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1. Introduction

A typical problem in combinatorics is to determine the maximum number of edges that a graph can have under some 
structural constraint. For instance, the widely investigated Turán numbers are concerned with the maximum number of 
edges that a graph can have as a function of its number of vertices, if it does not have a fixed graph H as an induced 
subgraph. In this work, we are interested in understanding how large a graph can be in terms of its degree and matching 
number. That is, we want to determine the maximum number of edges that a graph can have if its maximum degree and 
matching number are both bounded. (Here, the matching number of a graph is the largest size of any matching it contains.) 
In contrast with the previously mentioned Turán numbers, we do not impose any constraints on the number of vertices. 
Therefore, in general, if one of the two parameters is unbounded, there is no upper bound on the number of edges that a 
graph can have: a star can have unbounded number of edges while having matching number one, and a disjoint union of 
single edges can also have an unbounded number of edges while having maximum degree one. By Vizing’s Theorem, every 
graph can have its edge set partitioned into a family of at most �(G) + 1 matchings, where �(G) denotes the maximum 
degree of the graph G . Thus, bounding both the maximum degree and the matching number is actually enough to bound 
the number of edges that a graph can have. The question here, which dates back to 1960, is how tight of a bound this is.

Chvátal and Hanson [4] showed an even better (and tight) upper bound on this value, in the case where no further 
restrictions are imposed on the graphs considered. Later on, Balachandran and Khare [2] gave a constructive proof of the 
same result, which made it possible to identify the structure of the graphs achieving the given bound on the number of 
edges. Such graphs are called edge-extremal graphs. Following these studies, the number of edges of edge-extremal graphs 
were also investigated when additional structural constraints are imposed on the graphs. For instance, claw-free graphs 
were studied by Dibek et al. [5], bipartite graphs, split graphs, disjoint unions of split graphs and unit interval graphs by 
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Måland [13] and, very recently, chordal graphs were considered by Blair et al. [3]. In all these works, the authors are able 
to understand how additional structure affects the maximum number of edges that a graph can have: they provide tight 
upper bounds and provide examples of graphs achieving these bounds.

In this work, we turn our attention to the well-known class of planar graphs, which has already been the object of study 
for many other combinatorial questions of similar flavour [1,6,8–10,12]. We determine the maximum number of edges that 
a planar graph can have, given the constraints on its maximum degree and matching number. Given d, ν ∈N , we denote by 
Mplanar(d, ν) the set of planar graphs such that �(G) < d and ν(G) < ν . (We require strict inequality in this definition to 
be consistent with the literature.) Our main result is summarized in the following theorem.

Theorem 1.1. Let d, ν ≥ 2 be two integers. If G is a graph in Mplanar(d, ν), then

|EG | ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(d − 1)(ν − 1), if d = 2 or d ≥ 7

d(ν − 1), if d = 3

(d − 1)(ν − 1) + ⌊
ν−1

2

⌋
, if d ∈ {4,5}

(d − 1)(ν − 1) + 2 · ⌊ ν−1
7

⌋ + 1[ν − 1 mod 7 ≥ 4], if d = 6

where 1[ψ] equals 1 if ψ is true and 0 otherwise. In all of the above cases, the bounds are tight.

For each of the above cases of Theorem 1.1, we construct concrete examples of graphs achieving the maximum number 
of edges. This paper is organized as follows. In Section 2 we define the necessary concepts and state preliminary results 
that will be used throughout the proof. Section 3 is entirely devoted to the proof of Theorem 1.1. We conclude the paper in 
Section 4 with problems for further research.

2. Preliminaries

Given two integers a and p, we denote by (a mod p) the remainder after dividing a by p. In particular, (a mod p) is an 
integer in {0, . . . , p − 1}.

All the graphs considered in this paper are simple and undirected. We denote by V G and EG the vertex set and edge 
set of G , respectively. Given v ∈ V G , we denote by NG (v) the set of vertices that are adjacent to v . The degree of v is 
denoted by degG(v) and is defined as |NG (v)|. The degree of a graph G is the maximum degree of a vertex in G and it is 
denoted by �(G). The degree sequence of a graph G with V G = {v1, v2, . . . , vn} is an integer sequence σ = d1d2 . . .dn such 
that di = degG(vi). It is usual to assume that d1 ≥ d2 ≥ . . . ≥ dn . We say a graph G realizes the degree sequence σ if its 
degree sequence is σ .

A set M ⊆ EG is a matching if no two edges in M share a common vertex and M is a perfect matching if M is a matching 
and every vertex of V G is the endpoint of an edge in M . The matching number of G , denoted by ν(G), is the largest size of 
a matching in G . A graph G is a factor-critical graph if for every v ∈ V G , G \ v has a perfect matching, where G \ v denotes 
the graph obtained from G by the removal of v .

A tree is a connected acyclic graph. A star is a tree with at most one vertex that is not a leaf, and for k ∈ N , a k-star, 
denoted by K1,k , is a star with k leaves. A graph is a complete graph on n vertices, denoted by Kn , if there is an edge between 
every pair of its vertices. Given two graphs G and H , the disjoint union of G and H , denoted by G + H is the graph with 
vertex set V G ∪ V H and edge set EG ∪ E H . We denote by pH the graph that is the disjoint union of p copies of a graph H .

A graph is planar if it admits an embedding on the plane without crossing edges. A well-known fact about planar 
graphs is that its number of edges can be upper bounded in terms of its number of vertices. We state this in the following 
observation for future reference.

Observation 2.1. If G is a planar graph on n ≥ 3 vertices, then |EG | ≤ 3n − 6.

We will also use the following result concerning degree sequences of planar graphs of maximum degree five.

Theorem 2.2 ([15]). There is no planar graph realizing the degree sequence 5104. The same holds for 5124.

Given two integers d and ν and a graph class C , we denote by MC(d, ν) the set of all graphs G in C such that �(G) < d
and ν(G) < ν . A graph in MC(d, ν) that has the maximum number of edges is called an edge-extremal graph. When the 
graph class considered is the class of all graphs, we write simply M(d, ν).

The following lemma due to Balachandran and Khare [2] will be central in our proof. It allows us to assume an extra 
structural property when we consider connected components of edge-extremal graphs. More specifically, it states that if C
is a graph class that is closed under vertex deletion and closed under taking disjoint union with stars, then there exists an 
edge-extremal graph in MC(d, ν) whose connected components are either stars or factor-critical graphs. The key ingredient 
in their proof is the observation that if H is a connected graph that is not factor-critical, then there exists v ∈ V H such that 
ν(H \ v) < ν(H). Hence, if an edge-extremal graph has such a connected component H that is not factor-critical, we can 
2
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replace H in G by (H \ v) + K1,degG (v) and obtain a graph in MC(d, ν) (since C is closed under vertex deletions and disjoint 
union with stars) with at least as many edges as G . Therefore, if we consider an edge-extremal graph in MC (d, ν) with 
maximum number of connected components that are stars, all its other components must be factor-critical.

Lemma 2.3 ([2]). Let C be a graph class that is closed under vertex deletion and closed under taking disjoint union with stars. Let G be 
an edge-extremal graph in MC(d, ν) with maximum number of connected components that are (d − 1)-stars. Then every connected 
component of G that is not a (d − 1)-star is factor-critical.

The following statement gives a summary of the results obtained by Balachandran and Khare [2].

Theorem 2.4 ([2]). The maximum number of edges of a graph in M(d, ν) is given by (d − 1)(ν − 1) + � d−1
2 	� ν−1


 d−1
2 � �. Moreover, a 

graph achieving this number of edges is{
rK1,d−1 + qK ′

d, if d is even

rK1,d−1 + qKd, if d is odd,

where ν − 1 = q
 d−1
2 � + r, with r ≥ 0, and K ′

d is the graph obtained from Kd by the removal of the edges of a perfect matching and 
addition of a new vertex adjacent to d − 1 vertices.

An edge coloring of a graph is an assignment of colors to its edges such that any two edges that share a common endpoint 
receive distinct colors. Thus, any edge coloring of a graph G uses at least �(G) many colors. The well-known Theorem of 
Vizing states that every graph can be edge colored with �(G) + 1 colors. Deciding whether a graph can be colored with 
�(G) colors is NP-complete [11]. One of the very few known sufficient conditions for a graph not to be �(G)-edge colorable 
is when the graph has, in some sense, too many edges. Note that an edge coloring is a partition of the edge set of the graph 
into matchings. Hence, if a graph G has strictly more than �(G)ν(G) edges, it cannot be �(G)-edge colored. The following 
useful observation follows directly from the above discussion.

Observation 2.5. Let C be a graph class such that every G ∈ C is �(G)-edge colorable. Then an edge-extremal graph in MC(d, ν) has 
at most (d − 1)(ν − 1) edges.

Before we consider the case of planar graphs, we observe that in the special case of outerplanar graphs, a well-known 
subclass of planar graphs, Observation 2.5 is enough to obtain tight bounds for our problem. A graph is an outerplanar graph
if it admits a planar embedding in which all vertices are in the same face. Every outerplanar graph G with �(G) ≥ 3 can be 
edge colored with �(G) many colors [7]. Hence, the following result is immediate for this graph class.

Proposition 2.6. If G is a graph in Mouterplanar(d, ν), then

|EG | ≤
{

3(ν − 1), if d = 3,

(d − 1)(ν − 1), if d = 2 or d ≥ 4.

Moreover, graphs achieving this bound are (ν − 1)Kd when d ∈ {2, 3} and (ν − 1)K1,d−1 when d ≥ 4.

3. Proof of Theorem 1.1

In this section we present a proof of Theorem 1.1. It is easy to see that, when d ≤ 4, the edge-extremal graphs of M(d, ν)

(see Theorem 2.4) are planar graphs. In particular, when d = 2 (resp. d = 3) the edge-extremal graphs are given by a disjoint 
union of ν − 1 edges (resp. triangles). When d = 4, an edge-extremal graph is given by a disjoint union of � ν−1

2 	 copies of 
K ′

4 and, if ν is even, one copy of K1,3. We summarize this in the next observation and, from now on, we assume d ≥ 5.

Observation 3.1. If G is a graph in Mplanar(d, ν) with d ≤ 4, then

|EG | ≤

⎧⎪⎨
⎪⎩

ν − 1, if d = 2,

3(ν − 1), if d = 3,

7� ν−1
2 	 + 3(ν − 1 mod 2), if d = 4.

By Observation 2.5, together with the fact that every planar graph of maximum degree at least seven can be edge colored 
with �(G) many colors [14,16], we obtain the following.
3
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K1,4 K −
5

Fig. 1. Possible connected components of the pivotal graphs in Mplanar(5, ν).

Observation 3.2. If G is a graph in Mplanar(d, ν) with d ≥ 8, then |EG | ≤ (d − 1)(ν − 1). Moreover, equality holds if G is isomorphic 
to (ν − 1)K1,d−1 .

We now focus on the remaining three cases, that is, when d ∈ {5, 6, 7}. In these cases, a substantially more careful 
analysis is necessary to determine the number of edges in the edge-extremal graphs of Mplanar (d, ν).

We start with the case d = 5. We denote by K −
5 the graph obtained from the complete graph on five vertices by the 

removal of one edge. Note that |E K −
5
| = 9, �(K −

5 ) = 4 and ν(K −
5 ) = 2.

Definition 3.3. For each ν , a graph G is pivotal in Mplanar(5, ν) if G is isomorphic to

ν − 1

2
K −

5 , if ν is odd,⌊
ν − 1

2

⌋
K −

5 + K1,4, if ν is even.

In Fig. 1, we illustrate the possible connected components of the pivotal graphs in Mplanar (5, ν).

Lemma 3.4. If G is a graph in Mplanar(5, ν), then |EG | ≤ 9� ν−1
2 	 + 4(ν − 1 mod 2). Moreover, if G is pivotal in Mplanar(5, ν), then 

equality holds.

Proof. Let G be an edge-extremal graph in Mplanar(5, ν) with maximum number of connected components that are iso-
morphic to stars and, subject to that, with maximum number of connected components isomorphic to K −

5 .

Claim 3.5. Every connected component of G is isomorphic to K1,4 or to K −
5 .

Proof. Suppose this is not the case. Let H be such a component. If H is a star and it is not isomorphic to K1,4, then since 
�(H) ≤ 4, H is isomorphic to K1,a with a ≤ 3. In this case we can replace the connected component H in G by a copy of 
K1,4 and obtain a graph that has degree at most four and the same matching number as G , but has strictly more edges than 
G . This is a contradiction with the fact that G is edge-extremal in Mplanar(5, ν). Hence H is not a star. Let ν1 be the size of 
a maximum matching in H . By Lemma 2.3, H is factor-critical and therefore |V H | = 2ν1 + 1. Since �(H) ≤ 4, we have that 
2|E H | ≤ 4|V H | = 4(2ν1 + 1). That is, |E H | ≤ 4ν1 + 2.

If ν1 is even and ν1 ≥ 4, let H ′ be a pivotal graph in Mplanar(5, ν1 + 1). That is, since ν1 + 1 is odd, H ′ is given by 
the disjoint union of ν1

2 copies of K −
5 . Note that ν(H ′) = ν1 and |E H ′ | = 9 ν1

2 . Since ν1 ≥ 4, |E H ′ | ≥ 4ν1 + 2. Hence, we can 
replace the connected component H in G by H ′ , and obtain a graph in Mplanar(5, ν) with the same matching number and 
at least as many edges as G . However, this graph has strictly more connected components isomorphic to K −

5 , which is a 
contradiction with our initial choice of G .

Similarly, if ν1 is odd and ν1 ≥ 5, let H ′ be a pivotal graph in Mplanar(5, ν1 + 1). Then ν(H ′) = ν1, |E H ′ | = 9 ν1−1
2 + 4, 

and since ν1 ≥ 4, |E H ′ | ≥ 4ν1 + 2. By replacing H by H ′ in G , we again reach a contradiction with the maximality of the 
number of connected components of G that are isomorphic to stars and to K −

5 . It remains to consider the cases ν1 ∈ {2, 3}.
If ν1 = 2, then |V H | = 5 and, since H is planar, |E H | ≤ 3 · 5 − 6 = 9. Therefore we can replace H by a copy of K −

5 and 
obtain another edge-extremal graph of Mplanar(5, ν) with larger number of connected components isomorphic to K −

5 , a 
contradiction.

If ν1 = 3, then |V H | = 7. If |E H | ≤ 13, we can replace H in G by a copy of K −
5 + K1,4 and reach a contradiction with 

our choice of G . We now show that H cannot have strictly more than 13 edges. Assume for a contradiction that |E H | ≥ 14. 
Then H must be 4-regular. To conclude the proof, we observe that there is no planar 4-regular graph on seven vertices. Let 
H be the complement of H . Then H is a 2-regular graph. Thus, H = C7 or H = C4 + C3. This contradicts the fact that H is 
planar, since both the complement of C7 and the one of C4 + C3 are not planar graphs. �
4
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K1,5 A4 A7

Fig. 2. Possible connected components of the pivotal graphs in Mplanar(6, ν).

If G has two components that are isomorphic K1,4, then we can replace these two components by a copy of K −
5 and 

obtain a graph in Mplanar(5, ν) that has strictly more edges than G , a contradiction. Hence, G has at most one component 
that is isomorphic to K1,4. Since ν(K1,4) = 1, ν(K −

5 ) = 2 and ν(G) ≤ ν − 1, we have that, if ν is odd, then G is a disjoint 
union of ν−1

2 copies of K −
5 . If ν is even, then G is a disjoint union of � ν−1

2 	 copies of K −
5 and one copy of K1,4. Hence 

|EG | = 9� ν−1
2 	 + 4(ν − 1 mod 2) and G is pivotal in Mplanar(5, ν). Since G is an edge-extremal graph in Mplanar(5, ν), any 

other graph G ′ ∈Mplanar(5, ν) is such that |EG ′ | ≤ |EG |. This concludes the proof of Lemma 3.4. �
We now proceed to the case d = 6. Let A4 and A7 be the graphs depicted in Fig. 2. Note that ν(A4) = 4, |E A4 | = 21, 

ν(A7) = 7 and |E A7 | = 37.

Definition 3.6. For each ν , a graph G is pivotal in Mplanar(6, ν) if G is isomorphic to⌊
ν − 1

7

⌋
A7 + (ν − 1 mod 7)K1,5, if (ν − 1 mod 7) ≤ 3,⌊

ν − 1

7

⌋
A7 + A4 + ((ν − 1 mod 7) − 4)K1,5, if (ν − 1 mod 7) ≥ 4.

Lemma 3.7. If G is a graph in Mplanar(6, ν), then,

|EG | ≤ 5(ν − 1) + 2 ·
⌊

ν − 1

7

⌋
+ 1[ν − 1 mod 7 ≥ 4].

Moreover, if G is pivotal in Mplanar(6, ν), then equality holds.

Proof. It is straightforward to see that if G is a pivotal graph in Mplanar(6, ν), then |EG | = 5(ν − 1) + 2 · ⌊
ν−1

7

⌋ + 1[ν −
1 mod 7 ≥ 4].

Let G be an edge-extremal graph in Mplanar(6, ν) with maximum number of connected components that are isomorphic 
to stars, and subject to that, with maximum number of components isomorphic to A4 or A7.

Claim 3.8. Every connected component of G is isomorphic to A4, A7 or to K1,5 .

Proof. Suppose that G has a component H that is not isomorphic to A4, neither to A7, nor to K1,5. If H is a star, then 
H is isomorphic to K1,a , with a ≤ 4. So we can replace the connected component H in G by a copy of K1,5 and obtain 
a graph that has degree at most five and the same matching number as G , but has strictly more edges than G . This is a 
contradiction with the fact that G is edge-extremal in Mplanar(6, ν). Hence H is not a star. Let ν1 the size of maximum 
matching in H . By Lemma 2.3, H is factor-critical and therefore |V H | = 2ν1 + 1. By Lemma 2.1, we have that |E H | ≤ 6ν1 − 3. 
Therefore, if ν1 ≤ 3, we can replace H in G by ν1 K1,5 without modifying the matching number of G , neither decreasing the 
number of edges in G . However, we obtain a graph that has strictly more connected components that are isomorphic to 
K1,5, a contradiction with our initial choice of G . So we can assume ν1 ≥ 4 and consider the following four cases.

If ν1 = 4, then |V H | = 9 and by Observation 2.1, |E H | ≤ 21. Hence we can replace H in G by a graph isomorphic to 
A4 without modifying the degree, the matching number, nor the number of edges of G . That is, we obtain another edge 
extremal graph in Mplanar(6, ν) that has more connected components isomorphic to A4 than G , a contradiction.
5
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If ν1 = 5, then |V H | = 11. By Theorem 2.2, the degree sequence of H cannot be 5104. Hence |E H | ≤ 26. In this case, we 
can replace H in G by a copy of A4 + K1,5 and obtain a graph in Mplanar(6, ν) that has at least as many edges as G , but 
more components isomorphic to stars, a contradiction.

If ν1 = 6, then |V H | = 13. By Theorem 2.2, the degree sequence of H cannot be 5124. Hence |E H | ≤ 31. So we can 
replace H by a copy of A4 + 2K1,5 and obtain a graph in Mplanar(6, ν) with at least as many edges as G , but more stars, a 
contradiction with the choice of G .

Now suppose that ν1 ≥ 7. Recall that |V H | = 2ν1 + 1. The degree sequence yielding the largest possible number of 
edges in H is 52ν1 4, in which case |E H | = 5ν1 + 2. Let H ′ be a pivotal graph in Mplanar(6, ν1 + 1). Note that |E H ′ | =
5ν1 + 2 · ⌊ ν1

7

⌋ + 1[ν1 mod 7 ≥ 4]. Thus,

|E H ′ | − |E H | = 5ν1 + 2 ·
⌊ν1

7

⌋
+ 1[ν1 mod 7 ≥ 4] − (5ν1 + 2)

= 2 ·
⌊ν1

7

⌋
+ 1[ν1 mod 7 ≥ 4] − 2

≥ 0.

This implies that we can replace the component H in G by a graph that is isomorphic to H ′ and obtain another graph in 
Mplanar(6, ν) that has at least as many edges as G , the same matching number as G , but it has more connected components 
isomorphic to K1,5, A4 or A7, a contradiction with our choice of G . �

If G has two components isomorphic to A4, we can replace these two components by a copy of A7 + K1,5, without 
changing the number of edges of G . Hence we can assume G has at most one component isomorphic to A4. Note that, 
since G is edge-extremal, G has at most three components that are isomorphic to K1,5. Indeed, if G had four components 
isomorphic to K1,5, we would be able to replace them by a copy of A4, and obtain a graph with more edges than G . Finally 
if G contains A4 + 3K1,5, we can replace this by a copy of A7 without decreasing the number of edges of G . Hence, we can 
assume that:

(i) G has at most one component isomorphic to A4 and at most three isomorphic to K1,5;
(ii) if G has a component isomorphic to A4, then G has at most two components isomorphic to K1,5.

From this, we conclude that G is pivotal in Mplanar(6, ν). Hence, |EG | = 5(ν − 1) + 2 · ⌊ ν−1
7

⌋ +1[ν − 1 mod 7 ≥ 4]. Since 
G is edge-extremal, any G ′ ∈Mplanar(6, ν) is such that |EG ′ | ≤ |EG |. This concludes the proof of Lemma 3.7. �

To conclude the proof of Theorem 1.1, we consider the case d = 7.

Lemma 3.9. If G is a graph in Mplanar(7, ν), then |EG | ≤ 6(ν − 1). Moreover, equality holds if G is isomorphic to (ν − 1)K1,6 .

Proof. Let G be an edge-extremal graph in Mplanar(7, ν) with maximum number of connected components that are iso-
morphic to stars. We will show that every component of G is isomorphic to K1,6. Suppose for a contradiction that G has a 
connected component H that is not isomorphic to K1,6. Note that since �(H) ≤ 6, H cannot be a star. Otherwise we would 
be able to replace H by a graph isomorphic to K1,6 and obtain a graph in Mplanar(7, ν) with more edges than G . Let ν1
be the size of a maximum matching in H . By Lemma 2.3, H is factor critical and therefore |V H | = 2ν1 + 1. Since H is a 
planar graph, |E H | ≤ 3|V H | − 6. This implies that |E H | ≤ 3(2ν1 + 1) − 6, that is, |E H | ≤ 6ν1 − 3. If we replace the component 
H of G by ν1 stars of degree 6 we obtain a graph that still belongs to Mplanar(7, ν) but that has more edges than G , a 
contradiction. We conclude that G is a disjoint union of stars and therefore |EG | = 6 · ν(G). Since G is edge-extremal in 
Mplanar(7, ν), any G ′ ∈Mplanar(7, ν) has at most as many edges as G , which concludes the proof. �

Theorem 1.1 now follows directly from Observation 3.2 and Lemmas 3.4, 3.7 and 3.9.

4. Conclusion

In this work, we determined the maximum number of edges that a planar graph can have if its maximum degree and 
matching number are bounded. We also exhibited examples of graphs achieving this bound.

We point out that the edge-extremal graphs described in the proof of Theorem 1.1 are not unique. For instance, the 
edge-extremal graphs described in Lemma 3.7 for the case d = 6 have connected components that are isomorphic to A4, 
A7 or K1,5 (see Fig. 2). However, the graphs A5 and A6 depicted in Fig. 3 are also edge-extremal in Mplanar(6, 6) and 
Mplanar(6, 7), respectively.

In view of this, it would be interesting to investigate how a connectivity constraint affects the number of edges of planar 
edge-extremal graphs. A more general question that remains open (also mentioned by Dibek et al. [5] and Blair et al. [3]) is: 
What is the maximum number of edges that a connected graph can have as a function of its degree and matching number? 
The answer to this question might require a different approach, as Lemma 2.3, one of the main tools in all the results 
obtained so far, is no longer applicable.
6
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A5 A6

Fig. 3. The graph A5 is edge-extremal in Mplanar(6,6), while A6 is edge-extremal in Mplanar(6,7).
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