough to make the
sensitivity to recoil particles in Jewel vanish. An extra

cut on the z of the emissions á la SoftDrop would
probably be helpful. Of course, by narrowing the phase
space for emissions, quenching effects are also dimin-
ished and that is the reason why the vacuum and
medium distributions look more alike than in the R ¼
0.4 case. Therefore, we conclude that, as expected,
mitigating the impact of medium response by shrinking
the jet radius comes at the price of a reduction in the
discriminating power of the observable.

2. Centrality dependence

Another possibility to reduce the impact of medium
response is to explore semiperipheral collisions where
the medium is not as dense as when the two nuclei
collide head on. Figure 15 demonstrates that moving to
semiperipheral collisions does not reduce the medium
response component as effectively as reducing the jet
radius did. We therefore conclude that the combination
that maximizes the sensitivity to color coherence effects
is R ¼ 0.2, 0–5% and 0.5 ≤ a ≤ 1.
Studying the dependence of the θg distribution with

centrality is interesting not only from the point of view of
reducing the impact of medium response, but also to
further constrain the resolution angle [58]. In a weak
coupling picture the scaling of θc with respect to the
length of the medium is well known to be θc ∝ L−3=2. In
contrast, if no coherent angle existed and the maximum
of the θg distribution was driven by the filtering effect
caused by the finite size of the medium, one would
expect a θmax ∝ L−1 scaling. Therefore, the centrality
dependence of the θg distribution s peak location would
be stronger for a θc dependent energy loss. In order to
explicitly demonstrate this statement one would have to
implement the geometry of the collision in JetMed in
such a way that different centralities can be simulated.
This task is left for future work.

FIG. 14. Same as Fig. 13 but with R ¼ 0.2 showing a significant reduction of wide angle emissions originated from medium response.

10Another alternative that would effectively reduce the impact
of medium response, but that we do not pursue in this work,
would be to increase the jet pt in the selection.
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IV. FINAL REMARKS AND OUTLOOK

In this paper, we presented a comprehensive analysis
of a promising jet substructure observable in heavy-ion
collisions: the dynamically groomed jet radius θg dis-
tribution. We have shown through analytic calculations
grounded in pQCD that the medium-modified distribution
is strongly sensitive to the coherence angle of the
medium θc. These analytic calculations are supplemented
by Monte Carlo calculations of this observable with
JetMed which are in qualitative agreement with our
analytic results. In summary, our study demonstrates
the ability of the dynamically groomed jet radius to
measure decoherence effects in the substructure of a jet
traveling through a dense QCD medium. The numerical
routines used in this work are provided in Ref. [51].
Given the simplifications inherent to our analytic and

JetMed calculations, it is not our intention to provide
quantitative predictions for the θg distribution to be
measured in heavy-ion collisions. However, we have
been able to pin down the dominant physical mechanisms
at stake which drive the modification of this observable.
In fact, there are several dynamical processes in the
medium that converge at the QGP resolution angle and
leave their imprint on the dynamically groomed jet
radius. For instance, (i) the presence of the veto region
leads to a narrowing of the θg distribution that is more
pronounced, the larger the value of a ≤ 2 is. On the
contrary, (ii) the medium-induced branching kernel gen-
erates an enhancement of large-angle splittings due to
transverse momentum broadening. The last two compet-
ing physical ingredients are eclipsed by (iii) differential
energy loss. That is, when constructing a toy model for

an in-medium parton shower that includes vacuum-like
and medium-induced emissions as well as energy loss,
we observe that narrow splittings are enhanced for all
values of a with respect to the vacuum baseline. Notably,
the inclusion of a fluctuating jet path length smooths out
the transition at θc, but does not wash out the signal
completely.
We have also explored the sensitivity of our results to

the underlying theoretical modeling of the jet-medium
interactions, using the Hybrid model that relies on strong
coupling jet-medium interactions. This model also pre-
dicts a strong sensitivity of the observable to the medium
resolution length, which is the strong coupling analog of
the coherence angle. Further, we have studied the impact
of medium response in this observable with both the
Hybrid and Jewel models. The imprint of these soft
particles on the θg distribution is an enhancement of wide
angle splittings. However, the magnitude of the θg ≈ Rjet

peak significantly differs in the two descriptions of the
medium. Since we are interested in a pQCD-dominated
observable we explored two routes to reduce the medium
response contribution: reducing the jet cone size and
using semiperipheral events. Our findings indicate that
the former option is more efficient than the latter.
We would like to emphasize that the main difference

between the in-medium and vacuum θg distributions is not
just a displacement in the peak position, but rather a
significant modification of the shape of the distribution
as a whole. That is the main reason why we quantify the in-
medium to vacuum differences with the Kolmogorov-
Smirnov distance and not with a simple ratio as is
typically done experimentally for other jet substructure

FIG. 15. Same as Fig. 13 but for 50–60% in Jewel and for 30–40% in Hybrid. The medium response contribution is reduced but less
effectively than in Fig. 14.
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observables such as the SoftDrop family in Ref. [11].
Thanks to the use of this metric, we were able to provide,
both for the analytic calculation and for the Monte Carlo
simulations, a reasonable window for the dynamical
grooming parameter a and jet radius R to be used
experimentally in order to maximize the effects of the
coherence angle, while at the same time minimizing the
nonperturbative contributions, such as hadronization,
geometry fluctuations and medium response. This is a
tremendous advantage of the dynamical grooming pro-
cedure which depends on a single free parameter a.
As such, studying the physics probed by the observable
as a function of this single parameter is straightforward.
We found that the optimal values are 0.5≲ a≲ 1 and
R≲ 0.2, regardless of the theoretical model of jet
quenching.
We have shown that both weak and strong coupling

models lead to similar trends in the θg distribution. In
order to move forward and disentangle theoretical models
of jet quenching, there is a crucial need for performing
global analyses in which models are tested against both
global jet energy loss (RAA like) and jet substructure
measurements, such as θg after dynamical grooming
considered in this paper. A scan in terms of centrality
classes or colliding system sizes is an interesting pos-
sibility to be explored in the future, given the theoreti-
cally well-defined path-length dependence of the critical
angle. It will likely constrain more precisely the shape of
the medium-modified phase space in Fig. 2 and reveal
unambiguously the existence of a critical line at θ ¼ θc
as well as its dependence on the physical properties of
the medium. In addition, experimental data on the kt of
the hardest emission would provide complementary
information to the θg measurement since it probes the
orthogonal direction in phase space.
A natural extension of this work would be to go beyond

the multiple soft scattering approximation of the parton-
medium interaction. We plan to study the impact of rare,
hard scatterings on the phase space of emissions within the
improved opacity expansion in a forthcoming publication
[50]. Further, our resummation could be extended to
account for heavy quarks in order to quantify the potential
of the θg distribution to expose the dead-cone effect in
heavy-ion collisions [94–98].
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APPENDIX A: SUDAKOV WITH VETO REGION

The purpose of this appendix is to provide a semi-
analytic formula for the Sudakov form factor that
includes the veto region for vacuum-like emissions given
by Eq. (28). Using Eq. (14), one can express Δ∉veto in
terms of Δ∈veto using

lnðΔ∉vetoÞ ¼ lnðΔÞ − lnðΔ∈vetoÞ: ðA1Þ

After replacing P̃ðz; θÞ by Eq. (6), we get for the in-veto
contribution

lnΔ∈vetoðκjaÞ ¼ −2ᾱ
Z

θmax
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dθ0
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ðA2Þ

with

zminðκ; θ0Þ ¼ max

�
κ

�
R
θ0

�
a
;

2

θ02ptL

�
; ðA3Þ

zmaxðκ; θ0Þ ¼ min

�
1;

�
2q̂

p3
t θ

04

�1
3

�
; ðA4Þ

θminðκÞ ¼ max

�
Rκ

1
a; θc; if

�
a >

4

3

�
∶
�

2q̂
ðκRaptÞ3

� 1
4−3a

�
;

ðA5Þ

θmaxðκÞ ¼ min

�
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�
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3

�
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�
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� 1
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�
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APPENDIX B: REALISTIC JET SPECTRUM

To make our analytic predictions closer to reality we
have to include the jet spectrum. It enters into our
calculation through the quark/gluon ratio and through
the spectrum power n in the energy loss component of
Eq. (27). We use the dijet parametrization from Ref. [59] atffiffiffi
s

p ¼ 5.02 TeV, jηj < 2.8 and R ¼ 0.4:
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dσi
dpt

¼ a

�
pt0

pt

�
−ðbþc ln pt

pt0
Þ
; ðB1Þ

where the subscript i indicates the flavor of the initiating
parton and ða; b; pt0; cÞ are free parameters. This leads to
the coefficients presented in Table I.
The impact of the nuclear parton distribution functions

(PDFs) on the observable at play is shown in Fig. 16. We
observe that the quark/gluon fraction is barely modified in
this pt window.
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Paper about a systematic calculation of medium-induced emissions in a finite-size
medium, and finite energy. Furthermore, solving medium-induced cascade with this
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1 Introduction

Short-lived droplets of hot and dense nuclear matter, called the quark-gluon plasma (QGP),
are produced in relativistic heavy-ion collisions at RHIC and LHC. Embedded in the same
high-energy collisions, hard QCD processes are also present, resulting in the production of
collimated sprays of energetic particles that are commonly referred to as jets [1, 2]. Jets
are well-understood, perturbative objects within perturbative QCD and they are described
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up to high precision in proton-proton collisions [3–5]. During their propagation, however,
jet particles can interact with the surrounding nuclear matter. The modification of jet
features, therefore, reflects the properties of the QGP created in heavy-ion collisions [6–11].
Currently, a vigorous experimental program dedicated to quantifying jet modifications is
ongoing at both RHIC and LHC, focusing on a broad set of observables which includes
measurements of the modification of the jet spectrum, jet substructure observables, and jet
correlations [12–16] (for a selection of predictions see refs. [17–27]).

High-energy jets are particularly suitable probes of the QGP because their energy scale
Qjet is much larger than the typical momentum scale of the medium Qmed. If this is the
case, the impact of medium modifications should therefore not affect the internal structure
of the jet, which would still rely on perturbative QCD [28–30]. A key ingredient when
considering jet modifications is the radiation induced by scatterings with the deconfined
medium constituents. Such emissions typically appear at scales comparable to Qmed.
Emission at scales much higher than Qmed, on the other hand, are unaffected by the
medium, resulting in a factorized picture between vacuum and medium processes [29, 31].
Medium-induced emissions redistribute the original jet parton energy to multiple, soft
particles over large angles, including out of the jet cone. This leads to a net jet energy loss
which, in turn, is manifested as a suppression of the jet spectrum (for an updated discussion
of jet quenching see refs. [25, 26], and for applications to substructure see refs. [18, 20, 24]).
Consequently, medium-induced emissions are a crucial component of jet energy loss and
thus of phenomenological studies of jet observables in heavy-ion collisions.

The medium-induced emission spectrum was formulated a long time ago [32–34].
Previous solutions were limited to either (i) expanding in the number of scatterings (referred
to as the opacity expansion) [35–38], or (ii) considering multiple soft scatterings (called the
harmonic oscillator approximation) [32, 33, 39, 40]. Meanwhile, several works focused on
the underlying scales that separate the limiting cases [32, 41–46]. The full problem has
also been tackled by numerical techniques [47, 48] (or more recently in refs. [49–52]). Not
long ago, analytical techniques were developed that provided a unified description of the
multiple, soft and rare, hard scatterings in a dense medium [53–57], which better match the
full numerical solutions. The main challenge, common to both the numeric and analytic
approaches, resides in dealing with multiple interactions with the underlying medium.

In this paper, we revisit the different analytic approaches to resumming multiple
interactions for calculating the medium-induced emission spectrum. These include the
opacity expansion (OE) and the improved opacity expansion (IOE), which includes harmonic
oscillator approximation as the leading term. Moreover, we rigorously derive the resummed
opacity expansion (ROE) for the first time, which extends the description of the spectrum to
low energy emissions in the Bethe-Heitler regime. We provide a novel unified picture of these
resummation schemes by identifying their relevant emergent scales and demonstrating their
respective regions of validity. For example, we show that the single scattering approximation,
contained in the leading order of OE, is valid even for a big medium, where one would
expect more than one scattering if the emitted energy is high enough. We show that the
full phase space of medium-induced emissions, spanning from the maximal jet energy to
the thermal scale, is covered by a union of these expansions, see also ref. [46]. Each of the
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expansions is also associated with the corresponding physical scattering processes, and thus
we reinterpret the frequently used terms such as GLV emissions, coherent scatterings, and
Bethe-Heitler region in a unified framework. Our framework goes beyond previous attempts
to describe all regimes of medium-induced bremsstrahlung by presenting a resummation
framework that can be systematically improved and that is valid both in the dilute and
dense regimes.

As a next step, we identify the regimes where not only multiple interactions are
important, but also multiple emissions [58, 59]. These conditions are met for sufficiently soft
emissions in a large medium. The previously established hierarchy of emergent scales plays
a crucial role in mapping out early, rare, and relatively hard emissions and a successive
cascade of soft splittings. In this context, hard medium-induced splittings can be thought
of as extra sources, in addition to the parent parton, for the full cascade. This description
is realized analytically in a novel scheme that combines a fixed order expansion of rare
emissions with an all-order resummation of soft splittings. The resulting energy distribution
links the asymptotic early and late time behaviors for which analytical solutions exist.
Finally, we resum multiple induced emissions numerically, using the previously obtained
precise determination of the in-medium splitting rates, to calculate the energy distribution
function. We highlight the interplay of rare hard scatterings, coherent soft splittings, and
Bethe-Heitler emissions in a finite medium, providing a state-of-the-art resummation.

Our reorganized picture helps not only with the physical understanding of induced
emissions, but provides a fast and efficient way to calculate the medium-induced spectrum,
which is a key ingredient for estimating jet energy loss. It also serves to inform Monte
Carlo algorithms simulating full jet evolution inside the medium about how to implement
multiple medium-induced emissions and how to combine them with vacuum-like emissions,
e.g. see in ref. [29].

The paper is structured as follows. In section 2, as an introduction, we discuss the
structure of the induced spectrum in the various regimes using heuristic arguments, and
we show how the radiation in the different regimes is related to single soft, multiple soft
and single hard scatterings with the medium, see figure 3. The spectrum is calculated in
detail in section 3. We revisit the opacity expansion and the improved opacity expansion
schemes, and put on a firm footing a novel resummation scheme, dubbed resummed opacity
expansion, which is valid for emissions below the Bethe-Heitler scale. Improving on previous
discussions, we provide formulas for the spectrum at arbitrary order and calculate it exactly
up to second order in all the expansions, allowing us for the first time to establish regions
where they converge. Finally, in section 4 we consider the problem of multiple emissions.
We analyze induced particles coming from the full phase space and confirm the importance
of considering multiple emissions, especially in the soft sector. In order to facilitate an
improved analytical understanding of the problem, we finally suggest a resummation scheme
of multiple emissions by iterating in rare, hard emissions and including an arbitrary number
of soft splittings. This is compared to the full numerical results. We conclude with an
outlook in section 6. The appendix contains lots of useful formulas, including the rate of
emissions and finite-z corrections that are important for phenomenology. The code we
have developed to calculate the kernels and solve for the energy distribution is provided
at https://github.com/adam-takacs/kernels.git.
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Figure 1. Three regimes of the radiative spectrum in dense media, L � λ: the Bethe-Heitler
regime ω < ωBH (leftmost), the BDMPS-Z regime ωBH < ω < ωc (middle), and the hard GLV regime
ωc < ω (rightmost figure). The size of the blob represents the typical formation time of the emission,
which is tf < λ in the leftmost panel and tf > λ in the center and rightmost panels. Black, wavy
lines represent soft interactions with the medium, where the momentum transfer is of the order of
the medium scale |q| � μ, while the red, wavy line represents a hard scattering event, with |q| � μ.

2 Heuristic discussion of the medium-induced spectrum

The spectrum of gluon emissions induced by scatterings on a deconfined medium plays a
central role in the phenomenology of jet quenching. However, a full understanding of all
regimes have so far been lacking analytically and was previously only achievable through
numerical methods. Here, we present a unified view of all relevant medium scales and
their related regimes. Similar heuristic discussions have previously been presented in,
e.g., [8, 32, 46, 53]. In section 3 we will provide rigorous derivations of the findings argued
for here.

We formulate the spectrum of induced emissions by focusing on the relevant length scales:

• The size of the medium L (or the length of propagation t < L).

• The mean free path of the medium λ ∼ 1
nσtot

, which combines the density n

and the scattering strength σtot ∼ ∫
dσ, and it describes the distance between

typical scatterings.

• The formation time of an emission tf = 2ω
k2 , where ω is the energy and k is the

transverse momentum of the emission.

In addition, the relation between the in-medium screening scale μ and the range of available
transverse momenta |k| is also important.

The opacity χ ≡ L/λ characterizes the denseness of the medium. If the opacity is small
(L � λ), the medium is “dilute”, or weakly interacting, while it is “dense”, or strongly
interacting if L � λ.1 The dilute medium barely consists of scattering centers, however, in
the dense medium one should account for an arbitrary number of interactions.

1From this perspective, we have “fixed” L and vary λ. Naturally, we could also have identified these two
regimes as a “large” and “small” media, where we “fix” the mean free path and vary L instead.
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A big part of this paper will be about calculating the spectrum of medium-induced
emissions. For reference, the vacuum spectrum reads,

ω
dI

dω
∼ αs

∫ dk2

k2 , (2.1)

where currently we did not specify the limits of the transverse momentum integral. This
contains the well-known soft (ω → 0) and collinear (k2 → 0) divergences. In contrast, the
collinear divergence in the medium spectrum is removed by the need to exchange transverse
momentum with the medium.

Motivated by this, we introduce a heuristic model that captures some of the features of
the medium-induced spectrum, given by

ω
dI

dω
∼ αsL

∫
d2k σ(k) ∼ α3

snL

∫ dk2

(k2 + μ2)2 , (2.2)

where n is the medium density and μ a screening mass. The behavior at high-k, σ ∼ k−4,
reproduces the expected Coulomb tail. The factor L arises since the emission can take place
anywhere along the medium length. For a more accurate description of medium-induced
emissions, we refer the reader to section 3.

In our effective description, we focus on the hierarchy among the introduced scales and
show the separation of different scattering regions. Firstly, in the tf � L limit, the formation
of the emission extends beyond the medium, where one naturally should expect vacuum
physics to dominate.2 We will hence not consider this possibility here. The remaining cases
are listed below:

Dilute media (tf ≤ L � λ). In case of a low medium opacity, we expect that roughly
one scattering occurs. This process will typically transfer a momentum of order of the
Debye mass to the emitted gluon, or 〈k2〉 ∼ μ2, leading to tf = 2ω/μ2. The formation of
the gluon has to take place inside the medium, giving rise to the characteristic energy scale
in the dilute regime, namely

ω̄c = 1
2μ2L . (2.3)

This separates two regimes of emissions that are sourced via different scattering processes:
on the one side soft gluons with ω < ω̄c, generated via a soft scattering with the medium
〈k2〉 � μ2. Hard gluons with ω > ω̄c can also be generated, however those demand a large
momentum exchange with the medium, 〈k2〉 > μ2, which is comparatively rare. Let us now
consider how the spectrum behaves in these two distinct regimes.

According to our discussion above, the soft production should be dominated by soft
transverse momentum exchanges with the medium. Hence, we expect that the spectrum of
emitted gluons goes as

ω
dI

dω

∣∣∣∣
ω<ω̄c

∼ αsL

∫ ∞

0
dk2 α2

sn

(k2 + μ2)2 ∼ αs
L

λ
, (2.4)

2For such soft emissions, medium effects can influence the color coherence properties leading to a
modification of the phase space [60, 61].
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where the integral is dominated by k2 � μ2. This integral gives the proportionality with
the inverse mean free path i.e. n/μ2 ∼ 1/λ, resulting in an overall factor of medium opacity
L/λ. This parametric estimate misses an important logarithmic factor ∼ ln ω̄c/ω, see a
further discussion in section 3.2, which signals that the simplifications pertaining to the
“soft” regime break down at ω ≈ ω̄c.

For hard emissions, ω > ω̄c, we instead get that

ω
dI

dω

∣∣∣∣
ω>ω̄c

∼ α3
snL

∫ ∞

ω/L

dk2

k4 ∼ αs
L

λ

ω̄c

ω
, (2.5)

where we used tf = 2ω/k2 < L, and neglected the screening mass μ2 in this parametric
regime, since 〈k2〉 � μ2. Compared to the soft regime from eq. (2.4) it is suppressed by an
additional power of ω̄c/ω � 1. The complete spectrum in the dilute regime is sketched in
figure 2 (left).

Dense media with long formation time (λ � tf � L). In a dense medium we
should expect that typically many scatterings occur during the emission process, which is
illustrated in the middle of figure 1. This demands a more sophisticated model than what
we suggested in eq. (2.2). Nevertheless, we can approximate the total transferred transverse
momentum by 〈k2〉 ∼ q̂t, which resembles a random walk for t time in two dimensions, with
q̂ playing the role of a diffusion constant.3 This constant determines the typical transverse
momentum accumulated per unit length, or q̂ ∼ n ∼ μ2/λ. In this case the formation
time becomes

tf =
√

2ω

q̂
. (2.6)

This is often called the coherence length, since during the formation time, interference
effects between multiple scattering with the medium are active and the gluon feels only one
effective scattering center. The accumulated transverse momentum during the splitting
process is in this case 〈k2〉 =

√
2ωq̂, which is the celebrated Landau-Pomeranchuk-Migdal

(LPM) effect.
Again, comparing the formation time to the medium length, leads to the characteristic

energy scale in the dense regime, namely

ωc = 1
2 q̂L2 , (2.7)

and thus ω < ωc for multiple soft scatterings. The maximal possible momentum accu-
mulated via multiple soft scatterings is denoted 〈k2〉 ∼ Q2

s = q̂L. The other limiting
scale of the multiple scattering regime arises when considering the minimal formation
time in this hierarchy, i.e. tf > λ, giving rise the scale ω > ωBH, (see later in eq. (2.10)).
In this case, the accumulated transverse momentum squared reduces to a single soft
scattering 〈k2〉 ∼ q̂λ ∼ μ2.

3Arbitrary dense medium, would result in overlapping scatterings that description if beyond the scope
of this paper. Multiple independent scatterings require well separated scattering centers (1/μ � λ) see
in ref. [32].
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∼ L
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ω

∼ L

λ
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ω

L � λ

lnω
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ω

d
I

d
ω

ωBH ωc

∼ L

λ

ω̄c

ω

∼ L

λ
ln
ωBH

ω

∼
√

ωc

ω

L � λ

Figure 2. A sketch of the spectrum of medium-induced gluons in a dilute medium L � λ (left)
and in a dense medium L � λ (right).

In the multiple soft scattering regime, characterized by ωBH � ω � ωc, the mean free
path has to be replaced by the formation time in eq. (2.4), leading to

ω
dI

dω

∣∣∣∣
ωBH�ω�ωc

∼ αs
L

tf
∼ αs

√
q̂L2

ω
. (2.8)

This is also often referred to as the BDMPS-Z spectrum in the soft limit.
For hard gluon emissions, ω � ωc, we also have to demand that 〈k2〉 � Qs. In other

words, only a hard scattering can provide sufficient transverse momentum to fulfill all the
conditions. The relevant contribution is therefore captured by eq. (2.5) and, remarkably,
the spectrum in this limit is identical to the hard tail in the dilute regime, namely

ω
dI

dω

∣∣∣∣
ω�ωc

∼ αs
L

λ

ω̄c

ω
. (2.9)

This demonstrates that, even in a dense medium, hard emissions mostly are driven by single,
rare hard scattering events. An illustration of this can be seen on the right in figure 1.

Dense media with short formation time (tf � λ � L). The picture we just
described should hold as long as there indeed is time for multiple scatterings during the
emission process, namely that tf > λ. However, when the formation time is short the
parton will only have time to scatter once before it splits. This is illustrated on the left in
figure 1. The transverse scale is typically soft 〈k2〉 ∼ μ2, and thus tf = 2ω

μ2 . This regime is
characterized by tf � λ, or equivalently as a condition on the energy ω � ωBH, where we
have defined the scale

ωBH = 1
2μ2λ . (2.10)

Note that ω̄c(λ) ≡ ωBH. In this case the spectrum becomes

ω
dI

dω

∣∣∣∣
ω<ωBH

∼ αs
L

λ
, (2.11)

which is similar to the result in eq. (2.4) and it is sometimes referred to as Bethe-Heitler
region because of the QED analogue. The tf � λ condition is satisfactory but not necessary
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Figure 3. The phase space for medium-induced emissions designated to the leading scattering
processes. The main length scales of the problem are λ and the critical length Lc, corresponding to
the characteristic energies ωBH and E, see text for further details.

for BH emissions. There are BH emissions with tf > λ but only with one real scattering.
We show this more rigorously later in section 3. Our heuristic analysis fails to capture
the additional logarithmic term which in this case comes with ln ωBH/ω, see section 3.3. A
sketch of the spectrum in a dense medium can be found in figure 2 (right).

Summary. Bringing together the heuristic arguments of this section, we show a sketch
of the emission spectrum for dilute and dense media in figure 2. The full emission phase
space is divided by three lines corresponding to the emergent scales: ω̄c(t) = 1

2μ2t in the
dilute regime (L < λ), and ωBH = 1

2μ2λ and ωc(t) = 1
2 q̂t2 in the dense regime (L > λ) and

they are shown in figure 3. The ωc(t) line is not completely straight because q̂ in general is
ω dependent (see in section 3.4). When the medium size is of the order of the mean free
path they all collapse to the same value, i.e. ω̄c(λ) = ωc(λ) = ωBH. Typically, we adopt a
notation where the scales written without the t-argument denote their respective values
at L, e.g. ωc ≡ ωc(L).

These scales delineate three distinct regimes of scattering processes and thus induced
emissions that were discussed in the preceding paragraphs. The areas between these scales
are governed by few soft, multiple soft and rare hard interactions with the medium, as
depicted with colors in figure 3 and discussed above. We also show two length scales: the
mean free path λ and the critical medium length Lc. The mean free path marks the time
where multiple scatterings appear. The critical medium length indicates where rare, hard
scatterings will no longer have an effect, that is where ωc(t) = E, leading to Lc =

√
2E/q̂.4

4When considering a finite splitting fraction z the exact definition turns out to be Lc =
√

E/(2q̂).
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As the parton moves through the medium, at each instant t the emission rate ωdI/(dωdt)
is different since the phase space for available emissions changes. The emission spectrum
ωdI/dω, evaluated at a given t (typically t = L), includes the accumulated range of processes
that occurred up to that time. The main goal of this work is to consider multiple medium-
induced emissions in this system of dynamically evolving scales presented in figure 3. In the
next section, section 3, we will formally derive the results we only have argued for in this
section. Finally, in section 4 we will tackle the issue of multiple emissions in this scheme.

3 Spectrum of medium-induced emissions

In this section, we derive the all order emission spectrum induced by elastic scatterings
on a deconfined medium. Of the three expansions we present here, the opacity expansion
and the improved opacity expansion have been discussed in depth in previous works, see
refs. [35, 36] and [53–57] respectively. The resummed opacity expansion has been argued
for before, see [36, 46, 62], but is here derived rigorously for the first time. This paper
strives to be a comprehensive reference for all of the expansions, and hence they are all
presented in detail. Furthermore, we extend previous calculations to all orders and present
results to order N = 2 for the opacity expansion and Nr = 2 for the resummed opacity
expansion, and extract the relevant limits analytically. This provides valuable insight into
the underlying structure of the expansions in different regimes.

3.1 General formalism

Currently, we consider the emission of a gluon with energy ω from a parent parton with
energy E in the soft limit, i.e. ω � E. The soft limit is used in this section because it is
much more clear and readable. For a description beyond the strictly soft limit we refer to
appendix C, which includes novel results.

Our starting point is the definition of the spectrum of medium-induced
gluons [32–34, 36],

ω
dI

dω
= 2αsCR

ω2 Re
∫ ∞

0
dt2

∫ t2

0
dt1 ∂x · ∂y

[K(x, t2; y, t1) − K0(x, t2; y, t1)
]
x=y=0 , (3.1)

where CR is the Casimir color factor of the emitting particle (CR = CF for a quark and
CR = Nc for a gluon).5 The three-point correlator K solves the Schrödinger equation

[
i∂t + ∂2

x

2ω
+ iv(x, t)

]
K(x, t; y, t0) = iδ(t − t0)δ(x − y) , (3.2)

where the potential v(x, t) describes scatterings in a thermal or quasi-particle like
background,6

v(x, t) =
∫

q
σ(q, t)

(
1 − eiq·x) . (3.3)

5This expression can be derived directly from the fully z dependent spectrum in eq. (C.1), see the
discussion in appendix C.

6Throughout, we adopt a shorthand notation, so that
∫

p
=
∫ d4p

(2π)4 ,
∫

p
=
∫ d2p

(2π)2 , and
∫

x
=
∫

d2x.
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Here σ(q, t) = Ncn(t)d2σel/d2q is proportional to the in-medium elastic scattering cross
section, where n(t) ∼ T 3 is the density of scattering centers.7 The color factor Nc appears
because, in this limit, only the emitted gluon picks up transverse momentum in the medium.
The potential can be extracted from an effective theory that accounts for both large and
small momentum exchanges with the medium [63]. In the main part of this paper, we
will use the Gyulassy-Wang potential [64] that both contains a hard Coulomb-tail and
implements screening in the infrared μ2 � q2,

d2σel
d2q

= g4

(q2 + μ2)2 , (3.4)

where μ is a screening mass of the order of the Debye mass of a thermal medium. We also
provide the spectrum in appendix E with the LO hard thermal loop (HTL) potential [65].
Also, in eq. (3.2) we neglect quark and gluon thermal masses, which corresponds to taking
the high-energy limit (E � m4

q,g/q̂ ∼ ωBH), see e.g. refs. [41, 62] for further discussion.
When the medium is not present, v = 0, one recovers the propagation of a single parton

in vacuum, K(x, t2; y, t1) ≡ K0(x − y, t2 − t1) with K0(x, t) = ω
2πi t exp[i ωx2/(2t)]. To only

capture medium effects, the vacuum term is explicitly subtracted in eq. (3.1).
The emission spectrum in eq. (3.1) is the result of a path integral formalism in which

arbitrarily many soft and hard scatterings are included. It does, however, not account
for longitudinal momentum (∼ energy) exchange with the medium. Having written the
expression as a spectrum we also implicitly assume that the creation of the initial parton
is factorized from the induced process (for example it was created in a highly virtual
vacuum process). Finally, the medium averages leading to the simple form of the three-
point correlator, as in eq. (3.2), assumes independent scatterings on the medium. This
parametrically holds if the size of the potential is much smaller than the mean free path,
i.e. μ−1 � λ, where the typical exchanged momentum is |δq| ∼ μ [32].

We should also note that eq. (3.1) emerges as the result of a momentum integral of the
differential spectrum dI/(dω d2k) in the soft limit [39, 57], with no kinematical constraint on
the transverse momentum (k) integral similarly to refs. [34, 58]. A more careful treatment
of the kinematics would be important especially if one is interested in emissions inside or
out of a given cone [26, 39, 51].

Let us now cast the equation for the spectrum in an equivalent form. On many occasions
it is more practical to work in transverse momentum space,

K(p, t2; p0, t1) =
∫

x,y
e−ip·x+ip0·yK(x, t2; y, t1) . (3.5)

The vacuum propagator K0 then becomes a plane wave, i.e. K0(p, t) = exp[−i p2t/(2ω)]. In
this representation, the solution to the Schrödinger equation (3.2) can be written as the

7We include the number density of the scattering centers n(t) into v(x, t) and σ(q, t) similarly to the
previous works in refs. [53, 54, 57].
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recursive equation

K(p, t2; p0, t1) = (2π)2δ(p − p0)K0(p; t2 − t1)

−
∫ t2

t1
ds

∫
q

K0(p; t2 − s)v(q, s)K(p − q, s; p0, t1) , (3.6)

where now
v(q, s) = (2π)2δ(q)Σ(s) − σ(q, s) , (3.7)

ensures probability conservation. Here, Σ(s) ≡ ∫
q σ(q, s) can be interpreted as the inverse

of the (local) mean free path λ along a trajectory of a propagating parton, or

λ(s) = 1
Σ(s) . (3.8)

In these expressions, we have assumed that the integral over the elastic scattering cross
section exists. In many cases, e.g. for the HTL potential [65], one needs to introduce an IR
regulator. However, v(q, s) in eq. (3.7) is not sensitive to this IR regulation and therefore
the expansion in eq. (3.6) is well-defined. We have provided a further discussion of the HTL
potential in appendix E.

The medium-induced spectrum now reads

ω
dI

dω
= 2αsCR

ω2 Re
∫ ∞

0
dt2

∫ t2

0
dt1

∫
p,q

p · q
[K(p, t2; q, t1) − (2π)2δ(p − q)K0(p, t2 − t1)

]
.

(3.9)
The vacuum contribution can then be removed by inserting eq. (3.6) into eq. (3.9), yielding

ω
dI

dω
= 4αsCR

ω
Re i

∫ L

0
dt2

∫ t2

0
dt1

∫
p,p0,q

p · p0
p2 v(q, t2)K(p − q, t2; p0, t1) , (3.10)

where we regulated the integral over the latter time coordinate using an adiabatic turn-off
at infinity (see also ref. [46]). The other time integrals are limited by the extent of the
medium L. Noticing, that

∫
p

pi

p2 v(p − k, s) = ki

k2 Σ(k2, s) , (3.11)

where Σ(k2, s) =
∫

q σ(q, s)Θ(q2 − k2),8 we obtain

ω
dI

dω
= 4αsCR

ω
Re i

∫ L

0
dt2

∫ t2

0
dt1

∫
p,p0

Σ(p2, t2)p · p0
p2 K(p, t2; p0, t1) . (3.12)

While the above results are valid for any medium potential, in this work we will focus on
the GW scattering potential, defined in eq. (3.4). In this case, we find that

Σ(k2, s) = q̂0(s)
k2 + μ2 , (3.13)

where q̂0(s) = 4πα2
sNcn(s) is a measure of the scattering density. Currently, we consider a

medium of constant density, n(s) = n0.
8Also Σ(0, s) = Σ(s), consistent with the definition in eq. (3.7).
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The spectrum, given by eq. (3.1) or eq. (3.12), can be evaluated using numerical tech-
niques [47–52] or by employing analytical approximations. As we will see the approximate
approaches rely on expanding the problem as a series, which will give the true answer at
infinite order. The different series have different radii of convergence, and none of them will
alone converge for all L and ω, meaning more than one have to be employed. In most cases,
however, the first order expansion is sufficient to provide an accurate approximation of the
all order result. In the following we discuss three well-defined approaches that together
provide an accurate description of the true problem for all L and ω, called: the opacity
expansion, the resummed opacity expansion, and the improved opacity expansion. We will
derive these, discuss their limits and their regions of validity.

We also point out that the medium parameters for the numerical evaluations in figures 4–
6 (right) are chosen to maximally separate the relevant scales and to illustrate the main
features of the spectrum. They are also similar to the ones used in phenomenological
studies [24, 26, 57]. It is worth pointing out that, although this particular choice violates the
assumption of non-overlapping scattering centers and should be treated with care, changing
the values of the parameters would not alter the qualitative picture of separating different
regimes in the (ω, t) plane.

3.2 Opacity expansion (OE)

The opacity expansion of the spectrum arises when inserting eq. (3.6) directly into eq. (3.12),
and was developed in refs. [36, 66].9 The truncation of this series at a given order n in the
medium scattering potential gives the N = n term, which is by definition proportional to
(L/λ)n (see eq. (A.2)). Physically this means, at N = n one counts n number of scatterings
(both with and without momentum exchange) on the full elastic potential. The relevant
energy scales that arise are ω̄c = 1

2μ2L, and L
λ ω̄c = 1

2 q̂0L2 as discussed in section 2. A
general formula for the spectrum at any order is derived in appendix A, and with finite-z
corrections in appendix C. These results are used in the following calculations, and we will
refer to the appendices for more details.

First order (N = 1). The spectrum at first order of opacity is well known [35, 36].
Since eq. (3.12) already includes at least one scattering, we obtain the N = 1 term by
replacing the full propagator K by the vacuum one. We then find,

ω
dIN=1

dω
= 8πᾱ

L

λ

ω̄c

ω

∫
p

Σ̃(p2) Re i

∫ 1

0
dt1

∫ t1

0
dt0 e−ip2(t1−t0) , (3.14)

where we have switched to dimensionless integration variables by defining p2 → p2L/(2ω)
and t → t/L, and where Σ̃(p2) = (p2 + ω̄c/ω)−1. This expression can also be obtained from
the general N = n result in eq. (A.2). After simplifications, the spectrum becomes

ω
dIN=1

dω
= 2ᾱ

L

λ

ω̄c

ω

∫ ∞

0
dp

1
p + ω̄c

ω

p − sin p

p2 , (3.15)

9To be precise, expanding our formulas order by order in opacity reproduces the expansion defined in
ref. [36], which reproduces ref. [66] in the “incoherent” limit.
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where ᾱ = αsCR/π and λ = μ2/q̂0. It also agrees with eq. (6.7) in ref. [36] (see also in
ref. [39]). We recognize the dependence on the medium opacity L/λ and the ratio ω̄c/ω.
The remaining integral can be done analytically, but the resulting expression is not very
illuminating. However, the limiting behavior can readily be extracted,

ω
dIN=1

dω
�
⎧⎨
⎩2ᾱL

λ

(
ln ω̄c

ω − 1 + γE

)
, for ω � ω̄c ,

π
2 ᾱL

λ
ω̄c
ω , for ω � ω̄c .

(3.16)

This agrees well with the heuristic discussion in section 2. In particular, we identify a
logarithmic behavior ∼ ln ω̄c

ω in the infrared. Notice the different expansion structures in
the soft ∼ ᾱL

λ and in the hard ∼ ᾱL
λ

ω̄c
ω limits, which we will come back to.

Second order (N = 2). The calculation for N = 2 follows in a similar way, leading to

ω
dIN=2

dω
= −8πᾱ

(
L

λ

)2 ω̄c

ω

∫
p2,p1

Σ̃(p2
2)p2 · p1

p2
2

ṽ(p2 − p1)

× Re i

∫ 1

0
dt2

∫ t2

0
dt1

∫ t1

0
dt0 e−ip2

2(t2−t1)e−ip2
1(t1−t0) , (3.17)

with dimensionless integration variables, and where ṽ(p) = (2π)2δ(p) − ω̄c
ω σ̃(p). In the GW

model, σ̃(p) = 4π/(p2 + ω̄c
ω )2. After inserting ṽ, doing the time integrals and simplifying

this can be written as

ω
dIN=2

dω
= −4ᾱ

(
L

λ

)2 ω̄c

ω

[
I1

(
ω̄c

ω

)
− ω̄c

ω
I2

(
ω̄c

ω

)]
, (3.18)

where we have defined the integrals

I1

(
ω̄c

ω

)
=
∫ ∞

0
dp

1
p + ω̄c

ω

1 − cos p − p
2 sin p

p3 , (3.19)

I2

(
ω̄c

ω

)
=
∫ ∞

0
dp2

∫ ∞

0
dp1

p1
p2 + ω̄c

ω

1[(
p2 + p1 + ω̄c

ω

)2 − 4p2p1
]3/2

× 1
p2 − p1

[ 1
p2

1
(1 − cos p1) − 1

p2
2

(1 − cos p2)
]

. (3.20)

The I1 integral can be done analytically, but I2 is more complicated. It can be shown that
it is much smaller than I1 in the soft limit. In the hard limit, I1 and I2 cancel at the order
of O( ω̄c

ω ), leaving a positive contribution going as O( ω̄c
ω )2. In summary,

ω
dIN=2

dω
�
⎧⎪⎨
⎪⎩

−ᾱ
(

L
λ

)2
, for ω � ω̄c ,

∼ ᾱ
(

L
λ

)2 (
ω̄c
ω

)2
, for ω � ω̄c .

(3.21)

We notice that the N = 2 is proportional to ᾱ(L
λ )2 in the soft limit, and goes like ᾱ(L

λ
ω̄c
ω )2

in the hard limit. This immediately implies that N = 2 is always subleading to N = 1 if
the medium is dilute L � λ or if the emission is hard ω � L

λ ω̄c. Given the structure of the
expansion, we expect the previous statement to hold at arbitrary N = n order. This is in
agreement with the earlier, heuristic observation in refs. [41, 67].
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Based on the limits for N = 1 and N = 2, given by eqs. (3.16) and (3.21), in the
regimes where the expansion holds the all order OE spectrum is expected to take the form

ω
dI

dω
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ᾱ
∞∑

n=1

(
L

λ

)n

hn

(
ω

ω̄c

)
, ω � ω̄c ,

ᾱ
∞∑

n=1

(
L

λ

ω̄c

ω

)n

h̃n

(
ω̄c

ω

)
, ω � ω̄c ,

(3.22)

where the OE coefficients hn, h̃n are finite and can be calculated order by order. Note that
we have not strictly proven this for all orders, although our N = 1 and N = 2 results
strongly indicate this structure. In the soft limit ω � ω̄c, the OE expansion converges
rapidly, defining the expected “naive” radius of convergence L/λ < 1. However, in the
hard limit ω � ω̄c there is convergence even if the medium is big, provided L

λ
ω̄c
ω < 1. The

full region of convergence is shown in green in the left panel of figure 4. Outside of this
region we expect higher orders to grow uncontrollably and hence the OE is not valid when
truncated at any finite order.

The resulting spectrum from eqs. (3.15) and (3.18) is shown in the right panel of figure 4
for different propagation lengths (labeled with t). For short lengths t < λ the OE is valid for
all ω. For t > λ, the OE is only valid if t

λ
ω̄c
ω < 1 (see also the green region on the left panel).

We note that the N = 2 correction becomes important at t > λ and ω ≈ t
λ ω̄c (the latter

constraint shown as bullets in the figure). For larger media, the grey bullets, representing
the minimal energy for achieving convergence, moves to higher values, and the truncated
OE series at ω smaller than this becomes ill-defined. This can be seen, for instance, in the
upper line in figure 4 (right) for a medium length of t = 4 fm. We have also compared to a
full numerical evaluation of the spectrum from refs. [51, 68]. The figure shows that this
indeed is well approximated by the OE in its region of validity, as we have argued. Our
curves are not expected to hold in the limit ω � 1 GeV, where several important effects
were not taken into account such as thermal masses, realistic 2–2 elastic scatterings, and
other non-perturbative effects. We still plot the curves down to very small ω to compare
the different expansion schemes.

3.3 Resummed opacity expansion (ROE)

Next, we turn to dense media, L � λ, where multiple scattering have to be accounted for.
However, as depicted to the left in figure 1 and discussed in section 2, for soft emissions
with short formation times, a single scattering still gives the leading contribution to the
spectrum. This defines the so-called Bethe-Heitler regime named after the QED analogue
of this process. A qualitative argument of this regime was first given in ref. [36] and
later developed in ref. [46], see also in ref. [62] which coined the name “resummed opacity
expansion” (ROE).10

10In ref. [32], authors derive the opacity expansion from the all-order formula eq. (3.1) in a similar way
as we did by expanding K. Accidentally, in one of their intermediate steps in section 4, they kept the
virtual interactions resummed, which corresponds to our ROE. Back then, however, they did not realize the
importance of that formula and they expanded it to reproduce the OE.
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Opacity Expansion
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λ
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101
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ω
d
I

d
ω
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t =
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OE, αs = 0.28, q̂0 = 0.3 GeV3, μ = 0.3 GeV

N = 1

N = 1 + 2

Full numeric

Figure 4. Left: the sketch of the region of validity (and convergence) of the opacity expansion for
different propagation length t and emission energy ω. Right: the induced emission spectrum for
gluons in the opacity expansion. The gray part of the curves denotes regions, where the expansion is
not valid. Using the parameters presented, λ = 0.06 fm. The full numeric solution is also presented
with dashed lines.

Here, we provide for the first time a consistent framework for dealing with an expansion
of the real scatterings with the medium, whereby real we mean interactions with a finite
transverse momentum exchange. At the same time, an all-order resummation of the
corresponding virtual interactions, with zero transverse momentum exchange, is performed.

Dividing eq. (3.6) by the vacuum propagator leaves us with

K(p, t; p0, t0)
K0(p; t − t0) = (2π)2δ(p − p0) −

∫ t

t0
ds

∫
q

v(q, s)K(p − q, s; p0, t0)
K0(p; s − t0) . (3.23)

Next, taking a derivative with respect to the latest time results in

∂

∂t

K(p, t; p0, t0)
K0(p; t − t0) + Σ(t)K(p, t; p0, t0)

K0(p; t − t0) =
∫

q
σ(q)K(p − q, t; p0, t0)

K0(p; t − t0) , (3.24)

where Σ(t) =
∫

q σ(q, t), as before. This motivates defining the elastic Sudakov factor,

Δ(t, t0) ≡ e−
∫ t

t0
ds Σ(s) = e−(t−t0)Σ , (3.25)

where the last equality holds for media with constant density.11 This represents the
probability of no elastic scattering occurring between times t0 and t. Integrating out the
time, we arrive at a slightly modified iterative equation

K(p, t; p0, t0) = (2π)2δ(p − p0)Δ(t, t0)K0(p; t − t0)

+
∫ t

t0
ds

Δ(t, t0)
Δ(s, t0)

∫
q

K0(p; t − s)σ(q, s)K(p − q, s; p0, t0) . (3.26)

11For medium potentials with unscreened soft divergences, such as the HTL potential, one has to modify
this prescription to include an IR regulator. We refer to appendix E for a further discussion.
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Compared to the standard opacity expansion in eq. (3.6), this looks very similar. However,
the expansion is not in the potential v(q, s), which contains both a “real” and a “virtual”
part, but in the potential scattering σ(q, s) which comes from the term that provides a finite
momentum transfer in the process. The virtual contributions, where no net momentum was
exchanged, are accounted for to all orders in the Sudakov factor. This is why this expansion
referred as a resummed opacity expansion.

The relevant scale that appears at high opacity is ωBH = 1
2μ2λ, as we discussed in

section 2. Interestingly, at low opacity L � λ, the scale changes to ω̄c = 1
2μ2L, which we

recognize from the opacity expansion. In this regime the ROE is actually equivalent to the
OE if one gathers all the terms up to the same order in (L

λ )n. However, as we will see, the
terms are reshuffled in the ROE compared to the OE.

It is possible to reach a general formula for the resummed opacity expansion at arbitrary
order. This was done in appendix A.2, and we refer to that section for detailed calculations.

First order (Nr = 1). The first order can be obtained from eq. (A.9) with n = 1,
and reads

ω
dINr=1

dω
= −8πᾱ

L

λ

ω̄c

ω

∫
p

Σ̃(p2) Im T

(
p2 − i

L

λ

)
, (3.27)

in re-scaled, dimensionless variables. Equation (3.27) corresponds to the formula (eq. (4.6))
in ref. [46], but is here derived more rigorously. Here, we have defined the function

T (x) =
∫ 1

0
dt1

∫ t1

0
dt0 e−ix(t1−t0) = 1 − ix − e−ix

x2 . (3.28)

The real and imaginary parts of T (p2 − iχ) are given in eq. (A.10). After doing the angular
integral this becomes

ω
dINr=1

dω
= −2ᾱ

L

λ

ω̄c

ω

∫ ∞

0
dp

1
p + ω̄c

ω

Im T

(
p − i

L

λ

)
. (3.29)

At low opacity L � λ, the function T (p − iL/λ) becomes

−Im T (p)|L�λ = p − sin(p)
p2 , (3.30)

making it equivalent to the OE result in eq. (3.15). The limiting behavior in the relevant
limits of eq. (3.29) can be extracted, leading to

ω
dINr=1

dω
�
⎧⎪⎨
⎪⎩

2ᾱL
λ

(
ln
(

ω̄c
ω

) − 1 + γE

) − ᾱ
(

L
λ

)2 (
1 − π ω

ω̄c

)
, for ω � ω̄c ,

πᾱ
2

L
λ

ω̄c
ω − π

6 ᾱ
(

L
λ

)2
ω̄c
ω , for ω � ω̄c .

(3.31)

At leading order in O(L
λ ) this is the same as the N = 1 opacity expansion, presented in

eq. (3.16). However, in contrast to the OE, subleading “N = 2”-like terms ∼ (L
λ )2 appear,

which only will be relevant when compared to higher-order contributions at Nr = 2.
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In the high opacity limit L � λ, we have to extract the relevant limit of T (p − iχ) in a
careful way, yielding

−Im T (p − iχ)|L�λ � p

(L/λ)2 + p2 . (3.32)

Changing the integration variable to q = pλ/L, we observe that ωBH replaces ω̄c as the
relevant scale, and eq. (3.29) becomes

ω
dINr=1

dω
� 2ᾱ

L

λ

ωBH

ω

∫ ∞

0
dq

1
q + ωBH

ω

q

1 + q2 = 2ᾱ
L

λ

ωBH

ω

π
2 + ωBH

ω ln
(ωBH

ω

)
1 +

(ωBH
ω

)2 . (3.33)

Finally, one can extract the soft and hard limits of this expression, which are given by

ω
dINr=1

dω
�
⎧⎨
⎩2ᾱL

λ

(
ln
(ωBH

ω

)
+ π

2
ω

ωBH

)
, for ω � ωBH ,

πᾱL
λ

ωBH
ω , for ω � ωBH .

(3.34)

The soft limit agrees with the heuristic discussion in section 2. Strikingly, we see that the
behavior in the soft and hard limit takes exactly the same form as for N = 1 except that
ω̄c has been replaced by ωBH (note that ω̄c(L = λ) = ωBH).

Second order (Nr = 2). The second order is found from eq. (A.9) with n = 2, and reads

ω
dINr=2

dω
= 8πᾱ

(
L

λ

)2 ( ω̄c

ω

)2 ∫
p2,p1

Σ̃(p2
2)p2 · p1

p2
2

σ̃(p2 − p1)

× 1
p2

2 − p2
1

(
Re T (p2

1 − iχ) − Re T (p2
2 − iχ)

)
. (3.35)

After going to polar coordinates and doing the angular integrals, this becomes

ω
dINr=2

dω
= 4ᾱ

(
L

λ

)2 ( ω̄c

ω

)2 ∫ ∞

0
dp2

∫ ∞

0
dp1

1
p2 + ω̄c

ω

p1[(
p1 + p2 + ω̄c

ω

)2 − 4p1p2
]3/2

× 1
p2 − p1

(Re T (p1 − iχ) − Re T (p2 − iχ)) . (3.36)

We study this expression separately in the low- and high-opacity limits.
In the low opacity limit L � λ, the spectrum becomes

ω
dINr=2

dω
� 4ᾱ

(
L

λ

)2 ( ω̄c

ω

)2 ∫ ∞

0
dp2

∫ ∞

0
dp1

1
p2 + ω̄c

ω

p1[(
p1 + p2 + ω̄c

ω

)2 − 4p1p2
]3/2

× 1
p2 − p1

(1 − cos p1
p2

1
− 1 − cos p2

p2
2

)
, (3.37)

where again the only relevant energy scale is ω̄c, as it is in the OE. The double momentum
integral can be recognized as I2 from N = 2 of the opacity expansion. The soft and hard
limits are

ω
dINr=2

dω
�
⎧⎪⎨
⎪⎩

πᾱ
(

L
λ

)2
ω
ω̄c

, for ω � ω̄c ,

π
6 ᾱ

(
L
λ

)2
ω̄c
ω , for ω � ω̄c .

(3.38)
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Summing up the two first orders of the ROE and OE we see that Nr = 1 + 2 agrees with
N = 1 + 2, but only when keeping the subleading ∼ (L/λ)2 terms at order Nr = 1. As
mentioned before, the opacity expansion is arranged so that the order N = n only contains
terms where the opacity scales as ∼ χn, where χ = L/λ. The resummed opacity expansion
also includes all of the same terms, but they are spread out over different orders of the
expansion due to the resummation contained in the Sudakov factor. The orders Nr < n do
contain terms going as χn. To get the right term at order χn in the ROE one therefore has
to keep the subleading corrections going as χn at all previous orders of the expansion. For
this reason the opacity expansion is more convenient to use in the low opacity limit, as it
does not mix orders of opacity.

In the high opacity limit L � λ, we get

ω
dINr=2

dω
� 4ᾱ

L

λ

(
ωBH

ω

)2 ∫ ∞

0
dp2

∫ ∞

0
dp1

1
p2 + ω̄c

ω

p1[(
p1 + p2 + ω̄c

ω

)2 − 4p1p2
]3/2

× p2 + p1
(1 + p2

2)(1 + p2
1) . (3.39)

The soft and hard limits of this expression are given by

ω
dINr=2

dω
�
⎧⎨
⎩πᾱL

λ
ω

ωBH
, for ω � ωBH ,

πᾱL
λ

ωBH
ω , for ω � ωBH ,

(3.40)

where similarly to Nr = 1, the relevant scale is now ωBH. Both Nr = 1 and 2 goes as ∼ ᾱL
λ ,

however, in the soft limit Nr = 1 dominates, while in the hard limit dINr=2 ∼ dINr=1. This
shows that ROE is quickly convergent if ω � ωBH, while the expansion appears to break
down for harder emissions. We expect this structure to appear to all orders in Nr = n. The
resulting validity of the expansion is shown in the left of figure 5 in blue. Based on our
findings, the expansion scheme for the ROE at high opacity L � λ is

ω
dI

dω
= ᾱ

L

λ

∞∑
n=0

fn

(
ω

ωBH

)
, (3.41)

where fn is a finite function that can be obtained order by order for ω � ωBH.
The resulting spectrum is shown in the right of figure 5 for different propagation lengths.

For short times (t < λ), the ROE is valid for all ω and it gives the same spectrum as the
OE (compare to the right panel of figure 4). For longer propagation the ROE is only valid
if ω < ωBH, which is denoted with bullets in the figure. Outside of the valid region, the
curves turn to gray (see also the left panel). Based on the figure, Nr = 2 has negligible
contribution to the spectrum until t ≈ λ or ω ≈ ωBH. Again, the dashed line represents the
full numerical evaluation of the spectrum from refs. [51, 68] which is well approximated by
the ROE in its region of validity.

3.4 Improved opacity expansion (IOE)

The final expansion scheme we consider is the improved opacity expansion, introduced
in refs. [53–57]. We saw that the ROE at high opacity does not work for energies much
higher than ωBH. This makes sense since at higher energies the formation time tf of the
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Figure 5. Left: the sketch of region of validity (and convergence) of the resummed opacity expansion
for different propagation length t and emission energy ω. Right: the induced emission spectrum for
gluons in the resummed opacity expansion. The gray part of the curves denotes regions, where the
expansion is not valid. With the parameters presented, λ = 0.06 fm. The full numeric solution is
also presented with dashed lines.

emission becomes bigger than the mean free path, implying that the parton will scatter
many times on the medium. The main motivation for the improved opacity expansion is
to resum multiple soft scatterings, while account perturbatively for rare, hard scatterings.
This is achieved by introducing a scale Q2 that separates soft and hard scatterings in the
scattering potential,

v(x, t) ≈ vHO(x, t) + δv(x, t) , (3.42)

where vHO(x, t) = q̂(t)
4 x2 and δv(x, t) = q̂0(t)

4 x2 ln 1
Q2x2 . Equation (3.42) is the μ|x| � 1

expansion of eq. (3.3) with the GW potential. The first term is referred to as the harmonic
oscillator approximation (HO), where the jet quenching parameter is

q̂(t) = q̂0(t) ln Q2

μ2∗
, (3.43)

where μ2∗ = μ2

4 e−1+2γE for the GW potential. The logarithm in q̂ comes from the fact that
the typical exchanged momentum 〈k2〉 = L

∫
q q2σ(q) is divergent and thus it has to be

regulated resulting in the leading logarithmic form in eq. (3.43) (see in ref. [42]). As long
as Q2/μ2∗ � 1/(Q2x2), the HO term dominates over δv, and the latter can be treated as
a perturbation. This provides a big advantage, since the multiple scattering in the HO
approximation can be resummed analytically.

The separation scale Q2 has to be fixed in a meaningful way to not to interfere with the
expansion [55]. A natural choice that achieves this is evaluating Q2 at the typical transverse
momentum of the emission k2 ∼ q̂tf, that yields

Q2
r(ω) =

√
ωq̂(ω) , (3.44)

which constitutes an implicit equation for Q2
r(ω), and for q̂(ω) ≡ q̂(Qr(ω)), see eq. (3.43).12

12Equation (3.44) has a solution only if ω > 2e
μ4

∗
q̂0

� 0.925ωBH. When this is satisfied, and L > λ, then
Q2

r > μ2
∗ by default. This is the necessary condition for the convergence of the IOE. The IOE therefore

breaks down for ω � ωBH.
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The IOE corresponds to expanding the full medium solution for K(x; y) around the
harmonic oscillator, in contrast to the conventional opacity expansion where one expands
around the vacuum solution. It can be cast in the iterative equation

K(x, t2; y, t1) = KHO(x, t2; y, t1)

−
∫ t2

t1
ds

∫
z

KHO(x, t2; z, s)δv(z, s)K(z, s; y, t1) . (3.45)

Here, KHO(x; y) is itself the solution to an iterative equation, namely

KHO(x, t2; y, t1) = K0(x − y, t2 − t1)

−
∫ t2

t1
ds

∫
z

K0(x − z, t2 − s)vHO(z, s)KHO(z, s; y, t1) . (3.46)

The formal solution for KHO(x, t2; y, t1) can also be cast as a path integral, namely

KHO(x, t2; y, t1) =
∫ r(t2)=x

r(t1)=y
Dr ei

∫ t2
t1

ds
[

ω
2 ṙ2+ivHO(r,s)

]
, (3.47)

which has a well-known analytical solution in a static medium,

KHO (x, t2; y, t1) = ωΩ
2πi sin(ΩΔt)e

iωΩ
2 sin(ΩΔt) [cos(ΩΔt) (x2+y2)−2x·y] , (3.48)

where Δt ≡ t2 − t1 and Ω = 1−i
2
√

q̂(ω)/ω is the characteristic oscillator frequency.
Inserting this expansion into the equation for the medium-induced spectrum eq. (3.1)

separates it into two parts,

ω
dIHO

dω
= 2αsCR

ω2 Re
∫ ∞

0
dt2

∫ t2

0
dt1 ∂x · ∂y

[KHO(x, t2; y, t1) − K0(x, t2; y, t1)
]
x=y=0 ,

(3.49)

ω
dI IOE

dω
= −2αsCR

ω2 Re
∫ ∞

0
dt2

∫ t2

0
ds

∫ s

0
dt1

∫
z

× ∂x · ∂y[KHO(x, t2; z, s)δv(z, s)K(z, s; y, t1)]x=y=0 . (3.50)

The first term gives rise to the well-known HO spectrum, while the second constitutes an
expansion in hard splittings around the harmonic oscillator. The IOE spectrum can be
simplified further, giving

ω
dI IOE

dω
= 2ᾱ

ω
Re i

∫ L

0
dt2

∫ t2

0
dt1

∫
x

e−i ωΩ
2 tan (Ω(L−t2))x2

δv(x) x

x2 · ∂yK(x, t2; y, t1)|y=0 ,

(3.51)

where K(x; y) should be iterated using eq. (3.45) in order to generate higher orders of the
expansion. A general formula for the improved opacity expansion at arbitrary order can
also be derived, which was done in section A.3, see also in ref. [55].
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Harmonic oscillator (HO). The harmonic oscillator approximation resums all coherent
soft scatterings during the formation of the emission. The relevant scale is

ωc ≡ 1
2 q̂(ωc)L2 , (3.52)

where the scale in the jet quenching parameter is set to ωc. This scale was already identified
in section 2. The HO approximation is expected to be valid for ωBH � ω � ωc.

We derive here the familiar harmonic oscillator spectrum in a new way. The vacuum
contribution can easily be subtracted by inserting eq. (3.45) into eq. (3.1), which gives

ω
dIHO

dω
= − 2αsCR

ω2 Re
∫ ∞

0
dt2

∫ t2

0
ds

∫ s

0
dt1

∫
z

× ∂x · ∂y
[K0(x, t2; z, s)vHO(z, s)KHO(z, s; y, t1)

]
x=y=0 . (3.53)

Using the fact that
∫∞

s dt2 ∂xK0(x, t2; z, s)|x=0 = −iω
π

z
z2 , the spectrum becomes

ω
dIHO

dω
= ᾱq̂(ω)

2ω
Re i

∫ L

0
dt2

∫ t2

0
dt1

∫
z

z · ∂yKHO(z, t2; y, t1)|y=0 . (3.54)

This can be further simplified by using that
∫

z
z · ∂yKHO(z, t2; y, t1)|y=0 = − (ωΩ)2

2π sin2(Ω(t2 − t1))

∫
z

z2ei ωΩ
2 z2 cot(Ω(t2−t1)) ,

= 2
cos2(Ω(t2 − t1)) . (3.55)

The time integration can be now be dealt with straightforwardly, yielding
∫ L

0
dt2

∫ t2

0
dt1

1
cos2(Ω(t2 − t1)) = − ln cos ΩL

Ω2 , (3.56)

and thus the spectrum becomes

ω
dIHO

dω
= 2ᾱ ln |cos ΩL| , (3.57)

which is the familiar BDMPS-Z spectrum [32, 69]. The limits of this are

ω
dIHO

dω
�
⎧⎨
⎩ᾱ

√
2ωc
ω , for ω � ωc ,

ᾱ
6
(ωc

ω

)2
, for ω � ωc .

(3.58)

The soft limit agrees with the discussion in section 2, while the hard limit is subleading
compared to the OE N = 1 in eq. (3.16). Defining q̂ with a logarithm extends the region of
validity, which was also found in ref. [42], leading to the curved ωc(t) line in figure 3.

Next-to-harmonic oscillator (NHO). Using the definition in eq. (3.51) and the results
of section A.3, the first order of the improved opacity expansion can be written as

ω
dINHO

dω
= 2ᾱ

π

L

λ

ω̄c

ω
Re

∫ 1

0
ds

∫
u

1
2 ln

(
ω

ω̄c

μ2

2Q2
1

u2

)
e

i
2 f(s)u2

, (3.59)
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where we have defined the function f(s) = σ
√

ωc/ω[cot(σs
√

ωc/ω) − tan(σ(1 − s)
√

ωc/ω)],
and σ = 1−i√

2 . After doing the u integral this becomes

ω
dINHO

dω
= 2ᾱ

L

λ

ω̄c

ω
Re i

∫ 1

0
ds

1
f(s)

[
1 − γE + ln

(
−i

ω

ω̄c

μ2∗
Q2 f(s)

)]
. (3.60)

The limits of this expression can readily be extracted. In the soft limit, ω � ωc, we
have f(s) → 2iσ

√
ωc/ω while in the hard limit, ω � ωc, it becomes f(s) → 1/s. These

simplifications make it possible to do the last time integration. Hence, the extracted limiting
behavior is,

ω
dINHO

dω
�
⎧⎨
⎩

ᾱ
√

2ωc
ω

1
2 ln Q2/μ2∗

(
π
4 + γE + ln

( √
q̂ω√

2Q2

))
, for ω � ωc ,

πᾱ
2

L
λ

ω̄c
ω , for ω � ωc .

(3.61)

In the soft limit ω � ωc, NnHO terms will take the form of the HO by using Qr, and thus

ω
dI

dω
= ᾱ

√
q̂(ω)L2

ω

(
1 + 1

2
a0

ln Q2
r/μ2∗

+ O
( 1

ln Q2
r/μ2∗

)2
)

, (3.62)

where we added the HO term, and used eq. (3.44). The choice of Q = Qr(ω) is effective,
when the medium is big enough L � λ. It is clear that the expansion parameter of the
IOE is ln−1(Q2

r/μ2∗) � 1 in the soft limit. Therefore, NnHO terms can be absorbed into an
effective jet transport parameter,

q̂eff(Q2) = q̂0 ln
(

Q2
r

μ2∗

)[
1 + a0

ln Q2
r/μ2∗

+ a1
ln2 Q2

r/μ2∗
+ . . .

]
. (3.63)

The coefficients a0 = 1.016 and a1 = 0.316 of the expansion and higher-order terms up to
N2HO were found in ref. [55].

In the hard limit of eq. (3.61), one can see that the IOE reproduces the hard limit of
N = 1 in the OE from eq. (3.16). Furthermore, it is bigger than the HO contribution in
eq. (3.57) and thus NHO dominates for ω � ωc.

As mentioned above, the HO is meaningful if L > λ and ω > ωBH. Furthermore, the
IOE is expected to converge if vHO > δv or equivalently ω > ωBH. However, as the hard
limits of the first order of the IOE and the OE are equal, and the OE is valid down to ω̄c,
it is reasonable to assume that also the IOE is valid down to ω̄c. Therefore, the region of
validity will be extended to all L and ω > min(ωBH, ω̄c), as shown in the left of figure 6
in red.

The spectra obtained with the IOE from eq. (3.57) and eq. (3.61) are shown in the
right panel of figure 6 for different propagation lengths. At early times t < λ, the HO
approximation is highly suppressed, due to the absence of multiple scattering. However,
the contribution from the NHO makes the total agree with the hard limit of N = 1 OE
and Nr = 1 ROE (cf. figures 4 and 5). The deviation close to ω ≈ ω̄c (gray bullet) arises
since Qr was chosen to reproduce the HO spectrum which is strictly valid for L � λ. For
later times t > λ, both the HO and NHO will give sizable contributions, where the HO
dominates if ω < ωc (red bullets) and NHO dominates if ω > ωc. The HO approximation
breaks down if ω < ωBH (gray bullets). The dashed line is the full numerical solution from
refs. [51, 68] and the IOE well captures it in its region of validity.
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Figure 6. Left: the sketch of region of validity (and convergence) of the improved opacity expansion
for different propagation length t and emission energy ω. Right: the induced emission spectrum for
gluons in the improved opacity expansion. The gray part of the curves denotes regions where the
expansion is not valid. Using the parameters presented, λ = 0.06 fm. The full numeric solution is
also presented with dashed lines.

3.5 Summary of the regimes and the induced emission spectrum

In this section, we have presented three distinct perturbative expansions (OE, ROE, and
IOE) that provide different ways of calculating the induced emission spectrum ω dI

dω in their
respective regimes of convergence. The OE and IOE are expansion schemes that were first
developed in previous works, while the ROE is rigorously derived in this section for the
first time. Their regions of validity are sketched previously in figures 4–6, and at least one
of the expansions is valid at every point in the phase space (ω, t). Here ω is the emitted
energy and t is the propagated length (L is the maximal length of the medium and E is
the energy of the emitting particle). As a consequence, our description of the spectrum is
complete in the full phase space, as one can always use one of the expansions to reach an
approximation of the true spectrum, and one can reach better accuracy by including higher
orders. Note that the expansions are overlapping: for L < λ both OE and ROE are valid,
and for ω > ωc both IOE the OE can be used.

The results presented obtained so far within the unified resummation framework are
valid in both dilute and dense regimes and can be systematically improved to arbitrary high
order in the expansions. For practical purposes, however, a handy and efficient interpolation
formula such suffice to capture the relevant features to high precision. This would be very
useful for other applications, such as resumming multiple emissions in sections 4 and 5. To
describe the spectrum in the whole phase space, we use (to first order)

dIFull

dω
=

⎧⎨
⎩

dIROE

dω , ω < min(ωBH, ω̄c(t)) ,
dIIOE

dω , otherwise .
(3.64)

Based on figures 4–6 (and the all order expansion formulas), the first-order terms already
capture the most important effects. We stress that this is arguable the most straightforward
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Figure 7. Summary of the induced emission spectrum for gluons, combined from the three expansion
schemes at different propagation length (different panels). The black lines are our final forms from
eq. (3.64) that uses Nr = 1 and HO+NHO. The shaded areas denote the leading scattering process
and the corresponding dotted lines are the limiting N = 1, HO and Nr = 1 contributions. The
dashed lines are the numerical solution of eq. (3.1) from ref. [51].

interpolation scheme. However, it turns out that it gives a good description in almost the
whole phase space, deviating maximally 30% from the exact numerical results around the
Bethe-Heitler energy in the dilute regime, see figure 7 (left, lower panel).13

To summarize, the limiting behaviour of the spectrum in different regions of the phase
space is

ω
dI

dω

∣∣∣∣
L�λ

=

⎧⎨
⎩2ᾱL

λ

(
ln ω̄c

ω − 1 + γE

)
, for ω � ω̄c ,

π
2 ᾱL

λ
ω̄c
ω , for ω̄c � ω ,

(3.65)

for L � λ, and

ω
dI

dω

∣∣∣∣
L�λ

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2ᾱL
λ ln

(ωBH
ω

)
, for ω � ωBH ,

ᾱ
√

2ωc
ω , for ωBH � ω � ωc ,

π
2 ᾱL

λ
ω̄c
ω , for ωc � ω ,

(3.66)

for L � λ. This agrees with the formulas from the heuristic discussion in section 2. In
figure 7, we evaluated eq. (3.64) (black curve) up to Nr = 1 and HO+NHO for different
times. The dotted curves are the limits of Nr = 1, HO and N = 1, shown in blue, red and
green respectively. The regions are shaded with the same colors as in figure 3, visualizing
the regions of the distinct scattering processes. At the transition point min(ωBH, ω̄c(t)), the
spectrum is not completely smooth, and the difference is expected to vanish as one goes to
higher orders in the perturbative expansion. We defined a switching function that makes
the transition smoother, which is described in appendix D.

In figure 7, we have also plotted the full numerical spectra from refs. [51, 68] with dashed
lines. The excellent agreement with our curves corroborates the validity of our formula in

13The interpolation can be further inspected in figure 11, where we plot the spectrum on a semilog scale.
The exact details of matching the ROE regime with the IOE involves a smooth interpolation function, that
avoids blowing up the logarithmic dependence of q̂. This is described in detail in appendix D.
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eq. (3.64), where we used Nr = 1 and HO+NHO in the plot. In the ratio panel, one can
see, how the different regions are adding up to give an overall very accurate description
of the full spectrum. Moreover, as we saw in figures 4–6, by including higher orders e.g.
Nr = 2, the description becomes more accurate, smoothing the transition around ωBH. We
leave the study of these higher-order corrections and the corresponding uncertainties for
future studies.

4 Resumming multiple emissions in the medium

Section 3 presents a theoretical framework consisting of different perturbative expansions
(namely the opacity expansion (OE), the resummed OE (ROE), and the improved OE (IOE))
to describe the full phase space (ω, t) of the medium-induced gluon emission spectrum. The
emitted energy ω is limited by the energy of the emitter ω � E, and the propagation time
(length) t is in turn limited by the medium length t < L. Our effective formalism accounts
for arbitrarily many scatterings that can be arbitrarily hard or soft. Finally, eq. (3.64)
describes the emission spectrum up to arbitrary precision and recovers the full solution of
eq. (3.1) that has only been achieved numerically before [48, 49, 51].

It is now time to explore what consequences the full induced spectrum instills on
a parton propagating through the medium. In this section, we will present analytical
solutions of the evolution equation of the medium-induced cascade. We present the inclusive
gluon energy distribution for different medium lengths, and we will focus on gluons for
transparency. The numerical solutions are presented in section 5. Vacuum emissions belong
outside of the scope of the current work.

4.1 The necessity of multiple emissions

Multiple emissions have to be taken into account whenever the multiplicity of gluons is
large. We define the multiplicity of gluons above the energy ω in terms of the spectrum
dI/dω, as

N(ω) =
∫ ∞

ω
dω′ dI

dω′ . (4.1)

The upper limit of the integral is taken to infinity because we will currently assume that
the energy of the emitter E is much larger than the largest available medium energy scale.
Also, for our current purposes, it suffices to consider the leading behavior of the spectrum
in the various scattering regimes presented in figure 3.

At low opacity L � λ and starting from ω < ωBH, we find

N(ω) � ᾱ
L

λ
ln2 ω̄c

ω
+ πᾱ

2
L

λ
, (4.2)

where ω̄c = 1
2μ2L and we have only kept the leading terms. The maximal multiplicity in

the hard regime, see the second term, is always small for perturbative splittings with ᾱ � 1.
Furthermore, the multiplicity in the soft (Bethe-Heitler) regime, given by the first term,
becomes large only at very small energies, i.e. ω < e

√
1/(ᾱL/λ)ω̄c. We can therefore safely

neglect multiple emissions at low opacities.
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For dense media, L � λ, we discuss the three pertinent cases. As usual, we will denote
ωc = 1

2 q̂L2. Then, for ω � ωc (rare hard scattering regime), we find

N(ω) � ᾱ
L

λ

ω̄c

ω
, (4.3)

where we again neglected subleading terms. Hence hard emissions, described by the OE
expansion, can safely be considered to be rare.

Next, for ωBH � ω � ωc we get

N(ω) � 2
3
2 ᾱ

√
ωc

ω
, (4.4)

where we introduced the leading behavior of the spectrum and neglected the multiplicity from
hard emissions, following the discussion above. The multiplicity becomes large N(ω) � 1
at energies ω � ᾱ2ωc and thus multiple emission becomes dominant. For large enough
medium length L � λ, there is a significant phase space allowing for multiple emission
(ᾱ2

sωc(t) > ωBH), resulting in the power enhancement.
Finally, for soft gluon energies ω < ωBH � ωc, the multiplicity is

N(ω) � ᾱ
L

λ
ln2 ωBH

ω
+ 2

3
2 ᾱ

√
ωc

ωBH
, (4.5)

where, again, only the leading terms from each regime were kept. The second term in
eq. (4.5) scales as ∼ (L/λ)

√
q̂/q̂0. Based on the discussion above, this term is already

large and the multiplicity continues to grow only logarithmically for small ω, and therefore
multiple emissions are going to happen.

4.2 Resummation of multiple emissions

Considering multiple emissions in a medium poses a tremendous theoretical challenge.
The situation is quite analogous to the description of multiple gluon emissions in vacuum.
Similar to QCD jets, the main challenge when considering medium effects lies in dealing with
intricate interference effects between subsequent emissions, see e.g. refs. [70–72]. However,
when considering multiple soft emissions, that occur quasi-instantaneously, these effects can
safely be neglected [58, 59].14

In order to clarify the framework that we work in, let us briefly recall the main arguments
for neglecting interference effects for a set of multiple induced emissions. For the time
being, we stick to emissions in the HO region which dominate the multiplicity. The typical
time it takes an emission to form, often referred to as a formation time (or in some works
branching time), of a soft gluon is tf ∼ √

ω/q̂. This time is much smaller than the extent of
the medium tf � L as long as ω � ωc.

Another relevant quantity is the time between two subsequent emissions. This is related
to the no emission probability (or Sudakov factor). For a leading particle with energy
E, the first emission is produced at time tf1, with energy ω1. A second, strongly ordered

14We can also extend this logic for the semi-hard emissions which are included in our formalism, since
they are rare occurrences and therefore the resummation has no effect, see section 4.3.
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emission (ω2 � ω1) of the original parton forms much quicker tf2 � tf1. The time between
the two emissions tsplit can be estimated with

∫ tsplit
tf1

dt
∫ ω1

ω2
dω dI

dωdt ∼ 1, that is basically the
probability of not having emissions between ω2 < ω < ω1, resulting in

tsplit ∼ tf1 + 1
ᾱ

tf2 . (4.6)

Hence, our rough estimate implies that typically tsplit � tf2 (for ᾱ � 1). Therefore, the
formation of emissions is short compared to the time that separates emissions and thus
emissions form independently. This motivates the resummation of multiple independent
emissions in terms of a rate equation.

Similar analysis can be done for hard emissions ω � ωc, for which tsplit is very long due
to the unlikeliness of hard scatterings, and therefore the emissions are formed independently.

For soft emissions ω � ωBH, tsplit ∼ tf1 + 1
ᾱ ln−2 λ

tf2
and thus emissions form indepen-

dently. Close to the boundary in cases where tsplit ≈ tf1 + tf2, a more complicated structure
appears in terms of resummation, as emissions might overlap. In this case, interference
effects between the two emissions have to be included. A similar thing happens in vacuum
for wide angle soft emissions, which result in angular ordering and in non-global effects
for which the resummation has been understood just recently [73]. We will use the rate
equation to account for emissions with any ω. However, it will not necessarily account
correctly for interference among them and further study is needed in the future.

One question still remains open, namely the choice of the time scale used in the rate
equation. In case of two emissions, the second emission experiences a shorter medium, of the
scale ∼ L−tf1−tsplit. We know, however, that in the soft limit ω � ωc, the formation time is
tf � L, and therefore, the length degradation should not matter for a large medium [58, 59].
For small media, or for emissions with comparable formation times, these corrections can
become significant. It is an unresolved question how to incorporate these corrections into
a rate equation see e.g. ref. [71].15 However, as argued above, the corrections to the rate
coming from finite-size effects can be treated in a perturbative fashion. While these issues
merit further studies, perhaps within a Monte Carlo approach, we consider them to go
beyond our present scope and we assume that all emissions experience the same length L.
This matches the approximation in most of the current energy-loss models.

In this section, we will focus on the single-inclusive energy distribution of partons
carrying energy xE after traveling length t in the medium, where E is the initial energy. It
is defined as

D(x, t) ≡ x
dN

dx
. (4.7)

The formalism can easily be extended to account for parton flavors, see e.g. [75], but for
now, we restrict our attention to a pure gluon cascade.

In section 3 we focused on emissions of soft gluons with energies ω � E. Now we will
consider generic splitting processes where a parton with flavor index a = q, g and initial
energy E shares its energy with two daughter partons, with energies zE and (1 − z)E and
flavor indices b and c, respectively, for 0 < z < 1. The spectrum of such splittings dIba/dz

15See also section 4 in ref. [74], where modifications of the rate due to finite formation time were studied.
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is given by eq. (C.1). The general features of figure 3 remain the same with the substitution
ω → z(1 − z)E.16 For further details, see the discussion in appendix C.

As was shown in refs. [43, 59], for sufficiently soft emissions, with formation times
much smaller than the medium length, interference effects are suppressed and one can
consider multiple emissions as occurring independently. The evolution equation for the
energy distribution, that accounts for an arbitrary number of induced emissions, is given by

∂

∂t
D(x, t) =

∫ 1

x
dz K

(
z,

x

z
E, t

)
D

(
x

z
, t

)
−
∫ 1

0
dz z K (z, xE, t) D(x, t) . (4.8)

The initial condition is a single gluon carrying energy E, hence D(x, 0) = δ(1 − x). The
splitting kernel K(z, E, t) is the rate of emissions off a particle with energy E,

K(z, E, t) = 2 dIgg

dzdt

∣∣∣∣
E

, (4.9)

and the rate with full z-dependence for the g → gg splitting can be found in eq. (C.1).17

The first term in eq. (4.8) is a real emission describing an emitted gluon with energy fraction
x (gain term), while the second is a virtual emission that does not change the energy of the
emitter (loss term). Both terms contribute to cancelling out the apparent divergence at
z → 1. The evolution equation conserves the total energy contained in the spectrum,

∫ 1

0
dx D(x, t) = 1 , (4.10)

which can be confirmed directly from (4.8).
The leading parametric behavior of the splitting kernels can be derived by taking

appropriate limits and is presented in section 3, cf. eqs. (3.16), (3.34), and (3.58). This
results in,

K(z, E, t)|t�λ =

⎧⎨
⎩

2ᾱ
z(1−z)

1
λ ln

(
ω̄c(t)

z(1−z)E

)
for z(1 − z)E � ω̄c(t) ,

ᾱπ
2

q̂0t
[z(1−z)]2E

for ω̄c(t) � z(1 − z)E ,
(4.11)

for t � λ, and

K(z, E, t)|t�λ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2ᾱ
z(1−z)

1
λ ln

(
ωBH

z(1−z)E

)
for z(1 − z)E � ωBH ,

ᾱ
√

q̂
[z(1−z)]3E

for ωBH � z(1 − z)E � ωc(t) ,

ᾱπ
2

q̂0t
[z(1−z)]2E

for ωc(t) � z(1 − z)E ,

(4.12)

for t � λ, where ω̄c(t) = 1
2μ2t and ωc = 1

2 q̂t2. For the analytical estimates in this section
we neglect the running of q̂, but this will be included in the numerics presented in section 5.

16Hence the upper limit of ω in figure 3 should now be E/4.
17In the soft limit, the kernel is closely related to the spectrum discussed in the previous section or, more

precisely, the rate dI/(dωdt), calculated in appendix B. Importantly, for the gluon splitting kernel, the
divergences in z → 0 and z → 1 are folded together in the limit ω → 0, hence the additional symmetry
factor in eq. (4.9).
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Figure 8. The medium-induced rate from eqs. (4.9), and (3.64) for gluons for different emitted
energy and propagation time (black dashed lines). The black solid lines include finite-z corrections.
The dotted lines are the Nr = 1, HO and N = 1 lines according to figure 7. The color shading
corresponds to figure 3i.e. denoting the dominant scattering processes. The parameters correspond
to λ = 0.06 fm.

The rate dI/(dzdt) is plotted in figure 8, in a similar manner to the spectrum in figure 7,
and rescaled by a factor z3/2 to highlight the behavior at small z. The panels in the upper
part show the z-dependence for three different t (early, mid-, and late times), and has a
very similar structure to that of the spectrum. The color shading corresponds to figure 3,
i.e. the dominant scattering processes. The dotted lines are the Nr = 1, HO and N = 1
lines from section 3 as in figure 7, where ω → zE was used. Similarly, the dashed line is
the full solution in the soft limit with ω → zE. The solid black lines are from eq. (5.3) and
they contain finite-z corrections from appendix C. The finite-z corrections change the rate
for hard emissions around z ∼ 1. The panels in the lower part show the time dependence of
the rate for a fixed emitted energy.

4.3 Analytic solutions of the evolution equation

The evolution equation (4.8) is readily solved by numerical evaluation, which will be
discussed in section 5. Here we will discuss limiting cases where analytical solutions can
be found. We can find such solutions at early times (considering only one emission) and
at late times (considering many soft emissions). These are by now well-known limiting
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cases. Finally, we also consider the novel case of the evolution equation at intermediate
times, where both rare, hard emissions and multiple, soft emissions can occur in sequence
according to their respective allowed phase space of emissions, given in figure 3.

To simplify our discussion, in this section we will neglect the Bethe-Heitler regime. We
will nevertheless include it in the full numerical solutions presented in section 5.

Early time evolution. At an early stage of medium propagation, the leading parton
has little time to interact with the medium which also translates into a small probability of
splitting. Given our previous discussion, the natural medium scale to compare with is the
mean free path λ. Hence, at t � λ we consider a single splitting, leading to

D(x, t) � δ(1 − x)
[
1 −

∫ t

0
ds

∫ 1

0
dz zK(z, xE, s)

]
+
∫ t

0
ds

∫ 1

x
dz K

(
z,

x

z
E, s

)
δ

(
1 − x

z

)

=
∫ t

0
ds xK(x, E, s) , (4.13)

where we dropped the term proportional to δ(1 − x), which is only important for energy
conservation, cf. eq. (4.10). Using the results in eq. (4.11), we find that

D(x, t) �
⎧⎨
⎩

2ᾱ t
λ

1
1−x ln

(
ω̄c(t)

x(1−x)E

)
for x � x̄c ,

πᾱ
4

q̂0
E

t2

x(1−x)2 for x̄c � x � 1 − x̄c ,
(4.14)

where we have defined x̄c = ω̄c(t)/E. For x � x̄c, corresponding to the single soft or
Bethe-Heitler scattering regime, a characteristic D ∼ ln 1/x structure appears that is similar
to the DGLAP energy distribution in vacuum. On the contrary, for x � x̄c, corresponding
to the single hard scattering regime, D ∼ 1/x, and the two regimes are separated by x̄c.
The limiting case of eq. (4.14) is shown in figure 9 with dashed lines for different times
(different panels). Since we, as we move onward, will largely neglect the description of
the infared regime, we only used the single hard scattering (green) contribution that is
valid x > x̄c.

Formally, the early-time expansion breaks down when t > λ which is also the character-
istic time when multiple interactions with the medium become important. Finally, we do
not expect the early time solution to hold for x < ᾱ2ωc/E where multiple emissions play
an important role.

Late time evolution. The evolution equation can be solved exactly if one assumes coher-
ent scatterings dominate for all momentum fractions x and all times t. This approximation
is most sound when t � Lc, as seen in figure 3. The analytical solution neglects the
Bethe-Heitler, which will make the solution less reliable for very small x < ωBH/E. We will
call this solution D0 as it serves as a baseline for subsequent calculations. It is the solution
to the evolution equation

∂

∂t
D0(x, t) =

∫ 1

x
dz Kcoh

(
z,

x

z
E, t

)
D0

(
x

z
, t

)
−
∫ 1

0
dz zKcoh (z, xE, t) D0(x, t)

(4.15)
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Figure 9. Analytic solutions of the energy distribution in different approximations (eqs. (4.13), (4.16)
and (4.26)). With these parameters λ = 0.06 fm, and thus the different panels are t < λ, λ < t < Lc,
and t � Lc.

where Kcoh is the soft limit of the harmonic oscillator regime, see the middle term in
eq. (4.12). The solution from ref. [76] is

D0(x, τ) = τ√
x(1 − x)3/2 e−π τ2

1−x , (4.16)

where we dropped the δ(x) zero mode term, which is only important for energy conservation.
We have also defined the re-scaled evolution variable which absorbs the energy scale,

τ = ᾱ

√
q̂0
E

t . (4.17)

The solution has the D0 ∼ τ/
√

x shape characteristic of the turbulent cascade. Equa-
tion (4.16) is shown in figure 9 with dotted lines for different times.

Intermediate time evolution. To reach an approximate solution for intermediate times
it is useful to cast the evolution in different variables. Following ref. [77], and defining
ξ = x/z in the gain term and ξ = xz in the loss term the evolution can be rewritten as

∂

∂τ
D(x, τ) =

∫ 1

x
dξ P (x, ξ, τ)D(ξ, τ) − D(x, τ)

∫ x

0
dξ P (ξ, x, τ) , (4.18)

where P (x, ξ, τ ) = 1
ᾱ

√
E
q̂0

x
ξ2 K(x

ξ , ξE, t) and τ is defined in (4.17). This form of the evolution
equation clearly shows the cancellation of divergences between the gain and loss terms
at ξ → x.

At early times, t < λ, the emissions are governed by single interactions with the medium.
In the regime λ < t < Lc you also have to take into account that coherent emissions play a
role in the soft regime ω < ωc(t) (neglecting Bethe-Heitler emissions). However, the region
above ωc(t) will contain emissions from single hard scatterings, see eq. (4.12) (third line). In
that case the kernel will be modified to include both a soft and a hard component, divided
by the ωc(t) separation line, as follows

P (x, ξ, τ) = θc(x, ξ, τ)Pcoh(x, ξ, τ) + θh(x, ξ, τ)Phard(x, ξ, τ) , (4.19)
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where the coherent and hard emission kernels were defined in eq. (4.12). After changing
variables they become

Pcoh(x, ξ, τ) =
√

ξ

x

1
(ξ − x)3/2 for x � xc or ξ − xc � x ,

Phard(x, ξ, τ) = π

2ᾱ

ξ

x

1
(ξ − x)2 τ for xc � x � ξ − xc , (4.20)

where xc ≡ ωc(t)/E = τ2/(2ᾱ2) and we have assumed that xc � 1 in the limits. These
conditions can be encoded in a set of Heaviside theta-functions to make sure that each
kernel is used solely in its regime of validity, namely18

θc(x, ξ, τ) = Θ(xc − x) + Θ(xc + x − ξ) − Θ(xc − x)Θ(xc + x − ξ) ,

θh(x, ξ, τ) = Θ(x − xc)Θ(ξ − xc − x) . (4.21)

The now τ -dependent separation line xc(τ) distinguishes the different regimes.
The full solution can be written as

D(x, τ) = D0(x, τ) + δD(x, τ) , (4.22)

where D0(x, τ) is a solution to the coherent, soft kernel defined in eq. (4.16), and δD(x, τ)
is a correcting factor.

Inserting this into the evolution equation (4.18), we get

∂

∂τ
D(x, τ) =

∫ 1

x
dξ P (x, ξ, τ)D0(ξ, τ) − D0(x, τ)

∫ x

0
dξ P (ξ, x, τ)

+
∫ 1

x
dξ P (x, ξ, τ)δD(ξ, τ) − δD(x, τ)

∫ x

0
dξ P (ξ, x, τ) . (4.23)

Taking into account that θc + θh = 1, one can rewrite the kernel as

P (x, ξ, τ) = Pcoh(x, ξ, τ) + δP (x, ξ, τ) , (4.24)

where δP ≡ (Phard − Pcoh)θh. Inserting the new kernel into eq. (4.23), the term ∂D0/∂τ

cancels, and we are left with an iterative formula for δD,

δD(x, τ) = D1(x, τ)

+
∫ τ

0
dσ

∫ 1

x
dξ P (x, ξ, σ)δD(ξ, σ) −

∫ τ

0
dσδD(x, σ)

∫ x

0
dξ P (ξ, x, σ) . (4.25)

Here we have defined the leading term in the correction as

D1(x, τ) =
∫ τ

0
dσ

∫ 1

x
dξ δP (x, ξ, σ)D0(ξ, σ) −

∫ τ

0
dσD0(x, σ)

∫ x

0
dξ δP (ξ, x, σ) , (4.26)

18In the case where xc is not small the conditions are slightly more complicated, and the hard regime is
encoded in θh(x, ξ, τ) = Θ

(
x − ξ

2

(
1 −

√
1 − 4xc

ξ

))
Θ
(

ξ
2

(
1 +

√
1 − 4xc

ξ

)
− x

)
, and θc = 1 − θh.
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which is given entirely in terms of known functions. To capture the main modifications
with respect to the purely coherent solution D0(x, τ), it is sufficient to keep only D1(x, τ).
This is sound because D0(x, t = 0) = δ(1 − x), implying that δD(x, t = 0) = 0. Therefore,
all terms going as ∼ δD start out small. At later times, single hard emissions are rare, and
thus δD becomes less and less important.

Based on this discussion it is reasonable to assume that one can approximate the
intermediate time solution by the sum of the two leading terms D0 + D1. For this to be
true it must be checked that it reproduces the correct behavior at early and late times. The
early times expansion is

lim
τ→0

(D0(x, τ) + D1(x, τ)) �
∫ τ

0
dσ

∫ 1

x
dξ Pcoh(x, ξ, σ)δ(1 − ξ)

+
∫ τ

0
dσ

∫ 1

x
dξ [Phard(x, ξ, τ) − Pcoh(x, ξ, τ)] δ(1 − ξ)

= π

4ᾱ

τ2

x(1 − x)2 , (4.27)

where we kept the leading term and ignored virtual terms containing δ(1 − x). Therefore,
the sum D0 + D1 reproduces the hard part of the early time expansion given in eq. (4.14).
Moreover, at late times (t > Lc), the phase space for hard (ω > ωc) emissions vanishes, and
thus D1 → 0. Hence, at late times the intermediate time solution simply goes to the late
time solution D0. Consequently, we expect that the sum of the two first terms D0 + D1 to
provide a decent approximation of the true solution at all times. One can systematically
calculate corrections to this solution by iterating eq. (4.25).

The the early time solution eq. (4.13) (dashed), the soft limit of the HO approxima-
tion (4.16) (dotted), and the first correction D0 + D1 are shown in figure 9 with full lines
for different times. For short lengths (left panel), D0 + D1 closely resembles the early time
solution, as expected. For late times D0 + D1 reduces to D0, as there is not any phase
space for hard emissions left. The D0 presents the small x tail D0 ∼ √

x characteristic for
turbulence [76]. At intermediate times we see that D0 + D1 goes to D0 at low x, while
at high x there is a suppression due to the lack of coherent scatterings at early times.
Qualitatively, figure 9 resembles the full numerical solution shown in figure 10. In order to
compare the two figures, we have marked the value of xBH ≡ ωBH/E in figure 9. We have
also not included the color coding in this figure since it does not include the physics from
all the relevant regimes represented in figure 3.

5 Numerical evaluation of the medium cascade

In section 3 we presented an effective framework that describes medium-induced emissions
up to arbitrary precision. By using this framework we showed in section 4 how different
scattering processes contribute to multiple induced emissions. Based on the properties of
the medium (e.g. length, mean free path), not all induced emissions are necessary to resum
(or to consider many of them). For example, induced emissions from hard scatterings are
not as important to resum as emissions from multiple soft scatterings. We developed a
simple analytic model to include a single hard emission correction to the resummation of
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Figure 10. The energy distribution solution of the medium-induced emission evolution eq. (4.8) at
different times (different panels) and using different scattering mechanisms to calculate the emission
rate in eq. (4.9) (different line styles). The vertical dashed lines and the shaded areas separate
different scattering regions, where on the first panel t < λ and on the last panel t > Lc.

the multiple soft ones. In section 4, we made several simplifications e.g. we simplified the
emission kernel K, and neglected Bethe-Heitler emissions. It is important to understand how
the energy distribution behaves also without using these simplifications and to understand
the error introduced by employing them. That is the subject of this section.

In this section, we evaluate eq. (4.8) numerically using the kernel in our new framework.
For more details about the numerical implementation, see appendix D and the complemen-
tary code [78]. The resulting energy distribution is presented in figure 10, where the different
lines stem from using emission kernels K(z, E, t) at varying levels of approximation. The
three panels correspond to three different time stages in the evolution: t < λ, λ < t < Lc,
and t > Lc. As a reminder, there are no rare hard splittings for t > Lc, which is evident on
the rightmost panel of figure 10.

The evolution starts at t = 0, with a single gluon of energy distribution D(x, 0) = δ(1−x)
with E = 100 GeV energy. We solely use gluons during the evolution for simplicity, however
our formalism is valid for other flavors too. The kernels we use include finite-z corrections,
see appendix C.3 for more details. The vertical dashed lines in figure 10 separate the regions
where different scattering processes dominate, which are the same regions as in figure 3.
The phase space for emissions is determined by comparing z(1 − z)E with ω̄c(t), ωBH, and
ωc(t) in the relevant regions, as it is described in appendix C. The turbulent cascade
solution D0(x, t) from eq. (4.16) is also shown as a baseline, and was discussed in more
detail in section 4.3.

It is important to note that vacuum emissions are not included in the current study,
and thus many important effects (e.g. vacuum fragmentation, medium resolution, color
coherence), which are essential if one wishes to compare to measurements, will not be
discussed in this work. We refer the interested readers to refs. [29, 44, 45, 61, 74] for
further details.

Harmonic oscillator. A simple and much studied method of solving the evolution
equation eq. (4.8) is by using the harmonic oscillator (HO) approximation of the emission
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rate (see for example in refs. [20, 23, 29, 76, 77, 79–81]). The kernel is then simply given by

K(z, E, t) ≈ 2 d2IHO

dzdt

∣∣∣∣∣
E

, (5.1)

where the HO approximation was discussed in section 3.4 and in the numerics we used
eq. (C.27). In this approximation, the induced emissions originate from multiple soft elastic
scatterings with the medium, and we expect this process to dominate for t � λ and
xBH � x � xc(t) (red region in figure 3).

The energy distribution obtained by using the HO approximation is shown in figure 10
with black dotted lines. The HO spectrum exhibits the well know turbulent cascade
behavior [76, 77], resulting in a characteristic tail D(x � 1, t) ∼ t/

√
x, which can be seen

on the plot as horizontal lines at small x. This is also a feature of the simplified analytic
solution D0. The turbulent cascade involves a constant flux of energy propagating in time
to x → 0. The turbulence appears below x < xc(t), and the energy increases with time due
to the time dependent emission phase space (see also ωc(t) in figure 3).

Above x > xc(t) the HO kernel switches from K ∼ 1/z3/2 to 1/z3 and thus the energy
distribution starts going as D(x, t) ∼ 1/x2. This is especially visible in the middle panel of
figure 10.

It is interesting to note that due to the running of q̂ (see eq. (3.43)), deviations from
the pure D ∼ 1/

√
x are expected in the HO solution. A consequence of this can be seen as

a small kink on the dotted curves (most visible in the left panel at x ≈ 10−4). Below the
kink, q̂(ω) → q̂0 is used.

Improved opacity expansion. The IOE from section 3.4 makes it possible to extend
the HO description to include rare hard scatterings, covering both red and green regions in
figure 3. Here, the evolution equation is solved using the IOE kernel, which is

K(z, E, t) ≈ 2 d2IIOE

dzdt

∣∣∣∣∣
E

. (5.2)

This is valid from early to late times, for energies above the Bethe-Heitler regime x � xBH.
The energy distribution obtained using the IOE (HO+NHO is used in the numerical

implementation from eqs. (C.27)–(C.34)) is shown in figure 10 with black dashed lines.
In the x � xc(t) region the HO dominates and D(x, t) qualitatively does not change by
including hard emissions. The turbulent tail D ∼ 1/

√
x is still present. The offset between

the HO and HO+NHO results originates from the effective contribution of the NHO term
to q̂ ≈ q̂0 ln Q2

r

μ2∗
(1 + 1.016 ln−1 Q2

r

μ2∗
).

In the region x > xc(t), the distribution function changes from the purely HO result, due
to the inclusion of the NHO corrections. The splitting function here behaves as K ∼ 1/z2,
resulting in the distribution going as D(x) ∼ 1/x, which is visible in the green region.
Our analytic result from section 4.3, given by D0 + D1, includes a single hard emission in
addition to the HO cascade. Comparing the analytic results in figure 9 with the numerical
ones in figure 10 it is evident that the analytical result succeeds in capturing qualitatively
the behavior induced by using the IOE kernel.
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Several models are based mainly on the N = 1 term, see refs. [82–84], and also
refs. [85, 86]. However, these models miss the soft scatterings that are present in a large
medium with L > λ. Soft scatterings are crucial to include to achieve an accurate description
of the energy distribution for x < xc(t). We would like to also emphasize that by numerically
solving eq. (4.8), we also resum hard emissions and thus we consider the possibility of
emitting arbitrarily many of them.

Full solution. Finally, we present the energy distribution using our new picture. It is
given by solving the evolution equation (4.8) using the full kernel

K(z, E, t) = 2d2IFull

dzdt
= 2

⎧⎨
⎩

d2IROE

dzdt , if z(1 − z)E < min(ω̄c(t), ωBH) ,
d2IIOE

dzdt , otherwise .
(5.3)

This covers the full emission phase space in (z, t, E) and was derived in detail in section 3.
In practice we used Nr = 1 and HO+NHO terms, derived from eqs. (3.31), (3.34), (3.58)
and (3.61). This provides an excellent approximation to the true result, as can be seen
when comparing to the numerical evaluation of the kernel in figure 7.

The resulting energy distribution is shown as full black lines in figure 10. One can
see that the results obtained by solely using the IOE (dashed lines) agrees very well with
the full kernel for x � xBH, but they start to differ when x � xBH. It is clear that all the
difference between these two curves comes from Bethe-Heitler emissions. An increasing
tail appears at low x, which becomes more and more important for later times, due to the
logarithmic soft limit of the ROE kernel. In this region the ROE kernel is K ∼ ln(z)/z,
resulting in the energy distribution going as D ∼ ln 1

x , which is similar to the DGLAP
evolution in vacuum.

A new, interesting bump also appears in the full solution close to xBH, which warrants
an explanation. First, the energy flux that brings quanta from x = 1 to x = 0 is not
the same on the two sides of xBH. If the energy transport is more efficient from the right
(red region), that will result in a slowing of the flux when going from higher to lower
x. The bump can then be understood as a sediment of energy building up around xBH.
Secondly, the emission kernel defined in eq. (5.3) is not smooth around the transition point
min(ω̄c(t), ωBH). This discontinuity introduces additional uncertainties in the true behavior
of the energy distribution around xBH. This transition would smoothen by including more
orders of the expansion, which should be studied in the future. This uncertainty could also
be connected with the observed bump. In our numerical implementation we introduced a
smoothing function to minimize this uncertainty, but it is still present. In addition, other
effects like 2 → 2 scattering process and thermal masses are also important here [52], which
we do not presently discuss. A thorough study of this region is needed where all these
effects are included, which motivates future work.

Bethe-Heitler emissions have a soft divergence and thus an IR regulator ωmin has to be
introduced. A similar regulator was introduced in the numerical differential equation solver.
For more details, see appendix D.
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6 Conclusions and outlook

In this paper, we studied emissions induced by elastic scatterings on the quark gluon plasma.
We considered the interplay of the relevant length scales of the problem, which are the
propagation length, the mean free path between scatterings, and the formation time. From
these considerations, we derived the emergent energy scales that separate the induced
emission spectrum into regimes governed by different scattering processes. The emerging
hierarchy of scales and related processes is illustrated in figure 3.

We presented a new theoretical framework consisting of different perturbative expan-
sions, namely the opacity expansion (OE), the improved OE (IOE), and the resummed OE
(ROE), which we derived rigorously. Together these are suitable to describe the induced
emission spectrum in different regimes. We showed that at least one of the expansions is
valid in every phase space (ω, t) point, where ω is the energy of the emitted gluon and t

is the propagation time (length) in the medium.19 While these expansions are formally
simply reorganizations of the multiple scattering series, it is also important to note that
none of the expansions when truncated at any fixed order is valid everywhere. Relying on
the multiple approaches to obtain the spectrum, our composite framework can account for
an arbitrary number of medium interactions that can be soft or hard. Most importantly,
it is systematically improvable and can, in principle, describe the emission spectrum (and
rate) up to arbitrary precision, which has only been achieved numerically before [48, 49, 51].

In the current work, we have elucidated the convergence properties up to second order
in the studied resummations. Identifying the expansion structure in the different regimes
opens for the possibility of studying the accuracy of resummations in the medium. Finally,
our new description provides a quick and efficient way to evaluate the induced emission
spectrum (and rate), which is an essential ingredient of medium-induced cascades and jet
quenching study. Our implementation is available in an online repository [78].

In order to tackle multiple emissions, we also studied the in-medium energy distribu-
tion D(x, t) within our new formalism. This is an essential ingredient of jet quenching
phenomenology as it describes how the energy of a leading particle gets distributed within a
cascade. Having first identified the conditions to generate multiple emissions in the medium,
we demonstrated the separation between early, rare emissions — generated mainly by a
single momentum exchange with the medium — and a following cascade of soft splittings.
We also showed that emissions are formed independently up to suppressed terms, justifying
a posteriori the formulation of the cascade via a rate equation. We developed new analytic
tools to combine the resummation of multiple soft with rare hard emissions, and thus we
showed how different scattering processes appear on the level of the energy distribution.
Finally, using numerical evaluation based on the previously derived full splitting kernels, we
showed more rigorously the transition effects between different scattering regions. We iden-
tified the importance of the time dependent phase space separation, multiple Bethe-Heitler
emissions, and the running of q̂, to mention some.

Even though this work can immediately be applied to jet quenching phenomenology one
should also tackle other challenges, such as vacuum emissions and coherence effects, which

19For the general case valid beyond the strictly soft limit ω refers to the reduced energy of the three-body
evolution ω = z(1−z)E, where E is the initial energy of the emitter and z is the momentum sharing fraction.
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we have neglected here and left for future studies. We also acknowledge the importance
of soft emissions for which one should study thermal masses, energy changing 2 → 2
scatterings, and thermalization [52, 87] to correctly describe the very infrared regime
close to the thermal scale and below. Moreover, other non-perturbative effects such as
expanding, inhomogeneous medium are also important, in which direction our framework is
extendable [23, 28, 88, 89].
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A All order formulas for medium-induced spectrum in the soft limit

Here we present some general formulas for the different expansions, that aided us in
calculating the spectrum in section 3. In all cases the full spectrum is given as the sum
of all the terms ω dI

dω = ∑
n ω dIN=n

dω . The expansion therefore only converges if the terms
decrease sufficiently fast order by order ω dIN=n+1

dω < ω dIN=n

dω .

A.1 Opacity expansion

Combining the formulas for the opacity expansion eq. (3.6) and the spectrum eq. (3.12) one
can write the formula for the nth term of the opacity expansion as20

ω
dIN=n

dω
= (−1)n−1 4αsCR

ω

∫
pn,...,p1

Σ(p2
n)pn ·p1

p2
n

v(pn−pn−1) . . .v(p2−p1) (A.1)

×Re i

∫ L

0
dtn

∫ tn

0
dt0

∫ tn

t0

dtn−1

∫ tn−1

t0

dtn−2· · ·
∫ t2

t0

dt1 e−i
p2

n
2ω (tn−tn−1) . . .e−i

p2
1

2ω (t1−t0) ,

where v(p, s) is given in eq. (3.7) and Σ(p2) in given in eq. (3.13) in the GW model. It is
useful to go to unitless integration variables, by defining

√
L/2ωpk → pk and tk

L → tk,

ω
dIN=n

dω
= (−1)n−18πᾱ

(
L

λ

)n ω̄c

ω

∫
pn,...,p1

Σ̃(p2
n)pn ·p1

p2
n

ṽ(pn−pn−1) . . . ṽ(p2−p1)

×Re i

∫ 1

0
dtn

∫ tn

0
dt0

∫ tn

t0

dtn−1

∫ tn−1

t0

dtn−2· · ·
∫ t2

t0

dt1 e−ip2
n(tn−tn−1) . . .e−ip2

1(t1−t0) .

(A.2)

Here we have used the unitless function ṽ(p) = (2π)2δ(p) − ω̄c
ω σ̃(p), where in the GW model

σ̃(p) = 4π(
p2 + ω̄c

ω

)2 ,

Σ̃(p2) = 1
p2 + ω̄c

ω

. (A.3)

20The gluon color factors appearing in v are not trivial at nth order and thus we refer the reader to
appendix C for further discussion.
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The momentum and time integrals only depend on the unitless combination ω̄c/ω. This
means that the spectrum will take the form ω dIN=n

dω = ᾱ
(

L
λ

)n
hn( ω

ω̄c
), for some function hn.

This would naively imply convergence for L/λ < 1, but the exact for of the function hn must
also be taken into account. In section 3.2 we showed for N = 1, 2 at low energy ω � ω̄c

that hn( ω
ω̄c

) is a finite function, meaning the series converges when L/λ < 1. However,
at high energy ω � ω̄c the function takes the form hn( ω̄c

ω ) ∼ ( ω̄c
ω )nh̃n( ω̄c

ω ), where h̃n is
finite, implying convergence when L

λ
ω̄c
ω < 1. Proving this is true to all orders is deferred to

future work.
One can also derive a corresponding formula for the rate ω dIN=n

dωdL , by taking the length
derivative of eq. (A.2)

ω
dIN=n

dωdL

= (−1)n−18πᾱ
1
L

(
L

λ

)n ω̄c

ω

∫
pn,...,p1

Σ̃(p2
n)pn ·p1

p2
n

ṽ(pn−pn−1) . . . ṽ(p2−p1)

×Re i

∫ 1

0
dt0

∫ 1

t0
dtn−1

∫ tn−1

t0
dtn−2· · ·

∫ t2

t0
dt1 e−ip2

n(1−tn−1)e−ip2
n−1(tn−1−tn−2) . . .e−ip2

1(t1−t0) .

(A.4)

A.2 Resummed opacity expansion

One can also derive all order formulas for the resummed opacity expansion, by starting
with eq. (3.26) and following the same procedure,

ω
dINr=n

dω

= 4αsCR

ω

∫
pn,...,p1

Σ(p2
n)pn ·p1

p2
n

σ(pn−pn−1) . . .σ(p2−p1) (A.5)

×Re i

∫ L

0
dtn

∫ tn

0
dt0

∫ tn

t0

dtn−1

∫ tn−1

t0

dtn−2· · ·
∫ t2

t0

dt1 Δ(tn, t0)e−i
p2

n
2ω (tn−tn−1) . . .e−i

p2
1

2ω (t1−t0) .

The ROE and OE expansions are equivalent at infinite order at low opacity L/λ � 1, but at
finite order the terms are mixed up. The terms containing a delta function in the potential
v in the OE are included in the Sudakov factor Δ in the ROE. One can see this by taking
Δ → 1 and v → −σ in eq. (A.5) and eq. (A.1) respectively, in which case the expansions
become exactly the same. This is however not a good approximation at any order.

After changing to unitless variables we arrive at

ω
dINr=n

dω

= 8πᾱ

(
L

λ

)n( ω̄c

ω

)n∫
pn,...,p1

Σ̃(p2
n)pn ·p1

p2
n

σ̃(pn−pn−1) . . . σ̃(p2−p1) (A.6)

×Re i

∫ 1

0
dtn

∫ tn

0
dt0

∫ tn

t0

dtn−1

∫ tn−1

t0

dtn−2· · ·
∫ t2

t0

dt1 e− L
λ (tn−t0)e−ip2

n(tn−tn−1) . . .e−ip2
1(t1−t0) ,

where we have used that in the static medium Δ(tn, t0) = exp(− tn−t0
λ ). Again we use the

unitless functions Σ̃(p2) and σ̃(p) defined in eq. (A.3) for the GW model. In this case the
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time integrals can be done analytically

i

∫ 1

0
dtn

∫ tn

0
dt0

∫ tn

t0
dtn−1

∫ tn−1

t0
dtn−2· · ·

∫ t2

t0
dt1 e− L

λ
(tn−t0)e−ip2

n(tn−tn−1) . . . e−ip2
1(t1−t0)

= in
∫ 1

0
dtn

∫ tn

0
dt0

n∑
k=1

e−i(p2
k−i L

λ )(tn−t0)∏n
l 	=k(p2

k − p2
l ) =

(
cos nπ

2 + i sin nπ

2

) n∑
k=1

T
(
p2

k − iL
λ

)
∏n

l 	=k(p2
k − p2

l ) ,

(A.7)

where we have defined the function

T (x) =
∫ 1

0
dtn

∫ tn

0
dt0 e−ix(tn−t0) = 1 − ix − e−x

x2 . (A.8)

The reason this simplification was not possible in the OE is that the formula for the time
integrals is only valid if pk �= pl, while the OE has terms containing δ(pk − pk−1). However,
in the ROE there are no such deltas, so the formula is valid. In the end the spectrum is

ω
dINr=n

dω
= 8πᾱ

(
L

λ

)n ( ω̄c

ω

)n ∫
pn,...,p1

Σ̃(p2
n)pn · p1

p2
n

σ̃(pn − pn−1) . . . σ̃(p2 − p1)

×
n∑

k=1

cos nπ
2 Re T (p2

k − iχ) − sin nπ
2 Im T (p2

k − iχ)∏n
l 	=k(p2

k − p2
l ) . (A.9)

The remaining momentum integrals will in the end be some function of ω̄c/ω and opacity
χ = L/λ. As a reference, the real and imaginary parts of T (p2 − iχ) are

Re T (p2 − iχ) = χ(p4 + χ2) + p4 − χ2 − e−χ
(
(p4 − χ2) cos p2 + 2χp2 sin p2)

(p4 + χ2)2

−Im T (p2 − iχ) = p2(p4 + χ2) − 2χp2 − e−χ
(
(p4 − χ2) sin p2 − 2χp2 cos p2)

(p4 + χ2)2 . (A.10)

It is also possible to look at the limits of this function when the opacity χ is low or high.
In the low opacity case χ � 1 we have

ω
dINr=n

dω
� 8πᾱ

(
L

λ

)n ( ω̄c

ω

)n ∫
pn,...,p1

Σ̃(p2
n)pn · p1

p2
n

σ̃(pn − pn−1) . . . σ̃(p2 − p1)

×
n∑

k=1

cos nπ
2 (1 − cos p2

k) + sin nπ
2 (p2

k − sin p2
k)

p4
k

∏n
l 	=k(p2

k − p2
l ) . (A.11)

In this case the momentum integrals will give a function of ω̄c/ω. As mentioned in section 3.3
is it preferable to use the OE (A.2) at low opacity, as the order of opacity is mixed up in
the ROE.

In the high opacity case χ � 1 you get

ω
dINr=n

dω
� 8πᾱ

L

λ

(
ωBH

ω

)n ∫
pn,...,p1

Σ̃(p2
n,ωBH)pn ·p1

p2
n

σ̃(pn−pn−1,ωBH) . . . σ̃(p2−p1,ωBH)

×
n∑

k=1

cos nπ
2 +sin nπ

2 p2
k

(1+p4
k)∏n

l 	=k(p2
k−p2

l ) . (A.12)
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Here we see the emergence of the scale ωBH = 1
2μ2λ, which takes the place of ω̄c in the

functions Σ̃ and σ̃, as emphasized in the above formula. The momentum integrals then only
become some function of ωBH/ω. Notice that this scales as ∼ L/λ at every order, meaning
it can converge also when L/λ > 1.

In section 3.4 we calculated the high opacity limit to orders N = 1, 2. There it was
clear that for low ω � ωBH the N = 2 limit is subleading compared to the N = 1 limit,
while at high ω � ωBH the N = 2 and N = 1 limits are of the same order. This seems
to imply that the expansion converges at low ω, while it breaks down at high ω. Again,
proving this for all orders is deferred to future work.

Again the calculation for the rate ω dINr=n

dωdL is similar

ω
dINr=n

dωdL

= 8πᾱ
1
L

(
L

λ

)n ( ω̄c

ω

)n ∫
pn,...,p1

Σ̃(p2
n)pn · p1

p2
n

σ̃(pn − pn−1) . . . σ̃(p2 − p1)

×
n∑

k=1

cos nπ
2
[
χ − e−χ

(
χ cos p2

k − p2
k sin p2

k

)]
+ sin nπ

2
[
p2

k − e−χ
(
p2

k cos p2
k + χ sin p2

k

)]
(p4

k + χ2)∏n
l 	=k(p2

k − p2
l ) .

(A.13)
A.3 Improved opacity expansion

The spectrum for the improved opacity expansion can be written as the iterative equation

ω
dIIOE

dω
= −2αsCR

ω2 Re
∫ ∞

0
dt2

∫ t2

0
dt1

∫ t2

t1
ds

∫
d2z

× ∂x · ∂y[KHO(x, t2; z, s)δv(z, s)K(z, s; y, t1)]x=y=0 , (A.14)

where the zeroth order solution is the HO from eq. (3.57) has to be added. In the following
we will make use of results from refs. [53, 54]. The harmonic oscillator propagator is

KHO (x, t2; y, t1) = ω

2πiS (t2, t1) exp
(

iω

2S (t2, t1)
[
C (t1, t2) x2 + C (t2, t1) y2 − 2x · y

])
.

(A.15)
The functions S and C are given implicitly by[

d2

d2t
+ Ω2(t)

]
S (t, t0) = 0, S (t0, t0) = 0, ∂tS (t, t0)t=t0

= 1
[

d2

d2t
+ Ω2(t)

]
C (t, t0) = 0, C (t0, t0) = 1, ∂tC (t, t0)t=t0

= 0 ,

(A.16)

where the frequency Ω(t) is given by

Ω(t) = 1 − i

2

√
q̂(t)
ω

(A.17)

To continue it is useful to apply the formulas∫ ∞

s
dt2∂xKHO(x, t2; z, s)|x=0 = −iω

π

z

z2 ei ω
2 Ω(s)2 S(s,L)

C(s,L) z2

∫ s

0
dt1∂yKHO(z, s; y, t1)|y=0 = −iω

π

z

z2 e−i ω
2

C(0,s)
S(0,s) z2

. (A.18)
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Then the spectrum takes the following form

ω
dIIOE

dω
= 2ᾱ

ω
Re i

∫ L

0
dt2

∫ t2

0
dt1

∫
d2x e−i ωΩ

2 tan (Ω(L−t2))x2
δv(x) x

x2 · ∂yK(x, t2; y, t1)|y=0 ,

(A.19)

where we have used that for the brick medium q̂(t) = Θ(L − t)q̂, the functions S and C

are simply

S (t2, t1) = 1
Ω sin Ω (t2 − t1) , and C (t2, t1) = cos Ω (t2 − t1) . (A.20)

One can derive a formula for the IOE at arbitrary order, which was also explored in ref. [55].

ω
dINI=n

dω
= (−1)n−1 2ᾱ

π

∫
d2xn . . . d2x1

xn · x1
x2

nx2
1

δv(xn) . . . δv(x1)

× Re
∫ L

0
dtn

∫ tn

0
dtn−1· · ·

∫ t2

0
dt1 ei ωΩ

2 [cot (Ωt1)x2
1−tan (Ω(L−tn))x2

n]

× KHO(xn, tn; xn−1, tn−1) . . . KHO(x2, t2; x1, t1) . (A.21)

After changing to unitless variables by defining uk =
√

μ2ω/(2ω̄c)xk and sk = tk
L ,

ω
dINI=n

dω
= (−1)n−1 2ᾱ

π

(
L

λ

)n ( ω̄c

ω

)n ∫
d2un . . . d2u1

un · u1
u2

nu2
1

δṽ(un) . . . δṽ(u1)

× Re
∫ 1

0
dsn

∫ sn

0
dsn−1· · ·

∫ s2

0
ds1 ei σ

2
√

ωc
ω [cot (σ

√
ωc
ω

s1)u2
1−tan (σ

√
ωc
ω

(1−sn))u2
n]

× K̃HO(un, sn; un−1, sn−1) . . . K̃HO(u2, s2; u1, s1) . (A.22)

Here we have defined σ = 1−i√
2 and the unitless functions

δṽ(u) = 1
2u2 ln

(
ω

ω̄c

μ2

2Q2
1

u2

)
,

K̃HO(u2, s2; u1, s1) =
σ
√

ωc
ω

2πi sin
(
σ
√

ωc
ω (s2 − s1)

)

× e
iσ

√
ωc
ω

2 sin
(

σ
√

ωc
ω (s2−s1)

) [cos (σ
√

ωc
ω

(s2−s1))(u2
2+u2

1)−2u2·u1]
. (A.23)

As the integrals only depend on
√

ωc
ω and ω

ω̄c

μ2

2Q2 the IOE spectrum can be written as

ω dINI =n

dω = 2ᾱ
π

(
L
λ

)n ( ω̄c
ω

)n
fn

(√
ωc
ω , ω

ω̄c

μ2

2Q2

)
where the function fn is given by the integrals.

The soft limit ω � ωc of the IOE expansion was discussed in detail in [55], and also
in section 3.4.

In the hard limit ω � ωc, the spectrum becomes

ω
dINI=n

dω
� (−1)n−1 2ᾱ

π

(
L

λ

)n ( ω̄c

ω

)n ∫
d2un . . . d2u1

un · u1
u2

nu2
1

δṽ(un) . . . δṽ(u1)

× Re
∫ 1

0
dsn

∫ sn

0
dsn−1· · ·

∫ s2

0
ds1 ei

u2
1

2s1

× K̃0(un, sn; un−1, sn−1) . . . K̃0(u2, s2; u1, s1), (A.24)
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where the BDMPS propagator has gone to the vacuum propagator

K̃0(u2, s2; u1, s1) = 1
2πi(s2 − s1)ei

i(u2−u1)2
2(s2−s1) . (A.25)

Notice that there is no remaining dependence on the BDMPS scale ωc. In section 3.4 we
calculated the hard limit to first order, and the resulting expression (3.61) is the same as
the OE limit (3.16) for high ω. Whether this correspondence is also true at higher orders is
an interesting question that will be explored in future work.

B General formulas for the emission rate in the soft limit

In this appendix, we gather the formulas relevant for computing the emission rate in the
soft limit. The rate can be written as

ω
dI

dωdt
= 4ᾱπ

ω
Re i

∫ t

0
dt1

∫
p,p0

Σ(p2, t)p · p0
p2 K(p, t; p0, t1) , (B.1)

in momentum-space representation of the three-point function, and

ω
dI

dωdt
= 2ᾱ

ω
Re i

∫ t

0
dt1

∫
z

v(z, t) z

z2 · ∂y K(z, t; y, t1)|y=0 , (B.2)

in coordinate-space representation. Equation (B.1) can be employed directly to derive
expressions for the rate in the OE and ROE, by simply inserting the expansions (3.6)
and (3.26). We will not attempt at deriving higher-order corrections to these rates here,
since they can be also be found for a medium with constant density by taking the appropriate
derivative with respect to length on the expression for the spectrum.

For the IOE, the harmonic oscillator spectrum is directly calculable, following the
decomposition in eqs. (3.49) and (3.50). For the IOE rates, we find

ω
dIHO

dωdt
= ᾱ

2ω
Re i

∫ t

0
dt1

∫
z

q̂(t)z · ∂y KHO(z, t; y, t1)|y=0 , (B.3)

ω
dI IOE

dωdt
= 2ᾱ

ω
Re i

∫ t

0
dt1

∫
z

δv(z, t) z

z2 · ∂y K(z, t; y, t1)|y=0 , (B.4)

where the three-point correlator K(z; y) is found from iterating (3.45). As a cross-check,
for a medium with constant density we obtain

ω
dIHO

dωdt
= ᾱx Re (i − 1) tan

[1 − i

2 xt

]
= ᾱx

sinh (xt) − sin (xt)
cosh (xt) + cos (xt) , (B.5)

where x ≡ √
q̂/ω, for the harmonic oscillator term.

C Medium-induced spectrum and rate with finite-z corrections

The process we study is a parton of energy E splitting into two partons with energy zE and
(1 − z)E. In the main text, we refer to the emitted energy zE as ω. However, we stress that
this definition is only true in the soft limit. In the more general case we refer to ω as the
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reduced energy of the three-body evolution, that is ω = z(1 − z)E. This quantity is only
equal to the emitted energy when z → 0, in which case it reduces to ω � zE. This appendix
accounts for how our framework generalizes when considering all the finite-z contributions,
which means we strictly use the full definition ω = z(1 − z)E.

Reference [57] already has an implementation of the OE (N = 1) and IOE (HO+NHO)
medium-induced emission spectrum in the strictly soft limit (ω � E) for a homogeneous
brick. We improve on this by keeping finite-z terms, including the rates, and by including
the OE and ROE expansions. The resulting code is available online [78].

The starting equation for keeping finite-z corrections can be found in ref. [54],

dImed
ba

dz
= αs

ω2 Pba(z)Re
∫ ∞

0
dt2

∫ t2

0
dt1 ∂x · ∂y [Kba(x, t2; y, t1) − K0(x, t2; y, t1)]x=y=0 ,

(C.1)

where the parent parton a carrying energy E splits into partons b and c, carrying energy
zE and (1 − z)E, respectively. It is the finite-z analog of eq. (3.1). The Altarelli-Parisi
splitting functions are

Pgq(z) = CF
1 + (1 − z)2

z
, Pqq(z) = Pgq(1 − z) ,

Pgg(z) = CA
[1 + z(1 − z)]2

z(1 − z) , Pqg(z) = Nf TF

[
z2 + (1 − z)2

]
, (C.2)

which are valid for 0 < z < 1. In the soft limit z � 1, for quarks the splitting function
reduces to Pq(z) ≈ 2CF

z , while for gluons (where 1 − z � 1 also has to be included)
Pg(z) ≈ CA

z(1−z) ≈ 2CA
z , where in the last step the 1 − z contribution has been folded to z

with the additional factor of 2. The three-point correlator K(x; y) satisfies the following
Schrödinger-like equation[

i
∂

∂t
+ ∂2

x

2ω
+ ivba(x, t)

]
Kba(x, t; y, t0) = iδ(t − t0)δ(x − y) , (C.3)

where the potential vba describes the splitting induced by partons scattering with the medium,

vba(x, t) = Ccba

2Nc
v(x, t) + Cacb

2Nc
v(zx, t) + Cbac

2Nc
v((1 − z)x, t) , (C.4)

where Cijk ≡ Ci + Cj − Ck and Ci is the Casimir operator squared for particle i and v(x, t)
is defined in eq. (3.3). In the soft limit, vg(x, t) ≈ vq(x, t) ≈ Cb,c

Nc
v(x, t), where the soft

emission is always a gluon (Cb or Cc = Nc). Surprisingly, this shows that the potential is
sensitive to the emitted gluon’s and not the emitter’s color in the soft limit because v is
proportional with Nc by definition. This was observed previously in the opacity expansion
and was explained heuristically in [36]. For quarks in the z → 1 limit, the potential goes to
vq(x, t) ≈ CF

Nc
v(x, t), where the color factor compensates the Nc in v.

In momentum space, we find

vba(q, t) = Ccba

2Nc
v(q, t) + Cacb

2Nc

1
z2 v

(
q

z
, t

)
+ Cbac

2Nc

1
(1 − z)2 v

(
q

1 − z
, t

)
, (C.5)
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where v(q, t) = (2π)2δ(q)Σ(t) − σ(q, t), and Σ(t) = Σ(0, t) =
∫

q σ(q, t). In the soft limit,
vg(q, t) ≈ vq(q, t) ≈ v(q, t), which only becomes apparent once the explicit form of σ(q) is
used in v(q

z ). It is at this point worth extending the definition of the interaction potential
to also include an argument defining the screening mass, i.e.

σ(q, t, μ) ≡ 4πq̂0(t)
(q2 + μ2)2 , (C.6)

for the GW model (see eq. (3.4)), and similarly for the inverse mean free path Σ(p2, t) →
Σ(p2, t, μ), where Σ(p2, t, μ) =

∫
q σ(q, t, μ)Θ(q2 − p2). Then, 1

z2 σ(p
z , t, μ) = z2σ(p, t, zμ).

Further simplifications can be made following the discussion in section 3.1. For the
spectrum in momentum space representation, generalizing eq. (3.12) to finite-z, we arrive at

dIba

dz
= 2αs

ω
Pba(z) Re i

∫ L

0
dt2

∫ t2

0
dt1

∫
p,p0

Σba(p2, t2)p · p0
p2 Kba(p, t2; p0, t1) , (C.7)

where

Σba(q2, t) = Ccba

2Nc
Σ(q2, t, μ)+ Cacb

2Nc
z2Σ(q2, t, zμ)+ Cbac

2Nc
(1−z)2Σ(q2, t, (1−z)μ) , (C.8)

and the three-point function in momentum-space representation is found through the
implicit equation

Kba(p, t; p0, t0) = (2π)2δ(p − p0)K0(p; t − t0)

−
∫ t

t0
ds

∫
q

K0(p; t − s)vba(q, s)Kba(p − q, s; p0, t0) . (C.9)

Then, analogously to the derivations in appendix B, the rate at finite-z reads

dIba

dzdt
= 2αs

ω
Pba(z)Re i

∫ t

0
dt1

∫
p,p0

Σba(p2, t)p · p0
p2 Kba(p, t; p0, t1) . (C.10)

Similar manipulations in coordinate-space representation will be done directly in the IOE
section below.

To simplify the expressions below we also introduce the shorthand that accounts for
the recurring combinations of color and z factors, see e.g. in eq. (C.8). Hence, we have

3∑
p=1

Cpz2
pf(z2

px) = Ccba

2Nc
f(x) + Cacb

2Nc
z2f(z2x) + Cbac

2Nc
(1 − z)2f((1 − z)2x) , (C.11)

that runs over the three cyclic permutations of {a, b, c}. Here Cp =
[

Ccba
2Nc

, Cacb
2Nc

, Cbac
2Nc

]
and

zp = [1, z, (1 − z)], with p running from 1 to 3. In the soft limit this expression simply
becomes

∑
p Cpz2

pf(z2
px) → f(x).

C.1 Opacity expansion

From eq. (C.7), and following section 3.2, we find the N = 1 contribution of the OE at
finite-z to be,

dIN=1
ba

dz
= 2αs

π

Pba(z)
z(1 − z)

L

λ

μ2L

2E

∑
p

Cpz2
p IN=1(z2

py) , (C.12)
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where λ = μ2/q̂0 is the mean free path, y = ω̄c
ω = μ2L

2z(1−z)E , and the relevant integral is21

IN=1(y) =
∫ ∞

0

du

u2
u − sin u

u + y
=

⎧⎨
⎩

π
4 , for y � 1 ,
1
y (γE + ln y) , for y � 1 .

(C.13)

We have also extracted the asymptotic behaviors for future convenience. The soft limit
of a hard emission (ω̄c � zE � E) reduces to dI

dz = ᾱπ
2

L
λ

ω̄c
z2E

, which is in agreement with
eq. (3.16), with ω → zE. One could also use Pg(z) ≈ CA

z(1−z) and keep z(1 − z), and then
an extra 1/2 factor will appear to not double count both contributions z, 1 − z � 1. The
rate can be found directly from eq. (C.10) and is given by

dIN=1
ba

dzdt
= 2αs

π

Pba(z)
z(1 − z)

1
λ

μ2t

2E

∑
p

Cpz2
p ĨN=1(z2

py) , (C.14)

where

ĨN=1(y) =
∫ ∞

0

du

u

1 − cos u

u + y
=

⎧⎨
⎩

π
2 , for y � 1 ,
1
y (1 + γE + ln y) , for y � 1 .

(C.15)

C.2 Resummed opacity expansion

The finite-z potential in eq. (C.4) introduces an additional complication for the ROE.
In section 3.3, we separated and resummed the zero momentum exchange mode, while
expanding in real scatterings. In eq. (C.4), however, this separation is more complicated
because additional zero modes appear in the real terms in the z, 1 − z → 0 limits. Therefore,
we make sure to explicitly subtract the zero mode terms in real scatterings

vba(p, t) = (2π)2 ∑
p

Cp

[
(1 − f(zp))δ(p)Σ(t) −

∫
q
(δ(p − zpq) − f(zp)δ(p))σ(q)

]
. (C.16)

We introduced f(z) arbitrary function, that goes to 1 in the soft limit z → 0 (and 1−z → 0).
In this paper, we make the choice f(z) = 1 − z2. The resummed opacity expansion involves
the Sudakov factor of the no elastic scattering probability,

Δba(t2, t1) = exp
[
−
∫ t2

t1
ds Σ̂(s, z)

]
, (C.17)

here Σ̂(s, z) = [Ccba
2Nc

+ z2 Cacb
2Nc

+ (1 − z)2 Cbac
2Nc

]Σ(s). In the soft limit Σ̂ → Σ, and thus the
Sudakov goes to eq. (3.25). The expansion reads

Kba(p, t; p0, t0) = (2π)2δ(p − p0)Δba(t2, t1)K0(p; t2 − t1)

−
∫ t2

t1
ds

∫
q

Δba(t2, s)K0(p; t2 − s)σ̂ba(q, s)Kba(p − q, s; p0, t0) , (C.18)

where σ̂ba(q, s) = ∑
p Cp

1
z2

p
σ( q

zp
, t) −∑

p Cpf(zp)Σ(s).

21The integrals are available with trigonometric integral functions∫ ∞

0

du

u2
u − sin u

u + y
= 1

y2

[
y(γE − 1 + ln y) + π sin2 y

2 − Ci(y) sin y + Si(y) cos y
]

,∫ ∞

0

du

u

1 − cos u

u + y
= 1

2y
[2(γE + ln(y)) − 2 cos(y)Ci(y) + sin(y)(π − 2Si(y))] ,

where Euler Gamma γE , Ci(z) = − ∫∞
z

dt/t cos t, and Si(z) =
∫ t

0 dt/t sin t.
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The first order (Nr = 1) can be read directly off from eq. (C.7), and reads

dINr=1
ba

dz
= 2αs

ω
Pba(z) Re i

∫ L

0
dt2

∫ t2

0
dt1

∫
p

Σba(p2, t2)K0(p; t2 − t1)Δba(t2, t1) ,

= 2αs

π

Pba(z)
z(1 − z)

L

λ

μ2L

2E

∑
p

Cpz2
pINr=1(z2

py) , (C.19)

where y = μ2L
2ω and, defining χ̂ ≡ Σ̂L,

INr=1(y) = −
∫ ∞

0

du

u + y
ImT (u − iχ̂) , (C.20)

and T (u) = (1 − iu − e−iu)/u2. The imaginary part can also be written explicitly, as

− Im T (u − iχ̂) = u[u2 + χ̂(χ̂ − 2)] +
[
2uχ̂ cos u − (u2 − χ̂2) sin u

]
e−χ̂

[u2 + χ̂2]2 . (C.21)

In the big medium limit (χ̂ � 1), our formula reproduces eq. (3.34), dI
dz = ᾱ

z
L
λ ln μ2λ

2zE .
The rate follows directly from eq. (C.10), and reads

dINr=1
ba

dzdt
= 2αs

π

Pba(z)
z(1 − z)

1
λ

μ2t

2E

∑
p

Cpz2
p ĨNr=1(z2

py) , (C.22)

with the relevant integral being,22

ĨNr=1(y) = −
∫ ∞

0

du

u + y
ImT̃ (u − iχ̂) , (C.23)

with T̃ (y) = (−i + ie−iu)/u. The imaginary part of this function is

− Im T̃ (u − iχ̂) = u − e−χ̂(u cos u + χ̂ sin u)
u2 + χ̂2 . (C.24)

C.3 Improved opacity expansion

The IOE is similar to that we used in section 3.4, one takes a perturbative expansion in
μ|x| � 1 of eq. (3.3) in eq. (C.4). By including the color and z-dependence of the splitting,

22The integral is analytical using Ei(x) = − ∫∞
−x

dte−t/t,

∫ ∞

0
du

u(eχ − cos u) − χ sin u

(u + y)(u2 + χ2) = e−χ

2(χ2 + y2)

[
πxeχ − πχ(cos y − sin y) − 2y(cos(y)Ci(y) + sin(y)Si(y))

+2χ(cos(y)Si(y) − sin(y)Ci(y)) + 2yeχ

(
ln y

χ
+ Ei(−x)

)]
.
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an effective jet quenching parameter can be defined as23

q̂ba(z, t) ≡ q̂0(t)
[

Ccba

2CA
ln Q2

μ2∗
+ Cacb

2CA
z2 ln Q2

z2μ2∗
+ Cbac

2CA
(1 − z)2 ln Q2

(1 − z)2μ2∗

]
,

= q̂0(t)
∑

p

Cpz2
p ln Q2

z2
pμ2∗

. (C.25)

The harmonic oscillator potential is then vHO
ba (x, t) = 1

4 q̂ba(z, t)x2, which in the soft limit
recovers the expression below eq. (3.42), q̂ba → q̂.

Harmonic oscillator. The harmonic oscillator spectrum is given by

dIHO
ba

dz
= αs

π
Pba(z) ln

[
1
2

(
cos

(√
2ωc

ω

)
+ cosh

(√
2ωc

ω

))]
, (C.26)

where ωc = 1
2 q̂ba(z)L2. In the soft limit, z dI

dz ≈ 2ᾱ
√

q̂/(2z3), that reproduces the formula
from eq. (3.58). The time-differential rate that appears in the evolution equation is

dI
(HO)
ba

dzdL
= αs

π
Pba(z) 1

L

√
2ωc

ω

sinh
(√

2ωc
ω

)
− sin

(√
2ωc
ω

)
cos

(√
2ωc
ω

)
+ cosh

(√
2ωc
ω

) . (C.27)

Next-to harmonic oscillator. The NHO spectrum is given by

dINHO
ba

dz
= αs

ω2 Pba(z)Re
∫ ∞

0
dt2

∫ t2

0
dt1

∫
z

∫ L

0
ds ∂x∂yKHO

ba (x, t2; z, s)δvba(z, s)

× KHO
ba (z, s; y, t1)|x=y=0 (C.28)

= αs

π2 Pba(z)Re
∫ L

0
ds

∫
u

1
u2 δvba(u, s)e−k2(s)u2

, (C.29)

where we have defined

k2(s) = i
ωΩ
2 [cot(Ωs) − tan(Ω(L − s))] , (C.30)

δvba(x, t) = q̂0
4 x2Cba(z) ln 1

x2Q2 , (C.31)

and we have used Ω =
√

q̂ba/(2iω), Cba(z) = Ccba
2CA

+ Cacb
2CA

z2 + Cbac
2CA

(1 − z)2 and some sub-
leading terms have already been included in q̂ba. The integral over the transverse position
can be done

∫
u

1
u2 δv(u, s)e−k2(s)u2 = π

4 q̂0
1

−k2(s)

(
γE + ln −k2(s)

Q2

)
. (C.32)

23Our definition includes sub-leading ∼ z2 ln z2 terms to the HO term and thus these terms get resummed.
This should make the IOE expansion converge faster. The leading form without these terms would look like

q̂ba(z, t) = q̂0(t)
[

Ccba

2CA
+ Cacb

2CA
z2 + Cbac

2CA
(1 − z)2

]
ln Q2

μ2∗
.
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Collecting all terms, we get

dINHO
ba

dz
= αs

2π
Pba(z)q̂0Cba(z)Re

∫ L

0

ds

−k2(s)

(
γE + ln −k2(s)

Q2

)
(C.33)

≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αs
π Pba(z)Cba(z) q̂0

q̂ba

√
ωc
2ω

{√
ω

2ωc

(
π2

12 tanh
(√

ωc
2ω

)
− 2 ln 2

)
+1 + tanh

(√
ωc
2ω

) [
γE − 1 + π

4 + ln
(√

ωq̂ba√
2Q2

)]}
, for ω � ωc ,

αs
2 Pba(z)Cba(z) q̂0L2

2ω

[
1 + 2

3π
q̂baL2

2ω

(
2γE − 7

12 + ln ω
2LQ2

)]
, for ω � ωc .

The rate can be given explicitly in the soft and hard limit

dINHO
ba

dzdL
= ∂

∂L

dINHO
ba

dz
(C.34)

≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αs
π Pba(z)Cba(z) q̂0

q̂ba

1
2L

√
ωc
2ω sech2

(√
ωc
2ω

){
1 + π2

12 + cosh
(√

2ωc
ω

)
+
(√

2ωc
ω + sinh

(√
2ωc
ω

)) (
γE − 1 + π

4 + ln
(√

ωq̂ba√
2Q2

))}
, for ω � ωc ,

αs
2 Pba(z)Cba(z) q̂0L

ω

[
1 + 2

3π
q̂baL2

2ω

(
4γE − 5

3 + 2 ln
(

ω
2LQ2

))]
, for ω � ωc .

The approximated formulas capture the exact formulas up to a few percent deviances and
are therefore suitable for numeric implementation, as they do not contain any integrals.

Matching scale. We already introduced the ω dependence of Q2(ω), that relied on
the soft limit (ω � ωc) of the spectrum (where the finite-z correction disappears), and
thus we use the same definition as in eq. (3.44). In the numerical implementation, we set
q̂ = max(q̂0, q̂(z)) and Q2 = max(

√
eμ2∗, Q2(z)). This will only become relevant if L < λ

and ω̄c < ω < ωBH which is a small corner of the phase space, where instead of the IOE one
should use the OE. We showed numerically that using the IOE with the frozen matching
scale or using the OE for L < λ does not matter, however, the latter would need the
introduction of a new smoothing between OE and IOE at L = λ that complicates the
implementation (see also appendix D).

To summarize this section, the full emission phase space is covered by using a similar
formula that was presented in section 3.5

dI

dz
=

⎧⎨
⎩

dIROE

dz , ω < ωtr ,
dIIOE

dz , ω > ωtr ,
(C.35)

where ωtr = min(ωBH, ω̄c) and ω = z(1 − z)E. The condition on ω comes from the limits
calculated in this section. Importantly, the conditions are the same as the ones derived
in section 3.

We would like emphasize the z, 1 − z symmetry presented in the ω condition. The
gluon spectrum is trivially symmetric in z, 1 − z as the emitted particles’ kinematics is
equivalent. The quark spectrum, on the other hand, is strongly asymmetric in z. One can
still use the symmetric condition on ω as we saw in the limiting formulas in this section.
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D Numerical implementation of the evolution equation

The evolution equation is given in eq. (4.8) and can be rewritten by introducing the variable
ξ = x

z (ξ = xz) in the gain (loss) term

∂tD(x, t) =
∫ 1

x
dξ f(x, ξ, t)D(ξ, t) − D(x, t)

∫ 1

0
dξ f(ξ, x, t) , (D.1)

f(x, ξ, t) = x

ξ2
d2I

dzdt

∣∣∣∣∣
E 
→ξE

(
z → x

ξ

)
. (D.2)

We implemented eq. (C.14) (as N = 1), eq. (C.22) (as Nr = 1), and eqs. (C.27) and (C.34)
(HO+NHO) in f as

d2Imed

dzdt

∣∣∣∣∣
E

= (1 − S) d2INr=1

dzdt

∣∣∣∣∣
E

+ S
d2IIOE

dzdt

∣∣∣∣∣
E

, (D.3)

where ωtr = min(ωBH, ω̄c) and ω = z(1−z)E. The upper formula is not smooth for any finite
order of truncation in the transition between the IOE or ROE, and therefore in some cases,
we used the switching function S = cos

[
π
2 (1 − α)

]
, with α = 2ω−ωtr

3ωrt
if 1

2ωtr < ω < 2ωtr to
smoothing the transition. The uncertainty introduced by this procedure is smaller than
the next higher-order contribution. One can study the matching uncertainty around the
BH region by varying ωtr with a factor of 2. To study the matching condition of the IOE,
Q can also be varied by a factor of 2 in eq. (3.44) as it was done in ref. [57]. In figure 11
we show the deviation from the numeric solution including both of these variations. Other
than the band, figure 11 is equivalent to figure 7, we only use the soft limit (z � 1). There
is a further uncertainty coming from going to one higher order (Nr = 1 → 2 and NHO →
NNHO), that we leave for future studies. We expect this uncertainty, however, to extend
the error band in figure 11 up to the numeric solution.

The integrals can then be divided into

Gain = Gξ→x + Greg + G> =
[∫ x+ε

x
+
∫ 1−δ

x+ε
+
∫ 1

1−δ

]
dξ f(x, ξ, t)D(ξ, t) , (D.4)

Loss = L< + Lreg + Lξ→x = −
[∫ δ

0
+
∫ x−ε

δ
+
∫ x

x−ε

]
dξ f(ξ, x, t)D(x, t) . (D.5)

All divergences are present in the ξ → x terms, which cancel exactly and thus the trapezoid
rule is used

Gξ→x + Lξ→x ≈ ε

2 [f(x, x + ε)D(x + ε, τ) − f(x − ε, x)D(x, τ)] , (D.6)

which contributes to the regular part of the integrals. In our implementation ε = 10−6, and
thus we have x > ε. Similarly to vacuum physics, the ε cut was necessary to introduce because
the soft divergence in the Bethe-Heitler region has to be regulated. The Greg, L<, Lreg are
simple integrals and can be done numerically on a grid. So can G>, however, we neglect
this latter contribution by using the fact limx→1 D → 0 (the kernel is soft divergent and
thus it moves quanta towards x < 1).
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Figure 11. Same as figure 7, on a semilog scale.

E HTL potential

In this appendix, we investigate what happens if employ the HTL potential in the multiple-
scattering series. The potential now reads

σ(q) = Ncn(t)d2σel
d2q

= 4π q̂0
q2(q2 + m2

D) , (E.1)

where mD is the Debye screening mass in a thermal medium with temperature T and
q̂0 = 4παsm2

DT [65]. In this case, we find that

Σ(p2) = q̂0
m2

D

ln
(

p2 + m2
D

p2

)
, (E.2)

where we have a logarithmic divergence as p2 → 0. This implies that the mean free path
has to be regulated by an IR cut-off so that λ ∼ Σ−1(p2

min).
In this case, the OE remains unmodified because the divergence at p2

min → 0 cancels
order by order between the real and virtual contributions. The ROE, however, has to be
treated with care when truncated at a finite order since we have to introduce an explicit IR
cut-off in order to define the elastic Sudakov factor. Hence, the modified Sudakov reads

Δ(t, t0) = e−Σreg(t−t0) , (E.3)

in a static medium, where Σreg ≡ Σ(p2
min) with p2

min and unknown IR regulator. Clearly, an
all-order resummation of the ROE series would remove the spurious IR dependence.

The role of the medium potential in the IOE was clearly elucidated in [55], where the
information about the scattering potential is fully contained in the definition of μ2∗. We
refer the reader to this paper for an exhaustive discussion.

In order to clarify what modifications arise in the OE and ROE, we compute the
respective first-order terms of the expansions, i.e. N = 1 and Nr = 1, explicitly here. In the
OE, we find

ω
dIN=1

dω
= 2ᾱ

q̂0L

m2
D

∫ ∞

0
du ln

(
u + y

u

)
[−Im T (u)] , (E.4)
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where now we defined y = ω̄c/ω with ω̄c = m2
DL/2. The prefactor contains q̂0/m2

D, which
is similar to the inverse mean free path (in fact, in the GW model it would be exactly equal
to λ−1), with a missing logarithmic factor. Using (3.30), we can immediately extract the
limiting behaviors, which yield

ω
dIN=1

dω
= 2ᾱ

q̂0L

m2
D

⎧⎨
⎩ln( ω̄c

ω )
[−1 + γE + ln

(
ω̄c
ω

)]
for ω � ω̄c

π
4

ω̄c
ω for ω � ω̄c .

(E.5)

As expected, in this limit there is no sensitivity to the mean free path per se. However,
compared to the N = 1 result in (3.16), there is an additional logarithmic enhancement
∼ ln ω̄c/ω in the soft limit. Comparing to eq. (E.2), we see that this logarithm can be
absorbed into the prefactor ∼ q̂0/m2

D to recreate an effective, regularized mean free path in
the HTL theory, i.e.

λ−1
reg

∣∣∣
L�λ

= q̂0
m2

D

ln
(

ω̄c

ω

)
. (E.6)

This regularization follows also from the discussion in refs. [36, 46]. With this modification,
the soft limit for low medium opacity is equivalent in the GW and HTL theory.

In the hard limit, ω � ω̄c, there is no additional logarithmic enhancement in the HTL
compared to the GW theory, see (3.16), and the mean free path is simply λ−1

0 = q̂0/m2
D.

Apart from this subtlety, the expressions are again equivalent.
Let us now turn to the ROE resummation which is valid in dilute (small) media or in

the soft limit for dense or large media. At first order Nr = 1, we find now

ω
dINr=1

dω
= 2ᾱ

q̂0L

m2
D

∫ ∞

0
du ln

(
u + y

u

)
[−Im T (u − iχreg)] , (E.7)

where the opacity is χreg = ΣregL and Σreg =
∫

q σ(q)Θ(q2 − q2
min) is the regularized inverse

mean free path.24 As discussed at length in section 3.3, at small opacities the ROE is
equivalent order by order to the OE. This was discussed in the paragraphs above. For
large opacities, χreg � 1, we use (3.32) to solve the integral analytically. As discussed
below eq. (3.32), the expressions permits a transmutation of the relevant scale from ω̄c

to ωBH, where now ωBH = m2
D/(2Σreg). It is then straightforward to extract the following

limiting behavior,

ω
dINr=1

dω
= 2ᾱ

q̂0L

m2
D

⎧⎪⎨
⎪⎩

1
24

[
5π2 + 12 ln2 (ωBH

ω

)]
for ω � ωBH

π
2

ωBH
ω for ω � ωBH .

(E.8)

The soft and hard limits have again subtly different characteristics. In the former case,
we again observe a double-logarithmic enhancement, similar to the soft limit in dilute
media (E.5) and stronger than the single-logarithmic behavior in the GW model, see
eq. (3.34). We could again absorb one of these factors in an effective mean free path,
by defining

λ−1
reg

∣∣∣
L�λ

= q̂0
m2

D

ln
(

ωBH

ω

)
, (E.9)

24For consistency, compared to the “regularized expansion in eq. (3.26), one should also include an IR
regulator ∼ q2

min in the lower limit of the integral. We will neglect this subtlety for now.

– 52 –



J
H
E
P
0
2
(
2
0
2
3
)
1
5
6

which demonstrates once more the transmutation of relevant scales. Note that the spurious
IR regulator q2

min appears now on the level of ∼ ln ln(q2
min). In the hard limit, the result is

again equivalent to the GW model, see (3.34), by identifying the “bare” mean free path
and rescaling the Bethe-Heitler energy ωBH. We recall that in this limit, the ROE opacity
breaks down and should be replaced by the IOE resummation.
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