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Abstract

Models used for machine learning are used for a multitude of tasks that require some type of

reasoning. Language models have been very capable of capturing patterns and regularities

found in natural language, but their ability to perform logical reasoning has come under

scrutiny. In contrast, systems for automated reasoning are well-versed in logic-based reason-

ing but require their input to be in logical rules to do so. The issue is that the conception of

such systems, and the production of adequate rules are time-consuming processes that few

have the skill set to perform. Thus, we investigate the Transformer architecture’s ability to

translate natural language sentences into logical rules. We perform experiments of neural

machine translation on the DKET dataset from the literature consisting of definitory sen-

tences, and we create a dataset of if-then statements from the Atomic knowledge bank by

using an algorithm we have created that we also perform experiments on.
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Chapter 1

Introduction

Artificial intelligence is becoming a larger and larger part of our everyday lives, from major

leaps such as self-driving cars to smaller everyday conveniences like optimizing our music

playlists. In particular, the subfield of natural language processing (NLP) has come a long

way in helping us analyze and generate text that solves a lot of different tasks. Sentiment

analysis, text-to-speech, and machine translation are becoming widespread, and the state-

of-the-art language models (LM) have become so powerful that they are being adopted as

mainstream tools for the general public.

For the LMs to be capable of producing adequate results for the tasks they are designated

to perform, they need to be able to reason in some form. They need to grasp the nature

of language, what words mean, and which words are important for the current context. To

achieve this, the LMs are analyzing the statistical features of the text they train on, to look

for patterns and regularities in an unsupervised fashion. Afterward, they may be fine-tuned

to be more fitting to the specific task the model is intended to perform, such as question-

answering or text completion. By exposing them to this labeled data, they can learn to

generalize from provided examples and generate appropriate responses.

LMs have become incredibly good at capturing patterns, but studies have observed an

incapability to perform logic-based reasoning [8, 28]. If the quality of the data is subpar,

biased, or contains factually incorrect statements, the model will not be aware of these faults

and may treat them as truths to generalize from. The community has also observed results

that indicate that models do not perform logical reasoning in situations where it is the only
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trait of the data [9], but instead that the model learns from patterns in the input, rather

than a generalized reasoning function to work on other distributions or comprehend certain

aspects of compositionally which would display logical reasoning.

On the other hand, the automated reasoning community has developed several tools to

perform logic-based reasoning over the years. Logical rules play a fundamental role as they

provide a formal framework for representing knowledge and reasoning about it. Automated

reasoning systems use logical rules and algorithms to manipulate and derive new statements

from the given axioms. They follow a deductive process where logical rules are applied

to a knowledge base to infer new information or verify the validity of existing statements.

However, a concern of the reasoners is that the production of the logical rules to be used for

the systems is a tedious and time-exhaustive task. It requires expertise in the field, which

there are few who have, and to manually design all the rules necessary to capture knowledge

found in natural language.

Related work There are other works that try to semi-automate the ability to create

rules from natural language. A notable example is LExO [26], which aimed to transform

definitions in natural language into OWL-DL axioms using a syntactic parser. In terms

of using neural networks in an end-to-end fashion, the experiments using recurrent neural

networks to translate from definitory sentences into the DL language ALCQ [19] are the

biggest influence on our work. The original model created was very limited, but the syntactic

approach was later improved by introducing a new model capable of translating definitions

with unknown words in them and working outside of a controlled language domain [20].

In our work, we seek to test the ability of the Transformer LM architecture to perform

neural machine translation from natural language to logical rules. We focus on a subset of

natural language, in the form of if-then statements found in the knowledge base known as

Atomic [23]. We have created a dataset to train the LM using a self-made algorithm that

finds atoms in the event and inference and we transform them into the bodies and heads of

rules that capture the meaning of the natural language if-then expression. We then train

the Transformer model to learn to translate from the if-then expression into these logical

rules and observe how well it is able to do so. In this fashion, we exploit the best of both

worlds, where machine translation from the AI community is used to create the rules, and

reasoners developed by the automated reasoning community can use the rules to perform
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logic-based reasoning. We present our results on datasets from previous work [20] and the

Atomic dataset [23] in both small and large quantities where we measure the accuracy of

translating the token of the rules and the rules as a whole.

In this thesis, we will first look at what reasoning is, both in terms of inductive and

deductive reasoning and the language models that employ it to perform NLP tasks. Then

we will look at the previous work of creating logical rules and a model that is capable of

performing syntactic translation from definitions into the created rules [20]. Then we will

talk about the Atomic [23] knowledge bank, and the challenge of creating a dataset consisting

of logical rules from it, resulting in our very own algorithm to perform this for us. Finally,

we will look at the experiments performed, and conclude how the results and work done can

shape future applications of this task.
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Chapter 2

Background

In this chapter, we will look at the background material for both inductive and deductive

reasoning and the language models that are relevant to this work. We will look at how

reasoning relates to logic, and how to represent it syntactically. Then we will talk about

Recurrent Neural Networks (RNN) and Transformers, and how the mechanics they use are

used for Natural Language Processing tasks. In addition, we will take a deeper look at the

attention mechanic, and how the one used to improve RNNs’ abilities to perform sequence-

to-sequence tasks differs from the one that is the fundamental part of the Transformer.

2.1 Inductive reasoning

Acquiring knowledge by inductive reasoning is one of the most intuitive ways we learn to

understand things. Collecting larger and larger amounts of empirical data strengthens our

ability to draw conclusions that are increasingly probable according to our data. Many rela-

tions between entities can be learned as such, without actually being required to understand

the properties of the entities that are involved in the resulting outcome of mixing them. You

can intuitively learn the correlation between running on ice and falling on your face, without

having to understand the physics of friction. The concept of a slippery surface such as ice

can be attributed to many things, but there is no need to understand a generalized principle

that can be applied to understand the nature of all slippery surfaces to be able to interact
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and understand any singular example. This human ability to draw inferences from repeated

empirical experiences has been integral to our ability to survive and adapt to all societies we

have lived in throughout our history as a species.

In many instances, applying the practice of inductive reasoning to the phenomena around

us has caused us to believe in many unwritten truths. Things that we assume to be right

because we have received no reason to not believe them to be so. “It is obvious that if we

are asked why we believe the sun will rise tomorrow, we shall naturally answer, ‘Because it

always has risen every day.’ We have a firm belief that it will rise in the future because it

has risen in the past.” [22]

However, the issue at hand that makes inductive reasoning a figurative slippery slope

is the fact that there is a possibility that our sensory impressions may betray us. In other

words, the things we observe lead us to draw untruthful conclusions. Inductive reasoning

relies on probabilities rather than certainties making it prone to counterexamples, which are

instances that contradict the generalization or prediction made. Thus, observations that

may be biased to our established interpretations can still not provide a causal explanation

for the observed patterns. A good example is the idea of the geocentric model, which was

the predominant explanation for the nature of the universe in ancient civilizations. To the

naked eye, looking up at the sky from the Earth’s surface, it would look like the sun is

revolving from horizon to horizon, while our planet stands still. Without the combination

of a plethora of other observable natural phenomena that provided counterexamples to the

inductive hypothesis, we would not have developed the heliocentric worldview, which could

further explain the nature of the other celestial bodies and their relationship to one another.

The idea of drawing inferences and acquiring knowledge through induction has been a

part of the philosophical questions about knowledge as a whole for millennia [5]. The fact

that beliefs can be both justified and true but still be logically incorrect, showcases that there

is a lot of uncertainty involved despite the incredible amount of perceived knowledge we can

acquire through inductive reasoning. Still, inductive reasoning is an incredibly powerful tool

for us humans as well as systems that try to capture how our world works if we combine it

with a tiny bit of critical thinking.
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2.2 Logic and deductive reasoning

Logic is the study of reasoning and argumentation with a long, rich history spanning thou-

sands of years, all the way back to the days of Ancient Greece where the titans of philosophy

established the foundations of logic. In Aristotle’s classic Prior Analytics [2] the concept

of a syllogism was defined for the first time. The syllogism arises when two statements as-

serted to be true validly imply a conclusion. A classic example is: “All humans are mortal.

Socrates is a human. Therefore, Socrates is mortal.” As long as the first two statements

are true, then the conclusion can not be anything but true. There is a transitive property

Socrates→ Human and Human→Mortal, thus Socrates→Mortal.

The syllogism ended up being a core part of what would later be known as historical

deductive reasoning, the ability to draw inferences as logical consequences from its premises.

The fact that a valid deduction requires an impossibility for the conclusion to be false

if the premises are true provides us with the possibility to formalize and structure logic

using different inference rules. Logic exists in many different forms and syntaxes that try

to describe and reason about the relationships between statements and propositions in a

rigorous fashion by entailing restrictions to their expressivity. For example, syllogism is a

form of logic that offers the possibility to draw valid conclusions from axioms, formalized

using categorical propositions. However, it is very bare-bones in terms of what you can

express due to the nature of only drawing conclusions from two premises that are required

to be assumed to be true.

Propositional logic is a branch of formal logic that studies the logical relationships be-

tween propositions, which are statements that can either be true or false. In propositional

logic, the emphasis is on the logical connectives that are found in natural language such as

“and”, “or”, and “not”, that are used to combine propositions to form compound proposi-

tions. The primary goal of propositional logic is to determine whether a given compound

proposition is true or false based on the truth values of its components and inference rules.

To demonstrate, the most simple inference rule is modus ponens which states that if you

have two statements P and Q, and two predicates: that P is true and P implies Q, then Q

has to be true as well. The same argument expressed with natural language could be: “If

today is Monday, then Garfield wants lasagna. Today is Monday. Therefore, Garfield wants

lasagna.”. The important distinction between syllogisms and propositional logic is that the
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former involves reasoning about the properties of concepts based on their relationships to

each other, while the latter focuses on the logical relationships between propositions and the

rules for combining them.

Propositional logic is also the foundation for another form of logic known as first-order

logic. First-order logic, also known as predicate logic, is a more expressive formal system than

propositional logic that allows for the representation and reasoning of complex properties

and relationships of objects or entities. Statements are represented using symbols to denote

concepts and predicates representing properties or relationships between them. First-order

logic has also ultimately superseded syllogisms due to its larger scope and expressive power.

We consider a countably infinite set of variables V , in which we use letters x, y, z to

express, and expressions such as x for a tuple ⟨x1, ..., xn⟩ of the corresponding variable

elements. We also have an infinite possible amount of predicates Π. A predicate π ∈ Π

is combined with variables x ∈ X to describe an atom α, an expression in the form of

π(v1, ..., vn) that has an arity n that determines the number of variables in the atom: |x| =

ar(π).

A first-order rule is a formula defined in the following form:

∀x, z.(φ[x, z] → ∃y.ψ[x,y])

In this work, the rule consists of a body φ and a head ψ, which are conjunctions of atoms

where both φ and ψ contain at least one atom each. The variables in x, z that appear in φ

are universally quantified over the entire rule, despite only some of them, x, can also appear

in ψ. The variables y that only appear in ψ are existentially quantified in the head. The

conjunction of the atoms is represented by ∧ and the implication of the body to the head is

represented by →.

We can for example take a look at how the syllogism about Socrates would be represented

as first-order logic. We are once again expressing concepts and individuals, but instead of

considering boolean statements we can instead quantify, and generalize into a rule. The

property of being a human can be represented as Human(x) where the predicate is applied

to any x, and the same can be done for the concept of being mortal as Mortal(x). As being

mortal is an implication drawn from being a human, we then say that Human(x) appears
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in φ, while Mortal(x) appears in ψ. Finally, it applies to “all humans” and as such any

member, x has to be universally quantified with ∀x, resulting in the following generalized

rule:

∀x(Human(x) →Mortal(x))

Now we have defined a rule that states that “All humans are mortal”. Socrates is a

constant and is stated to be a human, which means that he is a member of Human(x) and

x can be substituted by him, resulting in:

Human(Socrates) →Mortal(Socrates)

By applying the rule of modus ponens, which allows you to derive a conclusion from an

implication and its antecedent, you can infer the conclusion that Socrates is mortal, repre-

sented as Mortal(Socrates). As such, we have not only been able to represent the syllogism

in first-order logic but in addition, defined a rule that can be generalized to not only Socrates

but all other humans as well.

First-order logic is incredibly powerful and can be tailored and structured to capture the

representation of knowledge in many different domains. The description logic (DL) commu-

nity for example studies various fragments of first-order logic and applies it to knowledge

representation [1]. There also exist large knowledge banks that capture concepts and their

relationships [24, 23] using first-order logic as well.

2.3 Language models

In this section, we will look at the RNN and the Transformer language model. We describe

their application, underlying structure, and limitations. In addition, we go further in-depth

into the attention mechanic and how they exploit it in their respective architectures.
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2.3.1 Recurrent Neural Networks

For a long time, RNNs were the de-facto standard for processing sequential data. The

language model calculates an output for every token/string/tensor in the input sequence

and uses the output as a factor to calculate the next token’s output. The RNN can use an

internal state of a cell as a working memory to be able to draw information from tokens

hundreds of timesteps earlier in the input sequence. The nature of this controlled state that

has a feedback loop can vary, and some of the most popular ones are gated recurrent units

(GRU) and long short-term memory (LSTM) networks.

One critical aspect of the RNN architecture is that input is handled sequentially, which

in itself works very well for language. An example is that the sentiment of an adjective

in a sentence is flipped on its head if the previous word such as “not” negates it. Thus,

it performs well in many tasks that require context from earlier in the sequence to predict

what the output should be. This does not mean that the RNN is incapable of drawing

information from both tokens appearing earlier in the sequence as well as later tokens at

the same time. There exist models using bidirectional RNNs that go through a sentence

in both directions and combine the results for a more comprehensive representation. Some

tasks, such as target-oriented opinion words extraction have used this approach [6] to achieve

greater results than previous strategies.

However, there is a fundamental restriction to this, and that is the fact that all compar-

isons are linear, in the sense that to get the information for any given word in the sentence

we need to process the entire sentence as a whole. RNNs are designed around the Markov

property [15], where each state is assumed to be dependent only on the previous state, i.e.

that the previous state is supposed to hold all the relevant information about all previous

states. This means that we cannot do a direct comparison between two words in different

parts of the sequence without including information about between states, as it is assumed

to be relevant despite not always being in some cases.

This property can result in a struggle to retain useful information from early tokens in

the sequence, resulting in what is known as the vanishing gradient problem [12, ch. 9.5]. To

improve on this issue a mechanic known as attention was introduced to address it. Instead

of only processing the entire sequence, the relevance of each element is also calculated at

every timestep, which allows the network to pay more attention to important parts of the
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input sequence, and less attention to irrelevant parts. In the context of NLP, attention

has been particularly effective for machine translation. By allowing the network to focus

on relevant parts of the input sequence, attention-based models can produce more accurate

translations, even for long input sequences. In addition, attention can be used to visualize

the parts of the input sequence that are most important for a given prediction, providing

greater transparency and interpretability. In the next subsection, we will describe attention

in more detail.

2.3.2 Attention in RNNs and Self-attention

Attention was introduced as a mechanism in NLP to improve the performance of sequence-

to-sequence models, which were commonly used for tasks such as machine translation, text

summarization, and speech recognition. This application was named Bahdanau attention,

after its inventor Dzmitry Bahdanau who proposed it in a paper with Kyunghyun Cho and

Yoshua Bengio in 2014 [3].

The basic idea behind Bahdanau attention is to allow the model to selectively focus

on different parts of the input sequence when it is tasked to generate each output. The

mechanic is a solution for the fact that the design of the RNN essentially causes the final

encoded hidden state to have to hold all the available information about the input, essentially

acting as a bottleneck. To solve this, we collect every encoded hidden state and collect them

in a context vector, which captures a better representation of every step of the sequence.

Then the next step is to weigh the elements of the context vector to figure out which parts

of the sequence are the most relevant for the current output.

This is done by calculating an attention score, for each encoder state compared to the

previous decoder state. It can be achieved in various ways, but the simplest, for example,

would be to calculate the dot-product, called dot-product attention, where the similarity

between the states is considered relevant. Then we normalize with a softmax to create a

distribution of the weights, which will tell us proportionally how relevant each element of

the sequence is to the current output token. The attention scores are recalculated for each

new decoder state, to find the relevancy of the input for each output token.

The Bahdanau attention improves the performance of RNNs dramatically, but is a

bandaid to a more fundamental problem of the architecture, being the sequentiality of the
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input that relies on the Markov property [15]. Every hidden state inherently holds informa-

tion from the previous states, and thus does not only represent the current token. This is

something another type of attention addresses called self-attention, which does not rely on

scoring sequential states but rather compare all elements of a sequence with all elements of

another sequence simultaneously.

Self-attention can be described as a fuzzy dictionary matching. We have two vectors

consisting of Keys and their corresponding V alues, and we wish to compare a Query vector

to see how well it matches with all the Keys, but unlike a regular dictionary, we are not

looking for one-to-one matches but rather looking for which members of Keys fit the best.

When we multiply the Query with the Keys, higher values from both vectors will be more

prominent while lower values will be less pronounced. We consider this our attention weights,

which determines what is considered relevant or not. Multiplying these attention weights

with the V alues vector tells us how much of each of the values from V alues we are interested

in.

Figure 2.1: The Transformer - model architecture[25].
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The Transformer model architecture as shown in Figure 2.1 uses three different self-

attention blocks, all of which work a little differently from each other but are all designed

around this Query, Key, V alues vector setup. The encoder block is a Global Self-Attention

Layer, where the input sequence is assigned to all three vectors, and is simply compared to

itself. This essentially increases the difference between high and low values in the sequence

to create a better focus on important tokens and is the part that has ended up superseding

the recurrent layer found in RNNs.

The decoder block contains the last two attention modules. The first one is a Causal

Self-Attention Layer which is responsible for creating a representation of the output similar

to how the encoder’s attention layer handles the input. However, the reason why we want

this layer to be casual (where the output is only dependent on previous sequence elements)

is that we do not want the model to know the future parts of the sequence when guessing the

next token to generate. Thus, we mask all the tokens after the current timestep as infinitely

low values to avoid the look-ahead.

The last attention module is the one combining the previous two representations that

have been created by the other attention layers. This layer can be referred to as a Cross Self-

Attention Layer as it uses the output representation as the Query vector which is compared

to the input representation which serves as both the Key and V alues vectors. Thus we get

a comparison between the tokens in the input and the output to help us figure out what

token makes sense to generate next.

2.3.3 Transformers

Even though the Transformer model used for the experiments in our work is from the Py-

Torch [7] library for Python, we have also created our own model for didactic purposes. The

reasoning is that it is important to be able to verify and understand the methodology of the

model we use to experiment, and by creating our own we can know what happens in detail

in terms of operations. When testing it, we observed that its accuracy was a few percent

worse than PyTorch’s implementation, which is the reason why we decided to use the latter

for the results section. Our implementation and the PyTorch model are a part of our source

code found in the project’s repository1.

1https://github.com/KrisAesoey/AtomicTranslation
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The Transformer [25] is a language model designed to take full advantage of the in-

novation and improvement that the attention mechanic introduced to the RNNs for NLP,

while simultaneously managing to mitigate the drawbacks when using recurrency. Instead of

processing the input data sequentially, like RNNs, transformers use the self-attention mech-

anism to directly process all inputs simultaneously. This allows the model to capture global

dependencies between input tokens, rather than just local dependencies that are captured

by RNNs. This is done in an encoder-decoder fashion, where the encoder creates a repre-

sentation for the input, the decoder creates a representation for the output and finally, they

are both combined.

Transformers also lack the inherent ability to infer sequentially, and thus need some way

to understand positional relations for the input. This can be solved in different ways by

using positional encodings that are either fixed using a function or a separate embedding

layer, that is combined with the embedding of the input. As such, we can inject order into

the embedding for the sequence and the Transformer can learn it. Still, a large problem is

that transformers are still heavily dependent on their data to learn and draw inferences. A

recent state-of-the-art model ChatGPT [17] from the GPT-3.5 series has garnered a lot of

attention in the media due to its seemingly infinite amount of knowledge on any given topic.

It is capable of explaining concepts, writing code, and having conversations with the user

due to its massive amount of training data.

Despite this, there are a lot of limitations to the model as stated by the authors: “Chat-

GPT sometimes writes plausible-sounding but incorrect or nonsensical answers.” [17]. Lan-

guage models, like any machine learning model, are prone to perform logical errors because

they are based on statistical patterns [8] and associations in the data they are trained on.

These models are not able to understand the meaning of the text in the same way that

humans do, and they may make mistakes when trying to infer meaning or generate text.

Another reason is that the quality of the data can vary, which can contain errors, incon-

sistencies, and biases. These errors and biases can be inadvertently learned by the model,

leading to logical errors in its output. Ultimately, studies have shown that indicate that not

even state-of-the-art LMs are capable of performing logical reasoning [28], even though the

architecture they are based upon, the Transformer, has been shown to exhibit the capabilities

of simulating any reasoning algorithm imaginable [21].
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Chapter 3

Language to rule translation

In this chapter, we will look at an existing work that performed a natural language to

description logic experiment as a neural machine translation task using a Recurrent Neural

Network (RNN) approach. We will specifically take a look at the challenges they faced in

terms of creating data for the task, and why they made the choices selected for the final

product. Then we will look at our data of choice for the experiments, the Atomic knowledge

base (KB), and how we decided to create logical formulas for the natural language if-then

statements to perform machine translation experiments on.

3.1 DKET - Ontology Learning in The Deep

There exists previous work [19] known as the Deep Knowledge Extraction from Text (DKET)

project that intended to test the capabilities of training an RNN model to perform neural

machine translation from natural language into description logic (DL). The motivation for

such a project is part of a larger ongoing field of researching the possibility of semi-automating

the generation of logical rules from natural text. This is because the automated reasoning

community has created tools that can perform this quite well, but they are time-consuming

to design and produce rules for. Thus, there is a need for large-scale amounts of formulas

that can be used in such contexts, which is quite limited right now. So, having a language

model that can analyze natural language sentences and capture their elements into logical

components would be a great tool for this task.
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They designed an RNN model that encodes the natural language sentence and then

chooses between two actions to perform when decoding it, either to copy one of the words

found in the original sentence or to output a logical symbol from a shorthand vocabulary

of the desired output language, which was ALCQ in their case. The model does not care

about the semantics of the words but instead looks at each word’s position in the sentence

to create a syntactic understanding of where the content words that define the meaning are

located. This approach comes with both some advantages and drawbacks. Due to the fact

that the model only treats the words in the sentence as indexes, it allows the model to work

well with unknown words as well. On the other hand, the model cannot create formulas that

contain words other than the ones found in the sentence, mixed with the logical symbols it

has available.

To train such a model they need a dataset of natural language where each sentence has

a description logic equivalent that the RNN can learn the relation between. A challenge

was the lack of existing appropriate data for this type of task. This led to the need to

create new data specific to this task. Since the model was purely focused on the synthetic

structure of sentences there was also no need to create data that actually required any

semantic reasoning. As long as the sentence structure makes sense the model should be able

to capture the relevant words to form the correct description logic ontologies.

3.2 The DKET Dataset

There were some characteristics of the data that were necessary for the model they designed

to work in its intended way. The DL ontology that is equivalent in meaning to the natural

language sentence has to only contain words from the original sentence, due to the model’s

capabilities of only either copying words or outputting logical symbols. The result of this was

that they restricted themselves to work on a subset of natural language, specifically definitory

language; a set of sentences used by humans to characterize a set of entities. This was also

motivated by the fact that treating ontology learning as a process from natural language is

a massive task, and tackling the entire domain at hand is too large of an undertaking all at

once.

The linguistic requirements for sentences to be considered definitory are that they consist

of a definiendum (the concept being defined), a genus proximum (the class or family that the
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definiendum is being defined as a part of) and a potential differentia specifica that specifies

a unique characteristic for the defined concept that is not shared with the rest of its family.

Example:

A human being is an animal that has the capacity to reason.

As seen in the example above the definiendum is “human being”, the genus proximum being

“animal” and the differentia specifica of “capacity to reason”. In this fashion, the input

language for their machine translation has been limited from being every possible kind of

natural language sentence to only containing those that explicitly define a concept.

A very important distinction about this limitation is that despite it reducing the number

of eligible sentences used for the experiments, it does not in fact result in a controlled natural

language (CNL). A CNL is a subset of natural language that is created by restricting the

grammar and potential vocabulary to make it easier to understand both by human readers

and language models. This is generally achieved by using a combination of rules for the

writer, such as ”Keep sentences as short as possible.”, ”Do not use different words for the

same concept.” or ”Use the active voice.”. [16]

Again, the lack of existing datasets for this task and the restrictions described above

meant that the authors had to create synthetic data to test the model. The solution they

then came up with for creating a large amount of definitory sentences with corresponding

correct DL ontologies was to design a hand-crafted context-free grammar. Using a total of

158 production rules, they were able to generate so-called sentence templates that could be

a total of 16.5 million different strings with anonymized content words. [20] In other words,

a massive syntactic variation of sentences where only the definiendum, genus proximum, and

any differentia specifica needed to be filled in from a vocabulary.

With this grammar, they were capable of creating as many necessary examples as they

required to create the DKET datasets, by filling in the sentence templates with a catalog

of 2841 nouns, 1629 adjectives, and 897 verbs [20]. With this, they had all they needed to

test the RNN model’s ability to translate between natural language definitory sentences to

DL ontologies. The only caveat is that the sentences created do not bear any semantics that

can be considered logically sound. The stochastic choice of content words causes definitions

of concepts to be defined by information that does not have any real-world appliance. This

is very clear from just a few examples:
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Inf. dim. Question Category
xIntent What does PersonX intend to do? Mental-State
xReact How would PersonX typically react after this event? Mental-State
xNeed Does PersonX need to do anything before this event? Event
xWant What does PersonX likely want to do next after this event? Event
xEffect What effect would this event typically have on PersonX? Event
xAttr What characteristic would you attribute to PersonX? Persona

oReact How would others typically react after this event? Mental-State
oWant What would others typically want after this event? Event
oEffect What effect will this event typically have on others? Event

Table 3.1: The inferential dimensions of Atomic and their corresponding categories

Example:

Kernel summary of trunk forgive also principal of string or of fever.

All civilian of shrimp tune invent more than textbook or parsimonious lung mayor.

However, this is not an issue for the usefulness of the model as it only learns to translate

syntactically, and works well with unknown words as well. Thus, training on these meaning-

less sentences will allow the model to translate other logical definitions later that follow the

same syntactic structures.

3.3 The Atomic Dataset

Atomic [23] is a massive atlas consisting of 877k descriptions of inferential knowledge. The

KB focuses on the everyday commonsense understanding of rules, organized as typed if-

then relations. The data in Atomic was collected using a crowdsourcing framework, where

responders are asked to write answers to specific events. In other words, if a certain event

happened, then a question is asked to infer something about that event. This could be

what would necessarily precede the event to make it possible, what the event says about

the person performing the event, or what could follow as a result of the event. All of these

aspects relating to the event, which can be asked questions about, are known in the KB as

inferential dimensions, listed in Table 3.1.
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Example:

PersonX browses PersonY’s collection, xAttr, curious

In the example above we see an event, an inferential dimension xAttr which represents

one of the questions from Table 3.1, and an inference. The event of “PersonX browses

PersonY’s collection” serves as a situation from which we can ask “if this happened, then

what can we assume?”. What we want to assume is represented by the inferential dimension

and “then” we get a resulting inference that fits the question. As such, we get a complete

if-then expression.

There are multiple dimensions where the different if-then relations are split. The first

is the matter of who the subject of the inference is. In most cases, we are interested in

PersonX, who is always the subject of any given event in the dataset, but in some situations,

we would like to know how others are affected by the event as well. To distinguish which

one we are looking at in any given case, we use the prefix of either x for PersonX or o for

Others. Who this “other” is can either be explicitly mentioned in the form of a PersonY or

be an implied participant. For example, an event such as “PersonX calls for help”, implies

that there is someone who will answer the call, which is very contrary to most previous work

of this type of if-then reasoning [23]. Nonetheless, in this way, it is easy to know who the

inference is talking about at a simple glance.

The second way of splitting up the inferential dimensions is by which type of content is be-

ing predicted. The authors defined three different categories that each inferential dimension

is exclusively part of: mental state, event, or persona.

Mental State The mental state category consists of relations connected to the mental pre-

and post-conditions of an event. Here we look at likely intents as well as possible reactions

of both the subject and others. An example event would be “PersonX pays PersonY a

compliment” with an inference in the xReact dimension being “PersonX will feel good”.

Event In the event category, we note events that are likely to precede and follow the given

events. This includes pre-conditional events that can be inferred as necessary to be able to

perform the given event, as well as both voluntary and involuntary post-conditions for both

the subject as well as other (potentially implied) participants. An example event could be

“PersonX kills PersonY’s father” and an inference in the xEffect dimension could be “Goes

to prison”.
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Persona The final category is persona which consists of inferences on how we can describe

or perceive the subject in relation to a given event. In other words, we are trying to charac-

terize the subject based on its actions in the isolated event. If an event was “PersonX makes

PersonY’s coffee” then a natural inference in this category could be “PersonX is helpful”.

Why specifically the word persona is used for this category is not explained, but can be in-

ferred to be of the Jungian theory [11] that the persona is a mask or appearance one presents

to the world. We cannot know the subject’s true nature based on the isolated instance, but

can instead infer how they appear as a result of it.

In addition to being asked to answer questions about short events describing an isolated

situation, there are also a lot of incomplete events described in the datasets. On a syntactic

level, they are practically identical to the complete events, except that a single word has

been replaced with a blank placeholder.

Example:

PersonX plays at school

A very important aspect of the knowledge base is the nature of how the inferences were

collected. Using a crowdsourcing framework, workers were asked to answer questions such

as the ones shown in Table 3.1 about events provided by the authors. The answers given

using a small textbox were then connected as an if-then statement through the dimension of

the question. Thus, the syntactic nature of the inferences has a huge variance depending on

how every single responder would individually choose to answer the question.

There has also been made further work to improve and expand upon the Atomic KB

focusing on improving the number of relations available to increase coverage of everyday

commonsense situations. Recent research on the topic [10] features a new dataset known as

Atomic2020 where they kept all the relations from the original Atomic as a subset, and also

introduced two whole new categories.

The relations we have used that could be split into mental-state, event, and persona

were collectively categorized as Social-Interaciton relations. The first of the new ones was

Physical-Entity describing inferential knowledge about common entities and objects, such as

capabilities, desires, or spatial properties. This type of inference was captured by relation
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types such as ObjectUse, CapableOf, or AtLocation. The other new category was Event-

Centered, which describes common events that are related to one another. It has some

overlap with relations such as xEffect from the original Social-Interaction subset, but the

events here are generally describing conditions that are outside human control. A relation

such as Causes that exists in this category would take an event such as “bad weather” and

infer postconditions such as “power outages” which is not an event caused by either PersonX

or any other person in general. Other examples of relations found in the category are isBefore

and HinderedBy.

A noteworthy aspect of the new relations introduced is the lack of representation some

of them have. The earlier mentioned Causes relation has less than 400 instances, which is a

small portion compared to the total of 1.33M inferences. This was not an issue in the original

Atomic, where each relation had a great representation, as the difference between the most

common (xAttr with 148k) was only twice the least common (oReact with 67k examples).

In the Atomic2020 KB this number skyrockets as the most common (ObjectUse with 165k) is

almost 500x more than the least common (xReason with 334).

Overall, the introduction of these new relations does not in any way make the work

performed in this thesis obsolete. The original set of relations now referred to as the Social-

Interaction subset is still the same, and has not been replaced with new ones in the new

dataset. As such, the work done to use neural machine translation to learn logical formulas

from them is still applicable, and the new KB only offers more possibilities to expand on the

idea in the future.

3.4 Creating logical formulas for Atomic

Naturally, this leads us to how we can create logical formulas that fit the syntax and potential

semantics found in the Atomic KB, to have a similar natural language to logic pairings such

as seen in the DKET datasets. The first idea on how to do this would be to simply mimic

the approach used to create the DKET datasets. For this, we would need to create our own

hand-crafted grammar that generates if-then relations of similar syntactic structures found

in the Atomic KB.
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This would be an incredibly time-consuming task, and frankly impossible in terms of

capturing the inferences found in Atomic due to their crowdsourced nature causing them to

not follow any consistent syntactic structure. A solution to solve this would be to select the

most common event and inference structures that we find in Atomic and ignore the rare and

unique syntaxes. This would work very well for the Persona category, where we find the

most predictability in terms of inferences for the xAttr dimension.

Example:

PersonX paints PersonX’s portrait, xAttr, creative

PersonX publishes PersonY’s work, xAttr, proud

In the examples above we see the most common event structures. What makes these

examples easy to create templates for is the fact that the xAttr dimension asks for an

attribute of PersonX to be inferred. This is most often simply stated as a singular adjective,

which means that we could capture most of these if-then relations with a singular template:

Example:

PersonX VB NNP’s NN, xAttr, JJ

Here we have anonymized the verb, individual, and noun as well as the inferred adjective

to describe PersonX. In addition to this, we could also create more variations for this event

template with other inference syntaxes where we see modals or “to” included. Creating a

simple algorithm that replaces these part-of-speech tags with a fitting word from a catalog

would allow us to quickly create a massive amount of examples for any created template.

Of course, the issue is that the general if-then relation is not as straightforward as the ones

found in the Persona category. In the Mental-State and Event categories we see similar types

of event, but with a much more unpredictable variation of inferences in terms of syntax.

Example:

xEffect: PersonX sails PersonX’s boat → it capsizes

xNeed: PersonX studies as much → sign up for class

xWant: PersonX eats oatmeal → to put the dish in the sink
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As we can see from just a few examples above, the inferences are very different for these

other types of dimensions. This is strictly a feature of the Atomic KB, due to the collection

of inferences being crowdsourced. The authors want the responses to capture the freeform

nature of language, but this also makes it harder to create logical structures from it. This

approach of creating templates that resemble the Atomic if-then relations comes with a ton

of necessary decisions on what inference syntaxes to use, which to omit, and how to balance

out the distribution of them to make it appear as much as Atomic as possible.

No matter what choices are made, we compromise the Atomic KB in some way and end

up creating a pastiche instead of using the actual dataset. The end result might look like

Atomic, but it would not be it. In addition to this, we are also losing out on the fact that

Atomic contains actual typed commonsense if-then relations that a model could potentially

learn semantic understanding from. This was one of the key factors that the authors of

DKET suggested as a future possibility for improved translations, as a purely syntactic

model would lack the understanding of the words to perform substitutions from the original

sentence [20].

Their example was the idea of two definitory sentences being expressed in almost the

exact way, that conveys the same meaning:

Example:

A bee produces honey → Bee ⊑ ∃produce.(honey)

A bee makes honey → Bee ⊑ ∃make.(honey)

Both examples are correct, but one could argue that the “produce” is more concrete for

this specific case, and therefore more desirable for a logical formula than the generic “make”.

If a model is capable of semantic understanding, it could potentially learn that bees are

insects, and that honey is an artisan product, and could then be trained to understand the

relation between bees and honey similarly to how for example cows and milk are related.

Then, the resulting formula for “A bee makes honey” could replace make with produce,

which could not be possible using a purely synthetic approach.

Thus, if we wish to be able to utilize a model’s ability to learn semantically from the

data in Atomic, utilize the full range of syntactic structures found in Atomic, as well as not

have to create the logical formulas by hand then there is only a single solution. Conceive

an algorithm that analyzes the natural language if-then relations of Atomic and creates

equivalent formulas in first-order logic to construct our dataset.
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3.5 Creating logical rules with Atomic

If it was possible to create an algorithm that could perfectly look at any natural language

sentence and create a perfect first-order logic representation of it, then we would not need

the work in this thesis. Our goal is not to create a perfect one, but one that is good enough

to allow us to properly test our model’s capability to translate Atomic if-then relations into

logical rules.

The strategy we opt for is to deconstruct the natural language sentences into the natural

parts that occur in any given English sentence, its subject, verb part, and object part. We

exploit that Atomic events consist of an independent clause and that compound or complex

sentences only occur in some inferences. This, combined with the fact that every event starts

with the subject “PersonX” creates simple patterns that we can model into first-order logic.

3.5.1 Removal of PersonZ

The Atomic KB concerns itself with the individual PersonX, often how it would be affected

by events but also sometimes in relation to others. In most cases the other is the individual

“PersonY”, and sometimes it is simply implied. Though, in a few cases a “PersonZ” is also

included, when PersonX is related to more than one other individual for the event. However,

they are exceptionally rare and introduce weird situations that are not easy to model.

Example:

PersonX takes PersonY in PersonZ arms.

PersonX puts PersonY end to PersonZ.

PersonX invites PersonZ’s friend PersonY.

As seen in the examples above, it is not always very clear what the intention is when

PersonZ is involved. It also creates an even stronger uncertainty in terms of which individual

the inference references when we ask about how the event relates to others. In most cases, we

already need to create an assumption that when PersonY is involved that they are considered

the “other”, but with an additional individual this becomes even more dubious. Thus, we

have decided to remove all events where PersonZ appear, which were a total of less than

1000 total.
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3.5.2 Natural Language Toolkit part-of-speech tagging

The major feature of the sentences that we use to create logical formulas is the use of part-of-

speech (POS) tagging to find atoms in the natural language. To perform this POS task, we

use an existing Python library Natural Language Toolkit, colloquially known as NLTK [4]

that has an existing function nltk.pos_tag(tokens) that can do it for us. We simply feed

it a natural language sentence as a list of all the words as strings, and it returns a list with

tuples consisting of the word and its corresponding POS tag. The choice of NLTK to perform

this task was due to familiarity gained from previous academic instruction.

This is somewhat effective but at the same is a massive constraint as it means that we

are also prone to face all the challenges that the POS tool has to deal with. A very common

issue seems to be the tool’s ability to distinguish between the word classes of VBZ which

indicates a verb and NNS which indicates plural nouns. Specifically, it sometimes mistakes

homonyms where a verb conjugated in the third person singular is the same as the plural of

a noun with similar roots. An example from the Atomic dataset:

Example:

if-then expression

PersonX paints PersonX’s portrait, xWant, to hang the painting

POS-tagged

PersonX/NNP paints/NNS PersonX’s/NNP portrait/NN, xWant, to/TO hang/BV

the/DT painting/NN

Here we see that the verb of the sentence “paints” has mistakingly been identified as

a noun. This could be a difficulty that arises when working with Atomic data due to the

fact that individuals that are non-existent in the English language have been introduced.

PersonX and PersonY show up in all or many of the samples and are not actual English

words, which causes the POS tagger to work with unknown words to grasp the meaning of

the sentence. However, we can observe that the POS tagger has accurately captured the

individual in the class of NNP which is the identifier for a proper noun, which PersonX is.

Despite this, it is also fair to proclaim that the sentence is not completely natural, as most

people don’t refer to their proper name when stating possession such as “PersonX’s work”

would rather be stated as “their work” when the gender is not specified. Nonetheless, it
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is not grammatically incorrect, and by following the natural sentence structure of subject-

verb-object that English follows the verb should still have been inferred. The result of these

issues is that using POS tagging as a strategy for identifying FOL atoms and conjuncts

comes with caveats related to the strength of the tools available. An improvement in the

field of POS tagging could therefore also improve on such strategies. On the other hand,

what it explicitly means for the work done in this thesis is that we cannot reliably use the

identification of verbs as means of finding specific atoms in the sentences.

The events described in Atomic always start with the subject PersonX followed by the

verb part of the sentence. There are a varying amount of supporting words that can be

a part of the verb part, such as to, modals, or adverbs, but lastly, there is always a verb

included hence the namesake. Looking for the verb to indicate the conclusion of this part of

the sentence is then not feasible if the POS tagger does not reliably tag it correctly. So, in

our algorithm, we need a slightly more convoluted way of capturing it. In addition to this,

we perform a slight postprocessing altercation to the POS tagging, by changing the tag of

the individuals PerxonX and PersonY from NNP to IND for “individual”. This is done so that

we can easily track which specific characters are involved in the sentence, and change the

appropriate arity of some atoms as a result of it.

3.5.3 Gramatically correct inputs in Atomics

One of the fundamental features of the Atomic KB is the crowd-sourced nature of the

inferences in the typed if-then relations. This allows the responder to express themselves

however they want, and thus more accurately reflects the natural language of responses than

simply restricting the user to only use certain words or sentence lengths. Inherently, this is

not an issue, but there is an overall issue with what seems to be a lack of postprocessing

performed on the inferences collected. In the original work [23] there is no indication of such

a process, nor can it be observed from working with the data as we find certain elements

expressed in many ways.

A difficulty arises if you wish to capture, or analyze every instance of the individuals

involved in the sentences. In the events provided by the framework, we find that they are

always referred to as PersonX and PersonY with these exact spellings. This is far from the

case when we look at the inferences, where the respondees have found a multitude of ways

to refer to them.
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Example:

PersonX builds PersonX’s houses. → X’s family has a new home to live in.

PersonX replaces PersonY’s tire. → to pay person x.

PersonX provides PersonY description. → to help him.

PersonX worships the ground PersonY walks on. → gets nervous from peronsx’s

actions.

Observing the few examples above we can immediately see that the issue is encountered

in many different ways. In the first case, we notice that the “Person” part of “PersonX” has

been omitted by the responder, which can be considered quite natural as we humans still

infer quite easily which individual we are referring to as the distinctive part is still mentioned.

We can see another example of the same issue handled differently in the second inference,

where instead the “Person” and “X” parts have been separated by a space. Again, quite a

natural way of expressing anonymous individuals seen in other literature and it still stays

unambiguous to who they refer to. In both of these cases, the problem boils down to pattern

matching, as we can still capture them as instances of “PersonX” by looking for instances

where “X” is isolated and where it follows after the word “person” in the inferences. They

merely introduce the necessity to perform more exhaustive searches through more patterns

to look for.

The other two examples on the other hand create different, less easily solvable issues. In

the third example, we can see that the gender of “PersonY” has been assumed and is just

referred to as “him”. This introduces the problem of us having to infer which individual

these terms are assigned to in each instance individually. In this example, it is quite clear,

but there is no guarantee that we can correctly identify who a pronoun is describing in all

inferences. Especially, in the types where we ask how it relates to others in a given event such

as in oEffect and oReact seen in Table 3.1. Atomic refers sometimes to implicit individuals

involved in an event[23], which means that sometimes we also need to make assumptions

about if anyone referred to ambiguously in the inference is one of the named individuals of the

event or a potential third party. In addition, we wish to automate the process of creating the

formula for each if-then relation, and would therefore somehow find some consistent way of

handling them. Thus, we decided to consider who the pronouns describe to be determined as

a result of the appearance of PersonX and PersonY in the event and what type of inferential

dimension we are dealing with.
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The last example is the most obvious evidence of lack of postprocessing, and therefore

also the most frustrating. In this case, we observe that PersonX has actually been misspelled

by the responder. This is not something that is exclusive to the individuals either, but a

phenomenon that appears throughout the Atomic KB where we can find both spelling errors

as well a lack of spacing that combines two words that should be separate. This could have

a dramatic impact on learning semantic understanding, where the model learns to memorize

certain if-then relations where a misspelled word appears once instead of generalizing the

words in inference with other inferences where the word has been spelled correctly.

To solve this issue the only solution would be to either have a spell-checking algorithm

that goes through all the relations and find any misspelled words, or to manually go through

each one. In both cases, there is uncertainty if it would solve the issue entirely depending on

how sophisticated the correcter is, in some cases, words can transform into a different word

of the same POS class if a letter is missing or not such as “winds” and “wins”. The one who

corrects the inferences would then also need to infer the contexts of the words and clearly

understand the underlying meaning of the incorrect inference. We do include some measures

for this, where we check for spellings that are super close to person such as “perons” and

“pernos” that have an edit distance of one from a correctly spelled individual and correct

them.

This would not actually solve all the issues, as there are even some examples where the

events contain some type of error, that does not look like grammatical errors at all.

Example:

PersonX hats dogs, xAttr, hate

PersonX hats dogs, xAttr, dislike

PersonX hats dogs, xAttr, unhappy

PersonX hats dogs, xAttr, avoids dogs

The event given “PersonX hats dogs” is a grammatically correct sentence, despite being an

unconventional way of expressing the idea of applying headgear on dogs. However, when

looking at the inferences from this in the xAttr dimension where the responder is asked to

infer an attribute about PersonX from the event we see some inconsistency. The inference

lacks any concrete connection with the event, as all of them express a disdain PersonX has

for dogs instead of relating to the concept of hatting them. It makes perfect sense though if
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you infer that the event should be “PersonX hates dogs”. Therefore we can assume some

kind of spelling error has happened between the event given in the crowdsourcing framework

and what ended up being collected in the KB. Thus, no spelling checker could potentially

find this inconsistency. There is also no guarantee that this was not intentional, or that it is

a rare case where all the responders misread the prompt they answered.

No matter what measurements we would take to correct this, we would run into the issue

of ruining the integrity of the dataset in the process. The data is as is, and if the responders

who drew the inferences are drawing them mistakenly or in a nonsensical fashion, it is still

true to the human nature of interpreting what is natural for the if-then relation. If we

perform any changes to “correct” them beyond what we can concretely guarantee would not

be altering the intentions of the responder, then we could instead ultimately undermine this

concept. Due to this, and the frame of time of the thesis restricting further work into these

concepts, we have decided to leave any spelling mistakes and dubious inferences as is. We

believe that the creators should be responsible for the quality of the data they provide, and

it is simply in our best interest to use what we have as best as possible. This does of course

impact the logical formulas, where one can in some instances clearly observe their lesser

quality, due to the algorithm not being designed to handle these issues. Nonetheless, it still

creates atoms that are apt and that the language model can learn to translate.

3.5.4 The algorithm

The algorithm works on each if-then statement individually. Firstly, it splits it into three

parts, the event, the inferential dimension, and the inference. The atoms are done for the

body first, as they are completely independent, while the information in the head relies on

both the event and the inferential dimension. The event-to-body transformation is performed

by Algorithm 1, the inference-to-head transformation is done by Algorithm 2 and they are

both called upon by Algorithm 4 to construct the logical rule.

In the event, we try to capture three separate types of atoms, the individuals, the verb

expression, and the object expression (if it exists). To do this we first identify all the words

that have the IND tag in the event, which represents the individuals, and remove them from

the event. Afterward, we try to separate the verb expression and the potential object. The

sentences that describe the events are always in the format of PersonX doing an action,
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either to someone or something, or just an act in itself. So, to separate them we simply

have to look for when the verb part ends, and everything following will then be an object

expression. Due to the issue with the POS-tagger sometime identifying the verb as a noun,

we have to make sure we capture at least a single word as a part of the verb expression

before we start looking for the words that express a potential object. To find this split, we

look for adjectives and nouns, which mark a potential object atom in the sentence. Once the

entire sentence has been traversed, we combine the atoms with the appropriate variables, to

complete the logic of the body.

Algorithm 1: Event to Body

input: List of pairs (w, t) called event, where w is a word and t is a POS-tag.

output: The body of the Atomic rule and a list of variables found in the body.

1 verb = obj = body = variables := ∅
2 verb finished := False

3 Remove (PersonX, IND) and (PersonY, IND) (if it exists) from the event list,

and add them to body.

4 Add x, z to variables and also y, if PersonY occurs in event.

5 for (w, t) ∈ event do

6 if verb ̸= ∅ and t ∈ [JJ,NN,NNS] then

7 verb finished := True

8 if verb finished then

9 Add w to obj.

10 else

11 Add w to verb.

12 Let v be the concatenation of the words in verb.

13 if (PersonY, IND) ∈ event then

14 Add v(x, z, y) to body.

15 else

16 Add v(x, z) to body.

17 if obj ̸= ∅ then

18 Let o be the concatenation of the words in obj and add o(z) to body.

19 return (body, variables)
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Algorithm 2: Inference to Head

input: List of pairs (w, t) called inference, where w is a word and t is a POS-tag,

the body as a list of atoms and a word that is the inferential dimension.

output: The head of the Atomic rule and a list of variables found in the head.

1 verb = cur obj = objects = head = variables := ∅
2 verb finished := False

3 Remove PersonX and PersonY from the inference, and add them to head if they

do not occur in the body.

4 Add x and y to variables if PersonX and PersonY appear in the inference but

are not already in the body.

5 for (w, t) ∈ inference do

6 if verb ̸= ∅ and t ∈ [CC,DT, PRP, PRP$] then

7 if verb finished = True then

8 Add cur obj to objects.

9 Add variable for cur obj to variables.

10 cur obj := ∅.

11 else

12 verb finished := True

13 if verb finished then

14 Add w to cur obj.

15 else

16 Add w to verb.

17 if cur obj ̸= ∅ then

18 Add cur obj to head.

19 Add variable for cur obj to variables.

20 if inferential dimesion = PersonX then

21 subject := x

22 if PersonY occurs in body or head then

23 target := y

24 else

25 target := none

26 else

27 if PersonY occurs in body or head then

28 subject := y

29 else

30 subject := u

31 target := x
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31 Let v be the concatenation of the words in verb.

32 if objects ̸= ∅ then

33 if |objects| = 1 and equals the object atom in the body then

34 if target ̸= none then

35 Add v(subject, z, target) to head.

36 else

37 Add v(subject, z) to head.

38 else

39 for obj ∈ objects do

40 Let o var be the variable for obj in variables.

41 Let o be the concatenation of the words in obj.

42 if target ̸= none then

43 Add v(subject, o var, target) to head.

44 else

45 Add v(subject, o var) to head.

46 Add o(o var) to head.

47 else

48 if target ̸= none then

49 Add v(subject, target) to head.

50 else

51 Add v(subject) to head.

52 return (head, variables)

Example:

PersonX paints PersonX’s portrait ⇒ Person(x) ∧ Paints(x, z) ∧ Portrait(z)

In this example, we can see how the individual PersonX, the action of painting, and the

object being painted have been split into separate atoms. Despite appearing twice, PersonX

is represented as the variable x, and its connection to the painting is instead found as a term

for the predicate of Paints.

The strategy for finding the atoms in the inference is very similar to the one used for

the event. Still, the big difference is that we might encounter more than a single object
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due to the more freeform structure provided by the respondees. In addition to this, we also

have to account for the fact that some inferential dimensions do not concern themselves

with PersonX, but rather how others are affected by the event. This affects which variables

become connected to the atoms.

Example:

xWant To hang the painting ⇒ ToHang(x, a) ∧ Painting(a)

As seen in the example above, the subject of the action performed in the inference is

PersonX, as he is our subject as stated by the inferential dimension of xWant where the x

represents that we are interested in PersonX’s wants. A thing to note here is the fact that

the algorithm uses a new variable to represent the painting. This might seem unnatural, as

one can infer that the portrait from the body is the same as the painting in the head, and

should therefore share the same variable. The issue is that two different words have been

used to describe the same object, as the algorithm will detect this type of callback, but only

if they reuse the same word. Otherwise, there is a certain ambiguity if this is the intended

implication from the responder, and thus we consider them different entities for the rule.

A thing to note about the splitting of objects is, amongst others, looking for the POS-tag

CC that consists of conjunctions. In some rare cases, we observe that the word “or” shows

up, and as all the atoms are conjuncts in the rule, it means that the or is treated as an and

logically. In most cases, this is functionally equivalent.

Example:

PersonX picks last, xNeed, know who or what to pick

PersonX is really sad, xWant, to speak with a friend or family member

PersonX makes PersonX’s decisions, xWant, to complete the task or process

The intention is that both are equivalent, possible outcomes and therefore saying that both

happen does not completely alter the meaning. Therefore, despite there being a few cases

where this does not apply, we do not treat or differently from and, which keeps the algorithm

a lot simpler but also slightly more incorrect.

Finally, after the event and the inference has been transformed into the body and head

of a rule, and we have collected all variables involved, we then add the quantifiers or omit
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them depending on the desired output. All of the body’s variables are universally quantified,

while the ones exclusively appearing in the head are existentially quantified.

Algorithm 3: Atomic to Rule

input: Two lists of pairs (w, t) called event and inference, where w is a word and t

is a POS-tag,

a word that is the inferential dimension, and a boolean add quantifiers to decide

whether to quantify the variables or not.

output: A FOL-rule for the Atomic if-then statement.

1 body, body vars := EventToBody(event)

2 head, head vars := InferenceToHead(inference, body, inferential dimension)

3 if add quantifiers then

4 rule := ∀body vars(body → ∃head vars(head))

5 else

6 rule := body → head

7 return rule

Example:

If-then statement:

PersonX paints PersonX’s portrait, xWant, to hang the painting

Rule:

∀x, z(Person(x)∧Paints(x, z)∧Portrait(z) → ∃a(ToHang(x, a)∧Painting(a)))

At last, we get a complete rule from the if-then statement. Despite the lack of connection

between the portrait and the painting, we still get a set of atoms and variables that connect

to each other logically in a syntax structure that makes sense. So, even though there are a

few statements where it is less than perfect, it works excellently on most of Atomic’s if-then

statements and gives us a solid dataset that the Transformer can train on.
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Chapter 4

Experiments

In this chapter, we will use the previously described related work and our created dataset

for Atomic to perform experiments on neural machine translation using the Transformer

language model. We will discuss the specific model settings, including their motivation

and reflections on possible extensions. After this, we will present how the datasets were

assembled and how their sizes relate back to the related work using the RNN approach[20].

Then we will also present what evaluation metrics were used, how they work, and what

information they convey about the result. Finally, we will present the results which are in

themselves split into four. Firstly, we compare the results of the previous work [19] using the

RNN approach achieved on their Deep Knowledge Extraction from Text (DKET) datasets

compared to our transformer model. Then we perform experiments on the Atomic dataset

using similar dataset sizes as the DKET to see how well the model performs with little data

samples and asses the difficulty of the data in relation to the DKET datasets. Afterward,

we also run some similar experiments on the Atomic dataset, but where the quantification

element of the logical formulas have been removed, to examine if it increases the ability to

capture concepts and variables on shorter sequence lengths. Lastly, we allow the Transformer

to train with all the data in Atomic, in a natural 85/15 training and testing split to see how

well the model performs when allowed to learn as much as possible from the dataset. We do

this for both types of datasets, the regular ones and the ones where the quantification has

been omitted to see if the models level when they have a lot more data to train on, or rather

if the difference becomes even more noticeable. If you wish to reproduce our experiments,

then you can find the code in our Github1 repository.

1https://github.com/KrisAesoey/AtomicTranslation
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4.1 Model settings

Setting Value
embedding size 512
attention heads 8
encoder layers 6
decoder layers 6
feedforward dimensions 2048
dropout 0.1
batch size 128
sequence length 50
epochs 30
warmup steps 4000
optimizer Adam
learning rate embedding size−0.5 ∗ min(step−0.5, step ∗ warmup steps−1.5)
label smoothing 0.1

Table 4.1: Settings used for the Transformer models used in the experiments

We treat the natural language to logical formula translation as a generic neural machine

translation task, making it natural to use a standard model for this task. In the related

work [20] we saw a specialized RNN model was designed for the task, as removing any

form of semantic understanding of the sentence to enhance the model’s comprehension of its

syntactic structure. We, on the other hand, want to use the Transformer language model for

what it is, with semantic comprehension and all, to examine how this type of attention-based

model generally can perform this task.

The transformer models used for the experiments are modeled to use the default settings

of the prebuilt Transformer model which is a part of the PyTorch framework for machine

learning in Python. The transformer models used for the experiments have the default

settings of the prebuilt PyTorch Transformer model [7]. The default settings are the same

as the settings used in the original experiments when the model was introduced [25], which

is the work we based our training loop upon. Their experiment settings and ours are the

same in terms of the learning rate, optimizer, label smoothing, and dropout which proved to

be very effective early on in testing. Due to the time restraints for the thesis work, we did

not perform a grid search to test different settings and training setups in extensive detail.

The results might therefore have the potential to be even better, or worse when some of the

setup elements are changed. We consider at this as potential improvements and possibilities

36



for future work in addition to creating Transformer models that are even more specialized

for this type of machine translation task.

4.2 DKET and Atomic datasets

As previously mentioned, we use the DKET datasets that were made for an RNN model to

translate from definitory language into DL ontologies [19] that inspired this thesis. We use

them as a point of comparison for how well the Transformer model can translate using its

semantic approach in relation to the syntactic RNN approach. The data is located on the

project’s Github repository2, where we acquired them to use in our experiments by testing

the Transformer’s ability to translate them correctly. They come in four different sizes: 2k,

5k, 10k, and 20k training samples and all of them come with their own validation set of

30k samples. The RNN model’s ability to translate showed great differences using just these

dataset sizes which were something we would like to check if is the case for the Transformer

on the Atomic dataset.

We want to test Atomic in a similar fashion, where each set was tested with similar

dataset sizes as the DKET ones. Therefore, in every experiment, we run four models, where

each of them is trained on random samples equal to the sizes referenced above, and 30k

other examples are also chosen randomly to validate the results. In addition to this, we also

test out the separate categories of the Atomic set: event, mental state, and persona. This

is to check if certain types of inferences are easier to learn than others such as persona for

example having less syntactic variation in its inferences and are always about the subject

of the event, which is not the case with the other two. This will give us more insight into

what might cause challenges for the model in the translation, rather than just looking at the

overall result for everything combined.

There was also the additional wish to perform a reverse experiment, where we tested

the RNN model’s ability to translate the Atomic datasets as well, which could provide

additional insight into comparing the translation difficulty of the two types of datasets. This

was another motivating factor for the choice of using similarly sized datasets. However, due

to the outdated nature of the DKET code and the difficulty of setting up an environment

2https://github.com/dkmfbk/dket
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where we could run the model, this was not feasible. The only choice then is to remake the

functionality of the model using the methodology described in its original paper [20] using

updated compatible versions of the framework, but we did not find it a priority due to the

time available and lack of guarantees that a new model will act in the same way as the

original. Thus, this part of the experiment was scrapped but is still a considerable candidate

for possible future work.

4.3 Evaluation metrics

Three main criteria were chosen to check the correctness of the translations from natural

language into description logic. These are the same as the ones used to evaluate the results

of the RNN approach [20] created to translate from synthetic definitory sentences [19] to

ALCQ, to be able to compare the results from our experiments with previous work. This

also allowed us to run the datasets from their work on our model for a direct comparison

with the RNN approach and our dataset separately. Every criteria’s goal is to compare how

well a given prediction f̂ from the set of predicted formulas F̂ matches the correct formula f

from the set of golden truths F , divided by the total amount M of formulas in the validation

set to get an average.

Using BLEU [18] as a metric is also an extremely common way of scoring machine trans-

lation, but we found it to be not so applicable in our case. In our experiments, there is a

golden truth that we wish to achieve a literal perfect match of. This means that there is no

room for alternative translations to a given sentence, and the strengths of its function are

diminished compared to its great use case in evaluating natural language to natural language

translations. The quality of translation shown by a BLEU score on any given training setup

will also be reflected in a more nuanced and telling way by the other metrics choices in our

setting.

Average per-formula accuracy (FA) is our first and most intuitive metric. FA is defined

as the percentage of correctly predicted formulas related to the total number of formulas in

the validation set.
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FA(F̂ ,F) =

∑M
k=1

1, iffk ≡ f̂k

0, otherwise

M
[20]

A higher percentage of FA directly corresponds to how accurate the model is and the ultimate

goal of the model is to achieve the highest FA possible, while the other criteria are used to

figure out how well the model performs despite sometimes being incorrect, as there are

varying levels of how incorrect a predicted sequence can be.

Average edit distance (ED) is our second metric. Edit distance is an algorithm that

tries to capture how far away a given prediction is from the correct answer, as a result of

performing operations to transform the prediction into the golden truth. These actions as

well as their corresponding cost to perform them can vary from algorithm to algorithm, but

as previously stated we are using the same metrics as previous work which specifically uses

the Levenshtein Distance (δ) algorithm. The actions are then to add a token, remove a token

or substitute a token which all have a cost of one. A low value directly correspondent with

good translations, as it intuitively means that a machine or a human would need to perform

fewer operations on the output to get the desired result. Thus, the optimal value of ED is

0, in other words, a perfect match that requires no actions to be performed.

ED(F̂ ,F) =

∑M
k=1 δ(f

k, f̂k)

M
[20]

Average per-token accuracy (TA) is the final metric that gives us an overall look at

how well the model can translate the individual tokens. It is very similar to FA, but by

comparing the prediction f to the correct formula f̂ on a token-to-token basis and dividing

the result by the total of tokens T in the formula we can observe if the model is translating

well, despite the total prediction is incorrect. If a model shows a high TA in contrast to

a low FA, it tells us that the model is rather close, but has a single mistake or two in the

sequence that creates the wrong result. Thus we can differentiate between models that do

not perform well in varying levels of incorrectness despite showing similar FA scores.

FA(F̂ ,F) =

∑M
k=1

∑T
fk

j=1

1, iffk
j ≡ f̂k

j

0, otherwise∑M
k=1 Tfk

[20]
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We can see how each of these evaluation metrics would score an example translation.

Example:

if-then statement: PersonX tries to help PersonY, xAttr, caring

correct rule:

∀ x y z ( ( person (x) & person (y) & tries to help (x,z,y) ) → caring (x) )

predicted rule:

∀ x y z ( ) person (x) & person (y) & tries help (x,z,y) ) → caring (x) )

In the example above, we have underlined the differences between the correct rule for

the if-then statement as provided by the algorithm, and the predicted rule from the model.

All our metrics are averages, but as we only have a single translation, i.e. M = 1, it means

that the score for this example is equivalent to the overall score. Since there is a difference

between the correct rule and the predicted one, it means that the FA score is 0. The incorrect

tokens are a missing “to”, and a parenthesis that has been flipped. To fix these, we would

need to perform one addition of a token, and a substitution of another, and since each action

has a cost of 1 we end up with an ED score of 2 for this translation. Finally, for the TA

score, we count how many tokens at the same index are correct. Since we are missing a to

in the prediction, it results in every following token being incorrect due to appearing earlier

than they should. Therefore we only achieve a TA of 0.6, i.e. 60% accuracy, despite only

two tokens being technically incorrect. This demonstrates how each metric gives us different

information about the translation.

4.4 Results

In this section, we will look at the results of the four different types of experiments we

perform. First, we will look at how the Transformer compares to DKET’s [20] RNN approach

in translating their datasets. Then, we investigate how well the model translates small

datasets from Atomic, and how each category performed individually to see if certain parts

of the data are easier than others. After this, we omit the quantification of variables from

the rules, to observe if the accuracy increases on shorter, less complicated sequences. Finally,

we go all out and let the model train on the entire dataset, to see if the model achieves even

higher performance on.
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4.4.1 DKET using RNN and Transformer

Model FA ED TA
RNN-2k 61.1% 2.48 91.8%
TF-2k 0.0% 10.2 42.6%
RNN-5k 84.4% 0.6 97.5%
TF-5k 0.0% 9.25 51.3%
RNN-10k 88.8% 0.47 98.7 %
TF-10k 99.8% 0.007 99.9%
RNN-20k 81.7% 0.46 98.3%
TF-20k 99.9% 0.000067 99.9%

Table 4.2: Results comparing the RNN approach and Transformer (TF) on the DKET [20]
datasets.

In Table 4.2 we can see the results that were achieved in the reference work when using

their RNN approach [20] compared to our Transformer model on the same datasets. The

first thing to note is that the RNN approach achieves much better results when training with

very few samples. It achieves a FA score of over 60% with only 2k training examples and

improves rapidly towards its peak accuracies when training with 5k. Also, the TA score is

over 90% for all experiments, showing that it quickly picks up on the syntactic structure of

the data. In fact, the RNN approach learns the structure much faster than the Transformer

does, as we can see that the Transformer performs terribly when training on 2k as well as

5k examples. In neither case the model actually manages to correctly predict a full formula,

meaning that the overall FA score is 0%. In addition to this, the TA scores are around

40 − 50% meaning that the predictions are not even close, having to replace over 9 tokens

to be correct on average.

However, when the Transformer model gets enough data samples to train on, we see an

incredible jump in performance. While the RNN approach improves with ∼ 4% between 5k

and 10k examples, we see a literal jump of over 99% for the Transformer. Suddenly, the

Transformer outperforms the RNN’s best performance and is translating the data almost

perfectly. In fact, at its best when training on 20k examples it only missed a total of two

translations out of the entire set of 30k. This shows that the syntactic structure of the

DKET datasets is easier for the general semantically aware Transformer model to capture

and translate than for the specified syntactic RNN approach when there are enough training

examples to learn from.
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If there is sparse data consisting of natural language sentences with equivalent ontologies

in a target Description Logic language then we can use the RNN approach to achieve decent

translations that are either correct or very close to being. On the other hand, if we have

enough data, we can observe that the Transformer model is more than capable of producing

correct ontologies that consist of the same words as the natural language in combination

with a dozen logical symbols to capture the correct meaning.

4.4.2 Atomic on small datasets

Training Dataset FA ED TA
2k-Persona 0.08% 2.83 84.4%
5k-Persona 12.9% 1.48 93.4%
10k-Persona 49.6% 0.65 97.0%
20k-Persona 78.3% 0.27 98.8%
2k-Mental 0.03% 3.82 84.8%
5k-Mental 14.2% 1.79 92.9%
10k-Mental 64.0% 0.48 98.1%
20k-Mental 84.1% 0.19 99.3%
2k-Event 0.0% 4.90 81.8%
5k-Event 3.13% 2.64 90.2%
10k-Event 55.0% 0.61 97.7%
20k-Event 78.9% 0.25 99.1%
2k-All 0.0% 4.51 82.6%
5k-All 4.82% 2.31 91.1%
10k-All 35.1% 1.01 96.1%
20k-All 76.3% 0.29 98.9%

Table 4.3: Results from Persona, Mental-State, Event, and All-included datasets.

The results of performing experiments on the Atomic datasets quickly show that the

Transformer model has a harder time translating these datasets than it had with DKET.

Whereas it was almost perfectly translating DKET when it had trained on enough data, we

only ever see results on Atomic that are as good as the RNN approach was capable of doing

on DKET. This suggests that capturing variables and atoms in first-order logic might be

harder for the model than the DL language ALCQ, making Atomic a much more challenging

translation task. However, we observe in Table 4.3 that the model much more quickly finds

the underlying structure of the desired logical formulas compared to ALCQ as the TA score

is over 80% for all experiments even when using the smallest training datasets. The reason
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for this is most likely due to the vocabulary of Atomic being roughly three times the size of

the one used in DKET, which results in the model spending more time needed to create a

semantic understanding of each word that appears in the dataset.

Example:

oReact if-then relation: PersonX kills PersonY’s father → grief

correct formula:

A x y z ( ( person (x) & person (y) & kills (x,z,y) & father (z) ) → grief (y) )

predicted formula:

A x y z ( ( person (x) & person (y) & kills (x,z,y) & father (z) ) → grief (y) )

Here we have an example of a perfectly translated formula, where everything has been

captured as expected. All the variables are quantified correctly, the atoms are correct and

everything is wrapped in closed parentheses.

Example:

xAttr if-then relation: PersonX loves PersonX’d husband → enamored

correct formula:

A x z ( ( person (x) & loves (x,z) & husband (z) ) → enamored (x) )

predicted formula:

A x z ( ( person (x) & loves (x,z) & husband (z) ) → affectionate (x) )

In this example, on the other hand, we see that the inference word has been switched

to a different one, while all the syntactic pieces of the formula are otherwise correct. This

might be caused by the fact that “enamored” is quite an uncommon word, and often appear

in the same contexts as “affectionate” which is observed ten times as much in the data. We

even see it appear twice just for this specific event, which might have contributed to the

incorrect choice of word.
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Example:

xWant if-then relation:

PersonX is really sad → to speak with a friend or family member

correct formula:

A x z ( ( person (x) & is really (x,z) & sad (z) ) → E a b ( to speak with (x,a) &

to speak with (x,b) & friend (a) & family member (b) ) )

predicted formula:

A x z ( ( person (x) & is really (x,z) & sad (z) ) → E a b ) to speak with (x,a) &

to speak with (x,b) & friend (a) & family member (b) ) )

This final example demonstrates the last type of common issue, where a syntactic mistake

has been made. In this case, a single parenthesis has been flipped, which in itself is the

smallest type of mistake we can find in predictions, but is still considered incorrect like any

other mistake. It might seem trivial compared to quantifying all the variables correctly and

capturing all the atoms but it shows that sometimes keeping track of all the different parts

of the formula patterns at the same time can be difficult.

Interestingly, the categories’ results are very similar across the board, except that the

mental state category has a noticeably better result than the other when trained on 20k

examples. This was unexpected, as one would assume that the persona category would be

the easiest to learn due to only consisting of one inference dimension that always centers

around the subject of the event (PersonX), and has the shortest formula lengths on average,

but this does not seem to be the case. In fact, persona achieves the same best accuracy

at 78% as the event category, despite the event one having the largest set of examples to

pick from and the most amount of relations. Thus it seems that the subtleties between

the categories do not have a huge impact on the overall results, as all categories seem to

improve similarly in all three evaluation metrics as the amount of training samples increases.

When sampling from all categories, we also see the same results as doing them separately,

showcasing that the model performs well across the board with an overall FA between 76%

to 84% and a token accuracy at ∼ 99%, meaning that the incorrect translations are generally

also really close to the correct formula.

This does lead to the overall interpretation of the results, that the biggest factor for

performance is the amount of data that the model has to train on. We see that the model

is not able to correctly translate at all when only having 2k samples to work with, despite
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having a high TA, but it improves more and more as the training dataset size increases. From

this, we assume that the Transformer’s overall performance is hindered by the limitation of

training data and that it will improve the more data it has available, an idea we will thus

revisit later in the chapter.

4.4.3 Atomic without quantification

Training Dataset FA ED TA
2k-Persona 0.06% 2.69 79.9%
5k-Persona 18.2% 1.32 90.1%
10k-Persona 46.1% 0.72 94.6%
20k-Persona 85.7% 0.16 98.8%
2k-Mental 0.17% 3.53 77.6%
5k-Mental 16.1% 1.67 89.2%
10k-Mental 61.3% 0.51 96.6%
20k-Mental 86.7% 0.15 99.0%
2k-Event 0.01% 4.32 74.4%
5k-Event 17.5% 1.59 90.4%
10k-Event 67.9% 0.41 97.5%
20k-Event 84.5% 0.19 98.9%
2k-All 0.003% 4.21 73.8%
5k-All 9.44% 1.97 87.9%
10k-All 68.6% 0.39 97.5%
20k-All 80.8% 0.23 98.6%

Table 4.4: Results from Persona, Mental-State, Event, and All-included datasets without
quantification of variables.

Despite the Transformer model’s ability to capture the atoms, and variables, and quantify

them we do not however expect it to fully comprehend the complex meaning of it all. The

formulas always follow the same pattern of universally quantifying any variable that is found

in the body and potentially in the head, while any variable that may occur exclusively in the

head is quantified existentially. This is a result of the algorithm created to make the formulas

from the natural language, a deliberate design choice during our process. So, despite there

being multiple equivalent ways of translating a sentence correctly, the model has only learned

a specific pattern that applies to all examples and would therefore not have any reason to

understand or produce alternate correct interpretations.
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Thus, you could consider the quantification of the variables as only a matter of potential

pattern recognition, the question then becomes how much this impacts the model’s ability

to translate and if we could achieve a better result if we omitted it from the formulas. The

inclusion of them substantially increases the sequence lengths of the formulas and thus maybe

we would see the model having an easier time correctly translating when the potential for

mistakes is reduced as there are fewer total tokens to generate. If the results prove to increase

dramatically, there might be a more viable solution to only train the model on formulas with

the quantification omitted, and instead, run an algorithm on the results that finds all the

variables and applies the same pattern as we used onto them instead as a postprocess.

In Table 4.4 we see the results of performing the same experiments on the Atomic dataset

where the quantification has been removed from the logical formulas, and a first glance they

look very similar. The model performs extremely poorly when trained using the smallest

datasets. We can even observe that the overall TA score is worse on the 2k datasets compared

to the experiments with the quantification included. This is likely due to the fact that there

are fewer “pattern” tokens to translate, such as parentheses and ∀ that are always a part of

the sequence’s variable quantification. So, when a model correctly finds these structures and

still predicts the formula wrong it can potentially achieve a higher TA than a model that

lacks them. This is supported by the fact that the TA score is in many cases lower in these

experiments compared to the equivalent experience with quantification, despite achieving a

better score both in terms of FA and ED.

Interestingly, we notice that the models achieve an overall improvement of ∼ 5% FA in

all categories at their peak when trained on 20k training examples. The exception to this

case is actually the mental state category, which was exceptionally good in the quantification

experiment as well. Here we only saw a small improvement by a couple of percent in terms

of FA, but this is now the new highest score across any experiment. Another interesting

observation is that the event category has a much better result in the 5k training dataset

in terms of FA, with an increased score of 14% despite having the exact same TA as in the

equivalent experiment. In the 10k training dataset consisting of all types of relations we

also see an FA increase of 33%, meaning that it can now capture 10k of the 30k validation

examples that it was not able to when it had to quantify as well. This was also the worst-

scoring experiment using 10k examples with quantification, suggesting that figuring out how

to quantify with examples from the different categories was the biggest struggle for the

model.
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The biggest changes are noticeable in the 5k and 10k datasets, while the differences are

much smaller in the 2k and 20k. This suggests that 2k is not enough data to capture the

structure of the formulas at all, while at 20k examples the model has enough to memorize

very well, regardless of quantification included or not. It matters more in the middle ground,

where the model shows more prowess at capturing the atoms when they are its only focus,

and it has a harder time when it needs to focus and quantify the variables at the same

time. However, this does indeed support the idea that the difficulty of translation is to

capture and split up the atoms correctly, as omitting the quantification did not suddenly

cause the model to achieve near-perfect accuracy. Instead, we see an overall improvement,

suggesting that shorter sequences and more ability to focus on capturing the atoms create

better performance.

However, once again, we notice that the overall most important factor for the model’s

success lies in the amount of training data. All the experiments, except the variations

mentioned, seem to follow the same pattern of improving roughly the same based on the

amount of data it learns from in terms of both FA and ED. This, once again, reaffirms the

idea that not hindering the amount of data the model has to train on will cause an even

larger improvement in the model’s performance.

4.4.4 Atomic with all the data for training

Training Dataset FA ED TA
Persona 93.6% 0.07 99.69%
Mental 93.7% 0.07 99.73%
Event 93.1% 0.07 99.72%
All 93.8% 0.06 99.74%
Persona-No-Quantification 94.8% 0.05 99.59%
Mental-No-Quantification 94.7% 0.06 99.60%
Event-No-Quantification 93.3% 0.07 99.57%
All-No-Quantification 93.8% 0.06 99.58

Table 4.5: Results using all the data available, comparing with and without quantification
of variables.

Since we observed that the models always performed the best when they trained on the

largest dataset of 20k training examples, we decided to instead change up the training setup
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to allow the model to learn as much as it wants from the data that we have available. The

reasoning for using the datasets seen in the previous experiments was to compare them to

the reference work using the RNN approach, where achieving good results on a few training

samples was something they valued highly. However, due to our semantic approach and a

larger vocabulary, allowing the model more data to see the words used in more contexts to

create a better semantic representation for them could potentially lead to a better overall

performance of the model. So, we decided to let the model use the entirety of the dataset

and use an 85/15 split, where the model trains on 85% of the examples and is evaluated

on 15% of them. We performed the experiments on all categories separately as well as the

entirety of the dataset with quantification of the variables both included and omitted.

From Table 4.5 we can immediately observe that the model performs better across the

board than any of the experiments on the smaller datasets did. The variation is also incredi-

bly low, where we see a difference of less than 2% from best to worst in terms of FA. The ED

is also ridiculously low, averaging less than half of the best score from the smaller dataset

experiments, where the mental state on 20k training examples had the best of 0.15 while

now all are at 0.07 and below. The TA score is now also always above 99.5% meaning that

only 1 out of 200 tokens are incorrect in the translation, suggesting that even the incorrect

formulas are extremely close to the correct.

Surprisingly, we see that now that the model has such a large amount of data to train on,

it no longer matters if the quantification is omitted or not. The edge of the omitted results is

insignificant as the overall result is extremely good for every experiment. It shows that with

enough data the Transformer model is able to learn better how to both capture the atoms

as well as to quantify the variables correctly. The overall results suggest that omitting the

variables when you have a smaller amount of data available will lead to better performance,

but when you have a lot there is no need to do so.
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Chapter 5

Conclusion

In this chapter, we will summarize the work, what contributions we have brought and the

results from our endeavors, as well as explore where the road goes next in terms of potential

future work.

5.1 Summary

We have investigated the potential of using the Transformer architecture as the basis for

performing neural machine translation of natural language into logical rules. When com-

paring the results of the experiments performed on the DKET datasets where all the words

are known with the RNN approach, we can observe that the Transformer outperforms the

RNN model when it has enough data to train on. This showcases that the Transformer

architecture is promising, while the RNN model has still displayed abilities that we have not

explored, in terms of translating definitions containing unknown words.

By designing an algorithm that transforms the Atomic if-then statements into logical

rules, we were able to create a dataset that allowed us to observe how well the Transformer

could learn the relationship between natural language statements and their corresponding

rules. By using this algorithm were are able to create datasets of the categories independently,

persona, mental state, and event, as well as for all combined. In addition, we created

alternative datasets where the quantification of variables was omitted, resulting in us being

49



able to compare the translation proficiency of just learning atoms compared to the entire

rule.

We achieved a high score across the board and witnessed that the main factor driving

the results was the amount of data the model trained on. Omitting the quantification of the

variables from the rules, which shortens the sequence lengths and simplifies the translation

slightly, has a positive effect on the results when working on smaller datasets. The difference

becomes minuscule when training on large amounts of data, as we observed a less than

∼ 2% spread when using the entirety of the dataset. The experiments also showed that

the differences between the categories did not cause huge variance in terms of performance,

suggesting that the overall task of capturing atoms and quantifying variables are the main

challenges of the task. The Persona category contains just a single inferential dimension and

has the shortest inference length on average, but does not display the peak performance.

However, issues related to the RNN code being too old with outdated packages made

it unfeasible for us to use their model to test Atomic for more comparisons. This would

have given us further insight into how well the Transformer performs on the data relative

to the RNN would, and how difficult the Atomic dataset is compared to DKET. The design

of dataset was designed to allow for this, and we could observe if the syntactic approach

would be capable of capturing atoms and quantifying variables without the use of semantic

comprehension of the statements.

Overall, we see great potential for the Transformer to be used in this type of task.

It displays strong capabilities of performing one-to-one translations of different subsets of

natural language into different logical languages. We believe that this supports the possibility

to use it for other translations, and the architecture can potentially allow for the generation

of alternate, correct logical rules due to its semantic understanding.

5.2 Future work

Using a model that utilizes both syntactic and semantic reasoning to perform the task of

neural machine translation from natural language to logical formula introduces a ton of new

avenues to explore. In our work, the Transformer model learns to mimic the algorithm that

created the dataset, essentially following the rules set up for atoms and variables decided by
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it. However, this is only a single use case of the model, and the Transformer has also shown

the ability to translate other subsets of natural language to other logical languages as shown

in the DKET [20] experiments. So, the Transformer’s shown ability to perform this task

ends up opening the floodgates to explore more extensive and novel approaches to perform

logical rule learning from natural language.

5.2.1 New version of Atomic

As mentioned when discussing the Atomic KB, there exists a newer and even more compre-

hensive version known as Atomic2020 [10]. Introducing two new categories describing inferential

knowledge about common entities and objects, as well as common events that are related to

one another, we see new dimensions of typed if-then relational knowledge. Expanding the

work done to also cover these types of inferences could result in capturing an even greater

proportion of natural language, and provide a wider coverage of if-then rules for use in lan-

guage models. Due to the nature of these new dimensions being less similar than all three

categories found in the Social-Interaction subset, which is equivalent to the original Atomic

KB, we would need a more sophisticated way of creating logical formulas to learn from than

the algorithm used in our work.

5.2.2 Pre-trained embeddings

During our experiments, we have used a model that starts its learning from scratch, i.e.

has no previous knowledge and uses the Atomic dataset exclusively to learn from. This

drastically limits the possibilities the model has to grasp the finer details of words as the

number of contexts it observes them are limited in the if-then relations compared to large

corpora of natural language.

There exist many pre-trained embeddings, vector representations of words and phrases,

that are learned from large amounts of text data using unsupervised machine learning algo-

rithms. Algorithms such as Word2Vec [13] and GloVe [14] have been immensely popular this

last decade for injecting word representations into language models. Despite recently being

considered outdated [27] due to the state-of-the-art transformers’ excellent performance, they

are still interesting to apply in our use case, where we do not train on large-scale corpora.
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There is potential that the use of pre-trained embeddings will allow the model to achieve

better semantic understanding between words and achieve the ability to translate into better

logical formulas than what the input text provides. We might discover that the model makes

“incorrect” predictions where instead of copying the word found in the original sentence it

picks a synonymous word that is more applicable in the given context than a word chosen

by the creator for the if-then relation. Experiments using different pre-trained embeddings

could prove interesting insight into the potential of improving semantic understanding as a

part of the translation process.

5.2.3 Testing for substitutivety

Relating strongly to the idea of introducing pre-trained embeddings, there is a potential

to consider the possibility of testing for alternate correct logical formulas produced by the

model. In our work and previous work [20], we strictly look for one-to-one translations where

each generated formula is directly compared to the predetermined golden truth. In the RNN

approach, this was the only logical approach as the model could not introduce words not

found in the original sentence, but that is not the case for the Transformer model which also

introduces semantic understanding. There is potential for our model to be “incorrect”, but

only due to using a synonymous word that means the same thing in the context and would

be considered a completely fine formula.

There are many ways of expressing an idea in natural language, and the way we choose

to do so is heavily reliant on our vocabulary. There are a lot of words in English that are

extremely general that can be applied to a multitude of different contexts, such as “work” and

“make”. There are similar words to these types of words that express the same sentiment

but are more specific. If we had an event such as “six months of hard work”, then we

would consider the statement of “six months of hard labor” as an adequate alternative

and potentially even preferable due to the less general term of labor being used. If the

Transformer decided to translate one of these sentences into a rule that ended up swapping

these two terms, we would not consider this a failed translation, but rather an alternative

one.

We do not test for this in our experiments, but it could prove significant if sometimes

the model is correct in a different way than expected. Therefore, creating an algorithm
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that compares the predicted formula to the expected result to find out if they contain the

same meaning would be a step forward in terms of evaluating this type of task. It would

be extremely important with the potential of introduction of pre-trained embeddings, and a

heavier focus on utilizing the semantic understanding to create even better translations.

5.2.4 Testing for unknown words

One of the better features, and most important of the syntactic approach using a syntactic

RNN model to perform translations is its ability to deal with unknown words. Since it always

treats any word in a formula as an index in its input, it quickly achieves a powerful ability

to capture the underlying syntactic structure that shapes definitory sentences. This means

that when some of the content words of the sentence are replaced with “unknown” tokens it

performs equally well.

We did not pursue this avenue in our experiments due to the limited time, but it is still

something that has to be explored in the future. It is possible that the semantic prowesses

of the Transformer can be a hindrance when dealing with incomplete sentences that uses

the same token in way too many different contexts, or it might help it focus more on the

syntactical strategy of copying the words seen in the sentence instead of looking for the

underlying meaning. No matter what, it can help determine if the Transformer can be the

ultimate all-purpose architecture for this task or if a syntactic RNN approach or another

type of architecture may reign supreme in some use cases.

5.2.5 Out-of-distribution if-then statements

Every single relation from the Atomic dataset starts with the word “PersonX”, which po-

tentially affects the model’s ability to learn to translate Atomic much faster than it should.

The pattern of always including ∀x and Person(x) in every rule makes it easier to discover

the general structure of how the rules are structured, therefore making it uncertain how well

the model performs outside of its domain of use.

Since the model is trained on a dataset created from an algorithm that is specifically

designed to create rules from the Atomic knowledge bank, it is fair to state that this is
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a very specific type of if-then statement being represented and that there is no guarantee

that datasets consisting of other types of syntactically structured statements would fare as

well. How much the regularity of certain patterns affects the overall performance is therefore

unclear, and would need to be investigated further. On the other hand, this is part of the

larger issue in exploring the limits of what subsets of natural language the Transformer can

learn to translate effectively into logical rules.

5.2.6 Other expressions of natural language to logic

Naturally, the holy grail of this neural translation task would be to be able to translate any

natural language text into logical formulas defined in any logical language desired. So far

we, have seen both translations of definitory sentences as well as if-then relations, but this is

only a tiny subset of the endless possibilities to express knowledge. Performing more work

involving: more specified semantic language models, and text consisting of compound and

complex sentences, that result in rules that include words not found in the input sentences

would all be huge leaps forward for this type of task. Previous results have shown that

syntax is important, but using the Transformer we can see quality results being achieved

using an approach that does not omit semantics, which means that we have more tools to

achieve such advances.

5.2.7 Injecting rules into LMs

A future prospect could be to combine the best of two worlds, the LMs from the machine

learning community and the logic-based reasoning systems from the automated reasoning

community. The LMs could create rules from a natural language using neural machine

translation, and the rules could be evaluated by the reasoners to generalize knowledge,

which could be injected back into other LMs to improve their generalized training. Thus,

the reasoning could be used to help mitigate the issues with logic-based reasoning in LMs.

The potential gain would be that when a LM is trained on a large-scale corpora they

could also be fed logical rules that relate to the words found in the context, which would

help to generalize the factual relations and contradicts the learning of biases and illogical

statements. Thus, both parties could perform what they are best at, LMs capturing patterns
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and regularities from the data and the reasoners performing logical evaluations of rules, where

the latter becomes a course-corrected for the former. How feasible or effective this could be

is uncertain, but the idea in and of itself spurs the effort to explore methods of creating,

learning, and extracting logical rules to be used for such reasoning in an as accurate and

effective way as possible to be able to combine the two communities strengths.
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