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Abstract

Purpose: Gliomas are a highly heterogeneous group of primary brain tumors with poor

prognosis, and treatment monitoring is challenging with its current diagnostic tool be-

ing invasive biopsy. In recent years, diffusion-weighted magnetic resonance imaging

(dMRI) has become a widely used non-invasive technique that infers tissue microstruc-

ture in tumors. Such analysis presents opportunities in cancer diagnosis, tumor grading,

and monitoring treatment effectiveness. A technique called vascular, extracellular and

restricted diffusion for cytometry in tumors (VERDICT) has been demonstrated to be

feasible for inferring glioma microstructure, but current methods are time-consuming

in terms of acquisition and analysis and therefore not clinically applicable. In this the-

sis, the purpose was therefore to investigate whether VERDICT microstructure fitting

in glioma tissue could be approached with a newly introduced self-supervised fully

connected neural network method.

Methods: A large-scale synthetic dataset was simulated using the VERDICT signal

equation based on known ground-truth glioma tissue parameters, with a highly de-

tailed acquisition protocol. A feed-forward neural network (FFNN) was constructed

to predict four tissue parameters from dMRI signals: the cell radius, intracellular (IC)

volume fraction, extracellular-extravascular (EES) volume fraction and vascular vol-

ume fraction. The network was trained and tuned on the large-scale simulated dataset

before it was trained on clinically applicable sequences and tested on in vivo dMRI.

Furthermore, experiments were conducted to test the network’s performance with dif-

ferent acquisition protocols, aiming to determine the potential improvement that could

be achieved through protocol optimization. Lastly, the proposed ANN was compared

to existing methods in terms of computational time and accuracy.

Results: The model trained on the large-scale synthetic data managed to estimate the

four parameters with high precision, and the prediction time in one voxel was less than

10−4s when applying a trained network to an in vivo dMRI. Predictions on acquired in
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vivo data were compatible with tissue parameters from the literature for a longer dMRI

scan, but the model showed lower accuracy in terms of fitting data with a shorter acqui-

sition (i.e. less rich diffusion protocol). From experimenting with different acquisition

protocols, the best performance was found on the longest protocol, but it was found

that the accuracy of predictions was also dependent on the individual acquisition pa-

rameter ranges.

Conclusion: This project successfully demonstrated the ability to use the FFNN ap-

proach to fit the VERDICT model to dMRI data. Findings indicated that the FFNN

fitting is heavily influenced by the acquisition protocol, and the method is not suitable

for MRI acquisitions with less than 20 measurements. However, the method showed

good potential for use in acquisitions with 436 measurements, and for predicting a ra-

dius of up to 10 µm, 145 high b-value measurements can be sufficient. Optimization

of the acquisition schemes suggested that alternative schemes could further enhance

the effectiveness of the technique. The FFNN showed several advantages in terms of

computational time and accuracy of predictions compared to existing methods.
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Nomenclature

Abbreviations

ANN Artificial Neural Network

CHARMED Composite Hindered and Restricted Model of Diffusion

CPU Central Processing Unit

DL Deep Learning

DMIPY Diffusion Microstructure Imaging in Python

dMRI Diffusion Magnetic Resonance Imaging

EES Extracellular-Extravascular Space

ELU Exponential Linear Unit

EPI Echo Planar Imaging

FA Fractional Anisotropy

FFNN Feed Forward Neural Network

FID Free Induction Decay

GPU Graphics Processing Unit

GRE Gradient Echo Sequence

GT Ground Truth

H&E Hematoxylin and Eosin

HGG High Grade Glioma

IC Intracellular
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IVIM Intravoxel Incoherent Voxel Model
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MDT Maastricht Diffusion Toolbox
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ML Machine Learning

MLP Multilayer Perceptron

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

MSE Mean Squared error

NMR Nuclear Magnetic Resonance

NN Neural Network

PGSE Pulsed Gradient Echo Sequence

RELU Rectified Linear Unit

RF Radio Frequency

ROI Region of Interest

SE Spin Echo

SGD Stochastic Gradient Descent

SNR Signal to Noise Ratio

TE Echo Time

VASC Vascular

VERDICT Vascular, Extracellular and Restricted Diffusion for Cytometry in Tumors

Symbols

α Flip angle

β Exponential decay rate
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∆ Diffusion duration

δ Diffusion time

η Viscosity

γ Gyromagnetic ratio

ŷ Predicted value

} Plancks constant

λn Eigenvalues

λiso Extracellular-extravascular diffusion coefficient

µ Magnetic moment

−→
B Magnetic field strength

−→
M Net magnetization

θ ,φ Orientation angles

b b-value: degree of diffusion weighting

B0 Main magnetic field

B1 Oscillating magnetic field

D Diffusion coefficient

fEES Extracellular-extravascular volume fraction

fIC Intracellular volume fraction

fVASC Vascular volume fraction

G Gradient strength

k Boltzmanns constant

S MR signal

S0 MR signal at baseline

T Tesla
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Chapter 1

Introduction

Gliomas belong to a group of tumors in the central nervous system and are the most

prevalent primary brain tumor among adults [1] [2]. These tumors are characterized by

poor prognosis as the glioma often displays a significant histopathological heterogene-

ity, which provides poor therapy response and frequent tumor recurrences [3] [4]. The

choice of treatment is today decided through a biopsy, which is invasive and does not

capture the full heterogeneity in the tumor [5].

The lack of effective treatments is a major factor contributing to the low prognosis,

and the progress in treatment is also limited by difficulties with monitoring clinical

treatment response. As of now, histopathology is employed to monitor biomarkers and

it is often considered the reference standard of treatment response. This approach has

several challenges as there is a paucity of evidence that earlier diagnosis influences the

prognosis. Additionally, the invasive biopsy technique with repeated tissue sampling

has a high risk of morbidity in patients with glioma compared to other systemic cancers

[6]. Repeated biopsies for treatment monitoring are not so often done, but another used

technique for treatment monitoring is structural magnetic resonance imaging (MRI).

Since structural MRI scans are already time- and resource-consuming, it could be ben-

eficial to include other analyses within the same scan. There exist different models

that infer tissue microstructure from diffusion MRI (dMRI) scans [7] [8] [9] [10] [11]

[12]. Analysis using such models can give measures of tissue parameters such as tu-

mor cell size and volume fractions of different compartments within the glioma tissue.

As an MRI scan is required nevertheless, data for such dMRI analysis could easily be

added to the imaging protocol. However, a requirement for this to be clinically appli-

cable would be that it is fast in both acquisition and analysis, in addition to providing

relevant additional information.
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1.1 Recent Developments and Contribution

In 2014, Panagiotaki et al. presented a new technique called vascular, extracellular and

restricted diffusion for cytometry in tumors (VERDICT), to quantify and map histolog-

ical features of tumors from dMRI [12]. The VERDICT model was successfully used

to differentiate tumors from benign areas in prostate tissue and to reveal differences

in microstructural parameters such as volume fractions, indicating that the model had

clinical potential [13]. Following this work, Zaccagna et al. demonstrated that VER-

DICT parameters of tissue structure in gliomas correlated with parameters derived from

histology. They stated that this method shows promising results for diagnostic stratifi-

cation and treatment response monitoring of gliomas in the future.

The conventional approach for applying the VERDICT model to data has often in-

volved utilizing either an iterative optimization process with a non-linear least squares

(NLLS) optimization [14] [15], or employing a convex optimization method [16]. The

NLLS optimization is slow and its performance is easily affected by different local

minima in the fitting objective function [17]. For this reason, deep learning techniques

have recently been proposed to overcome this problem. Self-supervised deep learning

networks have been applied in the fitting of several different microstructure models.

However, it is yet to be applied for VERDICT fitting of glioma tissue.

1.2 Problem Statement and Thesis Outline

Effective techniques such as the VERDICT method for non-invasive measurement of

tumor cellularity exist, but they are hampered by both long acquisition and analysis

time. Therefore, the purpose of this thesis was to explore whether the VERDICT mi-

crostructure fitting in glioma tissue could be approached with the novel self-supervised

fully connected neural network technique. The aim was to investigate the potential of

the deep learning approach both in terms of computational time and accuracy com-

pared to existing methods. This was done in a systematic manner, by first constructing

a neural network and assessing it on a large-scale dataset. Secondly, clinical MRI data

was mimicked and the approach was tested on in vivo data. As a third and explorative

step, the effect of data collection schemes was investigated. Finally, the model was

compared to existing methods in terms of computational time and accuracy. Results

from the investigation of these problems can facilitate realistic integration into clinical

imaging, and thus facilitate the diagnostics and treatment monitoring of gliomas.



Chapter 2

Theory

2.1 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a powerful modality used for medical diagnos-

tics. The use of magnetic fields enables the generation of anatomical images of human

tissue, as well as functional images illustrating blood flow or diffusion. In the follow-

ing section, the basic principles of MRI and dMRI are presented, and details can be

found in Cercignani et al. [18], Brown et al. [19] and Grüner [20].

2.1.1 Basic Principles of MRI
Spin and Magnetic Momentum

The basic idea of MRI is to image the proton interactions in the body, by exploiting a

basic property of the protons called nuclear spin. This is a fundamental propriety such

as a particle’s mass. The spin properties of an atom are dependent on the composition

of nucleons in an atom. The spin quantum number associated with protons is s = 1/2.

Associated with the spin is a magnetic moment µ , which is proportional to the atom’s

spin:

µ = γS (2.1)

In this equation, the gyromagnetic ratio, γ , relates the momentum to the atoms spin. The

hydrogen atom has the highest gyromagnetic ratios, gamma = 42.57 MHz/T . This is

an advantage in addition to that the human body contains a lot of hydrogen, as they also

provide the strongest magnetic proprieties and therefore the highest nuclear magnetic

resonance (NMR) signal. The magnitude of this magnetic moment is well-known:

|µ|= γ}
√

I(I +1) (2.2)
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, where I is the spin number = 1/2 for protons, γ is the gyromagnetic ratio and }
is Plancks constant. When these nuclei are placed in a magnetic field, they will align

parallel or antiparallel with the field, where the magnetic momentum in the direction of

the field is described as:

µz =±1
2

γ} (2.3)

, where the positive sign represents the momentum in the z-direction while aligned

with the magnetic field, and the negative sign represents when aligned against the field.

These two orientation possibilities result in that one can have two different energy

states. The magnitude of this individual magnetic momentum is very small, and thus is

it the net magnetization that is measured in MRI. This can be explained as an ensemble

of N spins with magnetic momentum µ:

−→
M =

N

∑
n=1

µn (2.4)

The behavior of this net magnetization is described by the fundamental physics of the

Bloch equation, which lays the fundamental of the measurement of MRI signal as the

solution of the Bloch equation is the signal equation. The equation of motion is simpli-

fied as the following equation as a function of the magnetic field
−→
B :

d
−→
M

dt
= γ

−→
M ×−→

B (2.5)

Excitation and Relaxation

In order to measure the MRI signal, the net magnetization needs to experience a change

over time. By adding an oscillating field B1, the magnetization is perturbed away from

its positioning along B0. This pulse, which is often called a radio frequency (RF) pulse,

is applied perpendicular to B0 and is typically applied for a few micro and millisec-

onds. Immediately after the application of the RF pulse, the spin system sends out a

measurable free induction decay signal (FID). In order to spatially encode this signal

it is delayed and the signal is measured as an echo. The time between the FID and the

readout of the signal is called echo time (TE).

Immediately after the excitation, the net magnetization returns towards its original
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position along the direction of the B0 field, now called the z-axis. The relaxation is

explained in the less simplified version of the earlier introduced Bloch equation intro-

ducing the relaxation terms T1 and T2:

d
−→
M

dt
= γ

−→
M ×−→

B −
Mx

−→
i −My

−→
i

T2
−

(Mz −M0
z )
−→
k

T1
(2.6)

M0
z is the net magnetization along the z-axis when only the B0 field is present, and is

more precisely called the thermal equilibrium magnetization. T1 is a time constant de-

scribing the longitudinal relaxation process along the z-axis, more precisely it measures

how fast 63% of the net magnetization is regained. The T2 time constant describes the

transversal relaxation process in the xy-plane and gives a measure of the time when

37% of the transversal magnetization is left.

Image Formation

These time constants, T1 and T2 are typically referred to as the contrast of an MRI, along

with other used contrasts such as diffusion weighting that is central in this project. This

means that the image is weighted to show the longitudinal or transversal tissue prop-

erties. In order to construct an image with contrast, the pulse sequence parameters are

manipulated. These parameters include α , the flip angle of which the RF pulse per-

turbs the magnetization vector, TR which is the time delay between to successive RF

pulses, TI which is the time between pulses to selectively zero out the signal contribu-

tion from a particular tissue and the TE.

Along with these pulse sequence parameters, gradient magnets are used to create

smaller fields that can give variations in all directions. This is the central part of how

a specific image slice is excited, as a gradient is applied in the z-direction along the B0

field creating variation in the Larmor frequencies. As this gradient is applied during an

RF-pulse, only a bandwidth matches the Larmor frequency and it is excited. During

readout, gradients in x- and y-direction are applied to allow frequency-encoding and

phase-encoding, respectively. As the signal is acquired, the essential concept k-space

is introduced to construct an image. This can be seen as a data matrix where the mea-

sured spatial frequencies are stored before it is converted to spacial coordinates with a

Fourier transform.
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Figure 2.1: Rice distribution at varying signal-to-noise ratios (SNR).

Noise

In the constructed images, measurement of signal intensity at a low signal level is

compounded with its noise [21]. Such noise is shown to be governed by a Rician

distribution [22]. In the presence of Rician noise, the probability distribution for a

measured pixel intensity I0 is given by 2.7 [23]. From plot 2.1 it can be seen that the

Rice distribution is far from being Gaussian for a small signal-to-noise ratio (SNR), but

as the ratio increases, the distribution approximates the Gaussian distribution.

f (x|ν ,σ) =
x

σ2 e−(x2+ν2)/2σ2
I0(

xν

σ2 ) (2.7)

Sequences

Several methods exist to sample the MRI signal using so-called pulse sequences, which

are designed with a certain order and intervals of the RF pulses. One of the two most

used sequences is the gradient echo (GRE) sequence, which samples one line of k-

space for each RF pulse. The x and y-gradients are varied both before and during a

readout to move in the k-space. Secondly, the spin echo (SE) sequence is often used.

This sequence includes a second RF pulse of 180 degrees if the α is 90 degrees. Other

sequences such as echo-planar imaging (EPI) can sample the whole k-space in one RF

pulse. This method is often applied for diffusion-weighted imaging.
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2.1.2 Diffusion MRI
Diffusion

In 1905, Albert Einstein established the existence of molecules while studying Brow-

nian motion, when he observed that the fundamental particle property was not its ve-

locity but its displacement [24]. He then showed that the mean displacement in one

direction of a particle undergoing so-called free diffusion is given by expression 2.8,

where t is time and the diffusivity in m2/s. D is given by expression 2.9, where kb is

the Boltzmann constant, t is time, η is the viscosity and R is the particle radius.

< r2 >= 6Dt (2.8)

D =
kbt

6πηR
(2.9)

The easiest way to describe free diffusion is as the random motion of molecules, which

means that the diffusion is independent of direction [25]. Such diffusion is often re-

ferred to as isotropic diffusion. However, for imaging of diffusion, we consider it more

interesting to study the presence of boundaries in water diffusion. When water is no

longer diffusing with random motion, it allows us to measure the geometrical proper-

ties of the boundaries in tissue [25].

In order to include information on the surrounding tissue structures, two new terms

are introduced: restricted and hindered diffusion. Restricted diffusion is what occurs

when water molecules are trapped inside a cell, which is why this motion is also re-

ferred to as intracellular diffusion [25]. On the other hand, hindered diffusion is when

the moving water molecules are impacted by the geometrical structures, as they meet

obstacles. This is also referred to as extracellular diffusion as it is present in the space

between cells [25]. The assumed behavior of cells within a restricted and a hindered

compartment is illustrated in Fig 2.2.

In addition to these intracellular and extracellular compartments, other properties of

diffusion are of interest in imaging of diffusion. When the water molecules are mov-

ing in a cylindrical boundary as they often do in tissue, the water diffusion becomes
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Figure 2.2: Illustration of the hindered and restricted diffusion process.

dependent on the cylindrical boundaries [25]. When a water molecule is directionally

dependent on the cylindrical shape, it is referred to as "anisotropic", while the opposite

is called "isotropic" diffusion [25].

Imaging of diffusion

Since diffusion is defined as random motion on molecular levels, one image voxel will

contain many diffusion paths. This means that an MRI scan will contain information

about diffusion contributions, which could reveal tissue information. In 1965, Stejskal

and Tanner introduced the pulsed gradient spin echo (PGSE) sequence [26], which es-

tablishes the fundamentals of modern diffusion imaging. This sequence as illustrated

in figure 2.3 applies symmetric and strong gradients on each side of the 180◦-pulse.

The concept of these pulsed gradients is that the phase shift induced by the first pulse

is then reversed by the second pulse for all spins that are stationary. However, for spins

that have diffused and changed location in between the two pulses, they will be out of

phase and contribute with less signal to be measured.

This image formation makes the measure sensitive to several acquisition parameters:

the diffusion time between the two gradients, ∆, the duration of the gradient, δ , and the

strength of the Gradient, G. Now, taking this into account, a diffusion term was added

to the previously defined Bloch equation [27], as demonstrated in equation 2.10.

d
−→
M

dt
= γ

−→
M ×−→

B −
Mx

−→
i −My

−→
i

T2
−

(Mz −M0
z )
−→
k

T1
+∇∗D∇M (2.10)
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Figure 2.3: A pulsed gradient spin echo (PGSE) sequence with an RF-pulse and a diffusion sensitizing
gradient pair, with gradient strength G, gradient duration δ and diffusion time ∆.

In practice, this inclusion of the diffusion terms gives an echo attenuation according to

Stejskal and Tanner [26] as described in expression 2.11. This equation is only derived

for isotropic diffusion, so no three-dimensional motion is measured, as the diffusion

coefficient D is a scalar only.

A(T E) = e−γ2G2δ 2D(∆−δ/3) (2.11)

The gradient pulses are applied to obtain diffusion-weighted images, but in order to

quantify the findings it is necessary to further determine the degree of diffusion weight-

ing. As the solution of the extended Bloch equation 2.10 developed by Torrey [27]

becomes complex, it was suggested to summarize all the gradients effects by Le Bi-

han and Breton in 1965 [28]. They introduced the term that is generally known as the

b-value as expressed in 2.12. With this factor, the signal attenuation expression can be

rewritten to a simpler expression as can be seen in 2.13.

b = γ
2
∫ T E

0
[
∫ t

0
G(t ′)dt ′]2 dt (2.12)

A = e−bD, b =−γ
2G2

δ
2(∆−δ/3) (2.13)

This b-value is now a measure of how much diffusion weighting there is in a sequence,

based on the acquisition parameters γ,G,δ and ∆. With this attenuation, the diffu-

sion signal obtained for such a PGSE sequence dependent on the b-value and diffusion
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coefficient is expressed in equation 2.14.

S(b) = S0e−bD (2.14)

The b-value is in a standard SE-sequence with no additional pulsed gradients around

1s/mm2 [7], which means that the diffusion effects are negligible. However, with the

use of gradient pulses, these effects are no longer negligible and may lead to the misde-

termination of the b-value. This means that more quality-assuring steps are necessary

for the imaging of diffusion. One problem is that when these diffusion gradients are

applied, cross-terms can be produced by the combination of the imaging and diffusion

gradient pulses [24], which might lead to diffusion-related attenuation effects [29]. Es-

pecially can Eddy currents extend over the imaging readout gradient pulse, which has

the potential to vary the b-value and therefore lead to incorrect estimation of the diffu-

sion coefficient.

High b-values and noise

A high b-value can in some cases be favorable. However, high b-values come at the

cost of lower SNR. A study at 3T has found that SNR at b = 3000 s/mm2 was 30.8

±21.7, which was approximately one-third of the SNR at b = 1000 s/mm2, 93.5 ±42.1

[30].
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2.2 Diffusion microstructure imaging

The standard diffusion-weighted imaging techniques can provide useful information

about tissue structure, but it has in some studies shown that there is no correlation be-

tween the signal value and tumor cellularity [31] [32]. Thus, new modeling approaches

have been developed in order to further understand the composition of the tissue. In

microstructure imaging, the signal is modeled as arising from different compartments.

Such model-based DWI can provide more information that the signal acquired from

the imaging sequence, and that can provide many advantages within glioma treatment

response assessment.

2.2.1 Diffusion Tensor Imaging

Traditionally, diffusion microstructure imaging has been approached with the simple

diffusion tensor model for relating the diffusion MRI to the tissue diffusivity [33]. This

method called diffusion tensor imaging (DTI) is based on the assumption that local

diffusion can be described with a three-dimensional Gaussian distribution, and that this

distribution has a covariance matrix that is proportional to the diffusion tensor, D. This

diffusion tensor adds a new dimension of complexity from the original signal equation

from a diffusion sequence as described in expression 2.14, which makes it accountable

for molecular mobility, and gives information about direction and correlation between

directions [34]. Seen from a reference frame [x′,y′,z′] according to the diffusion, the

diffusion signal is now represented as in the following equation, rather than the simple

form explained in formula 2.14 in section 2.2.

S(b) = S0e−bxx′Dxx′−byy′Dyy′−bzz′Dzz′ (2.15)

This way of representing the diffusion coefficient provides more information, as eigen-

vectors and eigenvalues can be used to estimate a fractional anisotropy (FA), which is

a measure of how asymmetric the diffusion within a voxel is. For a diffusion matrix

D with eigenvalues λ1, λ2 and λ3, the fractional anisotropy is measured according to

equation 2.16.

FA =

√
(λ1 −λ2)2 +(λ2 −λ3)2 +(λ1 −λ3)2

2(λ 2
1 )+λ 2

2 +λ 2
3

(2.16)
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A map of the derived FA-values can be constructed to represent a diffusion tensor

image. This resulting image has a gray-scale map where brighter areas contain tissue

with higher anisotropy.

2.2.2 Biophysical Models and Multi-Compartment Models

This traditional DTI method can provide some useful biomarkers, but is in most cases

not enough to describe the composition of the tissue. As the diffusion signal is mod-

eled as arising from different compartments, just one single compartment might not be

enough in all cases. The DTI model assumes free diffusion in all of the tissue and does

not take into account restricted and hindered diffusion. Newer methods have shown

the possibility of fitting more complex models that provides more detailed modeling

of diffusion in tissue. These methods can provide information such as cell size and

density directly from the diffusion MRI signal. Such models are often so-called multi-

compartment models, such as the one modeled by Le Bihan et al. in 1988 [7]. This

research introduced the representation of tissue as separate diffusive processes with a

two-compartment model that distinguishes diffusion and perfusion in tissue. This in-

travoxel incoherent voxel model (IVIM) models the signal by representing the tissue as

consisting of two compartments: one vascular to represent the pseudo-diffusing water

within blood vessels, and one non-vascular compartment which represents the diffu-

sion of water in and around cells.

Following the work of Le Bihan et al. [7], several different models have been de-

veloped. One of the simplest methods is the well-known ball-stick compartment model

which combines a ball and a stick compartment to separate intra-axonal from extra-

axonal water signals [9]. A new model combining hindered and restricted models of

water diffusion (CHARMED) combines a so-called hindered extra-axonal compart-

ment described by a diffusion tensor with a restricted intra-axonal compartment within

cylinders. The use of cylinders as a modeling technique allows for measurements of

cell radius.

Comparison studies of compartment models in the brain have shown that three-

compartment models best explain the data [14] [35]. Furthermore, especially models

combining diffusion tensor models with extracellular space and a cylindrical intracel-

lular component with a spherical compartment with a non-zero radius.
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2.2.3 VERDICT Model

A multi-compartment model for use in tumorous tissue has been proposed to overcome

the complex challenges as described. The model called vascular, extracellular and re-

stricted diffusion for cytometry in tumors (VERDICT) models the water diffusion in

tissue by the design including three different compartments [12]. As previously demon-

strated as a good compartment modeling combination [14] [35], this model combines

two diffusion tensor models with a spherical compartment. Tumor cells, the hindered

extracellular and the vascular space are modeled as a restricted sphere, an isotropic

Gaussian ball and a stick compartment, respectively. The VERDICT signal is the sum

of these three models, which each describe the diffusion MR signal in its respective

cellular environment, 2.17.

EVERDICT = fIC

Sphere︷ ︸︸ ︷
E(D|λintra)︸ ︷︷ ︸

S1

+ fEES

Ball︷ ︸︸ ︷
E(·|λiso)︸ ︷︷ ︸

S2

+ fVASC

Stick︷ ︸︸ ︷
E(λ‖,µ)︸ ︷︷ ︸
S3

(2.17)

These three model compartments are derived from the tissue and give three different

signals. The S1 signal from the sphere compartment comes from intracellular (IC) water

trapped inside cells. The S2 signal comes from water in the extracellular-extravascular

space (EES) adjacent to, but outside the tumor cells and blood vessels, while the S3

signal comes from water in the blood in the capillaries. The VERDICT model requires

a signal sampled with δ unequal to ∆ and G as opposed to simpler methods such as

DWI, where only G is varied to change the b-value.

Intracellular Compartment

The S1 signal comes from the IC compartment, which is demonstrated as a spherical

compartment in the original VERDICT paper [12]. The IC signal can be modeled using

various models of restricted diffusion in domains with different shapes such as cylinders

or ellipsoids, but spheres are good representations in the case of isotropic tumor cells.

Balinov et al. [36] presented a model for the signal from the spherical compartment

2.18, where jn(x) is the spherical Bessel function of the first kind and αnm is the mth
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root of the equation j′n(α) = 0.

E(δ ,∆,g) =
9[γGδRcos(γGδR)− sin(γGδR)]2

(γGδR)6

−6(γGδR)2
∞

∑
n=0

[ j′n(γGδR)]2 ∑
m

(2n+1)α2
nm

α2
nm −n2 −n

× exp(−α2
nmD∆

R2 )
1

[α2
nm − (γGδR)2]2

(2.18)

However, this approximation is only exact for very short gradient pulses. As this is

not always applicable, Neuman et al. [37] discuss that phases are Gaussian distributed.

Following this work, Murday and Cotts derived a signal equation from the investiga-

tion of the accuracy of the Gaussian phase-distribution (GPD) approximation for spins

confined to spheres [38], where the expression of the echo attenuation for the GPD

approximation in the case of the sphere is given as represented in equation 2.19.

ln[E(δ ,∆,g)] =−2γ2g2

D

∞

∑
m=1

α−4
m

α2
mR2 −2

(2.19)

×[2δ ]− 2+ e−α2
mD(∆−δ )−2e−α2

mDδ −2e−α2
mD∆ + e−α2

mD(∆+δ )

α2
mD

, where αm is the mth root of the equation [1/(αR)]J3/2(αR) = J5/3(αR), and D is the

IC diffusion coefficient and R is the cell radius.

The DMIPY modeling framework [39], which will be further explained in section 2.2.4,

have implemented this GPD to model the spherical compartment. The modeling of the

spherical compartment is based on the developed equation from Murday and Cotts in

1968, presented in equation 2.19. For simplification, their implementation contains the

100 fist roots of αm as constants. The results of the DMIPY model fitting reflects what

is originally found in the VERDICT paper [12].

Extracellular-Extravascular Compartment

The S2 signal, which comes from the EES compartment uses a diffusion tensor model

as previously explained. For an isotropic arrangement of cells, this can be constrained

to be isotropic, and anisotropic in the case of anisotropic cell arrangement. In the VER-

DICT demonstration [12], the isotropic arrangement is assumed and the compartment is

modeled as a geometrical ball. The DMIPY framework uses this geometrical ball with
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Gaussian distribution to model the compartment. The signal is calculated as shown in

expression 2.20.

E(λiso,b) = eλiso∗b (2.20)

, where λiso is the EES diffusion constant, and b is a vector consisting of the acquisitions

b-values.

Vascular Compartment

The S3 signal from the blood in the capillaries is referred to as the vascular compart-

ment. This compartment also uses a diffusion tensor model to represent the vascular

pseudo-diffusion. If the data contains a high degree of anisotropy in this component,

the pseudo-diffusion can be oriented along a single direction, but more isotropic models

might be more suitable in situations where this is not the case. In the DMIPY frame-

work, they use this diffusion tensor model that assumes a zero radius. This resulted in

the stick model [9], whose signal can be modeled with expression 2.21.

E(b,λ||,θ ,φ) = eb∗λ||(θ ·φ)2
(2.21)

, where λ|| is the vascular pseudo-diffusion constant, and θ and φ are the orientation

angles.

The VERDICT Modeling

A total of seven parameters is included in these three compartments: the three-volume

fractions from each compartment fIC, fEES, fVASC, the IC diffusion constant, dic, the

EES diffusion constant, dees, the pseudo-diffusion coefficient λ||, and the spherical ra-

dius, R. The VERDICT model assumes that the vascular compartment consists of cylin-

ders with uniformly distributed orientations, and thus the two orientation parameters,

θ and φ are constant. Figure 2.4 from Panagiotaki et al. [13] illustrates these three

compartments in prostate tissue.

2.2.4 Anatomy of Existing Multi-Compartment Modeling
There are a few existing frameworks that are publicly available that support the mi-

crostructure fitting of the VERDICT model. One of these frameworks is the DMIPY

model.
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Figure 2.4: Figure from Panagiotaki et al. [13]. Schematic representation of the VERDICT model
in tissue. Intracellular (IC) diffusion, dic, IC volume fraction, fIC and radius R are represented in
the restricted diffusion inside cells. Extracellular-extravascular (EES) diffusion constant dEES and
volume fraction fEES are represented in the hindered diffusion inside cells and blood vessels. Pseudo
diffusion inside blood vessels, P (in this project also called λ||), and vascular volume fraction fVASC are
represented in the isotropic restricted pseudo-diffusion inside blood vessels.

Diffusion Microstructure Imaging in Python Toolbox

The Diffusion Microstructure imaging in Python (DMIPY) toolbox was presented to

provide deeper insights into the capabilities of MC-modeling [39]. How the DMIPY

framework deals with the three compartments of the VERDICT model has already

been explained, but how the model optimizing works is actually done remains to be

explained. Once the MC-model has been defined as explained in section 2.2.3, the

framework provides a way to link, fix or optimize parameters. Especially relevant for

the fitting of the VERDICT is the fixing of parameters, which implies fixing a known

global that has previously been optimized. Once this is done, DMIPY provides two

different optimization strategies for fitting of MC-models. One of the two is the mi-

crostructure in crossings (MIX) algorithm [40].

This MIX algorithm is designed to return accurate results when applied to highly com-

plicated MC models such as VERDICT. By exploiting a separable structure in the op-

timization problem, this method allows estimating detailed axonal features in the pres-

ence of multiple fiber orientations [40]. However, its accuracy comes at the cost of

being slow and is not preferred for simpler models [39].
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Maastricht Diffusion Toolbox

The Maastricht diffusion toolbox (MDT) is a toolbox that allows for VERDICT mod-

eling [15]. This toolbox uses the Powell optimization routine as standard, which is a

derivative-free nonlinear local optimization algorithm [41]. This optimization routine

was shown to outperform the other algorithms in terms of running time, fit accuracy and

precision. The algorithm commences the search by initializing n search vectors, each of

which comprises all n model parameters. At each iteration, the algorithm updates each

search vector individually by carrying out a line search along each dimension. In this

manner, the algorithm generates vector combinations and substitutes outdated combi-

nations until a stopping criterion is fulfilled. The model and optimization algorithm

is automatically compiled into OpenCL code that can be executed on both a central

processing unit (CPU) and graphical processing unit (GPU) [42].

2.2.5 Diffusion Microstructure Imaging in Gliomas
This three-compartment biophysical model, VERDICT, has previously been used to

provide clinically useful cancer biomarkers from various tissue structures [13] [43]

[44]. These applications demonstrate that the three compartments previously described

in the VERDICT model are aiming to represent the tumor tissue structure. The IC

compartment with restricted diffusion is expected to be the greatest in the tumor cells.

Furthermore, the radius is expected to be higher in a higher-grade glioma (HGG) com-

pared to a lower-grade glioma (LGG). Fig. 2.5 from Zaccagna et al. [43] illustrates the

cell radius differences in LGG and HGG and the hematoxylin and eosin (H&E) stain

from LGG and HGG tissue.

Figure 2.5: Illustration from Zaccagna et al. [43]. (a) shows box and whisker plots of the cell radius
measured by VERDICT MRI and the pathology examination for LGG and HGG. (b) and (c) showing
H&E stains from LGG and HGG, respectively.
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Prior studies on glioma-specific cases have given estimations of the VERDICT param-

eters [44] [43]. Roberts et al. estimate the cell radius of gliomas to be 10.6 ± 0.6 µm,

while Zaccagna et al. estimate it to be 6.8 ± 2.3 µm for HGG and 6.7 ± 1.2 µm for

LGG. The vascular volume fraction was shown to be significantly lower than the IC

and EES fractions. Roberts et al. estimate the IC, EES and vascular volume fractions

to be approximately 0.2, 0.75 and 0.05, respectively, while Zaccagna et al. estimate the

IC and EES fractions to be 0.13 and 0.88 for HGG, and 0.08 and 0.92 for LGG, respec-

tively. As shown in figure 2.5 (a), Zaccagna et al. also did a comparison to histological

measures that verifies that the estimated values are within expected ranges.
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2.3 Machine Learning

Tom Mitchell gave a description of the task machine learning (ML) is trying to solve as

follows: A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance a task in T, as measured

by P, improves with experience E [45]. In recent years, a renewed interest in machine

learning is seen, due to new algorithms, more computational performance and data.

Machine learning now has a central role in tasks like speech recognition, translations

and product recommendation. This advancement has led to a rise in the use of AI in

radiological imaging tasks such as reconstruction, segmentation, diagnosis, prognosis

and risk assessment [46].

2.3.1 Machine Learning Fundamentals

Typically, an ML process is an approach in three steps that distinguishes the phases of

training, testing and validating. The training phase is when the ML algorithm is given

data, and the set of weights or decision points for the model is updated until it reaches

its optimal performance [47]. ML algorithms usually address two main types of prob-

lems: classification problems and regression problems. In classification problems, the

model analyzes features in the input data and predicts the category to which the input

data belongs. In regression problems, labels are represented by arbitrary numerical val-

ues instead of categories. The objective is to develop a model that can make predictions

that closely resemble the actual label values [48].

Machine learning adopts three conventional approaches for the training process: su-

pervised, unsupervised and reinforcement learning. Supervised learning is an approach

where the model is given the ground truth, often called labels. The goal of the model

is then to make as good predictions as possible to match the given ground truth values.

When the model is not given the ground truth during training, this is called unsuper-

vised learning. In this approach, the algorithm is looking for patterns and relations from

the unlabelled data. A third approach is reinforcement learning, which is a combina-

tion of the two above. This method begins with a classifier using labeled data, before it

tries to improve the predictions [47].
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Self-Supervised Learning

The branch called unsupervised learning contains many different approaches to solve

the handling of unlabeled data. In this project, a self-supervised approach is being

explored. Self-supervised learning is known as a general method that uses the data itself

and infers supervisory constraints on the data to learn image features [49]. Previous

studies have shown the potential of using MRI signal equations as such supervisory

constraints, where the model is learning by simulating signals from the learned features

in the data [49] [10] [50] [51] [52].

2.3.2 Deep Learning

In some cases where traditional machine learning comes to short, deep learning (DL)

has been making major advances in solving problems that have not yet been success-

fully solved. DL has been shown to be good at discovering intricate structures in high-

dimensional data [53]. This has resulted in its good accuracy in tasks such as image

recognition[54] [55] [56] [57], reconstructing brain circuits [58] and natural language

processing tasks.

DL is a sub-field of ML, where the representation of data is turned into several repre-

sentation layers [59]. These representations of data are in DL learned through models

called neural networks (NN), which consist of several stacked layers. Each layer deals

with the data by creating weights which are numbers that specify what to do with the

input data, where the learning process is based upon finding the weights that provide

the best fit to the target.

Training of Neural Networks

For the network to control the weights and make sure they learn in the direction of

the targets, three fundamental terms are introduced: the loss function, optimizer and

backpropagation. The loss function computes the score of how well the predictions

do compared to the true target, and this score is used as feedback in order to adjust

the weights in the right direction. The optimizer implements this loss function and

does what is called the backpropagation algorithm. So once the data has been fed

forward through the neural network and the loss has been calculated, the loss is then

propagated backward through the top layers and the chain rule is applied. The chain

rule is derived from calculus and gives us the relation shown in formula, which tells us
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how to differentiate composite functions such as a function h(x) = f (g(x)) 2.22 [60].

In this context, the chain rule computes the amount of contribution each parameter had

to the loss value [59].

d
dx

[ f (g(x))] = f ′(g(x))∗g′(x) (2.22)

The optimizer uses a gradient vector to properly adjust the weight vector. This gradient

vector is an indication of how much the error would increase or decrease if a specific

weight was increased by a small amount before the weight vector is then adjusted in the

opposite direction [53]. In most cases, this procedure is done by implementing a vari-

ant of stochastic gradient descent (SGD). This method is a drastic simplification of the

traditional gradient descent method because it picks a random example of data points

from the training batch and computes the gradient based on that small set [61].

One of the common variants of SGD is the Adam optimizer [62]. This method is

combining the advantages of earlier, well-known methods: AdaGrad [63] which has

the advantage of working well with sparse gradients, and RMSProps which works well

in on-line and non-stationary settings [62]. This method computes individual adaptive

learning rates for different parameters from estimates of the first and second moments

of the gradients. Given a step size, two exponential decay rates β1 and β2, and a stochas-

tic objective function, f (θ) uses the gradients of the function to update the parameter

weights.

This stochastic objective function is also approached in different ways. This function

is what defines the loss, and the most common loss function in regression problems is

the mean squared error, MSE. When the network predicts a value ŷ, that corresponds

to the true value y, the mean squared error is given as:

MSE =
1
n

n

∑
i=n

(yi − ŷi)
2 (2.23)

Generalization and Regularization

The fundamental objective of using machine learning is to achieve generalization.

However, when working with finite samples, there is a possibility that the model may

fit only the training data and fail to identify a generalizable pattern. This phenomenon

is known as overfitting, where the model fits the training data too closely rather than
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the underlying distribution. Overfitting can be detected when the data set shows bet-

ter performance, meaning lower error, on the training data compared to the validation

data. To address overfitting, methods that reduce the model’s complexity are employed,

which are commonly referred to as regularization techniques [48].

There are numerous regularization techniques available to prevent overfitting. Weight

decay is a widely used regularization technique that constrains parameter values to a

specific range [48]. Another approach that significantly reduces overfitting is dropout

[64]. The idea of this approach is to randomly drop units from the neural network

during training, which helps prevent units from co-adapting too much.

Feed-Forward Neural Networks

The feed-forward neural network (FFNN) is among the most frequently encountered

types of neural networks. These networks include one or multiple "hidden" layers, that

can be arranged in a stack, with each one transmitting information to the next layer until

the output layer is ultimately reached. A special case of feed-forward neural networks

is when all the hidden layers are fully connected. That means that all the neurons in

a layer are connected to all the nodes in the following layer. This architecture is often

referred to as multilayer perceptron (MLP) [48].

Figure 2.6: An example of a feed-forward neural network with three input nodes, and three hidden
layers each consisting of five nodes that are projected into an output of two nodes.

Fig. 2.6 shows an example of a feed-forward neural network with three fully connected

hidden layers. The network has three input nodes and two output nodes. Following a

fully connected layer, an activation function must be implemented on each hidden unit.

These activation functions determine whether a neuron should activate by computing

the weighted sum and then adding a bias to it. One commonly applied activation func-
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Figure 2.7: A graphic view of the ReLU and the ELU activation functions.

tion is the rectified linear unit (ReLU) activation [65]. This is a very simple approach

that returns the maximum of a given element and 0. Another function used to speed up

the training process is the exponential linear units (ELUs) [66]. This activation function

is a good alternative to ReLU as the ELU function reduces bias shifts by pushing the

mean activation closer to zero. The ELU function is given as shown below in equation

2.24, where a is an ELU hyperparameter that is usually set to 1. Figure 2.7 visualizes

the plotted functions.

f (x) =
(

x, x > 0
aex, x ≤ 0

)
(2.24)

Previously, these types of networks have been utilized for microstructure modeling and

demonstrated promising outcomes [51], [49], [50], [67]. However, it has been limited

to less complex models compared to VERDICT, as far as our understanding goes.

2.3.3 Evaluation Metrics
In order to quantify and get a measure of how well the final model is performing, eval-

uation methods are needed. For regression models, it can be measured either through

error metrics or so-called R squared (R2) metrics. The error metrics measure the differ-

ence between the actual target and the predicted value, such as the MSE discussed in

section 2.3.2. R2 is a metric that quantifies the proportion of the variance in the depen-

dent variable y that can be accounted for by the independent variable X. In essence, R2

measures the degree to which the variance of one variable can be attributed to the vari-

ance of another variable. The score is calculated according to formula 2.25 given true

value y and predicted value ŷ [68].
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R2 = 1− SSRES

SSTOT
= 1− ∑i(yi − ŷi)

2

∑i(yi − yi)
2 (2.25)

If a model has an R2 score of 0.95, it indicates that 95% of the variability in the observed

data can be explained by the model’s features.

2.3.4 Ethical Considerations of Implementing AI in Health
Care

When integrating artificial intelligence (AI) systems into health care, ethical considera-

tions must be taken into account. Ethical issues can arise in different ways [69]. Firstly,

they can be epistemic and related to misguided, inconclusive or inscrutable evidence.

Secondly, they can be normative and related to unfair outcomes. Finally, they can be

related to the traceability of the algorithm. These problems can arise at different levels

including individual, interpersonal, group, institutional and societal, or sectoral levels

[69]. If actions are not taken in this regard, studies argue that loss of interest in AI

could occur due to loss of public trust in the benefits of AI for health care [69].



Chapter 3

Methods

This chapter presents the in vivo and simulated MRI data together with the construction

of the ANN. Furthermore, the different applications and experiments conducted with

the model are presented.

3.1 Datasets

Deep learning algorithms require a large number of annotated data. Even though the

approach demonstrated in this paper is self-supervised, there is still a need for annota-

tions in order to validate the quality of the results. To overcome this challenge, several

datasets have been simulated based on known ground truth parameters. As a result of

this, the research data in this thesis is drawn from two main sources: synthetic data

simulation and two sets of in vivo MRI data acquired on glioma patients. In the next

two sections, these data sets will be described in further detail.

3.1.1 Synthetic Datasets
Ground truth values are challenging to establish in MRI analysis and give difficulties

in evaluating the fit of an algorithm. In order to quantify the accuracy of the analyses,

synthetic data was acquired by defining the ground truth parameters within plausible

ranges, and using combinations of these parameters to form a synthetic data set. In this

simulated acquisition process, a combination matrix with seven different parameters

from the VERDICT model was used to simulate MRI signals, before noise was added.

Generation of Ground Truth Parameter Array

The VERDICT model described in section 2.2.3 compromises seven parameters to de-

scribe the diffusion signals. Only four of these were predicted, as they are specifically

relevant in the case of studying the biology of gliomas. These four parameters are the
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Table 3.1: Ranges of pseudorandom values used for simulating in silico training data with VERDICT.

Parameter Minimum value Maximum Value Interval

Radius, r 0.02 µm 15 µm 1 µm
fIC 0.1 1 0.1

fEES 0.1 1 0.1
fVASC 0.1 1 0.1
λ|| 8.0∗10−9mm∗2/s 8.0∗10−9mm2/s -

dEES 2∗10−9mm2/s 2∗10−9mm2/s -
dIC 1.2∗10−9mm2/s 1.2∗10−9mm2/s -

θ(µ1)
π

2
π

2 -
φ(µ2) 0 0 -

spherical radius of the tumor cell, the volume fraction of the intracellular compartment,

the extracellular-extravascular compartment and the vascular compartment. In order to

simulate synthetic signals, pseudorandom values were determined for each of these pa-

rameters by limiting the values to be restricted within plausible ranges. The remaining

three parameters that the VERDICT model is dependent on include three diffusivi-

ties for each of the three model compartments. These diffusivities correspond to the

intracellular diffusivity which describes water in axons for the spherical compartment,

extra-cellular Gaussian diffusivity describes the diffusion in the hindered EES compart-

ment and the stick compartment is described by the vascular diffusivity. These three

parameters were fixed to biologically feasible values to reduce the number of unknowns

and make the fit computationally more stable. The angles are fixed as the orientation of

the vascular compartment does not matter in the modeling, only its contribution. The

parameters with their value and range are shown in table 3.1.

Acquisition Scheme

In order to simulate diffusion MRI signals, an acquisition scheme had to be made.

This scheme contains all the different acquisition parameters such as gradient direc-

tion (x,y,z), gradient strength, diffusion time and gradient duration, which are all used

in the simulated acquisition process. Firstly, a large-scale acquisition protocol scheme

was constructed to be able to simulate a rich dMRI protocol, to determine whether the

method could measure the cell characteristics in such a "perfect" protocol. Although the

scanning time required for such a large scheme would be too long, the initial idea be-

hind it was to determine whether this method could be applicable in an optimal setting.

After starting with a protocol consisting of about 80 000 measurements, the scheme

was narrowed down to a smaller amount of measurements. This was because the large
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Table 3.2: Acquisition parameters ranges for simulating in silico training data with VERDICT. ∆ is the
diffusion time, δ is the gradient duration, G is the gradient strength while gx,y,z is the gradient direction.

Acquisition parameter Minimum value Maximum Value Interval

∆ 10 ms 41 ms 3 ms
δ 10 ms 41 ms 3 ms
G 20 mT 80 mT 3 mT

gx,y,z 0 1 -

number of nodes in the linear layer caused memory issues and slowed down the train-

ing process. Therefore, a smaller number was chosen based on the available resources.

The acquisition scheme was made up of all combinations of G, δ and ∆ in plausible

ranges that are realistic for a clinical MR system, shown in table 3.2. The TE was set

to be constant, as the VERDICT modeling does not take the TE into account. All these

combinations resulted in 1155 gradient combinations, in three different directions in

addition to one b = 0 image, resulting in a total number of 3466 measurements. This

is still considered a very rich protocol, and would not be realistic in an MRI scanning

situation.

Data Simulation

The simulated parameter vectors were combined and resulted in 9081 combinations,

which were used to simulate a synthetic signal of the same size according to the

constructed acquisition scheme. First of all, the VERDICT model was loaded and

adapted using the open-source toolbox for diffusion microstructure imaging in Python

(DMIPY) [2]. The three different compartments were loaded and given diffusion pa-

rameters specific to the case of gliomas. The ball diffusivity, λiso, the stick diffusivity,

λ|| and the sphere diffusivity, λsphere are given in table 3.1. As the model was loaded

and parameters were set, the signal was simulated by the toolbox implementation of

the signal equation described in section 2.2.3. This resulted in simulated MRI values

for every 9081 voxels, each with a depth of hardware parameters.

As described in section 2.1.1, Rician noise appears in MRI images. In order to vali-

date and demonstrate, this was tested on the in vivo MRI dataset. From figure 3.1, one

can see that the voxels in air follow a Rician distribution. As described in section 2.1.1,

lower SNR values are correlated to a Rician noise distribution, such as one typically

will have at high b-values. This has now been demonstrated in our images, as the air

voxels have an SNR of 0.
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Figure 3.1: Demonstration of Rician noise in air voxels. (a) in vivo MRI with a marked ROI of air
voxels. (b) Distribution of air voxels in ROI demonstrating a Rician distribution at low SNR.

Figure 3.2: In silico training data with increasing amount of Rician noise.

For this reason, Rician noise was added to the simulated signals as well. In order

to simulate the correlation between noise and the b-value, the amount of noise was

experimented with until reached a formula where signals are fairly recognizable, but

with a clear connection to the b-value. By basing the scale on expected SNR for b =

1000 s/mm2 and b = 3000 s/mm2 as described in section 2.2, the result was a scaling

factor as demonstrated in formula 3.1. Figure 3.2 demonstrates the increasing noise

level with the higher b-values, and figure 3.2 shows the noise distribution over different

b-values.

scale(b) =
10−11

b[s/m2]
(3.1)

Similar to the approach taken in simulating the training data, a test set was simulated.

This set was simulated only using only three different regions consisting of three dif-

ferent ground truth values for each of the four parameters, for easier validation of the
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Table 3.3: Range of pseudorandom values used for simulating in silico test data with VERDICT. Only
varying parameters are shown, as the remaining parameters are fixed to the same values as shown in
table 3.1.

Parameter Region 1 Region 2 Region 3

Radius, r 5 µm 10 µm 15 µm
fIC 0.2 0.4 0.8

fEES 0.6 0.2 0.1
fVASC 0.2 0.4 0.1

Figure 3.3: The simulated in silico test data with varying b-values.

results by visual inspection. These regions with their ground truth values can be seen

in table 3.3, and the simulated data is visualized in figure 3.3

3.1.2 In vivo MRI

To test the network under realistic conditions, in vivo MRI data that had already been

obtained by Zaccagna et al. [43] was utilized. Subjects participating in the study were

scheduled for a stereotactic biopsy or resection and gave written informed consent.

These MRI examinations were performed using a 3.0 T clinical scanner and a 12-

channel head coil (Discovery MR750; GE Healthcare). The gliomas were first located

on a T2-weighted image before 16 axial DWI slices were acquired over the region of

interest (ROI). The acquisition time for each b-value was 66 s which resulted in a total

acquisition time of 330 s abbreviated protocol.

The diffusion-weighted images were acquired with a TR of 2841-3867 ms, and TE

of 83.3 - 87.4 ms and with a slice thickness of 5 mm. In this project, data from two

patients were used. The first patient was scanned with an abbreviated VERDICT ac-

quisition scheme. This scheme consisted of five b-values, where a separate b = 0 image

was acquired to compensate for varying T2-weighted imaging. To assess the robustness

of this abbreviated protocol, an extended robust protocol consisting of 40 b-values was

undertaken in one patient, within the limitations of the imaging system. The diffusion
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Figure 3.4: Two diffusion-weighted images with b-value 2000 s/mm2. (a) Shows a slice from the
extended protocol with 160 gradient combinations, while (b) shows a slice from the abbreviated protocol
with 20 gradient combinations.

parameters for both the abbreviated and robust MRI acquisitions are shown together

with a summary of all datasets in table 3.4. Both datasets were corrected for eddy cur-

rents and movements using the FMRIB Software Library (FSL) eyes tool to correct for

eddy current-induced distortions and subject movements [70]. For usage in the ANN,

each b-value image was normalized with its own b = 0 image. Two example slices from

the two patients with the different acquisition protocols are shown in figure 3.4.

3.1.3 Simulating Datasets with Less Detailed Acquisition
Schemes

Simulations Based on in vivo Acquisition Schemes

In order for the trained model to be applicable to in vivo MRI data, two additional sets

of synthetic datasets were made. The first of these was constructed using the robust

acquisition scheme from the in vivo data consisting of 40 gradient combinations with

three directions and a b = 0 image for each combination. This includes a total number

of n = 160 measurements, corresponding to a long acquisition time. The second set

was constructed using the abbreviated in vivo acquisition scheme with five gradient

combinations in three directions and a b = 0 image for each combination. This resulted

in n = 20 measurements, which corresponds to a shorter acquisition scheme. Both

sets were simulated using the same method as described above, meaning that the same
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ground truth parameter array was used, table 3.1. This method also included adding the

Rician noise to the images.

Simulation of Explorative Datasets

To explore the capabilities and the limitations of the data, some additional extended

datasets were simulated using a variety of acquisition schemes based on a scheme de-

signed for a high-field MR machine. The data were simulated in the same manner as

the previously simulated datasets. Firstly, a dataset was simulated using an acquisition

scheme from a previously conducted study [12]. This VERDICT study experiments

with protocols acquired on a 9.4T MR machine, meaning higher gradient strengths

were applied. An acquisition scheme with 46 diffusion weightings was used, having

diffusion times ∆ = 10, 20, 30 and 40 ms, gradient durations δ = 3 ms for all ∆, and δ

= 10 ms for ∆ = 30 and 40 ms. Gradient strength, G, varied from 40 to 400 mT/m in

10 steps of 40 mT/m for δ = 3 milliseconds and |G| = 40, 80, and 120 mT/m for δ = 10

milliseconds. This setup results in 46 different gradient combinations in three different

directions, with n = 145 measurements in total.

This acquisition protocol was extended in several ways, with the first extension includ-

ing the same amount of measurements as the original scheme, but with extended ranges

of ∆ and larger steps between values. This made a maximum b-value of 13454s/mm2.

The second extension included higher values of δ and a higher range of ∆. This made

a maximum b-value of 18549s/mm2 and a total number of n = 172 measurements. The

third extension was making the steps in the diffusion times even smaller, with only 5

ms between values of diffusion times, ∆, which resulted in the same maximum b-value,

but with a total number of n = 436 measurements.

As demonstrated in section 3.1, the amount of Rician noise increases with increas-

ing b-value, which means that this network should be even more robust towards noise

than for lower b-value acquisitions. Even though it is interesting to see whether high

b-values could provide accurate results in this model, it is necessary to test them with

a high amount of noise. The added noise was scaled by an SNR of 1e11/b which re-

sulted in an SNR ranging between 3 for the highest b-value which results in nearly

unrecognizable signals, and 100 for the lowest b-value.
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3.1.4 A Summary of All Datasets
Throughout the project, a variety of datasets, consisting of both simulated and in vivo

data, were utilized to explore the method’s potential. Table 3.4 provides a comprehen-

sive summary of all the datasets, including their details.

Table 3.4: Overview of all used datasets. n is the total number of measurements in the dataset, and
acquisition parameters include diffusion time, ∆, δ is the pulse duration and G is the gradient strength.
1 Acquisition scheme from the in vivo data from Zaccagna et. al [43], 2 acquisition scheme from
Panagiotaki et al. [12].

Dataset n size Acquisition scheme values
∆ [ms] δ [ms] G [mT]

in
silico

Large-scale
train set 3466 [9180,3466] {10,13,...40} {10,13,...40} {10,13,...80}

Large-scale
test set 3466 [2500,3466] {10,13,...40} {10,13,...40} {10,13,...80}

Abbreviated1 20
[256,256,
252,20] {24,32,43} {5,14,26} {30,44,76}

Robust1 160
[256,256,
16,160] {23,32,43} {10,12,...,25} {10,20,...60}

Extended
(high gradient

strengths2)

145 [9180,145] {10,20,30,40} {3,10} {40,80,...,400}
145 [9180,145] {10,25,...,55} {5,12} {40,80,...,400}
172 [9180,172] {10,20,...,50} {8,15} {40,80,...,400}
436 [9180,436] {10,15,...,60} {5,12} {40,80,...,400}

in
vivo

Robust1

MRI 160
[256,256,
16,160] {23,32,43} {10,12,...,25} {10,20,...60}

Abbreviated
MRI1 20

[256,256,
252,20] {24,32,43} {5,14,26} {30,44,76}
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3.2 Tissue Parameter Fitting with Neural Network

Once the data was constructed and processed, it was employed to train an artificial

neural network (ANN) with the objective of estimating the tissue parameters considered

by the VERDICT model. The network is inspired by the less complex implementation

of a DL approach to fitting a simple ball-stick model done by Lim et al. [49]. The

following sections will describe the steps in the ANN training process.

3.2.1 Artificial Neural Network Architecture

As the VERDICT model is a voxel-wise model, the ANN works on the image data

voxel-wise. This means that the input layer consists of signals from the same voxel,

all with different weightings according to its b-value. With the large-scale simulated

dataset, this results in an input layer with the tensor size 3466, i.e. the number of

measurements. These voxel signals are then fed forward through the MLP architecture

described in section 2.3, meaning three fully connected layers followed by an ELU

activation function, each with input and output size of the number of measurements, n.

Figure 3.5: Artificial neural network architecture. An input layer which is the voxel-wise MRI signal
(S), is forwarded through three fully connected (FC) layers. These are mapped down to four output
values which consist of the radius (R), and the 3 volume fractions: The intra-cellular ( fsphere), The
extracellular-extravascular ( fball) and the vascular fvasc compartment. These were then used to simu-
late a synthetic MRI signal, Ŝ. The mean squared error (MSE) loss is then computed.
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After being fed forward through the hidden layers, the signals are mapped down to four

values, representing cell radius, R, and the three volume fractions, fIC, fEES and fVASC.

The remaining parameters that the VERDICT model is dependent on are fixed to the

same values as used when the data was constructed. From the four free parameters and

the fixed parameters, a new set of MRI signal values from the voxel can be estimated

using the VERDICT model equation. With this new signal, a loss can be computed.

This is done by computing the MSE loss between the synthetic and the original signal.

With this loss, a backward pass is done and the weights in the fully connected layers

are updated. This means that the tissue parameters can be collected directly from the

training process itself. The range of fitted parameter values is not constrained by the

network. A schematic representation of the architecture can be seen in figure 3.5.

VERDICT Simulation

A very central part of the network is the simulation of the new MRI signal, and a fur-

ther explanation is needed. As the previously demonstrated work uses a simple IVIM

model which only compromises a ball and a stick compartment is a quite simplistic

model [49], the signal simulation is a more complex process in this work. The sig-

nal values from the voxel are mapped down to the four free model parameters, which

are all used to simulate signals from either the IC, EES or vascular compartment. The

three fractions fIC, fEES and fVASC are then multiplied with the respective compart-

ments’ signal to compute the total signal value. All of these three compartments are

modeled according to their specific signal equation.

The EES compartment which is modeled by a diffusion tensor is in this case con-

strained to be isotropic because of the cell’s isotropic arrangement and is therefore

represented as a ball. The ball compartment has the most simple signal equation as de-

scribed in section 2.2.3, and is only dependent on the b-values and dEES, which is in

this case set to be constant. This means that the signal from this compartment does not

change, although the fraction of it in the total signal is determined. The EES diffusion

constant, dEES is set to 2∗10−9m2/s.

The vascular compartment model is also modeled as a diffusion tensor, but in this case,

we assume the compartment to have a high degree of anisotropy, which means that we

orientate it in one single direction, explained by the angle µ . This angle, mu, is again a

combination of the two angles, θ and φ . While these are passed through the network,
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they are calculated in 1D unit sphere coordinates. These are then converted to Carte-

sian coordinates before the dot product is computed in the signal equation. However,

as we assume anisotropic diffusion along one single direction, these angles are fixed.

The vascular diffusion constant, λ||, is set to 8 ∗ 10−9m2/s, while θ and φ is set to π

2

and 0, respectively, as these were assumed isotropically orientated.

The signal from the sphere compartment is more complex, and thus a more compu-

tationally expensive process. This implementation is derived from the DMIPY Github

[71] way of computing the spherical component as described in section 2.2.3. Pre-

sented in DMIPYs source code [71] are the first 100 roots of the equation, which is

also used in this project’s calculations. Furthermore, the implementation has been ad-

justed to take in not only one value of δ ,∆ and gradient directions at a time but a vector

of these. This was done to facilitate our new method of doing the modeling, which dif-

fers from the way it has been done in DMIPY.

Now, these three signals are combined using the fraction parameters, which decide

the proportion of which each compartment of the specific voxel consists.

Implementation

The network was implemented on Python 3.9.12 [72] with PyTorch version 1.13.0 [73].

During the introductory testing stage, models were trained on a MacBook 3.1 GHz

Dual-Core Intel Core i5. All final models were eventually trained on an AMD Ryzen

1950X 16-core CPU and GeForce GTX 1080 Ti GPU with Cuda version 12.0.

3.2.2 Model Training on a Simulated Large-scale Dataset

The initial model training was done on the large-scale simulated dataset (n = 3466).

This would not be applicable in a clinical situation as this would require a very long

scanning time, but it has the potential to demonstrate whether or not this modeling

technique can reveal detailed information about the tissue. The data was loaded into

the developed framework using a PyTorch DataLoader [73] before it was forwarded in

batches through the neural network. The model was initialized with model parameters

similar to the ones that gave the best results in the paper of J. Lim [49]. This included

a learning rate of 0.001, 100 epochs and a dropout rate of 0.5. However, in order to

improve the results, the model was trained with many different combinations of both

model parameters and processed input data such as varying noise levels and different
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ranges of radius. Also based on the results of the same paper, the ADAM optimizer and

the MSE loss function described in section 2.3 is used for all training.

The training was done with the simulated data with parameters described in table 3.1,

but the radius was experimented with. The initial training was firstly done with a max-

imum radius of 30 µm, but since this value is outside the expected ranges of a glioma

cell radius, the model was trained on simulated data with lower radius ranges with a

maximum of 20 and 15 µm. This was done to investigate if training on data with lower

radius values could improve the outcomes from model training.

At the early stage of training, the model’s MSE loss was continuously monitored to

manage how well the parameters were estimated during training. Even though training

for more epochs might provide a better fit, it is also more time-consuming. There-

fore, in order to deal with the compromise between accuracy and time consumption,

we chose to proceed with the number of epochs where the loss decrease seems to have

stagnated. To find this point, the general trend of MSE losses was visualized across

multiple models, aiming to identify the minimum number of epochs required to achieve

a converging loss. This approach helped in reducing the number of epochs needed to

train an accurate network without it being too slow.

Test Metrics

To assess the performance of the models on the training data, R2-scores were calculated

from the ground truth parameter vectors and the predictions on training data. This

was done using the Scikit-Learns [74] build-in method that calculates the R2-score

as described in section 2.3.2. Additionally, prediction maps and scatter plots were

visualized. As a curiosity and for later comparison, calculations were made of the

mean, standard deviation and mean squared errors of the predictions at one expected

value in each of the four parameters. These four example values were chosen based

on the previously conducted studies on glioma tissue values described in section 2.2.5.

The statistical metrics were therefore calculated on predictions of radius at ground truth

value 8 µm, and IC, EES and vascular volume fractions 0.2, 0.7 and 0.1, respectively.

3.2.3 Predicting on an Unseen Simulated Large-scale Dataset

Even though this method would require retraining to each specific acquisition protocol,

it is of interest to see how well the model generalizes. If the generalization is good, it



3.2 Tissue Parameter Fitting with Neural Network 37

shows the possibility to be trained for different acquisition schemes and then applied

right away with a very low processing time. To discover if this was possible, the model

trained on the large-scale simulated training dataset (n = 3466) was applied to the sim-

ulated large-scale test set (n = 3466).

To generate predictions with an already trained model, the model and dataset were

loaded in batches using the PyTorch DataLoader before the trained weights were ap-

plied to the data and predictions were made. Predictions from the three regions of

ground truth values were analyzed. To assess the model’s performance on the test data,

R2-scores, parameter maps, and scatter plots were calculated as done on the training

data.

3.2.4 Model Training on Simulated Robust and Abbreviated
Protocol

After investigating the training results and generalizability from training and testing on

the large-scale dataset (n = 3466), model fitting was carried out using the abbreviated

and robust simulated data (n = 160 and n = 20). These synthetic datasets described in

section 3.1 were both composed of acquisition schemes used for in vivo MRI scans,

making the trained models applicable to the in vivo datasets. These were first trained

using the model that included noise in the data, as the purpose was to fit noisy data.

Next, they were also trained on data without noise, to investigate whether or not such

shallow acquisition hypothetically could provide enough information to perform good

predictions.

Similarly to the previous model training, R2-scores were computed on the training pre-

dictions based on the ground truth parameter array, table 3.1, used when simulating

signals. From the same ground truth values, scatter plots were made to visualize the

prediction error. Additionally, statistical measures of the MSE error in the same four

example values (R = 8 µm, fic = 0.2, fEES = 0.7, fVASC = 0.1) used in the large-scale

dataset evaluation. This was done in order to compare the abbreviated and robust fit-

ting with the fitting of the large-scale dataset.

After the model had been trained on these datasets, the trained weights were then ap-

plied to the in vivo data. Together with the data, a brain mask was loaded using the

PyTorch DataLoader [73], and the predictions of voxels outside the brain mask area
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were set to zero as these voxels only contain air. The brain masks were generated using

MDTs built-in method [15].

3.2.5 Model training on Extended protocols
In order to find the balance between the unrealistic scenario presented by the large-

scale dataset (n = 3466) and the potentially insufficient information provided by the

abbreviated (n = 20) and robust (n = 160) protocol, it is desirable to discover a method

that falls somewhere in the middle. As a result, additional acquisition schemes based on

MR acquisitions designed for a high-field MR machine (9.4 T) have been investigated.

The model was trained on the four experimental extended datasets with high gradient

strengths (n = 145, 145, 172, 436) described in section 3.1.3. Predictions from training

were compared to the ground truth parameter array by computing R2-scores and scatter

plots were made. Also for these model fittings, statistical measures of the MSE error

were calculated in the same manner as for the previous model fittings.
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3.3 Comparison with Existing Methods

After tuning the network and demonstrating the suitability of the developed ANN, its

performance was compared to two existing methods described in section 2.2.4. These

were firstly compared in terms of computational time before the accuracy of these meth-

ods was explored on data containing ground truth values. All approaches were tested

with the AMD Ryzen 1950X 16-core CPU or GeForce GTX 1080 Ti GPU with Cuda

version 12.0.

3.3.1 Comparison of Computational Time

For all three methods, the time consumption per voxel was calculated. This amount of

voxels included all data points from the in silico data and all voxels within the brain

mask for the in vivo data.

ANN

The comparison took into account the fact that the proposed artificial neural network

(ANN) needs to be trained for each specific acquisition scheme. Therefore, the ANN

is compared both in terms of training the network and in terms of applying an already

trained network to a new scan. Once trained for a specific protocol scheme, a general-

izing model can potentially be directly applied without requiring any further training.

The time consumption of the ANN was tested on the large-scale (n = 3466) in silico

dataset, and both the robust (n = 160) and abbreviated (n = 20) in vivo protocol.

DMIPY

The first method that the ANN is compared to is the DMIPY framework that was de-

scribed in section 2.2.3. To ensure that the approaches have the same origin, all dif-

fusion parameters except volume fractions and radius are fixed using DMIPYs built-in

function for fixing parameters. The parameters are fixed to the same values as in the

ANN, described in table 3.1. The MIX optimizer as described in section 2.2.4 is used

as it is used in the DMIPY code example for fitting the VERDICT model, and it was

described to be efficient in finding the global minimum in models with many compart-

ments as we have here [71]. The time consumption of the ANN was tested on the

large-scale (n = 3466) in silico and robust in vivo protocol (n = 160). The abbreviated

in vivo protocol (n = 20) was excluded because it has significantly more voxels than

the longer protocol, and the time per voxel was expected to be nearly identical. The
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DMIPY toolbox was implemented with DMIPY version 1.0.4 [71], Dipy 1.5.0 [75] and

Scipy 1.7.3 [76]. The AMD Ryzen 1950X 16-core CPU was used.

MDT

The MDT framework with version 1.2.7 [15], described in 2.2.3, constitutes the second

method. In order to apply this approach it was necessary to obtain a brain mask, which

could be generated from the toolbox itself. To convert the acquisition scheme, all the

relevant scheme parameters were extracted and utilized to create the required protocol

file through the toolbox. The fitting process was first conducted with standard settings,

which utilized the Powell optimizer. Even though this method had been described to

outperform the two others, the two other methods were also tested. This method was

also tested on all the same datasets as the ANN. The GeForce GTX 1080 Ti GPU with

CUDA VERSION 12.0 was used.

3.3.2 Comparison of Accuracy
To further investigate the existing methods, results obtained by fitting these frameworks

are analyzed. The results obtained during the computational time comparison on the

large-scale in silico dataset (n = 3466) were visualized to investigate the fit of the two

existing methods, in order to compare with the developed ANN. Results from fitting on

the in vivo data were not analyzed, as these do not contain any ground truth values to

validate the accuracy of the fit. Since the MDT toolbox requires a mask together with

the data, a binary array with the same shape as the in silico data consisting of ones were

made and applied when fitting with the MDT.



Chapter 4

Results

This chapter presents results and statistical testing from ANN implementations on MRI

data. Additionally, results from comparisons with existing methods are presented.

4.1 Artificial Neural Network Training Results

Results from training on the large-scale simulated dataset (n = 3466) are presented

with the predicted parameter maps from the training process. After this, training was

done on the simulated abbreviated (n = 20) and robust (n = 160) protocols, before these

trained models were applied to in vivo MRI data. Furthermore, results from training

with the extended acquisition schemes (n = 145, 145, 172, 436) are presented.

4.1.1 Model Training and Selection on Large-scale Dataset
The ANN was trained with different settings as described in section 3.2. After deciding

which input data to include, the ANN was trained with different model hyperparame-

ters. All training processes that gave decent results with their outcomes are shown in

table 4.1. From the two learning rates, it was clear that a learning rate of 0.0001 gave

the best results. It is also noticeable that the training loss was generally higher when

adding noise to the simulated signal. Highlighted are the model training with the best

loss and highest training accuracy both with and without added noise.
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Table 4.1: Overview of the training process. Training parameters are learning rate (LR), weight decay
(WD), and dropout which is the applied dropout rate.

Model Epochs LR WD Dropout Noise Best loss

Model0 100 0.0001 0 0.5 × 0.006
Model1 50 0.0005 1e−5 0.5 × 0.010
Model2 20 0.0005 0 0.5 × 0.012
Model3 200 0.0001 0 0.5 × 0.014
Model4 20 0.0005 0 0.5 X 0.091
Model5 200 0.0005 0 0.5 X 0.043
Model6 200 0.0001 0 0.5 X 0.010

It was observed that the model fitting did not perform equally well on data that were

simulated using a wide range of radius values. The training performance was remark-

ably better when fitting radius values between 0.02 and 15 µm rather than the firstly

proposed range between 0.02 and 30 µm. As glioma cell radius larger than 15 µm

are less realistic in vivo, it was decided to proceed with the training process based on

simulated data with a smaller range of radius values, meaning between 0.02 and 15 µm.

Figure 4.1: The loss values plotted for several different training processes. The blue line shows loss
values, while the vertical green line shows the proposed stopping point at 50 epochs.

As seen from figure 4.1, all the training losses follow a pattern where it decreases for

each epoch. As this was at an experimental stage, all training was done with different

amount epochs, and the axis of all plots, therefore, does not match. However, from

analyzing these plots, the number of epochs was then proposed to a maximum of 50

epochs as seen from figure 4.1, which is where the graphs stop showing significant

growth or change for all of the trained models. As a result of this analysis, the models

to proceed with were the highlited models from table 4.1, but training can be stopped

at 50 epochs.
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(a)

(b)

(c)

Figure 4.2: Comparison of ground truth (GT) and predicted parameter maps on the large-scale dataset.
Showing cell radius (R), intracellular volume fraction ( fic), extracellular-extravascular volume fraction
( fEES) and vascular volume fraction ( fVASC). (a) Ground truth parameter maps. (b) The predicted
values from the constructed neural network. (c) Scatter plots over the ground truth values on the x-axis
and predictions on the y-axis.

Maps from training the final model were visualized together with the ground truth maps

to validate its strong alignment, as affirmed in figure 4.2 (a,b). The results were also

visualized in scatter plots, see Fig. 4.2 (c), which shows that the predicted values do not

deviate particularly from the ground truth values as they follow a linear path closely.

However, one can see that the deviations are typically larger for lower values of the

volume fractions, while for the radius, the deviations are higher in both the low and

high ranges. To support the plots and visual results, R2-scores were calculated for

all four parameters, table 4.2. In this table, scores from the model without noise are

also included. All R2-scores are higher on the model trained on data without noise.

Visualization of results from training on data without noise was not done, as an infinite

SNR is not achievable.
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Table 4.2: Metrics obtained from training the large-scale protocol with and without noise. R2 scores on
the predicted radius (R), intracellular volume fraction ( fic), extracellular-extravascular volume fraction
( fEES) and vascular volume fraction ( fVASC).

Data
R2-scores

Radius (R) fic fEES fVASC
Data without noise 0.982 0.995 0.994 0.999
Data with noise 0.831 0.980 0.970 0.996

Additionally, statistical measures of mean, standard deviation and MSE in four values

expected to find in glioma tissue are shown in table 4.3. These values support the previ-

ous finding that the most accurate predicted parameter is the vascular volume fraction,

and they also show that the predictions have small errors.

Table 4.3: Statistical measures on example values (R = 8 µm, fic = 0.2, fEES = 0.7, fVASC = 0.1) on ar-
tificial neural network training predictions from the large-scale dataset. Mean, standard deviation and
mean squared error (MSE) on the predicted radius (R), intracellular volume fraction ( fic), extracellular-
extravascular volume fraction ( fEES) and vascular volume fraction ( fVASC).

Radius [µm] fIC fEES fVASC
Mean 8.04 ± 0.15 0.187 ± 0.009 0.710 +-0.004 0.098 ± 0.002
MSE 0.02 0.0002 0.0001 6 ×10−6

4.1.2 Model Prediction on Large-Scale in silico Data
As the extracted maps from the training process had shown to be close to ground truth

values, the two final models were also tested on the large-scale simulated test set (n

= 3466). Since weights were already trained, the network predicted the same predic-

tions for all pixel values within the same region. The results from the testing along

with the ground truth values are shown in figure 4.3 (a-b), where it can be visually

seen that the predictions match the ground truth. Furthermore, Fig. 4.3 (c) shows the

predicted values plotted alongside the ground truth reference, with very limited devia-

tions. Although this set contains only three different ground truth parameters to predict,

one can see from the scatter plots that the predictions follow the same trend as in the

training data. The vascular component, fVASC has the most accurate prediction, where

the EES compartment has been slightly overpredicted and the IC compartment slightly

underpredicted.
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(a)

(b)

(c)

Figure 4.3: Comparison of ground truth (GT) and predicted parameter maps on the test set. Showing
radius (R), intracellular volume fraction ( fic), extracellular-extravascular volume fraction ( fEES) and
vascular volume fraction ( fVASC). (a) Ground truth parameter maps. (b) The predicted values from the
constructed neural network. (c) Scatter plots showing the GT values on the x-axis and predictions on
the y-axis, together with a GT reference line.

The R2-scores, table 4.4, support the visually shown results on the test set. The ra-

dius predictions perform even higher on the test set, IC and vascular volume fractions

perform almost the same. The EES volume fraction has a slightly lower score.

Table 4.4: R2 scores from the test data. Calculated from the predicted radius (R), intracellular volume
fraction ( fic), extracellular-extravascular volume fraction ( fEES), and vascular volume fraction ( fVASC)
on the test dataset.

Data
R2-scores

R [µm] fic fEES fVASC
Data without noise 0.993 0.995 0.962 0.999
Data with noise 0.576 0.999 0.986 0.995
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4.1.3 Training on Simulated Robust and Abbreviated Proto-
cols

To assess the performance of the trained model on the simulated robust (n = 160) and

abbreviated (n = 20) protocol, scatter plots showing the relationship between the ground

truth and predictions in training data were generated for these datasets as well, Fig. 4.4.

The results are dramatically less accurate than for the large-scale dataset (n = 3466),

and predictions do not follow the linear relationship to the same degree. In the robust

protocol, radius predictions do not manage to predict values in the low or high range,

and there are big deviations from the ground truth. Predictions on the abbreviated

protocol show that radius values are predicted to a nearly constant minimum value.

Table 4.5 supports these visual results, with in general very low R2-scores compared

to training on the large-scale data (n = 3466). The R2-scores seen from the table also

indicate that training the model in the hypothetic situation without any noise actually

made the accuracy worse than training with added noise.

(a)

(b)

Figure 4.4: Scatter plots of ground truth (GT) in training data and predicted parameter maps. Showing
cell radius (R), intracellular volume fraction ( fic), extracellular-extravascular volume fraction ( fEES)
and vascular volume fraction ( fVASC). (a) The model trained on the robust protocol, (b) the model
trained on the abbreviated protocol.
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Table 4.5: Training results from training on the realistically constructed data. R2 scores on the pre-
dicted radius (R), intracellular volume fraction ( fic), extracellular-extravascular volume fraction ( fEES)
and vascular volume fraction ( fVASC).

Data Noise Best loss Training time [s]
R2-scores

R[µm] fic fEES fVASC

Robust protocol
Yes 0.41 693 -0.301 0.606 -0.069 0.670
No 0.42 819 -0.450 0.588 -0.082 0.706

Abbreviated protocol
Yes 1.59 669 -1.401 -0.290 -1.048 0.556
No 1.62 630 -1.53 -0.401 -1.494 0.420

For comparison with the large-scale fitting, table 4.6 shows the calculated mean,

standard deviation and MSE on four example values (R = 8 µm, fic = 0.2, fEES =

0.7, fVASC = 0.1). The MSE was also compared to the calculated MSE on the large-

scale model training. This shows that the error is at the minimum 4 times bigger in the

robust protocol (n = 160) fitting compared to the large-scale protocol (n = 3466) fitting.

On the other side of the scale, the radius error is 1705 times as big in the abbreviated

protocol (n = 20) fitting.

Table 4.6: Statistical measures of example values (R = 8 µm, fic = 0.2, fEES = 0.7, fVASC = 0.1) on
artificial neural network training predictions on the abbreviated and robust dataset. Mean, standard
deviation and mean squared error (MSE) on the predicted radius (R), intracellular volume fraction ( fic),
extracellular-extravascular volume fraction ( fEES) and vascular volume fraction ( fVASC). Relative MSE
error is the calculated MSE compared to MSE on large-scale predictions.

R [µm] fIC fEES fVASC

Robust
protocol

Mean 8.64 ± 0.99 0.167 ± 0.055 0.709 ± 0.018 0.089 ± 0.027
MSE 1.392 0.0040 0.0004 0.0009
MSE/MSE
large-scale 69.6 20.0 4.0 150.0

Abbreviated
protocol

Mean 2.17 ± 0.12 0.101 ± 0.036 0.762 ± 0.040 0.181 ± 0.011
MSE 34.1 0.011 0.005 0.007
MSE/MSE
large-scale 1705.0 55 60.0 1166.7

4.1.4 Predictions on in vivo MRI data
As it was shown that the model was capable of making predictions on an unseen large-

scale test set (n = 3466), the approach was tested on in vivo data using the models

trained on the robust and abbreviated protocol. Fig. 4.5 (a) shows parameter predic-

tions on the robust in vivo MRI protocol and fig. 4.5 (b) shows predictions on the

abbreviate protocol. The predictions of radius for the abbreviated protocol exhibit un-
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(a)

(b)

Figure 4.5: in vivo diffusion MRI with VERDICT parameter predictions. The ROI is highlighted in
two dMRI scans, and parameter predictions are shown for the corresponding region. The parameters
include the radius and three volume fractions: intracellular ( fIC), extracellular-extravascular ( fEES)
and vascular ( fVASC) in an MRI protocol consisting of 160 gradient combinations.

realistically low and consistent values, whereas the other parameter predictions demon-

strate the ability to capture the tissue structure.

The abbreviated protocol produces a range of seemingly arbitrary values in the edges

of the brain, which can be explained by the mask not fitting perfectly on the brain

tissue. The model generates values in the skull, which is beyond the scope of the VER-

DICT model and hence not reflective of actual values, and should thus be disregarded.

Similarly, predicted values in the cerebrospinal fluid should also be disregarded.

4.1.5 Predictions on Extended Protocols

Figure 4.6 shows the results from training with different gradient combinations from

the extended acquisition schemes (n = 145, 145, 172, 436). (a) shows the parameter

predictions on the new acquisition scheme with 145 measurements, while (b) shows the

predictions on the extended acquisition scheme with higher b-values but the same num-

ber of measurements. (c) Shows the extended version with both more measurements

and higher b-values compared to (a). Furthermore, (d) shows predictions from training

with an acquisition scheme with both more measurements and higher b-values. Table

4.7 explains the details of the four different acquisition schemes. Training time for all

models was under 700 s.
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(a)

(b)

(c)

(d)

Figure 4.6: Comparison of ground truth (GT) and predicted parameter maps on the training set for the
extended acquisition schemes. Showing radius (R), intracellular volume fraction ( fic), extracellular-
extravascular volume fraction ( fEES) and vascular volume fraction ( fVASC). (a) Predictions from a real
acquisition scheme with a total of 145 measurements, (b) scheme extended with larger but less dense
δ -range and higher ∆, (c) extension to higher b-values with 172 measurements, (d) a further extension
of the acquisition scheme with a total of 436 measurements.
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Table 4.7: Details of acquisition parameters for different produced acquisition schemes. N describes
the number of measurements in the acquisition scheme, δ range/step is the ranges of the pulse width
and step size between measurements, and ∆ is the minimum and maximum diffusion times. R2-scores
show results from doing ANN fitting of data simulated with these individual acquisition schemes, where
R is the radius, ( fic) the intracellular volume fraction, ( fEES) the extracellular-extravascular volume
fraction and ( fVASC) is the vascular volume fraction.

N δ range/step [ms] ∆ [ms] max b [s/mm2]
R2-scores

Radius (R) fic fEES fVASC

145 10-40/10 3/10 6717 -0.078 0.553 -0.247 0.656
145 10-60/15 5/12 13454 0.271 0.606 -0.462 0.547
172 10-50/10 8/15 18549 0.328 0.642 0.084 0.783
436 10-60/5 5/12 14773 0.552 0.777 0.512 0.905

Figure 4.7 illustrates the outcomes of training with a significant level of noise. Similarly

to training without noise, (a) shows the parameter predictions on the new acquisition

scheme with 145 measurements, while 4.7 (b) shows the predictions on the extended

acquisition scheme with higher b-values but the same number of measurements. (c)

Shows the extended version with both more measurements and higher b-values com-

pared to (a). Furthermore, (d) shows predictions from training with an acquisition

scheme with both more measurements and higher b-values. Table 4.8 explains the de-

tails of the four different acquisition schemes. Training time for all models was under

700 s.

Table 4.8: Acquisition details and R2-scores from training on the different extended protocols with
added noise. N describes the number of measurements in the acquisition scheme, δ range/step is
the ranges of the pulse width and step size between measurements, and ∆ is the minimum and max-
imum diffusion times. R2-scores show results from doing ANN fitting of data simulated with these
individual acquisition schemes, where R is the radius, ( fic) the intracellular volume fraction, ( fEES) the
extracellular-extravascular volume fraction and ( fVASC) is the vascular volume fraction.

N δ range/step [ms] ∆ [ms] max b [s/mm2]
R2-scores

Radius (R) fic fEES fVASC

145 10-40/10 3/10 6717 -0.285 0.629 -0.475 0.434
145 10-60/15 5/12 13454 -0.03 0.723 -0.107 0.552
172 10-50/10 8/15 18549 0.102 0.767 0.073 0.602
436 10-60/5 5/12 14773 0.633 0.924 0.830 0.935
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(a)

(b)

(c)

(d)

Figure 4.7: Comparison of ground truth (GT) and predicted parameter maps on the training set for the
extended protocols with noise. Showing radius (R), intracellular volume fraction ( fic), extracellular-
extravascular volume fraction ( fEES) and vascular volume fraction ( fVASC). (a) Predictions from a real
acquisition scheme with a total of 145 measurements, (b) scheme extended with larger but less dense
δ -range and higher ∆, (c) extension to higher b-values with 172 measurements, (d) a further extension
of the acquisition scheme with a total of 436 measurements.
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Similarly to what was shown for the fitting of the abbreviated and robust protocol, table

4.9 shows the calculated mean, standard deviation and MSE on four example values (R

= 8 µm, fic = 0.2, fEES = 0.7, fVASC = 0.1). The MSE is also compared to the calculated

MSE on the large-scale model training. This shows that predictions at the lowest have

an MSE of 5.9 times the large-scale prediction when predicting intracellular volume

fraction with the n = 436 scheme. The highest MSE compared to the large-scale MSE is

found when predicting the vascular volume fraction with the n = 172 extended scheme.

Table 4.9: Statistical measures of example values (R = 8 µm, fic = 0.2, fEES = 0.7, fVASC = 0.1) on
artificial neural network training predictions on the abbreviated and robust dataset. Mean, standard
deviation and mean squared error (MSE) on the predicted radius (R), intracellular volume fraction ( fic),
extracellular-extravascular volume fraction ( fEES) and vascular volume fraction ( fVASC). Relative MSE
error is the calculated MSE compared to MSE on large-scale predictions.

R[µm] fIC fEES fVASC

n=145
Mean 8.60 ± 0.86 0.158 ± 0.067 0.752 ± 0.050 0.068 ± 0.030
MSE 1.088 0.0063 0.0052 0.0019
MSE/MSE
large-scale 54.4 31.3 52.1 322.2

n=145
(ext)

Mean 8.674 ± 0.464 0.145 ± 0.053 0.758 ± 0.031 0.030 ± 0.013
MSE 0.669 0.0059 0.0043 0.0050
MSE/MSE
large-scale 33.5 29.6 42.8 836.9

n=172
Mean 8.40 ± 0.40 0.152 ± 0.050 0.693 ± 0.024 0.085 ± 0.010
MSE 0.322 0.0048 0.0006 0.0003
MSE/MSE
large-scale 16.1 24.2 6.2 50.3

n=436
Mean 8.754 ± 0.697 0.186 ± 0.031 0.680 ± 0.016 0.103 ± 0.007
MSE 1.053 0.0012 0.0006 0.0001
MSE/MSE
large-scale 52.7 5.9 6.3 8.6
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4.2 Comparison with Existing methods

In this section, results from comparing the ANN approach is compared with the existing

methods in terms of computational time and accuracy.

4.2.1 Comparison of Computational Time
The ANN-based parameter estimation was shown to be more than 150 times faster

than the NLLS fitting with DMIPY on the simulated dataset (n = 3466) and close to

300 times faster on the in vivo dataset (n = 160) using GPU. The time consumption of

all tested methods is shown in table 4.10. For the ANN method, the time used to train

the neural network on the simulated signal with the corresponding acquisition scheme

is shown together with the time it takes to predict results. From the table, it is clear that

the DMIPY method is very slow compared to the two others, but the GPU-accelerated

MDT model-fitting method is faster than the ANN.

Table 4.10: Time consumption for the developed ANN, and the two existing methods. Training time is
only relevant for the ANN that needs to be retrained for every acquisition protocol.

Framework Dataset Device Training
time [s]

Prediction
time [s]

Time per
voxel [s]

ANN
in Silico

GPU 899 < 10 0.097
CPU 5950 < 10 0.648

in vivo 160 GPU 693 810 0.001
in vivo 20 GPU 669 7398 0.010

DMIPY
in silico CPU 0 146 627 15.972
in vivo 160 CPU 0 410 540 0.390

MDT
in silico GPU 0 38 0.004
in vivo 160 GPU 0 73 2×10−4

in vivo 20 GPU 0 259 3×10−4

4.2.2 Accuracy of Existing Methods
Scatter plots showing results from fitting the DMIPY model on large-scale simulated

data (n = 3466) are shown in Fig. 4.8. Radius predictions are accurate until reaching

10 µm, from where it does not manage to predict higher values.
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Figure 4.8: Comparison of ground truth (GT) and predicted parameter maps on the simulated large-
scale dataset using DMIPY. Showing radius (R), intracellular volume fraction ( fic), extracellular-
extravascular volume fraction ( fEES) and vascular volume fraction ( fVASC).

The fitting of the simulated large-scale dataset (n = 3466) with MDT using the Powell

optimizer was not successful, as all parameters were predicted to be constant over the

entire area. Radius was predicted to be 0.8 µm in all voxels, and the IC, EES and

VASC volume fractions were predicted to be -1.117, -1.117 and 3.235, respectively.

Results from the second optimizer method, Fig. 4.9, show that it did not manage to

make accurate predictions on the in silico dataset with n = 3466 measurements.

Figure 4.9: Comparison of ground truth (GT) and predictions of parameter maps on the simulated
large-scale dataset using MDT. Showing radius (R), intracellular volume fraction ( fic), extracellular-
extravascular volume fraction ( fEES) and vascular volume fraction ( fVASC).



Chapter 5

Discussion and Conclusion

The goal of this master project was to explore whether VERDICT microstructure fitting

in glioma tissue could be approached with a self-supervised fully connected neural net-

work. To do this, a neural network was developed and tuned, before it was compared

to already existing methods. The network was successfully trained and tested on simu-

lated large-scale data (n = 3466) before being applied to in vivo data, returning the four

model parameters within expected ranges. However, model fitting on data simulated

with in vivo acquisition schemes (n = 160, n = 20) did not provide as accurate results as

for the large-scale simulated data (n = 3466). For this reason, further datasets were sim-

ulated and fitted based on acquisition schemes designed for a high-field MRI protocol,

and it was illustrated that these protocols could be better suitable for fitting the VER-

DICT model. The developed ANN has been compared to existing methods in terms of

time consumption and accuracy. The results indicate that the method is more efficient

when combining time consumption and accuracy. In this section, the advantages, as

well as the limitations of this approach, are discussed.

5.1 Parameter Predictions with Neural Network

5.1.1 Initial Model Fitting on Large-scale Simulated Dataset
This section discusses the results from the initial training process when a large-scale

dataset (n = 3466) was simulated and used for model selection. The testing of the

model’s ability to generalization is also discussed.

Parameter Estimations from Model Training

Figure 4.2 showed that the predictions from the training data did not deviate signifi-

cantly from the ground truth values. The volume fractions achieved very high accuracy

on the training data. Since the ground truth volume fractions only consisted of 10
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different values, the trends are slightly harder to determine. However, the first obvious

pattern is that the predictions of the vascular component had less deviation from ground

truth values and thus more accurate predictions. The deviations were minor but more

significant in the mid-range between 0.3 - 0.6. For the IC compartment, predictions

were slightly lower than GT values with the most significant deviations in mid-ranges

between 0.2 and 0.6. The EES compartment showed the opposite patterns with pre-

dictions slightly higher in the same area. The opposite trends were expected as all

fractions are normalized to sum to one. The computed example mean values with the

corresponding low standard deviation, table 4.3, indicates that the errors are rather sys-

tematic and not random, which supports what has been seen visually.

By examining the signal equation for the various compartments, it becomes apparent

that the only parameter that is varying in the EES and VASC compartments is the b-

value. This implies that the modeling of these compartments disregards the individual

acquisition parameters. However, it should be acknowledged that lower b-values result

in reduced signals from these compartments, potentially making them more challeng-

ing to model.

The predictions of the radius achieved high accuracy, and they were more precise in

the mid-ranges, meaning between 5-10 µm. One hypothesis is that the reason for this

could be the complexity involved in simulating the spherical compartment, as described

in equation 2.19. In the early phases of the study, it was discovered that the model did

not manage to compute a good accuracy of simulated data with a high upper range of

radius (meaning up to 30 µm which was first used). It was experimented with models

trained on data simulated with a maximum of 15 µm, which gave good results. How-

ever, it was decided to proceed with a model of up to 20 µm as it was not desirable to

exclude some possible expected tissue values. This experiment supports the hypothe-

sis that the computation of the spherical compartment does not manage to compute the

high-range radius as well as the lower-range radius.

The formula presented by Balinov et al. [36], i.e. eq. 2.19, might reveal some of

the complexity involved in computing the signal from the spherical compartment. As

the radius is a squared element in the denominator in the computed sum, high radius

values will be equivalent to a smaller sum. However, the radius is also an element in

the α element, and the α decreases with an increasing radius. All combined, when the
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radius increases the sum becomes bigger, and thus the logarithm of the signal is more

negative. This means that the signal from the spherical compartment becomes lower

with a high radius value, compared to a higher signal with a lower radius value. This

becomes more clear when the radius is exceeding 10 µm. The small amount of sig-

nal from the spherical compartment for high radius values might therefore explain the

difficulty of predicting the high radius values. Increasing diffusion times and diffu-

sion duration is also components that would result in a lower signal from the spherical

compartment, but a higher gradient strength could give a larger signal and thus it may

facilitate the computation of the spherical compartment.

Comparing R2-scores from table 4.2, it is obvious that the model trained on data with

added noise achieved a lower R2-score than the model trained on simulated data with-

out noise. The score of the radius was the one that decreased the most, which also

supports that the computation of the spherical compartment is complex and also there-

fore more sensitive to noise.

The trends seen in predictions of volume fractions can be partly explained by the train-

ing data. The GT volume fractions that were used to simulate the data show unbalanced

training data, fig. 4.2 (a). This showed that the IC volume fractions contain more data

points in lower ranges than in the high ranges, which was also the case for the two re-

maining volume fractions. This means that the lower ranges included more data points,

which in one way would have made the predictions more accurate, but it does also mean

that it contained more data points to wrongly predict. The prediction of the IC volume

fraction at 0.1 is very accurate, which is the one containing the most data points. The

highest values are the ones containing the least amount of data points, and they show

less deviation from ground truth in all volume fractions. This is likely to be explained

by the low amount of data points and it is thus showing less variation. Overall, this

might indicate that training on more data points could have made the model even more

accurate.

Because the radius is a parameter in the computation of the spherical component, a

logical assumption would be that the volume fraction would compensate for an inaccu-

rate radius estimate by underestimating the IC volume fraction. As the fractions must

sum up to one, this would then have affected the other compartments. The computa-

tion of the spherical compartment is more complex and involves more components that
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could lead to inaccuracies than the other compartments. This supports the assumption

that the IC compartment partly causes the inaccuracies of the other volume fractions.

Thus, a more efficient way to estimate fractions that need to add up to one simultane-

ously could be beneficial.

Model Testing

The model testing on a simulated large-scale test set (n = 3466) showed similarly good

results as the model tested on the training data. Fig 4.3 (c) showed that when the pre-

dicted values were plotted alongside the ground truth reference, the differences between

the two were minimal and the predictions followed the same trend as for the parameters

obtained during training. The R2-scores, table 4.4 supported the visually shown results

on the test set. In order to determine whether or not the model overfits the training set,

additional variability in the data points would be necessary. However, as the accuracy

of training data are not higher than that of the test data, this indicates that the model

manages to generalize and does not overfit.

5.1.2 Model Training and Prediction for Application on in
vivo MRI

Training on Abbreviated and Robust Protocol

Going from 3466 to 160 and 20 image volumes, the training loss increased in general,

which was expected as the simulated robust and simulated datasets contain fewer data

points. The loss of both models converged within the 50 epochs, but the robust dataset

had in general a lower training loss than the abbreviated dataset, table 4.5. The table

also shows that R2-scores on the predicted parameter values are significantly lower than

on the large-scale dataset (n = 3466), and table 4.6 shows that standard deviations are

higher, and MSE is much higher compared to the large-scale fitting.

These trends were expected, as the abbreviated dataset contained one eight the num-

ber of data points compared to the robust dataset. Fig 4.4 shows scatter plots of the fit

of the predictions for an abbreviated (n = 20) and robust (n = 160) protocol, which is

worse than the fits on the large-scale (n = 3466) trained model. Comparing the two re-

sults, scatter plots show that predictions are less accurate for the abbreviated protocol.

It was expected that the prediction accuracy would decrease with a shallower dataset,

as it contained fewer data points per voxel. It is noticeable that the errors of the IC
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and EES volume fractions followed the same pattern as the previously discussed result,

where the IC compartment was underpredicted and the EES compartment was over-

predicted. This supports that these systematic errors are partly caused by the network

architecture.

Predictions on Abbreviated and Robust in vivo MRI Protocol

From testing the trained models on the robust MRI scan (n = 160), fig. 4.5 (a) and ta-

ble 4.5, one could see that the predicted radius is overall slightly higher in the glioma

tissue, the IC volume fraction is lower and the EES volume fraction is higher. All these

trends match the findings in the previous papers described in section 2.2.5, which sug-

gests that the model fitting has produced plausible outcomes. The model trained on the

abbreviated protocol (n = 20) did not manage to predict a radius that is compatible with

the expected results, which can be assumed to be caused by the lack of information in

the short sequence. However, the predictions of the three volume fractions show the

same promising patterns as for the fitting on the robust MRI scan (n = 160), with val-

ues compatible with the literature [44] [43].

On the robust MRI fitting, a distinct band of high intensity can be seen on the right

hemisphere, predicting a smaller radius, higher IC volume fraction and lower EES

fraction. From investigating the patient MRI scans, it was seen that the band was not

recognizable in the structural scans (i.e. T1 and T2-weighted images), and neither on

the diffusion-weighted images with lower b-values, Fig. 4.5. However, as seen in Fig.

3.4 (a), the band is recognizable on the high b-value dMRI. This argues that the band is

not a consequence of the model fitting, and rather an artifact from the scanning process.

This finding shows that the model fitting is influenced by artifacts on the images, and

it has made the model incapable of predicting correct values in the affected area. For-

tunately, the voxel-wise nature of the model appears to have prevented artifacts from

affecting predictions in other regions of the brain, and the band is recognizable and can

be easily classified as incorrect predictions.

5.1.3 Optimization of Acquisition scheme

Results from training the dataset simulated with the rich acquisition scheme showed the

potential of making accurate predictions with this method. However, the results from

applying this to the acquired in vivo sequence show that it does not manage to make

accurate predictions on these sequences. To explore this further, Fig. 4.6 shows the
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predictions from the model on simulated data on some new acquisition schemes.

Theoretical Approach without Noise

The first fitting 4.6 (a) was done using a real acquisition scheme used on a 9.4 T MR

scanner, which could, in theory, cope with larger b-values and more noise. By com-

paring the scatter plots from Fig. 4.4 and Fig. 4.6, it can be seen that the predictions

on this dataset are slightly better than our already trained network on the robust dataset

(n = 160). The new fitting shows values closer to the ground truth compared to the

previous robust training, which is also supported by comparing R2-scores from tables

4.5 and 4.7, where the new training has overall higher R2-scores. One obvious differ-

ence between the two situations is that the gradient strengths are remarkably higher in

these extended protocols than in the robust protocol. This implies that a higher gradient

strength would provide more information in the context of microstructure fitting. The

earlier discussion on the potential benefits of higher gradient strengths for computing

the spherical compartment is supported by these findings.

From further exploring the scatter plots from Fig. 4.6 and R2-scores from table 4.7,

one can see that the extended version with less dense but higher b-values shows a better

fit, especially for the radius. This argues that higher b-values provide more information

and a more accurate model. However, the gradient strength is the same in the two sit-

uations, which shows that larger ∆ and δ values are also crucial. As opposed to stated

earlier, this indicates that the fitting is not necessarily dependent on signals acquired

with a high gradient strength.

The extended version with 172 measurements and higher b-values, 4.6 (c), shows bet-

ter radius predictions, with relatively accurate results up to 8 µm. R2 scores are also

higher than the two previous datasets for all parameters. The further extended version,

4.6 (d), with 436 measurements, manages to predict the radius even more precisely, and

is starting to approach the result from the training of the rich protocol dataset.

While it may appear that using larger values of δ and ∆ results in a more accurate

fit, this is not always the case. When considering the extended protocols and the robust

protocol, the IC compartments show a worse fit for high-volume fractions. In order to

capture the movements of water molecules in a large sphere, it would not intentionally

be necessary with a very long diffusion time, as there should be enough molecules to
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distinguish the diffusion process. A very long diffusion time would also leave a very

low signal that is harder to model. Likewise will long gradient pulses result in a loss of

signal.

High B-values and Noise

Even though these results show the theoretical possibility of making accurate predic-

tions with higher b-values, that also means more noise in the data. Comparing Fig. 4.7

to Fig. 4.6, one can see the same patterns over the different schemes. In this fitting,

the extended version with 145 measurements is still remarkably better than the original

version with the same amount of measurements. One would expect a lower SNR and

thus a signal with less information in the extended version, as it has a higher b-value.

However, the model seems to be quite robust to noise, as adding noise levels up to 3-4

SNRs did not break the model. From examining dMRI of cancer with high and low

b-values, Tang. et al. [77] concluded that with further development in standardization

of image acquisition and analysis, dMRI across the entire b-value spectrum is well po-

sitioned to become a powerful surrogate in cancer imaging. This statement supports

that the use of high b-values could become applicable in clinical statements.
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5.2 Comparison with Existing Methods

The fitting with ANN showed promising results in terms of accuracy, and it is also

faster than one out of two existing methods. The utilization of deep learning in imag-

ing diffusion microstructures has in some ways demonstrated better performance than

conventional methods used previously. Some reasons for this will be further discussed

in this section. It should be taken into account that all models have been fitted on the

entire brain, whereas VERDICT is designed for tumor tissue. This might have caused

some tissue to be more computationally difficult to predict because the model is not

designed for such tissue. As this is done for all three models, it is assumed that such

effects can be disregarded when comparing the models.

5.2.1 MDT
The MDT approach showed a very fast fitting, using only a few minutes on the largest

dataset. However, even though the general statement from the MDT paper claims that

the Powell optimizer outperforms other optimizers [15], this was not the case in this

experiment as it did not manage to predict probable tissue values. However, the re-

maining two optimizers were also tested, whereas only one gave predictions. These

predicted values seemed randomly distributed and did not seem to be probable tissue

values. The MDT was tested with all combinations of datasets and optimizers, whereas

none gave better results than shown in figure 4.9. The missing results on the third pos-

sible optimizer due to computational restrictions may have caused better outcomes to

be overlooked, but based on the general statement from the MDT paper, it is not likely

that this optimizer would have performed better. However, it should be taken into ac-

count that the lack of accurate predictions might be caused by data or method-specific

problems, and a better outcome for this model could have been overlooked. Although

the fitting with MDT was not successful, the process still gave useful results in terms of

time comparison, as the ANN approach could be compared to another GPU processing

method.

5.2.2 DMIPY
The DMIPY approach achieved highly precise radius predictions of up to 10 µm, with

volume fraction estimations comparable to those generated by the ANN. As previously

explained, the ANN’s calculation of the spherical compartment is inspired by DMIPYs

way of implementing the formula for computing the signal from the spherical compart-
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ment, which was the one presented by Balinov et al. [36], 2.19. A possible consequence

of this is that the predictions exhibit similar behavior, leveling off at a radius of 10 µm.

By digging deeper into the DMIPY modeling of the spherical compartment, it was seen

that a max and minimum limit to the diameter value was set to (1e−2,20), meaning a

radius limit of (0.5e−2,10). This explains why the DMIPY method does not predict

higher values, and might also support the previously suggested reason that there is a

limitation in the signal formula. These observations provide further support for the

previous assertion that the spherical compartment includes the most complexity in the

modeling.

Additionally, it was observed that the DMIPY fitting was much slower on the simu-

lated dataset than on the in vivo data. This implies that some calculations are more

time-consuming than others, and possibly that computing the parameters from the sim-

ulated protocol is not computationally feasible.
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5.3 Methodological Considerations

5.3.1 Data Simulation Considerations

To achieve the desired level of precision in the neural network, it is essential that the

data quality is high. Initially, this project sought to test the self-supervised neural net-

work method outlined in [49], which stated that the approach would require retraining

for each dataset. The aim was to sample accurate parameters by deliberately overfit-

ting the training data. However, the models displayed good generalization capabilities,

prompting a change in the project’s objective to investigate the feasibility of creating

models that could generalize to unseen data. As a consequence, the network was not

originally designed with the intention of training it on a large volume of training data.

By exploring previously conducted studies, all studies have used a dramatically higher

amount of training data. Lim et al. [49] and Martin et al. [51] simulated and trained

their network on 105 signal values, while Diao et al. [52] constructed a dataset contain-

ing 4×106 signals. In comparison to this study, previous research studies have trained

their networks on as much as 40 times more data. However, it’s important to note that

those models were not specifically designed to fit the VERDICT model. Instead, they

were designed to fit simpler models that are less computationally expensive. During

the work of this project, the impact of more data points was experienced to be crucial.

It started out containing 1024 signal values before it was up-scaled in several steps until

9180 data points. Obviously, this also increased the training time of the models, which

was why it was not extended even further. However, an even bigger dataset could po-

tentially increase the performance of the network.

Due to the limited number of data points used for training, it is especially crucial to

carefully consider the potential data bias. As illustrated in Fig. 4.2, the parameter val-

ues used for simulating the data are predominantly concentrated in the lower ranges

of volume fractions, compared to the high ranges. Initially, this was not deemed sig-

nificant since the initial predictions, Fig. 4.2, demonstrated no difference in accuracy

between the low and high-range values. However, later predictions conducted on shal-

lower acquisition schemes, as shown in Fig. 4.6 and 4.7, revealed that the accuracies

of the lower range values in volume fractions are higher. This may be due to the lack

of ground truth values in the high ranges.
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Acquisition Scheme Optimization

In the attempt of finding a more suitable protocol scheme, it was demonstrated that

the proposed ANN can produce more suitable but still realistic protocols. However, it

would be preferable to go through the possible acquisition schemes in a more system-

atic way, such as comparing which combinations out of the 3466 measurements would

make the best. This could be done by testing all possible combinations of 10 measure-

ments and seeing which combinations that gave the best result.

The extended acquisition schemes are constructed for a 9.4 T MR machine, which

is not the clinical standard. This was done to investigate whether one could obtain a de-

cent result with shorter acquisition protocols. However, the results showed that it was

not necessarily too dependent on the gradient scheme. Therefore it would be interest-

ing to do a fitting to shorter sequences with higher δ and ∆ values but with a clinically

available gradient strength.

5.3.2 Network Architecture Considerations

As already discussed, there seems to be a clear correlation between the predicted EES

volume fraction and IC volume fraction. A possible reason for this can be the order in

which they are computed in the neural network and the way that they are normalized.

To simplify the neural network, it would have been possible to reduce the number of

volume fractions from three to two since they must sum to one. By doing this, the third

compartment could have been calculated outside of the hidden layers as one minus the

two calculated fractions, eliminating one parameter that the neural network would need

to estimate.

Another trend that needs to be considered is the radius prediction on values higher

than 10 µm. Scatter plots of predictions on the rich protocol in silico data reveal that

the accuracy of the fit is deteriorating for values above 10 µm, as illustrated in Fig. 4.2.

This trend is also evident in the extended realistic acquisition schemes, as shown in Fig.

4.6. As outlined in section 3.2, the computation of the spherical compartment that con-

siders the radius is carried out in a similar fashion as in the DMIPY framework. It can

be observed in Fig. 4.8 that the DMIPY toolbox also fails to predict radius values ex-

ceeding 10 µm. This suggests that the challenges associated with fitting radius values

may be caused by the previously discussed complexity of the method used to calcu-
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late the spherical compartment. Thus, it could be beneficial to optimize the network in

terms of the spherical compartment.

Alternative Arichitectures

As stated earlier, this network architecture was adapted from previously conducted

studies [49], [50]. These two studies both consisted of an input layer, three fully con-

nected hidden layers and an output layer, using the ELU activation function and Adam

optimizer. However, other similar approaches have taken other choices in terms of ar-

chitecture.

In an attempt of fitting a diffusion-relaxation model of white matter, Martins. et al.

[51] trained various network designs with different numbers of hidden noise. From

comparing a network consisting of three hidden layers with a decreasing amount of

nodes with a network with four consistent hidden layers, they found that increasing the

width or depth of the fully connected ANN was not a promising avenue. This project

also explored the use of a greater number of hidden layers, with similar results ob-

tained. This suggests that the proposed layer structure represents the optimal setting

and that there is limited potential for improving the selected layer structure. Another

promising study conducted by Diao et al. in November 2022 [52] also used an FCNN

approach for comparison purposes, consisting of a decreasing amount of nodes in the

hidden layers. This suggests that it could be interesting to test a decreasing amount of

nodes in the suggested ANN, but significant improvement may not be expected based

on the findings of Martins et al.’s study.

The main purpose of Diao et al.’s study was to propose a new method based on the

encoder-decoder recurrent neural network (RNN) in an attempt to replace the conven-

tional NLLS fitting and to challenge the FCNN approach. In May 2023, Zheng et al.

proposed a framework based on a transformer network structure and introduced an in-

ductive bias-model bias into the transformer with the use of a sparse coding technique

to facilitate the training process. Both these two proposed methods showed promising

results in terms of fitting their respective microstructure models. These completely dif-

ferent network architectures, therefore, appear interesting to investigate for fitting the

VERDICT model in gliomas. On the other hand, Valindra et al. [78] explored three
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different deep regression networks for fitting VERDICT including one FCNN and two

deeper networks consisting of more complex hidden layers. The findings argued that

the simple FCNN approach is adequate to estimate parametric maps on models like the

classic VERDICT.

Martins et al. [51] also applied the Adam optimizer and MSE as the loss function,

and as far as can be determined no other optimizer or loss function has been applied

successfully in other studies. Martins et al.’s study, however, employed the hyperbolic

tangent (tanh) activation function, in contrast to the ELU used in this project. Diao et al.

[52] applied the LeakyRELU activation function. These are optimizers that could also

be tested in terms of fitting the VERDICT model. Nonetheless, significant efforts were

made in the model selection phase, making it unlikely that remarkable improvements

in the results would be achieved by implementing these various optimizers.

5.3.3 Choice of Microstructure Model
The choice of microstructure model was done based on the result from Zaccagna et al.

[43], who demonstrated a good fit of the VERDICT model in glioma tissue compared

to histological results. However, one can not rule out that some of the issues encoun-

tered in this project might also be due to the design of the VERDICT model. One can

argue that the three compartments are not adequate in predicting all seven tissue pa-

rameters. However, further analysis is necessary for investigating this.

Furthermore, it has been found that tumor cells can infiltrate centimeters away from

the contrast-enhancing mass on the MRI scans [79] [80]. In such a case, it is natural

to consider the potential inadequacy of the VERDICT modeling technique in captur-

ing the intricate composition of such a diverse and intricate tissue. Additionally, the

original VERDICT model was designed to compute the IC, EES and vascular spaces

in an animal model of prostate cancer at a field strength of 9.4 T which has higher dif-

fusion gradient capabilities [43]. This might partly explain the difficulties concerning

the computational modeling including noise at clinical field strengths, meaning data

acquired with a field strength of 3 T.
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5.4 Ethical Considerations

To ensure the integration of this self-supervised deep learning approach as a supple-

mentary or alternative method to conventional biopsy, it is important to address the

ethical considerations. One considerations concern issues related to epistemic and mis-

guided, inconclusive evidence [69]. One epistemic concern regarding this project is the

accuracy of the predictions. It has been shown that the accuracy of predictions is highly

dependent on the data, which means that using this approach on unsuitable data could

potentially lead to misguided, inconclusive or inscrutable evidence. Even in scenarios

where the approach demonstrates near-perfect performance, it is crucial to investigate

the precision of the predictions. Ideally, thorough comparisons to histological estima-

tions of tissue parameters are necessary to ensure that this approach could perform just

as well as the traditional method. However, comparison to gold standards in this field

is methodologically challenging. Most importantly, the method should be applied only

in circumstances where it is well-tested and proven to be appropriate.

Another consideration to address is related to normative and unfair outcomes [69].

If the model is trained on biased data, by for example using data with too low radius

values, one could risk that the model expects normative behavior and does not capture

extreme or severe cases. It has been addressed that the developed model does not man-

age to predict very high radius values higher than 15 µm, and even though such values

are not expected, it shows that the model does to some extent address the issue of nor-

mative behavior. This could be severe in the cases of very large glioma cells. For this

reason, consideration of data in the training process becomes extra important.

Even though the predictions of the network might be reliable, the issue of traceabil-

ity still arises [69]. It is important that the algorithm is implemented in such a way

that it provides traceability and transparency. However, the question about how the

neural network does its predictions is still present. Sufficient knowledge about the net-

work structure and machine learning technicalities is needed. It must still be considered

that the traceability might be limited compared to the conventional method. Another

concern regarding traceability is the algorithm’s ability to function properly even if the

measured diffusion data changes over time, for example, due to scanner upgrades. Con-

tinuous evaluation of the algorithm is likely necessary.
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This tool is designed to complement human evaluations and should be utilized by in-

dividuals as a support, rather than replacing their critical judgments. Nevertheless,

these discussed issues are important to take into consideration when implementing

such an algorithm. With further development of this AI implementation into diffu-

sion microstructure imaging, it becomes essential to address these concerns related to

epistemic considerations, normative behavior, and traceability.
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5.5 Conclusions and Future Work

This project has successfully demonstrated that the self-supervised ANN approach is

suitable for complex VERDICT microstructure fitting in glioma tissue. While it has

previously been demonstrated for simpler methods, the complex case of VERDICT fit-

ting in gliomas had not been demonstrated until now. Consequently, this research has

the potential to significantly improve the accessibility of glioma treatment response

assessment. Through extensive training on large-scale simulated data, the network ex-

hibits the potential of a high level of confidence in the complex predictions of the cell

radius, as well as the IC, EES, and vascular volume fractions. Notably, the method’s

applicability to in vivo dMRI data has been successfully demonstrated. As compared

to existing methods, the proposed ANN showed a better performance when taking both

time consumption and accuracy into consideration. It is worth emphasizing that further

optimization of the ANN approach was not pursued within the scope of this project,

considering its challenging nature.

As expected, the analysis of the relationship between model fitting and acquisition

protocol revealed that more detailed sequences were more suitable for the model fit-

ting, while shorter and less detailed protocols resulted in inaccurate predictions. This

method is not recommended to be used in image protocols with less than 20 measure-

ments due to the lack of sufficient information for successful fitting. For predicting a

radius of up to 10 µm, 145 high b-value measurements could be sufficient, but n = 436

measurements provide more reliable predictions in higher radius ranges as well. From

experimenting with higher b-values and larger ranges of diffusion, it can be concluded

that the model fitting gives better results. With the support of Tang et. al. [77], the use

of the entire b-value spectrum in dMRI cancer analysis is a promising field.

Future work could include optimizing the self-supervised network in terms of even

more complex signal simulation such as mixed signals from the spherical compart-

ments. Also training the network on larger amounts of data with a more balanced

dataset would be important. Furthermore, it would be interesting to do a more de-

tailed investigation of gradient combinations and acquisition schemes. Finally, it will

be important to validate this VERDICT fitting approach by investigating a glioma tissue

structure with both this proposed ANN method and histological pathologies.
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Appendix A

The full source code for this thesis is publicly available on GitHub: https://github.
com/theavage/Master-project

Within the repository, you can find the following folder structure with its content:

• Network - Contains all code used for running the neural network. All scripts can

be run through the main.py file, where it can be specified if the goal is to train the

neural network or to predict values from a trained model.

– Results: Prediction results from a range of training and prediction processes.

– Models: Trained models

– dataset.py - For loading dataset

– main.py - Runs all codes

– model.py - Defines model architecture

– train.py - Runs the training loop

– predict.py - Runs the prediction protocol

– utils.py - Helper functions

• DMIPY - All code used to implement DMIPY method

– results - Predictions from DMIPY fitting

– DMIPY_VERDICT.ipynb - Fits VERDICT with DMIPY model

• Utils - Scripts for creating scheme files, simulating data, adding noise to data,

and visualizing.

– Bvecs_and_bvals: script for extracting b-value vectors for use in the MDT

modeling.

– b0_norm.py - Script for normalizing images to b0 image.

https://github.com/theavage/Master-project
https://github.com/theavage/Master-project
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– make_schemefile.py - generates scheme file

– noise.ipynb - Adds noise to simulated signals

– visualization.ipynb - Visualizes results

• Data - Contains simulated schemes and data
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