Praveen Kumar¹, Palash Sarkar², Sudhan Majhi^{3*} and Subhabrata Paul¹

¹Department of Mathematics, IIT Patna, Bihta, Patna, 801006, Bihar, India.

²Department of Informatics, University of Bergen, Bergen, 5020, Norway.

^{3*}Department of Electrical Communication Engineering, IISC Bangalore, CV Raman Rd, Bengaluru, 560012, Karnataka, India.

*Corresponding author(s). E-mail(s): smajhi@iisc.ac.in; Contributing authors: praveen_2021ma03@iitp.ac.in; palash.sarkar@uib.no; subhabrata@iitp.ac.in;

Abstract

This paper presents a direct construction of aperiodic q-ary (q is a positive even integer) even length Z-complementary pairs (ZCPs) with large zero-correlation zone (ZCZ) width using generalised Boolean functions (GBFs). The applicability of ZCPs increases with the increasing value of ZCZ width, which plays a significant role in reducing interference in a communication system with asynchronous surroundings. For q = 2, the proposed ZCPs reduce to even length binary ZCPs (EB-ZCPs). However, to the best of the authors' knowledge, the highest ZCZ ratio for even length ZCPs which are directly constructed to date using GBFs is 3/4. In the proposed construction, we provide even length ZCPs with ZCZ ratios 5/6 and 6/7, which are the largest ZCZ ratios achieved to date through direct construction.

Keywords: Even length binary Z-complementary pairs (EB-ZCPs), generalised Boolean functions (GBFs), Golay complementary pair (GCP), zero-correlation-zone (ZCZ).

1 Introduction

The Golay complementary pairs (GCPs) were first introduced by Golay [1]. The aperiodic auto-correlation sum (AACS) of a GCP diminishes to zero for all time shifts not equal to zero. GCPs have found many engineering applications including channel estimation [2], radar [3] and peak power control in orthogonal frequency division multiplexing (OFDM)[4] etc. But the lengths of GCPs are limited to the form $2^{\alpha}10^{\beta}26^{\gamma}$, where α, β and γ are non-negative integers [5, 6]. As a generalization of GCPs, Fan *et al.* introduced the idea of Z-complementary pairs (ZCPs) [7]. The AACS of the two sequences in a ZCP is zero within a certain zone that is known as the zero-correlation zone (ZCZ). Unlike GCPs, ZCPs exist for arbitrary lengths with several ZCZ widths.

In [8], a construction of GCPs based on generalised Boolean functions (GBFs) over \mathbb{Z}_q is provided by Davis and Jedwab, where $q=2^h$, for some positive integer h. Later, Paterson expanded Davis and Jedwab's results to q-ary GCPs for even q [9]. Such constructed GCPs based on the GBFs given in [8] and [9] are called the Golay-Davis-Jedwab (GDJ) pairs [10–12] (or called the standard GCPs [13]).

ZCPs can be used as spreading sequences in quasi-synchronous codedivision multiple access (CDMA) systems to reduce inter-symbol interference (ISI) and multiple access interference (MAI) [14]. As introduced in [7], there are two types of ZCPs, namely even length binary ZCPs (EB-ZCPs) and odd length binary ZCPs (OB-ZCPs). Furthermore, it was conjectured in [7] that, the maximum ZCZ width for a binary ZCP of length N is given by (N + 1)/2when N is odd, and it is N - 2 when N is even.

Several direct constructions of ZCPs of lengths in the form of a power of two can be found in [15-17]. A direct construction of q-ary ZCPs based on GBF having larger ZCZ width is introduced by Chen [18]. For q = 2, this direct construction produces binary ZCPs with a ZCZ ratio 2/3. For nonnegative integers α, β and γ , ZCPs of length $2^{\alpha+2}10^{\beta}26^{\gamma}+2$ and ZCZ width $3 \times 2^{\alpha} 10^{\beta} 26^{\gamma} + 1$, with asymptotic ZCZ ratio 3/4 are systematically constructed using insertion [19]. A direct construction of q-ary even length ZCPs through GBFs was provided in [20]. The length and ZCZ width of the constructed ZCP are $2^{m-1} + 2$, m > 3, and $2^{m-2} + 2^{\pi(m-3)} + 1$, respectively, where π is a permutation over m-2 symbols. When $\pi(m-3) = m-3$, the asymptotic ZCZ ratio becomes 3/4 which is the largest ZCZ ratio available in the existing literature to date. Recently, direct GBF constructions of ZCPs of non-powerof-two lengths have been reported with maximum ZCZ ratio of 2/3 in [21] and 4/7 in [22]. In [23], different construction methods for ZCPs have been discussed and provided their upper bounds of peak to mean envelope power ratio (PMEPR). A direct construction of Z-complementary code sets (ZCCSs) has been reported in [24] which produces non-power-of-two lengths ZCPs with a maximum ZCZ ratio of 3/4. The authors in [20, 24] also introduced an open problem of having higher ZCZ ratio of ZCPs. The authors in [25] provided a systematic construction of q-ary even length ZCPs for ZCZ ratio 6/7 using the concatenation of GCPs and their complementary mates, where GCPs and

their mates are used as seed sequences. However, they did not provide a direct construction and thus introduced it is an open problem for future work.

By motivation of the above open problems, in this work we present a direct construction of aperiodic q-ary even length ZCPs for ZCZ ratio 5/6 and 6/7. Like the direct construction proposed in [18] and [20], the proposed construction also does not require any special seed sequences initially. In addition, the proposed q-ary even length ZCPs have a larger ZCZ ratio than the ZCPs reported in [20], and they also provide the largest ZCZ width. For q=2, the proposed construction reduces to EB-ZCP.

The remaining paper is organized as follows. Basic notations and definitions are provided in Section 2. In Section 3, the proposed construction of q-ary even length ZCPs is discussed. Finally, concluding remarks are provided in Section 4.

2 Notations and Definitions

The following notations will be followed throughout this paper: $\bar{x} = 1 - x$, where $x \in \{0, 1\}, \lfloor x \rfloor$ and $\lceil x \rceil$ represents the floor and ceiling function of x respectively, for n > 1, $\mathbf{0}_n$ and $\mathbf{1}_n$ represents n consecutive 0's and 1's, respectively.

Definition 1 Let $\mathbf{a_1} = (a_{1,0}, a_{1,1}, \dots, a_{1,N-1})$ and $\mathbf{a_2} = (a_{2,0}, a_{2,1}, \dots, a_{2,N-1})$ be two q-ary sequences over \mathbb{Z}_q . The aperiodic cross-correlation function (ACCF) at a shift τ is defined by

$$\rho_{\mathbf{a_1},\mathbf{a_2}}(\tau) = \begin{cases} \sum_{k=0}^{N-1-\tau} \omega^{a_{1,k}-a_{2,k+\tau}}, & 0 \le \tau \le N-1, \\ \sum_{k=0}^{N-1-\tau} \omega^{a_{1,k+\tau}-a_{2,k}}, & -N+1 \le \tau \le -1, \\ 0, & |\tau| \ge N, \end{cases}$$

where $q \geq 2$ is an integer and $\omega = \exp(2\pi\sqrt{-1}/q)$. When $\mathbf{a_1} = \mathbf{a_2}$, $\rho_{\mathbf{a_1},\mathbf{a_2}}(\tau)$ is called aperiodic auto-correlation function (AACF) of $\mathbf{a_1}$ and it is denoted by $\rho_{\mathbf{a_1}}(\tau)$.

Definition 2 A pair of sequences \mathbf{a} and \mathbf{b} of length N is called a GCP if their AACS is zero for all non-zero time shifts, i.e.,

$$\rho_{\mathbf{a}}(\tau) + \rho_{\mathbf{b}}(\tau) = 0, \quad \text{for } \tau \neq 0.$$
(1)

Definition 3 A GCP (\mathbf{c}, \mathbf{d}) of length N is called a complementary mate of a GCP (\mathbf{a}, \mathbf{b}) of length N, if

$$\rho_{\mathbf{a},\mathbf{c}}(\tau) + \rho_{\mathbf{b},\mathbf{d}}(\tau) = 0, \quad \text{for } 0 \le \tau \le N - 1.$$
(2)

Definition 4 A pair of length N sequences $\mathbf{a_1}$ and $\mathbf{a_2}$ is called a ZCP with ZCZ width Z, if and only if

$$\rho_{\mathbf{a}_1}(\tau) + \rho_{\mathbf{a}_2}(\tau) = 0, \quad \text{for } 1 \le \tau \le Z - 1.$$
(3)

We call $(\mathbf{a_1}, \mathbf{a_2})$ an (N, Z)-ZCP. When Z = N, then the pair $(\mathbf{a_1}, \mathbf{a_2})$ becomes a GCP. The sequence pair is called an EB-ZCP if the sequences $\mathbf{a_1}, \mathbf{a_2}$ are binary and length of the sequence is even.

Definition 5 ([26]) If $(\mathbf{a_1}, \mathbf{a_2})$ is a ZCP of even length N with ZCZ width Z, then the ZCZ ratio is defined as

$$ZCZ \text{ ratio} = Z/N.$$
 (4)

2.1 Generalised Boolean Function

A GBF f in m binary variables $x_0, x_1, \ldots, x_{m-1}$ is a function from $\{0, 1\}^m$ to \mathbb{Z}_q . A monomial of degree r is defined as the product of any r variables among $x_0, x_1, \ldots, x_{m-1}$. So there are $\sum_{r=0}^m {m \choose r} = 2^m$ monomials, namely $1, x_0, x_1, \ldots, x_{m-1}, x_0x_1, x_0x_2, \ldots, x_{m-2}x_{m-1}, \ldots, x_0x_1 \cdots x_{m-1}$. With the linear combinations of these 2^m monomials by taking coefficients from \mathbb{Z}_q , a GBF can be expressed uniquely. In the expression of a GBF of order r, there exists at least one highest-degree monomial of order r with a non-zero coefficient. The complex-valued sequence corresponding to GBF f of m variables $x_0, x_1, \ldots, x_{m-1}$ is expressed as

$$\Psi(f) = \left(\omega^{f_0}, \omega^{f_1}, \dots, \omega^{f_{2^m-1}}\right),\tag{5}$$

where $f_i = f(i_0, i_1, \ldots, i_{m-1})$, $\omega = \exp(2\pi\sqrt{-1}/q)$, and $(i_0, i_1, \ldots, i_{m-1})$ is the binary vector representation of i, where as in the remainder of this paper, qis an even integer not less than 2. Corresponding to a GBF f with m variables the sequence $\Psi(f)$ is of length 2^m . In this paper, we focus on q-ary (N, Z)-ZCPs, where $N \neq 2^m$. Hence, we define the truncated complex-valued sequence $\Psi_L(f)$ corresponding to the GBF f by deleting the last L elements of the sequence $\Psi(f)$.

mma 1 ([27]) Let
$$f : \mathbb{Z}_2^m \to \mathbb{Z}_q$$
 be a GBF defined by

$$f = \frac{q}{2} \sum_{k=0}^{m-2} x_{\pi(k)} x_{\pi(k+1)} + \sum_{k=0}^{m-1} g_k x_k + g',$$
(6)

where π is a permutation of $\{0, 1, 2, \dots, m-1\}$ and $g', g_k \in \mathbb{Z}_q$. Then for any $c' \in \mathbb{Z}_q$ $(\mathbf{a_1}, \mathbf{a_2}) = \left(\Psi(f), \Psi\left(f + \frac{q}{2}x_{\pi(0)} + c'\right)\right)$ is a GCP and $(\mathbf{b_1}, \mathbf{b_2}) = \left(\Psi\left(f + \frac{q}{2}x_{\pi(m-1)}\right), \Psi(f + \frac{q}{2}\left(x_{\pi(0)} + x_{\pi(m-1)}\right) + c'\right)$ is a complementary mate of $(\mathbf{a_1}, \mathbf{a_2})$.

3 Proposed Construction

Le

For proving our main result, we define the following function which will be used throughout this section.

For any integer $m \ge 5$, let π be a permutation of $\{0, 1, 2, \ldots, m-5\}$. Let the GBF $f : \mathbb{Z}_2^{m-4} \to \mathbb{Z}_q$ be defined as

$$f = \frac{q}{2} \sum_{i=0}^{m-6} x_{\pi(i)} x_{\pi(i+1)} + \sum_{i=0}^{m-5} c_i x_i.$$
(7)

Define the functions f_1, f_2, f_3 as follows:

$$f_1 = f + \frac{q}{2} x_{\pi(0)}; \quad f_2 = f + \frac{q}{2} x_{\pi(m-5)}; \quad f_3 = f_2 + \frac{q}{2} x_{\pi(0)}.$$
 (8)

Theorem 1 Let the GBF $g: \mathbb{Z}_2^m \to \mathbb{Z}_q$ be defined as

$$g = f + \frac{q}{2} \left(\bar{x}_{m-1} x_{m-2} \left(\bar{x}_{m-3} + x_{m-3} x_{m-4} \right) + x_{m-1} \bar{x}_{m-2} \bar{x}_{m-3} x_{m-4} \right) + \frac{q}{2} x_{\pi(m-5)} \left(\bar{x}_{m-1} \bar{x}_{m-3} \left(x_{m-2} + x_{m-4} \bar{x}_{m-2} \right) + x_{m-1} \bar{x}_{m-2} \left(\bar{x}_{m-3} + x_{m-3} x_{m-4} \right) \right)$$
(9)

where f is defined in (7), q is an even integer and $c_i \in \mathbb{Z}_q$. Then for any choice of $c' \in \mathbb{Z}_q$, $(\mathbf{a}, \mathbf{b}) = \left(\Psi_{2^{m-2}}(g), \Psi_{2^{m-2}}(h = g + \frac{q}{2}x_{\pi(0)} + c')\right)$ forms a $(2^{m-1}+2^{m-2},2^{m-1}+2^{m-3})$ -ZCP.

Proof For $0 < \tau < 2^{m-1} + 2^{m-3}$, we have from definition

$$\rho_{\mathbf{a}}(\tau) + \rho_{\mathbf{b}}(\tau) = \sum_{i=0}^{2^{m-1} + 2^{m-2} - 1 - \tau} \left(\omega^{g_i - g_{i+\tau}} + \omega^{h_i - h_{i+\tau}} \right).$$
(10)

For any integer i, let $j = i + \tau$ and $(i_0, i_1, \ldots, i_{m-1})$ and $(j_0, j_1, \ldots, j_{m-1})$ is the

binary vector representation of i and j respectively. The proof is split into four cases. Case-1: $i_{\pi(0)} \neq j_{\pi(0)}$ and $\tau \neq C_{m-4}2^{m-4} + C_{m-3}2^{m-3} + C_{m-2}2^{m-2} + C_{m-4}2^{m-4}$ $C_{m-1}2^{m-1}$, where $C_{m-\alpha} \in \{0,1\}$ for $\alpha = 1, 2, 3, 4$. Then we have

$$g_i - g_j - (h_i - h_j) = \frac{q}{2} \left(j_{\pi(0)} - i_{\pi(0)} \right) = \frac{q}{2} \pmod{q}.$$

Therefore, $\omega^{g_i - g_j} / \omega^{h_i - h_j} = \omega^{q/2} = -1$, which implies $\omega^{g_i - g_j} + \omega^{h_i - h_j} = 0$. *Case-2:* $i_{\pi(0)} = j_{\pi(0)}$ and $\tau \neq C_{m-4}2^{m-4} + C_{m-3}2^{m-3} + C_{m-2}2^{m-2} + -1$

 $C_{m-1}2^{m-1}$, where $C_{m-\alpha} \in \{0, 1\}$ for $\alpha = 1, 2, 3, 4$.

Let t be the smallest integer such that $i_{\pi(t)} \neq j_{\pi(t)}$. Since $\tau \neq C_{m-4}2^{m-4} + c_{m-4}2^{m-4}$ $C_{m-3}2^{m-3} + C_{m-2}2^{m-2} + C_{m-1}2^{m-1}, \text{ there exists at least one } C_k \neq 0, \ 1 \le k \le m-5, \text{ such that for } C_k \in \{0,1\}, \text{ we can write: } \tau = C_02^0 + C_12^1 + \dots, C_{m-5}2^{m-5} + C_{m-4}2^{m-4} + \dots + C_{m-1}2^{m-1}. \text{ Since } j-i = \tau, \text{ we have } t \le m-5. \text{ Let } i' \text{ and } j' = 0$ j' differ from i and j at only one position $\pi_{(t-1)}$, i.e., $i'_{\pi(t-1)} = 1 - i_{\pi(t-1)}$ and $j'_{\pi(t-1)} = 1 - j_{\pi(t-1)}$ respectively, such that $j' = i' + \tau$. Then we have

$$g_{i'} - g_i = \frac{q}{2} \left(i_{\pi(t-2)} + i_{\pi(t)} \right) + c_{\pi(t-1)} \left(1 - 2i_{\pi(t-1)} \right), \tag{11}$$

in case of t = 1, we will just delete the terms involving $i_{\pi(t-2)}$. Since $i_{\pi(t-1)} = j_{\pi(t-1)}$ and $i_{\pi(t-2)} = j_{\pi(t-2)}$, we have

$$g_i - g_j - g_{i'} + g_{j'} = \frac{q}{2} \left(j_{\pi(t)} - i_{\pi(t)} \right) = \frac{q}{2} \pmod{q},$$

which implies that $\omega^{g_i - g_j} + \omega^{g_{i'} - g_{j'}} = 0$. Therefore,

$$\omega^{g_i - g_j} + \omega^{g_{i'} - g_{j'}} + \omega^{h_i - h_j} + \omega^{h_{i'} - h_{j'}} = 0.$$
(12)

So from Case-1 and Case-2, it is shown that the AACS of **a** and **b** is zero when τ is not an integer multiple of 2^{m-4} , i.e., $\tau \neq n \times 2^{m-4}$, $1 \le n \le 10$. Since the ZCZ width

of the constructed ZCP is $Z = 10 \times 2^{m-4}$, so the AACS at $\tau = 10 \times 2^{m-4}$ is not zero. So, it will be sufficient to prove that the AACS is zero when $\tau = n \times 2^{m-4}$, $1 \le n \le 9$, which has been proved below, by considering odd and even cases of n in *Case-3* and *Case-4* respectively. For *Case 3*, *Case 4 f*, f₁, f₂, f₃ are as defined in (7) and (8) respectively.

Case-3: $\tau = n \times 2^{m-4}$, n is odd and $n \le 9$.

First the calculation is done for n = 3, and later generalised for all odd integer $n \leq 9$.

$$\rho_{\mathbf{a}}\left(3 \times 2^{m-4}\right) = \sum_{k=0}^{2^{m-4}-1} \omega^{f_k - f_k} - \sum_{k=0}^{2^{m-4}} \omega^{(f_2)_k - (f_2)_k} + \sum_{k=0}^{2^{m-4}} \omega^{(f_2)_k - f_k} - 2\sum_{k=0}^{2^{m-4}} \omega^{f_k - (f_2)_k}.$$

Similarly, by calculating for each odd integer $n \leq 9$ we get

$$\rho_{\mathbf{a}}(\tau) = \sum_{k=0}^{2^{m-4}-1} C_1^n + (-1)^{\lfloor \frac{n}{2} \rfloor} C_3^n \left(\sum_{k=0}^{2^{m-4}-1} \omega^{f_k - (f_2)_k} \right) + \sum_{k=0}^{2^{m-4}-1} C_2^n + (-1)^{\lfloor \frac{n}{3} \rfloor + 1} C_4^n \left(\sum_{k=0}^{2^{m-4}-1} \omega^{(f_2)_k - f_k} \right),$$

where

$$C_1^n = (-1)^{\left\lfloor \frac{n+1}{2} \right\rfloor} \left(\left\lfloor \frac{n+1}{4} \right\rfloor \pmod{2} \right), C_2^n = -C_1^n, \tag{13}$$

$$C_3^n = (n-1) \pmod{4} + (-1)^{\left\lfloor \frac{n}{2} \right\rfloor} \left(\left\lfloor \frac{n}{4} \right\rfloor \pmod{2} \right), \tag{14}$$

$$C_4^n = \left(\left\lfloor \frac{n}{4} \right\rfloor + 1 \right) \pmod{2}. \tag{15}$$

Replacing f, f_2 with $f_1 + c', f_3 + c'$ respectively in $\rho_{\mathbf{a}}(\tau)$, we get

$$\rho_{\mathbf{b}}(\tau) = (-1)^{\left\lfloor \frac{n}{2} \right\rfloor} C_3^n \left(\sum_{k=0}^{2^{m-4}-1} \omega^{(\mathbf{f}_1+c')_k - (\mathbf{f}_3+c')_k} \right) + (-1)^{\left\lfloor \frac{n}{3} \right\rfloor + 1} C_4^n \left(\sum_{k=0}^{2^{m-4}-1} \omega^{(\mathbf{f}_3+c')_k - (\mathbf{f}_1+c')_k} \right),$$

so from Lemma 1, we get $\rho_{\mathbf{a}}(\tau) + \rho_{\mathbf{b}}(\tau) = 0$.

Case-4: $\tau = n \times 2^{m-4}$, n is even and $n \le 9$.

First the calculation is done for n = 2, and later generalised for all even integer $n \leq 9$.

$$\rho_{\mathbf{a}}\left(2^{m-3}\right) = \sum_{k=0}^{2^{m-4}-1} \omega^{f_k - f_k} - \sum_{k=0}^{2^{m-4}-1} \omega^{(f_2)_k - (f_2)_k} + 2\sum_{k=0}^{2^{m-4}-1} \omega^{(f_2)_k - f_k} = 2\sum_{k=0}^{2^{m-4}-1} \omega^{(f_2)_k - f_k}.$$

Similarly, by calculating for each even integer $n \leq 8$, we get

$$\rho_{\mathbf{a}}(\tau) = (-1)^{\left\lfloor \frac{n}{4} \right\rfloor} (n+2 \pmod{4}) \left(\sum_{k=0}^{2^{m-4}-1} \omega^{f_k - (f_2)_k} \right) + 2^{m-4} - 2^{m-4} + (-1)^{\left\lfloor \frac{n}{4} \right\rfloor} (n \pmod{4}) \left(\sum_{k=0}^{2^{m-4}-1} \omega^{(f_2)_k - f_k} \right).$$
(16)

Replacing f, f_2 with $f_1 + c', f_3 + c'$ respectively in $\rho_{\mathbf{a}}(\tau)$, we get

$$\rho_{\mathbf{b}}(\tau) = (-1)^{\left\lfloor \frac{n}{4} \right\rfloor} (n \pmod{4}) \left(\sum_{k=0}^{2^{m-4}-1} \omega^{(\mathbf{f}_3+c')_k - (\mathbf{f}_1+c')_k} \right) + (-1)^{\left\lfloor \frac{n}{4} \right\rfloor} (n+2 \pmod{4}) \left(\sum_{k=0}^{2^{m-4}-1} \omega^{(\mathbf{f}_1+c')_k - (\mathbf{f}_3+c')_k} \right),$$

so from Lemma 1, we get $\rho_{\mathbf{a}}(\tau) + \rho_{\mathbf{b}}(\tau) = 0$. Hence, (\mathbf{a}, \mathbf{b}) is a ZCP with ZCZ width $Z = 2^{m-1} + 2^{m-3}$. So the ZCZ ratio= 5/6.

Example 1 Let us consider q = 4, m = 6 and $\pi(0) = 0$, $\pi(1) = 1$, and the Boolean function g is given by

$$g = 2x_0x_1 + 2x_0 + 3x_1 + 2(\bar{x}_5x_4(\bar{x}_3 + x_3x_2) + x_5\bar{x}_4\bar{x}_3x_2) + 2x_1(\bar{x}_5\bar{x}_3(x_4 + x_2\bar{x}_4) + x_5\bar{x}_4(\bar{x}_3 + x_3x_2)), \text{ and} h = g + 2x_0 + 1.$$

Then from *Theorem* 1, the pair $(\mathbf{a}, \mathbf{b}) = (\Psi_{16}(g), \Psi_{16}(h))$ gives a length 48 quaternary ZCP, with ZCZ width 40. The sequence pair (\mathbf{e}, \mathbf{f}) is given below explicitly, where *i* represents ω^i .

Theorem 2 Let the GBF $g: \mathbb{Z}_2^m \to \mathbb{Z}_q$ be defined as

$$g = f + \frac{q}{2} \left(\bar{x}_{m-1} x_{m-2} x_{m-4} + x_{m-1} \bar{x}_{m-3} \left(\bar{x}_{m-2} \bar{x}_{m-4} + x_{m-2} \right) \right) + \frac{q}{2} x_{\pi(m-5)} \left(\bar{x}_{m-1} \left(\bar{x}_{m-3} x_{m-4} + x_{m-2} \bar{x}_{m-4} \right) + x_{m-1} \left(\bar{x}_{m-2} x_{m-3} + x_{m-2} \bar{x}_{m-3} x_{m-4} \right) \right),$$
(17)

where f is defined in (7), q is an even integer and $c_i \in \mathbb{Z}_q$. Then for any choice of $c' \in \mathbb{Z}_q$, $(\mathbf{a}, \mathbf{b}) = (\Psi_{2^{m-3}}(g), \Psi_{2^{m-3}}(h = g + \frac{q}{2}x_{\pi(0)} + c'))$ forms a $(2^{m-1} + 2^{m-2} + 2^{m-3}, 2^{m-1} + 2^{m-2})$ -ZCP.

Proof For $0 < \tau < 2^{m-1} + 2^{m-2}$, we have from definition

$$\rho_{\mathbf{a}}(\tau) = \sum_{k=0}^{2^{m-1}+2^{m-2}+2^{m-3}-1-\tau} \omega^{g_k-g_{k+\tau}}.$$
(18)

The proof is split into four cases. Case-1 and Case-2 are same as in proof of Theorem 1 and can be proved similarly. For Case-3 and Case-4 the function f, f_1, f_2, f_3 are as defined in (7) and (8) respectively. Case-3: $\tau = n \times 2^{m-4}$, n is odd and $n \le 11$.

$$\rho_{\mathbf{a}}(\tau) = \sum_{k=0}^{2^{m-4}-1} C_1^n + (-1)^{\left(\left\lfloor \frac{n}{3} \right\rfloor + \left\lfloor \frac{n}{9} \right\rfloor\right)} C_3^n \left(\sum_{k=0}^{2^{m-4}-1} \omega^{f_k - (f_2)_k}\right) \\ + \sum_{k=0}^{2^{m-4}-1} C_2^n + (-1)^{\left(\left\lfloor \frac{n}{3} \right\rfloor + \left\lfloor \frac{n}{9} \right\rfloor + 1\right)} C_4^n \left(\sum_{k=0}^{2^{m-4}-1} \omega^{(f_2)_k - f_k}\right),$$

where

$$C_1^n = (-1)^{\left\lfloor \frac{n}{3} \right\rfloor} \left(\left\lfloor \frac{n}{3} \right\rfloor + \left\lfloor \frac{n}{4} \right\rfloor + 1 \pmod{2} \right), C_2^n = -C_1^n, \tag{19}$$

$$C_3^n = \left| \frac{8}{n+1} \right| \left(\left\lfloor \frac{n}{5} \right\rfloor + \left\lfloor \frac{n}{7} \right\rfloor + 1 \pmod{2} \right), \tag{20}$$

$$C_4^n = \left(\left\lfloor \frac{n}{6} \right\rfloor + \left\lfloor \frac{n}{11} \right\rfloor + 1 \pmod{2} \right).$$
(21)

Similarly,

$$\rho_{\mathbf{b}}(\tau) = (-1)^{\left(\left\lfloor \frac{n}{3} \right\rfloor + \left\lfloor \frac{n}{9} \right\rfloor\right)} C_3^n \left(\sum_{k=0}^{2^{m-4}-1} \omega^{(\mathbf{f}_1 + c')_k - (\mathbf{f}_3 + c')_k} \right) + (-1)^{\left(\left\lfloor \frac{n}{3} \right\rfloor + \left\lfloor \frac{n}{9} \right\rfloor + 1\right)} C_4^n \left(\sum_{k=0}^{2^{m-4}-1} \omega^{(\mathbf{f}_3 + c')_k - (\mathbf{f}_1 + c')_k} \right),$$

so from Lemma 1, we get $\rho_{\mathbf{a}}(\tau) + \rho_{\mathbf{b}}(\tau) = 0$. Case-4: $\tau = n \times 2^{m-4}$, n is even and $n \le 11$.

$$\rho_{\mathbf{a}}(\tau) = \sum_{k=0}^{2^{m-4}-1} C_1^n + 2C_3^n \left(\sum_{k=0}^{2^{m-4}-1} \omega^{f_k - (f_2)_k} \right) + \sum_{k=0}^{2^{m-4}-1} C_2^n - 2C_4^n \left(\sum_{k=0}^{2^{m-4}-1} \omega^{(f_2)_k - f_k} \right),$$

where

$$C_1^n = -\left\lfloor \frac{n}{8} \right\rfloor$$
 and $C_2^n = \left\lfloor \frac{n}{8} \right\rfloor$, (22)

$$C_3^n = \left\lfloor \frac{n}{5} \right\rfloor \pmod{2},\tag{23}$$

$$C_4^n = \left\lfloor \frac{n}{4} \right\rfloor \pmod{2}. \tag{24}$$

Similarly,

$$\begin{split} \rho_{\mathbf{b}}(\tau) &= 2C_3^n \left(\sum_{k=0}^{2^{m-4}-1} \omega^{(\mathbf{f}_1+c')_k-(\mathbf{f}_3+c')_k} \right) \\ &- 2C_4^n \left(\sum_{k=0}^{2^{m-4}-1} \omega^{(\mathbf{f}_3+c')_k-(\mathbf{f}_1+c')_k} \right), \end{split}$$

so from Lemma 1, we get $\rho_{\mathbf{a}}(\tau) + \rho_{\mathbf{b}}(\tau) = 0$. Hence, (\mathbf{a}, \mathbf{b}) is a ZCP with ZCZ width $Z = 2^{m-1} + 2^{m-2}$. So the ZCZ ratio= 6/7.

Example 2 Let us consider q=2, m=6 and $\pi(0) = 1, \pi(1) = 0$, and let the Boolean function g is given by

$$g = x_0 x_1 + x_0 + \bar{x}_5 x_4 x_2 + x_5 \bar{x}_3 (\bar{x}_4 \bar{x}_2 + x_4) + x_0 (\bar{x}_5 (\bar{x}_3 x_2 + x_4 \bar{x}_2) + x_5 (\bar{x}_4 x_3 + x_4 \bar{x}_3 x_2)), \text{ and } h = g + x_1 + 1.$$

Then from *Theorem* 2, the pair $(\mathbf{a}, \mathbf{b}) = (\Psi_8(g), \Psi_8(h))$ gives a length 56 binary ZCP, with ZCZ width 48. The sequence pair (\mathbf{e}, \mathbf{f}) is given below explicitly, where 0,1 represents ω^0, ω^1 respectively.

$$\mathbf{a} = (01\mathbf{0}_5101\mathbf{0}_31\mathbf{0}_5\mathbf{1}_4\mathbf{0}_4\mathbf{1}_20\mathbf{1}_30\mathbf{1}_201\mathbf{0}_51\mathbf{0}_3\mathbf{1}_20\mathbf{1}_50)$$
$$\mathbf{b} = (1\mathbf{0}_3\mathbf{1}_2\mathbf{0}\mathbf{1}_2\mathbf{0}_31\mathbf{0}_3\mathbf{1}_201\mathbf{0}_210\mathbf{1}_201\mathbf{0}_3\mathbf{0}_4\mathbf{0}_3\mathbf{1}_20\mathbf{1}_301\mathbf{0}\mathbf{1}_3\mathbf{0}_210)$$

In Table 1, we have compared the method of construction, length and ZCZ ratio of the proposed construction with [18–22, 25].

Remark 1 We have proposed a construction of ZCPs with ZCZ ratios 5/6 and 6/7 based on GBFs. Although, ZCPs with same ratio can be constructed through an indirect method in [25], the proposed method generated different set of ZCPs than [25]. The ZCPs with ZCZ ratio 6/7 from *Theorem* 2 are different from those in [25]. In fact the ZCP generated above in *Example* 2 can't be generated from [25].

Construction	Method	Length	Constraint	ZCZ Ratio
[18]	Direct	$2^{m-1} + 2^{\nu}$	$m \ge 2, \nu \le m-2$	= 2/3
[19]	Indirect	$2^{\alpha+2}10^{\beta}26^{\gamma}+2$	$\alpha,\beta,\gamma\in\mathbb{N}$	$\approx 3/4$
[20]	Direct	$2^{m-1}+2$	$m \ge 4$	$\approx 3/4$
[21]	Direct	$N \in \mathbb{N}, N \neq 2^m$	$m \ge 0$	= 2/3
[22, Th. 1]	Direct	$2^{m+3} + 2^{m+2} + 2^{m+1}$	$m \ge 0$	= 4/7
[22, Th. 2]	Indirect	$14 \times 2^{\alpha} 10^{\beta} 26^{\gamma}$	$\alpha,\beta,\gamma\in\mathbb{N}$	= 6/7
[25]	Indirect	$14 \times 2^{\alpha} 10^{\beta} 26^{\gamma}$	$\alpha,\beta,\gamma\in\mathbb{N}$	= 6/7
Theorem 1	Direct	$2^{m-1} + 2^{m-2}$	$m \ge 5$	= 5/6
Theorem 2	Direct	$2^{m-1} + 2^{m-2} + 2^{m-3}$	$m \ge 5$	= 6/7

Table 1 Comparison of the proposed construction with [18–22, 25].

4 Conclusion

The proposed direct construction generates aperiodic q-ary even length ZCPs using GBFs. Our proposed method based on GBFs facilitates the construction of q-ary even length ZCPs of ZCZ ratio 5/6 and 6/7 which are the largest ZCZ ratio, i.e., the largest ZCZ width achieved to date using GBFs. For q = 2, the proposed construction reduces to EB-ZCP.

References

- Golay, M.: Complementary series. IRE Trans. Inf. Theory 7(2), 82–87 (1961). https://doi.org/10.1109/TIT.1961.1057620
- [2] Spasojevic, P., Georghiades, C.N.: Complementary sequences for ISI channel estimation. IEEE Trans. Inf. Theory 47(3), 1145–1152 (2001). https: //doi.org/10.1109/18.915670
- [3] G.Welti: Quaternary codes for pulsed radar. IRE Trans. Inf. Theory IT-6(3), 400–408 (1960)
- Boyd, S.: Multitone signals with low crest factor. IEEE Trans. Circuits Syst. CAS-33(10), 1018–1022 (1986)
- [5] Fan, P., Darnell, M.: Sequence Design for Communications Applications. Wiley, New York (1996)
- [6] Jedwab, J., Parker, M.G.: Golay complementary array pairs. Des. Codes Cryptogr. 44, 209–216 (2007)
- [7] Fan, P., Yuan, W., Tu, Y.: Z-complementary binary sequences. IEEE Signal Process. Lett. 14(8), 509–512 (2007). https://doi.org/10.1109/LSP. 2007.891834
- [8] Davis, J.A., Jedwab, J.: Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes. IEEE Trans. Inf. Theory 45(7), 2397–2417 (1999)
- Paterson, K.G.: Generalized Reed-Muller codes and power control in OFDM modulation. IEEE Trans. Inf. Theory 46(1), 104–120 (2000). https://doi.org/10.1109/18.817512
- [10] Li, Y., Chu, W.B.: More Golay sequences. IEEE Trans. Inf. Theory 51(3), 1141–1145 (2005)
- [11] Liu, Z., Parampalli, U., Guan, Y.L.: On even-period binary Zcomplementary pairs with large ZCZs. IEEE Signal Process. Lett. 21(3), 284–287 (2014)
- [12] Liu, Z., Parampalli, U., Guan, Y.L.: Optimal odd-length binary Zcomplementary pairs. IEEE Trans. Inf. Theory 60(9), 5768–5781 (2014)
- [13] Fiedler, F., Jedwab, J., Parker, M.G.: A framework for the construction of Golay sequences. IEEE Trans. Inf. Theory 54(7), 3114–3129 (2008)
- [14] Tang, X., Mow, W.H.: Design of spreading codes for quasi-synchronous CDMA with intercell interference. IEEE J. Sel. Areas Commun. 24(1),

84-93 (2006)

- [15] Sarkar, P., Majhi, S.: A direct construction of optimal ZCCS with maximum column sequence PMEPR two for MC-CDMA system. IEEE Commun. Lett. 25(2), 337–341 (2021)
- [16] Sarkar, P., Majhi, S., Liu, Z.: Optimal Z-complementary code set from generalized Reed-Muller codes. IEEE Trans. Commun. 67(3), 1783–1796 (2019). https://doi.org/10.1109/TCOMM.2018.2883469
- [17] Sarkar, P., Majhi, S., Vettikalladi, H., Mahajumi, A.S.: A direct construction of inter-group complementary code set. IEEE Access 6, 42047–42056 (2018). https://doi.org/10.1109/ACCESS.2018.2856878
- [18] Chen, C.-Y.: A novel construction of Z-complementary pairs based on generalized Boolean functions. IEEE Signal Process. Lett. 24(7), 284–287 (2017)
- [19] Adhikary, A.R., Majhi, S., Liu, Z., Guan, Y.L.: New sets of even-length binary Z-complementary pairs with asymptotic ZCZ ratio of 3/4. IEEE Signal Process. Lett. 25(7), 970–973 (2018). https://doi.org/10.1109/ LSP.2018.2834143
- [20] Adhikary, A.R., Sarkar, P., Majhi, S.: A direct construction of q-ary even length Z-complementary pairs using generalized Boolean functions. IEEE Signal Process. Lett. 27, 146–150 (2020)
- [21] Pai, C., Wu, S., Chen, C.: Z-complementary pairs with flexible lengths from generalized Boolean function. IEEE Commun. Lett. 24(6), 1183– 1187 (2020)
- [22] Xie, C., Sun, Y.: Constructions of even-period binary Z-complementary pairs with large ZCZs. IEEE Signal Process. Lett. 25(8), 1141–1145 (2018)
- [23] Chen, C.-Y., Pai, C.-Y.: Binary Z-complementary pairs with bounded peak-to-mean envelope power ratios. IEEE Commun. Lett. 23(11), 1899– 1903 (2019). https://doi.org/10.1109/LCOMM.2019.2934692
- [24] Sarkar, P., Roy, A., Majhi, S.: Construction of Z-complementary code sets with non-power-of-two lengths based on generalized Boolean functions. IEEE Commun. Lett. 24(8), 1607–1611 (2020)
- [25] Yu, T., Du, X., Li, L., Yang, Y.: Constructions of even-length Zcomplementary pairs with large zero correlation zones. IEEE Signal Process. Lett. 28, 828–831 (2021). https://doi.org/10.1109/LSP.2021. 3055482

Springer Nature 2021 $\ensuremath{\mathbb{L}}\xsp{AT}_{\ensuremath{\mathbb{E}}\xsp{X}}$ template

- 12 A Direct Construction of Even Length ZCPs with Large ZCZ Ratio
- [26] Liu, Z., Parampalli, U., Guan, Y.L.: On even-period binary Zcomplementary pairs with large ZCZs. IEEE Signal Process. Lett. 21(3), 284–287 (2014)
- [27] Wu, S.-W., Chen, C.-Y.: Optimal Z-complementary sequence sets with good peak-to-average power-ratio property. IEEE Signal Process. Lett. 25(10), 1500–1504 (2018). https://doi.org/10.1109/LSP.2018.2864705