
European Journal of Operational Research 309 (2023) 446–468

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Interfaces with Other Disciplines

A general deep reinforcement learning hyperheuristic framework for

solving combinatorial optimization problems

Jakob Kallestad

a , Ramin Hasibi a , ∗, Ahmad Hemmati a , Kenneth Sörensen

b

a Department of Informatics, University of Bergen, Norway
b Faculty of Business and Economics, ANT/OR - University of Antwerp Operations Research Group, Belgium

a r t i c l e i n f o

Article history:

Received 11 October 2021

Accepted 11 January 2023

Available online 16 January 2023

Keywords:

Heuristics

Hyperheuristic

Adaptive metaheuristic

Deep reinforcement learning

Combinatorial optimization

a b s t r a c t

Many problem-specific heuristic frameworks have been developed to solve combinatorial optimization

problems, but these frameworks do not generalize well to other problem domains. Metaheuristic frame-

works aim to be more generalizable compared to traditional heuristics, however their performances suffer

from poor selection of low-level heuristics (operators) during the search process. An example of heuristic

selection in a metaheuristic framework is the adaptive layer of the popular framework of Adaptive Large

Neighborhood Search (ALNS). Here, we propose a selection hyperheuristic framework that uses Deep Re-

inforcement Learning (Deep RL) as an alternative to the adaptive layer of ALNS. Unlike the adaptive layer

which only considers heuristics’ past performance for future selection, a Deep RL agent is able to take

into account additional information from the search process, e.g., the difference in objective value be-

tween iterations, to make better decisions. This is due to the representation power of Deep Learning

methods and the decision making capability of the Deep RL agent which can learn to adapt to differ-

ent problems and instance characteristics. In this paper, by integrating the Deep RL agent into the ALNS

framework, we introduce Deep Reinforcement Learning Hyperheuristic (DRLH), a general framework for

solving a wide variety of combinatorial optimization problems and show that our framework is better at

selecting low-level heuristics at each step of the search process compared to ALNS and a Uniform Ran-

dom Selection (URS). Our experiments also show that while ALNS can not properly handle a large pool

of heuristics, DRLH is not negatively affected by increasing the number of heuristics.

© 2023 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1

h

m

P

a

(

i

o

t

i

f

(

p

o

a

a

c

a

i

e

c

p

l

a

s

S

B

d

N

s

h

0

. Introduction

A metaheuristic is an algorithmic framework that offers a co-

erent set of guidelines for the design of heuristic optimization

ethods. Classical frameworks such as Genetic Algorithm (GA),

article Swarm Optimization (PSO), Ant Colony Optimization (ACO),

nd Simulated Annealing (SA) are examples of such frameworks

 Dokeroglu, Sevinc, Kucukyilmaz, & Cosar, 2019). Moreover, there

s a large body of literature that addresses solving combinatorial

ptimization problems using metaheuristics. Among these, Adap-

ive Large Neighbourhood Search (ALNS) (Ropke & Pisinger, 2006)

s one of the most widely used metaheuristics. It is a general

ramework based on the principle of Large Neighbourhood Search

LNS) of Shaw (1998) , where the objective value is iteratively im-

roved by applying a set of “removal” and “insertion” operators

n the solution. In ALNS, each of the removal and insertion oper-
∗ Corresponding author.

E-mail addresses: jakobkallestad@gmail.com (J. Kallestad), Ramin.Hasibi@uib.no (R. H

(K. Sörensen) .

ttps://doi.org/10.1016/j.ejor.2023.01.017

377-2217/© 2023 The Authors. Published by Elsevier B.V. This is an open access article u
asibi), Ahmad.Hemmati@uib.no (A. Hemmati), kenneth.sorensen@uantwerpen.be

tors have weights associated with them that determine the prob-

bilities of selecting these during the search. These weights are

ontinuously updated after a certain number of iterations (called

 segment) based on their recent effect on improving the qual-

ty of the solution during the segment. The ALNS framework was

arly on an approach specific to routing problems. However, in re-

ent years, there has been a growing number of studies that em-

loy this approach to other problem types, e.g., scheduling prob-

ems (Laborie & Godard, 2007). Its high quality of performance

t finding solutions has made it a go-to approach in many recent

tudies in combinatorial optimization problems (Aksen, Kaya, Sibel

alman, & Özge Tüncel, 2014; Chen, Demir, & Huang, 2021; Demir,

ekta ̧s , & Laporte, 2012; Friedrich & Elbert, 2022; Grangier, Gen-

reau, Lehuédé, & Rousseau, 2016; Gullhav, Cordeau, Hvattum, &

ygreen, 2017; Li, Chen, & Prins, 2016). The ALNS framework has

everal advantages. For most optimization problems, a number of
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.ejor.2023.01.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2023.01.017&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:jakobkallestad@gmail.com
mailto:Ramin.Hasibi@uib.no
mailto:Ahmad.Hemmati@uib.no
mailto:kenneth.sorensen@uantwerpen.be
https://doi.org/10.1016/j.ejor.2023.01.017
http://creativecommons.org/licenses/by/4.0/

J. Kallestad, R. Hasibi, A. Hemmati et al. European Journal of Operational Research 309 (2023) 446–468

w

a

d

h

A

t

c

&

p

i

t

p

a

i

a

i

b

a

c

i

u

t

p

f

o

p

n

o

m

t

p

a

s

a

t

c

p

i

L

w

a

m

b

a

w

c

e

e

t

(

t

a

O

f

i

a

c

t

s

f

c

s

f

p

t

o

A

a

i

s

p

v

o

i

c

i

o

f

i

s

t

n

o

m

p

t

t

s

t

t

h

w

b

f

t

h

(

D

a

i

d

F

o

e

t

D

t

e

o

i

h

s

F

p

n

A

c

o

a

i

o

S

i

D

ell-performing heuristics are already known which can be used

s the operators in the ALNS framework. Due to the large size and

iversity of the neighborhoods, the ALNS algorithm will explore

uge chunks of the solution space in a structured way. As a result,

LNS is very robust as it can adapt to different characteristics of

he individual instances, and is able to avoid being trapped in lo-

al optima (Pisinger & Ropke, 2019). According to Turkeš, Sörensen,

 Hvattum (2021) , the adaptive layer of ALNS has only minor im-

act on the objective function value of the solutions in the stud-

es that have employed this framework. Moreover, the information

hat the adaptive layer uses for selecting heuristics is limited to the

ast performance of each heuristic. This limited data can make the

daptive layer naïve in terms of decision making capability because

t is not able to capture other (problem-independent) information

bout the current state of the search process, e.g., the difference

n cost between past solutions, whether the current solution has

een encountered before during the search, or the number of iter-

tions since the solution was last changed, etc. We refer to the de-

ision making capability of ALNS as performing on a “macro-level”

n terms of adaptability, i.e., the weights of each heuristic is only

pdated at the end of each segment. This means that the heuris-

ics selected within a segment are sampled according to the fixed

robabilities of the segment. This limitation makes it impossible

or ALNS to take advantage of any short-term dependencies that

ccur within a segment that could help aid the heuristic selection

rocess.

Another area where ALNS struggles is when faced with a large

umber of heuristics to choose from. In order to find the best set

f available heuristics for ALNS for a specific setting, initial experi-

ents are often required to identify and remove inefficient heuris-

ics, and this can be both time consuming and computationally ex-

ensive (Hemmati & Hvattum, 2017). Furthermore, some heuristics

re known to perform very well for specific problem variations or

pecific conditions during the search, but they may have a poor

verage performance. In this case, it might be beneficial to remove

hese from the pool of heuristics available to ALNS in order to in-

rease the average performance of ALNS, but this results in a less

owerful pool of heuristics that is unable to perform as well dur-

ng these specific problem variations and conditions.

To address the issues in ALNS, one can use Reinforcement

earning (RL). RL is a subset of machine learning concerned

ith “learning how to make decisions”—how to map situations to

ctions—so as to maximize a numerical reward signal. One of the

ain tasks in machine learning is to generalize a predictive model

ased on available training data to new unseen situations. An RL

gent learns how to generalize a good policy through interaction

ith an environment which returns the reward in exchange for re-

eiving an action from the agent. Therefore, through a trial-and-

rror search process, the agent is trained to achieve the maximum

xpected future reward at each step of decision making condi-

ioned on the current situation (state). Thus, training an RL agent

to achieve the best possible results in similar situations), makes

he agent aware of the dynamics of the environment as well as

daptable to similar environments with slightly different settings.

ne of the more recent approaches in RL is Deep RL which benefits

rom the powerful function approximation property of deep learn-

ng tools. In this approach, different functions that are used to train

nd make decisions in an RL agent are implemented using Artifi-

ial Neural Networks (ANNs). Different Deep RL algorithms dictate

he training mechanism and interaction of the ANNs in the deci-

ion making process of the agent (Sutton & Barto, 2018). There-

ore, integration of the Deep RL into the adaptive layer of the ALNS

an make the resulting framework much smarter at making deci-

ions at each iteration and improve the overall performance of the

ramework.
447
In this paper, we propose Deep Reinforcement Learning Hy-

erheuristic (DRLH) , a general approach to selection hyperheuris-

ic framework (definition in Section 2) for solving combinatorial

ptimization problems. In DRLH, we replace the adaptive layer of

LNS with a Deep RL agent responsible for selecting heuristics

t each iteration of the search. Our Deep RL agent is trained us-

ng Proximal Policy Optimization (PPO) method of Schulman, Wol-

ki, Dhariwal, Radford, & Klimov (2017) which is a standard ap-

roach for stable training of the Deep RL agent in different en-

ironments. The proposed DRLH utilizes a search state consisting

f a problem-independent feature set from the search process and

s trained with a problem-independent reward function that en-

ourages better solutions. This approach makes the framework eas-

ly applicable to many combinatorial optimization problems with-

ut any change in the method and given the proper training step

or each problem separately. The training process of DRLH makes

t adaptable to different problem conditions and settings, and en-

ures that DRLH is able to learn good strategies of heuristic selec-

ion prior to testing, while also being effective when encountering

ew search states. In contrast to the macro-level decision making

f ALNS, the proposed DRLH makes decisions on a “micro-level”,

eaning that only the current search state information affects the

robabilities of choosing heuristics. This allows for the probabili-

ies of selecting heuristics to change quickly from one iteration to

he next, helping DRLH adapt to new information of the search as

oon as it becomes available. The Deep RL agent in DRLH is able

o effectively leverage this search state information at each step of

he search process in order to make better decisions for selecting

euristics compared to ALNS.

To evaluate the performance and generalizability of DRLH,

e choose four different combinatorial optimization problems to

enchmark against different baselines in terms of best objective

ound and the speed of convergence as well as the time it takes

o solve each problem. These problems include the Capacitated Ve-

icle Routing Problem (CVRP), the Parallel Job Scheduling Problem

PJSP), the Pickup and Delivery Problem (PDP), and the Pickup and

elivery Problem with Time Windows (PDPTW). These problems

re commonly used for evaluation in the literature and are diverse

n terms of difficulty to find good and feasible solutions. They ad-

itionally correspond to a broad scope of real world applications.

or each problem, we create separate training and test datasets. In

ur experiments, we compare the performance of DRLH on differ-

nt problem sizes and over an increasing number of iterations of

he search and demonstrate how the heuristic selection strategy of

RLH differs from other baselines throughout the search process.

Our experiments show the superiority of DRLH compared to

he popular method of ALNS in terms of performance quality. For

ach of the problem sets, DRLH is able to consistently outperform

ther baselines when it comes to best objective value specifically

n larger instances sizes. Additionally, DRLH does not add any over-

ead to the instance solve time and the performance gain is a re-

ult of the decision making capability of the Deep RL agent used.

urther experiments also validate that unlike other algorithms, the

erformance of DRLH is not negatively affected by increasing the

umber of available heuristics to choose from. In contrast to this,

LNS struggles when handling a large number of heuristics to

hoose from. This advantage of our framework makes the devel-

pment process for DRLH very simple as DRLH seems to be able to

utomatically discover the effectiveness of different heuristics dur-

ng the training phase without the need for initial experiments in

rder to manually reduce the set of heuristics.

The remainder of this paper is organized as follows: In

ection 2 , related previous work in hyperheuristics and Deep RL

s presented. In Section 3 , we propose the overall algorithm of

RLH as well as the choice of heuristics and parameters. The

J. Kallestad, R. Hasibi, A. Hemmati et al. European Journal of Operational Research 309 (2023) 446–468

d

f

i

S

2

r

p

t

s

t

b

n

d

e

l

c

o

h

a

a

c

f

s

s

m

a

h

p

t

i

v

p

a

k

o

f

n

d

u

r

j

c

s

s

c

f

f

H

w

p

w

r

s

o

s

d

o

i

6

p

e

u

t

a

r

t

A

v

p

s

m

o

m

a

e

i

T

t

o

s

i

v

w

e

t

c

t

c

c

u

t

i

o

c

e

a

p

n

2

v

s

b

fi

l

d

t

a

t

a

d

f

i

b

f

n

e

i

d

t

t

u

t

escriptions of the four combinatorial optimization problems used

or benchmarking purposes are illustrated in Section 4 . The exper-

mental setup and the results of our evaluation are presented in

ections 5 and 6 , respectively.

. Related work

In this section, we first define the term “Hyperheuristic” and

eview some of the traditional work that fall into this category and

oint out their limitations. We also mention some of the methods

hat employ Deep RL for solving combinatorial problems and their

hortcomings. In the end, we explain how we combine the best of

wo domains (Hyperheuristic and Deep RL) to take advantage of

oth their methodologies.

The term hyperheuristic was first used in the context of combi-

atorial optimization by Cowling, Kendall, & Soubeiga (2001) and

escribed as heuristics to choose heuristics . Burke et al. (2010) later

xtended the definition of hyperheuristic to “a search method or

earning mechanism for selecting or generating heuristics to solve

omputational search problems”. The most common classification

f hyperheuristics makes the distinction between selection hyper-

euristics and generation hyperheuristic . Selection hyperheuristics

re concerned with creating a selection mechanism for heuristics

t each step of the search, while generation hyperheuristics are

oncerned with generating new heuristics using basic components

rom already existing heuristic methods. This paper will focus on

election hyperheuristics methods.

Although it is possible to create highly effective problem-

pecific and heuristic-specific methods for heuristic selection, these

ethods do not always generalize well to other problem domains

nd different sets of heuristics. A primary motivation of hyper-

euristic research is therefore the development of general-purpose,

roblem-independent methods that can deliver good quality solu-

ions for many combinatorial optimization problems without hav-

ng to make significant modifications to the methods. Thus, ad-

ancements done in hyperheuristic research aims to be easily ap-

licable by experts and non-experts alike, to various problems

nd heuristics sets without requiring extra effort such as domain

nowledge about the specific problem to be solved.

A classic example of using RL in hyperhueristics is the work

f Özcan, Misir, Ochoa, & Burke (2010) in which they propose a

ramework that uses a traditional RL method for solving exami-

ation timetabling. Performance is compared against a simple ran-

om hyperheuristic and some previous work, and results show that

sing RL obtains better results than simply selecting heuristics at

andom. The RL used here learns during the search process by ad-

usting the probabilities of choosing heuristics based on their re-

ent performance during the search. This type of RL framework

hares many similarities with the ALNS framework, and therefore

uffers from the same limitations as those mentioned for ALNS.

Apart from RL, supervised learning, which is another ma-

hine learning technique, has also been utilized in hyperheuristic

rameworks to improve the performance. A hyperheuristic method

or the Vehicle Routing Problem named Apprentice Learning-based

yper-heuristic (ALHH) was proposed by Asta & Özcan (2014) in

hich an apprentice agent seeks to imitate the behavior of an ex-

ert agent through supervised learning. The training of the ALHH

orks by running the expert on a number of training instances and

ecording the selected actions of the expert together with a search

tate that consists of the previous action used and the change in

bjective function value for the past n steps. These recordings of

earch state and action pairs build up a training dataset in which a

ecision tree classifier is used in order to predict the action choice

f the expert. This makes up a supervised classification problem

n which the final accuracy of the model is reported to be around

5%. In the end ALHH’s performance is compared against the ex-
448
ert and is reported to perform very similarly to the expert, and

ven slightly outperforming the expert for some instances.

Tyasnurita, Özcan, Shahriar, & John (2015) further improved

pon the apprentice learning approach by replacing the decision

ree classifier with a multilayer perceptron (MLP) neural network,

nd named their approach MLP-ALHH. This change increased the

epresentational power of the search state and resulted in a bet-

er performance that is reported to even outperform the expert.

 limitation of ALHH and MLP-ALHH is their use of the super-

ised learning framework which makes performance of these ap-

roaches bounded by the expert algorithm’s performance. A con-

equence of this is that the feedback used to train the predictive

odels of ALHH and MLP-ALHH is binary, i.e. it either matches that

f the expert or not, leaving no room for alternative strategies that

ight perform even better than the expert. In contrast, DRLH uses

 Deep RL framework that neither requires, nor is bounded by an

xpert agent and therefore has more potential to outperform exist-

ng methods by coming up with new ways of selecting heuristics.

he feedback used to train DRLH depends on the effect of the ac-

ion on the solutions, and the amount received varies depending

n several factors. Additionally, DRLH takes future iterations of the

earch into account, while ALHH and MLP-ALHH only consider the

mmediate effect of the action on the solution. Because of this, di-

ersifying behavior is encouraged in DRLH when it gets stuck, as it

ill help improve the solution in future iterations. Another differ-

nce of DRLH compared to ALHH and MLP-ALHH is that the fea-

ures of the search state used by DRLH contain more information

ompared to the search state of the other two methods which ul-

imately makes the agent more aware of the search state and thus

apable of making effective decisions.

In addition to hyperheuristic approaches there have also re-

ently been many attempts at solving popular routing problems

sing Deep RL by the machine learning community. A big limi-

ation of these works is that they all rely on problem-dependent

nformation, and are usually designed to solve a single problem

r a small selection of related problems, often requiring signifi-

ant changes to the approach in order to make them work for sev-

ral problems. In first versions of these studies, Deep RL is used

s a constructive heuristic approach for solving the vehicle routing

roblem in which the agent, representing the vehicle, selects the

ext node to visit at each time step (Kool, van Hoof, & Welling,

019; Nazari, Oroojlooy, Snyder, & Takac, 2018). Although this is

ery effective when compared to simple construction heuristics for

olving routing problems, it lacks the quality of solutions provided

y iterative metaheuristic approaches as well as being unable to

nd feasible solutions in the case of more difficult routing prob-

ems that involve more advanced constraints such as pickup and

elivery problem with time windows.

Another approach that leverages Deep RL for solving combina-

orial optimizations is to take advantage of the decision making

bility of the agent in generating or selecting low-level heuristics

o be applied on the solution. Hottung & Tierney (2019) have used

 Deep RL agent to generate a heuristic for rebuilding partially

estroyed routes in the CVRP using a large neighbourhood search

ramework. This method is an example of heuristic generation and

s specifically designed to solve the CVRP. Thus, it can not easily

e generalized to other problem domains. In Chen & Tian (2019) , a

ramework is presented for using two Deep RL agents for finding a

ode in the solution and the best heuristic to apply on that node at

ach step. Although the authors claim that this method is general-

zable to three different combinatorial optimization problems, the

etails in representation of the problem and type of ANNs used for

he agents from one problem to another change a lot depending on

he nature of the problem. Additionally, one would have to come

p with new inputs and representation when applying this method

o other optimization problems that are not discussed in the study

J. Kallestad, R. Hasibi, A. Hemmati et al. European Journal of Operational Research 309 (2023) 446–468

w

Y

l

f

l

t

c

f

v

p

a

t

s

o

l

w

3

w

t

f

d

o

t

3

A

c

m

a

a

c

w

f

Algorithm 2: Generation of the set of heuristics H.

Function Generate_heuristics
H={};

foreach removal operator r ∈ R do

foreach insertion operator j ∈ I do

Create a heuristic h by combining r and j;

H = H ∪ h ;

end

end

foreach additional heuristic c ∈ C do

H = H ∪ c;

end

return H

3

s

d

a

o

s

4

3

S

c

d

p

t

e

“

n

m

3

i

a

e

t

p

r

n

s

s

“

i

e

i

t

f

3

u

t

p

b

b

o

a

hich reduces the generalizability of the framework. Lu, Zhang, &

ang (2020) suggested the use of a Deep RL agent for choosing

ow-level heuristic at each step for the CVRP. This work also suf-

ers from the generalizability to other types of optimization prob-

ems due to the elements of the Deep RL agent that are specific to

he CVRP problem. Additionally, in this approach the training pro-

ess of the agent is designed in such a way that the agent is only

ocused on intensification rather than diversification. Thus, the di-

ersification in their framework is done by a rule-based escape ap-

roach rather than giving the RL agent freedom to find the bal-

nce between diversification and intensification, which could lead

o better results.

To the best of our knowledge previous work on this topic either

uffer from a lack of generalizability in approach when it comes to

ther problems in the domain or they do not take advantage of the

earning mechanism and representation power of Deep RL. In this

ork we seek to address these issues by introducing DRLH.

. DRLH

In this section, we present the DRLH, a hyperheuristic frame-

ork to solve combinatorial optimization problems.

Our proposed hyperheuristic framework uses an RL agent for

he selection of heuristics. This process improves on the ALNS

ramework of Ropke & Pisinger (2006) by leveraging the RL agent’s

ecision making capability in choosing the next heuristic to apply

n the solution in each iteration. The pseudocode of DRLH is illus-

rated in Algorithm 1 .

Algorithm 1: DRLH.

Function Deep Reinforcement Learning Hyperheuristic
Generate an initial solution x with objective function

of f (x) (see section 3.5)

H=Generate_heuristics() (see section 3.1)

x best = x, f (x best) = f (x)

Repeat

x
′ = x

choose h ∈ H based on policy π(h | s, θ) (see section

3.3)

Apply heuristic h to x
′

if f (x
′
) < f (x best) then

x best = x

end

if accept(x
′
, x) (see section 3.3) , then

x = x
′

end

Until stop-criterion met (see section 3.4)

return x best

.1. Generating heuristics

The heuristic generation process follows the steps in

lgorithm 2 . The set H consists of all possible heuristics that

an be applied on the solution x at each iteration. The general

ethod for obtaining these heuristics is to combine a removal

nd an insertion operator. Furthermore, additional heuristics can

lso be placed in H that do not share the characteristic of being a

ombination of removal and insertion operators. In the following,

e present one example set of H for the problem types considered

or this paper.
449
.2. Sample set of heuristics

Each heuristic h ∈ H is a combination of a removal and an in-

ertion operator presented in Tables 1 and 2 . Furthermore, one ad-

itional intensifying heuristic is also added to H. In each iteration,

 heuristic h ∈ H is applied on the incumbent solution x with cost

f f (x) and generates a new solution x ′ with cost of f (x ′) . For our

ample set of heuristics, H has the size of | H| = 29 (7 removals ×
 insertions + 1 additional).

.2.1. Removal operators R

The set of all removal operators R are provided in Table 1 .

even removal operators are implemented, five of which are fo-

used on inducing diversification through a high degree of ran-

omness denoted by Random in their name. For intensification

urposes, we define the operator “Remove _ largest _ D ” which uses

he metric Deviation D. We define the deviation D i as the differ-

nce in cost with and without element i in the solution, and thus

Remove _ largest _ D ” removes the elements with the largest D i . Fi-

ally, “Remove _ τ ” operator selects a number of consecutive ele-

ents in the solution and removes them.

.2.2. Insertion operators I
Table 2 lists the set of insertion operators I used. A total of 4

nsertion operators are utilized to place the removed elements in

 suitable position in solution x ′ . Operator “Insert _ greedy ” places

ach removed element in the position which obtains the minimum

otal cost of the new solution f (x ′) . Operator “Insert _ beam _ search ”

erforms beam search with a search width of 10 for inserting each

emoved element. Beam search keeps track of the 10 best combi-

ations of positions after inserting each removed element in the

olution and inserts the elements in the best combination of po-

itions that obtain the minimum f (x ′) in the search space. The

Inser t _ by _ var iance ” operator calculates the variance of the ten best

nsertion positions for each of the removed elements. Then the el-

ments are ordered from high to low variance and inserted back

nto the solution with the “Insert _ greedy ” operator. Finally, opera-

or “Inser t _ fir st ” places each removed element randomly in the first

easible position found in the new solution.

.2.3. Additional heuristic C
Unlike in ALNS where only removal and insertion operators are

sed, our framework can also make use of standalone heuristics

hat share neither of the these types of characteristics. An exam-

le of one such additional heuristic, “F ind _ single _ best ”, is responsi-

le for generating the best possible new solution from the incum-

ent by changing one element. This heuristic calculates the cost

f removing each element and re-inserting it with “Insert _ greedy ”,

nd applies this procedure on the solution x for the element that

J. Kallestad, R. Hasibi, A. Hemmati et al. European Journal of Operational Research 309 (2023) 446–468

Table 1

List of all removal operators.

Name Description

Random _ remove _ XS Removes between 2–5 elements chosen randomly

Random _ remove _ S Removes between 5–10 elements chosen randomly

Random _ remove _ M Removes between 10–20 elements chosen randomly

Random _ remove _ L Removes between 20–30 elements chosen randomly

Random _ remove _ XL Removes between 30–40 elements chosen randomly

Remove _ largest _ D Removes 2–5 elements with the largest D i
Remove _ τ Removes a random segment of 2–5 consecutive elements in the solution

Table 2

List of all insertion operators.

Name Description

Insert _ greedy Inserts each element in the best possible position

Insert _ beam _ search Inserts each element in the best position using beam search

Inser t _ by _ var iance Sorts the insertion order based on variance and inserts each element in the

best possible position

Inser t _ fir st Inserts each element randomly in the first feasible position

a

d

t

3

a

t

i

t

i

h

s

f

n

t

T

C

n

3

i

m

A

i

t

t

a

π

O

f

d

fi

π

i

B

t

(

t

w

A

p

(

t

i

e

a

e

o

p

w

t

t

c

e

M

b

g

T

r

a

t

h

n

chieves the minimum cost f (x ′) . “F ind _ single _ best ” is the only ad-

itional heuristic that is used in the proposed sample set of heuris-

ics, H.

.3. Acceptance criteria and stopping condition

We use the acceptance criterion accept(x ′ , x) used in simulated

nnealing (Kirkpatrick, Gelatt, & Vecchi, 1983). This acceptance cri-

erion depends on the difference in objective value between the

ncumbent x and the new solution x ′ denoted as �E = f (x ′) − f (x)

ogether with a temperature parameter T that is gradually decreas-

ng throughout the search. A new solution is always accepted if it

as a lower cost than the incumbent, �E < 0 . In addition, worse

olutions are accepted with probability e −| �E| /T .

To determine the initial temperature T 0 we accept all solutions

or the first 100 iterations of the search and keep track of all the

on-improving steps, �E > 0 . Then, we calculate the average of

hese positive deltas �E in order to get:

 0 =

�E

ln 0 . 8

(1)

To decrease the temperature we use the cooling schedule of

rama & Schyns (2003) , and the search terminates after a certain

umber of iterations has been reached.

.4. Deep RL agent for selection of h

In a typical RL setting, an agent is trained to optimize a pol-

cy π for choosing an action through interaction with an environ-

ent. At each time step (iteration) t , the agent chooses an action

 t and receives a scalar reward R t from the environment indicat-

ng how good the action was. State S t is defined as the informa-

ion received at each time step from the environment based on

he agent’s choice of action A t from a set of possible actions. Thus,

 stochastic policy π for the agent is defined as

(a | s) = P r{ A t = a | S t = s } . (2)

ne such type of policy is the parameterized stochastic policy

unction in which the probability of action selection is also con-

itioned on a set of parameters θ ∈ R

d . As a result, Eq. (2) is rede-

ned as

(a | s, θ) = P r{ A t = a | S t = s, θt = θ} . (3)

n which θt represents the parameters at time step t (Sutton &

arto, 2018). In our setting, the policy π is a MultiLayer percep-

ron (MLP), which is a class of non-linear function approximation
450
 Goodfellow, Bengio, & Courville, 2016). In this scenario, the aim is

o obtain the optimal policy π ∗ by tuning θ which represents the

eights of the MLP network.

The training process for an RL agent is illustrated in

lgorithm 3 . For training the weights of the MLP, we follow the

Algorithm 3: Training the Deep RL agent.

Result : π ∗ optimal policy

Start with random setting of θ for a random policy π ;

for e ← 1 to episodes do

Receive initial state S 1 ;

for t ← 1 to steps do

choose and perform action a ∈ A t according to

π(a | s, θ) ;

Receive R t = v and s ∈ S t+1 from the environment

end

Optimize the policy parameters θ according to PPO

(Schulman et~al., 2017).

end

olicy gradient method of PPO introduced in Schulman et al.

2017) . In order to generalize to different variations of an optimiza-

ion problem, the training process is done for a number of problem

nstances (episodes) with each instance corresponding to a differ-

nt set of attributes of the problem. Each instance is optimized for

 certain number of iterations (time steps) and at the end of each

pisode the policy parameters θ are updated until we obtain the

ptimal policy. Once the training process is complete, the optimal

olicy π ∗ is used to solve unseen instances in the test sets.

As mentioned above, three main properties of the RL agent

hich are used to obtain the optimal policy π ∗ for solving the in-

ended problem are the state representation , the action space , and

he reward function . These parameters dictate the training pro-

ess and decision making capability of the agent and are therefore

ssential for obtaining good solutions to optimization problems.

oreover, in our proposed approach, these properties are set to

e independent of the type of problem which helps this approach

eneralize to many types of combinatorial optimization problems.

he state representation contains the information about the cur-

ent solution and the overall search state, and is shown to the

gent at each step in order to guide the agent in the action selec-

ion process. The action space consists of a set of interchangeable

euristics that can be selected at each time step by the agent. Fi-

ally, the reward function guides the learning of the agent during

J. Kallestad, R. Hasibi, A. Hemmati et al. European Journal of Operational Research 309 (2023) 446–468

Table 3

A list of all features used for the state representation.

Name Description

red uced _ cost The difference in cost between the previous & the current solutions

cost _ f rom _ min The difference in cost between the current & the best found solution

cost The cost of the current solution

min _ cost The cost of the best found solution

temp The current temperature

cs The cooling schedule (α)

no _ improvement The number of iterations since the last improvement

index _ step The iteration number

was _ changed 1 if the solution was changed from the previous, 0 otherwise.

unseen 1 if the solution has not previously been encountered in the search, 0 otherwise.

last _ action _ sign 1 if the previous step resulted in a better solution, 0 otherwise.

last _ action The action in previous iteration encoded in 1-hot.

t

t

t

3

a

t

i

o

o

s

a

i

h

i

b

t

n

l

k

t

o

r

i

s

t

w

v

r

l

f

w

i

s

c

a

a

i

t

s

i

a

3

s

A

b

a

π

3

a

p

t

2

t

i

R

i

h

t

r

w

t

t

u

c

m

a

s

c

t

A

o

3

r

a

c

p

p

u

s

t

a

i

raining and should be designed in a way that helps the agent op-

imize the objective of the problem. In the following, we explain

he choice for each of these properties.

.4.1. State representation

The state consists of a set of useful features for guiding the

gent to select the best action/heuristic at each iteration in

he search. We have prioritized general state features that are

ndependent of the specifics of the problem being solved. In

ther words, the state representation is easily applicable to many

ptimization problems of different domains. Table 3 lists all the

tate features used by the agent.

The state features cost and min _ cost together with index _ step

llow the agent to know approximately how well it is doing dur-

ng the search. This becomes apparent if cost and min _ cost are

igher than their average values during training with respect to

ndex _ step . These state features primarily help at a macro-level

y making the agent stick to a high-level strategy of heuris-

ic selection throughout the search. cost _ f rom _ min , temp , cs and

o _ improvement inform the agent about how likely a new so-

ution is to be accepted. These state features help the agent

now how much intensification/diversification is appropriate at

hat step. For instance if it should try to escape a local optima

r if it should focus on intensification. The last five state features;

ed uced _ cost , was _ changed , unseen , last _ action _ sign and last _ action

nform the agent about the immediate changes from the previous

olution to the current solution. In particular, red uced _ cost shows

he difference in cost between the previous and current solution.

as _ changed indicates if the solution was changed from the pre-

ious step to the current step. unseen indicates whether the cur-

ent solution was encountered before during the search. Finally,

ast _ action _ sign indicates if the solution improved or worsened

rom the previous step, and last _ action indicates the action that

as used in the previous step. Together these five features give

nformation about what action the agent selected in the previous

tep and the result of that action. This helps the agent make de-

isions at a micro-level and is particularly useful as the agent can

void selecting deterministic or semi-deterministic heuristics such

s Remov e _ lar gest _ D , Inser t _ by _ v ar iance and F ind _ single _ best twice

n a row if the first time did not lead to any improvement, because

hen it is less likely, if at all, to work the second time on the same

olution. This is particularly important for F ind _ single _ best which

s a fully deterministic heuristic and produces the same result if

pplied for two consecutive iterations.

.4.2. Action

The actions in our setting for the agent are the same as the

et of heuristics H , i.e, A t = H . At each iteration of the DRLH (c.f.,

lgorithm 1), a heuristic h is selected and applied on the solution

y the agent. Therefore the policy function π in Eq. (3) is redefined
451
s

(h | s, θ) = P r{ A t = h | S t = s, θt = θ} . (4)

.4.3. Reward function

A good reward function needs to balance the need for gradual

nd incremental rewards while also preventing the agent from ex-

loiting the reward function without actually optimizing the in-

ended objective (also known as reward hacking Amodei et al.,

016). For our framework, we propose a reward functions that has

he above property. We refer to this as R 5310
t , the formula for which

s

5310
t =

⎧ ⎪ ⎨

⎪ ⎩

5 , if f (x ′) < f (x best)
3 , if f (x ′) < f (x)
1 , if accept(x ′ , x)
0 , otherwise

(5)

R 5310
t is inspired from the scoring mechanism that is applied

n the ALNS framework for measuring the performance of each

euristic in a segment. This reward function encourages the agent

o find better solutions than the current one as this gives a high

eward. In addition it also gives a small reward if it finds a slightly

orse solution that manages to get accepted by the acceptance cri-

erion. This property of the function in turn motivates the agent

o use diversifying operators when it is no longer able to improve

pon the current solution. Moreover, other reward functions were

onsidered for the framework which take the step-wise improve-

ent of the solution as well as the amount of improvement into

ccount. Further experiments on these reward functions demon-

trate that the R 5310
t proved to be more stable and faster to train

ompared to the others (results in Appendix A). Furthermore, given

he fact that R 5310
t comes from the original scoring function of

LNS in Ropke & Pisinger (2006) , we use the same function for

ur Deep RL agent and ALNS for an equal comparison.

.5. Solution representation and initial solution

For all the problems described in Section 4 , the solution is rep-

esented as a permutation of orders/calls/jobs on each of the avail-

ble vehicles/machines. Additionally, for the PDP and PDPTW, each

all should be in the solution twice, one time for each of the

ickup and the delivery elements respectively, and no call can be

resent in multiple vehicles, as the same vehicle has to both pick

p and deliver the call.

The initial solutions for all of the problems are created by in-

erting all the orders/calls/jobs into the vehicles/machines using

he insert_greedy operator from Table 2 . For each of the problems

nd each test instance, DRLH, ALNS and URS start with the same

nitial solution for a fair comparison.

J. Kallestad, R. Hasibi, A. Hemmati et al. European Journal of Operational Research 309 (2023) 446–468

4

a

p

a

l

(

4

s

N

h

f

v

n

t

t

w

s

t

o

t

o

t

v

C

t

t

4

M

c

c

j

T

a

0

c

d

4

g

p

o

l

d

m

4

c

t

s

t

a

t

h

v

b

a

d

p

d

h

c

t

c

T

i

i

d

p

l

h

t

f

h

c

t

m

&

5

p

e

5

d

w

5

T

a

t

t

s

5

m

f

s

a

a

g

t

u

t

m

t

t

m

t

5

t

p

. Problem sets

We consider four sets of combinatorial optimization problems

s examples of problems that can be solved using DRLH. These

roblems are the Capacitated Vehicle Routing Problem (CVRP), Par-

llel Job Scheduling Problem (PJSP), Pickup and Delivery Prob-

em (PDP) and Pickup and Delivery Problem with Time Windows

PDPTW).

.1. CVRP

The Capacitated Vehicle Routing Problem is one of the most

tudied routing problems in the literature. It consists of a set of

orders that needs to be served by any of the M number of ve-

icles. Additionally, there is a depot in which the vehicles travel

rom and return to when serving the orders. Following the pre-

ious work, the number of vehicles in this particular problem is

ot fixed, but is naturally limited to M = { 1 , . . . , N} . Meaning that

he maximum number of vehicles that can be utilized is N and

he minimum number is 1. Usually the number of vehicles used

ill fall somewhere in between depending on which number re-

ults in the best solution. Each order has a weight W i associated

o it, and the vehicles have a maximum capacity. The sequence of

rders that a vehicle visits after leaving the depot before returning

o the depot is referred to as a tour . There needs to be a minimum

f one tour and a maximum of N tours. The combined weight of

he orders in a tour can not exceed the maximum capacity of the

ehicle, and so several tours are often needed in order to solve the

VRP problem. The objective of this problem is to create a set of

ours that minimize the total distance travelled by all the vehicles

hat are serving at least one order.

.2. PJSP

In the Parallel Job Scheduling Problem, we are given N jobs and

machines. Each of the machines operate with a different pro-

essing speed, and so the time required to complete job i on ma-

hine m is T i,m

. Each job has a due time associated with it, and if a

ob is finished after its due time, a delay is calculated for that job.

he delay for job i is the difference in time between the due time

nd the actual finishing time of job i , and can never be lower than

. The objective of the problem is to find a sequence of jobs to

omplete on each of the machines in order to minimize the total

elay of all the jobs.

.3. PDP

In Pickup and Delivery Problem we are given N calls and a sin-

le vehicle with a maximum capacity. Each call has a weight, a

ickup location, and a delivery location, and is served when the

rder is transported by the vehicle from the pickup to the delivery

ocation. The objective of the problem is to minimize the traveling

istance of the vehicle while serving all the calls and not carrying

ore than the maximum capacity at any point.

.4. PDPTW

In pickup and delivery problem, we are given a set of calls. A

all consists of an origin and a destination and an amount of goods

hat should be transported. A heterogeneous fleet of vehicles are

erving the calls, picking up goods at their origins and delivering

hem to their destinations. Time windows are assigned to each call

t origins and destinations. Pickups and deliveries must be within

he associated time windows. In the event of early arrival of a ve-

icle to a node before the start of the time window, the mentioned

ehicle must wait until the beginning of the time window before
452
eing able to perform the pick up or delivery. A vehicle is never

llowed to arrive at a node after the end of the time window. Ad-

itionally, a service time is considered for each time a call gets

icked up or delivered, i.e., the time it takes a vehicle to load or

eliver the goods at each node. For each call, a set of feasible ve-

icles is determined. Each vehicle has a predetermined maximum

apacity of goods as well as a starting terminal in which duty of

he vehicle starts. Moreover, a start time is assigned to each vehi-

le indicating the time that the vehicle leaves its starting terminal.

he vehicle must leave its start terminal at the starting time, even

f a possible waiting time at the first node visited occurs. The goal

s to construct valid routes for each vehicle, such that time win-

ows and capacity constraints are satisfied along each route, each

ickup is served before the corresponding delivery, pickup and de-

iveries of each call are served on the same route and each ve-

icle only serves calls it is allowed to serve. The construction of

he routes should be in such a way that they minimize the cost

unction. There is also a compatibility constraint between the ve-

icles and the calls. Thus, not all vehicles are able to handle all the

alls. If we are not able to handle all calls by our fleet, we have

o outsource them and pay the cost of not transporting them. For

ore details, readers are referred to Hemmati, Hvattum, Fagerholt,

 Norstad (2014) .

. Experimental setup

In this section, we explain the baseline methods, process of hy-

erparameter selection, and dataset generation methods used for

valuation of the DRLH framework.

.1. Experimental environment

The computational experiments in this paper were run on a

esktop computer running a 64-bit Ubuntu 20.04 operating system

ith a AMD Ryzen 5 3600 processor and 32GB RAM.

.2. Baseline models

Four baseline frameworks are chosen to compare with DRLH.

hree of these methods use the same approach as DRLHin selecting

 heuristic from the same set of heuristics at each iteration with

he difference being in selection strategy. The last baseline uses a

rained Deep RL agent to build a route by selecting a node at each

tep. The details of the baselines are presented in the following.

.2.1. Adaptive large neighborhood search (ALNS)

As our approach is improving on the ALNS algorithm, this

ethod is chosen as a baseline for performance comparison. This

ramework measures the performance of each heuristic using a

coring function for a certain number of iterations, referred to as

 segment . At the end of each segment, the probability of choosing

 heuristic during the next segment is updated using the aggre-

ated scores of each heuristic in the previous segment. The extent

o which the scores of the previous segment should contribute to

pdating the weights is controlled by the reaction factor .

There is a trade-off between speed and stability when choosing

he values of the segment size and the reaction factor. Longer seg-

ents mean less frequent updates of the weights, but may increase

he quality of the update. Similarly, a low reaction factor means

hat the weights can take longer to reach their desired values, but

ay also prevent sudden unfavorable changes to the weights due

o the stochastic nature of the problem.

.2.2. Uniform random selection (URS)

As a simpler approach to the selecting heuristics in each itera-

ion, this method selects the heuristic randomly from H with equal

robabilities.

J. Kallestad, R. Hasibi, A. Hemmati et al. European Journal of Operational Research 309 (2023) 446–468

5

r

o

D

a

a

b

5

a

f

t

l

n

s

a

d

i

t

t

5

s

f

t

w

t

d

b

p

T

t

p

t

s

t

t

e

t

a

o

a

v

t

a

r

o

w

I

l

f

T

T

t

b

w

g

b

5

s

s

a

2

5

e

a

N

t

n

s

fi

o

D

d

5

N

u

s

m

N

n

t

a

5

a

o

F

p

p

l

i

o

D

s

5

o

a

v

.2.3. Tuned random selection (TRS)

We introduce another baseline to our experiments which is

efered to as TRS. For this method, we tuned the probabilities

f selecting heuristics using the method of IRace (López-Ibáñez,

ubois-Lacoste, Pérez Cáceres, Birattari, & Stützle, 2016). The pack-

ge “IRace” applies iterative F-Race to tune a set of parameters in

n optimization algorithm (heuristic probabilities in our method)

ased on the performance on the training dataset.

.2.4. Attention Module (AM) based Deep RL heuristic

We also consider the AM method of Kool et al. (2019) which

chieved state-of-the-art results among the Deep RL based method

or solving combinatorial optimization problems. This method uses

he Deep RL agent combined with deep attention representation

earning to build the solution at each step in a constructive man-

er using problem specific features from the environment. As a re-

ult, when applied on new problems, a new set of features as well

s a problem specific representation learning scheme need to be

efined. For example, the time window and vehicle incompatibil-

ty constraints were not mentioned in the original paper and for

hat reason we can not solve the difficult problem of PDPTW with

his framework.

.3. Hyperparameter selection

The hyperparameters for the Deep RL agent determine the

peed and stability of the training process and also the final per-

ormance of the trained model. A small learning rate will cause

raining to take longer, but the smaller updates to the neural net-

ork also increase the chance of a better final performance once

he model has been fully trained. Because the training process is

one in advance of the testing stage, we opt for a slow and sta-

le approach in order to train the best models possible. The hy-

erparameters of Deep RL agent for the experiments are listed in

able 4 .

In order to decide on the hyperparameters for DRLH, some ini-

ial experiments were performed on the PDP problem (as the sim-

le baseline problems compared to others) on a separate valida-

ion set to see which combinations performed best. The resulting

et of hyperparameters have been applied for all experiments in

his paper. Our motivation for doing so is that we wanted to test

he generalizability of the framework in terms of the hyperparam-

ters as well as the performance on different problems. By tuning

he hyperparameters on a simpler problem and applying them to

ll other problems of all sizes and variations, we tried to avoid

vertuning DRLH for every separate problem to keep the evalu-

tion fair for the baseline methods and make sure that the ad-

antage of our approach is in the decision making approach not

he choice of hyperparameters for each problem. Moreover, this

dds to the generalizability trait of the framework that does not

equire hyperparameter selection for each specific problem. Based

n our experiments we found that these set of hyperparameters

ork very well across all the problem variations that we tested.

t is likely that these hyperparameters can work for any under-

ying combinatorial optimization problem, as the hyperparameters

or DRLH are related to the high-level problem of heuristic selec-
able 4

he hyperparameters used during training for the Deep RL agent of DRLH.

Hyperparameter Value

Learning rate 1e −5

Batch size 64

First hidden layer size 256

Second hidden layer size 256

Discount factor 0.5

T

P

453
ion , which stays the same, regardless of what the underlying com-

inatorial optimization problem actually is. In the case of ALNS,

e apply the same set of optimized hyperparameters that are sug-

ested by Hemmati et al. (2014) , which is optimized for solving the

enchmark of PDPTW.

.4. Dataset generation

For all the problem variations we generate a distinct training

et consisting of 50 0 0 instances, and a distinct testing set con-

isting of 100 instances. Additionally, for PDPTW we also utilize

 known set of benchmark instances for testing (Hemmati et al.,

014).

.4.1. CVRP

CVRP data instances are generated in accordance with the gen-

ration scheme of Nazari et al. (2018) , Kool et al. (2019) , but we

lso add two bigger problem variations. Instances of sizes N = 20 ,

 = 50 , N = 100 , N = 200 and N = 500 are generated where N is

he number of orders. For each instance the depot location and

ode locations are sampled uniformly at random from the unit

quare. Additionally, each order has a size associated with it de-

ned as ˆ γ = γi /D N where γi is sampled from the discrete set

f { 1 , . . . , 9 } , and the normalization factor D N is set as D 20 = 30 ,

 50 = 40 , D 100 = 50 , D 200 = 50 , D 500 = 50 , for instances with N or-

ers, respectively.

.4.2. PJSP

For the PJSP we generate instances of sizes N = 20 , N = 50 ,

 = 100 , N = 300 and N = 500 where N is the number of jobs and

sing M = � N/ 4 � machines. Job i ’s required processing steps P S i are

ampled from the discrete set of { 100 , 101 , . . . , 10 0 0 } , and machine

 ’s speed S m

, in processing steps per time unit, is sampled from

 (μ, σ 2) with μ = 10 , σ = 30 , and the speed is rounded to the

earest integer and bounded to be at least 1. From there we get

hat the time required to process job i on machine m is calculated

s 	 P S i /S m

 .

.4.3. PDP

For this problem, PDP data instances of sizes N = 20 , N = 50 ,

nd N = 100 are generated where N is the number of nodes based

n the generation scheme of Nazari et al. (2018) , Kool et al. (2019) .

or each instance the depot location and node locations are sam-

led uniformly at random in unit square. Half of the nodes are

ickup locations whereas the other half is the corresponding de-

ivery locations. Additionally, each call has a size associated with

t defined as ˆ γ = γi /D N where γi is sampled from the discrete set

f { 1 , . . . , 9 } , and the normalization factor D N is set as D 20 = 15 ,

 50 = 20 , D 100 = 25 , for each problem with N number of nodes re-

pectively.

.4.4. PDPTW

For the PDPTW we use instances with different combinations

f number of calls and number of vehicles, see Table 5 . For gener-

ting the training set and the 100 test instances, we use the pro-

ided instance generator of Hemmati et al. (2014) . Additionally, we
able 5

roperties of different variations of the PDPTW instance types.

#Calls #Vehicles #Vehicle types

18 5 3

35 7 4

80 20 2

130 40 2

300 100 2

J. Kallestad, R. Hasibi, A. Hemmati et al. European Journal of Operational Research 309 (2023) 446–468

Fig. 1. Performance of DRLH on the generated test set.

u

i

e

t

w

t

o

(

c

s

o

b

A

6

o

w

t

l

s

o

w

s

e

o

i

f

n

d

i

(

h

p

c

w

a

i

D

6

o

S

se benchmark instances of Hemmati et al. (2014) for the remain-

ng results. The benchmark test set consists of some instances of

ach variation, which are solved 10 times during testing in order

o calculate the average best objective for each instance. Previous

ork by Homsi, Martinelli, Vidal, & Fagerholt (2020) have found

he global optimal objectives for these instances, and we use these

ptimal values in order to calculate the Min Gap (%) and Avg Gap

%) to the optimal values for instances with 18, 35, 80 and 130

alls. Additionally, we also generate and test on a much larger in-

tance size of 300 calls where we do not have the exact global

ptimal objectives, but instead use the best known values found

y DRLH with 10,0 0 0 iterations to calculate the Min Gap (%) and

vg Gap (%) .

. Results

In this section, we present the results of different experiments

n the performance of DRLH. In the first experiment (Section 6.1),

e set the number of iterations of the search to 10 0 0 to compare

he quality of the best found objective by each algorithm over a

imited number of iterations for different problem sizes in the test

et. In the next experiment (Section 6.2), we increase the number

f iterations for all the methods and compare their performance
454
hen enough iterations are provided to fully explore the problem

pace. We also report the results on the benchmark of Hemmati

t al. (2014) instances (Section 6.3). In order to demonstrate an-

ther advantage of using DRLH, we conduct an experiment with

ncreased number of heuristics to illustrate the dependence of each

ramework on the performance of individual heuristics when the

umber of heuristics exceeds a certain number (Section 6.4). Ad-

itionally, we report the convergence speed and the training and

nference time of each framework on instances of each problem

 sections 6.5 and 6.6). Next, to gain insight into the reason be-

ind the superiority of DRLH compared to the state of the art, we

rovide some figures and discuss the difference in strategy behind

hoosing a heuristic between DRLH and ALNS (Section 6.7). Finally,

e compare the performance of DRLH, with a Deep RL heuristic

pproach (Section 6.8). Additional experiments and results regard-

ng the reward function, convergence speed, and dependency of

RLH on the size of the problem can be found in Appendix.

.1. Experiment on generated test set

For this experiment, each method was evaluated on a test set

f 100 generated instances for each of the problems introduced in

ection 4 . Figure 1 (a) shows the improvement in percentage that

J. Kallestad, R. Hasibi, A. Hemmati et al. European Journal of Operational Research 309 (2023) 446–468

Fig. 2. Boxplot results for different iterations of PDP100.

Table 6

Average results for PDPTW instances with mixed call sizes after 10 0 0 iterations.

DRLH ALNS URS

Min Gap Avg Gap Time Min Gap Avg Gap Time Min Gap Avg Gap Time

#C #V (%) (%) (s) (%) (%) (s) (%) (%) (s)

18 5 0.00 0.18 32 0.00 0.46 25 0.00 0.40 12

35 7 2.67 5.78 9 3.45 7.08 36 2.46 6.40 27

80 20 3.04 4.85 37 3.64 6.51 98 4.62 7.23 100

130 40 3.44 4.66 100 4.00 6.24 186 4.85 6.71 176

300 100 2.40 3.15 637 3.10 5.04 599 5.29 6.51 398

u

o

b

T

i

F

t

i

t

n

a

s

l

F

o

F

a

i

6

s

s

5

f

o

m

t

i

s

6

t

a

A

fi

F

D

t

m

a

m

n

t

o

t

t

i

e

w

6

h

A

F

p

P

p

b

p

s

n

a

t

f

sing DRLH, ALNS, and TRS have over using URS on CVRP instances

f different sizes. We see that DRLH is able to outperform all the

aselines for all the instance sizes except for the smallest size.

here is also a clear trend that shows how DRLH becomes increas-

ngly better compared to other methods on larger instance sizes.

igure 1 (b) shows a similar result for the PJSP problem. We see

hat DRLH is able to outperform the other methods for all of the

nstance sizes tested. Compared to the previous results, we see that

he degree of improvement on larger instance sizes is less promi-

ent for DRLH, but we also see that ALNS does not perform notice-

bly better on larger instance sizes at all. Because of that we still

ee a clear separation in performance between DRLH and ALNS on

arger instance sizes that seem to grow with larger instance sizes.

inally, we observe a similar trend for PDP and PDPTW as for the

ther problems, which can be seen in Fig. 1 (c) and (d), respectively.

rom this figure we see that DRLH outperforms ALNS and URS on

ll instance sizes tested and that performance difference tends to

ncrease with larger instance sizes.

.2. Experiment on increased number of iterations

Figure 2 shows that the number of iterations for improving the

olution affects the minimum costs found for all the methods. We

ee that DRLH outperforms the baselines when tested for 10 0 0,

0 0 0, 10,0 0 0 and 25,0 0 0 iterations, and that the percentage dif-

erence between DRLH, ALNS and URS gets smaller as the number

f iterations grows larger. Intuitively this makes sense as all three

ethods are getting closer to finding the optimal objectives for the

est instances, and more iterations for improving the solution dur-

ng the search makes the choices of which heuristics to select less

ensitive compared to searching for a smaller number of iterations.

.3. Experiment on the PDPTW benchmark dataset

In this section, we report results for PDPTW on the benchmark

est set shown in Tables 6 , 7 and 8 for 10 0 0, 50 0 0 and 10,0 0 0 iter-
455
tions, respectively. We see from the tables that DRLH outperforms

LNS and URS on all of the tests on average, showing that it can

nd high quality solutions and has a robust average performance.

urthermore, we can see that the performance difference between

RLH and the baselines increases on bigger instances, meaning

hat DRLH scales favorably to the size of the problem, making it

ore viable for big industrial-sized problems compared to ALNS

nd URS.

We have also included the average time in seconds for opti-

izing the test instances. Note that the difference in time-usage is

ot directly dependent on the framework for selecting the heuris-

ics (DRLH, ALNS, URS), but rather on the difference in time-usage

f the heuristics themselves. This means that if all the heuris-

ics used the same amount of time, then there would not be any

ime difference between the frameworks. However, because there

s a relatively large variation in the time-usage between the differ-

nt heuristics, we see a considerable variation between the frame-

orks as they all have different strategies for heuristic selection.

.4. Experiment on the increased pool of heuristics

In addition to the set of heuristics mentioned in Section 3.1 we

ave also created an extended set of heuristics (see list in

ppendix B). In total this extended set consists of 142 heuristics.

igure 3 shows the average gap of using the extended set com-

ared to using the standard set for each of DRLH, ALNS and URS on

DPTW. The extended set obtains worse results on average com-

ared to the standard set, but there is an interesting difference

etween the performance hit of DRLH, ALNS and URS when com-

aring the results of the extended set and the standard set. We

ee from Fig. 3 that DRLH is relatively unaffected by increasing the

umber of available heuristics (being only 0.02% worse on aver-

ge), while ALNS and URS are performing much worse when using

he extended set, and ALNS is hit especially hard. A likely reason

or this is that there are too many heuristics to accurately explore

J. Kallestad, R. Hasibi, A. Hemmati et al. European Journal of Operational Research 309 (2023) 446–468

Table 7

Average results for PDPTW instances with mixed call sizes after 50 0 0 iterations.

DRLH ALNS URS

Min Gap Avg Gap Time Min Gap Avg Gap Time Min Gap Avg Gap Time

#C #V (%) (%) (s) (%) (%) (s) (%) (%) (s)

18 5 0.00 0.00 56 0.00 0.11 159 0.00 0.01 64

35 7 1.02 2.95 218 0.78 3.24 207 1.26 3.49 141

80 20 1.76 3.25 201 2.11 4.04 503 2.54 4.14 471

130 40 2.10 3.14 530 2.51 3.93 837 2.91 4.09 767

300 100 0.48 1.15 2580 1.01 2.35 2062 2.07 2.99 2352

Table 8

Average results for PDPTW instances with mixed call sizes after 10,0 0 0 iterations.

DRLH ALNS URS

Min Gap Avg Gap Time Min Gap Avg Gap Time Min Gap Avg Gap Time

#C #V (%) (%) (s) (%) (%) (s) (%) (%) (s)

18 5 0.00 0.00 219 0.00 0.02 338 0.00 0.00 102

35 7 0.67 2.02 182 0.78 2.66 410 0.68 2.77 289

80 20 1.80 2.95 321 2.03 3.33 757 2.17 3.36 972

130 40 1.93 2.84 877 2.38 3.34 1307 2.56 3.37 1609

300 100 0.00 0.64 4630 0.55 1.89 4120 1.46 2.18 4203

Fig. 3. Results of an Increased Pool of Heuristics.

a

t

f

s

t

s

e

f

r

t

s

s

D

c

n

w

s

i

t

f

i

n

D

r

p

d

w

i

n

o

6

p

F

p

D

m

t

456
ll of them during the search in order to identify the best heuris-

ics and take advantage of them during the search.

An important conclusion from this result (albeit one that needs

urther empirical proof) is that when using DRLH, it is possible to

upply it with a large number of heuristics and let DRLH iden-

ify the best ones to use. This is not possible for ALNS and con-

equently it is often necessary to spend time carrying out prior

xperiments with the aim of finding a small set of the best per-

orming heuristics to include in the final ALNS model. This also

esonates with the conclusion of Turkeš et al. (2021) , who argue

hat the performance of ALNS benefits more from a careful a priori

election of heuristics, than from an elaborate adaptive layer. Con-

idering that prior experiments can be quite time consuming, using

RLH can lead to a simpler development phase where heuristics

an be added to DRLH without needing to establish their effective-

ess beforehand, and not having to worry whether adding them

ill hurt the overall performance. Should a heuristic be unneces-

ary, then DRLH will learn to not use it during the training phase.

In addition to DRLH having a simpler development phase, an

ncreased (or more nuanced) set of heuristics also has a larger po-

ential to work well for a wide range of conditions, such as for dif-

erent problems, instance sizes and specific situations encountered

n the search. In other words, reducing the set of heuristics could

egatively affect the performance of ALNS, but much less so for

RLH. Some heuristics work well only in specific situations, and so

emoving these “specialized” heuristics due to their poor average

erformance gives less potential for ALNS to be able to handle a

iverse set of problem and instance variations compared to DRLH,

hich learns to take advantage of any heuristic that performs well

n specific situations. Of course, these claims are based on a limited

umber of experiments and should be validated in a broad range

f (future) experiments.

.5. Average performance results

In this section, we explore the speed and characteristics of the

erformance of DRLH, ALNS and URS on the different problems.

ig. 4 shows that DRLH is able to quickly find better solutions com-

ared to ALNS and URS for all the problems. Although for CVRP,

RLH takes a little bit longer initially, but ultimately reaches a

uch lower average minimum cost before the convergence of all

hree methods start to stagnate. For all the problems, DRLH is able

J. Kallestad, R. Hasibi, A. Hemmati et al. European Journal of Operational Research 309 (2023) 446–468

Fig. 4. Average performance of DRLH, ALNS and URS on each of the problems.

t

i

C

o

a

a

t

6

i

f

c

d

o

i

t

e

s

c

t

i

i

t

f

m

o

t

6

e

c

t

D

h

t

T

w

a

o reach a better cost after less than 500 iterations than what ALNS

s able to reach after 10 0 0 iterations. With the exception of the

VRP problem, DRLH is also extremely efficient in the beginning

f the search, reaching costs in only 100 iterations that takes ALNS

pproximately 500 iterations to match. We refer to Appendix C for

 complete collection of performance plots for all the problems

hat we have tested.

.6. Training and inference time needed for each problem

Tables 9 and 10 report the time needed for training and solv-

ng for the instances of each problem, respectively. The main dif-

erence between DRLH and the baselines is the approach to de-

ision making when it comes to choosing the next heuristic. This

ecision making process, on itself, does not add much overhead

n the computational time of the methods. The main difference

n the speed of these methods is the speed of the operators that

hey choose. This means that in some cases DRLH chooses op-

rators that are faster or slower compared to baseline which re-

ults in lower or higher computational time. Therefore, when it

omes to computational time, there is not much difference be-
457
ween these methods. This can also be shown in Table 10 , in which

n some cases DRLH is faster than the other two baselines and

n some cases it is slower. It should be noted that the execu-

ion time of the operators can be improved if implemented care-

ully or using a faster programming language, e.g., C. However, the

ain focus of the paper is to improve the hyperheuristic approach

f choosing the next heuristic at each step, not the execution

ime.

.7. Comparison between heuristic selection strategies

Figure 5 demonstrate the probability of selecting heuristics at

ach step of the search for DRLH and ALNS in which each line

orresponds to the probability of one heuristic at every step of

he search. The “micro-level” heuristic usage of DRLH means that

RLH is able to drastically change the probabilities of selecting

euristics from one iteration to the next by taking advantage of

he information provided by the search state, see Fig. 5 (a) and (b).

his is in contrast to the “macro-level” heuristic usage of ALNS

here the probabilities of selecting operators only are updated

t the beginning of each segment, meaning that the decision

J. Kallestad, R. Hasibi, A. Hemmati et al. European Journal of Operational Research 309 (2023) 446–468

Table 9

Training time for DRLH on different problems.

Problem Size #Iterations #Training Instances Total training time (s) Average time per instance (s)

CVRP 20 1k 1000 4586.85 4.59

CVRP 50 1k 1000 12394.3 12.39

CVRP 100 1k 1000 36330.0 36.33

CVRP 200 1k 100 8618.64 86.19

CVRP 500 1k 50 26483.2 529.66

PJSP 20 1k 1000 28233.7 28.23

PJSP 50 1k 1000 35552.1 35.55

PJSP 100 1k 500 16576.8 33.15

PJSP 300 1k 100 19758.1 197.58

PJSP 500 1k 100 79975.3 799.75

PDP 20 1k 500 1868.66 3.74

PDP 50 1k 100 2160.65 21.61

PDP 100 1k 100 12875.3 128.75

PDPTW 18 1k 600 25340.2 42.23

PDPTW 35 1k 600 12154.9 20.26

PDPTW 80 1k 500 20704.4 41.41

PDPTW 130 1k 100 8595.9 85.96

PDPTW 300 1k 90 53657.5 596.19

Deep Reinforcement Learning Hyperheuristic

Fig. 5. Example of the probability of selecting heuristics for DRLH and ALNS.

458

J. Kallestad, R. Hasibi, A. Hemmati et al. European Journal of Operational Research 309 (2023) 446–468

Table 10

Average Time (seconds) required for solving the test instances for each method

DRLH, ALNS and URS.

Problem Size #Iterations DRLH ALNS URS

CVRP 20 1k 4.08 11.58 7.75

CVRP 50 1k 11.58 35.17 23.52

CVRP 100 1k 34.28 99.58 50.65

CVRP 200 1k 102.76 221.22 94.07

CVRP 500 1k 621.74 664.54 238.86

PJSP 20 1k 20.37 18.06 5.65

PJSP 50 1k 30.69 41.84 15.9

PJSP 100 1k 57.05 76.15 34.0

PJSP 300 1k 199.37 237.58 110.81

PJSP 500 1k 453.92 462.34 195.67

PDP 20 1k 3.89 4.17 1.85

PDP 50 1k 31.4 20.15 9.93

PDP 100 1k 159.86 79.58 45.86

PDPTW 18 1k 32.61 23.85 9.18

PDPTW 35 1k 10.67 29.75 21.18

PDPTW 80 1k 34.82 71.27 68.33

PDPTW 130 1k 110.67 139.45 132.32

PDPTW 300 1k 500.9 438.65 361.39

m

t

o

e

s

w

v

o

t

e

o

“

a

c

“

w

o

i

g

i

l

t

f

f

F

h

s

a

h

6

(

m

t

p

t

s

t

S

t

p

p

s

(

s

t

w

m
aking of ALNS within a single segment is random according to

he locked probabilities for that segment, see Fig. 5 (c). Depending

n the problem and available heuristics to select, there might

xist exploitable strategies and patterns for heuristic selection,

uch as heuristic(s) that: work well when used together, work

ell for escaping local minima, work well on solutions not pre-

iously encountered during the search. Using DRLH, these types

f exploitable strategies can be automatically discovered without

he need for specially tailored algorithms designed by human

xperts. We refer to one such exploitable strategy found by DRLH

n our problems with our provided set of heuristics as minimizing

wasted actions”. We define a wasted action as the selection of

 deterministic heuristic (in our case F ind _ single _ best) for two

onsecutive unsuccessful iterations. The reason that this action is

wasted” is because of the deterministic nature of the heuristic,
Table 11

The percentage of wasted actions of the total number of determ

each problem.

(a) CVRP

Wasted Actions (%)

#Orders #Iterations DRLH ALNS #

20 1k 3.37 26.55 2

50 1k 0.00 23.98 5

100 1k 1.22 19.48 1

200 1k 0.00 23.43 3

500 1k 0.01 25.15 5

(c) PDP

Wasted Actions (%)

#Calls #Iterations DRLH ALNS #

20 1k 6.82 31.53 1

50 1k 0.00 29.00 3

100 1k 0.00 28.01 8

100 5k 0.02 30.62 1

100 10k 0.00 33.86 3

100 25k 0.00 32.69 1

3

8

1

3

1

3

8

1

3

459
hich makes it so that if the solution did not change in the previ-

us iteration, then it is guaranteed not to change in the following

teration as well. Even though we have not specifically pro-

rammed DRLH to utilize this strategy, it becomes clear by exam-

ning Table 11 that the DRLH has picked up on this strategy when

earning to optimize micro-level heuristic selection. Table 11 shows

hat the number of wasted actions for DRLH is almost non-existent

or most problem variations. ALNS on the other hand ends up with

ar more wasted actions than DRLH, even though ALNS also uses

 ind _ single _ best much more seldom on average. Figure 5 (c) shows

ow the heuristic probabilities for ALNS remain locked within the

egments, making it impossible for ALNS to exploit strategies such

s minimizing wasted actions which relies on excellent micro-level

euristic selection such as what DRLH demonstrates.

.8. Performance comparison with AM deep RL heuristic

For this experiment, we ran the AM method of Kool et al.

2019) on our test datasets for the CVRP problem. The trained

odels and the implementation of the models needed to solve

he problem have been provided publicly by the authors of this

aper. The dataset generation procedure for both our work and

he AM paper follow the work of Nazari et al. (2018) . As a re-

ult, the models are well fit to be evaluated on our test set. For

heir method we considered three different approaches : Greedy,

ample_128 and Sample_1280 . In the greedy approach, at each step

he node with the most probability is chosen. In the sampling ap-

roach, 128 and 1280 different solutions are sampled based on the

robability of each node at each step. We test these methods for

izes n = 20 , 50 , 100 of the CVRP problem. The time and resources

Graphical Processing Units) needed to train the AM method for

izes larger than 100 scales exponentially due to heavy calcula-

ions needed for their representation learning method. Therefore,

e only solve this problem for the mentioned instance sizes.

Figure 6 illustrates the comparison of performance of our

ethod with the AM method of Kool et al. (2019) . As shown in
inistic heuristics selected, averaged over the test set for

(b) PJSP

Wasted Actions (%)

Jobs #Iterations DRLH ALNS

0 1k 0.00 20.82

0 1k 0.86 24.57

00 1k 0.00 24.80

00 1k 0.00 24.85

00 1k 0.00 24.50

(d) PDPTW

Wasted Actions (%)

Calls #Iterations DRLH ALNS

8 1k 0.00 21.68

5 1k 0.00 28.65

0 1k 0.00 24.50

30 1k 0.00 19.60

00 1k 0.00 17.90

8 5k 0.00 30.88

5 5k 0.00 36.26

0 5k 0.00 27.49

30 5k 0.00 26.98

00 5k 0.00 26.10

8 10k 0.25 37.82

5 10k 0.00 36.60

0 10k 0.00 32.41

30 10k 0.08 29.67

00 10k 0.00 26.10

J. Kallestad, R. Hasibi, A. Hemmati et al. European Journal of Operational Research 309 (2023) 446–468

Fig. 6. Comparison of DRLH with the Deep RL method of Kool et al. (2019) (AM)

on test instances of CVRP.

t

t

o

H

t

h

g

w

f

7

t

m

v

m

o

f

d

e

s

t

r

f

W

h

t

w

i

o

O

o

l

o

t

r

p

l

h

e

a

t

i

A

D

o

w

t

W

t

b

t

t

l

w

t

s

w

s

t

m

b

i

f

t

r

A

A

R

t

u

i

f

o

c

i

w

o

f

R

a

c

w

t t

Table A.1

Average results for PDPTW instances with mixed call sizes after 10 0 0 iterations.

DRLH with R 5310
t DRLH with R MC

t

#C #V Min Gap (%) Avg Gap (%) Min Gap (%) Avg Gap (%)

18 5 0.00 0.18 0.00 0.11

35 7 2.67 5.78 1.48 3.65

80 20 3.04 4.85 3.15 4.39

130 40 3.44 4.66 2.99 4.33

300 100 2.40 3.15 2.28 3.00
he figure, AM is not able to outperform the baseline of URS in

he size 20 with any of the sampling methods. Regarding size 50

f the problem, in the greedy approach it still falls behind URS.

owever, given enough samples, AM manages to perform better

han ALNS in some instances of the CVRP problem. On the other

and, our method of DRLH outperforms this approach in every sin-

le instance size as well as being able to handle different problems

ithout any significant change in the code which is not the case

or the method of Kool et al. (2019) .

. Concluding remarks

For quite some time now, it has increasingly become evident

hat the fields of machine learning and (heuristic) optimization can

utually benefit from an integration. On the one hand, recent ad-

ances in optimization can support the development of advanced

achine learning methods, since these methods generally solve an

ptimization problem (e.g., what is the optimal subset of features

rom a data set that predict a certain outcome). This paper ad-

ressed the mirror issue: how can optimization approaches ben-

fit from an integration of machine learning methods. We demon-

trated that applying a well-known machine learning approach to

he selection of low-level operators in a metaheuristic framework

esults in a robust mechanism that can be used to improve the per-

ormance of a heuristic on a broad range of optimization problems.

e believe that approaches like the one presented in this paper

ave the potential to make the development of a powerful heuris-

ic less dependent on the knowledge of an experienced developer

ith a deep insight into the structure of the specific problem be-

ng solved, and may therefore be instrumental in the integration

f metaheuristics ideas into general purpose software packages.

ur proposed DRLH, a general framework for solving combinatorial

ptimization problems, utilizes a trained Deep RL agent to select

ow-level heuristics to be applied on the solution in each iteration

f the search based on a search state consisting of features from

he search process. In our experiments, we solved four combinato-

ial optimization problems (CVRP, PJSP, PDP, and PDPTW) using our

roposed approach and compared its performance with the base-

ines of ALNS and URS. Our results show that DRLH is able to select
460
euristics in a way that achieves better results in less number of it-

rations for almost all of the problem variations compared to ALNS

nd URS. Furthermore, the performance gap between DRLH and

he baselines is shown to increase for larger problem sizes, mak-

ng DRLH a suitable option for large real-world problem instances.

dditional experiments on an extended set of heuristics show that

RLH is not negatively affected when selecting from a large set

f available heuristics, while the performance of ALNS is much

orse in this situation. Enriching or refining the state representa-

ion with additional information is possible with very little effort.

e have experimented with adding problem-dependent informa-

ion into the state representation and seen that this gives even

etter results than sticking with the simple chosen state represen-

ation. Yet once we start to introduce problem-dependent struc-

ure and constraint information into the state representation we

ose some of the generality that we strive for with DRLH as we

ould have to separately engineer a different state representa-

ion for each new problem. For this reason we deem this out-

ide of the scope of this paper and leave this area open for future

ork.

Future research should provide more empirical evidence for the

uperiority of DRLH over ALNS by applying this novel hyperheuris-

ic to different problems. A potential direction for improving the

odel in the future is designing a reward function that is both sta-

le and takes into account the difference of objective value at each

teration of the search. Initial experiments on alternative reward

unctions have shown promising results (see Appendix A), but are

ime-consuming to train and not very stable compared to the R 5310

eward function that we have used in this paper.

ppendix A. Experiments on different reward functions

1. R PM

t

PM

t =

{
1 , if f (x ′) < f (x)

−1 , otherwise
(A.1)

The R PM

t reward function focuses more heavily on intensifica-

ion by punishing any action choice that does not directly improve

pon the current solution. This causes the agent to favor intensify-

ng heuristics more strongly than R 5310
t . However, because the PPO

ramework leverages the discounted future rewards as opposed to

nly the immediate reward for training the agent, even the R PM

t

an cause the agent to select heuristics with a high likelihood of

mmediate negative reward if it sets it up for more positive re-

ards in future iterations.

Figure A.1 illustrates the distribution of minimum costs found

n the PDP of size 100 test set after 10 0 0 and 10,0 0 0 iterations

or two different versions of DRLH, trained with reward functions

5310
t and R PM

t respectively. The model trained with R 5310
t achieves

 lower median and quantile values for both iteration variations,

ompared to the model trained with R PM

t . This makes the R 5310
t re-

ard function more reliable to perform relatively better, and we

herefore decided to use the R 5310 reward function in this paper.

J. Kallestad, R. Hasibi, A. Hemmati et al. European Journal of Operational Research 309 (2023) 446–468

Table A.2

Average results for PDPTW instances with mixed call sizes after 10,0 0 0 iterations.

DRLH with R 5310
t DRLH with R MC

t

#C #V Min Gap (%) Avg Gap (%) Min Gap (%) Avg Gap (%)

18 5 0.00 0.00 0.00 0.13

35 7 0.67 2.02 0.42 2.32

80 20 1.80 2.95 2.55 3.87

130 40 1.93 2.84 2.20 3.04

300 100 0.00 0.64 1.12 1.88

A

R

t

s

c

r

p

i

t

p

a

w

d

i

f

t

i

s

l

f

t

a

i

s

v

o

t

t

o

f

A

u

d

t

h

o

P

Table A.3

List of extended removal operators.

Name Description

Random _ remov e _ XS Removes between 2–5 elements chosen randomly

Random _ remov e _ S Removes between 5–10 elements chosen

randomly

Random _ remov e _ M Removes between 10–20 elements chosen

randomly

Random _ remov e _ L Removes between 20–30 elements chosen

randomly

Random _ remov e _ XL Removes between 30–40 elements chosen

randomly

Random _ remov e _ X X L Removes between 80–100 elements chosen

randomly

Remov e _ lar gest _ D _ S Removes 5–10 elements with the largest D i
Remov e _ lar gest _ D _ L Removes 20–30 elements with the largest D i
Remov e _ τ Removes a random segment of 2–5 consecutive

elements in the solution

Remov e _ least _ f requent _ S Removes between 5–10 elements that has been

removed the least

Remov e _ least _ f requent _ M Removes between 10–20 elements that has been

removed the least

Remov e _ least _ f requent _ XL

Remov e _ one _ v ehicle Removes all the elements in one vehicle

Remov e _ two _ v ehicles Removes all the elements in two vehicle

Table A.4

List of extended insertion operators.

Name Description

Insert _ greedy Inserts each element in the best possible position

Insert _ beam _ search Inserts each element in the best position using

beam search

Inser t _ by _ v ar iance Sorts the insertion order based on variance and

inserts

each element in the best possible position

Inser t _ f ir st Inserts each element randomly in the first

feasible position

Insert _ least _ load ed _ v ehicle Inserts each element into the least loaded

available vehicle

Insert _ least _ acti v e _ v ehicle Inserts each element into the least active
2. R MC
t

MC
t =

{
f (x best) − f (x ′)

f (x best)
(A.2)

The R MC
t is a reward function that more directly correlates with

he intended objective of minimizing the cost of the best found

olution, and to achieve this as quickly as possible. Instead of fo-

using on rewarding actions that directly improve the solution, this

eward function is subject to the performance of the entire search

rocess up to the current step, putting a greater emphasis on act-

ng quickly and selecting heuristics that have a greater impact on

he solution. The challenge with using this reward function com-

ared to reward functions such as R 5310
t and R PM

t is that there is

n inherent delay between when a good heuristic is selected and

hen the reward function gives a good reward. This makes it more

ifficult to train an agent using this reward function, making train-

ng times much longer and less stable than with the R 5310
t reward

unction.

Having said that, the potential upside of using this reward func-

ion is very promising, and results in Table A.1 show that R MC
t

s able to outperform the R 5310
t reward function on 1k iteration

earches. However, the agents were unable to learn effectively for

arger number of iterations such as 10k (Table A.2), and so results

or this shows that R MC
t performs worse than R 5310

t on 10k itera-

ion searches. A potential reason for why the R MC
t agents were un-

ble to learn well on 10k iteration searches is that the amount of

mproving iterations are much less frequent, making the feedback

ignal from the R MC
t reward function even more delayed and high

ariance. Another potential reason is that the training required in

rder to solve 10k iteration searches likely needed more training

han what was possible to carry out for our experiments due to

ime constraints with the experiments. We encourage future work

n improving the integration of the R MC
t reward function into the

ramework of DRLH as it likely has a lot of potential.
Fig. 7. Comparison of the two reward functions.

T

L

461
ppendix B. Extended set of heuristics

Tables A .3 , A .4 and A .5 list the extended set of heuristics built

p from 14 removal operators, 10 insertion operators and 2 ad-

itional heuristics, for a total of 14 × 10 + 2 = 142 total heuris-

ics, using the generation scheme of Algorithm 2 . Most of these

euristics only use problem-independent information, but some

f them rely on problem-dependent information specific to the

DPTW problem.
available vehicle

Insert _ close _ v ehicle Inserts each element into the closest available

vehicle

Insert _ group Identifies the vehicles that can fit the most of the

removed elements and

inserts each elements into these

Insert _ by _ di f f iculty Inserts each element using Insert _ greedy ordered

by their difficulty,

which is a function of their compatibility with

vehicles, strictness

of time windows,size and more.

Insert _ best _ f it Inserts each element into the vehicle that is the

most compatible with the call.

able A.5

ist of extended additional heuristics.

Name Description

F ind _ single _ best Calculates the cost of removing each element and

re-inserting it with Insert _ greedy , and

applies this procedure on the solution x for the element

that achieves the minimum cost f (x ′) .
Rearrange _ v ehicles Removes all of the elements from each vehicle and

inserts them back into the same vehicles

using Insert _ beam _ search

J. Kallestad, R. Hasibi, A. Hemmati et al. European Journal of Operational Research 309 (2023) 446–468

A

a

h

m

s

A

c

T

i

u

s

b

o

(

s

d

w

t

ppendix C. Additional performance plots

Figures 8 , 9 , 10 and 11 show the performance of DRLH, ALNS

nd URS averaged over the test set for all the problems that we

ave tested. These show that DRLH usually reaches better solutions

ore quickly than ALNS and URS, as well as ending up with better

olutions overall.

ppendix D. Experiment on the cross size training scheme

In this experiment, in the training phase, an instance of a spe-

ific problem with different size is solved by DRLH in each episode.
462
his training scheme is referred to as Cross Size (CS) training. Dur-

ng test time, the trained model solved the test instances that were

sed in Section 6.1 as well as test instances of slightly different

izes that were seen during training. As seen in Fig. 12 , it is possi-

le to train one model that can handle many different variations

f instance sizes quite well. Moreover, as shown in Fig. 12 (e)–

h), the model does not specifically overfit on the specific in-

tance sizes included in the training when evaluated on slightly

ifferent test data. This means that the DRLH_CS generalizes very

ell, even to sizes higher than any of the ones included in the

raining.

J. Kallestad, R. Hasibi, A. Hemmati et al. European Journal of Operational Research 309 (2023) 446–468

Fig. 8. Average performance of DRLH, ALNS and URS on CVRP.

463

J. Kallestad, R. Hasibi, A. Hemmati et al. European Journal of Operational Research 309 (2023) 446–468

Fig. 9. Average performance of DRLH, ALNS and URS on PJSP.

464

J. Kallestad, R. Hasibi, A. Hemmati et al. European Journal of Operational Research 309 (2023) 446–468

Fig. 10. Average performance of DRLH, ALNS and URS on PDP.
465

J. Kallestad, R. Hasibi, A. Hemmati et al. European Journal of Operational Research 309 (2023) 446–468

Fig. 11. Average performance of DRLH, ALNS and URS on PDPTW.

466

J. Kallestad, R. Hasibi, A. Hemmati et al. European Journal of Operational Research 309 (2023) 446–468

Fig. 12. Performance of DRLH with Cross Size (CS) training scheme on different problem sizes with 1k iterations.

467

J. Kallestad, R. Hasibi, A. Hemmati et al. European Journal of Operational Research 309 (2023) 446–468

R

A

A

A

B

C

C

C

C

D

D

F

G

G

G

H

H

H

H

K

K

L

L

L

L

N

Ö

P

R

S

S

S

T

T

eferences

ksen, D., Kaya, O., Sibel Salman, F., & Özge Tüncel (2014). An adaptive large neigh-

borhood search algorithm for a selective and periodic inventory routing prob-

lem. European Journal of Operational Research, 239 (2), 413–426. https://doi.org/
10.1016/j.ejor.2014.05.043 .

modei, D., Olah, C., Steinhardt, J., Christiano, P. F., Schulman, J., & Mané, D. (2016).
Concrete problems in AI safety. CoRR . http://arxiv.org/abs/1606.06565 .

sta, S., & Özcan, E. (2014). An apprenticeship learning hyper-heuristic for vehicle
routing in hyflex. Orlando, Florida. https://doi.org/10.1109/EALS.2014.7009505 .

urke, E. K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., & Woodward, J. R. (2010). A

classification of hyper-heuristic approaches . In M. Gendreau, & J.-Y. Potvin (Eds.)
(pp. 44 9–46 8). Boston, MA: Springer US .

hen, C., Demir, E., & Huang, Y. (2021). An adaptive large neighborhood search
heuristic for the vehicle routing problem with time windows and delivery

robots. European Journal of Operational Research, 294 (3), 1164–1180. https://doi.
org/10.1016/j.ejor.2021.02.027 .

hen, X., & Tian, Y. (2019). Learning to perform local rewriting for combinato-
rial optimization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,

E. Fox, & R. Garnett (Eds.), Advances in neural information processing systems:

vol. 32 . Curran Associates, Inc. . https://proceedings.neurips.cc/paper/2019/file/
131f383b434fdf48079bff1e44e2d9a5-Paper.pdf

owling, P., Kendall, G., & Soubeiga, E. (2001). A hyperheuristic approach to schedul-
ing a sales summit. In E. Burke, & W. Erben (Eds.), Practice and theory of auto-

mated timetabling iii (pp. 176–190). Berlin, Heidelberg: Springer Berlin Heidel-
berg .

rama, Y., & Schyns, M. (2003). Simulated annealing for complex portfolio selection

problems. European Journal of Operational Research, 150 (3), 546–571. https://doi.
org/10.1016/S0377- 2217(02)00784- 1 . Financial Modelling

emir, E., Bekta ̧s , T., & Laporte, G. (2012). An adaptive large neighborhood search
heuristic for the pollution-routing problem. European Journal of Operational Re-

search, 223 (2), 346–359. https://doi.org/10.1016/j.ejor.2012.06.044 .
okeroglu, T., Sevinc, E., Kucukyilmaz, T., & Cosar, A. (2019). A survey on new gener-

ation metaheuristic algorithms. Computers & Industrial Engineering, 137 , 106040.

https://doi.org/10.1016/j.cie.2019.106040 .
riedrich, C., & Elbert, R. (2022). Adaptive large neighborhood search for vehicle

routing problems with transshipment facilities arising in city logistics. Comput-
ers & Operations Research, 137 , 105491. https://doi.org/10.1016/j.cor.2021.105491 .

oodfellow, I. J., Bengio, Y., & Courville, A. (2016). Deep learning . Cambridge, MA,
USA: MIT Press . http://www.deeplearningbook.org

rangier, P., Gendreau, M., Lehuédé, F., & Rousseau, L.-M. (2016). An adaptive large

neighborhood search for the two-echelon multiple-trip vehicle routing problem

with satellite synchronization. European Journal of Operational Research, 254 (1),

80–91. https://doi.org/10.1016/j.ejor.2016.03.040 .
ullhav, A. N., Cordeau, J.-F., Hvattum, L. M., & Nygreen, B. (2017). Adaptive large

neighborhood search heuristics for multi-tier service deployment problems in
clouds. European Journal of Operational Research, 259 (3), 829–846. https://doi.

org/10.1016/j.ejor.2016.11.003 .

emmati, A., & Hvattum, L. M. (2017). Evaluating the importance of randomization
in adaptive large neighborhood search. International Transactions in Operational

Research, 24 (5), 929–942. https://doi.org/10.1111/itor.12273 .
emmati, A., Hvattum, L. M., Fagerholt, K., & Norstad, I. (2014). Benchmark suite for

industrial and tramp ship routing and scheduling problems. INFOR: Information
Systems and Operational Research, 52 (1), 28–38. https://doi.org/10.3138/infor.52.

1.28 .
468
omsi, G., Martinelli, R., Vidal, T., & Fagerholt, K. (2020). Industrial and tramp
ship routing problems: Closing the gap for real-scale instances. European Jour-

nal of Operational Research, 283 (3), 972–990. https://doi.org/10.1016/j.ejor.2019.
11.068 .

ottung, A., & Tierney, K. (2019). Neural large neighborhood search for the capaci-
tated vehicle routing problem. CoRR . http://arxiv.org/abs/1911.09539 .

irkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated an-
nealing. Science, 220 (4598), 671–680. https://doi.org/10.1126/science.220.4598.

671 .

ool, W., van Hoof, H., & Welling, M. (2019). Attention, learn to solve routing prob-
lems!

aborie, P., & Godard, D. (2007). Self-adapting large neighborhood search: Applica-
tion to single-mode scheduling problems. In Proceedings MISTA-07: Vol. 8 . Paris

i, Y., Chen, H., & Prins, C. (2016). Adaptive large neighborhood search for the pickup
and delivery problem with time windows, profits, and reserved requests. Euro-

pean Journal of Operational Research, 252 (1), 27–38. https://doi.org/10.1016/j.ejor.

2015.12.032 .
u, H., Zhang, X., & Yang, S. (2020). A learning-based iterative method for solving

vehicle routing problems. In International conference on learning representations .
https://openreview.net/forum?id=BJe1334YDH

ópez-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., & Stüt-
zle, T. (2016). The irace package: Iterated racing for automatic algorithm config-

uration. Operations Research Perspectives, 3 , 43–58. https://doi.org/10.1016/j.orp.

2016.09.002 .
azari, M., Oroojlooy, A., Snyder, L., & Takac, M. (2018). Reinforcement learning for

solving the vehicle routing problem. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances in neural information

processing systems: vol. 31 . Curran Associates, Inc. . https://proceedings.neurips.
cc/paper/2018/file/9fb4651c05b2ed70fba5afe0b039a550-Paper.pdf

zcan, E., Misir, M., Ochoa, G., & Burke, E. (2010). A reinforcement learning -

great-deluge hyper-heuristic for examination timetabling. International Journal
of Applied Metaheuristic Computing, 1 , 39–59 .

isinger, D., & Ropke, S. (2019). Large neighborhood search. In Handbook of meta-
heuristics (pp. 99–127). Springer .

opke, S., & Pisinger, D. (2006). An adaptive large neighborhood search heuristic
for the pickup and delivery problem with time windows. Transportation Science,

40 (4), 455–472. https://doi.org/10.1287/trsc.1050.0135 .

chulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal pol-
icy optimization algorithms. CoRR . abs/1707.06347 . http://dblp.uni-trier.de/db/

journals/corr/corr1707.html#SchulmanWDRK17
haw, P. (1998). Using constraint programming and local search methods to solve

vehicle routing problems. In M. Maher, & J.-F. Puget (Eds.), Principles and practice
of constraint programming — CP98 (pp. 417–431). Berlin, Heidelberg: Springer

Berlin Heidelberg .

utton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction . Cam-
bridge, MA, USA: A Bradford Book .

urkeš, R., Sörensen, K., & Hvattum, L. M. (2021). Meta-analysis of metaheuristics:
Quantifying the effect of adaptiveness in adaptive large neighborhood search.

European Journal of Operational Research, 292 (2), 423–442. https://doi.org/10.
1016/j.ejor.2020.10.045 .

yasnurita, R., Özcan, E., Shahriar, A., & John, R. (2015). Improving performance of a
hyper-heuristic using a multilayer perceptron for vehicle routing . Exeter, UK, http:

//eprints.nottingham.ac.uk/id/eprint/45707

https://doi.org/10.1016/j.ejor.2014.05.043
http://arxiv.org/abs/1606.06565
https://doi.org/10.1109/EALS.2014.7009505
http://refhub.elsevier.com/S0377-2217(23)00036-X/sbref0003
https://doi.org/10.1016/j.ejor.2021.02.027
https://proceedings.neurips.cc/paper/2019/file/131f383b434fdf48079bff1e44e2d9a5-Paper.pdf
http://refhub.elsevier.com/S0377-2217(23)00036-X/sbref0006
https://doi.org/10.1016/S0377-2217(02)00784-1
https://doi.org/10.1016/j.ejor.2012.06.044
https://doi.org/10.1016/j.cie.2019.106040
https://doi.org/10.1016/j.cor.2021.105491
http://www.deeplearningbook.org
https://doi.org/10.1016/j.ejor.2016.03.040
https://doi.org/10.1016/j.ejor.2016.11.003
https://doi.org/10.1111/itor.12273
https://doi.org/10.3138/infor.52.1.28
https://doi.org/10.1016/j.ejor.2019.penalty -@M 11.068
http://arxiv.org/abs/1911.09539
https://doi.org/10.1126/science.220.4598.671
http://refhub.elsevier.com/S0377-2217(23)00036-X/sbref0019
http://refhub.elsevier.com/S0377-2217(23)00036-X/sbref0019
https://doi.org/10.1016/j.ejor.2015.12.032
https://openreview.net/forum?id=BJe1334YDH
https://doi.org/10.1016/j.orp.2016.09.002
https://proceedings.neurips.cc/paper/2018/file/9fb4651c05b2ed70fba5afe0b039a550-Paper.pdf
http://refhub.elsevier.com/S0377-2217(23)00036-X/sbref0024
http://refhub.elsevier.com/S0377-2217(23)00036-X/sbref0025
https://doi.org/10.1287/trsc.1050.0135
http://arxiv.org/abs/arXiv:1707.06347
http://dblp.uni-trier.de/db/journals/corr/corr1707.html#SchulmanWDRK17
http://refhub.elsevier.com/S0377-2217(23)00036-X/sbref0028
http://refhub.elsevier.com/S0377-2217(23)00036-X/sbref0029
https://doi.org/10.1016/j.ejor.2020.10.045
http://eprints.nottingham.ac.uk/id/eprint/45707

	A general deep reinforcement learning hyperheuristic framework for solving combinatorial optimization problems
	1 Introduction
	2 Related work
	3 DRLH
	3.1 Generating heuristics
	3.2 Sample set of heuristics
	3.2.1 Removal operators
	3.2.2 Insertion operators
	3.2.3 Additional heuristic

	3.3 Acceptance criteria and stopping condition
	3.4 Deep RL agent for selection of
	3.4.1 State representation
	3.4.2 Action
	3.4.3 Reward function

	3.5 Solution representation and initial solution

	4 Problem sets
	4.1 CVRP
	4.2 PJSP
	4.3 PDP
	4.4 PDPTW

	5 Experimental setup
	5.1 Experimental environment
	5.2 Baseline models
	5.2.1 Adaptive large neighborhood search (ALNS)
	5.2.2 Uniform random selection (URS)
	5.2.3 Tuned random selection (TRS)
	5.2.4 Attention Module (AM) based Deep RL heuristic

	5.3 Hyperparameter selection
	5.4 Dataset generation
	5.4.1 CVRP
	5.4.2 PJSP
	5.4.3 PDP
	5.4.4 PDPTW

	6 Results
	6.1 Experiment on generated test set
	6.2 Experiment on increased number of iterations
	6.3 Experiment on the PDPTW benchmark dataset
	6.4 Experiment on the increased pool of heuristics
	6.5 Average performance results
	6.6 Training and inference time needed for each problem
	6.7 Comparison between heuristic selection strategies
	6.8 Performance comparison with AM deep RL heuristic

	7 Concluding remarks
	Appendix A Experiments on different reward functions
	A1
	A2

	Appendix B Extended set of heuristics
	Appendix C Additional performance plots
	Appendix D Experiment on the cross size training scheme
	References

