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Abstract

This thesis describes datatype-generic programming, what it is, and how it is done
in Scala. The thesis covers ways of thinking about datatype-generic programming and
today’s tools and libraries for datatype-generic programming in Scala and summarize
how to use them.

A new library called perspective for datatype-generic programming with higher kinded
data is presented. How these libraries, including perspective, work together with sum
types is be covered. Benchmarks are presented on both runtime and compile time perfor-
mance of perspective and other libraries. perspective manages to keep up in performance
with other libraries while offering faster code at the expense of longer compile time if a
developer opts into this.

Finally, an example language-integrated query library built on perspective is de-
scribed.
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Chapter 1

Motivation

A software library within programming is a piece of code serving as a solution to a
problem. For developers, libraries can be pretty nice, as they are code they do not have
to write themselves. However, sometimes a specific library for a developer’s needs might
not exist. Other times such a library might exist, but it does not work well for the
developer. Maybe it is slow, outdated, requires too much boilerplate to be written by
the developer, or does not fit for some other reason. In these cases, the developer can
write their own library to solve their problem. As the developer does so, they can create
a solution that works better for how they want to use the library.

This is the situation I found myself in. I was working with an SQL query construction
library and wanted more control over how the library generated the query. I had some
ideas for how a library could allow this additional control, without losing functionality.
The idea was to use generics at the type level, indicating what operations were valid to
perform on the columns being handled. I tested if my library would typecheck with a
few simple queries, and it did.

I began writing an implementation for my library and expanding on the idea. As I
did, I started encountering problems with both the implementation and the types. Type
inference was limited, and handling different valid types like single values, tuples, and
case classes started to become difficult. While not realizing the problem then, I was
missing the right "language" to express the library’s operations. Eventually, I caught
a glimpse of this "language" and continued working on the library. As time passed, I
realized this "language" was not just for making SQL queries but for more general generic
programming.
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1.1 What is generic programming?

There are many different definitions of generic programming, and many languages have a
feature that they might call generics, for example, Java [30], C# [42] and TypeScript [10].
Many of these languages talk about the same idea, parameterization. In the above lan-
guages, it is parameterization of types. Parameterization turns a hardcoded fact of a
function or a program into a parameter. While the typical way of looking at generics
is the parameterization of types, it is not the only way. For example, another kind of
parameterization is taking programs and code as parameters. This mechanism can realize
metaprogramming and macros.

What I will talk about in this thesis is datatype-generic programming. Datatype-
generic programming inspects and manipulates the shape of data structures, which is
what the code is parameterized by [19]. This type of generic programming allows one
to generate useful functions that would require a lot of boilerplate code to write manu-
ally. Examples of such code could be encoding and decoding datatypes to other formats
(like JSON) or showing these values as strings, but also more complex code, such as
implementing a set of REST endpoints for manipulating a data structure.

1.2 Why datatype-generic programming?

A lot of programming is about defining some datatype and then implementing some
functions using this datatype. Often these functions need to be implemented for many
different types in the same way. Examples include verifying that the values conform to
some restriction, encoding and decoding the data to a different format, or transforming
some of the fields of a type. Without datatype-generic programming, each datatype
has to reimplement this functionality. For example, if all the string fields of a datatype
should be lowercased, this functionality has to be implemented with a new function
specifically for this datatype. Typically, there are no features within normal generics (type
parameterization) that would give access to all the fields of a type, access to the types
of these fields, and allow functions to modify the values in these fields. Datatype-generic
programming provides a way to do exactly this. With datatype-generic programming,
one could implement a single lowercase function that one could use on all datatypes.
In some ways, a library for doing generic programming can be said to be a library for
building libraries.
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1 case class RawThreadMetadata(
2 archived: Boolean,
3 autoArchiveDuration: Int,
4 archiveTimestamp: OffsetDateTime,
5 locked: Boolean,
6 invitable: Option[Boolean],
7 createTimestamp: Option[OffsetDateTime]
8 )
9

10 // Encoding by hand
11 implicit val rawThreadMetadataEncoderNoGeneric: Encoder[RawThreadMetadata] = obj =>
12 Json.obj(
13 "archived" := obj.archived,
14 "auto_archive_duration" := obj.autoArchiveDuration,
15 "archive_timestamp" := obj.archiveTimestamp,
16 "locked" := obj.locked,
17 "invitable" := obj.invitable,
18 "create_timestamp" := obj.createTimestamp
19 )
20

21 // With datatype-generic programming
22 implicit val rawThreadMetadataEncoder: Encoder[RawThreadMetadata] =
23 derivation.deriveEncoder(derivation.renaming.snakeCase, None)

Figure 1.1: An AckCord definition and encoder definition written by hand and with a
macro.

1.2.1 AckCord and datatype definitions

As an example of the power of datatype-generic programming, I describe a library I
regularly work on: AckCord [14]. It is a library for building bots on the chat platform
Discord. There are three core modules of AckCord. The first is a module for making
requests to Discord in a ratelimit-compliant way. The second is a module to help establish
a WebSocket connection to Discord, listening to events and sending them to a user to
act on. The last core module is just datatype definitions used by the gateway and the
requests modules. Of these modules, the requests module is the biggest in terms of lines
of code (5164 lines), the datatype module a close second (4325 lines) and the smallest is
the gateway module (1609 lines).

When I say the last module is datatype definitions, I mean it literally; some of the
datatype definitions have a few one-line functions within them, but there is very little code
other than the datatype definitions. The code to encode and decode datatypes to and
from JSON, the most common operations performed on the datatypes, is all generated
with generic programming. Figure 1.1 shows an example of data defined by AckCord, the
code to encode the object to JSON by hand, and code that does the same using a macro.

3



By my rough guess, around 60% of AckCord is datatype definitions, 15% is algorithms,
15% is code passing datatypes around and transforming them in simple ways, and the
last 10% is boilerplate. AckCord can get away with so much of the code being datatype
definitions because generic programming handles a lot of code that would otherwise be
needed. While this is where AckCord stands today, there is still room for improvement
with more generic programming. For example, the generic programming AckCord uses
for JSON encoding and decoding does not differentiate between a missing field and the
field being null. As such, the code to handle this is today written by hand, but it could
instead be avoided with more extensive use of generic programming.

1.3 In this thesis

In this thesis, I will go over the current generic programming facilities in Scala, my li-
brary for generic programming and optimizations applied to it. I will show how to use my
library and generic programming to make the SQL query construction library I initially
wanted. I will start by discussing generic programming and its alternatives, like macros.
I will then talk about how to think of generic programming in general, before covering
shapeless 2 and 3, popular libraries for generic programming in Scala. I will then explain
the ideas behind my library, perspective, and how it supports effective and simple generic
programming. I will then cover various performance boosts and optimizations perspective
can perform while keeping the user-facing code mostly the same. Some of these optimiza-
tions can result in code that is in some cases faster than handwritten idiomatic code. I
will then go over generic programming with sum types and how perspective’s approach
works pretty seamlessly with them. Lastly, I will cover DataPrism, the SQL library I
wanted to make when I started this journey. DataPrism is built on top of perspective
and the ideas it brings.

1.4 Contributions

The main thing this thesis provides is the library perspective. perspective is library for
doing datatype-generic programming using higher kinded data. perspective defines a set
of typeclasses that provides the language to operate on this higher kinded data. These
operations are not unlike what a developer might use on a List, operations like map,
map2, foldLeft and traverse.

4



By default, these operations can only be executed on higher kinded data. To al-
low using these operations on normal data, perspective defines a set of typeclasses
(HKDGeneric[A] and its children) that allows conversion to and from a higher kinded
data type where these operations can be performed.

perspective also exposes a typeclass to more efficiently operate on higher kinded data
by indexing and tabulating over the data. The advantage of indexing and tabulation over
the data is that most datatype-generic programming transformations can be done with
a single iteration over the data.

For Scala 3, perspective also defines a new set of typeclasses (InlineHKDGeneric[A]
and its children) to allow for more efficient bytecode generation using macros that generate
while loops. While somewhat experimental, these while loops can then be gotten rid of
using loop unrolling.

perspective’s scheme for datatype-generic programming also extends quite seamlessly
to sum types, and most operations available using product types are also available with
sum types.
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Chapter 2

Scala primer and background

This chapter will cover some Scala and related background needed to make sense of the
later chapters. Readers who know Scala well can safely skip this chapter.

2.1 Algebraic data types

Generic programming generally deals specifically with what is called algebraic data types
(ADTs). ADTs are built from two different kinds of types, product types and sum types.
Algebraic data types give a way to represent data with "and"s and "or"s [21].

2.1.1 Product types

Product types represent Cartesian products of values. For example, a product type of
size two could contain two independent integers. Product types represent "and"s. A pair
could be said to be the simplest product type and can also represent all other product
types through nesting. It is called a product type because the total values the type can
represent is the product of the values the types that make up the product can represent.
For example, a pair of two bytes could represent 256 ∗ 256 = 65 536 different values. Like
with normal multiplication, there is also a type equivalent to the multiplication’s identity
element (1) for product types: the unit type () [29].

In Scala, a tuple could be said to be the simplest case of a product type. Adding case
before a class definition allows Scala to recognize this definition as a product type. Here
is an example of a product type in Scala and the equivalent tuple representation:

6



1 case class Foo(a: String, b: Int, c: Double, d: Boolean)
2

3 type FooTuple = (String, Int, Double, Boolean)

The Scala compiler will change how it generates case classes slightly to make them
behave more like values instead of objects. Some ways of doing generic programming
backed by Mirror (covered in Section 3.2) require case class on the data type they
work with to work. Approaches to generic programming that use macros are not affected
by this, as the macro needs to determine what it considers a product type. Making a type
a case class might automatically fulfill these restrictions, but they can also be fulfilled
in other ways. Figure 2.1 is an example to show some of what a case class generates
automatically. This is not a complete list of what case class generates.

2.1.2 Sum types

Sum types, also sometimes called coproduct types, represent disjoint unions. A sum type
is made up of a choice of several different types. Each of these types can then be lifted
into the sum type. Sum types represent "or"s. Just like with product types, sum types
also get their names from the number of possible values they can store. For sum types,
this is the sum of the different types they are made up of. Like with product types,
there is an equivalent type for the addition’s identity element (0) with sum types, the
uninhabited type. In Scala the uninhabited type is Nothing [29].

In Scala, Either could be said to be the simplest case of a sum type. Disjointness
here is important, as Scala’s union types are not sum types. All the different cases of a
sum type should be known statically. With Scala 3, there are two ways to define sum
types: sealed hierarchies and enums. Sealed hierarchies came first and are more flexible,
while enums were introduced in Scala 3 and are more specialized in what they can do but
they offer nicer syntax. Figure 2.2 is an example of sealed hierarchies and enums as sum
types and the equivalent nested eithers representation. All of these data types represent
the same sum type.

7



8

1 class FooClass(
2 val a: String,
3 val b: Int,
4 val c: Double,
5 val d: Boolean
6 ) extends Product:
7
8 override def hashCode: Int = ??? // Runtime specific implementation
9 override def equals(other: AnyRef): Boolean = ??? // Runtime specific implementation

10 override def toString: String = scala.runtime.ScalaRunTime._toString(this)
11
12 override def productArity: Int = 4
13 override def productPrefix: String = "FooClass"
14
15 override def productElement(n: Int): AnyRef = (n: @scala.annotation.switch) match
16 case 0 => a
17 case 1 => b
18 case 2 => c
19 case 3 => d
20 case _ => throw new IndexOutOfBoundsException(n.toString)
21
22 override def productElementName(n: Int): String = (n: @scala.annotation.switch) match
23 case 0 => "a"
24 case 1 => "b"
25 case 2 => "c"
26 case 3 => "d"
27 case _ => throw new IndexOutOfBoundsException(n.toString)
28
29 def copy(a: String = a, b: Int = b, c: Double = c, d: Boolean = d): FooClass =
30 FooClass(a, b, c, d)
31
32 def _1: String = a
33 def _2: Int = b
34 def _3: Double = c
35 def _4: Boolean = d
36
37 object FooClass extends scala.deriving.Mirror.Product:
38 def apply(a: String, b: Int, c: Double, d: Boolean): FooClass =
39 new FooClass(a, b, c, d)
40
41 def unapply(fooClass: FooClass): FooClass = fooClass
42
43 def toString: String = "FooClass"
44
45 override def fromProduct(product: Product): FooClass =
46 new FooClass(
47 product.productElement(0).asInstanceOf[String],
48 product.productElement(1).asInstanceOf[Int],
49 product.productElement(2).asInstanceOf[Double],
50 product.productElement(3).asInstanceOf[Boolean],
51 )

Figure 2.1: What a case class generates.



1 sealed trait FooSealed
2 object FooSealed:
3 case class BarSealed(i: Int) extends FooSealed
4 case class BazSealed(s: String) extends FooSealed
5 case class BinSealed(b: Boolean) extends FooSealed
6

7 enum FooEnum:
8 case BarEnum(i: Int)
9 case BazEnum(s: String)

10 case BinEnum(b: Boolean)
11

12 type FooEither = Either[Int, Either[String, Boolean]]

Figure 2.2: Scala’s sum types defined with a sealed hierarchy and and enum.

2.2 Companion objects

In some of the code shown so far, both a datatype and an object is defined with the
same name. This object is called the companion object, and is what Scala uses instead
of static instances found in Java. The companion object is special in a few ways. The
Scala compiler will look for implicit instances (discussed below) for a type in the type’s
companion object. The companion object also has access to private members of a type
it is the companion of.

2.3 Implicits: Given and Using

Scala implicits are a way of passing around function parameters implicitly. Usually,
when one calls a function, one has to define all the function’s parameters (unless they
have default values). However, with implicit parameters if a parameter is not specified
explicitly, the Scala compiler will try to look for a value in the calling context, based on
specific lookup rules.

There are two steps for making use of implicit parameter passing. First, a function
must mark one or more lists of parameters with using. Parameters in a parameter list
marked with using can be anonymous, they do not need to be named. The second step
is telling Scala what values are eligible to be passed implicitly, which is done with a
given definition. A given definition looks like a normal def definition but there are
some differences. All parameter lists of a given definition must be marked as using.
A given definition can be anonymous, and the Scala compiler will generate a name for
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the definition if this is the case. Parameters passed to a function implicitly can also be
passed to other functions implicitly within the function’s body.

The Scala compiler has a list of rules for where it should look for values to pass as
implicit arguments. These rules include but are not limited to the following:

Enclosing scope: Implicit values defined in an enclosing scope can also be passed to
function calls within that scope. For example, implicit parameters handed to a
class can also be passed to code in the function bodies of this class.

Companion object of what is being looked for: For example, if some code needs
a List implicitly, the Scala compiler could look for an instance in the companion
object of List.

Companion object of types related to the type being looked for: In the same
list example, the compiler would also look for instances of the list in the companion
object of the type of the list’s contents.

Imported Implicits can be imported and be found that way.

Note that Scala defines an ordering for where to look for implicits first. If the compiler
finds multiple instances that are not ordered, it produces a compiler error. Figure 2.3
shows some examples of implicits, where values can be found and where they cannot.
The example also shows how to pass values to parameters in a parameter list marked
as using explicitly. summon is a function that returns an instance of the type passed
to it and will be used here to show that implicit search succeeds. It is defined like
this: transparent inline def summon[A](using v: A): A = v. Because of inline the func-
tion disappears in generated code, and because of transparent, the return type can be
more specific than what was asked for.

2.3.1 Why use implicit parameters

There are myriads of different reasons and ways to use implicits. They are simply a tool.
Here are some ways to use implicits.

Implicits can be used to pass around values through several levels of frames in the call
stack without passing them explicitly and where most functions do not need to concern
themselves with them. An object carrying configuration information or anything else one
might use a reader monad for is a good example. The common alternative to parameter
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1 package a1:
2 given Int = 5
3 package b1:
4 //Enclosing scope
5 summon[Int]
6

7 package a1.b2:
8 //Fails. b2 is not enclosing b1
9 //summon[Int]

10

11 class A2(given Int):
12 //Enclosing scope
13 def givenInt: Int = summon[Int]
14

15

16 class A3[A]
17 object A3:
18 given A3[Int] = new A3
19

20 //Companion object
21 summon[A3[Int]]
22

23 class A4
24 object A4:
25 given A3[A4] = new A3
26

27 //Companion object of "related" type
28 summon[A3[A4]]
29

30 object A5:
31 given A3[Double] = new A3
32

33 import A5.given
34 //Imported
35 summon[A3[Double]]
36

37 object A6:
38 given a3Boolean: A3[Boolean] = new A3
39

40 //Fails. Not imported
41 //summon[A3[Boolean]]
42

43 //Passing the value explicitly
44 summon[A3[Boolean]](using A6.a3Boolean)

Figure 2.3: Examples of ways to use implicits and where values are found.



passing is global variables, but parameter passing has advantages: they are more easily
testable, they can work with multiple different values at the same time and they expose
less mutable state.

Implicits can also be used to pass around capabilities. Scala has done this for ages
with Future and ExecutionContext, with ExecutionContext being like a thread pool
passed around to indicate where to perform work. More recently, the Scala 3 compiler
team has been exploring further ideas around capabilities [24][25].

Implicits can also act as proofs about types. For example, the =:=[A, B] type can
only be summoned if A and B are known to be the same type. There is also a weaker
variant that only checks for subtyping, <:<[A, B].

Implicits are also used for Scala’s typeclasses. More on those in Section 2.7.

Lastly, they can be harnessed for logic programming.

2.3.2 Implicit search and logic programming

Implicits can, if taken far enough, interface directly with the type system, similarly to
logic programing. Implicits can infer new types from existing ones or perform general
programming. [27]

Using Prolog as an analog, normal values like atoms and numbers correspond to types.
Singleton types can also be used here. A compound term in Prolog is like a type taking
type arguments in Scala. A variable in Prolog can be represented as a type parameter in
Scala.

A fact in Prolog is equivalent to a given definition in Scala. A rule, meanwhile, is
equivalent to a given definition itself having using parameters. Negation is encoded
with the special NotGiven type.

Figure 2.4 shows a set of Prolog definitions, and Figure 2.5 shows a direct translation
into Scala.

Several key distinctions between Prolog and Scala can be seen here.

First of all, Scala requires code to use subtyping and always define terms before using
them. In this example, I need to define the predicates, such as Friend, the values to use,
such as A1, and the variables to use, the type arguments of the given definition.
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1 friend(a, b).
2 friend(b, c).
3 friend(c, d).
4 friend(d, e).
5

6 symmetry(F, A, B) :- call(F, A, B).
7 symmetry(F, A, B) :- call(F, B, A).
8

9 friend_of_friend(A, B) :- friend(A, C), friend(C, B).
10

11 degrees_of_seperation(A, A, 0).
12 degrees_of_seperation(A, B, 1) :- friend(A, B).
13 degrees_of_seperation(A, B, M) :-
14 friend(A, C), C \= B,
15 degrees_of_seperation(C, B, N),
16 succ(N, M).

Figure 2.4: An exaple program in Prolog.

The definitions also need to be named. Scala has some rules for naming given def-
initions automatically, but sometimes the compiler encounters conflicts when following
those rules, and a user has to step in.

While not required to, the code also uses path-dependent types instead of type pa-
rameters, in this case with DegreesOfSeperation on line 9. Using path-dependent types
makes it clearer what are the "return values" of the computation. The Aux pattern can
be used to get back the "all type parameters" definition.

One last significant aspect to note about Scala is that it does not like ambiguity. If,
for example, there was also a fact in the above definitions which stated that a and d
were friends and the degrees of separation between a and e was queried, Prolog would
give both answers, one after the other. On the other hand, Scala would refuse to give
either, returning a compile error instead. Scala’s dislike of ambiguity has gotten especially
pronounced in Scala 3, where ambiguities are global errors instead of local ones, meaning
that they are unrecoverable errors.

2.4 (Linked) lists

Linked lists, also known as just List in Scala are simple data structures for carrying
around multiple values of a type. Lists are often used with functional programming for
their simple definition, constant time prepend operation and the ease of matching on
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1 import scala.compiletime.ops.int.S
2 import scala.util.NotGiven
3

4 // Abstract compound terms
5 trait Friend[A, B]
6 trait FriendOfFriend[A, B]
7 trait Symmetry[F[_, _], A, B]
8

9 trait DegreesOfSeperation[A, B]:
10 type N <: Int
11

12 object DegreesOfSeperation:
13 type Aux[A, B, N1 <: Int] = DegreesOfSeperation[A, B] { type N = N1 }
14

15 // Defining Succ here for more literal translation
16 // S is a type returning the successor of an integer. It works more like a function
17 // and less like a typical logic programming predicate.
18 // Succ as defined here operates as a more traditional logic programming predicate
19 trait Succ[N <: Int, M <: Int]
20 given [N <: Int]: Succ[N, S[N]] with {}
21

22 // Atoms
23 trait a; trait b; trait c; trait d; trait e
24

25 // Facts
26 given Friend[a, b] with {}
27 given Friend[b, c] with {}
28 given Friend[c, d] with {}
29 given Friend[d, e] with {}
30

31 // Rules
32 given symA[F[_, _], A, B](using F[A, B]): Symmetry[F, A, B] with {}
33 given symB[F[_, _], A, B](using F[B, A]): Symmetry[F, A, B] with {}
34

35 given [A, B, C](using Friend[C, B], Friend[A, C]): FriendOfFriend[A, B] with {}
36

37 given deg0[A]: DegreesOfSeperation[A, A] with {type N = 0}
38 given deg1[A, B](using Friend[A, B]): DegreesOfSeperation[A, B] with {type N = 1}
39

40 given degN[A, B, C, N1 <: Int, M <: Int](using
41 Friend[A, C], NotGiven[C =:= B],
42 DegreesOfSeperation.Aux[C, B, N1], Succ[N1, M]
43 ): DegreesOfSeperation[A, B] with {type N = M}

Figure 2.5: A direct translation of the Prolog program into Scala using logic programming.



1 enum List[+A]:
2 case ::(head: A, tail: List[A])
3 case Nil extends List[Nothing]
4

5 object List:
6 extension [A](head: A) def ::[AA <: A](tail: List[A]): List[A] = new ::(head, tail)
7

8 export List.{::, Nil}
9

10 val value: List[Int] = 2 :: 7 :: 5 :: Nil // How to define values of List
11

12 extension [A](l: List[A]) def foldLeft[B](b: B)(f: (B, A) => B): B =
13 l match
14 case h :: t => t.foldLeft(f(b, h))(f)
15 case Nil => b

Figure 2.6: Definition and use of List.

them. Figure 2.6 shows an example of how List can be defined, how to create values of
List and how they can easily be matched on.

A List can either be a :: (pronounced cons) holding an element or a Nil signaling
the end of the list. For the rest of this thesis, instead of the definition in Figure 2.6, I will
use Scala’s built in lists. The essence of the definitions and their use remains the same.

2.5 Type definitions

Scala has many ways of expressing types. We use several of these constructions in the
thesis.

2.5.1 Type "aliases"

Type aliases are simple definitions that can refer to other types. I say "aliases" as even
though they are called aliases, they are more like type functions. Type "aliases" can
take types as arguments and return other types based on the type arguments passed in.
Anything that is a type can appear on the right-hand side of a type alias.

Here is a simple example of a type alias for a pair where both types are identical.

1 type Both[A] = (A, A)
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2.5.2 Higher kinded types

Higher kinded types are types that themselves take types. List, for example, is a type
still expecting a type. Scala allows higher kinded types to be passed as a type parameter
and used with generics, like any other type. To do this, one indicates the "holes" in the
type with underscores.

Here are two simple examples of higher kinded types and a type alias to apply them
to some other types:

1 type Apply1[F[_], A] = F[A]
2 type Apply2[F[_, _], A, B] = F[A, B]
3

4 type Foo = Apply1[List, Int]
5 type Bar = Apply2[Function1, Int, String]

Apply1 and Apply2 without any other arguments are also higher kinded types. Apply1
has the kind F[_[_], _] and Apply2 has the kind F[_[_, _], _, _].

2.5.3 Type lambdas

Type lambdas allow one to construct an inline type alias. Sometimes the kind of the
type a developer wants to pass to some definition does not quite fit. Say the developer
wanted to pass Either to Apply1 defined above. That will not work, as Either has a
different kind than what Apply1 expects of its type parameter. Furthermore, there is no
clear definition of what applying Either to Apply1 would return either. The developer
can, however, make the application work if they fix one of the types on Either. They
could, for example, do this with a type alias like so:

1 type IntEither[A] = Either[Int, A]
2 type AppliedIntEither = Apply1[IntEither, String]
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Defining an alias like this anytime the developer needs an "intermediary" type to
construct well-kinded types can get tiring. In the past, people avoided having to define
a type alias like this by abusing several obscure language features together to create an
inline alias, essentially a lambda, but for types. Scala 3 added official support for type
lambdas with a much nicer syntax. Here is a snippet showing both the old and new way
of making a type lambda. Note the =>> arrow in the new example. It is important to
distinguish the type lambda from a polymorphic function, which will be covered in the
next section (2.6).

1 type AppliedIntEitherOld = Apply1[({type L[A] = Either[Int, A]})#L, String] // Old
2 type AppliedIntEitherNew = Apply1[[A] =>> Either[Int, A], String] // New

2.5.4 Match types

Type aliases can normally not inspect the type of an argument. Match types allow for
this. They also allow types to refer to themselves recursively. Here is an example of a
match type that extracts the elements of potentially nested lists:

1 type Contents[A] = A match
2 case List[a] => Contents[a]
3 case a => a

Match types are Turing complete. This fact can be seen by building a Turing machine
with match types, something I did once when I was bored [12].

2.6 Polymorphic functions

In Scala 2, methods had more power than functions. A function could take values as
parameters but no types or implicit parameters, and their return values could not be
dependently typed on the input. Scala 3 makes this gap smaller. Of note to this thesis
are polymorphic functions, functions that take types as arguments. Here is a simple
example of defining a head method and a similar function:
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1 def headM[A](xs: List[A]): A = xs.head
2 val headF: [A] => List[A] => A = [A] => (xs: List[A]) = xs.head

While the type of headF is still optional, everything on the right after = is mandatory.
There is little type inference for polymorphic functions. Polymorphic functions are also
why type lambdas are written with the =>> arrow, to disambiguate them. Otherwise they
would use the same syntax for different things.

2.7 Typeclasses

A typeclass is a container of sorts defined in terms of one or more type parameters
and contains a collection of abstract functions. A typeclass can have many different
instances with different types and function implementations. Sometimes, this can also
include different function implementations for the same underlying type. A function can
then use typeclasses instead of being hardcoded to a concrete type, making them more
general [1].

For example, a function that sorts a list could work for lists of any type A provided
there existed a typeclass for A which contained functions to compare instances of A against
each other, and say which one is larger.

When compiling code, the compiler has a set of rules it follows to find typeclass
instances for a certain type. Unlike with classes and inheritance, the behavior is defined
separately from the definition of the type. The advantage of typeclasses is that they can
adapt a type for new uses without the "owner" of the type knowing about the new use
case. For example, in Java, and consequently Scala, all types with an ordering needs to
extend Comparable. A library defines a type A for which there exists an ordering, but
the type A does not inherit Comparable as the developer of the library had no need to
compare values of A. A user of the library then comes along and needs to compare values
of A. The user has two choices: wrap A in a new type which does extend Comparable, or
use a typeclass. The typeclass Ordering already exists in Scala for cases like this.

Some typeclasses can have laws associated with them that instances have to fulfill
to ensure that they behave as consumers of the typeclass might expect. For example,
Ordering requires that a type has a partial ordering, that is to say, it requires reflexivity,
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anti-symmetry, and transitivity over the <= operation, and that all values can be compared
with each other [9, 8].

In Scala, typeclasses are modeled using implicits. Here is an example of a typeclass
called Monoid:

1 trait Monoid[A]:
2 def empty: A
3 extension (lhs: A) def |+|(rhs: A): A

Monoid has the laws of associativity and identity, essentially stating that
a |+| (b |+| c) = (a |+| b) |+| c and a |+| empty = a hold for all values. Num-
bers are one example of valid monoid instances, either with addition as the binary op-
eration and 0 as the constant or, respectively, multiplication and 1. Strings are another
example of a type for which there exists a valid monoid instance.

Another often-used typeclass is Show. It provides the functionality of toString,
except as a typeclass. The Show typeclass is important, as it will be used as an example
for typeclass derivation throughout this thesis. It is defined like this:

1 trait Show[A]:
2 extension (a: A) def show: String
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Chapter 3

How to do generic programming

This chapter will cover different approaches to generic programming in Scala. It will
discuss common ideas behind the different ways of doing generic programming, and also
advantages and shortcomings of each method.

A common use for datatype-generic programming is to automatically make instances
of various typeclasses for data types. This is called deriving typeclasses. For each method,
an example will be provided showing how to derive a Show typeclass for a product type.
Note that these examples only gives an idea of what programming using a particular
method might look like. Each section here will focus on the "ideal" of the method, and
less on the nitty-gritty that might sometimes be needed to make it tolerant towards errors,
make it more general, or even make it work.

3.1 Macros

There are two main ways to access information about the fields and the types of these
fields of a type in Scala 3. The first way is through macros.

Macros are special functions that execute at compile time. They give access to all the
information the compiler is willing to expose to the macro function. The macro function
then generates an abstract syntax that the compiler will insert in place of the call to the
macro. The macro function can execute whatever code it wants while generating this
abstract syntax tree. If it finds something it did not expect, it can cancel the compilation
with a normal compile error.
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In general, macros are the most powerful tool for generic programming in Scala. Some
information, like annotations, is only accessible in macros, which makes it necessary for
users to build layers on top of macros if they want access to this information outside of
macros.

Macros are often dense, and the documentation might talk a lot about the "what",
but less about the "why". For example, the type of a symbol can be obtained in multiple
different ways, and it is not always clear to the developer which way to use. Some
information, like a method’s default values, requires knowledge about how the compiler
encodes this information in the final classfiles. In the case of default values, they are
encoded as additional functions named based on the name of the original function, and
the index of the parameter. A user wanting to use these default values must call these
functions themselves.

For typical generic programming with macros, a bunch of lists of fields or expressions is
often used. Figure 3.1 shows an example of code deriving Show using macros.

3.2 Scala 3’s Mirror

The second way to access information about the fields of a type and the types of these
fields is through what Scala 3 calls Mirror. Mirror is a trait containing path-dependent
types of tuples and singleton types. These types contain the field names and types of the
type the Mirror is for. A function can request a Mirror for a type using normal Scala
implicits.

For a product type A, Mirror[A] also provides a function to convert a Product into a
A. This function is unsafe, as it assumes the size is correct. The Mirror does not provide
any functions to access the fields of the product type. Instead, users can access this from
functions in Product that all product types inherit from. For sum types, Mirror provides
a function giving the ordinal of the type.

Scala 2 did not have Mirror, and all generic programming in Scala 2 use macros or
is built on pieces that use macros.

Figure 3.2 shows an example of how to derive Show using Mirror.
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1 import scala.quoted.*
2

3 inline def deriveShow[A]: Show[A] = ${ deriveShowImpl[A] }
4

5 def deriveShowImpl[A: Type](using q: Quotes): Expr[Show[A]] =
6 val aStr = Expr(Type.show[A])
7 // One could also summon a Mirror here and use information gotten from that,
8 // but this shows better what it is like to write macros
9 import q.reflect.*

10 val aRepr = TypeRepr.of[A]
11 val aSym = aRepr.classSymbol.getOrElse(
12 report.errorAndAbort(s"${Type.show[A]} is not a class type")
13 )
14 val aFieldsShowedOpt = aSym.declaredFields.map { f =>
15 val fieldType = aRepr.select(f).widenTermRefByName
16 fieldType.asType match
17 case '[a] =>
18 Expr
19 .summon[Show[a]]
20 .toRight(s"Instance of ${Type.show[Show[a]]} not found")
21 .map { instance =>
22 (e: Expr[A]) => '{$instance.show(${Select(e.asTerm, f).asExprOf[a]})}
23 }
24 }
25

26 val aFieldsShowed =
27 if aFieldsShowedOpt.exists(_.isLeft)
28 then
29 report.errorAndAbort(aFieldsShowedOpt.collectFirst { case Left(e) => e }.get)
30 else aFieldsShowedOpt.map(_.right.get)
31

32 val aFieldsStr = (e: Expr[A]) =>
33 aFieldsShowed
34 .map(f => f(e))
35 .foldLeft(Expr(""))((acc, s) => '{$acc + ", " + $s })
36

37 '{ new Show[A] {
38 extension (a: A) def show: String = s"${$aStr}(${${ aFieldsStr('{ a }) }})"
39 }
40 }

Figure 3.1: A macro deriving an instance of Show for a product type.
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1 import scala.deriving.Mirror
2 import scala.compiletime.{erasedValue, summonInline}
3 import scala.reflect.ClassTag
4

5 inline def summonShowInstances[A <: Tuple]: List[Show[Any]] =
6 inline erasedValue[A] match
7 case _: (h *: t) =>
8 summonInline[Show[h]].asInstanceOf[Show[Any]] :: summonShowInstances[t]
9 case _: EmptyTuple => Nil

10

11

12 inline def deriveShow[A <: Product](
13 using m: Mirror.ProductOf[A], c: ClassTag[A]
14 ): Show[A] =
15 val instances = summonShowInstances[m.MirroredElemTypes]
16

17 new Show[A]:
18 extension (value: A) def show: String =
19 val fields =
20 value
21 .productIterator
22 .zip(instances)
23 .map((f, instance) => instance.show(f))
24 .mkString(", ")
25 s"${c.runtimeClass.getSimpleName}($fields)"

Figure 3.2: Code deriving instances of Show using Mirror.



3.3 List-based generic programming

For the simplest kind of generic programming, one does not need to concern oneself with
macros or Mirror, just lists.

When all the field types of a product type are the same, one can store the values
of this product type in a list. For example, consider a 3D vector, defined as such, with
functions to convert to and from the list form, and another list containing the names of
the fields of the type.

1 case class Vector3(x: Double, y: Double, z: Double)
2 object Vector3:
3 def toList(vector: Vector3): List[Double] = List(vector.x, vector.y, vector.z)
4 def fromList(vector: List[Double]): Vector3 =
5 Vector3(vector(0), vector(1), vector(2))
6

7 val fieldNames: List[String] = List("x", "y", "z")

Using this information, one can transform Vector3s in various ways. For example,
Figure 3.3 shows a definition of Show using the defined members of Vector3. Show and
some instances of this typeclass are also shown and will be used in further examples. In
the example, the values of Vector3 are converted to the list form, and zipped together
with the field names. This list of field names and values is then folded over and com-
bined field by field. The resulting code would for the value Vector3(1, 2, 3) return
Vector3(, x = 1, y = 2, z = 3). While the extra comma and space after the left
parenthesis are undesirable, they are kept as it makes the code easier to explain. Future
code examples will also have this bug.

It might have been easier to define an instance for Show[Vector3] by hand instead of
using members of Vector3 as in Figure 3.3. The advantage of the approach in Figure 3.3
is that the code never relies on anything intrinsic about Vector3 other than that all of
its fields were of the same type.

The code in Figure 3.3 shows the basic structure for some approaches of generic
programming, which will be covered in further sections. There are two functions that
convert to and from an intermediary representation, called the generic representation [21].
One can perform operations on this intermediary representation and convert it back to
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1 // Definition of show
2 trait Show[A]:
3 extension (a: A) def show: String
4

5 object Show:
6 given showDouble: Show[Double] = (d: Double) => d.toString
7 given showInt: Show[Int] = (i: Int) => i.toString
8 given showString: Show[String] = (s: String) => s
9 given showBoolean: Show[Boolean] = (b: Boolean) => b.toString

10

11 // Defining an instance of Show for Vector3
12 given vector3ShowGen: Show[Vector3] with
13 extension (a: Vector3) def show: String =
14 val fieldsWithNames =
15 Vector3.toList(a).zip(Vector3.fieldNames)
16 .foldLeft("") { case (acc, (value, fieldName)) =>
17 s"$acc, $fieldName = $value"
18 }
19

20 s"Vector3($fieldsWithNames)"

Figure 3.3: Deriving an instance of Show using members in Vector3’s companion object.

the type one is interested in. How one operates on this intermediary representation and
what operations one can do is what generally set the different techniques for generic
programming apart from each other.

The functions to convert to and from the generic representation, together with some
other members that depend on the approach, can be packaged together into a type-
class to encode these operations. I will call these typeclasses and their instances generic
typeclasses and generic instances.

Mirror could be said to be a generic typeclass in the loosest sense of the idea. It does
not have a function to convert a value to the generic representation, but otherwise it
works mostly like a generic typeclass.

A generic typeclass can also be defined for the Vector3 example shown above. Fig-
ure 3.4 shows such a typeclass called ListGeneric, in addition to an implementation
for Vector3. In ListGeneric, the type A is the type being abstracted over. The type
Inner is the type of the fields. In the case of Vector3, Inner is Double. Inner is a type
member as it is not generally something a consumer of ListGeneric needs to specify.
ListGeneric contains two methods to convert to and from lists. Lastly, ListGeneric
contains members with the names of the fields and the name of the type being worked
on.
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1 trait ListGeneric[A]:
2 type Inner
3 def to(a: A): List[Inner]
4 def from(list: List[Inner]): A
5

6 def fieldNames: List[String]
7 def typeName: String
8

9 given ListGeneric[Vector3] with
10 type Inner = Double
11 def to(a: Vector3): List[Double] = Vector3.toList(a)
12 def from(list: List[Double]): Vector3 = Vector3.fromList(list)
13

14 val fieldNames: List[String] = Vector3.fieldNames
15 val typeName: String = "Vector3"

Figure 3.4: ListGeneric, a generic typeclass using List.

1 def deriveShow[A](
2 using gen: ListGeneric[A], innerShow: Show[gen.Inner]
3 ): Show[A] = new Show[A]:
4 extension (a: A) def show: String =
5 val fieldsWithNames =
6 gen.to(a).zip(gen.fieldNames)
7 .foldLeft("") { case (acc, (value, fieldName)) =>
8 s"$acc, $fieldName = ${value.show}"
9 }

10

11 s"${gen.typeName}($fieldsWithNames)"
12 end deriveShow

Figure 3.5: Deriving show using ListGeneric.

Figure 3.5 shows deriveShow, an example of how ListGeneric can be used to derive
Show. The logic of what is happening is the same as with vector3ShowGen, but using
ListGeneric instead of referring to the members in the companion object. deriveShow
also requires an instance of Show for the inner type the code operates with, as calling
toString on values might be undesirable.

3.3.1 Summary of generic programming using Lists

Generic programming as list manipulation has both advantages and disadvantages. Clear
advantages of this form of generic programming are its simplicity and the range of op-
erations one can perform. Program code deals with one or more lists of values and can
operate on these lists just like on any other list of values. One can zip two lists together,
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flatmap the elements in the lists, fold the list, and more. Regarding the disadvantages,
the biggest one is that all list elements must have the same type. The second disadvantage
of this solution is that it is not safe. Nothing stops one from passing in a list that is too
long or short in ListGeneric#from. For this implementation for Vector3, an exception
is thrown if the list is too short, and elements are ignored if the list is too long.

3.4 HList based generic programming and
shapeless 2

The above described approach to generic programming works decently for types like
Vector3 where the types of all the fields are the same, but not for types where fields have
different types. The approach is also unsafe as it does not check the length of lists until
runtime. To solve these problems, this section looks at how to represent product types at
the type level. The generic programming library shapeless 2 [33] uses this representation.
A more detailed account on HList based generic programming and shapeless 2 can be
found in [21].

3.4.1 HLists

To allow different types, and to check the list lengths at compile time, shapeless 2 uses
heterogeneous lists (HLists). These special lists can contain multiple different types of
elements and store the type of each element of the list at the type level. Because of this
fact, HLists also implicitly store their length at the type level. The code below shows
how one can define an HList. While the code shows the idea of HLists, the code deviates
a bit from shapeless 2 for simplicity.

1 sealed trait HList
2 case class ::[H, T <: HList](head: H, tail: T) extends HList:
3 def ::[H2](h: H2): H2 :: H :: T = new ::(h, this)
4

5 case object HNil extends HList:
6 def ::[H](h: H): H :: HNil = new ::(h, this)
7 type HNil = HNil.type
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Like normal lists, Hlists have a cons case to store an element and a nil case to indicate
the end of the list. Unlike in a normal list, where cons and nil do not appear at the type
level, here they do. The base HList type also contains no type information to indicate
what types it might contain. The type alias for HNil is for convenience, to remove the
need to write HNil.type.

Here is a demonstration of converting between an HList and a normal case class.

1 case class ISB(i: Int, s: String, b: Boolean)
2 object ISB:
3 type HListRep = Int :: String :: Boolean :: HNil
4

5 def toHList(isb: ISB): HListRep = isb.i :: isb.s :: isb.b :: HNil
6

7 def fromHList(rep: HListRep): ISB =
8 val i :: s :: b :: HNil = rep
9 ISB(i, s, b)

Note how the type of the HList representation and the value of the HList mirror each
other. One could not accidentally flip s and b without also flipping their types. One could
also not forget to include one of the fields at the value level unless it was also forgotten
at the type level.

shapeless 2 uses HLists as its generic representation, and its generic typeclass is called
Generic, defined like this:

1 trait Generic[A]:
2 type Repr
3 def to(a: A): Repr
4 def from(repr: Repr): A

There is no upper bound on the Repr type, so that Generic can also work for sum types.
Sum types and shapeless 2 is covered in Section 5.1. shapeless 2 does not include the
name of the type in Generic. The name of a type is instead contained in a type called
Typeable. This type also contains a method to cast an arbitrary value to the given type
if the value is of a type that matches. Typeable is defined like this:
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1 trait Typeable[A]:
2 def describe: String
3 def cast(any: Any): Option[A]

Field names are handled separately and can be found in a different trait, which will be
covered later.

3.4.2 Type level programming with HLists

Any operation on HLists is implemented with type level programming and induction.
One defines the base case on HNil and the recursion step on H :: T as given instances.

When deriving typeclasses, there is also another instance that ties the HList based
generic representation to the actual type using a Generic and a typeclass instance for the
generic representation. The Scala compiler will then perform the induction steps until
completion. Here is an example for the Show type:

1 given hnilShow: Show[HNil]:
2 extension (a: HNil.type) def show: String = ""
3

4 given hconsShow: [H, T <: HList](using Show[H], Show[T]): Show[H :: T]:
5 extension (a: H :: T) def show: String = s"${a.head.show}, ${a.tail.show}"
6

7 def deriveShowGeneric[A](
8 using gen: Generic[A], typeable: Typeable[A], instance: Show[gen.Repr]
9 ): Show[A] = new Show[A]:

10 extension (a: A) def show: String = s"${typeable.describe}(${gen.to(a).show})"

Figure 3.6 An example of how a call to deriveShowGeneric using ISB could be
expanded.

The Scala compiler automatically constructs the given instance needed. The Generic
and Typeable would be generated from Scala 3’s Mirror or with a macro.
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1 given gen: Generic[ISB] with
2 type Repr = Int :: String :: Boolean :: HNil
3 def to(a: ISB): Repr = a.i :: a.s :: a.b :: HNil
4 def from(repr: Repr): ISB = repr match
5 case i :: s :: b :: HNil => ISB(i, s, b)
6

7 given typeable: Typeable[ISB] with
8 def describe: String = "ISB"
9 def cast(any: Any): Option[A] = any match

10 case isb: ISB => Some(isb)
11 case _ => None
12

13 deriveShowGeneric[ISB](
14 using gen,
15 typeable,
16 hconsShow[Int, String :: Boolean :: HNil](
17 using Show.showInt,
18 hconsShow[String, Boolean :: HNil](
19 using Show.showString,
20 hconsShow[Boolean, HNil](using Show.showBoolean, hnilShow)
21 )
22 )
23 )

Figure 3.6: An expansion of deriveShowGeneric using ISB.

3.4.3 Labels

In the previous example, the Show derivation is not labeled. The field values are included,
but not their names. To allow for dealing with the field names of a type, shapeless 2
defines the generic typeclass LabelledGeneric. This type works almost like Generic,
except that the type of the HList elements includes the field names in a tagged type. Its
definition is shown below:

1 trait LabelledGeneric[A]:
2 type Repr
3 def to(a: A): Repr
4 def from(repr: Repr): A
5

6 object LabelledGeneric:
7 opaque type Labelled[A, S <: String] <: A = A
8 object Labelled:
9 inline def of[A, S <: String](a: A): Labelled[A, S] = a

10

11 export LabelledGeneric.Labelled
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Labelled is an opaque type that allows one to tag a type with a string at the type
level. The opaque type has a bound, so one can still treat it as the unlabelled type. The
intention with the label is to use singleton types. Singleton types are types inhabited by
only a single value, like "foo" or 5. The type ISB from above would have the following
LabelledGeneric#Repr type.

1 type ISBLabelledRepr =
2 Labelled[Int, "i"] :: Labelled[String, "s"] :: Labelled[Boolean, "b"] :: HNil

The ValueOf typeclass, provided by the Scala standard library, can be used to get the
value a singleton type represents. This typeclass can be used to access the tagged value
at runtime.

Putting the above tools together, the code below shows how to derive instances of
Show using LabelledGeneric. There is no need to define a new instance for HNil, as it
does not contain label information.

1 given hconsLabelledShow: [H, S <: String, T <: HList](
2 using Show[H], Show[T]
3 )(using s: ValueOf[S]): Show[Labelled[H, S] :: T]:
4 extension (a: Labelled[H, S] :: T) def show: String =
5 s"${s.value} = ${a.head.show}, ${a.tail.show}"
6

7 def deriveShowLabelledGeneric[A](
8 using gen: LabelledGeneric[A], typeable: Typeable[A], instance: Show[gen.Repr]
9 ): Show[A] = new Show[A]:

10 extension (a: A) def show: String = s"${typeable.describe}(${gen.to(a).show})"

Figure 3.7 An example of how a call to deriveShowLabelledGeneric using ISB could
be expanded.

3.4.4 The hidden fold

In Section 3.3 that discussed orinary lists, there was a nice foldLeft function call in the
function deriveShow, while there is nothing like that visible in deriveShowGeneric or
deriveShowLabelledGeneric. Instead, the Hlist traversing manually matches over the
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1 given gen: LabelledGeneric[ISB] with
2 type Repr =
3 Labelled[Int, "i"] :: Labelled[String, "s"] :: Labelled[Boolean, "b"] :: HNil
4

5 def to(a: ISB): Repr =
6 Labelled.of[Int, "i"](a.i)
7 :: Labelled.of[String, "s"](a.s)
8 :: Labelled.of[Boolean, "b"](a.b)
9 :: HNil

10

11 def from(repr: Repr): ISB = repr match
12 case i :: s :: b :: HNil => ISB(i, s, b)
13

14 given typeable: Typeable[ISB] with
15 def describe: String = "ISB"
16 def cast(any: Any): Option[A] = any match
17 case isb: ISB => Some(isb)
18 case _ => None
19

20 deriveShowLabelledGeneric[ISB](
21 using gen,
22 typeable,
23 hconsLabelledShow[
24 Int,
25 "i",
26 Labelled[String, "s"] :: Labelled[Boolean, "b"] :: HNil
27 ](
28 using Show.showInt,
29 hconsLabelledShow[String, "s", Labelled[Boolean, "b"] :: HNil](
30 using Show.showString,
31 hconsLabelledShow[Boolean, "b", HNil](
32 Show.showBoolean, hnilShow
33 )(new ValueOf["b"]("b"))
34 )(new ValueOf["s"]("s"))
35 )(new ValueOf["i"]("i"))
36 )

Figure 3.7: An expansion of deriveShowLabelledGeneric using ISB.



1 import scala.compiletime.{erasedValue, summonInline}
2

3 inline def deriveShowHListInline[Repr <: HList]: Show[Repr] =
4 inline erasedValue[Repr] match
5 case _: h :: t =>
6 val headShow = summonInline[Show[h]]
7 val tailShow = deriveShowHListInline[t]
8 val sh = new Show[h :: t]:
9 extension (a: h :: t) def show: String =

10 s"${headShow.show(a.head)}, ${tailShow.show(a.tail)}"
11

12 sh.asInstanceOf[Show[Repr]]
13

14 case _: HNil => hnilShow.asInstanceOf[Show[Repr]]
15

16 inline def deriveShowGenericInline[A](
17 using gen: Generic[A], typeable: Typeable[A]
18 ): Show[A] =
19 given Show[gen.Repr] = inline erasedValue[gen.Repr] match
20 case _: HList =>
21 deriveShowHListInline[gen.Repr & HList].asInstanceOf[Show[gen.Repr]]
22

23 new Show[A]:
24 extension (a: A) def show: String = s"${typeable.describe}(${gen.to(a).show})"

Figure 3.8: A rewriting of deriveShowGeneric using Scala 3’s inline features.

types. If one rewrites deriveShowGeneric using Scala 3’s inline features, as was done
in Figure 3.8, the logic becomes more apparent, making it easier to understand what is
happening.

While there is no foldLeft function call in Figure 3.8 either, the resulting code looks
something like a foldRight expansion. That is to say (with a bit of code that would not
actually be valid), the code could be rephrased as a foldRight function and a call to
this function, as was done in Figure 3.9. The reason the code in Figure 3.9 would not be
valid is that summonInline would be expanded too early and with the wrong type. The
code would try to look for a Show[Tpe]. Such an instance does not exist as Tpe would
vary from invocation to invocation.

3.4.5 Summary of generic programming using HLists

Metaprogramming with HLists solves all the problems that manifested with generic pro-
gramming using ordinary lists. The size of HLists are checked at compile time, and they
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1 //FoldRight function on HLists over typeclasses
2 extension [L <: HList](l: L)
3 def foldRightTC[TC[_]](base: TC[HNil])(
4 f: [Tpe, Acc <: HList] => (Tpe, TC[Acc]) => TC[Tpe :: Acc]
5 ): TC[L]
6

7 def deriveShowHListInline[Repr <: HList](repr: Repr): Show[Repr] =
8 repr.foldRightTC(hnilShow) { [Tpe, Acc <: HList] => (tpe: Tpe, acc: Show[Acc]) =>
9 val headShow = summonInline[Show[Tpe]]

10 new Show[Tpe :: Acc]:
11 extension (a: Tpe :: Acc) def show: String =
12 s"${headShow.show(a.head)}, ${acc.show(a.tail)}"
13 }

Figure 3.9: A further rewriting of deriveShowGeneric using Scala 3’s inline features and
some illegal code to expose a foldRight function.

can contain arbitrary types. Sadly, HLists are not without problems either, most of
which they inherit from the logic programming approach they take.

First, the logic programming style is generally less familiar to many Scala program-
mers, requiring them to learn another style of programming besides functional and object
oriented programming. Scala is also poorly suited for logic programming: it requires tons
of boilerplate and extra definitions that would not be needed in, e.g., Prolog. Scala 3 has
improved this situation, but there is still room to improve.

Second, code written with this approach can take a long time to compile. Scala is
already often said to be a language that takes a long time to compile, most time is
usually spent typechecking code. This is a space shapeless can often make worse. There
are guides and tools [2] to help to write programs in ways that are faster to compile, but
that is yet another thing developers need to know about.

Lastly, debugging implicits can often be confusing and, not so infrequently, the com-
piler’s diagnostics boils down to "something went wrong," leaving the developer to figure
out what and why.

3.5 Generic programming in shapeless 3

With Scala 3 came new features for generic programming like polymorphic functions and
Mirror, that unlocked new possibilities. While the old techniques for generic program-
ming still worked (with some exceptions involving compiler bugs [13]), the macros that
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they were built upon did not. From this situation, shapeless 3 [34] was born, taking
advantage of these new features.

3.5.1 Polymorphic functions

A significant new feature for generic programming was polymorphic functions. Scala 2
had no explicit syntax to express functions like List#head as values. Before Scala 3, one
had to define a trait with a polymorphic apply method and construct instances of this
trait. There is a compiler plugin called Kind Projector [32] that, among other things,
made this slightly easier to write with dedicated syntax. Scala 3 added its own syntax
for polymorphic functions to the language. This syntax is more expressive than Kind
Projector’s syntax was.

1 //As a function
2 def head[A](xs: List[A]): A = xs.head
3

4 //Old way to get a value
5 trait FunctionK[A[_], B[_]]:
6 def apply[Z](z: A[Z]): B[Z]
7 type Id[A] = A
8 val headOld: FunctionK[List, Id] = new FunctionK[List, Id]:
9 def apply[Z](z: List[Z]): Z = z.head

10

11 //Old way using Kind projector
12 //There is no way to refer to the type A here
13 val headOldKindProjector: FunctionK[List, Id] =
14 Lambda[FunctionK[List, Id]](xs => xs.head)
15

16 //New way
17 val headNewWay: [A] => List[A] => A = [A] => (xs: List[A]) => xs.head

3.5.2 ProductInstances

The shapeless 3 library uses Scala’s new polymorphic functions to add a new higher level
interface for generic programming for simpler use cases called ProductInstances. The
basic idea seems to be to take the foldRight function that could be seen in shapeless 2
with enough rewriting, simplification, and ignoring some language restrictions, and make
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1 type CompleteOr[T] = T | Complete[T]
2 case class Complete[T](t: T)
3

4 extension [F[_], T](inst: ProductInstances[F, T])
5 inline def construct(f: [t] => F[t] => t): T
6

7 inline def map(x: T)(f: [t] => (F[t], t) => t): T
8 inline def map2(x: T, y: T)(f: [t] => (F[t], t, t) => t): T
9

10 inline def foldLeft[Acc](x: T)(i: Acc)(
11 f: [t] => (Acc, F[t], t) => CompleteOr[Acc]
12 ): Acc
13 inline def foldLeft2[Acc](x: T, y: T)(i: Acc)(
14 f: [t] => (Acc, F[t], t, t) => CompleteOr[Acc]
15 ): Acc
16

17 inline def foldRight[Acc](x: T)(i: Acc)(
18 f: [t] => (F[t], t, Acc) => CompleteOr[Acc]
19 ): Acc
20 inline def foldRight2[Acc](x: T, y: T)(i: Acc)(
21 f: [t] => (F[t], t, t, Acc) => CompleteOr[Acc]
22 ): Acc
23

24 inline def project[R](t: T)(p: Int)(f: [t] => (F[t], t) => R): R

Figure 3.10: API exposed by ProductInstances

it a real thing. shapeless 3 does this with several different functions. shapeless 3 achieves
this by specifying the typeclass to work with beforehand and then provides instances of
that typeclass for each field in the polymorphic functions found in shapeless 3’s API.

?? shows some of the operations offered by ProductInstances. construct can be
used to construct each of the fields of a type from the typeclass of that field, and from
those fields, construct the type T. map and map2 allow transforming each of the fields of
one or two values together with a typeclass of the field into a new value of that field, and
constructing a new value from that. foldLeft, foldLeft2, foldRight and foldRight2
allow folding over the fields of one or two values together with the typeclass for the field.
Iteration can be finished early by wrapping the accumulated value in Complete. project
allows indexing into the fields of a value, and performing some value on that field and
the typeclass of that field.

ProductInstances is very much a black box to the user, with little information on
how it does the operations it exposes and little room for adding new functions.

Figure 3.11 shows an example of how to use ProductInstances to derive a Show
instance. The fields of the values are left folded. The labels are converted to an iterator
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1 def deriveShowProductInstances[A](
2 using inst: ProductInstances[Show, A],
3 labels: Labelling[A]
4 ): Show[A] = new Show[A]:
5 extension (a: A) def show: String =
6 val elemLabelsIt = labels.elemLabels.iterator
7

8 val elems = inst.foldRight(a)("")(
9 [t] => (sh: Show[t], value: t, acc: String) =>

10 s"${elemLabelsIt.next} = ${sh.show(value)}, $acc"
11 )
12 s"${labels.label}($elems)"

Figure 3.11: Deriving instances of Show using ProductInstances.

and accessed in the function with next. Care must be taken to ensure the iterator and
iteration over the value does not get out of sync.

In shapeless 3, the type name and field names are contained in the type Labelling.
This type contains a Seq[String], which in turn contains the element labels.

3.5.3 Summary of generic programming using shapeless 3

The shapeless 3 library solves the significant problems that shapeless 2 has, namely
obscure code, slow compile times and poor support for debugging. For simple cases with
shapeless 3, there is no logic programming to obscure what is happening, slow down
compile times, and to make debugging harder. A call to something like a foldRight that
got lost in the transition from Lists to HLists in shapeless 2 has returned.

shapeless 3 also has the advantage of exposing an API for performing generic pro-
gramming, and not a datastructure like shapeless 2 did. Because of this, shapeless 3 can
optimize the functions found in ProductInstances while user code continues to work
without recompilation. For example, the value used for the labels can go from a List to
a Vector without breaking any programs.

Lastly, shapeless 3 also allows for expressing generic programming on more kinds with
little extra code. shapeless 3 has definitions and functions not just for deriving typeclasses
with kind F[_], but also F[_[_]] and F[_, _].

One of the problems with the List approach that HLists solved, has come back: type
safety. Labelling exposes a Seq[String] as the labels. This type does not interact
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in a type safe way with ProductInstances. In deriveShowProductInstances above,
an interator is used to access each label in turn. Care must be taken to make sure the
iterator is in lockstep with the iteration over the data structure ProductInstances offers
functions to operate on. Another option here is to rely on ProductInstances#project
together with the indices obtained from the labels, but this is also unsafe, as project
operates with Int. There is nothing stopping code from accidentially supplying an index
that is out of bounds for what is expected.

Another problem with the approach ProductInstances takes is that the types of
operations a developer can do is restricted. First off, only a single call to the functions
on ProductInstances can be used. These functions cannot be chained together in a
way similar to how a developer might chain together flatMap, zip, foldLeft and more.
Next, the number of values the functions exposed by ProductInstances can operate on
is limited. This fact becomes clear as there are both functions foldLeft and foldLeft2
that operate on one or two values. If a user wants to operate on three values, they can’t.
Because of this restriction, the library developer hass to think of use cases a user might
have, and move to cover these use cases explicitly. There are workarounds for this re-
striction using auxillary typeclasses, and using multiple instances of ProductInstances,
but I will not cover those workarounds here.
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Chapter 4

perspective

perspective [17] is a new library for generic programming in Scala. perspective is written
for both Scala 2 and Scala 3, but has more features in Scala 3.

Like shapeless 3, perspective wants clear and simple higher order functions visible
in the code that make use of polymorphic functions. Unlike shapeless 3, perspective
does not wish to hide the data operated on in a black box. perspective instead looks
to where these higher order functions come from, namely typeclasses describing these
functions, like Functor, Applicative, Foldable, Traversable, and more. By encoding higher
kinded versions of these typeclasses, perspective establishes a language to express generic
programming in a way that is easy to understand and expressible. perspective does
this by using higher kinded types, higher kinded data, and higher kinded typeclasses to
operate on the data it abstracts over.

4.1 perspective’s typeclasses

perspective is built on typeclasses. This section will cover the ones perspective uses, how
they relate to one another, what they are useful for, and their laws. Most of the discussion
of these typeclasses will relate to how they are useful for generic programming. I will
also show inductive proofs for defining instances of these typeclasses for product types of
arbitrary sizes.
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4.1.1 Foldable

One class of fundamental operations in datatype-generic programming are folds over the
elements of different data types. This is what the thesis has focused on so far, so folds
will be covered first. Folds come from the typeclass Foldable, looking something like
this:

1 trait Foldable[F[_]]:
2 extension [A](fa: F[A]) def foldLeft[B](b: B)(f: (B, A) => B): B

While lacking functions like foldRight and foldMap, which can be found in, for
example, Cats [38], the core functionality is the same. You could, for example, easily
define an instance like Foldable[List]. This definition would, however, not work for
perspective’s use case. In this definition, F is a type taking a single type argument, which
means that all the values to fold over must be of that type. This is the same problem
that came up with List based generic programming. The container’s element types had
to all be of the same type.

To be able to fold over heterogeneous data, one needs to parameterize the data to
work on with a higher kinded type, as in the example below.

1 //No parameterizing
2 case class Isb(i: Int, s: String, b: Boolean)
3

4 //Higher kinded type parameterized
5 case class IsbK[F[_]](i: F[Int], s: F[String], b: F[Boolean])

This type of definition, where each value in a type is applied with the same higher kinded
type, is called higher kinded data.

Here, Isb is monomorphic data, and IsbK is higher kinded. One can represent the values
in Isb with a special type called Id, defined like this: type Id[A] = A. The type Id maps
all types to themselves. It is like the identity function at the type level. IsbK[Id] then
is a type where the fields are just normal values, containing Int, String and Boolean.
Because of the above facts, Isb and IsbK[Id] are isomorphic. One can convert between
them without loss. Whenever higher kinded data needs to represent values without
anything else, Id is used.
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1 def isbToIsbK(isb: Isb): IsbK[Id] = IsbK(isb.i, isb.s, isb.b)
2 def isbKToIsb(isb: isbK[Id]): Isb = Isb(isb.i, isb.s, isb.b)

A new Foldable type that handles higher kinded data can be defined like this:

1 trait FoldableK[F[_[_]]]:
2 extension [A[_]](fa: F[A]) def foldLeftK[B](b: B)(f: [Z] => (B, A[Z]) => B): B

F here gained another kind. A also became higher kinded. A polymorphic function
was also employed instead of a normal one. These are the general rules when converting
a typeclass to operate on higher kinds. Types become kinds (A -> A[_]), kinds become
higher kinded kinds (A[_] -> A[_[_]]), and functions are lifted to operate on the higher
kinded types. (A => B) -> ([Z] => A[Z] => B[Z]).

Conventions in perspective

In perspective, higher kinded variants of typeclasses and functions are declared with a K
suffix. perspective also defines several type aliases (most infix) to allow easier writing of
higher kinded typeclasses. These aliases can be seen in Figure 4.1.

FunctionK is a polymorphic function from one higher kinded type to another, with ~>:
being an inline syntax for such functions. Const is a special type constructor that always
has the value passed in. It allows one to convert higher kinded data into fixed sized lists
of a specific type. For example, IsbK[Const[String]] is like a fixed size list with three
string elements. perspective uses special arrows with # to indicate FunctionKs where
that side of the arrow is Const. As an example A ~>#: B is equal to A ~>: Const[B].
This function takes values of types taking a type, like F[_] and return values of types
not taking a type. A #~>#: B and A => B are isomorphic.

The perspective library also defines higher kinded typeclasses with kind F[_[_], _],
not F[_[_]] as seen above. There are arguments for both forms, but perspec-
tive goes with the first as it makes some typeclasses easier to understand. To
work with types like IsbK above, perspective defines aliases for the typeclasses that
do not use the second type argument using the type IgnoreC, defined like this:
type IgnoreC[F[_[_]]] = [A[_], _] =>> F[A]. Typeclasses applied with this type have the
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1 /** A higher kinded type that ignores its second type parameter. */
2 type Const[A] = [_] =>> A
3

4 type FunctionK[A[_], B[_]] = [Z] => A[Z] => B[Z]
5 object FunctionK:
6 def identity[A[_]]: A ~>: A = [Z] => (a: A[Z]) => a
7

8 infix type ~>:[A[_], B[_]] = FunctionK[A, B]
9

10 /** A FunctionK returning a [[Const]] type. */
11 infix type ~>#:[F[_], R] = F ~>: Const[R]
12

13 /** A FunctionK taking a [[Const]] type. */
14 infix type #~>:[T, F[_]] = Const[T] ~>: F
15

16 /** A FunctionK taking and returning [[Const]] types. */
17 infix type #~>#:[T, R] = Const[T] ~>: Const[R]

Figure 4.1: Special types used by perspective.

C suffix. In the end, the choice between F[_[_], _] and F[_[_]] is a fairly meaningless
one, especially because a lot of generic derivation using perspective currently only makes
use of typeclasses with the C suffix.

Sometimes Scala’s type inference is not powerfuil enough for perspective’s definitions.
In these cases, perspective provides special preapplied functions that make the expres-
sion’s types more explicit to help type inference. This is mainly seen when Id and Const
are involved.

Foldable in perspective

With the above building blocks and conventions in place, here is how perspective defines
FoldableK:

1 trait FoldableK[F[_[_], _]]:
2 extension [A[_], C](fa: F[A, C])
3 def foldLeftK[B](b: B)(f: B => A ~>#: B): B
4

5 def foldMapK[B](f: A ~>#: B)(using B: Monoid[B]): B =
6 foldLeftK(B.empty)(b => [Z] => (az: A[Z]) => b.combine(f(az)))
7

8 extension [A, C](fa: F[Const[A], C])
9 def toListK: List[A] = fa.foldMapK(FunctionK.liftConst(List(_: A)))

10

11 type FoldableKC[F[_[_]]] = FoldableK[IgnoreC[F]]
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Foldable’s laws

Foldable’s laws basically ensure that the above functions are consistent. The laws are not
particularly strong. Here they are [39].

FoldLeft consistency:

val m = summon[Monoid[B]]
fa.foldMapK(f) ==

fa.foldLeftK(m.empty)(b => [Z] => (a: A[Z]) => b.combine(b, f(a)))

ToList consistent:

fa.toListK ==
fa.foldLeftK(

mutable.ListBuffer.empty[A]
)(buf => [Z] => (a: A[Z]) => buf += a).toList

Order consistent:

if fa == fb then fa.toListK == fb.toListK
else true

As an example of an instance of the FoldableK typeclass, here is an inductive defini-
tion for foldable over products of arbitrary size.

1 //Base case
2 given [X]: FoldableKC[[A[_]] =>> A[X]] with
3 extension [A[_], C](fa: A[X]) def foldLeftK[B](b: B)(f: B => A ~>#: B): B =
4 f(b)(fa)
5

6 //Induction step
7 given [X1[_[_]]: FoldableKC, X2]: FoldableKC[[A[_]] =>> (X1[A], A[X2])] with
8 extension [A[_], C](fa: (X1[A], A[X2]))
9 def foldLeftK[B](b: B)(f: B => A ~>#: B): B =

10 val b1 = fa._1.foldLeftK(b)(f)
11 f(b1)(fa._2)

To prove that this definition obeys the above laws, we can first notice that foldLeft
consistency is by definition obeyed as we have not redefined foldMapK. We then analyze
the base case and the induction step.

For the base case, we get:
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• fa.toListK ==
fa.foldLeftK(

mutable.ListBuffer.empty[A])(buf => [Z] => (a: A[Z]) => buf += a
).toList

• Unwrapping toListK
fa.foldMapK(FunctionK.liftConst(List(_: A))) ==

fa.foldLeftK(
mutable.ListBuffer.empty[A])(buf => [Z] => (a: A[Z]) => buf += a

).toList

• Unwrapping foldMapK
fa.foldLeftK(Nil: List[A])(b => [Z] => (az: A[Z]) => b.combine(List(az: A))) ==

fa.foldLeftK(
mutable.ListBuffer.empty[A])(buf => [Z] => (a: A[Z]) => buf += a

).toList

• Unwrapping foldLeftK
Nil.combine(List(fa: A)) ==

(mutable.ListBuffer.empty[A] += fa).toList

• Simplifying list construction
List(fa) == List(fa)

From this, it follows that if there are two values fa and fb and fa == fb holds, then
fa.toListK == fb.toListK, which is equivalent to List(fa) == List(fb), must also
hold.

For the induction step, we get:

• fa.toListK ==
fa.foldLeftK(

mutable.ListBuffer.empty[A]
)(buf => [Z] => (a: A[Z]) => buf += a).toList

• Unwrapping toListK
fa.foldMapK(FunctionK.liftConst(List(_: A))) ==

fa.foldLeftK(
mutable.ListBuffer.empty[A]

)(buf => [Z] => (a: A[Z]) => buf += a).toList

• Unwrapping foldMapK
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fa.foldLeftK(Nil: List[A])(b => [Z] => (az: A[Z]) => b.combine(List(az: A))) ==
fa.foldLeftK(

mutable.ListBuffer.empty[A]
)(buf => [Z] => (a: A[Z]) => buf += a).toList

• Unwrapping foldLeftK
fa._1.foldLeftK(Nil: List[A])(

b => [Z] => (az: A[Z]) => b.combine(List(az: A))
).combine(List(fa._2: A)) ==

(fa._1.foldLeftK(mutable.ListBuffer.empty[A])(
buf => [Z] => (a: A[Z]) => buf += a

) += fa._2).toList

• Induction hypothesis and wrapping so everything still makes sense
fa._1.foldLeftK(Nil: List[A])(

b => [Z] => (az: A[Z]) => b.combine(List(az: A))
).combine(List(fa._2: A)) ==

(ListBuffer.from(
fa._1.foldLeftK(Nil: List[A])(

b => [Z] => (az: A[Z]) => b.combine(List(az: A))
)

) += fa._2).toList

• (ListBuffer.from(a) += b).toList is equivalent to a.combine(List(b))

fa._1.foldLeftK(Nil: List[A])(
b => [Z] => (az: A[Z]) => b.combine(List(az: A))

).combine(List(fa._2: A)) ==
fa._1.foldLeftK(Nil: List[A])(

b => [Z] => (az: A[Z]) => b.combine(List(az: A))
).combine(List(fa._2: A))

If we have two tuples fa and fb, and fa == fb holds, then we also know that
fa._1.toListK == fb._1.toListK holds (induction hypothesis). From this, it also fol-
lows that fa._2 == fb._2, List(fa._2) == List(fb._2) and
fa._1.toListK.combine(List(fa._2)) == fb._1.toListK.combine(List(fb._2))
hold.

4.1.2 Functor

A Functor exposes a function to map over a structure. Functor is the simplest typeclass
we cover. It is defined in Figure 4.2
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1 trait FunctorK[F[_[_], _]]:
2 extension [A[_], C](fa: F[A, C])
3 def mapK[B[_]](f: A ~>: B): F[B, C]
4

5 inline def mapConst[B](f: A ~>#: B): F[Const[B], C] =
6 mapK(f)
7

8 type FunctorKC[F[_[_]]] = FunctorK[IgnoreC[F]]

Figure 4.2: perspective’s FunctorK.

Functor’s laws

All functors must obey the laws of composition and identity [40].

Composition: fa.mapK(f).mapK(g) = fa.map([Z] => (a: A[Z]) => g(f(a)))

Identity: fa.mapK(FunctionK.identity) = fa

Here is an inductive definition for functors over products of arbitrary size.

1 //Base case
2 given [X]: FunctorKC[[A[_]] =>> A[X]] with
3 extension [A[_], C](fa: A[X])
4 def mapK[B[_]](f: A ~>: B): B[X] = f(fa)
5

6 //Induction step
7 given [X1[_[_]]: FunctorKC, X2]: FunctorKC[[A[_]] =>> (X1[A], A[X2])] with
8 extension [A[_], C](fa: (X1[A], A[X2]))
9 def mapK[B[_]](f: A ~>: B): (X1[B], B[X2]) = (fa._1.mapK(f), f(fa._2))

The proof that this definition obeys the functor laws is inductive. The base case,
requires two subcases, one for each law.

Composition:

• fa.mapK(f).mapK(g) = fa.mapK([Z] => (a: A[Z]) => g(f(fa)))

• Unwrapping right mapK:
fa.mapK(f).mapK(g) = g(f(fa))

• Unwrapping first left mapK:
f(fa).mapK(g) = g(f(fa)))
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• Unwrapping second left mapK:
g(f(fa)) = g(f(fa)))

Identity:

• fa.mapK(FunctionK.identity) = fa

• Unwrapping FunctionK.identity
fa.mapK([Z] => (a: A[Z]) => a) = fa

• Unwrapping mapK:
fa = fa

For the induction step, we get:

• fa.mapK(f).mapK(g) = fa.mapK([Z] => (a: A[Z]) => g(f(fa)))

• Showing tuple:
(x1, x2).mapK(f).mapK(g) = (x1, x2).mapK([Z] => (a: A[Z]) => g(f(fa)))

• Unwrapping first left mapK:
(x1.mapK(f), f(x2)).mapK(g) = (x1, x2).mapK([Z] => (a: A[Z]) => g(f(fa)))

• Unwrapping second left mapK:
(x1.mapK(f).mapK(g), g(f(x2))) = (x1, x2).mapK([Z] => (a: A[Z]) => g(f(fa)))

• Unwrapping right mapK:
(x1.mapK(f).mapK(g), g(f(x2))) = (x1.mapK([Z] => (a: A[Z]) => g(f(fa))), g(f(x2)))

• Induction hypothesis:
(x1.mapK(f).mapK(g), g(f(x2))) = (x1.mapK(f).mapK(g), g(f(x2)))

Identity:

• fa.mapK([Z] => (a: A[Z]) => a) = fa

• Showing tuple:
(x1, x2).mapK([Z] => (a: A[Z]) => a) = (x1, x2)

• Unwrapping mapK: (x1.mapK([Z] => (a: A[Z]) => a), x2) = (x1, x2)

• Induction hypothesis:
(x1, x2) = (x1, x2)
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1 trait ApplyK[F[_[_], _]] extends FunctorK[F]:
2 extension [A[_], B[_], C](ff: F[[D] =>> A[D] => B[D], C])
3 def ap(fa: F[A, C]): F[B, C] =
4 ff.map2K(fa)([Z] => (f: A[Z] => B[Z], a: A[Z]) => f(a))
5

6 extension [A[_], C](fa: F[A, C])
7 def map2K[B[_], Z[_]](fb: F[B, C])(f: [X] => (A[X], B[X]) => Z[X]): F[Z, C]
8

9 inline def map2Const[B[_], Z](fb: F[B, C])(
10 f: [X] => (A[X], B[X]) => Z
11 ): F[Const[Z], C] = fa.map2K(fb)(f)
12

13 def tupledK[B[_]](fb: F[B, C]): F[[Z] =>> (A[Z], B[Z]), C] =
14 fa.map2K(fb)([Z] => (fa: A[Z], fb: B[Z]) => (fa, fb))
15

16 type ApplyKC[F[_[_]]] = ApplyK[IgnoreC[F]]

Figure 4.3: perspective’s ApplyK.

4.1.3 Apply

The Apply typeclass allows combining several different values in a context into a single
value of that context. Apply is a useful tool for many generic programming tasks.

Apply is not a well-established typeclass, but rather a simplification of the type-
class called Applicative. All instances of Applicative are also Functors. Apply is
an Applicative without the function pure. I separate the typeclasses like this because
Apply is generally more useful than Applicative. Not all types with instances of Apply
have instances for Applicative. Figure 4.3 shows perspective’s definition of ApplyK.

Deriving Show with Apply and Foldable

At this point, I have gone over everything needed to derive some typeclasses like Show. I
will show how to derive the typeclass Show similarly to how a user might first approach
perspective and reason about it. F[Id] is always the type used to store values, and will be
used as such in this example. For the field names, F[Const[String]] will be used, and
this is also what is generally used with perspective. F[Const[List[String]]] is more
general and is used when deriving typeclasses deeply, but perspective shies away from
this style of generic programming when doing typeclass derivation. Finally, generally
instances of the typeclass being derived also need to exist for the fields of the type the
typeclass is being derived for. F[TC] is used to store these instances, where TC is the
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typeclass being derived. In this example, it would be F[Show]. As one can see, F is used
as a container for everything the code touches and manipulates, values, field names, and
typeclasses. In other languages like Haskell or Rust, passing around typeclasses as values
is less trivial. In Scala, however, typeclasses are first-class citizens. With that in mind,
here is the code to derive instances of Show:

1 def deriveShowPerspective[F[_]: ApplyK: FoldableK](
2 typeName: String, names: F[Const[String]], instances: F[Show]
3 ): Show[F[Id]] =
4 new Show[F[Id]]:
5 extension (a: F[Id]) def show: String =
6 val elems = instances
7 .map2Const(a)([Z] => (instance: Show[Z], value: Z) => instance.show(value))
8 .map2Const(names)([Z] => (str: String, name: String) => s"$name = $str")
9 .foldLeftK("")(acc => [Z] => (str: String) => s"$acc, $str")

10

11 s"$typeName($elems)"
12 end deriveShowPerspective

As can be seen, the values are operated on like one might operate on values in a list,
evem though we are working on arbitrary data structures, not lists. First the instances
and the values are mapped together to convert the field values into values of String.
The string values are then mapped together with the field names to add the field name
to the string. Finally everything is folded and combined together. Note that map2Const
is used instead of map2K as the type String does not take another type.

It should be noted that while this style of generic programming is easy to understand,
it is not particularly efficient as it requires multiple iteration passes over the same data.
As such more experienced users of perspective would not derive typeclass instances like
this. An alternative is presented in subsection 4.1.8.

Apply’s laws

Apply’s laws are all the Applicative laws that do not mention pure. The only law this
involves is associativity [37].

Associativity:
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fa.tupledK(fb).tupledK(fc) =
fa.tupledK(fb.tupledK(fc)).mapK{ [Z] => (ft: (A[Z], (B[Z], C[Z]))) =>

((ft._1, ft._2._1), ft._2._2)
}

Here is an inductive definition for Apply over products of arbitrary size:

1 //Base step
2 given [X]: ApplyKC[[A[_]] =>> A[X]] with
3 extension [A[_], C](fa: A[X])
4 def map2K[B[_], Z[_]](fb: B[X])(f: [Y] => (A[Y], B[Y]) => Z[Y]): Z[X] =
5 f(fa, fb)
6

7 //Induction step
8 given [X1[_[_]]: ApplyKC, X2]: ApplyKC[[A[_]] =>> (X1[A], A[X2])] with
9 extension [A[_], C](fa: (X1[A], A[X2]))

10 def map2K[B[_], Z[_]](fb: (X1[B], B[X2]))(
11 f: [X] => (A[X], B[X]) => Z[X]
12 ): (X1[Z], Z[X2]) = (fa._1.map2K(fb._1)(f), f(fa._2, fb._2))

The proof of correctness of this definition can be found in Section A.1.

4.1.4 Applicative

Applicative exposes a function to construct a value of a higher kinded data type from a
unit function called ValueK. Figure 4.4 shows perspective’s definition of ApplicativeK.

Generally, there are three ways to get a ValueK. The first way is to use a constant
value, for example, Unit. The second way is to use a covariant value, for example, None
together with the type Option. The third way is to use a contravariant value, for example,
(a: Any) => a.toString together with the type [A] =>> A => String.

In general, Applicative is not used much and it provides little value as part of
perspective. It is presented here primarily for completeness’ sake.
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1 type ValueK[A[_]] = [Z] => () => A[Z]
2 object ValueK:
3

4 /** Construct a [[ValueK]] from a covariant higher kinded type. */
5 def co[A[+_]](covariant: A[Nothing]): ValueK[A] = [Z] => () => covariant
6

7 /** Construct a [[ValueK]] from a contravariant higher kinded type. */
8 def contra[A[-_]](contravariant: A[Any]): ValueK[A] = [Z] => () => contravariant
9

10 /** Construct a [[ValueK]] of a constant. */
11 def const[A](a: A): ValueK[Const[A]] = [Z] => () => a
12

13 trait ApplicativeK[F[_[_], _]] extends ApplyK[F]:
14 extension [A[_]](a: ValueK[A]) def pure[C]: F[A, C]
15

16 def unitK[C]: F[Const[Unit], C] = ValueK.const(()).pure
17

18 type ApplicativeKC[F[_[_]]] = ApplicativeK[IgnoreC[F]]

Figure 4.4: perspective’s ApplicativeK and ValueK.

Applicative’s laws

All applicatives must obey the laws of associativity, left identity, and right identity.
Associativity was covered with Apply, so only left and right identity will be covered
here [37].

Left identity:
ValueK.const(()).pure.tupledK(fa).mapK([Z] => (ft: (Unit, A[Z])) => ft._2) = fa

Right identity:
fa.tupledK(ValueK.const(()).pure).mapK([Z] => (ft: (A[Z], Unit)) => ft._1) = fa

Here is an inductive definition for applicative over products of arbitrary size.

1 //Base case
2 given [X]: ApplicativeKC[[A[_]] =>> A[X]] with
3 extension [A[_]](a: ValueK[A]) def pure[C]: A[X] = a()
4

5 //Induction step
6 given [X1[_[_]]: ApplicativeKC, X2]: ApplicativeKC[[A[_]] =>> (X1[A], A[X2])] with
7 extension [A[_]](a: ValueK[A]) def pure[C]: (X1[A], A[X2]) = (a.pure, a())

The proof of correctness of this definition can be found in Section A.2.
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1 /** The composition of two higher kinded types. */
2 type Compose2[A[_], B[_]] = [Z] =>> A[B[Z]]
3

4 trait TraverseK[F[_[_], _]] extends FunctorK[F], FoldableK[F]:
5 extension [A[_], C](fa: F[A, C])
6 def traverseK[G[_]: Applicative, B[_]](f: A ~>: Compose2[G, B]): G[F[B, C]]
7

8 inline def traverseConst[G[_]: Applicative, B](
9 f: A ~>#: G[B]

10 ): G[F[Const[B], C]] = traverseK(f)
11

12 inline def traverseIdK[G[_]: Applicative](f: A ~>: G): G[F[Id, C]] =
13 traverseK(f)
14

15 inline def sequenceIdK(using Applicative[A]): A[F[Id, C]] =
16 fa.sequenceK
17

18 extension [G[_]: Applicative, A[_], C](fga: F[Compose2[G, A], C])
19 def sequenceK: G[F[A, C]] =
20 fga.traverseK(FunctionK.identity[Compose2[G, A]])
21

22 type TraverseKC[F[_[_]]] = TraverseK[IgnoreC[F]]

Figure 4.5: perspective’s TraverseK.

4.1.5 Traverse

As used typically, traverse allows one to convert from F[G[A]] to G[F[A]]. As an example,
a developer has a value of type List[A], maps over this values producing List[G[A]],
and need G[List[A]]. G in this example might be IO, or maybe Either. In the IO
case, Traverse would allow a user to convert many stateful values into a single stateful
value. The Either case might be used when parsing something, and the developer is only
interested in the first error value.

In perspective, many of these same use cases apply, but for dealing with a generic
data structure instead of for example a List. The parsing example is the most com-
mon one, and allows one to convert a value of type F[[Z] =>> Either[String, Z]] to
Either[String, F[Id]], where Z is the concrete type being parsed. Figure 4.5 shows
perspective’s TraverseK.

Traverse’s laws

Here are the laws for Traverse instances [36].
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val fa: F[A, D] = ???
val f: A ~>: Compose2[M, B] = ???
val g: B ~>: Compose2[N, C] = ???

val N = summon[Applicative[N]]
val M = summon[Applicative[M]]

val lhs = Nested(M.map(fa.traverseK(f))(fb => fb.traverseK(g)))
val rhs = fa.traverseK[[Z] => Nested[M, N, Z], C](

[Z] => (a: A[Z]) => Nested(M.map(f(a))(b => g(b)))
)

lhs == rhs

Figure 4.6: Sequential composition traverse law.

Identity: fa.traverseK[Id, B](f) = fa.mapK(f)

Sequential composition: See Figure 4.6.
Parallel composition: See Figure 4.7.

Here is an inductive definition for traverse over products of arbitrary size.

1 //Base case
2 given [X]: TraverseKC[[A[_]] =>> A[X]] with
3 extension [A[_], C](fa: A[X])
4 def traverseK[G[_]: Applicative, B[_]](f: A ~>: Compose2[G, B]): G[B[X]] =
5 f(fa)
6

7 //Induction step
8 given [X1[_[_]]: TraverseKC, X2]: TraverseKC[[A[_]] =>> (X1[A], A[X2])] with
9 extension [A[_], C](fa: (X1[A], A[X2]))

10 def traverseK[G[_]: Applicative, B[_]](
11 f: A ~>: Compose2[G, B]
12 ): G[(X1[B], B[X2])] = fa._1.traverseK(f).product(f(fa._2))

The proof of correctness of this definition can be found in Section A.3.

4.1.6 Distributive

Distributive is the dual of Traverse. Distributive allows one to convert from G[F[A]]
to F[[Z] =>> G[A[Z]]]. All Distributives are functors. Figure 4.8 shows perspective’s
DistributiveK.

I will not go over Distributive’s laws or instances for it, as it is isomorphic with another
class, Representable, which will be covered in subsection 4.1.8 [23].
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54
val fa: F[A, D] = ???
val f: A ~>: Compose2[M, B] = ???
val g: B ~>: Compose2[N, B] = ???

val N = summon[Applicative[N]]
val M = summon[Applicative[M]]

type MN[Z] = (M[Z], N[Z])

given Applicative[MN] with:
def pure[X](x: X): MN[X] = (M.pure(x), N.pure(x))

def pure[X, Y](f: MN[X => Y])(fa: MN[X]): MN[Y] =
val (fam, fan) = fa
val (fm, fn) = f
(M.ap(fm)(fam), N.ap(fn)(fan))

override def map[X, Y](fx: MN[X])(f: X => Y): MN[Y] =
val (mx, nx) = fx
(M.map(mx)(f), M.map(nx)(f))

override def product[X, Y](fx: MN[X], fy: MN[Y]): MN[(X, Y)] =
val (mx, nx) = fx
val (my, ny) = fy
(M.product(mx, my), N.product(nx, ny))

end given

val lhs: MN[F[B]] = fa.traverseK[MN, B]([Z] => (a: A[Z]) => (f(a), g(a)))
val rhs: MN[F[B]] = (fa.traverseK(f), fa.traverseK(g))

lhs == rhs

Figure 4.7: Parallel composition traverse law.

1 trait DistributiveK[F[_[_], _]] extends FunctorK[F]:
2 extension [G[_]: Functor, A[_], C](gfa: G[F[A, C]])
3 def distributeK[B[_]](f: Compose2[G, A] ~>: B): F[B, C] =
4 gfa.cosequenceK.mapK(f)
5

6 inline def distributeConst[B](f: Compose2[G, A] ~>#: B): F[Const[B], C] =
7 distributeK[Const[B]](f)
8

9 def cosequenceK: F[Compose2[G, A], C]
10

11 extension [G[_]: Functor, A](ga: G[A])
12 def collectK[B[_], C](f: A => F[B, C]): F[Compose2[G, B], C] =
13 ga.map(f).cosequenceK
14

15 type DistributiveKC[F[_[_]]] = DistributiveK[IgnoreC[F]]

Figure 4.8: perspective’s DistributiveK.



1 trait MonadK[F[_[_], _]] extends ApplicativeK[F]:
2 extension [A[_], C](ffa: F[[Z] =>> F[A, Z], C]) def flattenK: F[A, C] =
3 ffa.flatMapK(FunctionK.identity)
4

5 extension [A[_], C](fa: F[A, C])
6 def flatMapK[B[_]](f: A ~>: ([Z] =>> F[B, Z])): F[B, C]
7

8 type MonadKC[F[_[_]]] = MonadK[IgnoreC[F]]

Figure 4.9: perspective’s MonadK.

4.1.7 Monad

Explaining MonadK in simple terms is probably as hard as explaining Monad to someone
for the first time. I have not seen any actual uses for MonadK, and it is here mainly
for completeness’ sake. All instances of Monad are also Applicative. Figure 4.9 shows
perspective’s MonadK.

The flatten function is probably the easier one to explain. If F[A, C] has n values
arranged as a list, F[[Z] =>> F[A, Z], C] has n2 values arranged as a table. flattenK
grabs the values along the diagonal to get back to n elements. The first column of the
first row is taken for the first field. The second column of the second row is taken for
the second field. This goes on until all fields have a value. Using the kind F[_[_], _]
instead of F[_[_]] also makes the types of the functions in MonadK simpler. For MonadKC,
the type of flattenK is instead F[Const[F[A]]] => F[A]. Figure 4.10 shows an example of
how to implement a Monad instance over a tuple of size three where all the values have
the same type.

Monad’s laws

Left identity:

ValueK.const(a).pure.flatMapK(f) = f(a)

Right identity:

fa.flatMapK([Z] => (a: A[Z]) => ValueK.const(a).pure) = fa

Associativity:

fa.flatMapK(f).flatMapK(g) = fa.flatMapK([Z] => (a: A[Z]) => f(a).flatMapK(g))

Here is an inductive definition for monad over products of arbitrary size.
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1 trait Monad[F[_]]:
2 extension [A](ffa: F[F[A]]) def flatten: F[A]
3

4 given Monad[[Z] =>> (Z, Z, Z)]:
5 extension [A](
6 ffa: (
7 (A, A, A),
8 (A, A, A),
9 (A, A, A)

10 )
11 ) def flatten: (A, A, A) =
12 // The tuple is deconstructed to better show the "table" explanation
13 val (
14 (a11, a12, a13),
15 (a21, a22, a23),
16 (a31, a32, a33)
17 ) = ffa
18 (a11, a22, a33)

Figure 4.10: Example instance of Monad for Tuple3.

1 //Base case
2 given [X]: MonadKC[[A[_]] =>> A[X]] with
3 extension [A[_], C](fa: A[X])
4 def flatMapK[B[_]](f: A ~>#: B[X]): B[X] = f(fa)
5

6 //Induction step
7 given [X1[_[_]]: MonadKC, X2]: MonadKC[[A[_]] =>> (X1[A], A[X2])] with
8 extension [A[_], C](fa: (X1[A], A[X2]))
9 def flatMapK[B[_]](f: A ~>#: (X1[B], B[X2])): (X1[B], B[X2]) =

10 (fa._1.flatMapK([Z] => (a: A[Z]) => f(a)._1), f(fa._2)._2)

The proof of correctness of this definition can be found in Section A.4.

One thing to note about this proof is that it cannot be typed in normal Scala.
The reason for this is that there is no function like def pureK[A](a: A): F[A]. This
code does not typecheck, as F expects a higher kinded type. Likewise, the function
def pureK[A[_], Z](a: A[Z]): F[A] does not exist. If it did, it could blow up at runtime.
Say F is A[_] => A[Int], and one runs pureK(Some("string")). The code somehow needs
a way to turn an arbitrary type, in this case, String, into Int. Outside of constant
functions, such a function does not exist. There is, however, something like the function
def pureConst[A](a: A): F[Const[A]]. This function safely lifts a value into F. For the
right identity law, however, this type conflicts with the wanted type. The code wants to
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call flatMapK[A] but ends up with values of type F[Const[A[Z]]]. This type cannot be
used with flatMapK, as the type Z would escape outside of the scope it is defined in.

4.1.8 Representable

The typeclasses defined above provide functions a user might use to work on a fixed num-
ber of values at a time. They are also the functions a user might use when working with
lists and other containers like them. With perspective, these operations are a simplified
way to operate on a structure, but they are more constrained in what they can do. For
example, map2K allows combining two different structures, but only two. If combining
three different structures is needed, a user must first combine two of them, then combine
the result with the third.

This problem and many more is what Representable solves. Representable offers a
way to index and tabulate over the data structure being worked on, similar to List#apply
and List.tabulate do for ordinary lists. It also offers more efficiency, since, users do
not need to iterate over the same structure multiple times. It also makes code cleaner by
reducing the number of lambdas.

The way Representable works is that it has an index type (called RepresentationK
in perspective), and the values of this type is used to index into the type being worked
on. What RepresentationK is backed by does not matter for generic programming.
The important part here is an isomorphism between the fields of the type being worked
with and the values of the representation. That means that this index function needs
to be total. A list is, for example, not representable unless the size of the list is known
at compile time and a fixed size type is used to index into the list. RepresentableK’s
definition in perspective can be seen in Figure 4.11.

All functions found in FunctorK, ApplyK, ApplicativeK, MonadK and DistributiveK
can be implemented using functions found in RepresentableK, and should as such be
avoided and replaced with functions found in RepresentableK in performant generic
programming code if possible. Functions found in TraverseK and FoldableK cannot be
implemented using RepresentableK, but can still be performed more efficiently in many
cases by using the functions of RepresentableK#indices instead.

Figure 4.12 shows and example of how RepresentableK can be implemented for higher
kinded data. Essentially, RepresentableK turns the fields of some higher kinded data
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1 trait RepresentableK[F[_[_], _]] extends MonadK[F] with DistributiveK[F]:
2 type RepresentationK[_]
3

4 def tabulateK[A[_], C](f: RepresentationK ~>: A): F[A, C]
5

6 def indicesK[C]: F[RepresentationK, C] = tabulateK(FunctionK.identity)
7

8 extension [A[_], C](fa: F[A, C])
9 def indexK[Z](i: RepresentationK[Z]): A[Z]

10

11 type RepresentableKC[F[_[_]]] = RepresentableK[IgnoreC[F]]

Figure 4.11: perspective’s RepresentableK.

1 case class IsbK[F[_]](
2 intField: F[Int], stringField: F[String], booleanField: F[Boolean]
3 )
4

5 enum IsbKRepresentation[A]:
6 case IntField extends IsbKRepresentation[Int]
7 case StringField extends IsbKRepresentation[String]
8 case BooleanField extends IsbKRepresentation[Boolean]
9

10 given RepresentableKC[IsbK] with
11 type RepresentationK[A] = IsbKRepresentation[A]
12 import IsbKRepresentation.*
13

14 def tabulateK[A[_], C](f: RepresentationK ~>: A): IsbK[A] =
15 IsbK(f(IntField), f(StringField), f(BooleanField))
16

17 extension [A[_], C](fa: IsbK[A])
18 def indexK[Z](i: RepresentationK[Z]): A[Z] = i match
19 case IntField => i.intField
20 case StringField => i.stringField
21 case BooleanField => i.booleanField

Figure 4.12: Defining an instance of RepresentableK.



1 def deriveShowPerspectiveRepresentable[F[_]: FoldableKC](
2 typeName: String, names: F[Const[String]], instances: F[Show]
3 )(using F: RepresentableKC[F]): Show[F[Id]] = new Show[F[Id]]:
4 extension (a: F[Id]) def show: String =
5 val elems = F.indicesK.foldLeftK("") { acc => [Z] => (i: F.RepresentationK[Z]) =>
6 val value = a.indexK(i)
7 val name = names.indexK(i)
8 val instance = instances.indexK(i)
9

10 s"$acc, $name = ${instance.show(value)}"
11 }
12

13 s"$typeName($elems)"
14 end deriveShowPerspective

Figure 4.13: Deriving Show using RepresentableK and FoldableK.

into a sum type, and allows functions to match over and pass the fields to functions using
this sum type.

Figure 4.13 shows an example of how to derive instances of Show using RepresentableK
and FoldableK. The foldLeftK call is done on the indices found in RepresentableK,
giving access to these indices in the body of the fold. The value, name, and typeclass
instance for each field are then obtained by indexing into the structure containing the
appropriate values. The values are then combined as seen in previous examples.

Representable’s laws

Representable has very simple laws. The only thing it requires is that the representation
is a true isomorphism. These two equalities can express that [35].

Tabulate index:

tabulateK([Z] => (i: RepK[Z]) => fa.indexK(i)) = fa

Index tabulate:

tabulateK(f).indexK(i) = f(i)

Here is an inductive definition for representable over products of arbitrary size.
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1 //Base case
2 given [X]: RepresentableKC[[A[_]] =>> A[X]] with
3 type RepresentationK[_] = Unit
4

5 def tabulateK[A[_], C](f: RepresentationK ~>: A): A[X] = f(())
6

7 extension [A[_], C](fa: A[X])
8 def indexK[Z](i: RepresentationK[Z]): A[Z] =
9 // This case is safe. There is no way to get an instance

10 // of the representation with the wrong type
11 fa.asInstanceOf[Z]
12

13 //Induction step
14 given [X1[_[_]], R1[_], X2](
15 using X1: RepresentableKC.Aux[X1, R1]
16 ): RepresentableKC[[A[_]] =>> (X1[A], A[X2])] with
17 type RepresentationK[RepA] = Either[R1[RepA], Unit]
18

19 def tabulateK[A[_], C](f: RepresentationK ~>: A): (X1[A], A[X2]) =
20 (X1.tabulateK([Z] => (r: R1[Z]) => f(Left(r))), f(Right(()))
21

22 extension [A[_], C](fa: (X1[A], A[X2]))
23 def indexK[Z](i: RepresentationK[Z]): A[Z] = i match
24 case Left(rep) => fa._1.indexK(rep)
25 case Right(()) =>
26 // This case is safe. There is no way to get an instance
27 // of the representation with the wrong type
28 fa._2.asInstanceOf[Z]

The proof of correctness of this definition can be found in Section A.5.

4.2 Exotic Higher Kinded Data

Whenever one has a normal case class with no unapplied type arguments, one can create
a higher kinded version of this case class by parameterizing the case class with a higher
kinded type and wrapping all the types of the fields in this higher kinded type. One can
also define functions that, for any case class, exposes a type that is higher kinded. This
can be done using tuples and Mirror, as follows:
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1 def toHigherKinded[A](a: A)(
2 using m: Mirror.ProductOf[A]
3 ): Tuple.Map[m.MirroredElemTypes, Id] =
4 Tuple.fromProduct(product).asInstanceOf[Tuple.Map[m.MirroredElemTypes, Id]]
5

6 def fromHigherKinded[A, T <: Tuple](t: Tuple.Map[m.MirroredElemTypes, Id])(
7 using m: Mirror.ProductOf[A]
8 ): A = n.fromTuple(t.asInstanceOf[m.MirroredElemTypes])

Any higher kinded data created this way will have all the typeclasses we have intro-
duced. This fact is, however, not true for all higher kinded data. I will call such higher
kinded data exotic. A simple example of such higher kinded data is anything containing
List[F[A]], which is not the same as F[List[A]]. In the latter case, the list is wrapped
in the higher kinded type, like usual. In the former case, there is instead an unknown
number of elements wrapped in the higher kinded type. As the number of elements is
unknown, the type is no longer representable.

Another example of exotic higher kinded data is Either[F[A], F[A]]. While it is
still possible to implement FunctorK and FoldableK for this type, implementing more
requires the type to be biased to one side. Doing so might not be wanted when doing
generic programming, as treating everything equally is desirable. This particular kind of
exotic higher kinded data will be discussed more in the chapter on sum types.

4.3 perspective-derivation

With the typeclasses and their operations out of the way, let us go over how perspective
puts them together in a nice box to help with deriving typeclasses. Note that what I
discuss in this section is a slight simplification of perspective’s features.

Like shapeless 2’s HList and the ListGeneric’s List, perspective too has a generic
representation that the operations will work on. Unlike shapeless 2 and ListGeneric,
however, this generic representation does not need to be exposed as much to the user,
as all the operations that interact with the representation come from typeclasses. For
a representation Gen[_[_]], it needs to be simple to get values of Gen[TC] for some
typeclass TC[_]. This is done by taking Gen[TC] as an implicit parameter. For example,
if the generic representation represents a type with fields Int, String and Boolean, and
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there exist instances of Show for all these types, then there must also exist an implicit
value of Gen[Show]. To allow for this, the type Gen[_[_]] cannot be completely opaque
(meaning it must be observable from the outside).

The index type used by Representable should also be easily accessible as it is the
most performant way to work with higher kinded data.

perspective puts all of these ideas together, in addition to some extra functions
that provide more flexibility or performance, and gets its own generic typeclass called
HKDProductGeneric. This typeclass can be seen in Figure 4.14

The type is a union of all the field types contained within A. It is used more with
sum types, but for product types it only provides a bound when converting a string to
an index. Both the types of the field names and the type name are stored both on the
value level and on the type level. The information is stored at the type level for instances
where a user might want to manipulate this information at the type level. For example,
using this information, one could create a function (shown below) that lets one access
a field with a string, but only if the string is known at compile time to be a valid field
name.

1 def access[A, FNames <: String, K <: FNames & Singleton](a: A)(field: K)(
2 using gen: HKDGeneric[A] { type Names = FNames}
3 ): gen.FieldOf[K] = a.productElementId(gen.nameToIndex(field))

The productElementId function is a small optimization that lets one index into A without
converting A into the generic representation first. productElementId internally calls
Product#productElement which is used to index into anything that extends Product.
All case classes extends Product.

TupleRep together with genToTuple and tupleToGen provides easy conversion to
and from tuples. This is useful for interoperability with other datatype-generic code. In
addition to that, some operations are more easily done with tuples.

The functions tabulateFoldLeft, tabulateTraverseK, tabulateTraverseKOption
and tabulateTraverseKEither are all optimized and fused versions of calls of the form
representable.indices.<operation>. These functions are more efficient as they do not have
to construct the F[Index] value. The traverse function also has specializations provided
for option and either. Traverse is a relatively slow operation generally, so these are
provided when G is known to be Option or Either.
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1 trait HKDProductGeneric[A]:
2 type Gen[_[_]]
3 type Index[_]
4 type ElemTop
5

6 type TypeName <: String
7 def typeName: TypeName
8

9 type Names <: String
10 def names: Gen[Const[Names]]
11

12 def stringToName(s: String): Option[Names]
13

14 type FieldOf[Name <: Names] <: ElemTop
15 def nameToIndex[Name <: Names](name: Name): Index[FieldOf[Name]]
16

17 def to(a: A): Gen[Id]
18 def from(gen: Gen[Id]): A
19

20 extension (a: A) def productElementId[X](index: Index[X]): X
21

22 type TupleRep <: Tuple
23 def genToTuple[F[_]](gen: Gen[F]): Tuple.Map[TupleRep, F]
24 def tupleToGen[F[_]](tuple: Tuple.Map[TupleRep, F]): Gen[F]
25

26 lazy val representable: RepresentableKC.Aux[Gen, Index]
27 lazy val traverse: TraverseKC[Gen]
28 given RepresentableKC.Aux[Gen, Index] = representable
29 given TraverseKC[Gen] = traverse
30

31 def tabulateFoldLeft[B](start: B)(f: B => [X] => Index[X] => B): B
32

33 def tabulateTraverseK[G[_], B[_]](f: [X] => Index[X] => G[B[X]])(
34 using Applicative[G]
35 ): G[Gen[B]]
36

37 def tabulateTraverseKOption[B[_]](
38 f: [X] => Index[X] => Option[B[X]]
39 ): Option[Gen[B]]
40

41 def tabulateTraverseKEither[E, B[_]](
42 f: [X] => Index[X] => Either[E, B[X]]
43 ): Either[E, Gen[B]]

Figure 4.14: A simplified version of perspective’s HKDProductGeneric typeclass.



4.3.1 Using HKDProductGeneric

One uses HKDProductGeneric not too unlike what has already been covered with
Representable in Figure 4.13. Unlike with typeclasses, everything that is needed is
housed in the generic instance or can be summoned as typeclasses. HKDProductGeneric
also prioritizes working with indices over other functions supplied by the typeclasses.
The functions in the typeclasses are more to let new developers understand perspective
quicker and not require them to understand how indices work at first.

Here is an example of deriving instances of Show using HKDProductGeneric.
The code is very similar to what was covered with Representable, but here it
uses HKDProductGeneric instead. It provides the functions tabulateFoldLeft and
productElementId which are used instead where possible.

1 def deriveShow[A](
2 using gen: HKDProductGeneric[A], instances: gen.Gen[Show]
3 ): Show[A] = new Show[A]:
4 import gen.given
5 private val names = gen.names
6

7 extension (a: A) def show: String =
8 val elems = gen.tabulateFoldLeft("") { acc =>
9 [Z] => (idx: gen.Index[Z]) =>

10 val value = a.productElementId(idx)
11 val name = names.indexK(idx)
12 val instance = instances.indexK(idx)
13

14 s"$acc, $name = ${instance.show(value)}"
15 }
16 s"${gen.typeName}($elems)"

4.3.2 Implementation

The perspective library currently uses Product as the generic representation. As the type
being abstracted over is also a Product, calling HKDProductGeneric#to is a NO-OP. In
all other cases, a wrapped array is used, which inherits from Product.

The optimized tabulate functions are all implemented with while loops and early
returns where possible.
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4.4 Inline perspective-derivation

Sometimes normal generic derivation is not quite fast enough for a developer, which
is when they would typically turn to macros instead. perspective, however, of-
fers an alternative to this. perspective provides a separate generic typeclass called
InlineHKDProductGeneric. This typeclass provides mostly the same user interface as
HKDProductGeneric but changing all the implementations to inline functions and macros.
This feature is only available with Scala 3.

InlineHKDProductGeneric’s tools are entirely separate from everything else in per-
spective, as inline requires reimplementing everything. A typeclass based approach was
tried, but Scala did not manage to resolve the functions when needed, so typeclasses were
dropped. Instead, all the functions found within the typeclasses were moved directly to
the same generic instance.

InlineHKDProductGeneric uses a lot of beta reduction to simplify code and avoid
lambdas in the generated code. At the time of writing InlineHKDProductGeneric, this
beta reduction did not work with polymorphic functions (it now does [16]). perspective
got around this problem by representing the Index type differently using path dependent
types and aggressively recommending users to only use the tabulate functions. Non-
tabulate functions are still left in the API but might not generate as good bytecode. The
new Index type looks like this:

1 type Index <: Any { type X <: ElemTop }
2 type IndexAux[X0 <: ElemTop] = Index { type X = X0 }
3

4 class IdxWrapper[X](val idx: IndexAux[X & ElemTop])
5

6 given [X]: Conversion[IdxWrapper[X], IndexAux[X & ElemTop]] = _.idx
7 given [X]: Conversion[IndexAux[X & ElemTop], IdxWrapper[X]] = new IdxWrapper(_)

The Any bound is to allow for implementing Index using Int later. I also bound
Index#X to ElemTop as I control all the code Index will interact with. In some cases,
adding a bound to Index#X might pose problems with type checking, which IdxWrapper
exists to solve. For example, indicesK must be typed as Gen[IdxWrapper] as otherwise
Gen would have to be defined as Gen[_[_ <: ElemTop]]. Doing so would conflict with
working with most typeclasses.
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This representation of the index type also coincidentally leads to less boilerplate.
Compare the non-inline and inline versions of an implementation of mapK in terms of
tabulate.

1 // Non-inline
2 def mapK[B[_]](f: A ~>: B): Gen[B] =
3 representable.tabulateK(fa)([Z] => (i: Index[Z]) => f(i))
4

5 // Inline
6 def mapK[B[_]](f: A ~>: B): Gen[B] =
7 gen.tabulateK(i => f(i))

InlineHKDGeneric also provides a function inline def summonInstances[F[_]]: Gen[F]

that will generate code containing instances of a certain typeclass for each field in the
type being worked on. This function replaces implicit parameters of instances (Gen[TC]
for some typeclass TC), which was used with HKDGeneric. As a result, the generic repre-
sentation can remain completely opaque to the user.

4.4.1 Using InlineHKDProductGeneric

Usage of InlineHKDProductGeneric does not differ significantly from usage of
HKDProductGeneric except that there are no polymorphic function calls and implicit
instances are found differently. To showcase the similarity, here is an example of deriving
instances of Show using InlineHKDProductGeneric.

1 inline def deriveShow[A](
2 using gen: InlineHKDProductGeneric[A]
3 ): Show[A] = new Show[A]:
4 private val names = gen.names
5 private val instances = gen.summonInstances[Show]
6

7 extension (a: A) def show: String =
8 val elems = gen.tabulateFoldLeft("") { (acc, idx) =>
9 val value = a.productElementId(idx)

10 val name = names.indexK(idx)
11 val instance = instances.indexK(idx)
12

13 s"$acc, $name = ${instance.show(value)}"
14 }
15 s"${gen.typeName}($elems)"
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4.4.2 Implementation

In InlineHKDGeneric, the generic representation is an IArray. The index type is an Int
with an extra type member added to it. Functions are implemented with inline and while
loops or macros that generate while loops. These while loops are, in some cases, spe-
cialized depending on the types involved. This specialization is especially important for
traverse, removing the need for individually specialized method calls. This specialization
is done by inspecting the implicit instances of Applicative passed in. If the instance
matches a known one, a specialized implementation is used.

4.5 Unrolling perspective-derivation

InlineHKDProductGeneric has some support for loop unrolling for specific pieces of
code, so in some cases it can remove the while loops the code would otherwise generate.
A developer can enable unrolling by passing in unrolling = true to functions that support
unrolling. At the time of writing, these functions are tabulateK, tabulateFoldLeft, and
tabulateTraverseK.

Loop unrolling has two main use cases. The first is simpler and sometimes more
compact bytecode. Even when the code is not more compact, it might still run quicker
in benchmarks. Here is an example of what the generated code for a foldLeft function
call might look like compared to the unrolled version.

1 def notUnrolled(arr: Array[String]): String =
2 var acc: String = ""
3 var i: Int = 0
4 while(i < arr.length) do
5 acc = acc + arr(i)
6 i = i + 1
7 acc
8

9 def unrolled(arr: Array[String]): String =
10 "" + arr(0) + arr(1) + arr(2)

The other usecase is avoiding boxing. When one has a Gen[Id] and a call to
indexK(idx) on it, one is given a value of type idx.X with the bound ElemTop. If
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ElemTop is equal to Int because the type being abstracted over only contains integers,
then there is no problem. If, however, ElemTop contains anything else, one will have to
deal with the JVM’s boxing. In most cases, this boxing is inevitable. Boxing happens
everywhere. For example, all generic functions box their arguments and result (some
exceptions exist where the Scala compiler will specialize a small subset of functions).

In a loop, boxing is inevitable, as the value needs to take on many different types.
For example, if one is dealing with a case class defined as
case class ISB(i: Int, s: String, b: Boolean) and call indexK on a generic representa-
tion of the case class, the call will return different types on different iterations. Here is
an example.

1 inline def boxingHappensHere[A](a: A)(using gen: InlineHKDProductGeneric[A]): String =
2 val instances = gen.summonInstances[Show]
3 gen.tabulateFoldLeft("") { (acc, i) =>
4 val value: i.Idx = a.productElementId(i)
5 val instance = instances.indexK(i)
6 acc + instance.show(value)
7 }

On the first iteration here, value will contain an Int. On the next, it will be a
String. On the last, it will be a Boolean. As such, value will be boxed.

Even if one can avoid boxing the value when getting it using indexK, care must still
be taken not to box the value later. Any typeclass used here would, for example, lead
to boxing as a generic method would be involved. In the case of Show, calling show on
an Int will box the int when passing it to the typeclass. A specialized method is also
needed to do the desired operation, which will not box. Instead of Show[Int], one could,
for example, use java.lang.Integer.toString.

With both obstacles out of the way, here is how to prevent boxing by unrolling
code. First, the field must be accessed in a way that does not box. indexK and
productElementId will both box. Instead, productElementIdExact will be used. This
function is like productElementId, but it will access the field directly using its name
instead of using Product#productElement. productElementIdExact can only be called
in unrolling code.

The next step is to match on the type and choose what to do based on that.
Scala 3’s inline match looks perfect to do this. Sadly it expands too quickly when
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1 inline def noBoxingHere[A](a: A)(using gen: InlineHKDProductGeneric[A]): String =
2 val instances = gen.summonInstances[Show]
3 gen.tabulateFoldLeft("", unrolling = true) { (acc, i) =>
4 val str = gen.lateInlineMatch {
5 a.productElementIdExact(i) match
6 case p: Byte => java.lang.Byte.toString(p)
7 case p: Short => java.lang.Byte.toString(p)
8 case p: Char => java.lang.Character.toString(p)
9 case p: Int => java.lang.Integer.toString(p)

10 case p: Long => java.lang.Long.toString(p)
11 case p: Float => java.lang.Float.toString(p)
12 case p: Double => java.lang.Double.toString(p)
13 case p: Boolean => java.lang.Boolean.toString(p)
14 case other => instances.indexK(i).show(other)
15 }
16

17 acc + str
18 }

Figure 4.15: A non-boxing function that folds over a data structure, converts the fields
to strings, and concatenates them.

the type information has not yet been refined. As a workaround, perspective provides
lateInlineMatch, which tries to do something similar. The argument of the function
must be a match expression and it must always be used within an unrolled function.
Figure 4.15 shows what a non-boxing version of the above code snippet might look like
by putting all of the ideas discussed together.

4.5.1 Limitations of perspective’s unrolling

perspective’s unrolling is more a preview of what is possible than an implementation of
true unrolling. It covers areas that are easy to implement and use but is very limited.
For example, the array that is the intermediary representation will box anything put into
it. That means that calls to tabulateK and tabulateTraverseK will box primitives. A
proper implementation of unrolling that tries to avoid boxing in these instances might
require a completely different approach, not unlike how InlineHKDProductGeneric and
HKDProductGeneric are entirely different.

I can see two methods to implement a completely unrolling version of
InlineHKDProductGeneric: one without an intermediary representation and one with a
miniboxed array intermediary representation. I do not foresee perspective implementing
either of these methods in the near future, but nevertheless document preliminary ideas
about both approaches.
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No intermediary representation

The first approach would involve no intermediary representation. The API would still
include one in a generic typeclass, but no trace of it would remain in the code. Instead,
each iteration call would be converted into many different variables, one for each field.
Each intermediary representation would be expanded into a set of variables. The tricky
part here is to avoid naming issues and ensure everything works together. Scoping would
likely be a problem here. The implementation would probably rely on a single "god" macro
to implement all the needed logic. The reason this would likely be needed is to make sure
everything flowed together nicely. The alternative would be to somehow pass information
from one macro to another, which might become clunky. Erased definitions [26] would
possibly make this approach easier.

Miniboxing

Miniboxing is a technique for specializing code yet avoiding excessive bytecode dupli-
cation. The idea is to identify disjoint sets of types that can all be stored in the
same manner and only emit one specialization per set [41]. Applying this technique
to InlineHKDProductGeneric would lead to each disjoint set getting its own backing
array. This method is far less involved than removing the intermediary representation at
the cost of doing the miniboxing.

4.6 Summary of generic programming using perspec-
tive

The perspective library brings many new ideas and ways of doing things to generic pro-
gramming that have not been seen much before. Like shapeless 3, perspective does not
require any type level programming and works on the value level instead of the type level.
Unlike shapeless 3, it is not restricted to a single operation or set of typeclasses to work
with. In this area, perspective is more similar to shapeless 2.

On the other hand, perspective also requires the developer to be completely comfort-
able with working with higher kinded data. shapeless 3 is both simpler from an API
standpoint and from the standpoint of what it asks of the developer. There is generally
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one way to use shapeless 3, while perspective offers many different ways of achieving the
same result. A developer might use simpler typeclass functions like mapK, map2K and
traverseK, they might use index based functions, they might use inline functions or they
might also be unrolling and then have to think about how everything boxes and what
the resulting class file will look like.

The manner perspective uses Scala’s type system is new and it has shown to stretch
Scala’s and the Scala compiler’s limits. For example, perspective does not work well with
Scala 2.12, as the type inference breaks in most places. This is why I dropped Scala 2.12
support early in the development. perspective for Scala 3 also uses many new features
like polymorphic functions that are still error prone in specific configurations.
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Chapter 5

Dealing with sum types

Up until this point, I have only talked about product types. However, sum types are also
important, and will be covered in this chapter.

5.1 Sum types in shapeless 2

The shapeless 2 library encodes sum types in a type it calls Coproduct. Coproduct is like
HList but for sum types instead of product types, storing only one value among a list of
possible values instead of a list of values. It is like a bunch of nested Eithers growing to
the right. It is defined as something like this.

1 sealed trait Coproduct
2 sealed trait :+:[H, T <: Coproduct] extends Coproduct
3 case class Inl[H, T <: Coproduct](head: H) extends :+:[H, T]
4 case class Inr[H, T <: Coproduct](tail T) extends :+:[H, T]
5

6 sealed trait CNil extends Coproduct:
7 def impossible: Nothing

Note that CNil is not inhabited and only exists to end a Coproduct. Much of the
same that applies to HList, like type level programming and how to deal with labels, also
applies to Coproduct. The example below shows how a Coproduct could represent a sum
type.
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1 enum Foo:
2 case Bar(i: Int)
3 case Baz(s: String)
4 case Bin(b: Boolean)
5

6 type FooRepr = Foo.Bar :+: Foo.Baz :+: Foo.Bin :+: CNil

Here is an example of how to derive an instance of Show for sum types:

1 given cnilShow: Show[CNil]:
2 extension (a: CNil) def show: String = a.impossible
3

4 given cconsShow: [H, T <: HList](using Show[H], Show[T]): Show[H :+: T]:
5 extension (a: H :+: T) def show: String = a match
6 case Inl(h) => h.show
7 case Inr(t) => t.show
8

9 def deriveShowGeneric[A](
10 using gen: Generic[A], instance: Show[gen.Repr]
11 ): Show[A] = new Show[A]:
12 extension (a: A) def show: String = gen.to(a).show

For the CNil case, the code calls impossible found on CNil. This function returns
Nothing, the uninhabited type. The cons case meanwhile matches on the :+: and shows
the head or the tail depending on what the value is.

5.2 Sum types in shapeless 3

The shapeless 3 library uses the same approach for both sum and product types. That
means hiding the intermediary representation and offering a few functions to operate on
the data instead.

1 extension [F[_], T](inst: CoproductInstances[F, T])
2 inline def map(x: T)(f: [t] => (F[t], t) => t): T
3 inline def inject[R](p: Int)(f: [t <: T] => F[t] => R): R
4 inline def fold[R](x: T)(f: [t <: T] => (F[t], t) => R): R
5 inline def fold2[R](x: T, y: T)(a: => R)(f: [t <: T] => (F[t], t, t) => R): R
6 inline def fold2[R](x: T, y: T)(g: (Int, Int) => R)(
7 f: [t <: T] => (F[t], t, t) => R
8 ): R
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In this case, there are almost just fold functions. map applies the function to the
present case and returns it. fold works almost the same as map but the return value is
allowed to be anything, not just the type being abstracted over. fold2 works similarly
but with two values. If the two values are not of the same case, the value a or the function
g applied to the ordinals of the two cases is returned instead. Finally inject allows a
user to construct a value using the typeclass at the specified ordinal. This ordinal could
for example be obtained by checking the index of a string in Labelling’s Seq[String].

Here is how to derive Show using shapeless 3.

1 def deriveShow[A](using inst: CoproductInstances[Show, A]): Show[A] = new Show[A]:
2 extension (a: A) def show: String =
3 inst.fold(a)([t <: A] => (sh: Show[t], v: t) => sh.show(v))

5.3 Sum types in perspective

Now for how to work with sum types in perspective. As was covered earlier,
Either[F[A], F[A]] can be considered an exotic higher kinded type, as only folds and
map can easily be defined on it without introducing a bias. As Either is the tradition-
ally simplest sum type, things are not looking great. This difficulty in defining typeclass
instances over sum types is potentially why shapeless 3 mostly offers folds for dealing
with sum types.

perspective’s perspective is more open-minded. What happens if I as the developer of
perspective try to define an instance of ApplyKC for Either as shown in Figure 5.1?
Where does the code go wrong, and is there anything that could be done to cover these
holes? I will mark these holes where things break down with ???.

The problem cases are the ones where values are present on different sides. One solution to
this problem is to change the definition of Either to allow for this trivially, by introducing
a value that represents neither side. Figure 5.2 shows the result of doing this.

The code in Figure 5.2 works, but the approach cannot also be used with ApplicativeK,
implementing pure as returning NeitherK. Doing so breaks all applicative laws that in-
teract with pure. In this case, the opposite of what was done with NeitherK is needed.
That is to say, we need a case where both values are present. Such a type exists and is
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1 enum EitherK[F[_], A, B]:
2 case LeftK(a: F[A])
3 case RightK(b: F[B])
4

5 given [L, R]: ApplyKC[[F[_]] =>> EitherK[F, L, R]] with
6 extension [A[_], C](fa: EitherK[A, L, R])
7 def map2K[B[_], Z[_]](fb: EitherK[B, L, R])(
8 f: [X] => (A[X], B[X]) => Z[X]
9 ): Ior[Z, L, R] =

10 import EitherK.*
11 (fa, fb) match
12 case (LeftK(la), LeftK(lb)) => LeftK(f(la, lb))
13 case (LeftK(la), RightK(_)) => ???
14

15 case (RightK(ra), RightK(rb)) => RightK(f(ra, rb))
16 case (RightK(ra), LeftK(_)) => ???

Figure 5.1: Trying to define ApplyKC for EitherK.

1 enum OptEitherK[F[_], A, B]:
2 case LeftK(a: F[A])
3 case RightK(b: F[B])
4 case NeitherK
5

6 given [L, R]: ApplyKC[[F[_]] =>> OptEitherK[F, L, R]] with
7 extension [A[_], C](fa: OptEitherK[A, L, R])
8 def map2K[B[_], Z[_]](fb: OptEitherK[B, L, R])(
9 f: [X] => (A[X], B[X]) => Z[X]

10 ): OptEitherK[Z, L, R] =
11 import OptEitherK.*
12 (fa, fb) match
13 case (LeftK(la), LeftK(lb)) => LeftK(f(la, lb))
14 case (LeftK(la), RightK(_)) => NeitherK
15 case (LeftK(la), NeitherK) => NeitherK
16

17 case (RightK(ra), RightK(rb)) => RightK(f(ra, rb))
18 case (RightK(ra), LeftK(_)) => NeitherK
19 case (RightK(ra), NeitherK) => NeitherK

Figure 5.2: Trying to define ApplyKC for OptEitherK.

1 enum Ior[A, B]:
2 case Left(a: A)
3 case Right(b: B)
4 case Both(a: A, b: B)

Figure 5.3: Definition of Ior.



1 case class OptIorKProd[F[_], A, B](left: Option[F[A]], right: Option[F[B]])
2 enum OptIorKSum[F[_], A, B]:
3 case LeftK(a: F[A])
4 case RightK(b: F[B])
5 case BothK(left: F[A], right: F[B])
6 case NeitherK
7

8 def sumToProd[F[_], A, B](sum: OptIorKSum[F, A, B]): OptIorKProd[F, A, B] =
9 sum match

10 case LeftK(a) => OptIorKProd(Some(a), None)
11 case RightK(b) => OptIorKProd(None, Some(b))
12 case BothK(a, b) => OptIorKProd(Some(a), Some(b))
13 case NeitherK => OptIorKProd(None, None)
14

15 def prodToSum[F[_], A, B](prod: OptIorKProd[F, A, B]): OptIorKSum[F, A, B] =
16 (prod.left, prod.right) match
17 case (Some(a), None) => OptIorKSum.LeftK(a)
18 case (None, Some(b)) => OptIorKSum.RightK(b)
19 case (Some(a), Some(b)) => OptIorKSum.BothK(a, b)
20 case (None, None) => OptIorKSum.NeitherK

Figure 5.4: A sum and product definition of OptIorK, and isomorphisms between them.

called Ior. Ior is an inclusive or type and contrasts Either, which is exclusive. That is
to say, Either can only contain Left or Right, not both simultaneously. Ior meanwhile
can contain both at the same time. Figure 5.3 shows how Ior can be defined.

Putting these ideas together, one gets something with an Applicative instance. In
fact, this new type is not at all exotic, as it also has a Representable instance. That
is because this new type is both a sum type and a product type simultaneously. Fig-
ure 5.4 shows both ways of defining it, with functions to convert between the different
representations.

This scheme also grows well to arbitrary sum types, and is the idea perspective uses
for the type providing mappings between the normal and the generic representation.

5.3.1 HKDSumGeneric

perspective’s generic typeclass for working with sum types, HKDSumGeneric (defined
in Figure 5.5), reuses many of the ideas found in HKDProductGeneric. So similar is the
handling of sum and product types in perspective that they share most of their code
in a type called HKDGeneric. There are however some differences and extra functions
HKDSumGeneric has access to.
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1 trait HKDSumGeneric[A]:
2 type Gen[_[_]]
3

4 type ElemTop <: A
5

6 def indexOf[X <: ElemTop](x: X): Index[X]
7 def indexOfA(a: A): IdxWrapper[_ <: ElemTop] = indexOf(a.asInstanceOf[ElemTop])
8 def indexOfACasting(a: A): HKDSumGeneric.IndexOfACasting[Index, ElemTop]
9

10 inline def widenConst[F[+_]](gen: Gen[F]): Gen[Const[F[A]]] =
11 // This is safe. We can't use the widen method as it can't know about the
12 // contents of Gen, we do
13 gen.asInstanceOf[Gen[Const[F[A]]]]
14

15 def to(a: A): Gen[Option] =
16 val index = indexOf(a.asInstanceOf[ElemTop])
17 // This cast is safe as we know A = Z
18 representable.tabulateK(
19 [Z] => (i: Index[Z]) =>
20 if i == index.idx then Some(a.asInstanceOf[Z]) else None
21 )
22

23 def from(a: Gen[Option]): Option[A] =
24 traverse.toListK(widenConst(a)).flatten match
25 case Nil => None // No values present
26 case a :: Nil => Some(a) // One value present
27 case _ => None // More than one value present
28

29 ...

Figure 5.5: perspective’s HKDSumGeneric.



First off, the functions to and from still exist, but have different types. While
HKDProductGeneric uses A => Gen[Id] and Gen[Id] => A, HKDSumGeneric uses
A => Gen[Option] and Gen[Option] => Option[Id]. The function to creates a Gen[Option]
where only one case is Some, and the rest are None. The function from only returns a
Some if exactly one case in Gen[Option] is Some. Sadly this is not what a user will likely
want and will require the user to call get on the Option, verifying that the call should
always be safe. This is the only confirmed case of type unsafeness in perspective.

Unlike with HKDProductGeneric, to and from are also no longer the fundamen-
tal functions that everything is built on, and can instead be implemented from other
functions provided only for sum types. If there is such a thing as a fundamental
function for sum types, it is indexOf. Given a subtype of the type being worked
on, it gives a correctly typed index to this type. It is important that the equality
gen.to(a).indexK(gen.indexOf(a)).get == a always holds for all values.

The indexOfA function is a small utility that allows values of type A to be passed to
indexOf. Values of type A cannot be directly passed to indexOf as this would not be
type safe. The type ElemTop is a union of all the types that make up A, but it is not equal
to A. Here is a small example of why indexOf would be unsafe with the wrong bound.

1 def deriveUnsafe[A](a: A)(
2 using gen: HKDSumGeneric[A], showInstances: gen.Gen[Show]
3 ): Show[A] =
4 showInstances.indexK(gen.indexOf(a))
5

6 enum Foo:
7 case FooString(s: String)
8 case FooInt(i: Int)
9

10 object Foo:
11 given Show[Foo.FooString] = (foo: Foo.FooString) => foo.s
12 given Show[Foo.FooInt] = (foo: Foo.FooInt) => foo.i.toString
13 given Show[Foo] = deriveUnsafe(Foo.FooString("")) //Unsafe

Within this code, the call to deriveUnsafe would also pass a value along to the
derivation function together with the generic instance and show instances. The function
then chooses a show instance based on the value passed in. If indexOf allowed types
of A, it would return a value typed as Index[A]. This value can then be used to cast
something that is a subtype of A to A. The function indexOfA bypasses this restriction by
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"forgetting" the type it returns to the user. Note that this type unsoundness has not been
fixed for the Scala 2 version of perspective. The reason for this is that Scala 2 does not
have union types. indexOf is currently defined as def indexOf[X <: A](v: X): Index[X].
Because the lack of union types, the only real option to fix the unsoundness would be
to only keep something like indexOfA, and lose functionality in the process. The Scala
2 version of perspective is also not particularly well maintained and feature-complete
anyway, and is not where the focus of perspective lies.

The function indexOfA can sometimes be cumbersome to use as Scala does not
play well with existential types. The function indexOfACasting helps with this by
both returning index type as a dependent type but also casts the value to this depen-
dent type. This function requires the equalities gen.indexOfACasting(a).value == a and
gen.indexOfACasting(a).index == gen.indexOfA(a) to work.

Lastly, there is the function widenConst, which casts all the values in the generic repre-
sentation to the type A. This operation can only be done if the type F is covariant. One ex-
ample of this function is its use in the from function implementation. Traverse#toListK
is a function that can be called on any value with the type F[Const[Z]] for some type Z.
It then returns a List[Z]. The widenConst call here turns a value of type Gen[Option]
into a value of type Gen[Const[Option[A]]]. After the call to toListK, this value is
then a List[Option[A]], which is then flattened down to a List[A]. The code then
matches over the list, returning the first element as long as there are no other elements.

5.3.2 Using HKDSumGeneric

Using HKDSumGeneric is mostly like using HKDProductGeneric, with one extra complica-
tion. The code needs to also handle the subtypes of the type the derivation is being done
for. The reason for this is that one way users might use typeclass derivation is with the
derives keyword on Scala enums. This keyword creates a typeclass by calling a function
named derived in the companion object of the typeclass being derived. Scala does noth-
ing special for the subtypes of the enum, so the function doing the derivation needs to
handle them instead. I have tried numerous ways to reduce the boilerplate required for
this but have not found a way around it. Figure 5.6 shows how to derive a Show instance
for sum types with this extra complication accounted for. The example also demonstrates
what deriving typeclasses for algebraic data types more generally looks like.

There are three different functions to this snippet of code: derived, caseShows, and
deriveSumShow.
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1 import scala.compiletime.{erasedValue, summonFrom, summonInline}
2

3 inline def derived[A](using gen: HKDGeneric[A]): Show[A] = inline gen match
4 case gen: HKDProductGeneric.Aux[A, gen.Gen] =>
5 val shows = summonInline[gen.Gen[Show]]
6 derivedProductShow
7 case gen: HKDSumGeneric.Aux[A, gen.Gen] =>
8 summonFrom {
9 case given gen.Gen[Show] => deriveSumShow

10 case _ =>
11 given gen.Gen[Show] = gen.tupleToGen(
12 caseShows[gen.TupleRep, Helpers.TupleMap[gen.TupleRep, Show]](
13 Helpers.TupleBuilder.mkFor
14 )
15 )
16 deriveSumShow
17 }
18

19 private inline def caseShows[T <: Tuple, R <: Tuple](
20 builder: Helpers.TupleBuilder[R]
21 ): R = inline erasedValue[T] match
22 case _: (h *: t) =>
23 builder += summonFrom {
24 case sh: Show[`h`] => sh
25 case given HKDGeneric[`h`] => derived[h]
26 }
27 caseShows[t, R](builder)
28 case _: EmptyTuple => builder.result
29

30 def deriveSumShow[A](
31 using gen: HKDSumGeneric[A], instances: gen.Gen[Show]
32 ): Show[A] = new Show[A]:
33 extension (a: A) def show: String =
34 import gen.given
35 val casted = gen.indexOfACasting(a)
36 instances.indexK(casted.index).show(casted.value)

Figure 5.6: Deriving data structures using perspective (derivedProductShow not shown).



The function deriveSumShow is the function that does the actual derivation of the
typeclass for sum types. It gets the index of the case passed in using indexOfACasting
to get both the index and the value cast to an easier to work with type. Using this
index, the code then grabs a Show instance for the case passed in, and calls show using
the casted value.

The function derived is the entry point to where the generic programming happens.
The first thing the function does is to determine if it will derive an instance for a product
or a sum type. For product types, the function then summons the instances it needs and
calls derivedProductShow (not shown here) or deriveSumShow to do the actual typeclass
derivation. For sum types, the code uses summonFrom to try and summon all the instances
it needs for the subtypes. If the code finds an instance of ge.Gen[Show], things go on
as usual. If the code does not find such an instance, it calls caseShows that generates
a tuple representation of these instances. This tuple instance is then converted to the
generic representation, and the typeclass derivation goes on as usual.

The function caseShows has the job of, for each case in a sum type, finding or making
the typeclass needed. First, it matches over the tuple representation. If the tuple forms
a cons (*:), it looks for a typeclass for that type. If it does not find a typeclass, it
finds a HKDGeneric instance instead and makes a typeclass instance for the case. This
instance is then added to a tuple builder, which perspective provides. Once the entire
tuple has been matched over, the finished tuple is returned. A tuple builder is used here,
as building the tuple with cons (*:) has a time complexity of O(n2).
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Chapter 6

Performance

This chapter will go over the performance of various ways of deriving typeclasses. It will
go over how long the various methods take to compile code and how efficient that code is
when run. While perspective has a much larger feature set in Scala 3, it also has a Scala
2 version, which will be tested as well.

The benchmarking was run on an Acer Aspire 7 laptop with a Ryzen 7 5700U and 16
GB of RAM using Java 17 (output from java -version is
OpenJDK Runtime Environment Temurin-17+35 (build 17+35) on the second line). A
new Windows user was created to minimize possible interference with the benchmarking.
All the startup programs were also disabled. A separate power plan was created to allow
the laptop to always stay at high performance.

The benchmarks themselves were written using JMH [31]. JMH is a benchmarking
harness for the JVM to get more accurate benchmarking results. Benchmarking on the
JVM is tricky as it can do various things to optimize the code, which developers might not
anticipate. JMH helps combat some of these optimizations that the JVM might perform
and makes benchmarks more accurate.

This chapter will move away from the Show typeclass, which has been used as an
example so far, and will instead use the JSON encoding and decoding typeclasses from
the Circe [28] library.
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6.1 The contestants

Here are the different types of typeclass derivation which were benchmarked.

circe Generic (Scala 2): In Scala 2, CirceGeneric is a derivation scheme offered by
Circe using shapeless under the hood. It uses a macro, but only to unpack the
HList shapeless gives it.

circe Generic (Scala 3): In Scala 3, CirceGeneric is implemented using Scala 3’s Mir-
ror.

circe Derivation (Scala 2): A custom macro provided by Circe which has less func-
tionality but performs and compiles quicker. This is the gold standard within all
the Scala 2 benchmarks.

Handwritten: Idiomatically handwritten code.
shapeless 2: A custom solution using shapeless 2 and type level programming. The

Scala 3 code uses an incomplete port of shapeless 2 to Scala 3 which I worked
on [11]. While the entire library does not quite work for Scala 3 yet, the parts used
(HLists and similar) do. For encoding products, a typeclass that first gathers all
the fields up in a list is used. This is to give shapeless 2 a fair chance, as the naive
solution is far less performant.

shapeless 3 (Scala 3): A custom solution built on the functionality shapeless 3 ex-
poses.

perspective: perspective as an inexperienced developer would use it. No usage of indices
of any type.

perspective faster: perspective used with indices.
perspective inline (Scala 3): perspective with its inline functionality.
perspective unrolling (Scala 3): perspective inline with unrolling enabled, and at-

tempts made to avoid boxing.

The decompiled code for CirceGeneric, CirceDerivation, PerspectiveInline and Per-
spectiveUnrolling can be found in Appendix B.

For sum types, n cases with a single value were made. The benchmark then tried to
encode and decode the last case. Ideally encoding and decoding sum cases should take a
constant amount of time, and not grow with the amount of cases. Benchmarks that tried
to encode and decode the first and middle case were also run, but are not discussed in
this chapter. The results can be found in Appendix C.
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Allocation rate is a useful metric to track in the benchmarks, but it turned out that
this closely followed the execution time of a given benchmark, with a few exceptions. As
such these benchmarks were not included in this chapter. Alloation benchmarks can be
found in Appendix C.

The benchmarks all have data points at both size 22 and size 23 case classes because
Scala 2 stops making tuples after size 22. Scala 3 still supports tuples bigger than 22 fields
but with an array backing them instead. perspective for Scala 2 also handles products
bigger than 22 differently.

The benchmark results shown here show what I got when benchmarking and in some
cases writing encoders and decoders with the given tools. An experienced user with these
tools might be able to get more performance out of them.

Compile time benchmarks compile a circe product encoder and decoder of the given
size.

All charts have the Y-axis in log scale to better show the difference in performance
along each step.

The benchmark code and the raw results obtained from running the benchmarks
can be found in the perspective-derivation-performance [18] Github repository at commit
d60a797247a566b1bbb242d6ce675a9cffae0111.
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6.2 Scala 2

6.2.1 Runtime
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Figure 6.1: Product type Scala 2 performance.

Figure 6.1 shows the time taken to encode and decode a product type to and from circe’s
abstract syntax tree for JSON with Scala 2.

Most methods perform about the same. perspective is a bit behind, but this is to
be expected as it does not use indices. perspective with indieces (perspective faster)
performs more as expected. circe derivation is also quite fast in both of these benchmarks,
with Magnolia following closely in encoding. What I am more surprised by is that circe
generic is so close to shapeless, so I wonder why it uses a macro to unpack the HList.
The handwritten code performs quite well for small cases, but as the size of the case class
grows past 50, it starts performing a lot worse. This is a pattern that will return with
other derivation methods as well in future benchmarks.
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Figure 6.2: Last sum case Scala 2 performance.

Figure 6.2 shows the time taken to encode and decode a sum type’s last case to and
from circe’s abstract syntax tree for JSON with Scala 2.

Ideally, everything here should be constant time, or near constant time. For encoding,
only perspective, handwritten, and circe derivation below 22 fulfills this criteria. For
decoding, everything except circe generic fulfills this criteria. While circe-derivation is
not completely constant, it grows slowly enough that it does not matter too much.
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6.2.2 Compile time
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Figure 6.3: Scala 2 Compile performance.

Figure 6.3 shows the time it takes to compile a set of JSON encoder and decoder type-
classes derived in various ways with Scala 2.

When it comes to compile time, the different methods of typeclass derivation dif-
ferentiate themselves a bit more. circe generic and shapeless are the slowest, as circe
depends on shapeless. Magnolia not too far behind, meaning that while it offered nice
performance at runtime, compile time leaves something to be desired. perspective sits a
bit below that, with both variants taking the same amount of time to compile. Fastest
to compile is circe derivation and handwritten code, although as the case class gets large
enough, handwritten code grows a bit faster than the other methods.
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6.3 Scala 3

6.3.1 Runtime
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Figure 6.4: Product type Scala 3 performance.

Figure 6.4 shows the time taken to encode and decode a product type to and from circe’s
abstract syntax tree for JSON with Scala 3.

Next is running with Scala 3. Here things are much more equal, although some
patterns do repeat them selves, like perspective without indices being slow. To note here
again is that the version of shapeless 2 running in the Scala 3 benchmarks is not released,
and performance might change on release. I do not really know why Shapeless 2 runs so
badly with Scala 3. Interestingly, Magnolia also performs far worse on decoding using
Scala 3 than it did with Scala 2.
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Figure 6.5: Last sum case Scala 3 performance.

Figure 6.5 shows the time taken to encode and decode a sum type’s last case to and
from circe’s abstract syntax tree for JSON with Scala 3.

Unlike with encoding and decoding sum types with Scala 2, using Scala 3 things are
more equal. shapeless 2 and Magnolia are still not quite constant time. circe generic
is also not constant time when decoding, and has a significant overhead when encoding.
The reason most libraries have a roughly equal runtime might be because Scala 3 offers
Mirror.Sum which provides a function to get the ordinal of a sum type case.
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6.3.2 Compile time
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Figure 6.6: Scala 3 Compile performance.

Figure 6.6 shows the time it takes to compile a set of JSON encoder and decoder type-
classes derived in various ways with Scala 3.

Finally we get to the compile time using Scala 3. Something that becomes clear at
once is that perspective inline and unrolling join Magnolia in terms of having slow compile
times. Derivation methods using Mirror with few to no macros like perspective, shapeless
3 and circe generic all perform fairly similarly. Handwritten code however remains the
clear winner in terms of compile time.

I should also note other annoyances I encountered while compiling large case classes
with the various derivation schemes. circe generic and shapeless 3 require me to pass
-Xmax-inlines 128 to the compiler. Setting it to around 75, the size of the largest
types, might have been sufficient. Magnolia also ran out of stack space while compiling
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the code. I tried to 2 MiB of stack size, which was not enough. 8 MiB seems to have
been enough.

6.4 Discussion on performance

The first thing to point out here is that while there were differences in the benchmark
results, they were quite small, with a few exceptions. This means that unless performance
is really important, it is probably smarter for developers to use a typeclass generation
scheme that is otherwise best for their needs.

As mentioned earlier, a lot of things change around 22-23 number of elements in sum
and product types. If code for 23 elements is somehow faster than code for 22 elements,
it might indicate lost performance potential. Circe generic and handwritten code are the
only schemes where this is prominent.

The perspective library has two variants which use macros, inlining and unrolling.
For the time it takes to encode product types, inlining and unrolling is slightly faster
than many other alternatives. This might be because they unnecessary object creation
whenever possible. For decoding however, unrolling is only faster when the case classes
it deals with are themselves small. This might be because it can not prevent boxing
here, and has to rely on the JVM preferring the bytecode it generates. There is little
performance difference between inlining and non-inlining.

A future goal for perspective would be to reduce the compile times for inlining and
unrolling while keeping the performance advantage these derivation schemes have. This
could for example be done by dropping less important features meant to be used at the
type level.
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Chapter 7

Example application: DataPrism

The chapters so far have all talked about typeclass derivation together with generic
programming. While this is a common use case, it is far from the only one. This chapter
will go over a prototype language integrated query library called DataPrism [15] created
using perspective. It will be a very different use case than the typeclass derivation we
have covered so far, but the underlying ideas are essentially the same. The code shown
here represents the fundamental ideas of DataPrism. There is far more than shown here,
and not everything will be discussed. I will not go much into the implementation of
things here, and as such, I will mostly only show the abstract definition for things.

7.1 Two different worlds

When dealing with a language integrated query library, one is working with two different
worlds at the same time. The first world is the "normal" world, with "normal" values.
These values have "normal" unwrapped types. An integer is an Int, and a string is a
String. The second world is the wrapped world, where one is handling data that exists
elsewhere. In this case, that elsewhere will be a database server. In this world, an integer
is no longer just an Int, as one cannot, e.g., pass it to functions in a codebase that accept
an Int. DataPrism does this by giving wrapped values new types. For Int this wrapped
type is DbValue[Int]. In DataPrism, all values in the wrapped world are wrapped in
DbValue, while values in the normal world could be said to be wrapped in Id. This
distinction works nicely with the idea of higher kinded data, which DataPrism uses a lot.
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1 case class Table[A[_[_]]](
2 tableName: String,
3 columns: A[Column]
4 )(using val FA: ApplyKC[A], val FT: TraverseKC[A])
5

6 case class Column[A](name: String, tpe: DbType[A])
7

8 case class DbType[A](
9 name: String,

10 get: (ResultSet, Int) => A,
11 set: (PreparedStatement, Int, A) => Unit
12 )
13 object DbType:
14 val int32: DbType[Int] = DbType("INT32", _.getInt(_), _.setInt(_, _))
15 val int64: DbType[Long] = DbType("INT64", _.getLong(_), _.setLong(_, _))
16 val float: DbType[Float] = DbType("REAL", _.getFloat(_), _.setFloat(_, _))
17 val text: DbType[String] = DbType("TEXT", _.getString(_), _.setString(_, _))
18 ...
19

20 def array[A: ClassTag](inner: DbType[A]): DbType[Seq[A]] = DbType(
21 "ARRAY" + inner.name,
22 _.getObject(_).asInstanceOf[Array[A]].toSeq,
23 (a, b, c) => a.setObject(b, c.toArray)
24 )
25

26 def nullable[A](inner: DbType[A])(
27 using NotGiven[A <:< Option[_]]
28 ): DbType[Option[A]] = DbType(
29 inner.name,
30 (a, b) => Option(inner.get(a, b)),
31 (a, b, c) => inner.set(a, b, c.orNull)
32 )
33

Figure 7.1: DataPrism’s Table, Column and DbType.

7.2 Tables

Let start with defining tables in DataPrism. A table consists of two things, the table
name, and the columns as higher kinded data with the Column type. A column consist
of the column name and a value indicating the SQL type of the column. The values
indicating the SQL types give information on how to get the specified types from the
result and how to set a value of the given type in a prepared statement. The value
indicating the SQL type of the column are essentially typeclasses, except that they are
passed explicitly because I think it is important to be explicit in what types are being
handled. Tables also require an apply and traverse instance for this higher kinded data.
These can be generated using macros. Definitions for all of these can be seen in Figure 7.1.
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7.3 Simple selects

With a table defined, the next step is to perform some select queries using this table.
For this, a query type and a function that lifts the table into this query type is needed.
A few functions that run queries is also needed. Note that running queries is done quite
differently in the actual library. The functions presented here are simplifications that do
not exist in the way shown here. In the actual library, operations are built using a series
of functions to ensure the operations are valid. There is also just a single run function,
which returns an object where the developer then specifies how many rows they were
expecting. In these examples, those two steps have been merged.

1 type Query[A[_[_]]]
2

3 type QueryCompanion
4 val Query: QueryCompanion
5

6 extension (q: QueryCompanion) def from[A[_[_]]](table: Table[A]): Query[A]
7

8 extension [A[_[_]]](q: Query[A])
9 def runMany: Future[Seq[A[Id]]]

10 def runSingle: Future[A[Id]]
11 def runOptional: Future[Option[A[Id]]]

We have a few different run functions here: runMany runs the query and returns all
rows; runSingle grabs only the first row, failing if one does not exist; and runOptional
tries to grab the first row, returning None if no results were returned. A question that
might crop up is why the code returns F[A[Id]] instead of A[F] where F is a type like
Option or Seq. The reason is that for F[A[Id]], all the results are correlated. For
example, all the columns are missing, or none of them are. In A[Option], just because
the first column is missing does not mean the second column is. This problem becomes
even more visible with Seq, where there is no guarantee that all of the columns contain
the same number of values. A[F] also becomes problematic when dealing with nullable
columns.

7.4 filter, map, and groupBy

The next step would be to define filter, map, and groupBy operators for the query type.
These correspond to the SQL operators WHERE, SELECT, and GROUP BY.
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1 extension [A[_[_]]](q: Query[A])
2 def filter(f: A[DbValue] => DbValue[Boolean]): Query[A]
3

4 def map[B[_[_]]: ApplicativeK: TraverseK](f: A[DbValue] => B[DbValue]): Query[B]
5

6 def groupMap[B[_[_]]: TraverseKC, C[_[_]]: ApplicativeK: TraverseK](
7 group: A[DbValue] => B[DbValue]
8 )(map: (B[DbValue], A[Many]) => C[DbValue]): C[DbValue]

The filter function works mostly as one might expect. It turns the current columns in
the query into a wrapped boolean. The map function allows one to change the "shape"
of the query and the columns the query is dealing with. DataPrism does not define a
groupBy function but instead defines a groupMap function. Providing a groupMap function
instead of a groupBy function allows for both better ergonomics and allows DataPrism
to take advantage of its higher kinded data again. In the group function, the user must
construct wrapped values that will be grouped against. The map call then allows access
to these grouped values while also giving access to the original values of the query, but
typed as Many instead of DbValue. The user must then use aggregation functions to
regain DbValue values. Because of this, queries cannot fail when using SQLs GROUP BY.

7.5 Joins

Joins will be covered next and are shown in Figure 7.2. These work mostly like the filter
function but with two queries. A match type is also used to avoid multiple wrappings of
Option. Higher kinded types are again used to annotate fields as nullable when needed.

7.6 Insert and update

DataPrism also allows for using higher kinded types when doing updates and inserts. If
one wants to set or update all the rows that a table has defined, one does not need to do
anything fancy. Given an A[Id], one can insert it with little problem. Sometimes, however,
one wants to avoid setting some rows when updating and inserting data. Updating and
inserting rows in this way can be done using Option. One can leave any row one does not
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1 type Nullable[A] = A match {
2 case Option[b] => Option[b]
3 case _ => Option[A]
4 }
5

6 type Compose2[A[_], B[_]] = [Z] =>> A[B[Z]]
7

8 type InnerJoin[A[_[_]], B[_[_]]] = [F[_]] =>> (A[F], B[F])
9 type LeftJoin[A[_[_]], B[_[_]]] = [F[_]] =>> (A[F], B[Compose2[F, Nullable]])

10 type RightJoin[A[_[_]], B[_[_]]] = [F[_]] =>> (A[Compose2[F, Nullable]], B[F])
11 type FullJoin[A[_[_]], B[_[_]]] =
12 [F[_]] =>> (A[Compose2[F, Nullable]], B[Compose2[F, Nullable]])
13

14 extension [A[_[_]]](lhs: Query[A])
15 def join[B[_[_]]](rhs: Query[B])(
16 f: (A[DbValue], B[DbValue]) => DbValue[Boolean]
17 ): Query[InnerJoin[A, B]]
18

19 def leftJoin[B[_[_]]](rhs: Query[B])(
20 f: (A[DbValue], B[DbValue]) => DbValue[Boolean]
21 ): Query[LeftJoin[A, B]]
22

23 def rightJoin[B[_[_]]](rhs: Query[B])(
24 f: (A[DbValue], B[DbValue]) => DbValue[Boolean]
25 ): Query[RightJoin[A, B]]
26

27 def fullJoin[B[_[_]]](rhs: Query[B])(
28 f: (A[DbValue], B[DbValue]) => DbValue[Boolean]
29 ): Query[FullJoin[A, B]]

Figure 7.2: DataPrism’s joins.

1 extension [A[_[_]]](q: Table[A])
2 def insert(value: A[Option]): Future[Int]
3

4 def insertQuery(value: Query[[F[_]] => A[Compose2[Option, F]]])
5

6 def update(where: A[DbValue] => DbValue[Boolean])(
7 setValues: A[DbValue] => A[Compose2[Option, DbValue]]
8 ): Future[Int]

Figure 7.3: DataPrism’s insert and update.



want to set as None instead. Figure 7.3 shows how insert and update could look, using
this idea.

Because the code in Figure 7.3 uses the type Option[DbValue[Z]] for some type Z, the
code can determine which columns to set and which to ignore when the query is being
generated. If the code instead used DbValue[Option[Z]], this would not be possible. Entire
queries can also be inserted this way using exotic higher kinded data.

7.7 Comparision with existing libraries

Two existing prominent libraries in the Scala ecosystem within the same space are
Slick [22] and Quill [7]. There is also a Haskell SQL library called Beam [6], which
is also built on higher kinded data. Here we focus on Scala libraries and will not make
comparisons between Beam and DataPrism.

Slick uses a lot of tuples and advanced typed programming to deal with the database.
It generates the queries from the given operations at runtime. It requires that the user
defines the wrapped representation and how the wrapped representation maps to the un-
wrapped representation. If wanted, this can be done with code generation, where the code
generation reads an SQL schema and generates wrapped and unwrapped representations.

Quill does most of its work at compile time using macros. The unwrapped represen-
tation is also the wrapped representation. Unless configured otherwise, it directly gets
the name of the columns and tables from the case class. It gets around the problems
associated with sharing the representation by verifying everything at compile time.

DataPrism sits somewhere between these two. Like Slick, DataPrism does most of
its operations at runtime. It, however, shares the intermediary representation with the
unwrapped representation but keeps their types different with higher kinded types.
DataPrism requires the user to explicitly supply the names of the columns and table, like
Slick, but technically nothing stops DataPrism from inferring this data automatically.
Requiring that the user supplies the column name, type, and table name is an intentional
choice and not a choice made because of technological limitations, like with Slick.

At this point in time, DataPrism is also very light, sitting under 3000 lines of code.
This count might increase a bit as more functions are implemented and more databases
are supported, but it is unlikely that the codebase will grow significantly.
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7.7.1 Exotic higher kinded data and DataPrism

Something that sets DataPrism apart from Slick and Quill is its leniency with nested
data.

Slick supports nested data as long as it has been told how this data should be repre-
sented when wrapping and unwrapping. In practice, this means that anything other than
a simple case class as the unwrapped representation can quickly become cumbersome.
Quill supports nested fields in case classes where those fields are themselves case classes.

DataPrism meanwhile accepts anything that has instances for ApplyKC and TraverseKC.
That means that a query like table.map(t => List(t.foo, t.bar, t.baz)) can be perfectly
legal. Slick might be able to "learn" how to do this with enough code supporting this
feature, while for Quill, this is simply impossible, as Quill cannot differentiate between
List[F[A]] and F[List[A]]. That is to say, Quill cannot know if the list is a wrapped value
or if it only contains wrapped values.

A clear example where DataPrism takes advantage of exotic higher kinded data is
for update and insert queries (values of type Query[Option[A]] are also generated in the
implementation of insert).

DataPrism’s use and allowance of exotic higher kinded data questions what it means for
a data type to be flat. Much of the literature mentions flat vs. nested results [3], but a
clear definition of what flat and nested means is not given. If flat means that the size of
the data is known at compile time, then it does seem like DataPrism allows nested data.
However, if one only requires that the data being worked on can be converted into flat
data, then yes, DataPrism works with flat data like most other SQL query generation
libraries.

98



Chapter 8

Conclusion

This thesis has discussed datatype-generic programming and its manifestation in Scala.
Most of the focus has been on deriving typeclasses with datatype-generic programming. It
has explained how to think about datatype-generic programming, the tools Scala exposes
for this kind of programming, and introduced some libraries intended for making it easier.

The main new contribution this thesis presents is perspective, a library for datatype-
generic programming using higher kinded data. perspective defines higher kinded versions
of normal typeclasses like Functor, Applicative, Foldable, Traverse and more. With
these tools, the programmer can apply datatype-generic programming to arbitrary data
types in much the same way the programmer might work on lists. Furthermore, for more
advanced datatype-generic programing perspective also includes a higher kinded version
of Representable. This allows a developer to index and tabulate over a data structure,
performing some operation on each of the fields of the data structure.

The perspective library further takes these ideas and exposes the type HKDGeneric
that functions can use to perform datatype-generic programming with normal, non-higher
kinded data. It is these typeclasses that most users will use when performing typeclass
derivation. perspective also provides a different typeclass, InlineHKDGeneric, which can
be used to generate compact and fast bytecode using inline functions. InlineHKDGeneric
also provides a limited form of unrolling for even faster bytecode and less boxing in certain
cases.

The thesis also discusses how datatype-generic programming is applied on sum types
and what different libraries do differently with sum types. It also shows how perspective’s
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Title Issue id Comment
Type lambda don’t work with
implicit search in Dotty, does
in Scala 2

7452 From the SQL library that started it all. In DataPrism, the type Abstract
is today called MapRes, and works fairly similarly.

Polymorphic function types
and normal types don’t mash

9663 Perspective’s foldLeftK function did not initially play well with polymor-
phic function

Assertion failed when not
adding prefix to extension
method in method body

11318 Problems with Representable

Poly functions are not beta re-
duced

15968 Scala 3 offers some tools to beta reduce functions in macros. This did
not at the time work for polymorphic functions, forcing perspective to
user another encoding of polymorphic functions instead which can still be
found in InlineHKDGeneric today.

Crash with dependent types
and match type

15983 perspective often combines types in different ways, and sometimes the
Scala 3 compiler does not like dealing with some of these combinations.

asExprOf fails for tuples larger
than 22

17257 In an attempt to make the macro code in perspective safer, many casts
were changed to asExprOf instead to let the Scala compiler check them
at compile time. This did not work for larger case classes. This bug was
found while optimizing compile time performance for the benchmarks.

Performance of compiletime
tuple construction

15988 Constructing tuples with cons (*:) currently has a runtime time complex-
ity of O(n2). As such perspective avoids doing this in as many cases as
possible, and offers a type TupleBuilder to do this in user code.

Figure 8.1: Scala 3 compiler bugs encountered while making perspective.

approach fits mostly seamlessly with sum types by using higher kinded types where each
field is of the type Option instead of Id that is used for product types.

The different ways of doing typeclass derivation are then benchmarked in terms of
runtime and compile time performance. perspective does quite well in terms of run-
time performance but has room to grow in terms of compile time performance. This is
especially true for InlineHKDGeneric.

Lastly, an example SQL query construction library called DataPrism built on per-
spective is demonstrated. This library makes plenty use of higher kinded data and can
do some things other libraries in this space cannot, like updating a specific selection of
columns with one operation. DataPrism can also handle exotic higher kinded data, which
means it is less strict with the queries it generates.

My hope with perspective is that it can push forward new ideas surrounding datatype-
generic programming in Scala. perspective has already had some impact in the Scala
community. While developing perspective, I ran into many bugs in the Scala 3 compiler,
many of which have been fixed. A list and explanation of these bugs can be found in
Figure 8.1.

perspective is also part of Scala 3’s community build, which means that the Scala 3
compiler will regularly try to compile perspective. It should be noted that the version of
perspective in the community build is an older version, but it has still managed to have
some impact [20, 4, 5].
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Appendix A

Proof for typeclass instances for products of arbitrary size

A.1 Apply

A.1.1 Base Step

• Start:
fa.tupledK(fb).tupledK(fc) =

fa.tupledK(fb.tupledK(fc)).mapK{ [Z] => (ft: (A[Z], (B[Z], C[Z]))) =>
((ft._1, ft._2._1), ft._2._2)

}

• Unwrapping the first left tupledK:
(fa, fb).tupledK(fc) =

fa.tupledK(fb.tupledK(fc)).mapK{ [Z] => (ft: (A[Z], (B[Z], C[Z]))) =>
((ft._1, ft._2._1), ft._2._2)

}

• Unwrapping the second left tupledK:
((fa, fb), fc) =

fa.tupledK(fb.tupledK(fc)).mapK{ [Z] => (ft: (A[Z], (B[Z], C[Z]))) =>
((ft._1, ft._2._1), ft._2._2)

}

• Unwrapping the second right tupledK:
((fa, fb), fc) =

fa.tupledK((fb, fc)).mapK{ [Z] => (ft: (A[Z], (B[Z], C[Z]))) =>
((ft._1, ft._2._1), ft._2._2)

}
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• Unwrapping the first right tupledK:
((fa, fb), fc) =

(fa, (fb, fc)).mapK{ [Z] => (ft: (A[Z], (B[Z], C[Z]))) =>
((ft._1, ft._2._1), ft._2._2)

}

• Unwrapping the mapK:
((fa, fb), fc) = ((fa, fb), fc)

A.1.2 Induction step

• Start:
fa.tupledK(fb).tupledK(fc) =

fa.tupledK(fb.tupledK(fc)).mapK{ [Z] => (ft: (A[Z], (B[Z], C[Z]))) =>
((ft._1, ft._2._1), ft._2._2)

}

• Expanding tuples:
(x1a, x2a).tupledK((x1b, x2b)).tupledK((x1c, x2c)) =

(x1a, x2a).tupledK((x1b, x2b).tupledK((x1c, x2c))).mapK {
[Z] => (ft: (A[Z], (B[Z], C[Z]))) => ((ft._1, ft._2._1), ft._2._2)

}

• Unwrapping the first left tupledK:
(x1a.tupledK(x1b), (x2a, x2b)).tupledK((x1c, x2c)) =

(x1a, x2a).tupledK((x1b, x2b).tupledK((x1c, x2c))).mapK {
[Z] => (ft: (A[Z], (B[Z], C[Z]))) => ((ft._1, ft._2._1), ft._2._2)

}

• Unwrapping the second left tupledK:
(x1a.tupledK(x1b).tupledK(x1c), ((x2a, x2b), x2c)) =

(x1a, x2a).tupledK((x1b, x2b).tupledK((x1c, x2c))).mapK {
[Z] => (ft: (A[Z], (B[Z], C[Z]))) => ((ft._1, ft._2._1), ft._2._2)

}

• Unwrapping the second right tupledK:
(x1a.tupledK(x1b).tupledK(x1c), ((x2a, x2b), x2c)) =

(x1a, x2a).tupledK((x1b.tupledK(x1c), (x2b, x2c))).mapK {
[Z] => (ft: (A[Z], (B[Z], C[Z]))) => ((ft._1, ft._2._1), ft._2._2)

}

• Unwrapping the first right tupledK:
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(x1a.tupledK(x1b).tupledK(x1c), ((x2a, x2b), x2c)) =
(x1a.tupledRight(x1b.tupledK(x1c)), (x2a, (x2b, x2c))).mapK {

[Z] => (ft: (A[Z], (B[Z], C[Z]))) => ((ft._1, ft._2._1), ft._2._2)
}

• Unwrapping mapK:
(x1a.tupledK(x1b).tupledK(x1c), ((x2a, x2b), x2c)) =

(
x1a.tupledRight(x1b.tupledK(x1c)).mapK {

[Z] => (ft: (A[Z], (B[Z], C[Z]))) => ((ft._1, ft._2._1), ft._2._2)
},
(x2a, (x2b, x2c)).mapK {

[Z] => (ft: (A[Z], (B[Z], C[Z]))) => ((ft._1, ft._2._1), ft._2._2)
}

)

• Induction hypothesis:
(x1a.tupledK(x1b).tupledK(x1c), ((x2a, x2b), x2c)) =

(
x1a.tupledK(x1b).tupledK(x1c),
(x2a, (x2b, x2c)).mapK {

[Z] => (ft: (A[Z], (B[Z], C[Z]))) => ((ft._1, ft._2._1), ft._2._2)
}

)

• Unwrapping mapK:
(x1a.tupledK(x1b).tupledK(x1c), ((x2a, x2b), x2c)) =

(x1a.tupledK(x1b).tupledK(x1c), ((x2a, x2b), x2c))

A.2 Applicative

A.2.1 Base step

Left identity

• Start:
ValueK.const(()).pure.tupledK(fa).mapK([Z] => (ft: (Unit, A[Z])) => ft._2) = fa

• Unwrapping pure:
().tupledK(fa).mapK([Z] => (ft: (Unit, A[Z])) => ft._2) = fa
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• Unwrapping tupledK:
((), fa).mapK([Z] => (ft: (Unit, A[Z])) => ft._2) = fa

• Unwrapping mapK:
fa = fa

Right identity

• Start:
fa.tupledK(ValueK.const(()).pure).mapK([Z] => (ft: (A[Z], Unit)) => ft._1) = fa

• Unwrapping pure:
fa.tupledK(()).mapK([Z] => (ft: (A[Z], Unit)) => ft._1) = fa

• Unwrapping tupledK:
(fa, ()).mapK([Z] => (ft: (Unit, A[Z])) => ft._1) = fa

• Unwrapping mapK:
fa = fa

A.2.2 Induction step

Left identity

• Start:
ValueK.const(()).pure.tupledK(fa).mapK {

[Z] => (ft: (Unit, A[Z])) => ft._2
} = fa

• Showing tuple:
ValueK.const(()).pure.tupledK((x1, x2)).mapK {

[Z] => (ft: (Unit, A[Z])) => ft._2
} = (x1, x2)

• Unwrapping pure:
(ValueK.const(()).pure, ()).tupledK((x1, x2)).mapK {

[Z] => (ft: (Unit, A[Z])) => ft._2
} = (x1, x2)

108



• Unwrapping tupledK:
(ValueK.const(()).pure.tupledK(x1), ((), x2)).mapK {

[Z] => (ft: (Unit, A[Z])) => ft._2
} = (x1, x2)

• Unwrapping mapK:
(ValueK.const(()).pure.tupledK(x1).mapK {

[Z] => (ft: (Unit, A[Z])) => ft._2
}, x2) = (x1, x2)

• Induction hypothesis:
(x1, x2) = (x1, x2)

Right identity

• Start:
fa.tupledK(ValueK.const(()).pure).mapK {

[Z] => (ft: (A[Z], Unit)) => ft._1
} = fa

• Showing tuple:
(x1, x2).tupledK(ValueK.const(()).pure).mapK {

[Z] => (ft: (A[Z], Unit)) => ft._1
} = (x1, x2)

• Unwrapping pure:
(x1, x2).tupledK((ValueK.const(()).pure, ())).mapK {

[Z] => (ft: (A[Z], Unit)) => ft._1
} = (x1, x2)

• Unwrapping tupledK:
(x1.tupledK(ValueK.const(()).pure), (x2, ())).mapK {

[Z] => (ft: (A[Z], Unit)) => ft._1
} = (x1, x2)

• Unwrapping mapK:
(x1.tupledK(ValueK.const(()).pure).mapK {

[Z] => (ft: (A[Z], Unit)) => ft._1
}, x2) = (x1, x2)

• Induction hypothesis:
(x1, x2) = (x1, x2)

109



A.3 Traverse

The extra definitions and such will only be shown once.

A.3.1 Base step

Sequential composition

Extra definitions:

val fa: F[A, D] = ???
val f: A ~>: Compose2[M, B] = ???
val g: B ~>: Compose2[N, C] = ???

val N = summon[Applicative[N]]
val M = summon[Applicative[M]]

• Start:
Nested(M.map(fa.traverseK(f))(fb => fb.traverseK(g))) ==

fa.traverseK[[Z] => Nested[M, N, Z], C](
[Z] => (a: A[Z]) => Nested(M.map(f(a))(b => g(b)))

)

• Unwrapping traverseK (and renaming b to fb):
Nested(M.map(f(fa))(fb => g(fb))) == Nested(M.map(f(fa))(fb => g(fb)))

Parallel composition

Extra definitions:
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val fa: F[A, D] = ???
val f: A ~>: Compose2[M, B] = ???
val g: B ~>: Compose2[N, B] = ???

val N = summon[Applicative[N]]
val M = summon[Applicative[M]]

type MN[Z] = (M[Z], N[Z])

given Applicative[MN] with:
def pure[X](x: X): MN[X] = (M.pure(x), N.pure(x))

def pure[X, Y](f: MN[X => Y])(fa: MN[X]): MN[Y] =
val (fam, fan) = fa
val (fm, fn) = f
(M.ap(fm)(fam), N.ap(fn)(fan))

override def map[X, Y](fx: MN[X])(f: X => Y): MN[Y] =
val (mx, nx) = fx
(M.map(mx)(f), M.map(nx)(f))

override def product[X, Y](fx: MN[X], fy: MN[Y]): MN[(X, Y)] =
val (mx, nx) = fx
val (my, ny) = fy
(M.product(mx, my), N.product(nx, ny))

end given

• Start:
fa.traverseK[MN, B]([Z] => (a: A[Z]) => (f(a), g(a))) ==

(fa.traverseK(f), fa.traverseK(g))

• Unwrapping traverseK
(f(fa), g(fa)) == (f(fa), g(fa))

A.3.2 Induction step

Sequential composition

• Start:
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Nested(M.map(fa.traverseK(f))(fb => fb.traverseK(g))) ==
fa.traverseK[[Z] => Nested[M, N, Z], C](

[Z] => (a: A[Z]) => Nested(M.map(f(a))(b => g(b)))
)

• Unwrapping traverseK:
Nested(

M.map(fa._1.traverseK(f).product(f(fa._2)))(
fb => fb._1.traverseK(g).product(g(fb._2))

)
) ==

fa._1.traverseK[[Z] => Nested[M, N, Z], C](
[Z] => (a: A[Z]) => Nested(M.map(f(a))(b => g(b)))

).product(Nested(M.map(f(fa._2))(b => g(b)))

• Induction hypothesis
Nested(

M.map(fa._1.traverseK(f).product(f(fa._2)))(
fb => fb._1.traverseK(g).product(g(fb._2))

)
) ==

Nested(M.map(fa._1.traverseK(f))(fb => fb.traverseK(g)))
.product(Nested(M.map(f(fa._2))(b => g(b)))

• Unwrapping Nested.product
//Nested.product can be unwrapped like so
Nested(mna).product(Nested(mnb)) ==

Nested(M.map(M.product(mna, mnb))((na, nb) => N.product(na, nb)))

Nested(
M.map(fa._1.traverseK(f).product(f(fa._2)))(

fb => fb._1.traverseK(g).product(g(fb._2))
)

) ==
Nested(

M.map(
M.product(

M.map(fa._1.traverseK(f))(fb => fb.traverseK(g)),
M.map(f(fa._2))(b => g(b)

)
)((n1, n2) => N.product(n1, n2))

)

• Removing nested and rewriting product to always use instances
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M.map(
M.product(

fa._1.traverseK(f),
f(fa._2)

)
)(fb => N.product(fb._1.traverseK(g), g(fb._2))) ==

M.map(
M.product(

M.map(fa._1.traverseK(f))(fb => fb.traverseK(g)),
M.map(f(fa._2))(b => g(b)

)
)((n1, n2) => N.product(n1, n2))

• Functor law of composition together with applicative law of associativity.
M.map(

M.product(
M.map(fa._1.traverseK(f))(fb => fb.traverseK(g)),
M.map(f(fa._2))(b => g(b))

)
)((n1, n2) => N.product(n1, n2)) ==

M.map(
M.product(

M.map(fa._1.traverseK(f))(fb => fb.traverseK(g)),
M.map(f(fa._2))(b => g(b))

)
)((n1, n2) => N.product(n1, n2))

Parallel composition

• Start:
fa.traverseK[MN, B]([Z] => (a: A[Z]) => (f(a), g(a))) ==

(fa.traverseK(f), fa.traverseK(g))

• Unwrapping traverseK:
fa._1.traverseK[MN, B](

[Z] => (a: A[Z]) => (f(a), g(a))
).product((f(fa._2), g(fa._2))) ==

(
fa._1.traverseK(f).product(f(fa._2)),
fa._2.traverseK(g).product(g(fa._2))

)

• Unwrapping NM.product
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(
fa._1.traverseK[MN, B](

[Z] => (a: A[Z]) => (f(a), g(a))
)._1.product(f(fa._2)),
fa._1.traverseK[MN, B](

[Z] => (a: A[Z]) => (f(a), g(a))
)._2.product(g(fa._2))

) ==
(

fa._1.traverseK(f).product(f(fa._2)),
fa._2.traverseK(g).product(g(fa._2))

)

• Induction hypothesis:
(

(fa._1.traverseK(f), fa._1.traverseK(g))._1.product(f(fa._2)),
(fa._2.traverseK(f), fa._2.traverseK(g))._2.product(g(fa._2))

) ==
(

fa._1.traverseK(f).product(f(fa._2)),
fa._2.traverseK(g).product(g(fa._2))

)

• Unwrapping tuple access:
(

fa._1.traverseK(f).product(f(fa._2)),
fa._2.traverseK(g)._2.product(g(fa._2))

) ==
(

fa._1.traverseK(f).product(f(fa._2)),
fa._2.traverseK(g).product(g(fa._2))

)

A.4 Monad

A.4.1 Base step

Left identity

• Start:
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ValueK.const(a).pure.flatMapK(f) = f(a)

• Unwrapping pure:
a.flatMapK(f) = f(a)

• Unwrapping flatMapK:
f(a) = f(a)

Right identity

• Start:
fa.flatMapK([Z] => (a: A[Z]) => ValueK.const(a).pure) = fa

• Unwrapping pure:
fa.flatMapK([Z] => (a: A[Z]) => a) = fa

• Unwrapping flatMapK:
fa = fa

Associativity

• Start:
fa.flatMapK(f).flatMapK(g) =

fa.flatMapK([Z] => (a: A[Z]) => f(a).flatMapK(g))

• Unwrapping first left flatMapK:
f(fa).flatMapK(g) =

fa.flatMapK([Z] => (a: A[Z]) => f(a).flatMapK(g))

• Unwrapping first right flatMapK:
f(fa).flatMapK(g) = f(fa).flatMapK(g)

A.4.2 Induction step

Left identity

• Start:
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ValueK.const(a).pure.flatMapK(f) = f(a)

• Unwrapping pure:
(ValueK.const(a).pure, a).flatMapK(f) = f(a)

• Unwrapping flatMapK:
(

ValueK.const(a).pure.flatMapK([Z] => (a: A[Z]) => f(a)._1),
f(a)._2

) = f(a)

• Induction hypothesis with the function inside flatMapK:
(([Z] => (a: A[Z]) => f(a)._1)(a), f(a)._2) = f(a)

• Applying function:
(f(a)._1, f(a)._2) = f(a)

• The function f returns a tuple, so constructing a tuple from the return values of the
function is a no-op
f(a) = f(a)

Right identity

• Start:
fa.flatMapK([Z] => (a: A[Z]) => ValueK.const(a).pure) = fa

• Expanding tuple:
(x1, x2).flatMapK([Z] => (a: A[Z]) => ValueK.const(a).pure) = (x1, x2)

• Expanding pure:
(x1, x2).flatMapK([Z] => (a: A[Z]) => (ValueK.const(a).pure, a)) = (x1, x2)

• Expanding flatMapK:
(

x1.flatMapK {
[Z] => (a: A[Z]) => (ValueK.const(a).pure, a)._1

},
(ValueK.const(x2).pure, x2)._2

) = (x1, x2)

• Removing tuples where possible:
(x1.flatMapK([Z] => (a: A[Z]) => ValueK.const(a).pure), x2) = (x1, x2)

• Induction hypothesis:
(x1, x2) = (x1, x2)
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Associativity

• Start:
fa.flatMapK(f).flatMapK(g) =

fa.flatMapK([Z] => (a: A[Z]) => f(a).flatMapK(g))

• Expanding tuples:
(x1, x2).flatMapK(f).flatMapK(g) =

(x1, x2).flatMapK([Z] => (a: A[Z]) => f(a).flatMapK(g))

• Expanding first left flatMapK:
(x1.flatMapK([Z] => (a: A[Z]) => f(a)._1), f(x2)._2).flatMapK(g) =

(x1, x2).flatMapK([Z] => (a: A[Z]) => f(a).flatMapK(g))

• Expanding second left flatMapK:
(

x1.flatMapK([Z] => (a: A[Z]) => f(a)._1).flatMapK([Z] => (b: B[Z]) => g(b)._1),
g(f(x2)._2)._2

) = (x1, x2).flatMapK([Z] => (a: A[Z]) => f(a).flatMapK(g))

• Expanding first right flatMapK:
(

x1.flatMapK([Z] => (a: A[Z]) => f(a)._1).flatMapK([Z] => (b: B[Z]) => g(b)._1),
g(f(x2)._2)._2

) = (
x1.flatMapK([Z] => (a: A[Z]) => f(a).flatMapK(g)._1),
f(x2).flatMapK(g)._2

)

• Expanding right f application into tuples:
(

x1.flatMapK([Z] => (a: A[Z]) => f(a)._1).flatMapK([Z] => (b: B[Z]) => g(b)._1),
g(f(x2)._2)._2

) = (
x1.flatMapK([Z] => (a: A[Z]) => (f(a)._1, f(a)._2).flatMapK(g)._1),
(f(x2)._1, f(x2)._2).flatMapK(g)._2

)

• Expanding second right flatMapK:
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(
x1.flatMapK([Z] => (a: A[Z]) => f(a)._1).flatMapK([Z] => (b: B[Z]) => g(b)._1),
g(f(x2)._2)._2

) = (
x1.flatMapK {

[Z] => (a: A[Z]) => (f(a)._1.flatMapK([Z] => (b: B[Z]) => g(b)._1), g(f(a)._2)._2)._1
},
(f(x2)._1.flatMapK([Z] => (b: B[Z]) => g(b)._1), g(f(x2)._2)._2)._2

)

• Removing tuples where possible:
(

x1.flatMapK([Z] => (a: A[Z]) => f(a)._1).flatMapK([Z] => (b: B[Z]) => g(b)._1),
g(f(x2)._2)._2

) = (
x1.flatMapK([Z] => (a: A[Z]) => f(a)._1.flatMapK([Z] => (b: B[Z]) => g(b)._1)),
g(f(x2)._2)._2

)

\item Induction hypothesis:
\begin{minted}[linenos=false,frame=none]{scala}
(

x1.flatMapK([Z] => (a: A[Z]) => f(a)._1).flatMapK([Z] => (b: B[Z]) => g(b)._1),
g(f(x2)._2)._2

) = (
x1.flatMapK([Z] => (a: A[Z]) => f(a)._1.flatMapK([Z] => (b: B[Z]) => g(b)._1)),
g(f(x2)._2)._2

)

A.5 Representable

A.5.1 Base step

Tabulate index

• Start:
tabulateK([Z] => (i: RepK[Z]) => fa.indexK(i)) = fa

• Expanding tabulateK:
fa.indexK(()) = fa
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• Expanding indexK:
fa = fa

Index tabulate

• Start:
tabulateK(f).indexK(i) = f(i)

• Expanding tabulateK:
f(()).indexK(i) = f(i)

• There exists only one index value, Unit. As such i must also be Unit:
f(()).indexK(()) = f(())

• Expanding indexK:
f(()) = f(())

A.5.2 Induction step

Tabulate index

• Start:
tabulateK([Z] => (i: RepK[Z]) => fa.indexK(i)) = fa

• Expanding tuple:
tabulateK([Z] => (i: RepK[Z]) => (x1, x2).indexK(i)) = (x1, x2)

• Expanding tabulateK:
(

tabulateK([Z] => (r: R1[Z]) => (x1, x2).indexK(Left(r))),
(x1, x2).indexK(Right(()))

) = (x1, x2)

• Expanding indexK:
(tabulateK([Z] => (r: R1[Z]) => x1.indexK(r)), x2) = (x1, x2)

• Induction hypothesis:
(x1, x2) = (x1, x2)
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Index tabulate

• Start:
tabulateK(f).indexK(i) = f(i)

• Expanding tabulateK:
(tabulateK([Z] => (r: R1[Z]) => f(Left(r))), f(Right(()))).indexK(i) = f(i)

• From here on, i can take two values. If it is Right(()) we end up here
(tabulateK([Z] => (r: R1[Z]) => f(Left(r))), f(Right(()))).indexK(Right(()))

= f(Right(()))

Expanding indexK
f(Right(())) = f(Right(()))

• If i is Left(r) we end up here
(tabulateK([Z] => (r: R1[Z]) => f(Left(r))), f(Right(()))).indexK(Left(r))

= f(Left(r))

Expanding indexK
tabulateK([Z] => (r: R1[Z]) => f(Left(r))).indexK(r) = f(Left(r))

Abstracting
val g = [Z] => (r: R1[Z]) => f(Left(r))
tabulateK(g).indexK(r) = g(r)

Induction hypothesis
val g = [Z] => (r: R1[Z]) => f(Left(r))
g(r) = g(r)
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Appendix B

Decompiledd class files

All the class files here have been decompiled with CFR 0.152 and were for a case class
of five fields. Forwarders have been removed. The code has been formated with IntelliJ
and line breaks have been added to fit on the pages.

B.1 Encoders

B.1.1 CirceDerivation

1 public final class CirceDerivationDefs$BenchmarkCaseClass5$.anon.3
2 implements Encoder.AsObject<CirceDerivationDefs.BenchmarkCaseClass5> {
3 private final Encoder<Object> encoder0;
4 private final Encoder<String> encoder1;
5 private final Encoder<Object> encoder2;
6 private final Encoder<Object> encoder3;
7 private final Encoder<Json> encoder4;
8

9 public final JsonObject encodeObject(
10 CirceDerivationDefs.BenchmarkCaseClass5 a) {
11 return JsonObject$.MODULE$.fromIterable((Iterable) new.colon.colon(
12 (Object) new Tuple2((Object) "f0", (Object) this.encoder0.apply(
13 (Object) BoxesRunTime.boxToInteger((int) a.f0()))),
14 (List) new.colon.colon((Object) new Tuple2((Object) "f1",
15 (Object) this.encoder1.apply((Object) a.f1())),
16 (List) new.colon.colon((Object) new Tuple2((Object) "f2",
17 (Object) this.encoder2.apply(
18 (Object) BoxesRunTime.boxToDouble((double) a.f2()))),
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19 (List) new.colon.colon((Object) new Tuple2((Object) "f3",
20 (Object) this.encoder3.apply(
21 (Object) BoxesRunTime.boxToBoolean(
22 (boolean) a.f3()))), (List) new.colon.colon(
23 (Object) new Tuple2((Object) "f4",
24 (Object) this.encoder4.apply((Object) a.f4())),
25 (List) Nil$.MODULE$))))));
26 }
27

28 public CirceDerivationDefs$BenchmarkCaseClass5$.anon.3() {
29 Encoder.$init$((Encoder) this);
30 Encoder.AsObject.$init$((Encoder.AsObject) this);
31 this.encoder0 = Encoder$.MODULE$.encodeInt();
32 this.encoder1 = Encoder$.MODULE$.encodeString();
33 this.encoder2 = Encoder$.MODULE$.encodeDouble();
34 this.encoder3 = Encoder$.MODULE$.encodeBoolean();
35 this.encoder4 = Encoder$.MODULE$.encodeJson();
36 }
37 }

B.1.2 CirceGeneric (Scala 2)

1 public final class CirceGenericDefs$BenchmarkCaseClass5$anon$lazy$macro$23$1$.anon.3
2 extends
3 ReprAsObjectEncoder<
4 .colon.colon<Object,
5 .colon.colon<String,
6 .colon.colon<Object,
7 .colon.colon<Object, .colon.colon<Json, HNil>>>>>> {
8 private final Encoder<Object> circeGenericEncoderForf0 =
9 Encoder$.MODULE$.encodeInt();

10 private final Encoder<String> circeGenericEncoderForf1 =
11 Encoder$.MODULE$.encodeString();
12 private final Encoder<Object> circeGenericEncoderForf2 =
13 Encoder$.MODULE$.encodeDouble();
14 private final Encoder<Object> circeGenericEncoderForf3 =
15 Encoder$.MODULE$.encodeBoolean();
16 private final Encoder<Json> circeGenericEncoderForf4 =
17 Encoder$.MODULE$.encodeJson();
18

19 public final JsonObject encodeObject(
20 .colon.colon<Object,
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21 .colon.colon<String,
22 .colon.colon<Object,
23 .colon.colon<Object, .colon.colon<Json, HNil>>>>> a) {
24 .colon.colon<Object,
25 .colon.colon<String,
26 .colon.colon<Object,
27 .colon.colon<Object, .colon.colon<Json, HNil>>>>>
28 colon2 = a;
29 if (colon2 == null) throw new MatchError(colon2);
30 int circeGenericHListBindingForf0 =
31 BoxesRunTime.unboxToInt((Object) colon2.head());
32 .colon.colon colon3 = (.colon.colon) colon2.tail();
33 if (colon3 == null) throw new MatchError(colon2);
34 String circeGenericHListBindingForf1 = (String) colon3.head();
35 .colon.colon colon4 = (.colon.colon) colon3.tail();
36 if (colon4 == null) throw new MatchError(colon2);
37 double circeGenericHListBindingForf2 =
38 BoxesRunTime.unboxToDouble((Object) colon4.head());
39 .colon.colon colon5 = (.colon.colon) colon4.tail();
40 if (colon5 == null) throw new MatchError(colon2);
41 boolean circeGenericHListBindingForf3 =
42 BoxesRunTime.unboxToBoolean((Object) colon5.head());
43 .colon.colon colon6 = (.colon.colon) colon5.tail();
44 if (colon6 == null) throw new MatchError(colon2);
45 Json circeGenericHListBindingForf4 = (Json) colon6.head();
46 HNil hNil = (HNil) colon6.tail();
47 if (!HNil$.MODULE$.equals(hNil)) throw new MatchError(colon2);
48 return JsonObject$.MODULE$.fromIterable(
49 (Iterable) Vector$.MODULE$.apply(
50 (Seq) ScalaRunTime$.MODULE$.wrapRefArray(
51 (Object[]) new Tuple2[]{new Tuple2((Object) "f0",
52 (Object) this.circeGenericEncoderForf0.apply(
53 (Object) BoxesRunTime.boxToInteger(
54 (int) circeGenericHListBindingForf0))),
55 new Tuple2((Object) "f1",
56 (Object) this.circeGenericEncoderForf1.apply(
57 (Object) circeGenericHListBindingForf1)),
58 new Tuple2((Object) "f2",
59 (Object) this.circeGenericEncoderForf2.apply(
60 (Object) BoxesRunTime.boxToDouble(
61 (double) circeGenericHListBindingForf2))),
62 new Tuple2((Object) "f3",
63 (Object) this.circeGenericEncoderForf3.apply(
64 (Object) BoxesRunTime.boxToBoolean(
65 (boolean) circeGenericHListBindingForf3))),
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66 new Tuple2((Object) "f4",
67 (Object) this.circeGenericEncoderForf4.apply(
68 (Object) circeGenericHListBindingForf4))})));
69 }
70

71 public CirceGenericDefs$BenchmarkCaseClass5$anon$lazy$macro$23$1$.anon.3(
72 CirceGenericDefs.BenchmarkCaseClass5.anon.lazy.macro.23.1$outer) {
73 }
74 }
75

76 public final class CirceGenericDefs.BenchmarkCaseClass5.anon.lazy.macro.23.1
77 implements Serializable {
78 private DerivedAsObjectEncoder<CirceGenericDefs.BenchmarkCaseClass5>
79 inst$macro$1;
80 private ReprAsObjectEncoder<
81 .colon.colon<Object,
82 .colon.colon<String,
83 .colon.colon<Object,
84 .colon.colon<Object, .colon.colon<Json, HNil>>>>>>
85 inst$macro$22;
86 private volatile byte bitmap$0;
87

88 private DerivedAsObjectEncoder<CirceGenericDefs.BenchmarkCaseClass5>
89 inst$macro$1$lzycompute() {
90 CirceGenericDefs.BenchmarkCaseClass5.anon.lazy.macro231 var1_1 = this;
91 synchronized (var1_1) {
92 if ((byte) (this.bitmap$0 & 1) != 0) return this.inst$macro$1;
93 this.inst$macro$1 = DerivedAsObjectEncoder$.MODULE$.deriveEncoder(
94 LabelledGeneric$.MODULE$.materializeProduct(
95 DefaultSymbolicLabelling$.MODULE$.instance(
96 (HList) new .colon.colon(
97 (Object) SymbolLiteral.bootstrap("apply", "f0"),
98 (HList) new .colon.colon(
99 (Object) SymbolLiteral.bootstrap("apply", "f1"),

100 (HList) new .colon.colon(
101 (Object) SymbolLiteral.bootstrap("apply",
102 "f2"), (HList) new .colon.colon(
103 (Object) SymbolLiteral.bootstrap("apply",
104 "f3"), (HList) new .colon.colon(
105 (Object) SymbolLiteral.bootstrap("apply",
106 "f4"), (HList) HNil$.MODULE$)))))),
107 Generic$.MODULE$.instance(
108 (Function1 & Serializable) x0$3 -> {
109 CirceGenericDefs.BenchmarkCaseClass5
110 benchmarkCaseClass5 = x0$3;
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111 if (benchmarkCaseClass5 == null)
112 throw new MatchError(
113 (Object) benchmarkCaseClass5);
114 int f0$macro$17 = benchmarkCaseClass5.f0();
115 String f1$macro$18 = benchmarkCaseClass5.f1();
116 double f2$macro$19 = benchmarkCaseClass5.f2();
117 boolean f3$macro$20 = benchmarkCaseClass5.f3();
118 Json f4$macro$21 = benchmarkCaseClass5.f4();
119 return new .colon.colon(
120 (Object) BoxesRunTime.boxToInteger(
121 (int) f0$macro$17),
122 (HList) new .colon.colon((Object) f1$macro$18,
123 (HList) new .colon.colon(
124 (Object) BoxesRunTime.boxToDouble(
125 (double) f2$macro$19),
126 (HList) new .colon.colon(
127 (Object) BoxesRunTime.boxToBoolean(
128 (boolean) f3$macro$20),
129 (HList) new .colon.colon(
130 (Object) f4$macro$21,
131 (HList) HNil$.MODULE$)))));
132 }, (Function1 & Serializable) x0$4 -> {
133 .colon.colon colon2 = x0$4;
134 if (colon2 == null)
135 throw new MatchError((Object) colon2);
136 int f0$macro$12 =
137 BoxesRunTime.unboxToInt((Object) colon2.head());
138 .colon.colon colon3 =
139 (.colon.colon) colon2.tail();
140 if (colon3 == null)
141 throw new MatchError((Object) colon2);
142 String f1$macro$13 = (String) colon3.head();
143 .colon.colon colon4 =
144 (.colon.colon) colon3.tail();
145 if (colon4 == null)
146 throw new MatchError((Object) colon2);
147 double f2$macro$14 = BoxesRunTime.unboxToDouble(
148 (Object) colon4.head());
149 .colon.colon colon5 =
150 (.colon.colon) colon4.tail();
151 if (colon5 == null)
152 throw new MatchError((Object) colon2);
153 boolean f3$macro$15 = BoxesRunTime.unboxToBoolean(
154 (Object) colon5.head());
155 .colon.colon colon6 =
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156 (.colon.colon) colon5.tail();
157 if (colon6 == null)
158 throw new MatchError((Object) colon2);
159 Json f4$macro$16 = (Json) colon6.head();
160 HNil hNil = (HNil) colon6.tail();
161 if (!HNil$.MODULE$.equals(hNil))
162 throw new MatchError((Object) colon2);
163 return new CirceGenericDefs.BenchmarkCaseClass5(
164 f0$macro$12, f1$macro$13, f2$macro$14,
165 f3$macro$15, f4$macro$16);
166 }), hlist.ZipWithKeys$.MODULE$.hconsZipWithKeys(
167 hlist.ZipWithKeys$.MODULE$.hconsZipWithKeys(
168 hlist.ZipWithKeys$.MODULE$.hconsZipWithKeys(
169 hlist.ZipWithKeys$.MODULE$.hconsZipWithKeys(
170 hlist.ZipWithKeys$.MODULE$.hconsZipWithKeys(
171 hlist.ZipWithKeys$.MODULE$.hnilZipWithKeys(),
172 Witness$.MODULE$.mkWitness(
173 (Object) SymbolLiteral.bootstrap(
174 "apply", "f4"))),
175 Witness$.MODULE$.mkWitness(
176 (Object) SymbolLiteral.bootstrap(
177 "apply", "f3"))),
178 Witness$.MODULE$.mkWitness(
179 (Object) SymbolLiteral.bootstrap("apply",
180 "f2"))), Witness$.MODULE$.mkWitness(
181 (Object) SymbolLiteral.bootstrap("apply",
182 "f1"))), Witness$.MODULE$.mkWitness(
183 (Object) SymbolLiteral.bootstrap("apply", "f0"))),
184 (.less.colon.less)
185 $less$colon$less$.MODULE$.refl()), Lazy$.MODULE$.apply(
186 (Function0 & Serializable) () -> this.inst$macro$22()));
187 this.bitmap$0 = (byte) (this.bitmap$0 | 1);
188 }
189 return this.inst$macro$1;
190 }
191

192 public DerivedAsObjectEncoder<
193 CirceGenericDefs.BenchmarkCaseClass5> inst$macro$1() {
194 if ((byte) (this.bitmap$0 & 1) != 0) return this.inst$macro$1;
195 return this.inst$macro$1$lzycompute();
196 }
197

198 private ReprAsObjectEncoder<
199 .colon.colon<Object,
200 .colon.colon<String,
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201 .colon.colon<Object, .
202 colon.colon<Object, .colon.colon<Json, HNil>>>>>>
203 inst$macro$22$lzycompute() {
204 CirceGenericDefs.BenchmarkCaseClass5.anon.lazy.macro.23.1
205 var1_1 = this;
206 synchronized (var1_1) {
207 if ((byte) (this.bitmap$0 & 2) != 0) return this.inst$macro$22;
208 this.inst$macro$22 = new /* Unavailable Anonymous Inner Class!! */ ;
209 this.bitmap$0 = (byte) (this.bitmap$0 | 2);
210 }
211 return this.inst$macro$22;
212 }
213

214 public ReprAsObjectEncoder<
215 .colon.colon<Object,
216 .colon.colon<String,
217 .colon.colon<Object,
218 .colon.colon<Object, .colon.colon<Json, HNil>>>>>>
219 inst$macro$22() {
220 if ((byte) (this.bitmap$0 & 2) != 0) return this.inst$macro$22;
221 return this.inst$macro$22$lzycompute();
222 }
223 }

B.1.3 CirceGeneric (Scala 3)

1 public static final class CirceGenericDefs$BenchmarkCaseClass5$.anon.3
2 implements DerivedEncoder<CirceGenericDefs.BenchmarkCaseClass5> {
3 public static final long OFFSET$0 = LazyVals$.MODULE$.getOffsetStatic(
4 CirceGenericDefs$BenchmarkCaseClass5$.anon.3.class.getDeclaredField(
5 "0bitmap$3"));
6 private final String[] elemLabels;
7 public long 0bitmap$3;
8 public Encoder[] elemEncoders$lzy2;
9

10 public CirceGenericDefs$BenchmarkCaseClass5$.anon.3() {
11 String string = "f0";
12 String string2 = "f1";
13 String string3 = "f2";
14 String string4 = "f3";
15 String string5 = "f4";
16 this.elemLabels =
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17 (String[]) package$.MODULE$.Nil().$colon$colon((Object) string5)
18 .$colon$colon((Object) string4).$colon$colon((Object) string3)
19 .$colon$colon((Object) string2).$colon$colon((Object) string)
20 .toArray(ClassTag$.MODULE$.apply(String.class));
21 }
22

23 public final String name() {
24 return "BenchmarkCaseClass5";
25 }
26

27 public final String[] elemLabels() {
28 return this.elemLabels;
29 }
30

31 public Encoder[] elemEncoders() {
32 long l;
33 long l2;
34 while ((l2 = LazyVals$.MODULE$.STATE(
35 l = LazyVals$.MODULE$.get((Object) this, OFFSET$0), 0)) != 3L) {
36 if (l2 == 0L) {
37 if (!LazyVals$.MODULE$.CAS((Object) this, OFFSET$0, l, 1, 0))
38 continue;
39 try {
40 Encoder encodeA;
41 Encoder encodeA2;
42 Encoder encodeA3;
43 Encoder encodeA4;
44 Encoder encodeA5;
45 Encoder encoder = encodeA5 = Encoder$.MODULE$.encodeInt();
46 Encoder encoder2 =
47 encodeA4 = Encoder$.MODULE$.encodeString();
48 Encoder encoder3 =
49 encodeA3 = Encoder$.MODULE$.encodeDouble();
50 Encoder encoder4 =
51 encodeA2 = Encoder$.MODULE$.encodeBoolean();
52 Encoder encoder5 = encodeA = Encoder$.MODULE$.encodeJson();
53 Encoder[] encoderArray = (Encoder[]) package$.MODULE$.Nil()
54 .$colon$colon((Object) encoder5)
55 .$colon$colon((Object) encoder4)
56 .$colon$colon((Object) encoder3)
57 .$colon$colon((Object) encoder2)
58 .$colon$colon((Object) encoder)
59 .toArray(ClassTag$.MODULE$.apply(Encoder.class));
60 this.elemEncoders$lzy2 = encoderArray;
61 LazyVals$.MODULE$.setFlag((Object) this, OFFSET$0, 3, 0);
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62 return encoderArray;
63 } catch (Throwable throwable) {
64 LazyVals$.MODULE$.setFlag((Object) this, OFFSET$0, 0, 0);
65 throw throwable;
66 }
67 }
68 LazyVals$.MODULE$.wait4Notification((Object) this, OFFSET$0, l, 0);
69 }
70 return this.elemEncoders$lzy2;
71 }
72

73 public final JsonObject encodeObject(
74 CirceGenericDefs.BenchmarkCaseClass5 a) {
75 CirceGenericDefs$BenchmarkCaseClass5$
76 circeGenericDefs$BenchmarkCaseClass5$ =
77 CirceGenericDefs$BenchmarkCaseClass5$.MODULE$;
78 return JsonObject$.MODULE$.fromIterable(
79 this.encodedIterable((Product) a));
80 }
81 }

B.1.4 PerspectiveInlining

1 public static final class PerspectiveInlineDefs$BenchmarkCaseClass5$.anon.3
2 implements Encoder<PerspectiveInlineDefs.BenchmarkCaseClass5> {
3 private final InlineHKDProductGeneric.DerivedImpl gen$proxy3$2;
4 private final Encoder[] encoders;
5 private final String[] names;
6

7 public PerspectiveInlineDefs$BenchmarkCaseClass5$.anon.3(
8 InlineHKDProductGeneric.DerivedImpl gen$proxy3$1) {
9 this.gen$proxy3$2 = gen$proxy3$1;

10 InlineHKDProductGeneric.DerivedImpl DerivedImpl_this = gen$proxy3$1;
11 this.encoders = new Encoder[]{Encoder$.MODULE$.encodeInt(),
12 Encoder$.MODULE$.encodeString(), Encoder$.MODULE$.encodeDouble(),
13 Encoder$.MODULE$.encodeBoolean(), Encoder$.MODULE$.encodeJson()};
14 InlineHKDProductGeneric.DerivedImpl DerivedImpl_this2 = gen$proxy3$1;
15 this.names = new String[]{"f0", "f1", "f2", "f3", "f4"};
16 }
17

18 public Json apply(PerspectiveInlineDefs.BenchmarkCaseClass5 a) {
19 InlineHKDProductGeneric.DerivedImpl InlineHKDGenericTypeclassOps_this =
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20 this.gen$proxy3$2;
21 Nil$ res = package$.MODULE$.Nil();
22 int i = 0;
23 while (true) {
24 if (i >= 5) {
25 Nil$ list = res;
26 return Json$.MODULE$.obj((Seq) list);
27 }
28 Nil$ nil$ = res;
29 int n = i++;
30 InlineHKDProductGeneric.DerivedImpl
31 InlineHKDGenericTypeclassOps_this2 = this.gen$proxy3$2;
32 Tuple2 tuple2 = Tuple2$.MODULE$.apply((Object) this.names[n],
33 (Object) this.encoders[n].apply(a.productElement(n)));
34 res = nil$.$colon$colon((Object) tuple2);
35 }
36 }
37 }

B.1.5 PerspectiveUnrolling

1 public static final class PerspectiveUnrollingDefs$BenchmarkCaseClass5$.anon.3
2 implements Encoder<PerspectiveUnrollingDefs.BenchmarkCaseClass5> {
3 private final InlineHKDProductGeneric.DerivedImpl gen$proxy3$2;
4 private final Encoder[] encoders;
5 private final String[] names;
6

7 public PerspectiveUnrollingDefs$BenchmarkCaseClass5$.anon.3(
8 InlineHKDProductGeneric.DerivedImpl gen$proxy3$1) {
9 this.gen$proxy3$2 = gen$proxy3$1;

10 InlineHKDProductGeneric.DerivedImpl DerivedImpl_this = gen$proxy3$1;
11 this.encoders = new Encoder[]{Encoder$.MODULE$.encodeInt(),
12 Encoder$.MODULE$.encodeString(), Encoder$.MODULE$.encodeDouble(),
13 Encoder$.MODULE$.encodeBoolean(), Encoder$.MODULE$.encodeJson()};
14 InlineHKDProductGeneric.DerivedImpl DerivedImpl_this2 = gen$proxy3$1;
15 this.names = new String[]{"f0", "f1", "f2", "f3", "f4"};
16 }
17

18 public Json apply(PerspectiveUnrollingDefs.BenchmarkCaseClass5 a) {
19 InlineHKDProductGeneric.DerivedImpl InlineHKDGenericTypeclassOps_this =
20 this.gen$proxy3$2;
21 Nil$ nil$ = package$.MODULE$.Nil();
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22 int n = 0;
23 InlineHKDProductGeneric.DerivedImpl DerivedImpl_this =
24 this.gen$proxy3$2;
25 int n2 = a.f0();
26 Json json = Json$.MODULE$.fromInt(n2);
27 Tuple2 tuple2 =
28 Tuple2$.MODULE$.apply((Object) this.names[n], (Object) json);
29 List list = nil$.$colon$colon((Object) tuple2);
30 int n3 = 1;
31 InlineHKDProductGeneric.DerivedImpl DerivedImpl_this2 =
32 this.gen$proxy3$2;
33 String string = a.f1();
34 Json json2 = Json$.MODULE$.fromString(string);
35 Tuple2 tuple22 =
36 Tuple2$.MODULE$.apply((Object) this.names[n3], (Object) json2);
37 List list2 = list.$colon$colon((Object) tuple22);
38 int n4 = 2;
39 InlineHKDProductGeneric.DerivedImpl DerivedImpl_this3 =
40 this.gen$proxy3$2;
41 double d = a.f2();
42 Json json3 = Json$.MODULE$.fromDoubleOrString(d);
43 Tuple2 tuple23 =
44 Tuple2$.MODULE$.apply((Object) this.names[n4], (Object) json3);
45 List list3 = list2.$colon$colon((Object) tuple23);
46 int n5 = 3;
47 InlineHKDProductGeneric.DerivedImpl DerivedImpl_this4 =
48 this.gen$proxy3$2;
49 boolean bl = a.f3();
50 Json json4 = Json$.MODULE$.fromBoolean(bl);
51 Tuple2 tuple24 =
52 Tuple2$.MODULE$.apply((Object) this.names[n5], (Object) json4);
53 List list4 = list3.$colon$colon((Object) tuple24);
54 int n6 = 4;
55 InlineHKDProductGeneric.DerivedImpl DerivedImpl_this5 =
56 this.gen$proxy3$2;
57 Json json5 = a.f4();
58 InlineHKDProductGeneric.DerivedImpl InlineHKDGenericTypeclassOps_this2 =
59 this.gen$proxy3$2;
60 Json json6 = this.encoders[n6].apply((Object) json5);
61 Tuple2 tuple25 =
62 Tuple2$.MODULE$.apply((Object) this.names[n6], (Object) json6);
63 List list5 = list4.$colon$colon((Object) tuple25);
64 return Json$.MODULE$.obj((Seq) list5);
65 }
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66 }

B.2 Decoders

B.2.1 CirceDerivation

1 public final class CirceDerivationDefs$BenchmarkCaseClass5$.anon.4
2 implements Decoder<CirceDerivationDefs.BenchmarkCaseClass5> {
3 private final Decoder<Object> decoder0;
4 private final Decoder<String> decoder1;
5 private final Decoder<Object> decoder2;
6 private final Decoder<Object> decoder3;
7 private final Decoder<Json> decoder4;
8

9 public final Either<
10 DecodingFailure, CirceDerivationDefs.BenchmarkCaseClass5> apply(
11 HCursor c) {
12 Either res = this.decoder0.tryDecode(c.downField("f0"));
13 if (!res.isRight()) return res;
14 int res1 = BoxesRunTime.unboxToInt((Object) ((Right) res).value());
15 Either res2 = this.decoder1.tryDecode(c.downField("f1"));
16 if (!res2.isRight()) return res2;
17 String res22 = (String) ((Right) res2).value();
18 Either res3 = this.decoder2.tryDecode(c.downField("f2"));
19 if (!res3.isRight()) return res3;
20 double res32 =
21 BoxesRunTime.unboxToDouble((Object) ((Right) res3).value());
22 Either res4 = this.decoder3.tryDecode(c.downField("f3"));
23 if (!res4.isRight()) return res4;
24 boolean res42 =
25 BoxesRunTime.unboxToBoolean((Object) ((Right) res4).value());
26 Either res5 = this.decoder4.tryDecode(c.downField("f4"));
27 if (!res5.isRight()) return res5;
28 Json res52 = (Json) ((Right) res5).value();
29 return new Right(
30 (Object) new CirceDerivationDefs.BenchmarkCaseClass5(res1, res22,
31 res32, res42, res52));
32 }
33

34 private List<DecodingFailure> errors(

132



35 Validated<NonEmptyList<DecodingFailure>, Object> result) {
36 Validated<NonEmptyList<DecodingFailure>, Object> validated = result;
37 if (validated instanceof Validated.Valid) {
38 return Nil$.MODULE$;
39 }
40 if (!(validated instanceof Validated.Invalid))
41 throw new MatchError(validated);
42 Validated.Invalid invalid = (Validated.Invalid) validated;
43 NonEmptyList e = (NonEmptyList) invalid.e();
44 return e.toList();
45 }
46

47 public final Validated<
48 NonEmptyList<DecodingFailure>, CirceDerivationDefs.BenchmarkCaseClass5>
49 decodeAccumulating(
50 HCursor c) {
51 Validated res1 = this.decoder0.tryDecodeAccumulating(c.downField("f0"));
52 Validated res2 = this.decoder1.tryDecodeAccumulating(c.downField("f1"));
53 Validated res3 = this.decoder2.tryDecodeAccumulating(c.downField("f2"));
54 Validated res4 = this.decoder3.tryDecodeAccumulating(c.downField("f3"));
55 Validated res5 = this.decoder4.tryDecodeAccumulating(c.downField("f4"));
56 List dfs =
57 (List) new.colon.colon(this.errors(
58 (Validated<NonEmptyList<DecodingFailure>, Object>) res1),
59 (List) new.colon.colon(this.errors(
60 (Validated<NonEmptyList<DecodingFailure>, Object>) res2),
61 (List) new.colon.colon(this.errors(
62 (Validated<NonEmptyList<DecodingFailure>, Object>) res3),
63 (List) new.colon.colon(this.errors(
64 (Validated<NonEmptyList<DecodingFailure>, Object>) res4),
65 (List) new.colon.colon(this.errors(
66 (Validated<NonEmptyList<DecodingFailure>, Object>) res5),
67 (List) Nil$.MODULE$)))))
68 .flatten(Predef$.MODULE$.$conforms());
69 if (!dfs.isEmpty()) return Validated$.MODULE$.invalid(
70 (Object) NonEmptyList$.MODULE$.fromListUnsafe(dfs));
71 return Validated$.MODULE$.valid(
72 (Object) new CirceDerivationDefs.BenchmarkCaseClass5(
73 BoxesRunTime.unboxToInt((Object) ((Validated.Valid) res1).a()),
74 (String) ((Validated.Valid) res2).a(),
75 BoxesRunTime.unboxToDouble(
76 (Object) ((Validated.Valid) res3).a()),
77 BoxesRunTime.unboxToBoolean(
78 (Object) ((Validated.Valid) res4).a()),
79 (Json) ((Validated.Valid) res5).a()));
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80 }
81

82 public CirceDerivationDefs$BenchmarkCaseClass5$.anon.4() {
83 Decoder.$init$((Decoder) this);
84 this.decoder0 = Decoder$.MODULE$.decodeInt();
85 this.decoder1 = Decoder$.MODULE$.decodeString();
86 this.decoder2 = Decoder$.MODULE$.decodeDouble();
87 this.decoder3 = Decoder$.MODULE$.decodeBoolean();
88 this.decoder4 = Decoder$.MODULE$.decodeJson();
89 }
90 }

B.2.2 CirceGeneric (Scala 2)

1 public final class CirceGenericDefs$BenchmarkCaseClass5$anon$lazy$macro$47$1$.anon.4
2 extends
3 ReprDecoder<
4 .colon.colon<Object,
5 .colon.colon<String,
6 .colon.colon<Object,
7 .colon.colon<Object, .colon.colon<Json, HNil>>>>>> {
8 private final Decoder<Object> circeGenericDecoderForf0 =
9 Decoder$.MODULE$.decodeInt();

10 private final Decoder<String> circeGenericDecoderForf1 =
11 Decoder$.MODULE$.decodeString();
12 private final Decoder<Object> circeGenericDecoderForf2 =
13 Decoder$.MODULE$.decodeDouble();
14 private final Decoder<Object> circeGenericDecoderForf3 =
15 Decoder$.MODULE$.decodeBoolean();
16 private final Decoder<Json> circeGenericDecoderForf4 =
17 Decoder$.MODULE$.decodeJson();
18

19 public final Either<DecodingFailure,
20 .colon.colon<Object,
21 .colon.colon<String,
22 .colon.colon<Object,
23 .colon.colon<Object, .colon.colon<Json, HNil>>>>>>
24 apply(
25 HCursor c) {
26 return (Either) ReprDecoder$.MODULE$.consResults(
27 (Object) this.circeGenericDecoderForf0.tryDecode(c.downField("f0")),
28 ReprDecoder$.MODULE$.consResults(
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29 (Object) this.circeGenericDecoderForf1.tryDecode(
30 c.downField("f1")), ReprDecoder$.MODULE$.consResults(
31 (Object) this.circeGenericDecoderForf2.tryDecode(
32 c.downField("f2")), ReprDecoder$.MODULE$.consResults(
33 (Object) this.circeGenericDecoderForf3.tryDecode(
34 c.downField("f3")),
35 ReprDecoder$.MODULE$.consResults(
36 (Object) this.circeGenericDecoderForf4.tryDecode(
37 c.downField("f4")),
38 (Object) ReprDecoder$.MODULE$.hnilResult(),
39 (Apply) Decoder$.MODULE$.resultInstance()),
40 (Apply) Decoder$.MODULE$.resultInstance()),
41 (Apply) Decoder$.MODULE$.resultInstance()),
42 (Apply) Decoder$.MODULE$.resultInstance()),
43 (Apply) Decoder$.MODULE$.resultInstance());
44 }
45

46 public final Validated<NonEmptyList<DecodingFailure>,
47 .colon.colon<Object,
48 .colon.colon<String,
49 .colon.colon<Object,
50 .colon.colon<Object, .colon.colon<Json, HNil>>>>>>
51 decodeAccumulating(
52 HCursor c) {
53 return (Validated) ReprDecoder$.MODULE$.consResults(
54 (Object) this.circeGenericDecoderForf0.tryDecodeAccumulating(
55 c.downField("f0")), ReprDecoder$.MODULE$.consResults(
56 (Object) this.circeGenericDecoderForf1.tryDecodeAccumulating(
57 c.downField("f1")), ReprDecoder$.MODULE$.consResults(
58 (Object) this.circeGenericDecoderForf2.tryDecodeAccumulating(
59 c.downField("f2")), ReprDecoder$.MODULE$.consResults(
60 (Object) this.circeGenericDecoderForf3.tryDecodeAccumulating(
61 c.downField("f3")),
62 ReprDecoder$.MODULE$.consResults(
63 (Object)this
64 .circeGenericDecoderForf4
65 .tryDecodeAccumulating(
66 c.downField("f4")),
67 (Object) ReprDecoder$.MODULE$.hnilResultAccumulating(),
68 (Apply) Decoder$.MODULE$.accumulatingResultInstance()),
69 (Apply) Decoder$.MODULE$.accumulatingResultInstance()),
70 (Apply) Decoder$.MODULE$.accumulatingResultInstance()),
71 (Apply) Decoder$.MODULE$.accumulatingResultInstance()),
72 (Apply) Decoder$.MODULE$.accumulatingResultInstance());
73 }
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74

75 public CirceGenericDefs$BenchmarkCaseClass5$anon$lazy$macro$47$1$.anon.4(
76 CirceGenericDefsBenchmarkCaseClass5.anon.lazy.macro.47.1 $outer) {
77 }
78 }
79

80

81 public final class CirceGenericDefsl.BenchmarkCaseClass5.anon.lazy.macro.47.1
82 implements Serializable {
83 private DerivedDecoder<CirceGenericDefs.BenchmarkCaseClass5> inst$macro$25;
84 private ReprDecoder<
85 .colon.colon<Object,
86 .colon.colon<String,
87 .colon.colon<Object,
88 .colon.colon<Object, .colon.colon<Json, HNil>>>>>>
89 inst$macro$46;
90 private volatile byte bitmap$0;
91

92 private DerivedDecoder<CirceGenericDefs.BenchmarkCaseClass5>
93 inst$macro$25$lzycompute() {
94 CirceGenericDefs.BenchmarkCaseClass5.anon.lazy.macro.47.1 var1_1 = this;
95 synchronized (var1_1) {
96 if ((byte) (this.bitmap$0 & 1) != 0) return this.inst$macro$25;
97 this.inst$macro$25 = DerivedDecoder$.MODULE$.deriveDecoder(
98 LabelledGeneric$.MODULE$.materializeProduct(
99 DefaultSymbolicLabelling$.MODULE$.instance(

100 (HList) new .colon.colon(
101 (Object) SymbolLiteral.bootstrap("apply", "f0"),
102 (HList) new .colon.colon(
103 (Object) SymbolLiteral.bootstrap("apply", "f1"),
104 (HList) new .colon.colon(
105 (Object) SymbolLiteral.bootstrap("apply",
106 "f2"), (HList) new .colon.colon(
107 (Object) SymbolLiteral.bootstrap("apply",
108 "f3"), (HList) new .colon.colon(
109 (Object) SymbolLiteral.bootstrap("apply",
110 "f4"), (HList) HNil$.MODULE$)))))),
111 Generic$.MODULE$.instance(
112 (Function1 & Serializable) x0$7 -> {
113 CirceGenericDefs.BenchmarkCaseClass5
114 benchmarkCaseClass5 = x0$7;
115 if (benchmarkCaseClass5 == null)
116 throw new MatchError(
117 (Object) benchmarkCaseClass5);
118 int f0$macro$41 = benchmarkCaseClass5.f0();
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119 String f1$macro$42 = benchmarkCaseClass5.f1();
120 double f2$macro$43 = benchmarkCaseClass5.f2();
121 boolean f3$macro$44 = benchmarkCaseClass5.f3();
122 Json f4$macro$45 = benchmarkCaseClass5.f4();
123 return new .colon.colon(
124 (Object) BoxesRunTime.boxToInteger(
125 (int) f0$macro$41),
126 (HList) new .colon.colon((Object) f1$macro$42,
127 (HList) new .colon.colon(
128 (Object) BoxesRunTime.boxToDouble(
129 (double) f2$macro$43),
130 (HList) new .colon.colon(
131 (Object) BoxesRunTime.boxToBoolean(
132 (boolean) f3$macro$44),
133 (HList) new .colon.colon(
134 (Object) f4$macro$45,
135 (HList) HNil$.MODULE$)))));
136 }, (Function1 & Serializable) x0$8 -> {
137 .colon.colon colon2 = x0$8;
138 if (colon2 == null)
139 throw new MatchError((Object) colon2);
140 int f0$macro$36 =
141 BoxesRunTime.unboxToInt((Object) colon2.head());
142 .colon.colon colon3 =
143 (.colon.colon) colon2.tail();
144 if (colon3 == null)
145 throw new MatchError((Object) colon2);
146 String f1$macro$37 = (String) colon3.head();
147 .colon.colon colon4 =
148 (.colon.colon) colon3.tail();
149 if (colon4 == null)
150 throw new MatchError((Object) colon2);
151 double f2$macro$38 = BoxesRunTime.unboxToDouble(
152 (Object) colon4.head());
153 .colon.colon colon5 =
154 (.colon.colon) colon4.tail();
155 if (colon5 == null)
156 throw new MatchError((Object) colon2);
157 boolean f3$macro$39 = BoxesRunTime.unboxToBoolean(
158 (Object) colon5.head());
159 .colon.colon colon6 =
160 (.colon.colon) colon5.tail();
161 if (colon6 == null)
162 throw new MatchError((Object) colon2);
163 Json f4$macro$40 = (Json) colon6.head();
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164 HNil hNil = (HNil) colon6.tail();
165 if (!HNil$.MODULE$.equals(hNil))
166 throw new MatchError((Object) colon2);
167 return new CirceGenericDefs.BenchmarkCaseClass5(
168 f0$macro$36, f1$macro$37, f2$macro$38,
169 f3$macro$39, f4$macro$40);
170 }), hlist.ZipWithKeys$.MODULE$.hconsZipWithKeys(
171 hlist.ZipWithKeys$.MODULE$.hconsZipWithKeys(
172 hlist.ZipWithKeys$.MODULE$.hconsZipWithKeys(
173 hlist.ZipWithKeys$.MODULE$.hconsZipWithKeys(
174 hlist.ZipWithKeys$.MODULE$.hconsZipWithKeys(
175 hlist.ZipWithKeys$.MODULE$.hnilZipWithKeys(),
176 Witness$.MODULE$.mkWitness(
177 (Object) SymbolLiteral.bootstrap(
178 "apply", "f4"))),
179 Witness$.MODULE$.mkWitness(
180 (Object) SymbolLiteral.bootstrap(
181 "apply", "f3"))),
182 Witness$.MODULE$.mkWitness(
183 (Object) SymbolLiteral.bootstrap("apply",
184 "f2"))), Witness$.MODULE$.mkWitness(
185 (Object) SymbolLiteral.bootstrap("apply",
186 "f1"))), Witness$.MODULE$.mkWitness(
187 (Object) SymbolLiteral.bootstrap("apply", "f0"))),
188 (.less.colon.less)
189 $less$colon$less$.MODULE$.refl()), Lazy$.MODULE$.apply(
190 (Function0 & Serializable) () -> this.inst$macro$46()));
191 this.bitmap$0 = (byte) (this.bitmap$0 | 1);
192 }
193 return this.inst$macro$25;
194 }
195

196 public DerivedDecoder<CirceGenericDefs.BenchmarkCaseClass5> inst$macro$25() {
197 if ((byte) (this.bitmap$0 & 1) != 0) return this.inst$macro$25;
198 return this.inst$macro$25$lzycompute();
199 }
200

201 private ReprDecoder<
202 .colon.colon<Object,
203 .colon.colon<String,
204 .colon.colon<Object,
205 .colon.colon<Object, .colon.colon<Json, HNil>>>>>>
206 inst$macro$46$lzycompute() {
207 CirceGenericDefs.BenchmarkCaseClass5.anon.lazy.macro.47.1
208 var1_1 = this;
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209 synchronized (var1_1) {
210 if ((byte) (this.bitmap$0 & 2) != 0) return this.inst$macro$46;
211 this.inst$macro$46 = new /* Unavailable Anonymous Inner Class!! */ ;
212 this.bitmap$0 = (byte) (this.bitmap$0 | 2);
213 }
214 return this.inst$macro$46;
215 }
216

217 public ReprDecoder<
218 .colon.colon<Object,
219 .colon.colon<String,
220 .colon.colon<Object,
221 .colon.colon<Object, .colon.colon<Json, HNil>>>>>>
222 inst$macro$46() {
223 if ((byte) (this.bitmap$0 & 2) != 0) return this.inst$macro$46;
224 return this.inst$macro$46$lzycompute();
225 }
226 }

B.2.3 CirceGeneric (Scala 3)

1 public static final class CirceGenericDefs$BenchmarkCaseClass5$.anon.4
2 implements DerivedDecoder<CirceGenericDefs.BenchmarkCaseClass5> {
3 public static final long OFFSET$0 = LazyVals$.MODULE$.getOffsetStatic(
4 CirceGenericDefs$BenchmarkCaseClass5$.anon.4.class.getDeclaredField(
5 "0bitmap$4"));
6 private final String[] elemLabels;
7 public long 0bitmap$4;
8 public Decoder[] elemDecoders$lzy2;
9

10 public CirceGenericDefs$BenchmarkCaseClass5$.anon.4() {
11 String string = "f0";
12 String string2 = "f1";
13 String string3 = "f2";
14 String string4 = "f3";
15 String string5 = "f4";
16 this.elemLabels =
17 (String[]) package$.MODULE$.Nil().$colon$colon((Object) string5)
18 .$colon$colon((Object) string4).$colon$colon((Object) string3)
19 .$colon$colon((Object) string2).$colon$colon((Object) string)
20 .toArray(ClassTag$.MODULE$.apply(String.class));
21 }

139



22

23 public final String name() {
24 return "BenchmarkCaseClass5";
25 }
26

27 public final String[] elemLabels() {
28 return this.elemLabels;
29 }
30

31 public Decoder[] elemDecoders() {
32 long l;
33 long l2;
34 while ((l2 = LazyVals$.MODULE$.STATE(
35 l = LazyVals$.MODULE$.get((Object) this, OFFSET$0), 0)) != 3L) {
36 if (l2 == 0L) {
37 if (!LazyVals$.MODULE$.CAS((Object) this, OFFSET$0, l, 1, 0))
38 continue;
39 try {
40 Decoder decodeA;
41 Decoder decodeA2;
42 Decoder decodeA3;
43 Decoder decodeA4;
44 Decoder decodeA5;
45 Decoder decoder = decodeA5 = Decoder$.MODULE$.decodeInt();
46 Decoder decoder2 =
47 decodeA4 = Decoder$.MODULE$.decodeString();
48 Decoder decoder3 =
49 decodeA3 = Decoder$.MODULE$.decodeDouble();
50 Decoder decoder4 =
51 decodeA2 = Decoder$.MODULE$.decodeBoolean();
52 Decoder decoder5 = decodeA = Decoder$.MODULE$.decodeJson();
53 Decoder[] decoderArray = (Decoder[]) package$.MODULE$.Nil()
54 .$colon$colon((Object) decoder5)
55 .$colon$colon((Object) decoder4)
56 .$colon$colon((Object) decoder3)
57 .$colon$colon((Object) decoder2)
58 .$colon$colon((Object) decoder)
59 .toArray(ClassTag$.MODULE$.apply(Decoder.class));
60 this.elemDecoders$lzy2 = decoderArray;
61 LazyVals$.MODULE$.setFlag((Object) this, OFFSET$0, 3, 0);
62 return decoderArray;
63 } catch (Throwable throwable) {
64 LazyVals$.MODULE$.setFlag((Object) this, OFFSET$0, 0, 0);
65 throw throwable;
66 }
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67 }
68 LazyVals$.MODULE$.wait4Notification((Object) this, OFFSET$0, l, 0);
69 }
70 return this.elemDecoders$lzy2;
71 }
72

73 public final Either apply(HCursor c) {
74 CirceGenericDefs$BenchmarkCaseClass5$
75 circeGenericDefs$BenchmarkCaseClass5$;
76 CirceGenericDefs$BenchmarkCaseClass5$ m =
77 circeGenericDefs$BenchmarkCaseClass5$ =
78 CirceGenericDefs$BenchmarkCaseClass5$.MODULE$;
79 if (!c.value().isObject()) return package$.MODULE$.Left().apply(
80 (Object) DecodingFailure$.MODULE$.apply(this.name(),
81 () ->
82 CirceGenericDefs$.
83 perspective$circederivation$CirceGenericDefs$BenchmarkCaseClass5$$
84 anon$4$$_$apply$$anonfun$2(
85 (HCursor) c)));
86 Iterator iter = this.resultIterator(c);
87 Object[] res = new Object[this.elemCount()];
88 Left failed = null;
89 int i = 0;
90 while (iter.hasNext() && failed == null) {
91 Either either = (Either) iter.next();
92 if (either instanceof Right) {
93 Object value;
94 res[i] = value = ((Right) either).value();
95 } else {
96 Left l;
97 if (!(either instanceof Left))
98 throw new MatchError((Object) either);
99 failed = l = (Left) either;

100 }
101 ++i;
102 }
103 if (failed != null) return (Either) failed;
104 return package$.MODULE$.Right()
105 .apply(m.fromProduct(Tuple$.MODULE$.fromArray((Object) res)));
106 }
107

108 public final Validated decodeAccumulating(HCursor c) {
109 CirceGenericDefs$BenchmarkCaseClass5$
110 circeGenericDefs$BenchmarkCaseClass5$;
111 CirceGenericDefs$BenchmarkCaseClass5$ m =
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112 circeGenericDefs$BenchmarkCaseClass5$ =
113 CirceGenericDefs$BenchmarkCaseClass5$.MODULE$;
114 if (!c.value().isObject()) return Validated$.MODULE$.invalidNel(
115 (Object) DecodingFailure$.MODULE$.apply(this.name(),
116 () ->
117 CirceGenericDefs$.
118 perspective$circederivation$CirceGenericDefs$BenchmarkCaseClass5$$
119 anon$4$$_$decodeAccumulating$$anonfun$2(
120 (HCursor) c)));
121 Iterator iter = this.resultAccumulatingIterator(c);
122 Object[] res = new Object[this.elemCount()];
123 Builder failed = package$.MODULE$.List().newBuilder();
124 int i = 0;
125 while (true) {
126 BoxedUnit boxedUnit;
127 if (!iter.hasNext()) {
128 List failures = (List) failed.result();
129 if (!failures.isEmpty()) return Validated$.MODULE$.invalid(
130 (Object) NonEmptyList$.MODULE$.fromListUnsafe(failures));
131 return Validated$.MODULE$.valid(
132 m.fromProduct(Tuple$.MODULE$.fromArray((Object) res)));
133 }
134 Validated validated = (Validated) iter.next();
135 if (validated instanceof Validated.Valid) {
136 Object object;
137 Object value;
138 Validated.Valid valid = Validated.Valid$.MODULE$.unapply(
139 (Validated.Valid) validated);
140 res[i] = value = (object = valid._1());
141 boxedUnit = BoxedUnit.UNIT;
142 } else {
143 NonEmptyList nonEmptyList;
144 if (!(validated instanceof Validated.Invalid))
145 throw new MatchError((Object) validated);
146 Validated.Invalid invalid = Validated.Invalid$.MODULE$.unapply(
147 (Validated.Invalid) validated);
148 NonEmptyList failures =
149 nonEmptyList = (NonEmptyList) invalid._1();
150 boxedUnit =
151 failed.$plus$plus$eq((IterableOnce) failures.toList());
152 }
153 ++i;
154 }
155 }
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156 }

B.2.4 PerspectiveInlining

1 public static final class PerspectiveInlineDefs$BenchmarkCaseClass5$.anon.4
2 implements Decoder<PerspectiveInlineDefs.BenchmarkCaseClass5> {
3 private final InlineHKDProductGeneric.DerivedImpl gen$proxy4$2;
4 private final Decoder[] decoders;
5 private final String[] names;
6

7 public PerspectiveInlineDefs$BenchmarkCaseClass5$.anon.4(
8 InlineHKDProductGeneric.DerivedImpl gen$proxy4$1) {
9 this.gen$proxy4$2 = gen$proxy4$1;

10 InlineHKDProductGeneric.DerivedImpl DerivedImpl_this = gen$proxy4$1;
11 this.decoders = new Decoder[]{Decoder$.MODULE$.decodeInt(),
12 Decoder$.MODULE$.decodeString(), Decoder$.MODULE$.decodeDouble(),
13 Decoder$.MODULE$.decodeBoolean(), Decoder$.MODULE$.decodeJson()};
14 InlineHKDProductGeneric.DerivedImpl DerivedImpl_this2 = gen$proxy4$1;
15 this.names = new String[]{"f0", "f1", "f2", "f3", "f4"};
16 }
17

18 public Either apply(HCursor cursor) {
19 InlineHKDProductGeneric.DerivedImpl InlineHKDGeneric_this;
20 InlineHKDProductGeneric.DerivedImpl InlineHKDGenericTypeclassOps_this =
21 InlineHKDGeneric_this = this.gen$proxy4$2;
22 LazyRef lazyRef = new LazyRef();
23 Object default_ = null;
24 DecodingFailure error = default_;
25 boolean gotError = false;
26 Object[] arr = new Object[5];
27 for (int i = 0; i < 5 && !gotError; ++i) {
28 int n = i;
29 InlineHKDProductGeneric.DerivedImpl
30 InlineHKDGenericTypeclassOps_this2 = this.gen$proxy4$2;
31 Either res =
32 this.decoders[n].tryDecode(cursor.downField(this.names[n]));
33 Either either = res;
34 if (either instanceof Right) {
35 Object v;
36 arr[i] = v = ((Right) either).value();
37 continue;
38 }
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39 if (!(either instanceof Left))
40 throw new MatchError((Object) either);
41 DecodingFailure e = (DecodingFailure) ((Left) either).value();
42 gotError = true;
43 error = e;
44 }
45 Object ret = gotError ? package$.MODULE$.Left().apply((Object) error) :
46 package$.MODULE$.Right().apply((Object) arr);
47 Left left = ret;
48 if (left instanceof Right) {
49 Object value = ((Right) left).value();
50 InlineHKDProductGeneric.DerivedImpl DerivedImpl_this =
51 this.gen$proxy4$2;
52 return package$.MODULE$.Right().apply(
53 (Object) ((PerspectiveInlineDefs.BenchmarkCaseClass5)
54 DerivedImpl_this.m().fromProduct(
55 (Product) ArrayProduct$.MODULE$.apply((Object[]) IArray.package.
56 IArray$.MODULE$.map(value,
57 PerspectiveInlineDefs$::
58 perspective$circederivation$PerspectiveInlineDefs$BenchmarkCaseClass5$$
59 anon$4$$_$apply$$anonfun$2,
60 ClassTag$.MODULE$.apply(Object.class))))));
61 }
62 if (!(left instanceof Left)) throw new MatchError((Object) left);
63 DecodingFailure e = (DecodingFailure) left.value();
64 return package$.MODULE$.Left().apply((Object) e);
65 }
66 }

B.2.5 PerspectiveUnrolling

1 public static final class PerspectiveUnrollingDefs$BenchmarkCaseClass5$.anon.4
2 implements Decoder<PerspectiveUnrollingDefs.BenchmarkCaseClass5> {
3 private final InlineHKDProductGeneric.DerivedImpl gen$proxy4$2;
4 private final Decoder[] decoders;
5 private final String[] names;
6

7 public PerspectiveUnrollingDefs$BenchmarkCaseClass5$.anon.4(
8 InlineHKDProductGeneric.DerivedImpl gen$proxy4$1) {
9 this.gen$proxy4$2 = gen$proxy4$1;

10 InlineHKDProductGeneric.DerivedImpl DerivedImpl_this = gen$proxy4$1;
11 this.decoders = new Decoder[]{Decoder$.MODULE$.decodeInt(),
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12 Decoder$.MODULE$.decodeString(), Decoder$.MODULE$.decodeDouble(),
13 Decoder$.MODULE$.decodeBoolean(), Decoder$.MODULE$.decodeJson()};
14 InlineHKDProductGeneric.DerivedImpl DerivedImpl_this2 = gen$proxy4$1;
15 this.names = new String[]{"f0", "f1", "f2", "f3", "f4"};
16 }
17

18 public Either apply(HCursor cursor) {
19 Left ret;
20 Left left;
21 InlineHKDProductGeneric.DerivedImpl InlineHKDGenericTypeclassOps_this =
22 this.gen$proxy4$2;
23 Object[] arr = new Object[5];
24 int n = 0;
25 InlineHKDProductGeneric.DerivedImpl InlineHKDGenericTypeclassOps_this2 =
26 this.gen$proxy4$2;
27 Either either =
28 this.decoders[n].tryDecode(cursor.downField(this.names[n]));
29 if (either instanceof Right) {
30 Object v;
31 arr[0] = v = ((Right) either).value();
32 int n2 = 1;
33 InlineHKDProductGeneric.DerivedImpl
34 InlineHKDGenericTypeclassOps_this3 = this.gen$proxy4$2;
35 Either either2 =
36 this.decoders[n2].tryDecode(cursor.downField(this.names[n2]));
37 if (either2 instanceof Right) {
38 Object v2;
39 arr[1] = v2 = ((Right) either2).value();
40 int n3 = 2;
41 InlineHKDProductGeneric.DerivedImpl
42 InlineHKDGenericTypeclassOps_this4 = this.gen$proxy4$2;
43 Either either3 = this.decoders[n3].tryDecode(
44 cursor.downField(this.names[n3]));
45 if (either3 instanceof Right) {
46 Object v3;
47 arr[2] = v3 = ((Right) either3).value();
48 int n4 = 3;
49 InlineHKDProductGeneric.DerivedImpl
50 InlineHKDGenericTypeclassOps_this5 = this.gen$proxy4$2;
51 Either either4 = this.decoders[n4].tryDecode(
52 cursor.downField(this.names[n4]));
53 if (either4 instanceof Right) {
54 Object v4;
55 arr[3] = v4 = ((Right) either4).value();
56 int n5 = 4;
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57 InlineHKDProductGeneric.DerivedImpl
58 InlineHKDGenericTypeclassOps_this6 =
59 this.gen$proxy4$2;
60 Either either5 = this.decoders[n5].tryDecode(
61 cursor.downField(this.names[n5]));
62 if (either5 instanceof Right) {
63 Object v5;
64 arr[4] = v5 = ((Right) either5).value();
65 left = package$.MODULE$.Right().apply((Object) arr);
66 } else {
67 if (!(either5 instanceof Left))
68 throw new MatchError((Object) either5);
69 DecodingFailure e =
70 (DecodingFailure) ((Left) either5).value();
71 left = package$.MODULE$.Left().apply((Object) e);
72 }
73 } else {
74 if (!(either4 instanceof Left))
75 throw new MatchError((Object) either4);
76 DecodingFailure e =
77 (DecodingFailure) ((Left) either4).value();
78 left = package$.MODULE$.Left().apply((Object) e);
79 }
80 } else {
81 if (!(either3 instanceof Left))
82 throw new MatchError((Object) either3);
83 DecodingFailure e =
84 (DecodingFailure) ((Left) either3).value();
85 left = package$.MODULE$.Left().apply((Object) e);
86 }
87 } else {
88 if (!(either2 instanceof Left))
89 throw new MatchError((Object) either2);
90 DecodingFailure e = (DecodingFailure) ((Left) either2).value();
91 left = package$.MODULE$.Left().apply((Object) e);
92 }
93 } else {
94 if (!(either instanceof Left))
95 throw new MatchError((Object) either);
96 DecodingFailure e = (DecodingFailure) ((Left) either).value();
97 left = package$.MODULE$.Left().apply((Object) e);
98 }
99 Left left2 = ret = left;

100 if (left2 instanceof Right) {
101 Object value = ((Right) left2).value();
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102 InlineHKDProductGeneric.DerivedImpl DerivedImpl_this =
103 this.gen$proxy4$2;
104 return package$.MODULE$.Right().apply(
105 (Object) ((PerspectiveUnrollingDefs.BenchmarkCaseClass5)
106 DerivedImpl_this.m().fromProduct(
107 (Product) ArrayProduct$.MODULE$.apply((Object[]) IArray.package.
108 IArray$.MODULE$.map(value,
109 PerspectiveUnrollingDefs$::
110 perspective$circederivation$PerspectiveUnrollingDefs$BenchmarkCaseClass5$$
111 anon$4$$_$apply$$anonfun$2,
112 ClassTag$.MODULE$.apply(Object.class))))));
113 }
114 if (!(left2 instanceof Left)) throw new MatchError((Object) left2);
115 DecodingFailure e = (DecodingFailure) left2.value();
116 return package$.MODULE$.Left().apply((Object) e);
117 }
118 }
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Appendix C

Further benchmark results

C.1 Allocations
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Figure C.1: Product type Scala 2 allocations.
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C.1.2 Scala 3
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Figure C.3: Product type Scala 3 allocations.
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C.2 Sum cases
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Figure C.5: First sum case Scala 2 performance.
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Figure C.6: Middle sum case Scala 2 performance.
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C.2.2 Scala 3
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Figure C.7: First sum case Scala 3 performance.
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Figure C.8: Middle sum case Scala 3 performance.
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C.3 Sum cases allocations

C.3.1 Scala 2

1 5 10 22 23 50 75

102.8

102.85

102.9

Number of sum cases

A
llo

ca
tio

n
ra

te
(B

/o
p)

Encode sum allocations

circe Derivation circe Generic Handwritten
Magnolia perspective faster shapeless 2

1 5 10 22 23 50 75

102.5

103

103.5

Number of sum cases

Decode sum allocations

Figure C.9: First sum case Scala 2 allocations.
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Figure C.10: Middle sum case Scala 2 allocations.
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Figure C.11: Last sum case Scala 2 allocations..
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Figure C.12: First sum case Scala 3 allocations.
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Figure C.13: Middle sum case Scala 3 allocations.
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Figure C.14: Last sum case Scala 3 allocations.
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