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Abstract

[ Currents in the surf zone have an impact upon the creation and patterns of vortexes,

which causes transportation of mass and momentum over a broad range of temporal time-

scales. These currents are responsible for a number of phenomena such as sediment transport,

spread of bacteria and marine micro-organisms, and transportation of pollutions. Additionally

there have recently been found that the effects of transport of inertial particles, sand flux, and

the location of the river is dominated by currents oscillating at infra-gravity periods.

In this thesis, previously documented theory necessary to it is presented. Firstly, the first

and second order wave elevation and velocity is redeveloped, together with the second order

Stokes drift. Further, theory regarding surface wave processes and Lagrangian particles are re-

counted. Before lastly, methods of recreating 2D wave spectra from 1D buoy data and particle

paths from stereo camera and GPS coordinates are described.

Throughout the thesis a phase-resolving nearshore wave model (BOSZ) is routinely used

to test theoretical results and recreate experimental data. An overview of the numerical meth-

ods used by BOSZ to solve an alteration to Nwogu’s equations is given. Further the theory

of Turbulent Kinetic Energy (TKE) is summarized. To verify whether BOSZ is capable of

modelling the near shore wave processes, multiple tests are conducted. Here the data of three

laboratory tests are compared to outputs of BOSZ.

It is investigated how small amplitude infra-gravity (IG) waves are critical for the trans-

portation of fluid particles in the surf zone. These low amplitude and frequency waves are

responsible for large particle movements in the nearshore and surf zone regions. This is shown

by looking at linear theory, creating a linear numerical model, and through simulations with

BOSZ 1. Further, data from a recent field study where orange tracers were tracked with a

stereo-camera system is processed to extract their movements. The initial data is extracted and

entered into BOSZ which simulate inertial particles. The numerical paths from the model is

then compared with the paths of the oranges 2.

The verified ability to replicate nearshore velocity fields is used to bring to light the prop-

erties of surf zone circulation patterns. The influence of tidal elevation, mean direction and

directional spread of the incoming wavefield on the quantity, extend, and circulatory magni-

tude of the surf zone circulation is studied. The nature of wave-induced circulation patterns

such as horizontal eddies is investigated, and comparisons are made to Rankine vortexes 2.

Lastly, the theoretical results of the efficiency of an oscillating wave surge converter

(OWSC) is briefly explained. A numerical scheme to calculate this efficiency is then devel-

oped and a method to use it in BOSZ is implemented. From this we compare how including

an idealised OWSC farm in our computations changes the surf zone circulations 1. ]

1This study is currently in the work of being made into a paper.
2The results of this study have been submitted for publication [Bondehagen et al., 2023].
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Introduction

The nearshore zone is a dynamic environment where waves interact with the sea bed and coastal
structures, creating complex and diverse hydrodynamic features [Holthuijsen, 2010]. Understand-
ing the physical processes that govern nearshore circulation is important for a variety of applica-
tions, such as coastal engineering, environmental management, and wave energy extraction. The
nearshore circulation is primarily driven by the wave-induced longshore currents and rip currents,
which transport sediment and nutrients along the coast and affect the local ecology and coastal
morphology [Bertin et al., 2018, Bertin et al., 2019, Russell, 1993, van Thiel de Vries et al., 2008].

How infra-gravity (IG) waves influence these processes have in recent years been of increasing
interest. IG waves are waves of periods 30s up to 5 minutes, compared to the the ordinary gravity
waves of periods 1s to 30s [Munk, 1951]. These waves also have very small amplitudes, often on
the order of millimeters to a couple of centimeters making them hard to notice [Longuet-Higgins
and Stewart, 1962, Longuet-Higgins and Stewart, 1964, Symonds et al., 1982]. It is now known
that IG waves influence the hydrodynamics and effect the rip currents and storm surges, but they
are also important for coastal processes such as beach and dune erosion [Bertin et al., 2018, Bertin
et al., 2019, Russell, 1993, van Thiel de Vries et al., 2008]. Further, multiple effects in the surf
zone have been found to oscillate with periods found in the IG-domain. For example the location
of the river plume [Flores et al., 2022], net movement of inertial particles [Bjørnestad et al., 2021],
and sand flux [Mendes et al., 2020]. This thesis takes upon itself to continue investigating how IG
waves influences particle transport in the surf zone.

In recent years, numerical models have become an essential tool for studying nearshore cir-
culation patterns. Among them, the phase-resolving wave models have been shown to accurately
reproduce the complex wave transformation and nearshore hydrodynamics. In this thesis, we use
the phase-resolving nearshore wave model Boussinesq Ocean and surf zone model (BOSZ) intro-
duced in [Roeber et al., 2010], and under continuous development during the last ten years, to
investigate the properties of surf zone circulation patterns. We focus on the influence of tidal el-
evation, mean direction, and directional spread of the incoming wavefield on the quantity, extent,
and circulatory magnitude of the nearshore circulation.

To validate our numerical simulations, we compare the model results to data from a recent
measurement campaign conducted at a beach on the island of Sylt, located off the German North
Sea Coast near the border with Denmark [Bjørnestad et al., 2021]. Wave poles with graduation
were mounted at low tide, together with pressure sensors and an Acoustic Doppler Velocimeter
(ADV). In addition, oranges were used as surface tracers in connection with a two-camera stereo
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imaging system which was able to track the surface tracers. By replicating the tracer movement
using the model, we can assess the accuracy of the model in capturing the essential features of
the nearshore velocity fields. While somewhat limited by the size of the field of view (FOV), the
stereo images allow us to calibrate the numerical modeling of the orange tracers, and as shown in
Ch. (6), the comparison is favorable.

In the thesis, we study the influence of three parameters on the nature of surf zone circulation
patterns. In fact, we consider the joint influence of the peak direction DP of the incoming wave
field, the directional spread σθ of the applied spectrum and the tidal level. While many field
studies are limited to one or two of these parameters [Baker et al., 2021][O’Dea et al., 2021][Choi
et al., 2015][Scott et al., 2014], and may not paint a complete picture, in the present work, we can
investigate the combined influence of these three parameter.

The numerical simulations are then used to study the influence of the three basic parameters
peak directionDP of the incoming wave field, the directional spread σθ of the applied spectrum and
the tidal 1evel on the nature of the surf zone circulation. In particular, we quantify the quantity,
strength, and size of vortexes, and their statistical dependence on the parameters. Further, we
study the nature of each single vortex, and compares the circulation to a combination of solid-body
rotation and irrotational vortexes known as a rankine vortex.

Also of current interest is the conversion of wave energy to electrical energy. Wave energy
converters are newly developing technology which generally have high captor factors (Cf ) of the
targeting energy. Among these the Oscillating wave surge converters (OWSC) have the largest Cf

value [Babarit, 2015]. Additionally, ocean waves have energy densities of 2− 3kW/m2 compared
to 0.1 − 0.3 for solar and produce energy 90% of the time compared to 20 − 30% for wind and
solar [Drew et al., 2009].

Earlier it has been common to use a power matrix on a frequency-direction spectrum to cal-
culate the average capture factor of the device over longer periods of time [Babarit, 2015]. This
approach is unfeasible in a phase-resolving model, as the underlying distribution of the waves are
unknown. [Renzi and Dias, 2013] derived an expression for the capture factor of an OWSC in-
spired by the Oyster 2 placed in the open sea. The only necessary input for their calculations were
the parameters of the device itself, and the amplitude and period of the incoming wave field. This
information is possible to estimate from a wave-to-wave basis as the phase-resolving model return
the ocean elevation at every time step. Hence in this thesis we will continue the work of modelling
these OWSC in a phase resolving model, and compare their impact on the surf zone circulation
with the earlier results gathered from Sylt.
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Structure of thesis

The thesis is divided into 8 chapters. The first three is previous knowledge reproduced for this
thesis. Chapter 4 through 7 is four different parts written by me, each with their own discussion.
Before lastly chapter 8 is a summary of the paper. Below is a short description of their content:

Chapter 1: All necessary theory to understand the paper. This includes wave theory, Nwogus
equations, particle transport, how to transform coordinates from cameras to world coordinates, and
how to recreaste 2D wave spectra from 1D spectra.

Chapter 2: Main ideas behind the numerics of BOSZ.

Chapter 3: Contains three tests to verify that BOSZ can recreate the surf zone processes described
in Chapter 1.

Chapter 4: The influence of infra-gravity waves on particle transport is looked into. This is shown
by linear wave theory, a linear model, and BOSZ.

Chapter 5: Verification of BOSZ by tracking oranges outside the island of Sylt with cameras.
LiDAR data, buoys, and camera data are used in conjunction with numerical drifters to recreate
particle paths.

Chapter 6: The bathymetry of Sylt is used to see how the creating of vortexes in the surf zone is
influenced by the tide, directional spreading and main direction of the incoming waves.

Chapter 7: A numerical scheme to calculate the power of Oscillating wave surge converters is
developed, and a rudimentary approach to include them in BOSZ is found. Then by repeating the
simulation in Chapter (6) with a farm of these converters we show how these influence the surf
zone circulations.

Chapter 8: The plain language summary of the new results of the thesis.

3



1 Theory

1.1 First order linear theory

Figure 1: First order linear wave theory problem

In this section we follow [Kundu et al., 2015]

1.1.1 Fluid equations and boundary conditions

For all Newtonian fluids the Navier-Stokes equations describe the motion, which are written in
Cartesian coordinates as:

∂ρ

∂t
+∇ · (ρu) = 0 (1)

ρ
Du
Dt

= −∇p− ρgez + µ∇2u (2)

Assume we have an incompressible, irrotational, and inviscid fluid with constant density. Addi-
tionally, assume that the earths gravitation is the only body force. We also exclude wind generation
and surface tension. Further we make the limitations that the water should not leave the surface of
the waves, that it cannot penetrate the bottom, and that the pressure is continuous over the interface.
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Applying these restrictions to the full Navier-Stokes equations we get the following problem:

∇ · u = 0 (3)
∂u
∂t

+ u · ∇u = −∇p
ρ

− gez (4)

w =
∂η

∂t
at z = −d (5)

(−ux
∂η

∂x
+ uz) =

∂η

∂t
at z = η (6)

p = 0 at z = η (7)

Where η(x, y, t) is the wave height with reference to the mean ocean surface. Since the fluid
is assumed irrotational we can define a velocity potential ϕ(x, y, z, t). By the definition of the
velocity potential, we can substitute ϕ in the above equations (3-7), rewrite (4) into a Bernoulli
equation while inserting condition (7), to transform the problem to:

∇2 · ϕ = 0 (8)
∂ϕ

∂t
+

1

2
|∇ϕ|2 + gη = 0 at z = η (9)

∂ϕ

∂z
= 0 at z = −d (10)

−∂ϕ
∂x

∂η

∂x
+
∂ϕ

∂z
=
∂η

∂t
at z = η (11)

To solve this problem we want to move the boundary conditions using the Taylor expansions
for ϕ. We want to linearize the problem to simplify it, and we thus assume that u, w, η, and ϕ are
all of the same order and neglect all higher order term. This means that for example:

(
∂ϕ

∂z
)z=η = (

∂ϕ

∂z
)z=0 + η(

∂ϕ

∂z
)2z=0 + ... ≈ ∂ϕ

∂z z=0
(12)
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Then (8)-(11) simplifies to the linearized problem:

∇2 · ϕ = 0 (13)
∂ϕ

∂t
+ gη = 0 at z = 0 (14)

∂ϕ

∂z
= 0 at z = −H (15)

∂ϕ

∂z
=
∂η

∂t
at z = 0 (16)

1.1.2 The velocity potential and dispersion relation

Now assume that the waves profile propagates in the x-direction without loss of generalisation
as η(x, t) = asin(kx − ωt) and that ϕ(x, y, t) = A(z)η(x, t). Further we assume that the ratio
aλ is small, such that we can make the solutions linear. Substituting our assumption on η into
the Laplace equation (13) and using our linearity assumption in kinematic boundary conditions
(15,16), then we get the following solution:

ϕ(x, z, t) =
ωa

k

cosh[k(d+ z)]

sinh(kd)
sin(kx− ωt) (17)

The phase speed of the waves follows from noting where the phase of the waves remains constant.

∂(kx− ωt)

∂t
= 0 → c =

∂x

∂t
=
ω

k
(18)

Further, applying our solution of ϕ into the rewritten dynamic boundary condition (14) yields the
dispersion relation:

ω2 = gk tanh(kd) or c =

√
g

k
tanh(kd) (19)

This shows that waves move slower with decreasing depth. In addition, for deep waves, kd >> 1,
c ≈

√
g/k such that waves with longer wavelength move with faster velocity. Meanwhile for

shallow waves, kd << 1, c ≈
√
gd. Which means that in shallow water waves are non-dispersive.

When having a superposition of multiple waves, we have that the group velocity of those is:

cg =
∂ω

∂t
=

1

2

(
1 +

2kd

sinh(2kd)

)
c =

1

2

(
1 +

2kd

sinh(2kd)

)√
g

k
tanh(kd) (20)

Which means that the group velocity is always between 0.5c and 1c, for respectively deep and
shallow water.
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1.1.3 Particle velocity

A third way to describe the velocity of waves is that of the particles composing it. Taking the
spatial derivatives of ϕ readily gives us the particle velocity. ∂ϕ

∂x
= ux and ∂ϕ

∂z
= uz so that:

ux =
ωa cosh[k(d+ z)]

sinh(kd)
cos(kx− ωt) (21)

uz =
ωa sinh[k(d+ z)]

sinh(kd)
sin(kx− ωt) (22)

When solving the equations dx
dt

= ux and dz
dt

= uz it results in two interesting orbits for deep and
shallow water respectively:

x = ωaekzcos(kx− ωt) and z = ωaekzsin(kx− ωt) (23)

x =
ωa

kd
cos(kx− ωt) and z = ωa(1 +

z

h
)sin(kx− ωt) (24)

For deep water these velocities represent perfect circles with exponentially decaying radii, but
perhaps more interesting in shallow waters they represent ellipses with decaying semi-axis in the
z-direction. This results in straight lines at the bottom at the ocean. For water depths in between
these cases there exists ellipses of which both semi-axis decay.

1.2 Second order linear theory

1.2.1 Wave elevation and particle velocity

Through a series of papers in the 1960s [Longuet-Higgins and Stewart, 1960, Longuet-Higgins and
Stewart, 1961, Longuet-Higgins and Stewart, 1962, Longuet-Higgins and Stewart, 1964] Longuet-
Higgins and Stewart released a series of papers extending linear wave theory to second order in
terms of the wave elevation. Here they showed among other that groups of wave components in-
duce longer waves which is known as bound infra-gravity waves. Through the following method
they found the velocity induced by these additional wave components. In short, their work con-
sisted of solving equations (3) through (6) with the Stokes approximation:
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u = u(1) + u(2) + ... (25)

ϕ = ϕ(1) + ϕ(2) + ... (26)

η = η(1) + η(2) + ... (27)

p+ ρgz = p(1) + p(2) + ... (28)

Where the (1) terms satisfy the linearised equations and boundary conditions as in the previous
section, and the (1)+(2) terms satisfy the terms equations as to the quadratic terms. Using the
solutions of the previous chapter and extending eq. (13-16) to also contain quadratic terms they
found the following system of equations:

∇2 · ϕ(2) = 0 (29)

gη(2) = −(
∂ϕ(2)

∂t
+

1

2
(u(1))2 + η(1)

∂2ϕ(1)

∂z∂t
) at z = 0 (30)

(
∂2ϕ(2)

∂t2
+
∂ϕ(2)

∂z
) = −

[
∂

∂t
((u(1))2) + η(1)

∂

∂z
(
∂2ϕ(1)

∂t2
+
∂ϕ(1)

∂z
)

]
at z = 0 (31)

∂ϕ(2)

∂z
= 0 at z = −H (32)

u(2) = ∇ϕ(2) (33)

Solving these equations, details of which is left to the source, yield to the second order velocity
u(2) and wave elevation η(2):

8



ϕ(2) = −K
∑
m,n

amancg
gHθ − c2g

cosh∆k(z +H)

cosh∆kH

sin(∆kx−∆ωt)

∆k
(34)

u(2) = −K
∑
m,n

amancg
gHθ − c2g

cosh∆k(z +H)

cosh∆kH
cos(∆k −∆ωt) (35)

η(2) =
−K
g

∑
m,n

amanc
2
g

gHθ − c2g
cos(∆k −∆ωt)− 1

g

∑
m,n

amanc
2
g

sinh2kH
cos(∆kx−∆ωt) (36)

K =
ω2cosh(2kH)

2sinh2kH
+

1

4

d

dω

(
ω3

sinh2kH

)
=

σ2

4sinh2(kh)

sinh(4kH) + 3sinh(2kH) + 2kH

sinh(2kH) + 2kH

(37)

θ =
tanh(∆kH)

∆kH
(38)

Summing these then yield the total velocity and wave elevation up to the second order of wave
ampltitude. ϕ = ϕ(1) + ϕ(2) and u = u(1) + u(2). Interestingly this expressions means waves
interact with themselves and induces a constant in time second order velocity in the direction of
propagation. On the other hand, when there are multiple wave components they interact with each
other in such a way that the velocity oscillate with the wave number and frequency of the wave
envelope. This is in contrast to the first order effect where only the local wave amplitude determine
the local particle velocity. Either way this second order effect is caused by what Longuet-Higgins
and Stewart labeled radiation stress, and its effect is an infra-gravity wave which is bound with to
the wave envelope and propagades at its speed.

1.2.2 Stokes drift

While the first order approximation of particle movement in the long wave model tells us that
particle moves in closed orbits around a center point, this is never the case in real applications
as the particle drifts along the direction of the waves. To see this effect it is necessary to Taylor
expand dξ

dt
= ux again, but this time keep another term in the expansion of ux. The following are

due to [Ursell, 1953]:

dξ

dt
= ux(x, z, t) ≈ ux(x0, z0, t) + (x− x0)(

∂ux
∂x

)x0,z0 + (z − z0)(
∂uz
∂z

)x0,z0 (39)

Where (x0, z0) is the location of the particle when there is no waves present. This equation will
be expressed with u(1) and u(2) separately. The distances in eq. (39) for the first order effects can
be expressed as:
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x− x0 =
w t

0
u(1)(x0, z0, t

′)dt′ = −acosh[k(z0 +H)]

sinh(kH)
sin(kx0 − ωt) (40)

And similarly for z− z0. Solving eq. 39 and averaging it over 1 period of the wave component
yields the average Stokes drift due to the first order velocity in the horizontal direction per time as:

ūS
(1) =

∑
n

a2nωnkn
cosh(2kn(z0 + h))

2sinh2(k1h)
(41)

Similarly for the second order effect:

x− x0 =
w t

0
u(2)(x0, z0, t

′)dt′ =
w t

0
−K

∑
m,n

amancg
gHθ − c2g

cosh∆k(z0 +H)

cosh∆kH
cos(∆kx0 −∆ωt)dt

= −Kcg

[∑
m=n

aman
gh− c2g

t+
∑
m!=n

amancg
gHθ − c2g

cosh∆k(z0 +H)

cosh∆kH

sin(∆kx0 −∆ωt)

∆ω

]

Now the Taylor expansion (39) will create fourth order terms. This will be neglected as we are
only interested in effects up to second order. Thus while only keeping the second order terms, time
averaging this effect it is noticed that only terms where m = n is not cancelled and the Stokes drift
from the second order effects are:

ūS
(2) =

−Kcg
gh− c2g

∑
n

a2n (42)

And the total Stokes drift to second order are:

ūS =
∑
n

[
a2nωnkn

cosh(2kn(z0 + h))

2sinh2(k1h)
− a2n

Kcg
gh− c2g

]
(43)

Where the first term corresponds to the second order effect from the first order estimation of
the wave velocity, and the second term corresponds to the second order estimation.

1.3 Processes of changing properties

Before waves hit the shelf seas, their amplitude, direction, wave number are primarily generated
by wind, quadruplet wave-wave interaction, and white-capping. As they reach shallower waters
the limited water depth affects these processes and influence the evolution of the waves in new
ways. The limited water depth makes the waves move slower, resulting in energy bunching and
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Table 1: Relative importance of of various processes affecting the evolution of waves in coastal waters.

Process Oceanic waters Shelf seas Nearshore
Wind generation XXX XXX X
Quadruplet wave-wave interactions XXX XXX X
White-capping XXX XXX X
Bottom friction -/X XX XX
Bottom refraction / Shoaling - XX XXX
Breaking (depth-induced) - XX XXX
Triad wave-wave interactions - X XX
Reflections - - X/XX
Diffraction - - X

XXX = dominant, XX = significant, X = of minor importance, - = negligible
[Battjes, 1994] [Holthuijsen, 2010]

thus higher and potentially breaking waves, as well as the potential for new triad wave-wave in-
teractions. The waves can now also “feel” the bottom, where they begin to reflect and experience
bottom friction. This results in a model needing to take many more processes into account than in
the ocean.

1.3.1 Shoaling

Consider a wave approaching a beach with a gentle slope. This wave will have its frequency
retained, but due to the dispersion relation (19) its wavelength and phase speed will decrease since
the depth decreases. These changing wave properties results in horizontal energy bunching that
causes the amplitude of waves to increase while the wavelength decrease, an effect which is called
shoaling. By looking at waves approaching the beach normally and creating a control surface
where energy only enters and exits through the sides parallel to the beach, one can use conservation
of energy to derive this change of amplitude:

1

2
ρga22cg,2 =

1

2
ρga12cg,1 (44)

So that,

a2 =

√
cg,1
cg,2

a1 (45)

Where a2 is the amplitude towards the beach and a1 the ocean, and cg the group velocity as defined
in (20). Thus, shoaling has the effect of theoretically increasing the amplitude to infinity as the
depth decreases to zero. The theory breaks down before this can happen, and as the amplitude
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grows other effects that decrease the amplitude also increase in importance.

1.3.2 Refraction

If the wave approaches the beach at an angle the wave will change direction towards the beach.
Since the depth is decreasing towards the beach, the phase speed will be different along the wave
crest. This induces a turning since the waves closer to the beach now move slower. To explain
refraction it is necessary to define three-dimensional waves. Suppose the waves can be described
as:

η = Hcos(Ω) = Hcos(k · x − ωt) where k =

[
k1

k2

]
and x =

[
x

y

]
(46)

To see the role of k note that when we look along the crest of a wave, we have that Ω = 2nπ,
and that the normal vector of a scalar function is N = ∇Ω = k. So k is the vector normal to the
wave crest and is named the wave number vector. Further k = N

|N| = n|k| = nk, so k is nothing
more than the wave number oriented in the wave direction. [Dean and Dalrymple, 1991]

By noting that ∇× k = ∇× (∇Ω) = 0, since the curl of a gradient is 0, we get that:

∂[k sin(θ)]

∂x
+
∂[k cos(θ)]

∂y
= 0 →

k cos(θ)
∂θ

∂x
+ k sin(θ)

∂θ

∂y
= cosθ

∂k

∂y
− sinθ

∂k

∂x

(47)

By changing the coordinate system to one of (s,n), where s points along the wave direction and n
normal to it:

x = s cosθ − n sinθ

y = s sinθ + n cosθ
(48)

We can rewrite the above as:
(
dθ

ds
)ref = −1

c

∂c

∂k
(49)

Where m and n are coordinates along and normal to the wave crest. One can change this to Eulerian
coordinates by the following substitutions: ∆θ = dθ

ds
and ∆θ = ∆s

cg
:

dθ

dt
= cθ,ref = −cg

c

∂c

∂n
(50)

Where the reference system is along the ray of wave energy.
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So, a faster changing phase velocity will create a faster turning wave towards the location of
shallower ocean. Since the phase velocity changes faster as the depth decreases, this effect also
grows the closer to the beach the wave comes.

1.3.3 Wave interactions

Another way in which waves can be created is through non-liner wave-wave interactions, a process
where wave components transfer energy between them through resonance. Note that no energy is
added or removed from the system, it is only redistributed among them. There are two processes
where this can occur, named triad- and quadruplet wave-wave interaction. In the first a pair of
waves can form a diamond pattern with its own speed, length and direction with which a third
wave can interact, and in the last two pair of waves can interact with each other.

For quadruplet wave-wave interaction to occur the waves need to fulfil the matching criteria:

f1 + f2 = f3 + f4

k1 + k2 = k3 + k4

(51)

If these are fulfilled the waves will redistribute energy among themselves. Similarly for triad wave-
wave interaction the condition reduces to:

f1 + f2 = f3

k1 + k2 = k3

(52)

This condition is impossible to fulfil in deep water because of the dispersion relation (13), but
as the depth decreases it becomes close to being fulfilled and energy can begin to transfer. This
often results in a second peak at double the frequency in spectrum, and sometimes also at higher
multiples of two. A special case occurs when a unidirectional harmonic wave enters shallow water.
Then it is possible for the wave to self-interact to create a harmonic with double the frequency.
These so-called superharmonics are bound to the primary harmonic because of the shallow water
and make the waves profile have sharper crests and flatter throughs. But as we will see in the
bar-test Ch. (3.1) below, it is possible for these waves to become “free” and propagate independent
of the primary wave if the depth increases again.

1.3.4 Dissipation

There exist three primary phenomena of energy dissipation: white-capping, depth-induced break-
ing, and bottom friction. Among these breaking is the least understood, but some efforts have been
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made to explain it. Bottom friction is also a complicated phenomenon, which is dealt by various
methods in numerical schemes.

White capping is the breaking of waves because of their steepness. By looking at the fact that
the particle velocity ux (24) cannot be higher than the forward speed of the waves c (19) [Miche,
1944] showed that the maximum height of a wave is:

Hmax ≈ 0.14L tanh(
2π

L
) (53)

Waves can still white-cap below this limit, but Hmax seems to be the upper limit. [Holthuijsen
and Herbers, 1986]

[Hasselmann, 1974] theorizes that when waves white-cap they remove energy from the waves
by acting as pressure pulses. Just downwind of the crest the weight of the white-cap acts against
the rising sea surface and remove energy from the wave, which in turn is transferred to turbulence
and currents. The result is that of reducing the amplitude of the waves.

Depth-induced breaking is the most non-linear and poorly understood process, and most of
our information regarding them are based on empirical information [Holthuijsen, 2010]. Breaking
limits the maximum height of waves because when they reach a certain height they must break.
This maximum limit is in the range of 0.5 < Hmax

d
< 1.5 depending upon the local bottom slope

and surface conditions.
When waves break into spilling, plunging, collapsing, or surging the energy are again as in

white-caps transferred to turbulence and currents. To estimate this this energy loss one can model
the energy loss as the dissipation in a hydraulic jump. Further one says that every breaking wave
have a height Hmax. Then the energy loss is:

Dsurf,wave = −1

4
αBJρgf0H

2
max (54)

Where f0 is the zero-crossing frequency, and αBJ ≈ 1 is a tuneable coefficient.
Bottom friction is a term that covers all transfer of energy from the waves to the boundary

layer at the bottom of the ocean. Through motion of the particles in the ocean there is created a
thin turbulent boundary layer at the bottom, and the energy for this layer is provided by the waves
above it. The exchange of energy is determined by the rather complicated geometry of the bottom
and the wave field itself. In addition, these might again affect each other.

One way to model this exchange of energy is to make use of eddy-viscosity models. Here
one models the turbulent layer with parameters about the bottom. For sandy bottoms the only
parameters that seem to determine the friction is the normalized bottom roughness k̃ = kN

arms,bottom
,
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where kN is the bottom roughness length and arms,bottom is the root-mean-square amplitude of
near-bottom orbital excursion, and a parameter describing how much the waves can set the sandy
bottom in motion :

ψ = Cbfr,skin

u2rmns,bottom

( ρsand

ρwater
− 1)gDgrain

(55)

Where Cbfr,skin is the coefficient for skin friction. [Tolman, 1995]

1.3.5 Generation of IG waves by breaking

Another process which generate infra-gravity waves in addition to the radiation stress shown in
Ch.(1.2.1) is that of a varying surf zone. [Longuet-Higgins and Stewart, 1962] showed that their
infra-gravity waves are bound to the wave envelope as they travel, as their wave component are
therefor called a bound infra-gravity wave. But they also found while comparing their results to
measurements that the bound wave is released at the breakpoint of the wave, and become a free
wave. They do not however provide an explanation for this effect.

To answer this question [Symonds et al., 1982] develops a model by assuming that the point
where waves begin breaking can vary, which they do when the amplitude of the incoming waves
break. They found that the time variation of the breakpoint position can generate waves at the
group period of the incoming waves. This new wave component is free to propagate at its own
celerity, and would be reflected off the shore and propagate seawards.

[Symonds et al., 1982] compared their result to that of [Longuet-Higgins and Stewart, 1964] to
find the relative importance of the two. Looking at the factor ζF/ζ0 where ζF is the bound infra-
gravity components of Longuet-Higgins and Stewart, and ζ0 is the amplitude of the set-up about
to the mean set-up found by Symonds et al. At the shore ζF/ζ0 ≈ 0.25 for a wave period of 10s,
beach angle of 0.02 rad, and mean of the breakpoint at X = 100m. Assuming that the propagating
wave is not losing energy, the amplitude of the free wave will decrease like (hb/h)1/4. This causes
the same ratio to be ζF/ζ0 ≈ 0.41 at x = 10X .

Hence in the surf zone and near shore the effects of the free infra-gravity wave created by the
moving break point seems to be more important than the bound infra-gravity wave moving with
the wave groups.

1.4 Nwogus equations

In this chapter we begin with the work of [Nwogu, 1993] where he created a set of governing
equations describing the ocean surface. I will follow the work of [Roeber et al., 2010] to express
transported variables as conserved variables.
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These equations are derived from a Taylor expansion of the Euler equations of motion, and
thenceforth depth-integrated to remove the vertical dependence of the variables. The vertical ve-
locity is then assumed to vary linearly over the depth.

With a stationary bathymetry, and the assumption of small amplitude long period waves, the
equations of Nwogu in vector notation is expressed as:

ηt +∇[(h+ η)U] +∇ · {(z
2
α

2
− h2

6
)h∇(∇ · U) + (zα +

h

2
)h∇[∇ · (hU)]} = 0

Ut + U(∇ · U) + g∇η + {z
2
α

2
∇[∇ · (hU)]}t = 0

(56)

Where η is the free surface elevation, (u, v) is horizontal flow velocities, h is the bathymetry
depth from the reference still water level, and zα is the vertical reference position at which the
velocities are determined. zα is defined as a percentage of the reference depth s.t. zα = 0 is the
reference at the surface, and zα = −h is the reference at the bottom. Since zα approximates the
fully dispersive problem, one can choose the velocity variable uα to minimize the error for the
depths used in the current model. (See Ch. 1.4.4)

The advantage of these equations compared to the earlier Boussinesq equations by [Peregrine,
1967] is the extra dispersion term in the continuity equation which makes the model have lower
error in intermediate to deep water.

1.4.1 Conserved variable formulation

The equations of Nwogu are not stated in conserved form which becomes a problem when dis-
cussing wave breaking/discontinuities. These depth integrated Boussinesq equations cannot han-
dle wave overturning, so it is necessary to reformulate the equations in conservative form such that
these situations can be resolved. (See Ch. 2)

Volker et al. showed that Nwogus equations could be reformulated in terms of the conserved
qualitiesH,Hu,Hv instead of η, u, v,whereH = h+η. In conserved form the continuity equation
is expressed by rewriting the equation as:

Ht + (Hu)x + (Hv)y + ψc = 0

Where,
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ψc = [(
z2α
2

− h2

6
)h(uxx + vxy) + (zα +

h

2
)h((hu)xx + (hv)xy)]x

+[(
z2α
2

− h2

6
)h(uxy + vyy) + (zα +

h

2
)h((hu)xy + (hv)yy)]y

(57)

is a term describing dispersion in the continuity term.
For the momentum equation it is necessary to multiply Nwogus momentum equation by H

as well as his continuity equation by u and v respectively. Doing some algebraic and calculus
exercises yields the following systems for the momentum equation in the horizontal plane:

x− dir : Pt + (Hu2)x + (Huv)y +Hgηx + ψP2 −HtψP + uψc = 0

y − dir : Qt + (Hv2)y + (Huv)x +Hgηy + ψQ2 −HtψQ + vψc = 0

Here P and Q involves all terms of that variable with time derivates, and are equal to:

P = (Hu+
z2α
2
[Huxx] + zα[H(hu)xx]) (58)

Q = (Hv +
z2α
2
[Hvyy] + zα[H(hv)yy]) (59)

ψP and ψQ contains all terms parabolic terms not dependent on time:

ψP =
z2α
2
uxx + zα(hu)xx (60)

ψQ =
z2α
2
vyy + zα(hv)yy (61)

Simiarly ψP2 and ψQ2 contains the time dependent xy-terms:

ψP2 =
z2α
2
Hvxyt + zα(Hhv)xyt (62)

ψQ2 =
z2α
2
Huxyt + zα(Hhu)xyt (63)

Finally, ψc is the term from the continuity equation (57).
Now the continuity equation together with the momentum equations can be written in a con-
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servative vector form as:

Ut + F(U)x + G(U)y + S(U) = 0 (64)

Where,

U =

HP
Q

 F(U) =

 Hu

Hu2 + 1
2
gη2 + gηh

Huv

 G(U) =

 Hv

Huv

Hv2 + 1
2
gη2 + gηh



S(U) =

 ψc

−gηhx + uψc −HtψP + ψP2

−gηhy + vψc −HtψQ + ψQ2

 (65)

The variables U now contain the evolution variables, F(U) and G(U) the homogenous parts of
the nonlinear shallow water equations and S(U) contains the local acceleration and source terms.

1.4.2 Additional source terms

Additional terms can be added to equations to add or remove mass given that the units are consis-
tent with the other terms. While BOSZ include four additional source terms, I will describe just
the two which is necessary for this paper.

[Wei et al., 1999] proposes that the wavemaker can be introduced to Boussinesq models through
a source function in the continuity term. This source function is analogous to adding or subtracting
mass, which it does over a bell curved area to ensure a smooth transition between the wavemaker
and the rest of the model.

The produced wavefield are generated through a superposition of individual waves of single
frequencies, amplitudes, and direction through the equation:

ψwm =
Mω∑
i=1

Mθ∑
j=1

D cos(ky sin θ − ωt+ ϕ) (65)

Where D, k, ω, ϕ are the amplitude, wave number, angular velocity, and a phase shift of the
waves respectively. See Ch. (2.1.6) for how to include it numerically.

Another useful term to model is the bottom friction based on the manning friction n. τ1 and τ2

18



describe this friction in x- and y- direction, and is given by:

τ1 = gn2H− 4
3u

√
u2 + v2

τ2 = gn2H− 4
3v
√
u2 + v2

(66)

These equations describe the friction associated with surfaces and roughness’s much smaller
than the depth. To include these into the model it is necessary to add them in the source term S(U)
described in Ch. (1.4.1) multiplied by the variable H . To describe friction across large objects or
flow through porous mediums other models must be used as described in Ch. (1.4.3).

1.4.3 Flow through porous layers

The governing equations of the fluids can be modified to incorporate the effects of partial transmis-
sion and reflection about a porous layer. The BOSZ model incorporates the idea from [Nwogu and
Demirbilek, 2001], where the equations are written in terms of the discharge velocities to ease the
matching of velocities across the structure interface. This is done by replacing u with u/n, where
n is the porosity of the structure. Further they add energy dissipation terms to the momentum
equation to account for friction inside the structure:

ηt +∇ · (uf

n
) = 0

ηα,t + ng∇η + uα · ∇(
uα

n
) + zα[∇(uα,t · ∇h) + (∇ · uα,t)∇h]

+
1

2
[(zα + h)2 − h2]∇(∇ · uα,t) + nfluα + nftuα|uα| = 0

(67)

Where fl and ft are respectively laminar and turbulent friction factors. [Engelund, 1953] recom-
mended that the factors should follow the following empirical relationships:

fl = α0
(1− n)3

n2

ν

d2
ft = β0

1− n

n3

1

d
(68)

Where ν is the kinematic viscosity of water, d is the characteristic stone size, α0 and β0 are
empirical constants that range from 780 to 1500 and 1.8 to 3.6 respectively.

In the BOSZ model this is incorporated by an array of values for the above four variables,
which can be updated for each time step. The new system is then solved for every location deemed
to consist of a porous layer, typically a breakwater.

In this thesis I will also use this method to simulate an OWSC, since its mechanics also consist
of partial transmission and reflection (see Ch. 7).
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1.4.4 Dispersion properties

Linearizing the equations found in Ch. (1.4.1) and considering the depth as constant and in one
dimension as in [Nwogu, 1993] yields the following linear system:

ηt + huαx + (α +
1

3
)h3uαxxx = 0

uαt + gηx + αh2uαtxx = 0
(69)

Where α = 1
2
( zα
h
)2 + zα

h
and zα = −0.531h.

Now we look specifically at the single steady period waves:

η(x, t) = a sin(kx− ωt)

u(x, t) = b sin(kx− ωt)
(70)

Inserting these into the above equations yield:

−aω + hbk − (α +
1

3
)h3bk3 = 0

−bω + gak + αh2bωk2 = 0
(71)

Which if we solve for the velocity magnitude b is:

b =
aω

kh(1− (α + 1
3
)h2k2)

(72)

And thence the celerity of Nwogus equations:

CNwogu =

[
gh

1− (α + 1
3
)h2k2

1− αh2k2

]1/2
(73)

This is now compared to the celerity of linear wave theory discussed seen in eq. (19) such that
Relative error = CNwogu/CLinear. The relative error of Nwogus celerity is plotted below. As one
can see in Fig. (2), the celerity of Nwogus equations is overestimated for short waves. This error is
negligible, below 1% error, while the waves are in shallow waters where kh < π. It grows steadily
in intermediate waters π < kh < 2π up till around 12% error, at this point a 100m wavelength
wave would be modelled to have a 112m wavelength.
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Figure 2: Relative celerity error for zα = −0.55502h,−0.531h,−0.5208h

Now the celerity has a high sensitivity on zα. Changing this value changes the shape of the
error curve, and generally a higher value of zα makes the error less for higher kh-values. For
example, looking at zα = −0.5208h instead makes error between ± 8% for intermediate depth,
while sacrificing accuracy for long waves.

It is therefore a matter of discussion what value of zα is best to use, as for a given situation there
will be a range of different khs in the domain and hence a range of zαs. Different average optimal
values have thus been proposed, for example [Nwogu, 1993] originally proposed zα = −0.531h

while [Roeber and Cheung, 2012] proposed zα = −0.5208h to emphasize intermediate waves
and [Simarro et al., 2013] recommended a value of zα = −0.55502h to improve shoaling of high
frequencies. In this paper I chose to use Nwogus original proposal, as this seem to be in the middle
of the other two approaches and it prioritises long waves in shallow depths.

1.5 Lagrangian particle

While studying the effects of gravity waves on the motion of inertial particles [Santamaria et al.,
2013] found a system of differential equations which describe their paths evolution.

By starting at the linear theory of ocean waves with the assumption of small amplitude long
period waves, and specifically a monochromatic wave, they found that the motion of the inertial
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particle is given by:

dx
dt

= V

dV
dt

=
u − V
τ

+ β
du
dt

(74)

Where x are the particles location, V and u are respectively the particles and wave velocity. In
the latter equation τ = a2/3βν is the Stokes response time, where again a is the particles radius
and ν is the kinematic viscosity of the fluid. β = 3ρf/(ρf + 2ρp) in both the differential equation
and the response time is a correction factor to the fact that the local density is changed by the
particle.

Note that (Boffetta et al., 2013) dealt with the full 3D-case, but I have reduced the system to
account for the fact that the model used in this thesis does not solve for the z-position.

In the following code (Ch. 2) I incorporated these equations into BOSZ by solving them for
each timestep with a simple Euler forward scheme. Note that since these equations are ODE’s for
V and can be expressed as dV

dt
= −aV + F, 1 > a > 0, where F is treated as a constant forcing

term, these equations are stable for all timesteps with Euler forward [Gustafsson et al., 1995].

1.6 Recreation of drifters path in ocean

A central problem for the verification of the model (2) is the comparison of movement of actual
drifters recording through a stereo camera setup to the simulated Langrangian drifters described
above Ch. (5). To perform this comparison, it is necessary to transform the pixel coordinates of the
two cameras to 3d world coordinates. This is done with the same method described by [Bjørnestad
et al., 2021].

To transfer a real-world coordinate to the pixel coordinate it is necessary to linearly transform
them by two means: an extrinsic matrix to transform the world coordinates to camera coordinates,
and an intrinsic matrix to compensate for distortions on the cameras vision. This transformation
looks like: uv

1

 =

fx s cx

0 fy cy

0 0 1


r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3



X

Y

Z

1

 (75)

Where (u, v) are our pixel coordinates and (X, Y, Z) the world coordinates. The right matrix
is the extrinsic coordinates and consists of rotation and translation elements rij and ti respectively

22



which rotates and translate the world coordinates to match the cameras field of view. The left
matrix is the intrinsic matrix which consists of compensation for the focus fx, fy of the camera
which changes how large objects appear. The cx,cy elements translates the location of the pinhole
if it is not in the middle of the camera. Lastly s compensates for the skewness of camera axes.

These parameters might be different for different locations in the cameras view as well, due to
imperfections in the camera’s construction. It might therefore be necessary to create multiple such
transformations for different locations in the field of view.

Now to go the other way it is necessary to use a stereo camera to determine the third world
coordinate. This is done by using geometry and the fact that the two cameras are defined to have
the same Y and Z coordinates. Then the Z value of the world point of one pixel is:

Z =
fxb

d
(76)

Where Z is the coordinate in the cameras world coordinate system, fx is the focal length of
this camera, b is the distance between the cameras and d is the disparity of x-coordinates between
the two cameras.

In this paper this model is on the other hand left to MATLAB to solve with its inbuilt Camera
Calibration library. Here they provide both functions to calibrate, that is to find the intrinsic and ex-
trinsic matrices of the stereo cameras, and to triangulate, which is to change from pixel coordinates
to world coordinates. But when working backwards from pixel coordinates to world coordinates
the model described above does not know which world coordinates to solve for. Hence MATLAB
describes the world points in the following coordinate system:

x: towards camera 2 from camera 1
y: downwards of camera 1
z: outwards of camera 1

Hence it is necessary to perform a change of basis. If multiple ground control points inside the
pictures have known coordinates in both the cameras coordinates and for example in WGS84, then
it is possible to change the coordinates through:

PC→WGS84[x]C = [x]WGS84 (77)

Where the change of basis matrix the same described in [Lay et al., 2016].
Thus, if the cameras are calibrated and the pixel locations of drifters are known it is possible to

calculate the corresponding location in world coordinates.
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1.7 Recreating 2D spectra from 1D spectra

A common problem in is the fact that buoys often record a local wavefield with a 1D spectrum
instead of a full 2D spectrum. Hence it is necessary to somehow recreate the full 2D spectrum.
Consider the two-dimensional simple harmonic wave propagating in x, y-space:

η = a cos(ωt− kx+ α) (78)

Now since every wave carries energy, an entire wavefield can be described using the two pa-
rameters θ and f from k and ω respectively. The two-dimensional variance density is the function:

E = E(f, θ) [m2/Hz/angle] (79)

Describing the concentration of energy for one frequency and angle. Further the one-
dimensional frequency spectrum can be defined as:

E = E(f) =
w 2π

0
E(f, θ)dθ (80)

[Holthuijsen, 2010]. Which implies that,

E(f, θ) = E(f) ·D(θ) where
w 2π

0
D(θ)dθ = 1 (81)

Recreating the two-dimensional from a one-dimensional spectrum is then a matter of finding
the function D(θ), which is generally unknown. [Pierson Jr et al., 1971] attempted to estimate the
function as:

D(θ) =

 2
π
cos2θ if |θ| ≤ π

2
,

0 else

Hence if one knows at least the 1-dimensional spectrum it is possible to estimate the two-
dimensional spectrum with the assumption that the directional function is described by a cos2x
function.
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2 BOSZ model

Figure 3: First lines of the BOSZ code.

2.1 Numerical method

The BOSZ method uses a variety of numeric methods to solve its governing equations. It uses
finite volumes and finite differences for the different terms. The finite volume methods solve for
the fluxes with a Riemann solver at all cell interfaces. Here it uses a reconstruction method to find
the Riemann solutions. To solve for the time steps, it further uses a direct finite difference scheme.

Looking back at Ch.(1.4.1) the terms F(U) and G(U) are solved using the Riemann solver
supported finite volume scheme, and the acceleration and source terms inside S(U) are solved with
a finite difference, except ψP2 and ψQ2 which are dealt with separately.

2.1.1 Finite volume calculation

The governing equations have the nonlinear shallow water equations as a subset, which are
flux driven non-linear hyperbolic systems. The additional parts of Nwogus equations introduce
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parabolic dispersion terms, but these corrections are rather small in comparison. This means that
our model is prone to develop discontinuities [LeVeque and Leveque, 1992], and our solver there-
for need to be able to resolve these shocks which develop naturally in water because of the effects
discussed in Ch. (1.3.4).

One such numeric scheme which can resolve hyperbolic shocks are the finite volume method.
This caters to the problem since the method works on conservative systems, and it approximates
breaking waves by moving them along the domain as discontinuities [LeVeque and Leveque,
1992]. It is also the reason they needed to rewrite Nwogu’s equations in conservative form, since
the finite volume methods demands it.

Here I derive the finite volume method used in the BOSZ model. Starting with the governing
equation (64), integrate across the area of one cell, which is constant in size to every other cell:

w
A

UtdA+
w
A

F(U)xdA+
w
A

G(U)ydA
w
A

S(U)dA = 0 (82)

Now define Ū = 1
n

r
A

UdA, S̄ = 1
n

r
A

SdA, and H(U) =

[
F(U)

G(U)

]
, then the above equation is

identical to:
AŪt +

w
A
∇ · H + AS̄ = 0 (83)

Using Gauss divergence theorem on the remaining integral yields:

w
A
∇ · H =

z
∂A

H · ndl (84)

Where n denote an outward facing normal. By further assuming that H is constant along each
boundary they can rewrite the equations into:

Ūt = − 1

A

∑
l

Hl − S̄ (85)

Here l is the length of each side and A the area of the cell. Writing out the summation sign and
introduction location indexes they get:

¯Ui,jt = − 1

∆x
(Fi+ 1

2
,j − Fi− 1

2
,j)−

1

∆y
(Gi,j+ 1

2
− Gi,j− 1

2
)− S̄ (86)

Where the index i+1/2 and j +1/2 mean the value of the variable at the interface in between the
cells. The equations now state that the average value of our cell only changes by how much mass
enters through the boundaries, an effect called flux, and how much our source creates or deletes.
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The problem now consists of finding the values of this flux at the interfaces.

2.1.2 Flux calculation

The process of finding the flux is threefold: first a linear function is estimated over the cell to limit
diffusion, then this function is slope-limited to limit oscillations, before these values are solved
with a Riemann-problem solver.

The method used for reconstructing the fluxes are called MUSCL-TVD (Monotonic UpStream
Centered Limited Total-Variation Diminishing). Instead of simply treating the value in each cell of
constant or doing a simple interpolation, the idea of MUSCL-TVD is to find a second order linear
approximation inside each cell. The forwards and backwards slopes are defined as:

fi,j = ui+1,j − ui,j

bi,j = ui,j − ui−1,j

(87)

Here only the x-direction is shown, as this generalizes well to two dimensions. Further the ratio of
slopes is:

ri,j =
bi,j
fi,j

(88)

Now the slope inside the domain is generally a linear combination of the backwards- and forwards
difference given as:

∇i, j = (1− Ω)fi,j + (1 + Ω)ni,j

2
(89)

Where Ω is a parameter which determines this linear combination. Inside BOSZ this parameter is
Ω = 1 which means only the backwards slope is used.

Now this approach has the problem that it is likely that the values at the interfaces are overshot
and undershot from each side, which will introduce oscillations and instability to the scheme. To
avoid this Total-Variation Diminishing slope limiters are used. Total variation is given as TV (u) =∑

|ui+1−ui|, and a scheme is total variation diminishing if TV (ui+1) ≤ TV (ui). Now this means
that no further oscillations are added into the code [Gustafsson, 2007].

To ensure this a slope limiter ϕ(ri,j) is applied to our slope (89). The scheme to determine this
slope limiter is called Superbee-SLIC which is defined as:
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ϕ(r) =


2r if r ≤ 1/2,

1 if r ≤ 1,

min(0.5(1− Ω + (1 + Ω)r, r, 2) else

The final slope is then ∆i,j = ϕ(ri,j)∇i,j such that the values at the interfaces is equal to:

ui+1/2,j = ui,j +
∆i,j

2

ui−1/2,j = ui,j −
∆i,j

2

(90)

Now the last step is to solve the Riemann problem at each interface. This is done with two different
Riemann solvers, the HLLC scheme of [Toro, 1997] for regions of breaking waves and second
order upwind [Gustafsson, 2007] for the rest of the computational domain. Numerical details of
the methods can be found in the respective sources.

The HLLC scheme of Toro is accurate at solving the discontinuities of the wave field and is
robust for flows over irregular bathymetry. But it was specifically developed for solving shocks
and is therefore not optimised to reduce numerical diffusion. The more oscillatory motion there is
in the wave field, the more energy is lost with a pure HLLC approach. Therefor at locations not
dealing with the issue of wave breaking the Riemann solution is instead solved with the second
order upwind scheme. This means that the HLLC scheme is only used along the wavemaker, the
sponge layer, and everywhere where the depth is lower than 2Hs in accordance with Ch. (1.3.4).
In essence this makes the approach less diffusive by only keeping the high diffusive solver where
it is necessary, and the computational cost lower as well.

2.1.3 Source term calculations

The source vector is the same as described in 1.4.1:

S(U) =

 ψc

−gηhx − uψc −HtψP + ψP2

−gηhy − vψc −HtψQ + ψQ2

 (65)

where,
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ψc = [(
z2α
2

− h2

6
)h(uxx + vxy) + (zα +

h

2
)h((hu)xx + (hv)xy)]x

+[(
z2α
2

− h2

6
)h(uxy + vyy) + (zα +

h

2
)h((hu)xy + (hv)yy)]y

(57)

ψP =
z2α
2
uxx + zα(hu)xx ψQ =

z2α
2
vyy + zα(hv)yy (60 - 61)

ψP2 =
z2α
2
Hvxyt + zα(Hhv)xyt ψQ2 =

z2α
2
Huxyt + zα(Hhu)xyt (62 - 63)

Here every term in S(U) can be estimated with finite central difference methods without the time
dependent ψP2 and ψQ2. By default second order central difference is used, but by input higher
orders is possible to use.

For the cross terms and time dependence in ψP2 and ψQ2 a first order upwind scheme is used.
These terms only contain terms containing cross spatial derivatives together with a time derivative.
They are calculated at the end of one-time loop for the next loop.

The time derivative of these terms are the hard part, and they are calculated as follows for every
cell to second order accuracy:

ut =
un+1(∆tn)2 + un[(∆tn+1)2 − (∆tn)2].un−1(∆tn+1)2

∆tn+1 ·∆tn · (∆tn+1 −∆tn)
(91)

And similarly for (hu)t,vt and (hv)t. Since these are calculated at the end of the time step, the
(n + 1) terms are already calculated and can be used for the next loop. In essence this means that
the backwards difference is used in time.

When this is calculated for every cell, it is then a repeat of the central differences above to
calculate the remaining xy derivatives with the central difference.

2.1.4 Scheme in time

Now to progress the modelling in time a direct Runge-Kutta time integration is used. These
schemes are particularly useful for the modelling of wavefields as can easily be implemented with
a dynamic time step, which will be necessary given the constant changing of the maximum flow
speed of the waves. While BOSZ includes TVD version of second, third, and forth-order time
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integration methods, the second order is most common in the code and is calculated as:

w′ = wn +∆t · T (wn)

wn+1 =
[(w′ + wn) + ∆T (w′)]

2

(92)

Where wn is any of the three variables of (86) in timestep n and T (wn) is the R.H.S. of the same
equation. This means that all the above calculations must be done twice, once for the predictor w′

and once for the final value of wn+1.
To determine the time step ∆t an adaptive time step based on the CFL condition [LeVeque and

Leveque, 1992] is used. To calculate this condition the fastest moving information propagation
must be known, and BOSZ uses the speed from the nonlinear shallow water equations for this
basis, where:

Umax = max(
√
u2i,j + v2i,j +

√
gHi,j) (93)

Which is the velocity of the particles plus the shallow water celerity. Then the CFL conditions
become:

∆t = c ·min(
dx

Umax

,
dy

Vmax

) (94)

Where c is the Courant number, a number 0 < c ≤ 1 meant to ensure that information does not
propagate longer than one grid cell. In BOSZ the Courant number is defaulted to 0.5.

2.1.5 Retrieving physical variables

The variables solved for through Ch. (2.1.1 - 2.1.4) are just the variables H ,P , and Q, but we want
to know η, u, and v. To find η is as trivial as to solve η = H − h for every grid cell, but u and v is
instead defined by the equations:
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Pi,j =Hu+
z2α
2
[Huxx] + zα[H(hu)xx] ≈

(Hui,j) +
z2αi,j

2
[Hi,j

ui+1,j − 2ui,j + ui− 1, j

2
]+

zαi,j
[Hi,j

(hu)i+1,j − 2(hu)i,j + (hu)i−1,j

2
]

Qi,j =Hv +
z2α
2
[Hvyy] + zα[H(hv)yy] ≈

(Hvi,j) +
z2αi,j

2
[Hi,j

vi,j+1 − 2vi,j + vi, j − 1

2
]+

zαi,j
[Hi,j

(hv)i,j − 2(hv)i+1,j + (hv)i,j−1

2
]

(95)

Which when approximated with a central difference define the linear system Cxu = P and
Cyu = Q. Note that all the coefficients of the variables are constant for every time step and need
not be calculated again for either any time step or for any of the two parts of the time integration.
Also note that the two systems are independent, so they can be solved in any order or side by side.

For i = 1,M and j = 1, N the scheme must be altered and instead of the above:

P1,j =H1,jzα1,j
[

1

zα1,j

−
zα1,j

∆x2
− 2h1,j

∆x2
]u1,j+

H1,jzα1,j
[
zα1,j

2∆x2
+
h2,j
∆x2

]u2,j

PM,j =HM,jzαM,j
[

1

zαM,j

−
zαM,j

∆x2
− 2hM,j

∆x2
]uM,j+

HM,jzαM,j
[
zαM,j

2∆x2
+
hM−1,j

∆x2
]uM−1,j

(96)

And similarly for Qi,1 and Qi,N The systems are solved by Thomas’ algorithm and stored for
each time step.

2.1.6 Internal wave generation

In Ch. (1.4.2) it was shown that the wavemaker term could be included in the model as:

ψwm =
Mω∑
i=1

Mθ∑
j=1

D cos(ky sin θ − ωt+ ϕ) (65)
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Though this add and removes mass, the sum of these effects is zero over one period. Hence
if one places this wavemaker at the start or end of the computational domain it can be seen as
modelling the incoming and outcoming mass from the deep ocean. To include this into the model
it is necessary to discretize it, which is done as:

ψwmi,j
=

Mω∑
i=1

Mθ∑
j=1

Di,j cos(kiyj sin θj − ωit+ ϕi,j) (97)

Mω and Mθ denotes here the number of frequencies and directions which the wave spectrum is
composed out of. θ(i, j) is a random phase angle which is necessary since the angle of individual
waves are generally unknown. For example, wave spectral from buoys or SWAN do not contain
information regarding phases. These are thus calculated at the beginning of the simulation and
kept constant after this. To make the sure the model is repeatable, the random number seed is set
to a fixed number such that two different runs will yield the same results, even though the phases
are still randomly chosen.

To ensure the smooth transition from the wavemaker to the rest of the model, [Wei et al., 1999]
wrote the source term as two terms: G(x) a shape function which describes the distribution of the
generating area and s(y, t) explaining the strength of the generation:

ψwmi,j
=

Mω∑
i=1

Mθ∑
j=1

G(x)i,js(y, t)i,j (98)

G(x) = e−βi,j(xi−xs)2 (99)

s(y, t) = Di,j cos(kiyj cosθj − ωit+ θi,j) (100)

Here βi,j ≈ 80
δ2L2 , where L is the wavelength of the individual wave, and δ is a factor for the width

of the wavemaker set to 0.5. Lastly xs is the centre of the wavemaker. Further Wei et al. found
that:

Di,j =
2ai,j cos(θj)(ω

2
i − (α + 1

3
)gk4i h

3
j)

ωikiBi(1− αk2i h
3
k)

(101)

where Bi =
√

π
β
e−

l2i,j
4β and li,j = ki cos(θj)

A strength of this approach to wave generation is that since this source only adds and removes
mass to represent the wave spectrum, it is nothing stopping other waves to travel through the
wavemaker. For example, after simulating for a while some waves may be reflected from inside
the domain and come back towards the wavemaker. This approach allows this wave to pass through
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to the sponge layer behind the wavemaker to be absorbed, hence it simulates an open ocean.
But an issue to be aware with for discrete frequency bins is that the smallest bin determines

when the incoming time series is repeated. Thus, a recycling of the time series occurs after T =
1

min(∆fi)
seconds. To avoid this, it is therefore necessary to ensure that there are enough bins to

avoid this recycling for the planned computation time, which can be achieved by re-sample the
spectrum through interpolation. Failure to do this might lead to artificial wave groups cluttering
the output of the model.

2.1.7 Boundary conditions

The model allows for some different boundary conditions for each wall of the computational do-
main. These consists of reflective, radiating, or sponge layers at the end of the domain, as well as
dry cells inside the domain. The easiest of which is the reflective boundary layers, of which the
only necessary change is to change the sign of u and v on the boundary cells. Absorbing boundary
conditions are Radiation- or sponge layers. Radiation boundary layers can also be directly im-
posed on the boundary as η = −u

√
H/g and η = u

√
H/g in the positive and negative x-direction

respectively, and similarly in the y-direction. While this is very computationally efficient, the fact
that these are based on hydrostatic flows means that they are more reflective than the alternative.
Sponge layers are cosine functions imposed on the flux terms to transition the wave field to zero at
the boundaries. These are almost not reflective at all and mimic the effect of having an open ocean
around the computational domain.

Lastly there’s the matter of dry cells in the domain. Since these there is no water to be simulated
on these, BOSZ keep track of which cells contain water and only simulate those and the dry cells
next to them. No more is necessary to simulate as the CFL makes sure the water can’t travel further
in one time step. To avoid dividing by zero, all cells are set to a negligible minimum water level of
Hmin and at the end of the computational step any cell with lower water level than H < 3

2
Hmin is

treated as a dry cell. This ensures that numerical errors won’t change the cells dryness.

2.2 Wave breaking

As discussed in Ch. (2.1.1) resolving wave breaking is hard in Boussinesq models since they can
only be modelled as a discontinuity. Two problems come into action at once, first how to prevent
a blow-up of the solution and secondly also how to further simulate it and lastly how to deal with
the derivatives in the source terms which becomes large when the wave front becomes steeper and
steeper. [Roeber, 2021]
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There exist two potential solutions to these problems, deactivating the source term or adding
diffusive eddy terms. Deactivate the source terms of the governing equations locally reduces the
equations to the hyperbolic swallow water equations. A purely hyperbolic PDE allows discontinu-
ities and, however the abrupt change of where and where not the source term is calculated can lead
to instabilities in the model. Adding the eddy viscosity terms on the other hand keeps dispersion
active in every cell. In addition, the dispersive nature of the eddies counter acts the formation of
discontinuities and removes the instabilities of them [Roeber and Cheung, 2012].

2.2.1 Identification of breaking waves

The problem of identifying when the waves are beginning to break in depth-integrated models is
notoriously difficult. Since overturning is impossible breaking is an approximation no matter what
criteria and solution is used, but recent advances show that a kinematic or dynamic criteria works
best [Varing et al., 2021] [Barthelemy et al., 2018]. The criteria included in the BOSZ model are
either the Momentum gradient, Froude number, or the water depth to wave height ratio depending
on the input to the model.

The momentum gradient criterion is that every cell is turned off if one of the following criteria
is met:

|(Hu)x| > 0.5
√
gH

|(Hv)y| > 0.5
√
gH

(102)

Where the factor 0.5 is chosen by the creator of the model by comparison with experimental data,
and the derivatives are discretized with an upwind method as:

(Hu)x =
(Hu)i+ 1

2
,j−(Hu)

i− 1
2 ,j

∆x
(103)

And similarly for (Hv)y. This condition is then checked for every cell for every time step.

The Froude number can also be calculated at the surface by evaluating the velocities at the free
surface. This can be done via the assumption of a quadratic velocity distribution in the z-direction
as:

uη = uzα
1

2
(z2α − z2η)[(uzα)xx + (vzα)xy)] + (zα − zη)[(huzα)xx + (hvzα)xy]

vη = vzα
1

2
(z2α − z2η)[(uzα)xy + (vzα)yy)] + (zα − zη)[(huzα)xy + (hvzα)yy]

(104)
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Where uzα is the velocity at z = zα and uη is at z = η. The Froude number can then be calculated
as:

Fr =

√
uη2 + vη2

gh
(105)

Which measures how fast the particles in the waves moves in comparison to the waves celerity. If
Fr > 1 the flow is supercritical and breaking occurs as the particles overtake the wave front, but
[Varing et al., 2021] proved that at for Fr > 0.85 breaking will inevitable occur. A number in
between these two values thus seem to represent the onset of breaking correctly. While the best
value is not proven, BOSZ operates with Fr = 1 as the trigger value.

Lastly the third criterion is the ratio of the local wave height and water depth. But this is hard
to calculate in a model as the crest and through corresponding to a single wave is unknown unless a
tracking algorithm is implemented as well. Therefor the linear threshold of a/h > 0.78 is generally
not the same as 2η/h > 0.78 as the waves profile might not be symmetric about the mean water
height. Nevertheless [Roeber, 2021]) proposes that a compensation of η/h > 0.6 might account
for the disparity.

A comparison of these three different methods of identifying breaking is given in Ch. (3.2).

2.2.2 Turbulent kinetic energy

Now to answer the question regarding how to deal with the problem of discontinuous wavefronts,
one potential solution is to add a diffusive term which prevents the creation of a sharp front. When
this is prevented, the problem of the source term growing arbitrary large is also prevented. One
such diffusive term is an eddy viscosity model coming from the work of [Zelt, 1991] and [Kennedy
et al., 2000]. The term they proposed is added to the momentum equation and looks like:

Rb =

∣∣∣∣∣∣∣
0

[νtHu
α
x ]x + [1

2
νtH(uαy + vαx )]x

[νtHv
α
y ]y + [1

2
νtH(uαy + vαx )]y

∣∣∣∣∣∣∣ (106)

This diffusion term involves the time-varying eddy-viscosity νt which determine the strength
of the diffusion. This term is again connected to the Turbulent Kinetic Energy (TKE) k through
the relation defined by [Pope and Pope, 2000] as:

νt =
√
kH (107)
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Now the governing equation of TKE is given by Pope as:

kt = −A− E + P +D (108)

Where the right-hand side variables denote advection, elimination, production, and diffusion of
TKE respectively.

All of these terms are active and calculated every time loop in every cell, except the production
term. This means that as waves travel through the domain, do not get influenced by the TKE until
they activate the production term. They then continue to lose energy to diffusion even after the
production term is deactivated until enough energy is diffused that the TKE term is negligible.

The production term is assumed to be proportional to the vertical gradient of the horizontal
water particle velocity at the crest and is activated whenever the local Froude number exceeds 1,
as shown in the previous chapter [Nwogu, 1996]. The term which Nwogu developed looks like:

P = BH2
√

(uz|η)2 + (vz|η)2 · [(ux + vy)(ux + vy) + (uy + vx)] (109)

Where B = 0, 1 depending upon the trigger defined earlier. The vertical gradients of the hori-
zontal velocities are found from the truncated Taylor series in combination with the irrotationally
condition such that :

uz|η = −η[uxx + vxy]− [(hu)xx + (hv)xy]

vz|η = −η[uxy + vyy]− [(hu)xy + (hv)yy]
(110)

Further [Nwogu, 1996] calculated the advection term, elimination term, and diffusion term as:

A = ukx + vky (111)

E =
k3/2

H
(112)

D = ν(kxx + kyy) (113)

Where ν = 0.001[m2/s] is the kinematic viscosity of water, and constant terms have been changed
to agree with information available in BOSZ [Roeber, 2021].

Now all derivatives in these terms are solved using finite differences in each time loop for all
cells. These equations, and in particular the governing equation of TKE, state a fourth governing
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equation for our model. The time dependency of kt is solved for by the second order Runge-Kutta
method just like the other governing equations, where the RHS are determined by the equations
above.

This yields a systematic way of moving along diffusive terms and remove energy at locations
moving along with the waves, which simulates white water. So this makes a method to deal with
wave breaking which always acts across the domain by varying degrees.
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3 Test cases

In this chapter I simulate three test cases to verify that the BOSZ model can simulate the earlier
mentioned fluid processes in Ch. (1.3) to a satisfactory degree.

3.1 Bartest

Figure 4: Sketch of the bartest. (a) The laboratory setup. (b) The numerical set up. Circles and numbers
denote gauges.

[Beji and Battjes, 1993] created a laboratory experiment in which they investigated propagation
of waves over a submerged bar. The above figure depicts a 37.7 meter long, 0.8 meter wide, and
0.75 meter high flume. Submerged in 0.4 meter of water is a 0.3-meter-high bar with a 1:20 sloped
front side, 2 meter wide top, and 1:10 sloped backside. At the end of the flume is a gravel beach
which acts as a wave absorber.

This setup is replicated in our model, except I add some additional 4 meters in which our
numerical wavemaker replicates the wave setup. In addition, I neglect the beach at the right hand
side of our setup in accordance with earlier research. [Stelling and Zijlema, 2003], [Roeber, 2021].
The lack of a beach on the right-hand side should not affect gauges 4-10, but it might influence
gauge 11.
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When waves travel up the bar they shoal and the low value of kh makes the wave non-linearly
self-interact to create higher harmonics (see Ch. 1.3.1 and 1.3.3). These are originally bound
together with the primary wave since their phase speed eq. (19) are equal. But when they reach the
end of the bar kh rapidly increase and the phase speed differs between the harmonics, resulting in
“freed” higher harmonics. Many Boussinesq-type or non-hydrostatic models do not fully resolve
these higher harmonics due to low-order approximations of the non-linearity and dispersion of
the governing equations. Sandbars are common in coastal waters and are therefore important to
consider in near-shore experiments.

We are focusing on [Beji and Battjes, 1993] experiment with sinusoid waves with 2.05 cm
amplitude and 2.02 s period.

3.1.1 Numerical set-up

I input the bathymetry as indicated in the above figure with a grid size of 1.25 cm. At the start of our
numerical scheme, I have a 125 cell wide sponge layer to position the wavemaker as close to the
laboratory experiment as possible. The data at each of the gauges are recorded every 0.02s. Further
I have introduced a uniform manning friction of 0.01 to represent bottom friction Ch. (1.3.4). And
lastly, I input the sinusoidal waves as described above.

3.1.2 Results

These simulations line up relatively well with the experiment. At Gauge 4 I can see that the model
has made the wave shoal to the right proportions, with perhaps a small phase shift. Through 5-7 I
can see the higher harmonics being created, but bound to the solution, until they in 8-11 become
free to propagate. Gauge 8-10 seem to fit particularly well, but gauge 11 seem miss some details.

This might be because of the different topography in our model and the experiment, or it might
be because of the errors in dispersion in the BOSZ model. Gauge 11 is in the original experiment
placed above the beach. It is therefore not surprising that our model does not accurately predict
the wave conditions at this location, since it does not take shoaling into account for this gauge.
Further the error in dispersion for our governing equations might be starting to come into effect at
this location, further exaggerating the errors as seen in Ch. (1.4.4).

39



Figure 5: Comparison of BOSZ and experimental results of a wave propagating over a submerged bar. Red
circles indicate recorded experimental data of Beiji and Battjes, and blue lines the numerical results from
the BOSZ model.

3.2 Suzuki test

3.2.1 Experimental set-up

In 2017 Tomohiro Suzuki conducted a test and described it in [Suzuki et al., 2017]. The layout
represents a 1D channel where the kh value is about 1.5 and is therefore not particularly dispersive.
The structure consists of a 1:35 sloped smooth impermeable concrete dike, a sharp 1:2 sea wall,
and a 1:100 promenade until the end domain. In his experiments Suzuki measured the overtopping
discharge at the end of the channel.

The model is in total 70m long, 1.5m high, and 4m wide. It is further placed 12 gauges at the
locations indicated in the figure. The wave paddle created a spectrum of waves which would be
fully generated by the SWASH boundary, where he placed 3 gauges to that the spectrum where
gully generated.
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(a)

(b)

Figure 6: a) Experimental layout of Suzukis test. The BOSZ model’s bathymetry starts at the SWASH
boundary. Graphics is taken from (Suzuki, et al., 2017), b) Computational domain and gauge location used
in the BOSZ model

3.2.2 Hydraulic processes and model input

This experimental setup is suited to test for shoaling, wave-wave interactions, and transfer and
dissipation of energy through breaking. The waves are fed through the left boundary as a time
series supplied by Suzuki, and travel freely through the domain until any wave overtopping are
captured at the right by a sponge layer. The computation time is 400 seconds. As the waves
travel right, they shoal, steepen, and eventually breaks. For this I need some criteria to detect
wave breaking since the model can only model 1-dimensional flow. The model comes with three
possible criteria: testing the Froude number, the momentum gradient, or the ratio of wave height
and water depth. As seen below, all of these give satisfactory results but with minor differences
depending upon the method of wave detection.
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3.2.3 Results

The BOSZ model seem to handle the generation of infra-gravity waves and the diffusion of energy
of the spectrum particularly well, regardless of the method of detection of breaking. There are
minor differences of power density between the methods, but big picture they are all working
out fine. Near the seawall the methods underestimate the diffusive properties of higher frequency
waves, and as a result there appears higher peaks at around 0.3 Hz.
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Figure 7: Power spectral density of BOSZ at the six indicated wave gauges. Case computed with Froude
number, water height to depth ratio, and momentum gradient for detection of wave breaking on top, middle
and bottom respectively.



3.3 NTHMP 2015 BM5

Figure 8: Bathymetry and gauge locations for Swinglers experiment and the numerical set up

3.3.1 Set-up

In 2015 the National Tsunami Hazard Mitigation Program (NTHMP) benchmarking competition
chose the experiments of [Swigler, 2010] as a test for various models. This experiment was con-
ducted in a basin at Oregon State University and was 48.8m long, 26.5m wide, and 2.1m deep. The
water level was kept at a maximum depth of 0.78m.

At the start of the basin was a wavemaker located, before on the other side a complex shallow
water bathymetry constructed of concrete was located. This was made up of a 1:16 plane beach,
out of which a triangular shelf was built with a depth of 5cm. The apex of the triangle was located
at X = 12.6m, Y = 0, and was connected down from the sides of the triangle. This connection was
steepest at the apex with a slope of 1:3.5. Further, on top of the triangle is a cone, reaching up and
out of the water. The top has a shallow slope of just 1:30 so ensure that the water falls back into
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(a) (b)

(c) (d)

Figure 9: a) Wave field at 6s. The wave front has steepened and begun breaking over the cone. b) Wave field
8s into the simulation and there’s vortex formation around the cone. The breaking wave front is simulated
as a discontinuity. c) Wave field after 15s. There is run up onto the dry bed. Water have begun puring down
again. d) Wave field after 34s. The wave fields continue to move back and forth, but with less amplitude.
The plotting script is due to V. Roeber.

the tank after each experiment.
Into the basin it was generated a single solitary wave with height 0.39m to create a single strong

breaker.

3.3.2 Model input and hydraulic processes

The BOSZ model was set up with ∆x,∆y = 0.1m and Courant-Friedrich-Lewy number of Cr=0.5,
lastly a Manning coefficient of n = 0.015m/s2 was chosen to best reflect the bottom friction of the
concrete. The bathymetry was scanned by Lidar at 10cm increments and supplied to me by Volker
Roeber. Lastly the wave input is a solitary wave generated out of bounds, which are moved into
the domain before the domain is closed behind it.

This experiment is good to test our previous results with another dimension added, and to
introduce new effects such as refraction and diffraction. Firstly, when the wave hits the slope,
we get a quick shoaling which also steepen the wave front. This evolves into various forms of
breaking, of which Swingler noted that at the reef edge the wave is plunging and at the crest its
spilling. Further the triangular hill introduces a change of angle of steepening, and diffraction
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begins to matter. In addition, behind the cone there’s less a lower free surface, and refraction must
also be modelled. Lastly, there’s reflection to be accounted for at the slope, cone, and all walls of
the domain.

In addition, there’s also the numerical challenges of the steep slope of 1:3.5 at the apex of
the triangular hill, the non-linear behaviour of the soliton wave, and the numerous breaking and
moving waves.

3.3.3 Results at gauges

The comparison of the simulation and experiments are given below. The close resemblence of
the two plots validate BOSZ ability to simulate multiple wave processes as described in Ch. (1.3)
and (3.3.2). It also importantly shows that the model can sufficiently model various breaking in
multiple directions at the same time.
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Figure 10: Free surface elevation at the gauges. The blue line denotes the computed results, and the black
the experimental.



4 Infra-gravity particle transport

4.1 First order theory

In Ch. (1.1) it was found that the velocity of fluid particles under the influence of linear gravity
waves was:

ux =
ωa cosh[k(H + z)]

sinh(Hd)
cos(kx− ωt) (114)

uz =
ωa sinh[k(d+ z)]

sinh(kd)
sin(kx− ωt) (115)

The linear path lines of the fluid particles are then given as:

dξ

dt
= ux(x, z, t) = ωA

cosh(k(H + z))

sinh(kH)
cos(kx− ωt) (116)

Assuming that the particles position x stay close to the centre x0 is small we can linerize the
problem by saying that the path is x = x0 + ξ(t). The assumption of small movement is believed
to be true with the small amplitude assumption of the waves, which cause the velocity above to be
small as well. After linearising, the differential equation becomes:

dξ

dt
= ωA

cosh(k(H + z0))

sinh(kH)
cos(kx0 − ωt) (117)

Which can be readily solved as:

ξ = x0 − A
cosh(k(H + z0))

sinh(kH)
sin(kx0 − ωt) (118)

So the amplitude of the horizontal movement is L(A, k, z) = A cosh(k(H+z0))
sinh(kH)

. Now by choosing
a value for the amplitude of the wave we can find the associated value for any particular wavenum-
ber, and through the dispersion relation ω2 = gktanh(kH) the corresponding wave frequency.

In Fig. (11) we can see the size of horizontal movement for two different combinations of these
two variables. It is clear that infra-gravity waves has a much larger influence on the horizontal
movement than ordinary gravity waves. Even when looking at a JONSWAP spectrum, and adding
a small and arbitrary infra-gravity component the dominant force of movement is the infra-gravity
waves. This is true for any value of the ocean depth, but the movement itself of the particles
become smaller for larger depths.
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Figure 11: Analytical solutions of the movement of the particle in a surface wave of a single frequency.
The blue line shows the movement associated with different wave components with equal amplitude. The
remaining lines show the effect for varying depths when the amplitude comes from a Jonswap spectrum with
Hs = 0.10m and Tm = 10s, with an added infra-gravity component with 10% of the associated energy. On
the right is a representation of the power spectrums of the amplitudes used.

4.2 Numerical solutions

4.2.1 Linear model

Now, assuming that the small amplitude assumption means that we can add every wave component
in a superposition, such that:

ηi(x, t) = Aicos(kix− ωt) (119)

ux(x, z, t) =
∑
i

uxi
=

∑
i

ωiAi
cosh(ki(H + ηi))

sinh(kiH)
cos(kix− ωit) (120)

As seen in the previous chapter, this of course means that the movement of the fluid particle
can be modelled as:

dx

dt
= ux(x, z, t)

dz

dt
= uz(x, z, t) (121)

Now instead of assuming that the velocity of the particle is close to that near the original center,
we look at a particle that can move freely around. This means that we now also will include the
Stokes drift induced from the linear waves as described in Ch. (1.2.2). See Fig.(12) for explanation
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Figure 12: The ocean surface is simulated for some constant depth. A drifter located at the surface has an
instantaneous velocity and elevation and are free to move in the horizontal direction. After some time it has
had a horizontal movement away from its starting position.

of the variables and Fig.(13) for the case with 1 wave component.
I estimate the above equation with 500 wave components drawn linearly between frequencies

of 0.004Hz and 0.5Hz. The amplitudes and wavenumbers are chosen from the dispersion relation
and modified JONSWAP spectrum seen in the last chapter.

Following the particle for 1800s with a time discretization of 0.25s, using RK4 to evolve time,
and removing the linear stokes drift, we get the results from Fig. (14). Notice here that the position
of the tracer is dominated by the components in the infra-gravity spectrum with an even more
drastic difference than the analytical case, while the amplitudes and velocity is reminiscent of the
input spectrum.

4.2.2 BOSZ movement

Now we instead want to utilize the phase-resolving nearshore surface model BOSZ to model a full
sea state where our particles are tracked by solving eq.(116) for each time step. This will simulate
that when the wave field evolves while approaching the shore, the influence on the movement on
the particles are also changed.

For this test we will input a JONSWAP spectrum as in the earlier tests, but without the infra-
gravity component (see Fig.(15) upper right panel). This spectrum will be created inside the do-
main by the model, and every infra-gravity components in the spectrum will be created through
the nearshore wave evolution which BOSZ model.

To see that BOSZ can model this IG-generation a simulation of BOSZ is run for 3 hours with
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Figure 13: The pathline for one particle drawn through 1 period for a single wave component found by
solving eq. (116) with RK4. Left: a 10 second wave with amplitude 10cm for depth = 1m and 10m. Right:
a 100s wave with the same amplitude and depths. As seen predicted for the first order approximation, the
IG waves have a much larger impact on the particles horizontal movement.

a 1 hour setup time for 3 different bathymetries. Every second the wave elevation at a numerical
gauge is recorded, before the power spectral density is calculated. In figure (15) one can see the
bathymetries and corresponding power spectral densities (PSD). In the flat beach case both ends
of the domain are padded with a sponge layer, such that no reflection takes place. Thus IG-wave
components which are visible in the spectrum must thus be bound IG-waves as described in Ch.
(1.2.1). For the other two bathymetries, a plane beach and a trilinear beach which becomes more
gentle closer to the surface, the IG-band is more pronounced by a factor of 2-4. This must be due
to free IG-waves generated when the waves break in the surf zone as described in Ch. (1.3.5).

To see the influence of these IG-waves on particle transport we simulate an applied case with
a more complex barred beach. The bathymetry of which can be seen in the top panel of Figure
(16), with the locations of three buoys and corresponding drifters are marked. It is a 1-dimensional
domain with spatial resolution of DX = 1m, composed of multiple sine waves made to resemble
a domain outside of Hawaii [Roeber and Cheung, 2012]. This is to have a simple bathymethry
which is somewhat realistic which can showcase the effect of the IG-wave transport.

The model in run for 1800 seconds before the drifters are released and begin moving such
that the wave field can become saturated before simulating. The model is then run for another
T = 1800s, such that the fundamental frequency we can detect in our time series analysis is
f0 = 1

T
≈ 0.0005s, more than enough to detect the entire IG-spectrum. Further we sample the
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Figure 14: Experimental results from following a fluid particle moved by a superpostion of waves. Top:
Amplitudes of waves encountered by the particle. Middle: Velocity experienced by the particle. Bot:
Position of particle over time with the Stokes drift removed. Left: Time series of values. Right: Power
spectral density of the time series. Color indicate simulation depth. Blue 1m, orange 2m, green 5m, red
10m.
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Figure 15: Comparison of infra-gravity wave generation inside BOSZ. Upper right: the input JONSWAP
spectrum to the model with Hs = 1m and Tp = 10s. Notice the lack of IG wave components in the input.
Second row: Here a flat beach is simulated, and bound IG waves are generated as anticipated by [Longuet-
Higgins and Stewart, 1962]. Third and fourth row: with the inclusion of a beach where waves can break
the IG-band is increased in importance. This is due to free IG waves being generated by the breakpoint
[Symonds et al., 1982].



position every ∆t = 1s so our Nyquist frequency is fmax = 0.5s, this is enough that our spectrum
can have nonlinear wave-wave interaction and release superharmonics when they shoal.

Now for the particles we simulate them as fluid particles such that their movement are deter-
mined by:

dξ

dt
= u|zα (122)

Where zα is the reference depth at which the velocity variable of the velocity fields are evaluated
in the BOSZ model. This means that we now model fluid particles located at depth z = zα =

−0.531H , examples of which are plotted in Fig. (16). The vertical distribution of horizontal
velocity is in general non-constant in the ocean, as seen in eq. (114). Now by decreasing the value
of z0 in (118) when H >> 0 the amplitude of motion decrease as well. Since this effect is equal
for all wave frequencies according to linear theory, this will not effect the results when comparing
the Power Spectrum Densities.

Running the simulations and performing a time series analysis yields the spectrums seen in
Fig. (16) in the middle and lower panels. In the middle panels are the PSD of the buoy wave
elevation record plotted, and the lower panels show the Fourier transform of the detrended position
of the fluid particles. The leftmost plot shows that JONSWAP spectrum has been generated by the
wavemaker, but with some extra energy associated by frequency at 0.2Hz. This seem to the authors
to be reflected waves that through triad wave-wave interaction has created wave components of
about twice the frequency of the original JONSWAP peak. Looking at the panel below, it is seen
that offshore the movement of the particles are dominated by the peak of the JONSWAP spectrum.

Further looking at the middle panel, here the waves have travelled through a slope which change
the water depth from 10m to 2.5m. Looking at the PSD of the wave elevation it is obvious that the
peak has been greatly reduced by the bathymetry driven breaking which occurred while the depth
decreased. Looking between the two blue stippled lines it is seen that this breaking has transferred
some the energy to infra-gravity wave components. Interestingly this small wave component has
caused the movement of the particle simulated at this depth to mainly be moving at IG-frequency.

Further, looking at rightmost plots seems to indicate that so close to shore at such small depths
almost all non-IG wave components have dissipated. While the incoming waves travelled through
a bar with minimum depth of 0.5m the energy of the waves transferred to the IG-band and now the
predominating frequency for the wave elevation is infra-gravity. Also looking at the drifters, the
increased energy associated with IG-waves now yield a much larger movement than earlier.

All in all this seem to indicate that near-shore the particles in the water are mainly determined
by the IG components coming from breaking, rather than the higher frequencies wave components.
Also interesting is the fact that even though the significant wave-height and total energy in the wave
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field decrease towards shore, Hs = 1.12, 0.65, 0.14m at x = 1000, 1800, 2400m respectively, the
movement of the particles increase.

Figure 16: Experimental results from following fluid particles. Top: Bathymetry and locations. Middle:
Power spectral densities of the wave elevation at the gauges. The colors correspond to the locations in the
top plot. Bot: Power spectral densities of the movement of the particles after Stokes drift has been removed.

4.3 Discussion

Through this chapter it is seen that wave components from the infra-gravity spectrum have a much
larger influence on the movements of particles nearshore. In Ch. (4.1) this is seen to be the results
of lower frequency waves causing the particles to move in larger ellipses, a fact which we see
remains true even when incorperating higher order effects such as Stokes drift in Ch. (4.2.1). We
saw then that IG-components of just 10% of the energy of the peak causes the movements to be
mainly caused by IG periods.

To represent a real case scenario we used the BOSZ model due to Volker Roeber which can
generate the IG waves inside the domain without need to arbitrarily add them (Fig. 15). This
experiment showed that IG-waves naturally arise nearshore, both due to the radiation stresses and
depth-induced breaking. We thus saw in Ch. 4.2.2 that nearshore the particles are influenced by
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IG.components, while in the surf zone they are mainly controlled by them.
It is therefor crucial to include IG-effects to any models or experiments looking at transport of

particles in the ocean. In the next chapter we do this by simulating oranges in BOSZ, which we
have shown generate these waves numerically.
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Figure 17: The checkerboard carried around the beach to calibrate the camera, seen here through the two
cameras

5 Experiment at Sylt (2019)

In September 2019 [Bjørnestad, 2021] was doing a measurement campaign at a beach located at
the German island of Sylt. Here they were tracking oranges as surface tracers together with a stereo
imaging system to research particle trajectories. Important for us is that during their experiment
they mounted poles at low tides which were located by a GPS tracker, installed a buoy outside
the coast which tracked the incoming wavefield, and stored all the pictures taken by the cameras.
These data could therefore later be used to validate our numerical estimates of the particle velocity
field.

But the data obtained by Bjørnestad et al. is not enough to run a numerical model. It is also
necessary to have the local bathymetry at least as far offshore as the buoy they used to record the
wavefield. Therefor LiDAR data supplied by the Landesbetried für Küstenschutz Nationalpark und
Meeresschutz Schleswig-Holstein (LKN.SH) over the island and surrounding ocean was connected
together with the coarse grid of the North Sea from the European Marine Observation and Data
Network (EMODnet).

The following chapter describes how we included the data from Bjørnestad et al. and the
bathymetry.
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Figure 18: The calibration software supplied by MATLAB. In the top row is the reprojected checkerboard
locations for one image pair. In the bottom left the error of these reprojections is shown for each pair of
images and in the bottom right the locations of the checkerboard in the cameras coordinate system is shown.

5.1 Orange tracers

After arriving at Sylt and setting up the cameras, a checkerboard was carried around inside the
field of views of the cameras (see image 17). This was done to collect multiple pictures of a
known geometry from multiple angles and locations for MATLAB to later calibrate the cameras.
By choosing a subset of these images MATLAB can create the matrices for the stereo cameras.
About 120 pairs of images were chosen to create the above image, which created a geometry
which matched with the known distances of the testing area (see Fig. 18).

Now by finding all the pixel values of the tracer’s path, MATLAB can recreate the path in 3D
world coordinates. The following days poles with known coordinates were set up, and during high
tide oranges were thrown out onto the sea (Fig. 19). Here it was now possible to follow the tracer’s
position on the images by a script created by Marc Buckley. By supplying the initial position of the
oranges, it follows the locations of the whitest pixel values in the surrounding areas. This means on
the other hand that it is difficult to follow the orange through breaking waves, since the white-caps
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Figure 19: Full picture of an orange inside the cameras field of views. The red box is zoomed into in the
upper pat of the images to show the orange. As the orange moves it is tracked through the water.

Figure 20: The steps from pixel values to WGS84. a) Pixel values of the oranges path. b) The world
coordinates of MATLABs triangulation function. c) The path in Bjørnestad et al. coordinate system. d) The
path in WGS84 where the height is truncated.



hides the orange. In this picture an orange which is outside the breaking waves is tracked instead
(Fig. 20).

After tracking an orange, one can use MATLABs inbuilt triangulations function to find the
world coordinates of all the pixel points the orange has occupied. But the original coordinate
system which MATLAB supplies is not useful for us, hence it is necessary to change it. I followed
Bjørnestad et al. proposal for a coordinate system, where a orthogonal right handed coordinate
system which x- and y-basis vectors is parallel to the sea surface is found between the poles. After
this it was necessary to rotate these basis vectors around the z-axis to line the x- and y-axis with
the North and East basis vectors of WGS84 as described in Ch. (1.5) such that the locations can be
plotted together with the bathymetry described in this datum.

5.2 Spectrum

5.2.1 Buoy data

The data gathered from the buoy outside Sylt contains various data regarding the wavefield for
every half hour throughout the 7th to 8th of September 2019. An extract of this data is shown to
the right and below.

It consists of 12 rows of data containing one of which is the reference PSD of which the PSDs
below are relative to. Below are the main data from the buoys (table 2). They consist of columns
describing the frequencies f , relative PSD E(f)rel, main direction of propagation DP , spread σθ,
skew, and kurtosis.

5.2.2 Implementing 2D spectra from 1D spectra

The fact that we have more information about the wave field than [Pierson Jr et al., 1971] had in
Ch. (1.6) means that we can implement a more sophisticated guess about D(θ). To incorporate the
information about main direction and spread I propose the modified function:

Table 2: Example data from buoy.

Freq. [Hz] E(f)rel [-] DP [◦] σθ [◦] Skew [-] Kurt [-]
0.025 4.17E-05 275.6 56 -0.39 3.63
0.030 1.30E-04 267.2 53.5 -3.93 4.04
0.035 1.11E-03 278.4 49.4 -0.48 3.06
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D(θ) =

 a cos2(k(θ −DP )) if DP − σθ · fac ≤ θ ≤ DP + σθ · fac,

0 else

Where DP and σθ denotes the main direction and spread of a given frequency, and fac is a factor
larger than or equal to 0.

Figure 21: Example of one of the spec-
trum used in the Sylt experiment. On top
the original 1D spectrum is plotted. Below
you can see the recreated 2D spectrum us-
ing a cosine squared function as D(θ) for
each frequency and spread, where this par-
ticular function uses fac = 0.5.

To determine the constants a and k I have solved the
system of equations,

w DP+σθ·fac

DP−σθ·fac
a cos2(k(θ −DP ))dθ = 1

a cos2(k(σθ · fac)) = 0
(123)

Which yields,

a =
π

4 · σθ · fac
and k =

π

2 · σθ · fac
(124)

Now to use these results together with the input data
it is necessary to discretize both the frequency and angle.
This is done with the following discretization:

fn = {f1, f2, ..., fn} (125)

θn = {∆θ, 2∆θ, ..., n∆θ} where, ∆θ =
360

nθ

(126)

Then for each fi find the θm and θn such that
max(θm) ≤ DP − σθ and min(θn) ≤ DP + σθ. For
every θj where j ∈ [m,n] the PSD at this index is then
evaluated as:

E(fi, θj) =
Emax

∆θ
E(fi) ·Di(θj) (127)

Where Di is the directional function for this frequency.
Now the only data accounted for is the first four columns, and the relative PSD. It could be

possible to include the skewness and kurtosis if one used the normal distribution as a base instead.
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5.3 Bathymetry

Figure 22: The supplied bathymetry around the experimental site on Sylt. The height of the Island and
surrounding ocean floor. Two poles and the buoy location is plotted in red, and the yellow ball is the starting
location of the numerical tracer corresponding to the orange.

Since our hypothesis is that the circulation in the surf zone is strongly influenced by the
bathymetry it is crucial that we have an as exact replication of the real-world situation as pos-
sible. To do so we combine multiple data sources through the work of Volker Roeber. We get our
data from two different sources, the relatively coarse EMODnet bathymetry of the North Sea [emo,
2022] and a finer LiDAR scan of Sylt island done by Leica on behalf of the LKN [Lei, 2022].

The main grid used in the picture above of the bathymetry is the LiDAR scan supplied by the
LKN. This dataset was originally scanned by drone with a resolution of 10 by 10 cm over the
entire island of Sylt at in June 2020. The data from supplied to us after contacting the responsible
person in the LKN. It is unfortunate that the dataset is from 9 months after the experiment, as the
sandbars are probably moved significantly when the data was collected compared to the experi-
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ments. Nonetheless it is the best we can do. To compensate for this we are simulating the tracers
for various water heights such that the errors hopefully cancel.

The LiDAR data was only collected to about 600 meters off coast. This was not enough for our
use since the Buoy was located further off-shore and at deeper depth. Hence it was necessary to
find some other data to fill the outmost gap of the domain. The EMODnet online supplied data was
used for this task, which is a rough grid with a resolution of about 115 by 115 m. This dataset is
used wherever the LiDAR data is not measured, which is farthest offshore at depths lower than 6m.
For all practical purposes this dataset encompasses only small parts of the domain, as all depths
deeper than the buoy location is set to the buoys depth.

To fit these two datasets together they were interpolated to a grid size of 2 by 2m, which also
define a mesh which is practically possible to simulate. After doing this for the entire site of Sylt, it
is only a matter of choosing a subset of the entire domain to simulate. In the above picture a 500 by
500-point grid is extracted, but in the results section a 1000 points alongshore by 500 point normal
to the shore grid is used. Lastly, to avoid excess shoaling of the incoming waves the bathymetry is
cut off at the water depth of the buoy.

5.4 Inclusion in BOSZ

The bathymetry data is most likely not correct as the sandbank would have moved in the time
since the experiments. Therefor we simulate the tracers for different water heights around the true
tide level of the time to compensate for this movement bathymetry, of which we chose tide =

{−0.20,−0.25,−0.30}m.
The buoy data is reconstructed to a 2D plot as described in Ch. (5.2.2) with the spread factor

as {0, 0.5, 1} before being simulated in BOSZ via the wavemaker as seen in Ch. (2.1.6). Here
an additional parameter we are changing is the spread, which is multiplied by a changing factor.
The reconstructed orange path is used to create the initial position and velocity of the numerical
tracers. Here we place 100 tracers randomly in a circle of radius 20cm to compensate for errors
in the location of the oranges, we also add a random component to the measured velocities of
the oranges from the pictures which measures ±50%. After 500 seconds have passed and the
wave setup is complete, the tracers are added to the simulation and each of them are simulated
independently before being averaged in an ensemble.

For each of the pair of variables above we run the simulations for 6 different random seeds
for the phase angles described in Ch. (2.1.6). After the simulation is complete the results of the
idealization of the wave fields are averaged to yield our final numerical drifter path.
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Figure 23: Flowchart of how the experimental data is connected to the BOSZ model.

5.5 Results

After simulating the numerical drifters the paths were post processed to look at the paths which
they follow. The paths were stored in a 7-dimensional tensor with the dimensions: tide, σθ, seed,
orange path, drifter, time, and X- or Y-coordinate. To plot the data it was necessary to reduce the
dimensions to maximum three. This was done by creating a new X and Y grid where for every
drifter we create a binary map where 1 means that the particle were in this location for any timestep.
This creates the new 7-tensor with dimension: tide, σθ, seed, orange path, drifter, X-, and Y-index.
To reduce the system and find the percentage of tracers going through any particular location is
then a matter of summing the dimensions and dividing by the total number of instances summed
together. In Fig. (24) this is shown for tide, σθ, seed, and drifters summed together such that the
independent variables left are the orange paths, X-, and Y-index. Lastly the average position of the
drifters of the drifters for the drifters for each orange path was calculated.
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Figure 24: The results from the orange simulations. For each orange path a 40m by 40m area is plotted
where every 0.5m by 0.5m grid cell counts how many numerical drifters have passed through that particular
cell have passed after the T seconds the orange was tracked. This number divided by the total number of
drifters yields the plotted values. The black path denotes the real orange while the white is the average path
of all the numerical drifters. The particles in a), d) and e) was tracked outside the sandbar and shows large
movements, while b), c), and f) was inside with less movement.



5.6 Discussion

The particles tracked in Fig. (24) come from two different conditions. There is a sandbar located at
around X = 830− 850m so there is primarly here the waves break according to visual inspections
of the pictures of the oranges. Path 1, 3, and 5 is located outside of the bar, and are hence moving
through larger waves, but also have higher initial velocities. Path 2, 4, and 6 on the otherhand is
located inside the sandbar, and have almost no velocity.

The average values of the numerical drifters show good resemblance to the oranges actual end
position. It is noticeable that the oranges move backwards and forwards because of the waves,
but the most important contribution to their movement seem to be caused by a much more slowly
varying component. This is in compliance to the results of Ch. (4). The spreading of drifter
location also makes sense. For oranges with larger movement, there is a larger spreading from the
numerical drifters. Nevertheless the spreading in the model centres around the actual movement of
the oranges.

Perhaps surprising is the dense streams of directions seen in the movement of the drifters inside
the sandbar. Here there is multiple tight arms which multiple drifters seem to follow, which go in
their own direction. The reason for this is best seen by choosing another independent variable than
the orange paths. By choosing the seed to the RNG input to the wave phases Fig. (25) as the
independent variable it is possible to see that the seed strongly influence these arms. This seem to
indicate that the waves which they encounter first determine which direction they will follow.

This seems to be an effect from our conclusion from Ch. (4). Inside the surf zone specifically
the IG components of movement is critical. As these components vary for timescales around the
ones we measure the oranges, it is natural that our choice of seed determine which part of the IG
wave is encountered and therefore is critical for which direction the drifters will move. This effect
is also reflected for the drifters outside the sandbar to a lesser degree. Consequentially, it will be
necessary for every computation of particles in the surf zone to include different seeds of incoming
waves as the impact of IG-waves is both large and uncontrollable in such an environment. As it
seems to the authors that that the average of these seeds are reflecting the actual movement and
reflect the conditions of the day.

Even though our model have simplifications for reproducing the events we get reasonable re-
sults. The governing depths averaged Boussinesq equations (56), the uncertainty in the oranges
exact locations and velocity together with impossibility of representing the exact wavefield, and
half year late bathymetry with resolution 2 × 2m are all limitations for how exact we can expect
the results to get. But still our results is representative and allow for further interpretation of the
processes. We therefore continue our research into the fluid velocity in the surf zone.
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Figure 25: The movements of the three particles found inside the sandbar for the different RNG seeds used
for the wave phases. These particles correspond to b), d) and f) in Fig. (24).



6 Vortexes at Sylt

In this section we will look at the dependence of the near-shore circulations on conditions with
regard to the tide and wave field. Through simulation of various inputs in our bathymetry from
Sylt we will identify and calculate the vortexes which arises in our domain before doing statistical
analysis. We will compare the dependencies against the work of [Baker et al., 2021], [Choi et al.,
2015], and [O’Dea et al., 2021] who all looked into the dependence of surf zone dynamics on the
directional spread of the incoming wavefield.

We will also look at a larger scale comparison from [Scott et al., 2014] which in 2014 did a field
experiment where they deployed drifters on beaches in South-western England. They identified
three different behavioural groups, which we will compare our results against.

6.1 Methodology

6.1.1 Model input

The independent variables we are looking at are the tide levels, the spreading σθ of the incoming
wavefield, and what the main direction DP of the incoming wave field is. Through the buoy data
from Ch. (5.2.1) we were able to see that realistic values of the latter two variables are σθ ∈ [0, 40]◦

and the DP ∈ [270, 310]◦. Further from using the OSU Tidal Prediction Software we found that
the tide naturally varies between −0.5m and 0.5m.

We discretized these variables as follows: tide = {−0.5,−0.25, 0, 0.25, 0.50}m, σθ =

{0, 20, 40}◦, and DP = {270, 290, 310}◦. Where the tide is modelled as a stationary change to the
water depth. The spread is the width as in Ch. (5.2.1) with Hs = 1.3153m and Tp = 9.09s which
corresponds to the spectrum from Ch. (5.2.1), and the main direction is modelled by inputting the
wavefield from the wavemaker at an angle. All together this yields 35 different simulations.

While the bathymetry is considered to be static, a changing tide level impacts the depth of
bottom features and therefore impacts the overall flow. The changing tide level can be interpreted
as a change in bathymetry. Further wavefields approaching the beach at an angle have the potential
to create large alongshore velocities, while having a higher spread allows the waves to come at
multiple different directions and waveheights creating a varied incoming field. The goal is that with
this discretization is to see results from the entire spectrum of realistic inputs from this location.

In addition the bathymetry is the same as described in Ch. (5.3) except that we now use the
entire 1000 × 2000m domain from the measurements. We also now use a standard JONSWAP
spectrum, as this should represent the condition on Sylt, as it is located in the North Sea.
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6.1.2 Finding vortexes

Figure 26: A subsection of the average velocity
field for one simulation with multiple vortexes
of different sizes and strengths. The red markers
denote where we identified centres of vortexes.

Each run is simulated for 3600 seconds, where the
first 600 seconds are purely for initializing the wave
field. After this initial period the ocean surface ve-
locity is continuously averaged. This yields mean
values for the velocity which we visually inspect
(see Fig. (26)). These values represent where we
can detect circular flow in the ocean over longer
time frames like the pathlines observed by [Scott
et al., 2014], in opposition to just spontaneous cir-
cular streamlines.

To find the locations of the circulations a rough
review of the data is performed by a twofold
method. The resulting flow is plotted as in Fig.
(26) with the color representing velocity and a sim-
ilar plot with the colouring instead representing the
swirling strength as defined in [Buckley and Veron,
2017]. This first pass-through every location with
a swirl or circular velocity is marked as a potential
vortex.

After visually inspecting all the images like Fig.
(27), the circulation is calculated for every one of
them. This is done by integrating the velocity fields
in circular paths for varying radii around the centres
of the vortex. Then the maximum circulation is identified by a simple forward difference, which is
manually inspected and corrected if necessary. During this a finer vortex identification criterion is
used to determine whether the rough locations indeed were a vortex. To count as a vortex the flow
need to fulfil the following criterion:

• The center of the vortex is identified as a region of zero flow, since near the center of revolu-
tion real vortex flow is nearly solid-body rotation [Kundu et al., 2015].

• There must be a closed circuit of pathlines to count as a vortex.

• The circulation value must be a local maximum, to mark the beginning of the end of the
vortex.
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This maximum circulation and the corresponding radius is stored together with the independent
variables for later statistics. See Fig. (27) for an example.

Figure 27: The visual inspection of the circulation around a point for a set of independent variables. Bottom:
The surrounding velocity field. The red cross denotes the centre, and the dotted circles shows the radius of
factor 10. Top: Shows the circulation around the point for various radii. The dotted red lines denote the
radius of factor 10, and the black cross shows the maximum circulation around this circulations. The orange
line define the best fit Rankine vortex for these circulation where the maximum circulation Gamma =
{28.52, 61.71}m2/s and radius of transition σ = {40.07, 57.45}m for the left and right vortex respectively.

6.1.3 Statistics

We want to quantify whether or not any differences of the means of radius and strength are statis-
tically significant or not. Thus it is necessary to conduct a statistical test, of which we are using a
three-way ANOVA. This test looks at the means µijk ≈ ¯xijk, where the indexes indicate the value
of tide, σθ, and DP . We are interesting if any one of the variables, or an interaction between them,
impacts the means to a significant degree. We thus create the 3-way ANOVA models:

radius ∼ tide + σθ +Dθ + tide : σθ + tide : Dθ + σθ +Dθ + tide : σθ : Dθ

strength ∼ tide + σθ +Dθ + tide : σθ + tide : Dθ + σθ +Dθ + tide : σθ : Dθ

After identifying the vortices and calculating the dependent variables as described in the previous
section, we use the python package statsmodels to conduct the ANOVA test and provide the results.
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Figure 28: Examples of the three types of large scale velocity behaviour from the same location for different
model inputs. Left: Here the velocity enters and leaves the shoreline. Middle: A large vortex is seen in the
upper part of the image. It is fed ”mass” from the above and feeds into the alongshore current below. Right:
A alongshore flow is seen.

6.2 results

6.2.1 Visual comparisons

Plotting the velocity results and visually inspecting them yields a striking resemble to the work
of [Scott et al., 2014]. They found that there exist three primary behavioural groups by the large
scale velocity pattern, that they consist of fields pointing outwards to sea, circles nearshore, and
alongshore inside the surf zone. In our simulation we found the identical groups of data, in addition
to one similar to, but in opposite direction of, exit flow which we call entrance flow. See Fig. (28)
where you can see these four groups of velocity. In this plot we replicate the plot from Scott et. al.
where we have plotted a subdomain of dimensions 300× 600m for different initial conditions.

Further they found that while these are the dominant groups, the particles they followed in their
experiment showed that while they might for example initially follow a circular path but after a
circulation they would be sent out to sea or down along the shore. A result which suggest one
group is connected to another. Via such deduction and further simulation form their location that
found the following: 1) At the sides of exits there exist rotations. 2) On the side of alongshore flow
which faces the sea, there appears smaller exits 3) Inside alongshore flow there exists rotations
which the alongshore flow swirls around. All of these phenomenons appears in our dataset as well.
This indicate that the resulting flow from our inputs to BOSZ and the resulting output reflects real
possibilities of flow.
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Looking at the first row of Fig (29) also exemplifies the influence of the ratio of incoming
significant waveheight and local morphology. [Scott et al., 2014] noted in their field experiments
that when the tide is at such a level that the incoming wavefield breaks over the inner bar the
maximum currents would develop. This would happen when the tide, and thus morphology, was a
little lower than the necessary wave height to water depth breaking condition. This simultaneous
breaking thus create more organized breaking in the surf zone causing higher values of velocity
[Martins et al., 2022], which in cause flow to circulate in larger scale patterns with higher values.
As seen in Fig (29), the lower tide level means that waves break before the sandbar at different
spatial locations yielding a cancelling of large scale flow. At tide levels around 0 the sandbar depth
is optimal for organized flow, before at higher tides the resulting flow decreases again.

Plotting some of the averaged velocity fields for different values of σθ yields the middle row
of Fig (29). Here it is possible to see as [O’Dea et al., 2021] found that less directional spreading
is associated with larger velocities in the surf zone since more spreading yields more and higher
variability in the transient flow. [Choi et al., 2015] notes that the decrease in alongshore flow is a
consequence of multidirectional phase interaction in the nearshore region yields less wave-induced
momentum flux based on the moments of the wave energy spectrum. As noted in both [Baker et al.,
2021] and [O’Dea et al., 2021] this does not decrease the energy associated with the wave field
nearshore, but the resulting wavefields increases the short-scale fluctuations of the velocities and
therefore cancels on average.

Lastly, the main direction of the incoming wave field DP greatly influences the alongshore
flow. With the mean direction being normal to the beach there would be zero net momentum in
the alongshore direction, it is therefore expected that this results in the least amount of alongshore
movement.

It is also evident most of the vortexes appear inside the surf zone as seen on the right side of
Fig. (29). All of the vortexes found outside the surf zone is due to exit flows which can extend to
1-2 surf zone widths beyond the surf zone edge, and as noted by Scott et al, vortexes appear around
these rip currents. The morphology is also critical for the formation of vortexes as the wide and
strong vortexes appear at the sandbar. This happens as it is here the velocity of the flow is highest
[Martins et al., 2022] and generated vortexes are trapped inside the through [Bühler and Jacobson,
2001].

6.2.2 Nature of circulation inside vortexes

In theoretical fluid dynamics it is common to divide vortex into solid body rotation where the
circulation Γ = 2πr2ω0 is increasing as a parabola with increasing radii, and irrotational vortexes
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where the circulation is constant for all radii Γ = 2πB [Kundu et al., 2015]. In real life no vortex
are purely a solid body rotation or an irrotational vortex, and what we see is often an Rankine
vortex:

Γ(r) =

 (Γmax/σ
2) r2 if r ≤ σ,

Γmax if r > σ

Where there is two parameters: σ which determines for which radial distance the vortex char-
acteristics switches from SBR to irrotational, which is an abrupt transition, and the maximum
circulation Γmax, the maximum circulation of the vortex which happens when r ≥ σ [Kundu et al.,
2015].The Rankine vortex thus consists of a core where the rotation is nearly solid body rotation,
where there exist increasing vorticity and circulation, and an outer region where the vorticity is 0
and circulation constant.

We went through all identified vortexes and found the best fit values for Γ and σ in the L1 norm,
where two of the resulting vortexes are plotting in Fig. (27). Here we can easily see that the cores
indeed are nearly solid body rotations for these circulations, which is also true for all the identified
vortexes. Typical of these plots is that for circulation close to the centre the Rankine vortex is
close, but close to r = σ the true circulation is almost linearly increasing. A reasonable result as
there is no reason to expect a real function to be non-differentiable, and a smooth transition from
one form of characteristics to the next should be expected. The irrotational part of the vortexes also
does not last indefinitely as indicated by a true Rankine vortex. As we increase the radius other
parts of the domain have a more significant role and the circulation is no longer reminiscent of a
Rankine vortex.

This is obvious as described in [Scott et al., 2014] all vortexes along the surf zone exists along-
side entrance, exit, or alongshore flow. Thus it can not be expected that these patterns exists for
all time, but for some radius higher than the maximum circulation of each vortex we find that the
nature of circulation is approximately a Rankine vortex. In Fig. (27) the left vortex is part of an
alongshore current and the right vortex has an alongshore current above it which feeds into it be-
fore continuing into an entrance below it. In this right figure the circulation spikes again, but this
is purely due to the large velocity in the entrance flow, and does not fit our definition of a vortex.
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Figure 29: Left: The qualitatively dependencies of the flow on the variables studied in this thesis for a
subdomain of the beach. The middle column shows the average flow field for tide = 0m, spread = 20o and
DP = 20o. For each row one of these variables are changed. Right: The location of all the vortexes for all
the simulations.



6.2.3 Statistical results

(a) Strength and radii with all parameters combined

(b) Number of vortexes by parameter value.

Figure 30: a) The histogram of the raw and log
transformed data of all the vortexes radii (left) and
circulation strength (right), together with the best fit
normal distribution. b) Top: The combined number
of vortexes for different values of tide, spread, and
DP . Bot: The number of vortexes divided by if they
are smaller or larger than the median radius of the
vortexes.

Going through the velocity fields and marking all
the vortexes and calculating their radii and circu-
lation as in Fig. (27) yields 343 individual vor-
texes. Plotting these values on histograms yields
Fig. (30) a). Here it is evident that the radius is
closely gamma distributed, which means that the
log transformed data is almost normal distributed
as seen in the plots. The circulation strength
on the other hand does not look like a recog-
nizable distribution. Either way both diagrams
seem to indicate that most circulation are weaker
than ≈ 60m2/s and have a radius in the range of
r ∈ [20, 60]m. The radius and circulation of the
vortexes are dependent on each other on a linear
relationship, where increasing radius entails in-
creasing circulation strength but with larger stan-
dard deviation.

Looking at Fig. (30) b) indicate the de-
pendence of larger and smaller vortexes on our
parameters. The number of vortexes reaches
a maximum while the tide is neutral, with al-
most twice as many vortexes as with high or low
tides. The distribution of large and small vortexes
also change with changing tides, with increasing
share of large vortexes for higher tides. Sort-
ing the number of vortexes by directional spread
does not seem to have a strong influence on the
number of vortexes, but the distribution of them
is highly dependent on the value of σθ. Larger
spread is correlated with more small vortexes.
Lastly DP is a critical factor for the amount of
vortexes, where an incoming wavefield which is normal to the beach yields twice as many vor-
texes as when DP = 40o. Meanwhile the sizes of the vortexes is not clearly correlated with this
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Table 3: p-values from the 3-way ANOVA for the radius and circulation of vortices. The statistical signifi-
cant variables are shown in bold at the level α = 0.05.

Dependence p-values
Radius Strength

tide 1.4e-2 5.6e-2
σθ 1.8e-4 3.6e-15
DP 5.7e-2 4.9e-2
tide:σθ 4.7e-1 3.7e-1
tide:DP 3.3e-1 5.2e-1
σθ:DP 2.9e-1 1.4e-3
tide:σθ:DP 9.2e-1 9.9e-1

parameter.

Figure 31: The box plots of vortex radius and circu-
lation strength for all the variables. The leftmost box-
plots are for the radius and rightmost for the strengths.

Looking at boxplots of the values of radius
and circulation for all the parameters yields
Fig. (31). Looking on this there seems to be
a decreasing relationship of vortex radii and
strength with the directional spread as well as
an increasing relationship with tide and radius,
something which corresponds well with Fig.
(30). There also seem to be no dependence
on radii on the remaining variables. Hence the
main direction of the incoming wavefield does
not appear to have an impact on the parameters
of vortexes, while the tide only affect the size
of them.

Using the data from Fig. (31) to conduct
the 3-way ANOVA as described in Ch. (6.1.3)
yields the results seen in table (3). Here it
shows that the radius of the vortexes are influ-
enced by the tide and directional spreading σθ,
and that the circulation strength is influenced
by the spread σθ, main direction DP and an
interaction between them. To know whether
or not these results are valid it is necessary to
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check whether or not the residuals of our sta-
tistical model is normal, and if we have outliers in our data. This is done in Fig. (32) a), where
we can see that the radius’ residuals are satisfactory normal and the conclusions from the ANOVA
test for these are valid. For the circulations on the other hand there are ≈ 7 values which are larger
than expected. Unaccounted for these values would skew the means higher and influence the test,
but removing them did not influence the results of the test. We therefore conclude that the results
for the circulation is also valid. Lastly the effects of the interaction is plotted to visualize the effect
in Fig. (32) b). Here there seems to be a large influence on the circulation strength of the vortexes
for some specific values of the wave fields main direction and spreading. While on average the
influence of the main direction DP on the circulation strength is to reduce it as seen in Fig. (30)
b), for σθ = 40o it first increases it before decreasing again implicating that there is a complex
interaction between these two parameters.

6.3 Discussion

Depending on the incoming waves, surf zone dynamics feature a variety of flows, including long-
shore currents, entrance and exit flows, rip currents and in many cases vortices of varying size and
strength. Close to the center, vortices in the surf zone are very close to pure solid-body rotation,
while with increasing distance from the center, the flow becomes nearly irrotational. As such, the
flow can be well represented by a Rankine vortex [Kundu et al., 2015].

The nature of the main features of the flow as well as details such as size (radius) and strength
(circulation) of these vortices are determined by multiple factors. In the present work we have
looked at how the tide level, direcionl spread of the wave spectrum, and the mean direction of the
wave field affect the nature of the nearshore flow field.

The bathymetry is critical for the formation of vortexes, especially the depth of the sandbar.
We found that when the tide is at some ratio compared to the depth of the sandbar, there is a large
number of organized circulations present in our domain as seen in Fig. (30). When much of the
incoming wave energy breaks at the same location they seem to feed into energetic and organized
movement, in the form of vortexes in our study but also rip currents as [Scott et al., 2014] found.
The local bathymetry must also be a factor with regards to the size of the vortexes, as Fig. (30)
shows that the predominant share of vortex size changes from small to large for changing tide.

Analysing the impact of DP of the wavefield it is also evident that the largest factor for the
vortex formation. The intensity of the longshore flow decreases towards its offshore and onshore
boundaries (see Figure (28), right panel) and may also vary in time. Consequently, the net long-
shore flow prevents the formation of distinct circulatory patterns of smaller scale. Similar dynamics
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(a) Residuals and QQ-plots

(b) Interaction terms

Figure 32: a) The residuals of the two ANOVA models used to test the dependence of vortex radius and
circulation strength. The left plots shows every residual for every grouping of variables, and the right
plots shows the standarized residuals plotted against the expected values from the normal distribution. The
residuals from the radius are close to normally distributed, while the circulation has a few values which are
larger than expected. b) The mean value of circulation plotted for different values of σθ and DP . There is a
interaction for σθ = 40o and DP = 20o

.



were also observed by [Choi et al., 2015]. Therefore there is less organized net vortex movement
over time in these cases, and we see less vortex formation. But when these vortexes first organize,
for example in the wake of an exit or the shadow of a swing in the alongshore current, then the size
and strength of these seem unaffected by the direction.

Lastly σθ impacts the distribution of large and small vortices, their strength, and their average
size. When incoming waves comes at multiple angles into the surf zone, their momentum cancels
and the resulting flow becomes weaker inside the zone. When averaging over longer times the
vorticity decreases for larger spreads as also found in [O’Dea et al., 2021]. With less vorticity
on average it follows that the limits of circulatory strength also falls for higher spreading, as our
data shows us. With no spreading from the incoming wavefield, all the vorticity in the surf zone is
bathymetry driven. Since this is constant in all our simulation it is natural that the average vorticity
and thus circulatory strength is larger for these cases. It also tells us that bathymetry driven vorticity
is a main force of vortexes in the surf zone. The directional spreading inhibits vortexes by nonlinear
interactions since inside the surf zone higher spreading induce wave breaking in directions opposite
to the flow decreasing the speed at which it flows [Choi et al., 2015]. [Baker et al., 2021] with their
experiments on the American east coast, where they found that higher spreading is connected to
smaller radii.

Combined this means that all three parameters influences the characteristics of the vortices,
both in terms of size and strength. Not only do the parameters influence the flow in the beach,
but they also interact with each other in a complex way. In this paper we have seen that tides
and directional spreading influences the distribution of large versus small vortexes, while tide and
the main direction of the wave field influences the numbers of vortexes. In addition we found
more complex interaction between directional spread and main directional, which we have no
explanation for at this moment.
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Figure 33: Geometry of the system in physical variables (a) plan view (b) section view [Renzi and Dias,
2013]

7 Oscillating wave surge converter

7.1 Background

The goal of this chapter is to somehow implement an OWSC into BOSZ to track how it influences
the nearshore circulation at Sylt.

7.2 Analytical solution to capture factor of an OWSC

Consider a rectangular OWSC consisting of a flap attached to a foundation sitting on a flat ocean
floor. [Renzi and Dias, 2013] then showed that when this device is under the influence of a
monochromatic wave of amplitudeA′ and period T ′ (where ′ denote physical variables), a potential
flow model can be solved analytically. They showed that through calculating constants depending
on parameters regarding the converter’s geometry and the incoming wave field, one can express
the capture factor of each wave. Constants regarding the flap’s geometry is the first and second
moment of inertia S = S′

ρb′4
and I = I′

ρb′5
and the elastic moment of inertia due to net buoyancy

C = wa(h− c)2 − S.
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Further they expressed the boundary conditions on the converter as:

fn =

√
2[κn(h−c)sinh(κnh)+cosh(κnc)−cosh(κnh)]

κ2
n(h+ω−2sinh2κnh)

1
2

(128)

d0 = k(h+ω−2sinh2kh)
1
2√

2ωcosh(kh
, dn = 0 ∀ n > 0 (129)

Where κ0 = k0 and κn = k0 are the solutions of the dispersion relations:

ω2 = k0tanh(kh) ω2 = −kntan(knh) (130)

With this they solved for the jump in potentials across the plate as given by the two following
infinite system:

P∑
p=0

{
αpn

βpn

}
Cpn(v0) = −

{
fn

dn

}
v0 ∈ (−1, 1) (131)

Where the Cpn constants are given by:

Cpn(v0j) = −(p+ 1)Up(v0j) +
iκn
4

w 1

−1
(1− u2)

1
2 · Up(u) ·

[
Rn(

1
2
κn|v0j − u|)
|v0j − u|

]
du (132)

Here, Up is the p’th Chebyshev poylnomial of the first kind and Rn is:

Rn(α) = J1(α)[1 +
2i

π
(ln

α

2
+ γ)]− i

π

[
α

2
+

∞∑
j=2

(−1)j+1(α
2
)2j−1

j!(j − 1)!
(
1

j

j−1∑
q=1

2

q
)

]
(133)

And J1(α) is the Bessel function of the first kind and order, and γ is the Euler constant.
Solving for αpn and βpn allowed Renzi and Dias to solve for ν = ωπ

4
f0im(α00), the torque due

to inertia of the system, and F = −ωπ
4
iωAIβ00f0 the complex excitation. Which in turn allowed

them to express the average capture factor over a wave as:

Cf =
|F |2

2A2
ICg(η + ηpto)

(134)

Where AI is the incoming wave amplitude, Cg the group velocity, and νpto is the optimized
extraction rate given by:

νpto =

√
C − (I + µ)ω2)2

ω2
+ ν2 (135)

81



7.3 Numerical solutions

7.3.1 Pseudo-code

Algorithm 1 Determine the capture factor for every WEC
P = 5 to truncate α and β
N = 2 to truncate fn, dn, κn, kn
for every ∆M timesteps do

for all WEC do
Low-pass gauge data to find T and A′, and calculate ω and A0

Estimate kn and κn with Newtons method and ITP
Calculate fn and d0
for every Cpn(v0j) do

Use adaptive Gauss-Legrende Quadrature until error < 2%
Trunctate Rn at 5 factorial

end for
Solve linear system for αpn and βpn
Calculate F, ν and νpto
Calculate the capture factor

end for
end for

7.3.2 Numerical solutions

The input to Renzi’ and Dias’ solution is the incoming waves period and amplitude. This is un-
known, where the only available information regarding the wave field are the ocean elevation and
particle speed at fixed locations. However, one can estimate the incoming wave period and am-
plitude on a wave-by-wave basis by looking at the time record of a gauge placed further ahead of
the OWSC. Every time I look to update the capture ratio of the OWSC, I find the three first zero-
mean-crossings which provides the wave period. In addition, the zero-mean-crossings of an array
of backwards finite differences of the wave elevation is used to find the location of the maximum
and minimum wave elevation, from which the wave height and amplitude is calculated.

The next numerical challenge is to solve equations (130) for the wave numbers, both of which
are impossible to solve exact. But the leftmost equation is a strictly increasing and approaching a
linear function for large input k, Newton’s method is effective to solve it.

The rightmost equation is less trivial to solve. Here I need to find the first n positive solutions of
the equation. The equation has the useful property that it is decreasing and has vertical asymptotes
for kj = π

2H
+ πj, j ≥ 0. This means that for every subdomain k ∈ (kj, kj+1) there is exactly
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one solution. Hence solving for the n first solutions is done by using the secant- and bisection-like
method ITP. These solutions are worked on in parallel until the change of values are less than 10−7

for all the values in one iteration.
To solve the linear system eq. (132) it is necessary to define discrete values for v0 and truncate

n and p. [Renzi and Dias, 2013] references that choosing v0j to be equal to the j’th zero of the
Chebyshev polynomial of the first kind provides the fastest convergence:

v0j = cos

(
(2j + 1)π

2P + 2

)
, j = 0, 1, ..., P (136)

Further they claim that truncating N = 2 and P = 5 is sufficient to obtain a maximum relative
error of O(10−15). Hence my scheme is also truncated at this value.

Calculating the integral of Cpn(v0j) is done via an adaptive Gauss-Legendre scheme. For each
iteration the error is estimated as the difference between two successive iterations and is continued
until a 2% error is obtained. This part of the scheme is computational intensive and is thus ended at
a much larger error than the previous calculations. Hence it is likely that any error in the resulting
estimate is contained in this calculation.

Contained in the calculation for Cpn is also a truncation for the calculation of Rn. Here the
factorials are precomputed for efficiency, and the infinite sum is truncated to 5 by experience.

All other values are calculated straightforward through a direct relation, without any need to
use numerical methods.

7.3.3 Comparison to results of Renzi and Dias

My results line up perfectly with Renzi’ And Dias’ results, except for values of the capture factor
for wave periods greater than ≈ 8s. The reason of this is unbeknownst to me, as it seems odd that
every part matches up until the last calculation. Especially odd is the part where the initial peak
matches well, but for higher values of T it no longer matches.

7.4 Connecting porosity and capture factor

The porosity used in the BOSZ model (Ch. 1.4.3) is not the same as the capture factor calculated
in Ch. (7.3.2). To model our OWSC in BOSZ as a breakwater I propose that the friction factors
mentioned in Ch. (1.4.3) is used, since it removes energy as a wave moves through the location,
and that our measure of comparison should be how much energy is removed when choosing for a
given porosity.
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Figure 34: Left: Results from Renzi and Dias original paper. Right: The recreation from my scheme. The
diagrams a), b), and c) matches perfectly to the eye, but diagram d) from my scheme does not have an uptick
for higher periods.

Figure 35: Domain for estimating the energy removed for a given porosity.



Figure 36: Wave ampltitude (top) and spectral density (bottom) before and after a JONSWAP wave field
passes through a numerical OWSC with porosity equal 0.2 (left) and 0.1 (right).

To calculate this energy, I simulate a representative incoming JONSWAP wavefield. This wave-
field is measured right before and right after it hits the converter (see Fig. 35). The signal is then
converted to a power spectral density, which is integrated to measure the percentage loss of en-
ergy. In Fig. (36) I plot porosities of 0.2 and 0.1 maps to a capture factor of 0.5414 and 0.8334

respectively. Repeating this process for various values of porosities yields a discrete mapping of
porosities and capture factors (Fig. 37). This method accounts for the loss in energy on the beach
side of the OWSCs, but as we do not control the amount of energy reflected outwards the computed
data on the sea side of the devices is not to be trusted. But the beach side which is where we are
interested in at the moment should have the right amount of energy coming through.

The above plot suggests that when the porosity approaches zero, no energy is transported
through the breakwater. This is as expected and reflects that 100% of the energy is captured.
But when the porosity approaches one from the left, it does not let through all the energy. A con-
vergence towards 0 would be expected, since a medium with porosity 1 has no material blocking it,
but my above tests imply that the captured energy converge towards 0.2. Hence for capture factors
below 0.2 I am left with the choice of choosing a porosity which captures 20% of the energy or
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Figure 37: Figure 8: Capture factor as a function of porosity, note abrupt change from porosity = 0.99 to
porosity = 1

deactivating the breakwater. Of these approaches I have chosen the latter.
In the live simulation with varying capture factor our process will thus be threefold.

• First the incoming wave elevations are calculated on a regular basis. At a location in front of
the OWSC the elevations are recorded.

• These are sent to my calculations for the OWSC to find the current capture factor. If the
capture factor is lower than 0.2 the porosity is set to 1, to ignore the OWSC.

• Before lastly the corresponding porosity is found via the above table, and linear interpolation,
and inputted to the BOSZ model for further simulation.

The variables of where and how often this calculation should be carried out is chosen at the begin-
ning of the simulation. The porosity is then dynamically changed to estimate the needed energy
removal. This approach has the potential issue that the abrupt changing of porosity might induces a
backwards travelling wave if the water level is higher behind the OWSC than in front. A potential
solution would be to slowly change the porosity from one to another to mitigate the effect, but this
is not accounting for at writing time.
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Figure 38: Farm configuration. This pattern is repeated across the entire domain at a fixed latitude.

Table 4: Dimensions of the OWSC devices and farm configuration

Width w’ Thickness 2a’ Hinge height c’ Alongshore distance Crosshore distance
25m 1.8m 1.5m 25m 15m

7.5 Effect on circulation at Sylt

7.5.1 Dimensions

Now I test how building OWSCs in the surf zone would impact the local circulation outside Sylt.
There has been multiple studies regarding optimal size of the devices, OWSC farm configurations,
and comparisons with other WEC devices [Babarit, 2015, Benites Muñoz, 2022, Babarit et al.,
2012, Noad and Porter, 2015, Sarkar et al., 2014].

It has been found that these devices works best at depths between 8 and 15 meters, and that the
devices themselves should be 24.6 meters wide and 1.9 meter thick [Noad and Porter, 2015]. In our
model I have therefore deemed to use these values for the devices. The depth is not controllable by
me, but luckily the depth of our bathymetry of Sylt about 8m, so the devices are placed in depths
around that value.

Further much effort have been put into evaluating different patterns of the OWSC farms, and
it has been found that while the different interaction between the devices has an effect on the
efficiency it is unknown how a varying bathymetry changes the conclusions [Sarkar et al., 2014].
They further found that multiple layers of closeby devices has a detrimental effect on the efficiency,
both for the forward and backwards devices [Benites Muñoz, 2022]. The devices should therefore
be placed as far away from each other as possible, but this is in practice impossible given the
space constraint. As the devices cannot be placed unlimited in the alongshore direction either, I
have come to an compromise with placing two rows of devices along the length of our domain
to simplify the placements for an initial study. They stand in a straight north-south line around
400− 500 meters offshore.
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(a) Without an OWSC farm (b) With an OWSC farm

Figure 39: A subsection of the average velocity field for one simulation with multiple vortexes of different
sizes and strengths. The red markers denote where we identified centres of vortexes. The subsection and
input parameters are the same for both figures. The only difference is the inclusion of the OWSC farm in
figure b). Some of the flow patterns can be recognized, but with a lower value.

7.5.2 Numerical setup

The bathymetry and wave field are identical to the one used in Ch. (6). I also simulate the same
35 runs, varying the tide, directional spreading and the main direction of the incoming wave field.
The only thing which is changed is the inclusion of OWSCs in the model.

The OWSCs are modelled as having the capture factor described in Ch. (7.3.2) and by using the
in-built porosity calculations of BOSZ as described in Ch. (1.4.3) and (7.4). I define beforehand
the placements of the OWSC. BOSZ uses this location to find the smallest depths for each device,
to model the fact that the seafloor would need to be flattened to place the device, which is then used
to calculate the capture factor. The width of the device is calculated to be 1.9m but in the model it
is modelled as being 2m as that is mesh resolution.

While in Ch. (7.4) I propose a wave-by-wave tracking scheme, it is in practice hard to im-
plement a wave-tracker to know the length and period of an individual wave in a 2D random
wave-field. I have therefore in this chapter assumed that the efficiency of the OWSC are about
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that for the significant wave height and mean period. Hence the capture factor and the porosity is
constant throughout the run.

7.5.3 Statistical results

(a) Strength and radii with all parameters combined

(b) Number of vortexes by parameter value..

Figure 40: a) The histogram of the raw and log trans-
formed data of all the vortexes radii (left) and circula-
tion strength (right), together with the best fit normal
distribution. b) Top: The combined number of vor-
texes for different values of tide, spread, and DP . Bot:
The number of vortexes divided by if they are smaller
or larger than the median radius of the vortexes.

In this section we do a repeat of the analysis in
Ch. (6.2.3), but for the new data acquired from
simulating with a OWSC farm in the domain.
The method of identifying the vortices are the
same as in Ch. (6.1.2), and the same programs
are used to post-process them. See Fig. (39)
for an example comparison.

Firstly, by looking at the distribution of
radii and circulatory strength, Fig. (40) (a), it is
obvious that the distributions have shifted left.
This is especially true for the strength of the
circulations. A results of this is that the circu-
latory strength have approached an exponential
distribution, while the radii is an even better fit
to a Gamma distribution. This is reflected by
the fact that the logarithmic transform is close
to a normal distribution.

In Fig. (40) (b) the total number of vortices
associated by the different parameters and their
relative size compared to the median is plot-
ted. The influence of the parameters σθ andDP

is similar to the case without an OWSC farm,
while the tide have a new pattern. As the tide
increases, the number of vortices decrease in
the surf zone.

To compare the two cases, with and without
OWSCs, boxplots of the sizes of the radii and
circulatory strength for the different values of
the parameters are plotted in Fig. (41). Here
we it is seen that indeed for all parameters the
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Table 5: p-values from the Mann-Whitney U test for the difference between the radius and circulation of
the vortices with or without WECs present in the domain. The statistical significant variables are shown in
bold at the level α = 0.05.

Radius Strength
p-values 2.23e-20 3.17e-39

radius and strength of the circulations have decreased. This is true for both the mean and the
spreading of the quantiles for both values, but is especially true for the circulatory strength. Testing
the null hypothesis that the circulations and radiuses are drawn from the same distribution with the
non-parametric Mann-Whitney U test it is seen from table (5) that they are indeed statistically
different.

7.6 Discussion

By placing an OWSC farm in front of the surf zone of a beach, we see that the circulation decrease
in both size and strength. This is natural, as the idea of such a farm is to extract energy which
means that the waves have less energy to circulate when approaching the shore. As a consequence
there is less energy available to mix the near shore ocean.

This effect is larger for higher tides. This might be due to the fact that the Oyster device which
the solution of [Renzi and Dias, 2013] is based upon have an optimal depth of 8− 15m, where our
bathymetry has a depth of at most 8m. For lower tides we are therefore operating in non-efficient
depths, and for high tides the devices are efficient. This would explain why for high depths the
waves which approuch shore have less energy and circulate less. During the manual circulation
identification it was noticed that the velocities were very small for these cases except for a few
places.

The fact that we managed to identify more smaller circulations indicate that not just circulations
but also exits and alongshore current is smaller. This is due to the fact that if these were significant,
their influence of the mean surface velocities would overshadow the circulations and it would not
be possible to see them with our methodology.

This decrease in radius, and drastic decrease in circulatory strength might have a large influence
on the mixing of the ocean nearshore. Sediment transport will be lessened, and biological life
which are depending upon it will be affected. How much these large OWSCs would influence
these nearshore processes and life must be further researched.
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Figure 41: The box plots of vortex radius and circulation strength for all the variables, both with (blue) and
without (orange) the OWSC farm. The leftmost boxplots are for the radius and rightmost for the strengths.



8 Summary

In Chapter (4) it was found that particle transport is much more sensitive to waves originating in
the infra-gravity (IG) band. These are waves which typically have much smaller amplitudes than
the typical waves seen on the ocean, and their long period and wavelength makes them hard to
spot while looking at out at sea. Nevertheless it was found that the movement of particles have a
significant component in IG frequency offshore. As the waves break in the surf zone the IG band
grows in importance before the movement associated with them are dominant in the surf zone.
This explains multiple effects that has been found to be dominated by IG frequencies such as the
location of the river plume [Flores et al., 2022], net movement of inertial particles [Bjørnestad
et al., 2021], and sand flux [Mendes et al., 2020].

As it was found that the phase-resolving nearshore wave model Boussinesq Ocean and surf
zone model (BOSZ) can generate these kind of waves, it also makes sense that the model can be
used to somewhat accurately predict the movement of actual particle paths. In Chapter (5) this was
put to the test by comparing the simulated paths in BOSZ with actual orange paths outside Sylt.
Oranges was tracked through pictures taken with a stereo camera and combined with GPS data
to recreate their position in a coordinate system. Combining this data about their position with
data regarding the bathymetry, tide levels, and wave compositions it was possible to numerically
recreate the wave conditions of the day. In the resulting simulated movements we find that the
numerical paths matches the actual paths to a satisfactory degree. Further it was found that the
drifters moved slowly in one direction while having much faster oscillating movements while trav-
elling there. This of course follows from the discussion that the slowly varying IG waves dominate
the movements. It was also found that these IG waves is critical to accurately simulate particles
in the surf zone, as the phases of the waves determined the direction of movement of the parti-
cles. Only by averaging paths by different phases could we get the right paths, a results which is
necessary to include in all further work in tracking near shore particles.

Along the coast multiple large scale fluid patterns can be found. There exists regions of flow
which primarly move towards the beach or out of the beach, the latter of which is known as rip
currents, as well as alongshore flow and lastly large scale circular patterns called vortexes. In
Chapter (6) and (7) it was found that vortexes in the surf zone are dependent upon the tide level,
the mean direction the waves were coming from, and if they all came in at the same angle or
not. The radii, strength and the number of these circular movements for different values of these
parameters were compared, and it was found through statistical testing that some of the parameters
only influenced the radii of the vortexes, while others influenced the strength or number of vortexes.
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Oscillating wave surge converter (OWSC) devices are a relatively new type of wave energy
converter of recent interest as these can capture a large percentage of the energy of the waves
(capture factor). In Chapter (7) a method of analytically calculating the capture factor for a wave
was retold. A way of numerically calculate this factor was developed, and how to include this in
the BOSZ model was explained. The inclusion of a farm of OWSCs in the bathymetry had the
effect of reducing all the radii and circulatory strength in the surf zone, while keeping most of the
relationships from the case with an open beach.

A better understanding of the vortex structures can shed light into the intensity of mixing. This
goes beyond this project but we might be able to recalculate the vertical exchange of water by
knowing the size and intensity of eddies. The fact that we found in Chapter (6) that vortexes at
the beach match the fundamental Rankine vortex yields a better feeling of what to expect from
computations. It might be possible to use the computed results in combination with analytical
solutions to create better estimates for mixing ratios in the future. This can among other help to
understand the influence OWSC farms have on the local ecology and morphology.
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