A Direct Construction of Even Length ZCPs with Large ZCZ Ratio

Praveen Kumar ${ }^{1}$, Palash Sarkar ${ }^{2}$, Sudhan Majhi ${ }^{3 *}$ and Subhabrata Paul ${ }^{1}$
${ }^{1}$ Department of Mathematics, IIT Patna, Bihta, Patna, 801006, Bihar, India.
${ }^{2}$ Department of Informatics, University of Bergen, Bergen, 5020, Norway.
${ }^{3 *}$ Department of Electrical Communication Engineering, IISC Bangalore, CV Raman Rd, Bengaluru, 560012, Karnataka, India.

*Corresponding author(s). E-mail(s): smajhi@iisc.ac.in; Contributing authors: praveen_2021ma03@iitp.ac.in; palash.sarkar@uib.no ; subhabrata@iitp.ac.in;

Abstract

This paper presents a direct construction of aperiodic \boldsymbol{q}-ary (\boldsymbol{q} is a positive even integer) even length Z-complementary pairs (ZCPs) with large zero-correlation zone (ZCZ) width using generalised Boolean functions (GBFs). The applicability of ZCPs increases with the increasing value of ZCZ width, which plays a significant role in reducing interference in a communication system with asynchronous surroundings. For $\boldsymbol{q}=\mathbf{2}$, the proposed ZCPs reduce to even length binary ZCPs (EB-ZCPs). However, to the best of the authors' knowledge, the highest ZCZ ratio for even length ZCPs which are directly constructed to date using GBFs is $\mathbf{3 / 4}$. In the proposed construction, we provide even length ZCPs with ZCZ ratios $5 / \mathbf{6}$ and $\mathbf{6 / 7}$, which are the largest ZCZ ratios achieved to date through direct construction.

Keywords: Even length binary Z-complementary pairs (EB-ZCPs), generalised Boolean functions (GBFs), Golay complementary pair (GCP), zero-correlation-zone (ZCZ).

1 Introduction

The Golay complementary pairs (GCPs) were first introduced by Golay [1]. The aperiodic auto-correlation sum (AACS) of a GCP diminishes to zero for all time shifts not equal to zero. GCPs have found many engineering applications including channel estimation [2], radar [3] and peak power control in orthogonal frequency division multiplexing (OFDM)[4] etc. But the lengths of GCPs are limited to the form $2^{\alpha} 10^{\beta} 26^{\gamma}$, where α, β and γ are non-negative integers $[5,6]$. As a generalization of GCPs, Fan et al. introduced the idea of Z-complementary pairs (ZCPs) [7]. The AACS of the two sequences in a ZCP is zero within a certain zone that is known as the zero-correlation zone (ZCZ). Unlike GCPs, ZCPs exist for arbitrary lengths with several ZCZ widths.

In [8], a construction of GCPs based on generalised Boolean functions (GBFs) over \mathbb{Z}_{q} is provided by Davis and Jedwab, where $q=2^{h}$, for some positive integer h. Later, Paterson expanded Davis and Jedwab's results to q-ary GCPs for even q [9]. Such constructed GCPs based on the GBFs given in [8] and [9] are called the Golay-Davis-Jedwab (GDJ) pairs [10-12] (or called the standard GCPs [13]).

ZCPs can be used as spreading sequences in quasi-synchronous codedivision multiple access (CDMA) systems to reduce inter-symbol interference (ISI) and multiple access interference (MAI) [14]. As introduced in [7], there are two types of ZCPs, namely even length binary ZCPs (EB-ZCPs) and odd length binary ZCPs (OB-ZCPs). Furthermore, it was conjectured in [7] that, the maximum ZCZ width for a binary ZCP of length N is given by $(N+1) / 2$ when N is odd, and it is $N-2$ when N is even.

Several direct constructions of ZCPs of lengths in the form of a power of two can be found in [15-17]. A direct construction of q-ary ZCPs based on GBF having larger ZCZ width is introduced by Chen [18]. For $q=2$, this direct construction produces binary ZCPs with a ZCZ ratio $2 / 3$. For nonnegative integers α, β and γ, ZCPs of length $2^{\alpha+2} 10^{\beta} 26^{\gamma}+2$ and ZCZ width $3 \times 2^{\alpha} 10^{\beta} 26^{\gamma}+1$, with asymptotic ZCZ ratio $3 / 4$ are systematically constructed using insertion [19]. A direct construction of q-ary even length ZCPs through GBFs was provided in [20]. The length and ZCZ width of the constructed ZCP are $2^{m-1}+2, m \geq 3$, and $2^{m-2}+2^{\pi(m-3)}+1$, respectively, where π is a permutation over $m-2$ symbols. When $\pi(m-3)=m-3$, the asymptotic ZCZ ratio becomes $3 / 4$ which is the largest ZCZ ratio available in the existing literature to date. Recently, direct GBF constructions of ZCPs of non-power-of-two lengths have been reported with maximum ZCZ ratio of $2 / 3$ in [21] and $4 / 7$ in [22]. In [23], different construction methods for ZCPs have been discussed and provided their upper bounds of peak to mean envelope power ratio (PMEPR). A direct construction of Z-complementary code sets (ZCCSs) has been reported in [24] which produces non-power-of-two lengths ZCPs with a maximum ZCZ ratio of $3 / 4$. The authors in $[20,24]$ also introduced an open problem of having higher ZCZ ratio of ZCPs. The authors in [25] provided a systematic construction of q-ary even length ZCPs for ZCZ ratio $6 / 7$ using the concatenation of GCPs and their complementary mates, where GCPs and
their mates are used as seed sequences. However, they did not provide a direct construction and thus introduced it is an open problem for future work.

By motivation of the above open problems, in this work we present a direct construction of aperiodic q-ary even length ZCPs for ZCZ ratio $5 / 6$ and $6 / 7$. Like the direct construction proposed in [18] and [20], the proposed construction also does not require any special seed sequences initially. In addition, the proposed q-ary even length ZCPs have a larger ZCZ ratio than the ZCPs reported in [20], and they also provide the largest ZCZ width. For $q=2$, the proposed construction reduces to EB-ZCP.

The remaining paper is organized as follows. Basic notations and definitions are provided in Section 2. In Section 3, the proposed construction of q-ary even length ZCPs is discussed. Finally, concluding remarks are provided in Section 4.

2 Notations and Definitions

The following notations will be followed throughout this paper: $\bar{x}=1-x$, where $x \in\{0,1\},\lfloor x\rfloor$ and $\lceil x\rceil$ represents the floor and ceiling function of x respectively, for $n>1, \mathbf{0}_{n}$ and $\mathbf{1}_{n}$ represents n consecutive 0's and 1's, respectively.

Definition 1 Let $\mathbf{a}_{1}=\left(a_{1,0}, a_{1,1}, \ldots, a_{1, N-1}\right)$ and $\mathbf{a}_{\mathbf{2}}=\left(a_{2,0}, a_{2,1}, \ldots, a_{2, N-1}\right)$ be two q-ary sequences over \mathbb{Z}_{q}. The aperiodic cross-correlation function (ACCF) at a shift τ is defined by

$$
\rho_{\mathbf{a}_{1}, \mathbf{a}_{2}}(\tau)= \begin{cases}\sum_{k=0}^{N-1-\tau} \omega^{a_{1, k}-a_{2, k+\tau}}, & 0 \leq \tau \leq N-1, \\ \sum_{k=0}^{N-1-\tau} \omega^{a_{1, k+\tau}-a_{2, k}}, & -N+1 \leq \tau \leq-1, \\ 0, & |\tau| \geq N\end{cases}
$$

where $q(\geq 2)$ is an integer and $\omega=\exp (2 \pi \sqrt{-1} / q)$. When $\mathbf{a}_{\mathbf{1}}=\mathbf{a}_{\mathbf{2}}, \rho_{\mathbf{a}_{1}, \mathbf{a}_{\mathbf{2}}}(\tau)$ is called aperiodic auto-correlation function (AACF) of \mathbf{a}_{1} and it is denoted by $\rho_{\mathbf{a}_{1}}(\tau)$.

Definition 2 A pair of sequences a and \mathbf{b} of length N is called a GCP if their AACS is zero for all non-zero time shifts, i.e.,

$$
\begin{equation*}
\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)=0, \quad \text { for } \tau \neq 0 \tag{1}
\end{equation*}
$$

Definition 3 A GCP (\mathbf{c}, \mathbf{d}) of length N is called a complementary mate of a GCP (a, b) of length N, if

$$
\begin{equation*}
\rho_{\mathbf{a}, \mathbf{c}}(\tau)+\rho_{\mathbf{b}, \mathbf{d}}(\tau)=0, \quad \text { for } 0 \leq \tau \leq N-1 . \tag{2}
\end{equation*}
$$

Definition 4 A pair of length N sequences \mathbf{a}_{1} and \mathbf{a}_{2} is called a ZCP with ZCZ width Z, if and only if

$$
\begin{equation*}
\rho_{\mathbf{a}_{1}}(\tau)+\rho_{\mathbf{a}_{2}}(\tau)=0, \quad \text { for } 1 \leq \tau \leq Z-1 . \tag{3}
\end{equation*}
$$

We call $\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right)$ an (N, Z)-ZCP. When $Z=N$, then the pair ($\left.\mathbf{a}_{1}, \mathbf{a}_{2}\right)$ becomes a GCP. The sequence pair is called an EB-ZCP if the sequences $\mathbf{a}_{1}, \mathbf{a}_{2}$ are binary and length of the sequence is even.

Definition 5 ([26]) If ($\mathbf{a}_{1}, \mathbf{a}_{2}$) is a ZCP of even length N with ZCZ width Z, then the ZCZ ratio is defined as

$$
\begin{equation*}
\mathrm{ZCZ} \text { ratio }=Z / N \tag{4}
\end{equation*}
$$

2.1 Generalised Boolean Function

A GBF f in m binary variables $x_{0}, x_{1}, \ldots, x_{m-1}$ is a function from $\{0,1\}^{m}$ to \mathbb{Z}_{q}. A monomial of degree r is defined as the product of any r variables among $x_{0}, x_{1}, \ldots, x_{m-1}$. So there are $\sum_{r=0}^{m}\binom{m}{r}=2^{m}$ monomials, namely $1, x_{0}, x_{1}$, $\ldots, x_{m-1}, x_{0} x_{1}, x_{0} x_{2}, \ldots, x_{m-2} x_{m-1}, \ldots, x_{0} x_{1} \cdots x_{m-1}$. With the linear combinations of these 2^{m} monomials by taking coefficients from \mathbb{Z}_{q}, a GBF can be expressed uniquely. In the expression of a GBF of order r, there exists at least one highest-degree monomial of order r with a non-zero coefficient. The complex-valued sequence corresponding to GBF f of m variables $x_{0}, x_{1}, \ldots, x_{m-1}$ is expressed as

$$
\begin{equation*}
\Psi(f)=\left(\omega^{f_{0}}, \omega^{f_{1}}, \ldots, \omega^{f_{2} m_{-1}}\right) \tag{5}
\end{equation*}
$$

where $f_{i}=f\left(i_{0}, i_{1}, \ldots, i_{m-1}\right), \omega=\exp (2 \pi \sqrt{-1} / q)$, and $\left(i_{0}, i_{1}, \ldots, i_{m-1}\right)$ is the binary vector representation of i, where as in the remainder of this paper, q is an even integer not less than 2. Corresponding to a GBF f with m variables the sequence $\Psi(f)$ is of length 2^{m}. In this paper, we focus on q-ary (N, Z) ZCPs, where $N \neq 2^{m}$. Hence, we define the truncated complex-valued sequence $\Psi_{L}(f)$ corresponding to the GBF f by deleting the last L elements of the sequence $\Psi(f)$.

Lemma 1 ([27]) Let $f: \mathbb{Z}_{2}^{m} \rightarrow \mathbb{Z}_{q}$ be a GBF defined by

$$
\begin{equation*}
f=\frac{q}{2} \sum_{k=0}^{m-2} x_{\pi(k)} x_{\pi(k+1)}+\sum_{k=0}^{m-1} g_{k} x_{k}+g^{\prime} \tag{6}
\end{equation*}
$$

where π is a permutation of $\{0,1,2, \ldots, m-1\}$ and $g^{\prime}, g_{k} \in \mathbb{Z}_{q}$. Then for any $c^{\prime} \in \mathbb{Z}_{q}\left(\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{2}\right)=\left(\Psi(f), \Psi\left(f+\frac{q}{2} x_{\pi(0)}+c^{\prime}\right)\right)$ is a $G C P$ and $\left(\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}\right)=$ $\left(\Psi\left(f+\frac{q}{2} x_{\pi(m-1)}\right), \Psi\left(f+\frac{q}{2}\left(x_{\pi(0)}+x_{\pi(m-1)}\right)+c^{\prime}\right)\right.$ is a complementary mate of $\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right)$.

3 Proposed Construction

For proving our main result, we define the following function which will be used throughout this section.

For any integer $m \geq 5$, let π be a permutation of $\{0,1,2, \ldots, m-5\}$. Let the GBF $f: \mathbb{Z}_{2}^{m-4} \rightarrow \mathbb{Z}_{q}$ be defined as

$$
\begin{equation*}
f=\frac{q}{2} \sum_{i=0}^{m-6} x_{\pi(i)} x_{\pi(i+1)}+\sum_{i=0}^{m-5} c_{i} x_{i} \tag{7}
\end{equation*}
$$

Define the functions f_{1}, f_{2}, f_{3} as follows:

$$
\begin{equation*}
\mathrm{f}_{1}=f+\frac{q}{2} x_{\pi(0)} ; \quad \mathrm{f}_{2}=f+\frac{q}{2} x_{\pi(m-5)} ; \quad \mathrm{f}_{3}=\mathrm{f}_{2}+\frac{q}{2} x_{\pi(0)} \tag{8}
\end{equation*}
$$

Theorem 1 Let the $G B F g: \mathbb{Z}_{2}^{m} \rightarrow \mathbb{Z}_{q}$ be defined as

$$
\begin{align*}
& g=f+\frac{q}{2}\left(\bar{x}_{m-1} x_{m-2}\left(\bar{x}_{m-3}+x_{m-3} x_{m-4}\right)+x_{m-1} \bar{x}_{m-2} \bar{x}_{m-3} x_{m-4}\right) \\
& +\frac{q}{2} x_{\pi(m-5)}\left(\bar{x}_{m-1} \bar{x}_{m-3}\left(x_{m-2}+x_{m-4} \bar{x}_{m-2}\right)+x_{m-1} \bar{x}_{m-2}\left(\bar{x}_{m-3}+x_{m-3} x_{m-4}\right)\right), \tag{9}
\end{align*}
$$

where f is defined in (7), q is an even integer and $c_{i} \in \mathbb{Z}_{q}$. Then for any choice of $c^{\prime} \in \mathbb{Z}_{q},(\mathbf{a}, \mathbf{b})=\left(\Psi_{2^{m-2}}(g), \Psi_{2^{m-2}}\left(h=g+\frac{q}{2} x_{\pi(0)}+c^{\prime}\right)\right)$ forms a $\left(2^{m-1}+2^{m-2}, 2^{m-1}+2^{m-3}\right)-Z C P$.

Proof For $0<\tau<2^{m-1}+2^{m-3}$, we have from definition

$$
\begin{equation*}
\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)=\sum_{i=0}^{2^{m-1}+2^{m-2}-1-\tau}\left(\omega^{g_{i}-g_{i+\tau}}+\omega^{h_{i}-h_{i+\tau}}\right) . \tag{10}
\end{equation*}
$$

For any integer i, let $j=i+\tau$ and $\left(i_{0}, i_{1}, \ldots, i_{m-1}\right)$ and $\left(j_{0}, j_{1}, \ldots, j_{m-1}\right)$ is the binary vector representation of i and j respectively. The proof is split into four cases.

Case-1: $i_{\pi(0)} \neq j_{\pi(0)}$ and $\tau \neq C_{m-4} 2^{m-4}+C_{m-3} 2^{m-3}+C_{m-2} 2^{m-2}+$ $C_{m-1} 2^{m-1}$, where $C_{m-\alpha} \in\{0,1\}$ for $\alpha=1,2,3,4$. Then we have

$$
g_{i}-g_{j}-\left(h_{i}-h_{j}\right)=\frac{q}{2}\left(j_{\pi(0)}-i_{\pi(0)}\right)=\frac{q}{2}(\bmod q) .
$$

Therefore, $\omega^{g_{i}-g_{j}} / \omega^{h_{i}-h_{j}}=\omega^{q / 2}=-1$, which implies $\omega^{g_{i}-g_{j}}+\omega^{h_{i}-h_{j}}=0$.
Case-2: $i_{\pi(0)}=j_{\pi(0)}$ and $\tau \neq C_{m-4} 2^{m-4}+C_{m-3} 2^{m-3}+C_{m-2} 2^{m-2}+$ $C_{m-1} 2^{m-1}$, where $C_{m-\alpha} \in\{0,1\}$ for $\alpha=1,2,3,4$.

Let t be the smallest integer such that $i_{\pi(t)} \neq j_{\pi(t)}$. Since $\tau \neq C_{m-4} 2^{m-4}+$ $C_{m-3} 2^{m-3}+C_{m-2} 2^{m-2}+C_{m-1} 2^{m-1}$, there exists at least one $C_{k} \neq 0,1 \leq k \leq$ $m-5$, such that for $C_{k} \in\{0,1\}$, we can write: $\tau=C_{0} 2^{0}+C_{1} 2^{1}+\ldots, C_{m-5} 2^{m-5}+$ $C_{m-4} 2^{m-4}+\ldots+C_{m-1} 2^{m-1}$. Since $j-i=\tau$, we have $t \leq m-5$. Let i^{\prime} and j^{\prime} differ from i and j at only one position $\pi_{(t-1)}$, i.e., $i_{\pi(t-1)}^{\prime}=1-i_{\pi(t-1)}$ and $j_{\pi(t-1)}^{\prime}=1-j_{\pi(t-1)}$ respectively, such that $j^{\prime}=i^{\prime}+\tau$. Then we have

$$
\begin{equation*}
g_{i^{\prime}}-g_{i}=\frac{q}{2}\left(i_{\pi(t-2)}+i_{\pi(t)}\right)+c_{\pi(t-1)}\left(1-2 i_{\pi(t-1)}\right), \tag{11}
\end{equation*}
$$

in case of $t=1$, we will just delete the terms involving $i_{\pi(t-2)}$. Since $i_{\pi(t-1)}=j_{\pi(t-1)}$ and $i_{\pi(t-2)}=j_{\pi(t-2)}$, we have

$$
g_{i}-g_{j}-g_{i^{\prime}}+g_{j^{\prime}}=\frac{q}{2}\left(j_{\pi(t)}-i_{\pi(t)}\right)=\frac{q}{2}(\bmod q)
$$

which implies that $\omega^{g_{i}-g_{j}}+\omega^{g_{i^{\prime}}-g_{j^{\prime}}}=0$. Therefore,

$$
\begin{equation*}
\omega^{g_{i}-g_{j}}+\omega^{g_{i^{\prime}}-g_{j^{\prime}}}+\omega^{h_{i}-h_{j}}+\omega^{h_{i^{\prime}}-h_{j^{\prime}}}=0 \tag{12}
\end{equation*}
$$

So from Case-1 and Case-2, it is shown that the AACS of \mathbf{a} and \mathbf{b} is zero when τ is not an integer multiple of 2^{m-4}, i.e., $\tau \neq n \times 2^{m-4}, 1 \leq n \leq 10$. Since the ZCZ width
of the constructed ZCP is $Z=10 \times 2^{m-4}$, so the AACS at $\tau=10 \times 2^{m-4}$ is not zero. So, it will be sufficient to prove that the AACS is zero when $\tau=n \times 2^{m-4}, 1 \leq n \leq 9$, which has been proved below, by considering odd and even cases of n in Case-3 and Case-4 respectively. For Case 3, Case $4 f, \mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}$ are as defined in (7) and (8) respectively.

Case-3: $\tau=n \times 2^{m-4}, n$ is odd and $n \leq 9$.
First the calculation is done for $n=3$, and later generalised for all odd integer $n \leq 9$.

$$
\begin{aligned}
\rho_{\mathbf{a}}\left(3 \times 2^{m-4}\right) & =\sum_{k=0}^{2^{m-4}-1} \omega^{f_{k}-f_{k}}-\sum_{k=0}^{2^{m-4}} \omega^{\left(\mathrm{f}_{2}\right)_{k}-\left(\mathrm{f}_{2}\right)_{k}} \\
& +\sum_{k=0}^{2^{m-4}} \omega^{\left(\mathrm{f}_{2}\right)_{k}-f_{k}}-2 \sum_{k=0}^{2^{m-4}} \omega^{f_{k}-\left(\mathrm{f}_{2}\right)_{k}}
\end{aligned}
$$

Similarly, by calculating for each odd integer $n \leq 9$ we get

$$
\begin{aligned}
& \rho_{\mathbf{a}}(\tau)=\sum_{k=0}^{2^{m-4}-1} C_{1}^{n}+(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} C_{3}^{n}\left(\sum_{k=0}^{2^{m-4}-1} \omega^{f_{k}-\left(\mathrm{f}_{2}\right)_{k}}\right) \\
& +\sum_{k=0}^{2^{m-4}-1} C_{2}^{n}+(-1)^{\left\lfloor\frac{n}{3}\right\rfloor+1} C_{4}^{n}\left(\sum_{k=0}^{2^{m-4}-1} \omega^{\left(\mathrm{f}_{2}\right)_{k}-f_{k}}\right),
\end{aligned}
$$

where

$$
\begin{gather*}
C_{1}^{n}=(-1)^{\left\lfloor\frac{n+1}{2}\right\rfloor}\left(\left\lfloor\frac{n+1}{4}\right\rfloor(\bmod 2)\right), C_{2}^{n}=-C_{1}^{n}, \tag{13}\\
C_{3}^{n}=(n-1)(\bmod 4)+(-1)^{\left\lfloor\frac{n}{2}\right\rfloor}\left(\left\lfloor\frac{n}{4}\right\rfloor(\bmod 2)\right), \tag{14}\\
C_{4}^{n}=\left(\left\lfloor\frac{n}{4}\right\rfloor+1\right)(\bmod 2) . \tag{15}
\end{gather*}
$$

Replacing f, f_{2} with $\mathrm{f}_{1}+c^{\prime}, \mathrm{f}_{3}+c^{\prime}$ respectively in $\rho_{\mathbf{a}}(\tau)$, we get

$$
\begin{aligned}
& \rho_{\mathbf{b}}(\tau)=(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} C_{3}^{n}\left(\sum_{k=0}^{2^{m-4}-1} \omega^{\left(\mathrm{f}_{1}+c^{\prime}\right)_{k}-\left(\mathrm{f}_{3}+c^{\prime}\right)_{k}}\right) \\
& \quad+(-1)^{\left\lfloor\frac{n}{3}\right\rfloor+1} C_{4}^{n}\left(\sum_{k=0}^{2^{m-4}-1} \omega^{\left(\mathrm{f}_{3}+c^{\prime}\right)_{k}-\left(\mathrm{f}_{1}+c^{\prime}\right)_{k}}\right),
\end{aligned}
$$

so from Lemma 1, we get $\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)=0$.
Case-4: $\tau=n \times 2^{m-4}, n$ is even and $n \leq 9$.
First the calculation is done for $n=2$, and later generalised for all even integer $n \leq 9$.

$$
\begin{aligned}
\rho_{\mathbf{a}}\left(2^{m-3}\right) & =\sum_{k=0}^{2^{m-4}-1} \omega^{f_{k}-f_{k}}-\sum_{k=0}^{2^{m-4}-1} \omega^{\left(\mathrm{f}_{2}\right)_{k}-\left(\mathrm{f}_{2}\right)_{k}} \\
& +2 \sum_{k=0}^{2^{m-4}-1} \omega^{\left(\mathrm{f}_{2}\right)_{k}-f_{k}}=2 \sum_{k=0}^{2^{m-4}-1} \omega^{\left(\mathrm{f}_{2}\right)_{k}-f_{k}} .
\end{aligned}
$$

Similarly, by calculating for each even integer $n \leq 8$, we get

$$
\begin{align*}
& \rho_{\mathbf{a}}(\tau)=(-1)^{\left\lfloor\frac{n}{4}\right\rfloor}(n+2(\bmod 4))\left(\sum_{k=0}^{2^{m-4}-1} \omega^{f_{k}-\left(\mathrm{f}_{2}\right)_{k}}\right) \tag{16}\\
& +2^{m-4}-2^{m-4}+(-1)^{\left\lfloor\frac{n}{4}\right\rfloor}(n(\bmod 4))\left(\sum_{k=0}^{2^{m-4}-1} \omega^{\left(\mathrm{f}_{2}\right)_{k}-f_{k}}\right) .
\end{align*}
$$

Replacing f, f_{2} with $\mathrm{f}_{1}+c^{\prime}, \mathrm{f}_{3}+c^{\prime}$ respectively in $\rho_{\mathbf{a}}(\tau)$, we get

$$
\begin{aligned}
& \rho_{\mathbf{b}}(\tau)=(-1)^{\left\lfloor\frac{n}{4}\right\rfloor}(n(\bmod 4))\left(\sum_{k=0}^{2^{m-4}-1} \omega^{\left(\mathrm{f}_{3}+c^{\prime}\right)_{k}-\left(\mathrm{f}_{1}+c^{\prime}\right)_{k}}\right) \\
& +(-1)^{\left\lfloor\frac{n}{4}\right\rfloor}(n+2(\bmod 4))\left(\sum_{k=0}^{2^{m-4}-1} \omega^{\left(\mathrm{f}_{1}+c^{\prime}\right)_{k}-\left(\mathrm{f}_{3}+c^{\prime}\right)_{k}}\right)
\end{aligned}
$$

so from Lemma 1, we get $\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)=0$. Hence, (\mathbf{a}, \mathbf{b}) is a ZCP with ZCZ width $Z=2^{m-1}+2^{m-3}$. So the ZCZ ratio $=5 / 6$.

Example 1 Let us consider $q=4, m=6$ and $\pi(0)=0, \pi(1)=1$, and the Boolean function g is given by

$$
\begin{aligned}
& g=2 x_{0} x_{1}+2 x_{0}+3 x_{1}+2\left(\bar{x}_{5} x_{4}\left(\bar{x}_{3}+x_{3} x_{2}\right)+x_{5} \bar{x}_{4} \bar{x}_{3} x_{2}\right) \\
& +2 x_{1}\left(\bar{x}_{5} \bar{x}_{3}\left(x_{4}+x_{2} \bar{x}_{4}\right)+x_{5} \bar{x}_{4}\left(\bar{x}_{3}+x_{3} x_{2}\right)\right), \text { and } \\
& h=g+2 x_{0}+1
\end{aligned}
$$

Then from Theorem 1 , the pair $(\mathbf{a}, \mathbf{b})=\left(\Psi_{16}(g), \Psi_{16}(h)\right)$ gives a length 48 quaternary ZCP, with ZCZ width 40 . The sequence pair (e,f) is given below explicitly, where i represents ω^{i}.

$$
\begin{aligned}
& \mathbf{a}=(023302110233023320332033023320110211203302330211) \\
& \mathbf{b}=(110211201102110233023302110233201120330211021120)
\end{aligned}
$$

Theorem 2 Let the $G B F g: \mathbb{Z}_{2}^{m} \rightarrow \mathbb{Z}_{q}$ be defined as

$$
\begin{align*}
& g=f+\frac{q}{2}\left(\bar{x}_{m-1} x_{m-2} x_{m-4}+x_{m-1} \bar{x}_{m-3}\left(\bar{x}_{m-2} \bar{x}_{m-4}+x_{m-2}\right)\right)+\frac{q}{2} x_{\pi(m-5)} \\
& \left(\bar{x}_{m-1}\left(\bar{x}_{m-3} x_{m-4}+x_{m-2} \bar{x}_{m-4}\right)+x_{m-1}\left(\bar{x}_{m-2} x_{m-3}+x_{m-2} \bar{x}_{m-3} x_{m-4}\right)\right) \tag{17}
\end{align*}
$$

where f is defined in (7), q is an even integer and $c_{i} \in \mathbb{Z}_{q}$. Then for any choice of $c^{\prime} \in \mathbb{Z}_{q},(\mathbf{a}, \mathbf{b})=\left(\Psi_{2^{m-3}}(g), \Psi_{2^{m-3}}\left(h=g+\frac{q}{2} x_{\pi(0)}+c^{\prime}\right)\right)$ forms a $\left(2^{m-1}+2^{m-2}+2^{m-3}, 2^{m-1}+2^{m-2}\right)-Z C P$.

Proof For $0<\tau<2^{m-1}+2^{m-2}$, we have from definition

$$
\begin{equation*}
\rho_{\mathbf{a}}(\tau)=\sum_{k=0}^{2^{m-1}+2^{m-2}+2^{m-3}-1-\tau} \omega^{g_{k}-g_{k+\tau}} \tag{18}
\end{equation*}
$$

The proof is split into four cases. Case-1 and Case-2 are same as in proof of Theorem 1 and can be proved similarly. For Case-3 and Case-4 the function $f, \mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}$ are as defined in (7) and (8) respectively.

Case-3: $\tau=n \times 2^{m-4}, n$ is odd and $n \leq 11$.

$$
\begin{aligned}
\rho_{\mathbf{a}}(\tau) & =\sum_{k=0}^{2^{m-4}-1} C_{1}^{n}+(-1)^{\left(\left\lfloor\frac{n}{3}\right\rfloor+\left\lfloor\frac{n}{9}\right\rfloor\right)} C_{3}^{n}\left(\sum_{k=0}^{2^{m-4}-1} \omega^{f_{k}-\left(\mathrm{f}_{2}\right)_{k}}\right) \\
& +\sum_{k=0}^{2^{m-4}-1} C_{2}^{n}+(-1)^{\left(\left\lfloor\frac{n}{3}\right\rfloor+\left\lfloor\frac{n}{9}\right\rfloor+1\right)} C_{4}^{n}\left(\sum_{k=0}^{2^{m-4}-1} \omega^{\left(\mathrm{f}_{2}\right)_{k}-f_{k}}\right),
\end{aligned}
$$

where

$$
\begin{gather*}
C_{1}^{n}=(-1)^{\left\lfloor\frac{n}{3}\right\rfloor}\left(\left\lfloor\frac{n}{3}\right\rfloor+\left\lfloor\frac{n}{4}\right\rfloor+1(\bmod 2)\right), C_{2}^{n}=-C_{1}^{n}, \tag{19}\\
C_{3}^{n}=\left[\frac{8}{n+1}\right]\left(\left\lfloor\frac{n}{5}\right\rfloor+\left\lfloor\frac{n}{7}\right\rfloor+1(\bmod 2)\right), \tag{20}\\
C_{4}^{n}=\left(\left\lfloor\frac{n}{6}\right\rfloor+\left\lfloor\frac{n}{11}\right\rfloor+1(\bmod 2)\right) . \tag{21}
\end{gather*}
$$

Similarly,

$$
\begin{aligned}
\rho_{\mathbf{b}}(\tau)= & (-1)^{\left(\left\lfloor\frac{n}{3}\right\rfloor+\left\lfloor\frac{n}{9}\right\rfloor\right)} C_{3}^{n}\left(\sum_{k=0}^{2^{m-4}-1} \omega^{\left(\mathrm{f}_{1}+c^{\prime}\right)_{k}-\left(\mathrm{f}_{3}+c^{\prime}\right)_{k}}\right) \\
& +(-1)^{\left(\left\lfloor\frac{n}{3}\right\rfloor+\left\lfloor\frac{n}{9}\right\rfloor+1\right)} C_{4}^{n}\left(\sum_{k=0}^{2^{m-4}-1} \omega^{\left(\mathrm{f}_{3}+c^{\prime}\right)_{k}-\left(\mathrm{f}_{1}+c^{\prime}\right)_{k}}\right),
\end{aligned}
$$

so from Lemma 1, we get $\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)=0$.
Case-4: $\tau=n \times 2^{m-4}, n$ is even and $n \leq 11$.

$$
\begin{aligned}
\rho_{\mathbf{a}}(\tau) & =\sum_{k=0}^{2^{m-4}-1} C_{1}^{n}+2 C_{3}^{n}\left(\sum_{k=0}^{2^{m-4}-1} \omega^{f_{k}-\left(\mathrm{f}_{2}\right)_{k}}\right) \\
& +\sum_{k=0}^{2^{m-4}-1} C_{2}^{n}-2 C_{4}^{n}\left(\sum_{k=0}^{2^{m-4}-1} \omega^{\left(\mathrm{f}_{2}\right)_{k}-f_{k}}\right)
\end{aligned}
$$

where

$$
\begin{gather*}
C_{1}^{n}=-\left\lfloor\frac{n}{8}\right\rfloor \text { and } C_{2}^{n}=\left\lfloor\frac{n}{8}\right\rfloor \tag{22}\\
C_{3}^{n}=\left\lfloor\frac{n}{5}\right\rfloor(\bmod 2) \tag{23}\\
C_{4}^{n}=\left\lfloor\frac{n}{4}\right\rfloor(\bmod 2) . \tag{24}
\end{gather*}
$$

Similarly,

$$
\begin{aligned}
\rho_{\mathbf{b}}(\tau) & =2 C_{3}^{n}\left(\sum_{k=0}^{2^{m-4}-1} \omega^{\left(\mathrm{f}_{1}+c^{\prime}\right)_{k}-\left(\mathrm{f}_{3}+c^{\prime}\right)_{k}}\right) \\
& -2 C_{4}^{n}\left(\sum_{k=0}^{2^{m-4}-1} \omega^{\left(\mathrm{f}_{3}+c^{\prime}\right)_{k}-\left(\mathrm{f}_{1}+c^{\prime}\right)_{k}}\right),
\end{aligned}
$$

so from Lemma 1, we get $\rho_{\mathbf{a}}(\tau)+\rho_{\mathbf{b}}(\tau)=0$. Hence, (\mathbf{a}, \mathbf{b}) is a ZCP with ZCZ width $Z=2^{m-1}+2^{m-2}$. So the ZCZ ratio $=6 / 7$.

Example 2 Let us consider $q=2, m=6$ and $\pi(0)=1, \pi(1)=0$, and let the Boolean function g is given by

$$
\begin{aligned}
& g=x_{0} x_{1}+x_{0}+\bar{x}_{5} x_{4} x_{2}+x_{5} \bar{x}_{3}\left(\bar{x}_{4} \bar{x}_{2}+x_{4}\right) \\
& +x_{0}\left(\bar{x}_{5}\left(\bar{x}_{3} x_{2}+x_{4} \bar{x}_{2}\right)+x_{5}\left(\bar{x}_{4} x_{3}+x_{4} \bar{x}_{3} x_{2}\right)\right), \text { and } \\
& h=g+x_{1}+1 .
\end{aligned}
$$

Then from Theorem 2, the pair $(\mathbf{a}, \mathbf{b})=\left(\Psi_{8}(g), \Psi_{8}(h)\right)$ gives a length 56 binary ZCP, with ZCZ width 48 . The sequence pair (\mathbf{e}, \mathbf{f}) is given below explicitly, where 0,1 represents ω^{0}, ω^{1} respectively.

$$
\begin{gathered}
\mathbf{a}=\left(010_{5} 1010 \mathbf{1 0}_{5} \mathbf{1}_{4} \mathbf{0}_{4} \mathbf{1}_{2} 0 \mathbf{1}_{3} 0 \mathbf{1}_{2} 01 \mathbf{0}_{5} \mathbf{1 0}_{3} \mathbf{1}_{2} 0 \mathbf{1}_{5} 0\right) \\
\mathbf{b}=\left(1 \mathbf{0}_{3} \mathbf{1}_{2} 0 \mathbf{1}_{2} \mathbf{0}_{3} 1 \mathbf{0}_{3} \mathbf{1}_{2} 01 \mathbf{0}_{2} 10 \mathbf{1}_{2} 010 \mathbf{1}_{3} 0 \mathbf{1}_{4} \mathbf{0}_{3} \mathbf{1}_{2} 0 \mathbf{1}_{3} 010 \mathbf{1}_{3} \mathbf{0}_{2} 10\right)
\end{gathered}
$$

In Table 1, we have compared the method of construction, length and ZCZ ratio of the proposed construction with [18-22, 25].

Remark 1 We have proposed a construction of ZCPs with ZCZ ratios 5/6 and 6/7 based on GBFs. Although, ZCPs with same ratio can be constructed through an indirect method in [25], the proposed method generated different set of ZCPs than [25]. The ZCPs with ZCZ ratio $6 / 7$ from Theorem 2 are different from those in [25]. In fact the ZCP generated above in Example 2 can't be generated from [25].

Table 1 Comparison of the proposed construction with [18-22, 25].

Construction	Method	Length	Constraint	ZCZ Ratio
$[18]$	Direct	$2^{m-1}+2^{\nu}$	$m \geq 2, \nu \leq m-2$	$=2 / 3$
$[19]$	Indirect	$2^{\alpha+2} 10^{\beta} 26^{\gamma}+2$	$\alpha, \beta, \gamma \in \mathbb{N}$	$\approx 3 / 4$
$[20]$	Direct	$2^{m-1}+2$	$m \geq 4$	$\approx 3 / 4$
$[21]$	Direct	$N \in \mathbb{N}, N \neq 2^{m}$	$m \geq 0$	$=2 / 3$
$[22$, Th. 1$]$	Direct	$2^{m+3}+2^{m+2}+2^{m+1}$	$m \geq 0$	$=4 / 7$
$[22$, Th. 2 $]$	Indirect	$14 \times 2^{\alpha} 10^{\beta} 26^{\gamma}$	$\alpha, \beta, \gamma \in \mathbb{N}$	$=6 / 7$
$[25]$	Indirect	$14 \times 2^{\alpha} 10^{\beta} 26^{\gamma}$	$\alpha, \beta, \gamma \in \mathbb{N}$	$=6 / 7$
Theorem 1	Direct	$2^{m-1}+2^{m-2}$	$m \geq 5$	$=5 / 6$
Theorem 2	Direct	$2^{m-1}+2^{m-2}+2^{m-3}$	$m \geq 5$	$=6 / 7$

4 Conclusion

The proposed direct construction generates aperiodic q-ary even length ZCPs using GBFs. Our proposed method based on GBFs facilitates the construction of q-ary even length ZCPs of ZCZ ratio $5 / 6$ and $6 / 7$ which are the largest ZCZ ratio, i.e., the largest ZCZ width achieved to date using GBFs. For $q=2$, the proposed construction reduces to EB-ZCP.

References

[1] Golay, M.: Complementary series. IRE Trans. Inf. Theory 7(2), 82-87 (1961). https://doi.org/10.1109/TIT.1961.1057620
[2] Spasojevic, P., Georghiades, C.N.: Complementary sequences for ISI channel estimation. IEEE Trans. Inf. Theory 47(3), 1145-1152 (2001). https: //doi.org/10.1109/18.915670
[3] G.Welti: Quaternary codes for pulsed radar. IRE Trans. Inf. Theory IT6(3), 400-408 (1960)
[4] Boyd, S.: Multitone signals with low crest factor. IEEE Trans. Circuits Syst. CAS-33(10), 1018-1022 (1986)
[5] Fan, P., Darnell, M.: Sequence Design for Communications Applications. Wiley, New York (1996)
[6] Jedwab, J., Parker, M.G.: Golay complementary array pairs. Des. Codes Cryptogr. 44, 209-216 (2007)
[7] Fan, P., Yuan, W., Tu, Y.: Z-complementary binary sequences. IEEE Signal Process. Lett. 14(8), 509-512 (2007). https://doi.org/10.1109/LSP. 2007.891834
[8] Davis, J.A., Jedwab, J.: Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes. IEEE Trans. Inf. Theory 45(7), 2397-2417 (1999)
[9] Paterson, K.G.: Generalized Reed-Muller codes and power control in OFDM modulation. IEEE Trans. Inf. Theory 46(1), 104-120 (2000). https://doi.org/10.1109/18.817512
[10] Li, Y., Chu, W.B.: More Golay sequences. IEEE Trans. Inf. Theory 51(3), 1141-1145 (2005)
[11] Liu, Z., Parampalli, U., Guan, Y.L.: On even-period binary Zcomplementary pairs with large ZCZs. IEEE Signal Process. Lett. 21(3), 284-287 (2014)
[12] Liu, Z., Parampalli, U., Guan, Y.L.: Optimal odd-length binary Zcomplementary pairs. IEEE Trans. Inf. Theory 60(9), 5768-5781 (2014)
[13] Fiedler, F., Jedwab, J., Parker, M.G.: A framework for the construction of Golay sequences. IEEE Trans. Inf. Theory 54(7), 3114-3129 (2008)
[14] Tang, X., Mow, W.H.: Design of spreading codes for quasi-synchronous CDMA with intercell interference. IEEE J. Sel. Areas Commun. 24(1),

84-93 (2006)
[15] Sarkar, P., Majhi, S.: A direct construction of optimal ZCCS with maximum column sequence PMEPR two for MC-CDMA system. IEEE Commun. Lett. 25(2), 337-341 (2021)
[16] Sarkar, P., Majhi, S., Liu, Z.: Optimal Z-complementary code set from generalized Reed-Muller codes. IEEE Trans. Commun. 67(3), 1783-1796 (2019). https://doi.org/10.1109/TCOMM.2018.2883469
[17] Sarkar, P., Majhi, S., Vettikalladi, H., Mahajumi, A.S.: A direct construction of inter-group complementary code set. IEEE Access 6, 42047-42056 (2018). https://doi.org/10.1109/ACCESS.2018.2856878
[18] Chen, C.-Y.: A novel construction of Z-complementary pairs based on generalized Boolean functions. IEEE Signal Process. Lett. 24(7), 284-287 (2017)
[19] Adhikary, A.R., Majhi, S., Liu, Z., Guan, Y.L.: New sets of even-length binary Z-complementary pairs with asymptotic ZCZ ratio of 3/4. IEEE Signal Process. Lett. 25(7), 970-973 (2018). https://doi.org/10.1109/ LSP.2018.2834143
[20] Adhikary, A.R., Sarkar, P., Majhi, S.: A direct construction of q-ary even length Z-complementary pairs using generalized Boolean functions. IEEE Signal Process. Lett. 27, 146-150 (2020)
[21] Pai, C., Wu, S., Chen, C.: Z-complementary pairs with flexible lengths from generalized Boolean function. IEEE Commun. Lett. 24(6), 11831187 (2020)
[22] Xie, C., Sun, Y.: Constructions of even-period binary Z-complementary pairs with large ZCZs. IEEE Signal Process. Lett. 25(8), 1141-1145 (2018)
[23] Chen, C.-Y., Pai, C.-Y.: Binary Z-complementary pairs with bounded peak-to-mean envelope power ratios. IEEE Commun. Lett. 23(11), 18991903 (2019). https://doi.org/10.1109/LCOMM.2019.2934692
[24] Sarkar, P., Roy, A., Majhi, S.: Construction of Z-complementary code sets with non-power-of-two lengths based on generalized Boolean functions. IEEE Commun. Lett. 24(8), 1607-1611 (2020)
[25] Yu, T., Du, X., Li, L., Yang, Y.: Constructions of even-length Zcomplementary pairs with large zero correlation zones. IEEE Signal Process. Lett. 28, 828-831 (2021). https://doi.org/10.1109/LSP.2021. 3055482
[26] Liu, Z., Parampalli, U., Guan, Y.L.: On even-period binary Zcomplementary pairs with large ZCZs. IEEE Signal Process. Lett. 21(3), 284-287 (2014)
[27] Wu, S.-W., Chen, C.-Y.: Optimal Z-complementary sequence sets with good peak-to-average power-ratio property. IEEE Signal Process. Lett. 25(10), 1500-1504 (2018). https://doi.org/10.1109/LSP.2018.2864705

