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Abstract

Recent advances in quantum computing threaten the cryptography we use today. This
has led to a need for new cryptographic algorithms that are safe against quantum
computers. The American standardization organization NIST has now chosen four
quantum-safe algorithms in their process of finding new cryptographic standards. Three
out of the four algorithms are based on the hardness of finding a shortest vector in a lat-
tice. The biggest threat to such schemes is lattice reduction. One of the best tools used
for lattice reduction is the G6K framework. In this thesis, we study sieving algorithms
and lattice reduction strategies implemented in G6K.

After an introduction to cryptography, we go over the necessary preliminary lattice
theory, important concepts, and related problems. Further, we look at lattice reduction
where we study different approaches with a main focus on lattice sieving. We then
explore the G6K framework, before finally performing some experiments using G6K.

The results we get often depend on what type of lattice we are working on. Our
experiments show that it is still possible to improve G6K for solving the shortest vector
problem for some lattice types.
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Chapter 1

Introduction

1.1 Cryptography Through History

To be able to make messages secret, and not easily available to unwanted adversaries,
has been a necessity for a very long time. We use cryptography to accomplish this,
and methods used for it have evolved a lot over the years. We will now see how this
evolution has been throughout our history.

In ancient Greece, they used a method where they wrote a message on a board and
then added a wax layer on top of it. This made the message hidden and it can be seen
as an example of what we call steganography. One of its weaknesses is that if people
were aware of the method used to hide the message, the meaning of the message could
easily be revealed. Since the message is only made secret due to hiding it, it means that
anybody who finds it will be able to understand it. However, this method was not very
secure, and therefore new methods evolved.

Moving forward to the Romans in Julius Caesar’s time (100BC) a new strategy
started to be used. Instead of hiding the message physically, they hid the actual meaning
of the message. People who found the message would most likely not be able to read
the true meaning behind the message since it all looked like gibberish. This is what
cryptography is about.

Julius Caesar used a cipher, which we today call the Caesar cipher, on the messages
he wanted to send. His idea was to shift the letters in the alphabet a certain amount of
times to the right, and then write the messages with the new alphabet, see Figure 1.1.
This technique is what we call a substitution cipher.

Figure 1.1: Caesar Cipher with three shifts
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The message written with the cipher alphabet is called ciphertext. When the receiver
deciphers the ciphertext, they need to know the number of shifts the sender has used to
encrypt the message. This is called the cipher key. Additionally, we must assume that
the receiver knows which cipher is used for them to easily decipher it. In other words,
the receiver must know that Caesar cipher has been used to encrypt the message.

If we assume that the message is encrypted with Caesar cipher, would a person
without any knowledge of the key be able to decipher the message? If we look at
the Caesar cipher we will actually see that there are only 25 possible shifts of the
alphabet, since there are only 26 letters (using the English alphabet as an example). As
25 different combinations is not a lot, one could brute force the ciphertext. This means
trying all shifts of the alphabet until we get a plaintext that makes sense. Since the
Caesar cipher is easily broken, it has not been considered safe.

Additionally, there was also an improvement made to the Caesar cipher, where one
did not just do a cyclic shift of the alphabet but used an arbitrary permutation. This
means taking a random order of the letters, and then pairing each letter with another
letter in the alphabet, see Figure 1.2. As a result, there was was no longer only 25
different permutations of the alphabet, but so many that brute force by trying every
combination of letters becomes very time-consuming and actually impossible to do in
practice. Since all letters can be placed at every place it gives us 26! different shifts of
the alphabet, hence it can take more than a lifetime to figure out the correct one by trial
and error.

However, this method also has flaws that became more apparent as time passed. It
turned out that this cipher could be broken by a new important discovery in cryptanal-
ysis years later.

Figure 1.2: Improvement of Caesar cipher

The breakthrough in cryptanalysis happened however in the Islamic golden age.
Cryptanalysis is about how we can break ciphers, or in other words how to find weak-
nesses in cryptography. Some theologians were doing work on analyzing the Quran
and the Hadiths to find out if the texts were correct. They used frequency analysis on
words and letters in the two texts to compare them. Al-Kindí, a mathematician and
philosopher, then realized that this type of analysis also could be used to break ciphers.
As each letter has a frequency of how often they usually appear, he found out that we
can use this to check the frequency of letters in a ciphertext, and then decipher it by us-
ing the frequency analysis. It also turned out that all cryptography in use at this point
was vulnerable to this type of analysis, so new methods needed to be found.
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A consequence of having a weak cipher can be observed during the reign of Queen
Mary and Queen Elizabeth 1 in the 1500s. Elizabeth was the reigning Queen of Eng-
land, and her cousin Mary was the queen of Scotland. At that time England was
considered a protestant country supported by Queen Elizabeth. However, there were
some groups of people that meant England should be catholic, and this was also Queen
Mary’s wish. Queen Mary, together with a rebel group started to plot her way to the
throne so that England could become catholic. All communications between Queen
Mary and the rebels were encrypted, to avoid the content of the messages would get
into the hands of their enemy. Sir Francis Walsingham, who was Queen Elizabeth’s
principal secretary, got his hands on the messages and was able, with the help of the
best codebreaker in the country, to decipher the message. They could therefore expose
Queen Mary and the plotters. As a consequence of the solid proof, they executed the
plotters and had Queen Mary up for a trial, which concluded in her death. This means
that Queen Mary lost her life due to a weak cipher [31, pp. 32-44].

In the late 1800s, a man named Auguste Kerckhoffs wrote down 6 principles on
what he meant should be rules for any cryptosystem. He published the principles in
two articles called La Cryptographie Militaire and was highly focused on how to make
telegraphic systems secure. Even though these principles were written many years ago,
some of them are still applicable to the cryptosystems we use today. The principles are
([25])

1. The system must be substantially, if not mathematically, undecipherable.

2. The system must not require secrecy and can be stolen by the enemy without
causing trouble

3. It must be easy to communicate and remember the keys without requiring writ-
ten notes, and it must also be easy to change or modify the keys with different
participants.

4. The system ought to be compatible with telegraph communication.

5. The system must be portable, and its use must not require more than one person.

6. Finally, regarding the circumstances in which such system is applied, it must be
easy to use and must neither require stress of mind nor the knowledge of a long
series of rules.

Today it is the second principle that is the most important. This principle is often re-
ferred to as Kerckhoffs principle. The principle describes that the ciphers in use should
not be held secret, but rather be in the public domain. Today this is the standard, and
the only thing that is kept a secret is the keys that are used by the ciphers. This prin-
ciple is also the earliest example of the term "key", and an understanding of the fact
that we could make ciphers with only a small part of the scheme being secret (the key).
Additionally, another important point from the mentioned principles is that a key could
easily be changed. Today this is also regarded as important for a cryptographic scheme.

During the first world war we can see examples of how cryptography was an im-
portant aspect during this time. The year is 1914 and the radio has been taken into
use. Now the military was not depending on the electric telegraph to send messages
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anymore. The benefit of the radio compared to the telegraph was that it was not de-
pendent on cables, making it harder to sabotage. However, since the messages in radio
travel through the air people could more easily intercept the signals, meaning that the
information was not protected. Therefore they had to make the message into codes or
ciphers to make it indecipherable. At this point, they still used substitution ciphers.
Some of these were the Playfair cipher and the ADFGX cipher.

There were many ciphers that got deciphered during the first war, and one of them
was the Zimmermann telegram in 1917. The Zimmermann telegram was a message
for the German embassy in Mexico where the Germans tried to convince Mexico to
attack the US and join forces with Germany. However, this message got decrypted and
published all over the world. The US was not part of the war yet, but after this message
got exposed they decided to join in as well [32]. Now Germany had more enemies at
a time when they were already struggling. This is an example of a time when crucial
and secret information often got decrypted by the other parties, and we can say that the
codebreakers made more progress than the code makers.

When World War 2 began there was also some new technology that was widely used
by the military when it came to cryptography. The new technology included machines
that were used for creating advanced ciphers. These were called Enigma machines.
Before the war began the Germans were already using an Enigma rotor to make a
complex substitution cipher. At this time they had the most secure communication at
this point in time. However, the Polish mathematician Marian Rejewski was able to
break this enigma before the war. This was a huge breakthrough for cryptanalysis.
Poland later decided to share this knowledge with France and Britain as the Germans
began developing an improved enigma.

The Germans would continue developing the Enigma throughout World War 2, and
the cryptanalysts were working hard on breaking it. Both the French and the British
had considered the Enigma to be unbreakable but were now proved wrong by the Polish
invention. They also started to see the benefits of having mathematicians as codebreak-
ers, which had usually only consisted of linguistics and classicists in Britain. Bletchley
Park was a top-secret place for the British codebreakers, and here the famous Alan Tur-
ing was a member. He continued the work of Rejewski and was able to come up with
an idea that would be able to crack the enigma. Turing and his team were able to break
the Enigma with the concept of a machine that turned out to be the first programmable
computer. Now the Allies had an advantage as they could decipher almost everything
the Germans were communicating. This is considered by many to have shortened the
war drastically, as the allies kept it secret that they could read many of their rival’s
plans. It was in fact not revealed before decades after the war that they had been able
to crack the enigma.

From the second world war and up to today there has been a massive evolution in
technology. The computer as well as the internet has become a part of our daily life.
We use it for almost everything, such as banking information, personal information, and
emails. Since we have so much important and private information online it is important
that this is protected. Up until World War 2 cryptography had been something that was
developed in secret and mainly used by the military and governments. However, today
it is a part of the public domain and is available to everyone. Hence we should have
standards and requirements for cryptography.

Claude Shannon, who by many is considered to be the father of information theory,
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published his ideas of perfect secrecy in 1949 [29]. This was an important idea that
the standardizations that were developed later took into strong consideration. These
modern standardizations are described in Section 1.2, and include how we started to use
mathematical problems that are hard to solve for a computer as a part of the encryption
standards.

Today good encryption is regarded as important for our privacy and safety in our
everyday use. We have standardizations that work well for today, but will these be sus-
tainable for the future? The answer is most likely no. As demonstrated in Section 1.3,
there are potential threats against today’s standards if quantum computers get evolved
on a big scale. So today we have already started to develop new and quantum-safe
standardizations. However, these will be more described in Section 1.4.

1.2 Modern Cryptography

As mentioned before, cryptography is about how we are able to protect information
using cryptographic primitives. A reason we want to protect information might be to
prevent others to be able to read private messages. One of the methods used to do this
is by using ciphers, which provide confidentiality. Ciphers consist of three different
operations: key generation, encryption, and decryption. We can define ciphers, or
encryption schemes, as follows [13, pp. 26-27].

Definition 1 Ciphers consist of three operations and three spaces. Key generation is
an algorithm based on probability, which will output a key based on a distribution.
All possible keys the key generation algorithm can output are called the key-space and
are denoted K. A message m is part of the space M, which contains all possible
messages. The encryption algorithm takes a k ∈ K,m ∈M as input, and outputs a
ciphertext. We denote the encryption as c = Enck(m). All of the possible outputs of the
encryption algorithm make up the ciphertext space C. The decryption algorithm takes
as input c ∈ C,k′ ∈ K, where k′ is determined by k, and outputs m ∈M. The notation
of decryption is m = deck′(c). We also require that deck′(enck(m)) = m for all m ∈M
and k ∈ K.

Encryption and decryption behave a little differently. This is because, in the en-
cryption algorithm, we base the output on probability. So encrypting the same message
multiple times can generate different ciphertexts. The decryption on the other hand
should always return the same plaintext as the original message, hence providing per-
fect correctness.

We can also see from the definition that both encryption and decryption use a key
from the key-space. If they both use the same key we call it symmetric cryptography
(see Figure 1.3). With this type of cryptography, we obtain confidentiality.

However, using only symmetric cryptography has its limits. Integrity, which we
consider to be a basic need for good cryptography, is not given. By integrity, we mean
that we should be certain that the message we receive has not been tampered with after
it was sent. A solution to this is using message authentication codes (MAC). The goal
of MAC is to prevent a third party from altering the messages without them going
undetected. Today we have begun to use MAC and symmetric cryptography together
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Figure 1.3: Symmetric cryptography

in one algorithm. This is called authenticated encryption and provides confidentiality
and integrity in one cryptographic primitive.

Another difficulty for symmetric cryptography is signing. For signing to work one
would need both sender and receiver to share a secret key. This can lead to problems,
so therefore we want to use a method where we can verify the sender without having to
do a key exchange first. We want anybody to be able to encrypt messages for a specific
receiver, and one should also be able to do verification of the sender.

Hence we started using asymmetric cryptography, or public-key cryptography as it
is also called (see Figure 1.4). This is based on the fact that we have a public key for
encryption and a private key for decryption. So here we use two different keys from
the key-space. By using public-key cryptography we also obtain the possibility to sign
messages, and then again get authenticity.

Figure 1.4: Asymmetric cryptography

Hard problems in cryptography

In this thesis, we will only focus on asymmetric cryptography. The concept of public-
key cryptography was introduced in 1976 in a paper by Diffie and Hellman [4]. They
presented a new protocol now called the Diffie-Hellman (DH) key exchange protocol.
DH allows two parties to share a secret key over a channel that is not secure and does
this without sharing any secret information in advance. The protocol consists of three
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main steps. First, the parties agree upon the public values g and p. The g is a generator
of the group Z∗p, where p is a prime. Then each of the parties adds their secret value x
to the public ones to create their public key as A = gx mod p and B = gy mod p. The
next step is transmitting the public values A and B to each other and then creating a
shared secret by raising the received value to the power of their private value.

Ay = Bx = gxy mod p

Now both parties will share a secret value without any knowledge of the other person’s
secret value.

For a third party to be able to find the secret key they must solve the equation gxy

mod p given the values gx and gy, and this is known as the Discrete Logarithm Problem
(DLP). This problem turns out to be quite difficult to solve when p is large. So Diffie-
Hellman is dependent on that for the group that is chosen (Z∗p), there exists no efficient
algorithm to solve DLP.

One important thing to mention with the first version of the DH-protocol is that
it was vulnerable to a man-in-the-middle-attack. As it does not provide any authen-
tication an eavesdropper could just stand in the middle of the conversation and send
messages back and forth without the communicating parties being able to notice. The
eavesdropper will pretend to be Bob with Alice, and pretend to be Alice with Bob. The
attacker does this by creating its own x and y which they share with the other parties
(Alice and Bob) to make the shared secret key. Now the eavesdropper can read all their
messages, so this is really not secure. If we add some sort of signature to the scheme,
it should not be vulnerable to this attack as we now also have authentication.

One of the earliest public-key cryptosystems is called RSA. The cryptosystem was
developed by R.L Rivest, A. Shamir, and L. Adleman and presented in a paper in 1978
[27], it is still used a lot today. The motivation behind the paper was the introduction
of email and there was a need for an electronic form of mail with similar qualities as
the paper mail. These qualities were privacy and signatures. Therefore in RSA, we
introduce encryption and decryption for privacy and signing and verification as digital
signatures. We define these methods with RSA as follows

Definition 2 Let p and q be two different large primes, and N = pq be an RSA modulus.
Then we let e be a positive integer such that gcd(e,φ(N)) = 1, and let d be a positive
integer satisfying e · d ≡ 1 mod φ(N). The public key is N,e, and the private key is
p,q,d. Then encryption is done as c≡ me mod N and decryption as m≡ cd mod N.

For signatures, we can make a signature as s≡H(m)d mod N, where H is a cryp-
tographic hash function. To verify the signature one check if se ≡ H(m) mod N.

As we can see from the definition both the encryption/decryption and signing/ver-
ification are dependent on public and private keys. In RSA the public key is e,N, and
the private key is d. The public value N is a composite number that is constructed by
the primes p and q by multiplying these together. Both p and q are secret. The d and
e needs to follow the property d · e ≡ 1 mod φ(N), where φ(N) = (p−1)(q−1). So
if we are able to obtain p and q, we will also be able to construct the private key d as d
will be the only unknown part of the equation. If we can obtain d, we say that one has
broken the system.
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To acquire p and q one must factorize the RSA modulus N, but this is rather difficult
when p and q are large primes. This is a well-known problem called the Integer Fac-
torization Problem (IFP). Today there exists no efficient algorithm that can solve this
problem for large numbers, but there do exist algorithms such as Pollard’s rho method
for factorizing [13, pp. 344-345] and quadratic sieve [13, pp. 345-346] that are able
to factorize numbers up to some bit length. However, the primes RSA uses are too big
for any of these to be able to solve on today’s computers, and we can say that RSA is
dependent on IFP being a hard problem for it to be considered secure.

However, as described in Section 1.3 it has been shown that it is possible to solve
both IFP and DLP with quantum computers. Today RSA is one of the schemes stan-
dardized by NIST to use for digital signatures. As this depends on IFP being a hard
problem to solve we are going to look closer at the consequences this quantum algo-
rithm has for RSA and other standards in use today in the next section.

1.3 Post-Quantum Cryptography

As we now have an understanding of what cryptography is about, we are going to
look at post-quantum cryptography. Today most of the cryptographic schemes used in
public-key cryptography depend on the hardness of problems such as prime factoriza-
tion and discrete logarithms. These are problems that we believe a normal computer
cannot solve in a reasonable time with the standards today. However, in 1994 a math-
ematician named Peter Shor described an algorithm for finding the prime factorization
of an integer [30]. The algorithm is called "Shor’s algorithm" and it is a quantum com-
puter algorithm. This means that this algorithm only works for quantum computers,
which we will look closer at in Section 1.3.1. However, a consequence that follows
from this is that the public-key cryptography schemes in use today will be vulnerable
and broken by Shor’s algorithm if we are able to produce such quantum computers on
a big scale.

Also, today’s symmetric cryptography standards will be threatened by big-scale
quantum computers. In 1996 Grover described a search algorithm for quantum com-
puters, which will be able to break symmetric schemes if the key-space is too small
[8]. Also, hash-functions will be vulnerable to Grover’s algorithm. However, the solu-
tion to this threat is actually much simpler than for public-key cryptography, as we just
need to double the key size to restore the security level.

We have now seen that the cryptography schemes in use today are not safe against
large-scale quantum machines, hence they are not post-quantum secure. Post-quantum
cryptography is schemes that have no known methods of solving its hard problem in
polynomial time on a large-scale quantum computer.

Today the development of quantum computers has begun and big companies such
as IBM and Google are actively working on it. They spend a lot of resources on devel-
oping them, but why do they do this when we have just looked at how dangerous this
can be for today’s cryptographic standards? Quantum computers can be used for so
many things that are good for our society as well, hence there is a lot going on in this
field at the moment. As of now, we do not have any big-scale quantum computers, and
there is still a long way to go until they actually pose a threat to the cryptographic stan-
dards in use today. However, the standards today should be changed as soon as possible



1.3 Post-Quantum Cryptography 9

due to many reasons and NIST has come a long way in its standardization process for
post-quantum cryptography. We will look closer at this process in Section 1.4.

One of the reasons we have to start a process of finding post-quantum secure stan-
dards for cryptographic schemes is because of time. It takes a lot of time to change
from one standard to another. Protocols need to be changed, and old protocols need to
be replaced. This has shown itself to take a lot of time in the past, hence it is likely
to be a slow process now as well. Another reason would be that the process of actu-
ally finding good replacements that are post-quantum safe also takes a lot of time. The
time for both designing algorithms and analyzing them using cryptanalysis should be
long. It is important that these are carefully tested if they are to become new standards.
The last reason is the long-term threat of adversaries. Even though it is likely that it
will take decades until we have large-scale quantum computers an adversary could save
the encrypted sensitive data now. They could then decrypt it later if they get access to
a large-scale quantum computer. Hence sensitive information that should stay secret
for maybe 20-30 years from now should ideally be encrypted with post-quantum safe
encryption now.

We have seen why we need to start with the standardizations today, but what are the
options for replacing DLP and IFP? There are several different approaches we could
take. These could be

• Multivariate problems: the difficulty of solving systems of multivariate polyno-
mial equations over finite fields.

• Isogeny-based problems: the difficulty of finding an isogeny between two elliptic
curves.

• Code-based problems: the difficulty of decoding large general linear codes.

• Hash-based problems: the difficulty of finding collisions or pre-images in hash
functions.

• Lattice-based problems: the difficulty of finding the shortest vector in a lattice.

The lattice-based problems are what we are going to focus on in this thesis, and here
we are going to study the shortest vector problem (SVP), which we are going to look
closer at in Chapter 2. Since there are different approaches we need to figure out which
direction is the best one to choose. As mentioned NIST is running a process with new
standardizations and the government, industries, and academia are involved in the work
of it all.

1.3.1 Quantum Computers
A quantum computer is a computer that uses elements from quantum physics. As op-
posed to normal computers which use binary bits to encode information, the quantum
computer uses what we call a quantum bit (qubit). What is special about qubits contra
binary bits, is that binary bits are either 1 or 0 or in other words, can only represent one
value at a time depending on how many bits are available. Qubits can be everything
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those bits can represent at the same time, meaning that they can be both 1 and 0 simul-
taneously. Since they can be multiple values at the same time, this also gives room for
massive parallelization.

It is known that it is possible to solve IFP for a quantum computer due to its paral-
lelization. However, this is easier said than done, as the qubits themselves are not easy
to work with. In physical implementations, qubits are sensitive and can easily fail due
to for instance noise.

Today’s most advanced quantum computers are developed by IBM. Their quantum
computers have 433 qubits to use [12], but how much is this? To give a point of view,
Shor’s algorithm was implemented on a quantum computer around 20 years ago by
some researchers at IBM [11]. They implemented it specifically to factorize 15. The
quantum machine needed 7 qubits to be able to solve this. However, this implemen-
tation will only be able to solve the factorization of that number and not any other.
Having a scalable implementation turns out to be very hard, and something that will
be needing a lot of work to be able to operate correctly. Shor’s algorithm for larger
numbers is still not solved, and it seems like it will be difficult to achieve.

We still have a long way to go and probably will need quantum computers with over
a million qubits until we are able to factorize big enough numbers to threaten RSA
parameters used today. In 2021 Gidney and Ekerå presented a theoretical quantum
algorithm to solve 2048-bit RSA using 20 million noisy qubits [7]. It is also worth to
note us that the number of qubits for solving these problems can change over time as
we learn more about quantum computing.

In recent years and now quantum computer development has been an emerging field
so there is a lot of money used to evolve them further. Nobody knows how fast we will
be able to get these machines on a big scale yet.

1.4 Standardization of Quantum-Safe Algorithms

NIST stands for National Institute of Standards and Technology, and they work with,
among other things, cyber security standards for the U.S. [19]. They standardize cryp-
tographic protocols and algorithms that U.S. companies have to follow. Even though
it is a governmental organization for the U.S., it is also useful to the rest of the world,
as they spend a lot of time on research and figuring out the most secure way to go.
NIST has for instance made standards such as DES and AES, and currently, they are at
the end of a process of making standards for post-quantum cryptography as well. As
large-scale quantum computers can be a potential threat against the standard crypto-
graphic methods in use today, NIST has decided that they need to make new standards
that are post-quantum safe. These standards are for encryption/decryption and digital
signatures, and they are planning on releasing the standards in 2024. NIST wants to
be precautionary for this type of threat, as they do not expect large-scale quantum ma-
chines to be available for several years/decades, but it is better to be prepared in case it
does happen. As mentioned an argument as to why we need post-quantum cryptogra-
phy now is that some data that is encrypted today needs to be secret for at least 20-30
years. If big-scale quantum machines should be just 20 years away, we need to change
our encryption algorithms today. NIST has decided to spend a lot of time selecting the
new standards, and they chose to use a competition for finding the new standards [21].
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The competition started in 2016 with round one where anybody could submit a
suggestion with an algorithm they had made. One would submit the code, a description
of the algorithm, and who had been a part of the project. On the 30th of January
2019, 26 candidates were chosen to join the next round of the competition, where 17
of them were candidates for encryption/key-encapsulation mechanism algorithms, and
9 of them for digital signatures. For the second round, the participants were given a
few months to update their implementation and specifications if they wanted, and then
NIST would begin the evaluation of the algorithms. The evaluation part was expected
to last for a year to a year and a half.

In 2020 on the 22nd of July, NIST announced the candidates for the third round [22].
There were 7 finalists chosen and 8 alternates. For the public-key encryption and key-
establishment algorithms, the following algorithms were chosen as finalists: Classic
McEliece, CRYSTALS-KYBER, NTRU, and SABER. The alternate candidates were
BIKE, FrodoKEM, HQC, NTRU Prime, and SIKE. There were also chosen finalists for
the digital signature algorithms, and these were: CRYSTALS-DILITHIUM, FALCON,
and Rainbow. The alternate candidates chosen for the signatures were GeMSS, Picnic,
and SPHINCS+. Again the candidates had some time to update comments and make
some tweaks to the algorithms before NIST decided on who should advance to the next
round.

On the 5th of July 2022, NIST presented the selected algorithms for the public-key
encryption and key-establishment algorithms and digital signature algorithms [20]. For
Encryption/key-establishment NIST chose to go for CRYSTALS-KYBER, which is a
lattice-based algorithm. NIST also decided on finding some other options that are not
lattice-based, so the candidates for round four are some extra algorithms. The reasoning
for this is in case an effective quantum algorithm to solve the lattice-based problem is
found. We would then need some other options that do not depend on the same problem
to use instead. The algorithms that are in round 4 are BIKE, Classic McEliece, HQC,
and SIKE [23]. For Digital signatures there were selected three algorithms, which
were CRYSTALS-DILITHIUM, FALCON, and SPHINCS+. They have also made a
proposal for other digital signature algorithms, and these have a submission deadline
of June 1st, 2023 [24].

1.5 Task Description

In this master thesis we are going to look closer at the shortest vector problem for
lattices, and at which methods used today work best for solving it. In general, it is the
sieving method that is considered best for bigger lattices, and a Python library called
G6K stands out as the current best tool for doing sieving.

We begin by introducing the concept of lattices, and the relevant basic properties a
lattice can have. The lattice theory also consists of important theorems, notations, and
definitions that will be used to describe problems such as the shortest vector problem.
As the shortest vector problem is the main problem we will be looking at in this thesis
we are going to explore the problem and approaches people take to solve it today.

Lattice reduction is introduced as a technique for trying to solve the shortest vector
problem. Both the LLL algorithm and BKZ algorithm will be demonstrated as these are
important lattice reduction algorithms. Sieving and enumeration are different methods
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of lattice reduction, and we will mainly focus on the sieving method. We are going to
look at how sieving works and what the main idea behind sieving algorithms is.

After sieving is introduced we are going to look at G6K. For the G6K library, we
will be going through how it is built up before we explain briefly which sieving algo-
rithms they have implemented, and some of the lattice types they offer. Then some of
the strategies that are presented in the G6K paper are gone through. We will also see
some examples of how G6K is used today in the SVP challenge.

After presenting enough background knowledge we will do some experiments using
G6K. The experiments are on how to use sieving in practice, and we will utilize the
G6K library in the experiments. The experiments will try to improve a sieving strategy
proposed in G6K and look at how sieving algorithms behave based on lattice type and
dimension.



Chapter 2

Background

2.1 Notation

Before we begin with the actual theory, we will go through the notation we use in this
thesis. For vectors, we denote them in bold text like this: v. The vectors can also have
coefficients in front of them, which we denoted with lowercase letters, an example is
av. Matrices we denote with capitalized letters, so a matrix can look like this: M.
Matrix M consists of n vectors that have length m, where the vectors are the rows of M.
We can further also denote a matrix with its size Mn×m.

A lattice will also be denoted in a capital letter, but this will always be a capital L,
and we denote its generator vectors as (b1, . . . ,bn). Also for these lattice vectors, we
denote their coefficients in lowercase letters.

For the volume of a lattice and a matrix, we denote it using the abbreviation vol,
and we write it as vol(M). For the determinant of a matrix or a lattice we also use the
abbreviation det, and denote it as det(M).

2.2 Lattice Theory

A lattice is a discrete additive subgroup of Rm. It is generated by a set of n linearly
independent vectors that are in Rm. As we have n independent vectors in Rm, we need
n≤ m. We define a lattice as follows

Definition 3 A lattice L is given as L = {a1b1 + a2b2 + . . .+ anbn|ai ∈ Z},where
b1, . . . ,bn are n linearly independent vectors in Rm. A set of vectors that generate
the lattice is called a basis.

A basis of a lattice is not unique, hence we can have different sets of linearly indepen-
dent vectors that generate the same lattice.

We can map between different bases by using a change of basis matrix, which we
will denote as U . This matrix needs to have two properties for it to be a valid change
of basis. The first property is that U only contains integer values, and the second one
is that the determinant of U is ±1. We can denote the mapping as X = UY , where X
and Y are different bases of the same lattice. In this notation, we assume that the basis
vectors are the rows of the matrix. From here we will also assume that m = n in the rest
of the thesis for simplicity purposes.
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So now that we know what a lattice is, we are going to look closer at some properties
of it. We begin with the fundamental domain, which we define as follows [10, p. 390]

Definition 4 Let L be a lattice of dimension n and let b1,b2, . . . ,bn be a basis for L.
The fundamental domain for L corresponding to this basis, is the set F(b1, . . . ,bn) =
{t1b1 + t2b2 + . . .+ tnbn : 0≤ ti < 1}

Every point in Rn can be uniquely written as v+r, where v is in the lattice and r in
the fundamental domain. This means that {v+F(b1, ...,bn)|v ∈ L}= Rn.

A usage of the fundamental domain of a lattice is its volume, which we define as
follows

Definition 5 Let L be a lattice of dimension n and let F be a fundamental domain for
L. The volume of L is then the n-dimensional volume of F.

We can calculate the volume of L by computing the determinant of the matrix given by
the basis of L. As stated earlier, a lattice can have different bases, but we will see that
the volume will still be the same as it is not dependent on the choice of basis. We can
see this by having a basis B and another basis A for the same lattice, which we know
can be written as B =UA. The volume then becomes as follows

|det(B)|= |det(U)det(A)|= 1|det(A)| ⇒ |det(B)|= |det(A)|

and we can see that any choice of bases A and B have the same volume.
We are now going to look at some applications of the fundamental domain and

volume of a lattice. Hadamard’s inequality is a way of measuring how close to being
orthogonal your basis is. The inequality is written as [10, p. 393]

vol(L)≤ ||b1|| · ||b2|| . . . ||bn||

Here we see that on the right side of the inequality we want to look at the length
of the lattice vectors of the basis. To calculate the length we use the Euclidean norm,
which is defined as follows

Definition 6 Let b=(a1, . . . ,an)∈Rn. Then the Euclidean norm is ||b||=
√

a2
1 + · · ·+a2

n

We use the || symbol to show that we are looking at the length of the vector.
Hadamard’s ratio is quite similar to Hadamard’s inequality, but here we divide the

volume of the lattice with the product of the length of the vectors in the basis. Now we
will get a value between 0 and 1. The closer the value is to 1, the closer the basis is to
be orthogonal. We see the same for the inequality, the closer it is to equality the closer
to being orthogonal the basis is. We will go into detail on why we want to measure the
orthogonality later.

Another parameter of lattices is the Euclidean ball. We denote the ball centered at
the origin as follows

Br = {b ∈ Rn : ||b|| ≤ r} (2.1)

We generalize this definition to allow the Euclidean ball to be centered at any given
point.
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Definition 7 Given any v ∈Rn and a radius r > 0, then the ball of radius r centered at
v is the following set Br(v) = {b ∈ Rn : ||b−v|| ≤ r}

We are now going to look at two important lattice theorems/definitions. These are
called the Minkowski Theorem and the Gaussian Heuristic. They can both be used
for themselves and also to prove Hermite’s theorem. Hermite’s theorem tells us that
a lattice of dimension n always will contain a nonzero vector whose length is upper
bounded. We will have a closer look at Hermite’s theorem later.

Since we are working with short vectors we have a notation to symbolize the length
of a shortest vector. We denote this by using the Greek letter λ , so for instance λ1(L) is
the shortest length a vector can have. If we instead of 1 use another number i, this means
there are lattice vectors of length smaller than λi that span a subspace of dimension at
least i. For instance λ2(L) will be the second shortest vector that is not a multiple of
the shortest vector in L. We can define λi(L) as

λi(L) = in fr∈Rdim(Span(L∩Br(0)))≥ i (2.2)

Now we are going to look at Minkowski’s Theorem, but here we first need to know
some definitions for bounded, symmetric, convex, and closed sets. These are defined
as follows [10, p. 398]

Definition 8 Let S⊆ Rn

• S is bounded if the vectors that are in S have bounded lengths.

• S is symmetric if for every point x in S, the negation −x is also in S.

• S is convex if whenever we have two points x and y that are in S, then the line
segment that is between these points also lies in S.

• S is closed if it fulfills the property: if x ∈Rn is a point such that every ball Br(x)
contains a point of S, then x is in S.

Minkowski’s Theorem states that if we have a lattice L ⊂ Rn of dimension n and a
subset S ⊆ Rn that is bounded, symmetric, and convex as defined in Definition 8, we
can use its volume to check for nonzero lattice vector. If vol(S) > 2n det(L), we know
there exists a non-zero lattice vector in S. This is helpful as we are able to guarantee
that we have some valid lattice vector in our chosen set. If the subset S is also closed,
then the same statement holds with equality.

Theorem 1 (Minkowski’s Theorem) Let L be a lattice L⊂ Rn, where n is the dimen-
sion of L, and let S ⊂ Rn be a bounded symmetric convex set such that its volume
satisfies

vol(S)> 2n det(L) (2.3)

There will then exist a nonzero lattice vector in S.

So now we have seen that Minkowski’s theorem guarantees us that there will exist a
nonzero vector upper bounded by some length. Another theorem that tells us the bound
of the Euclidean norm of the shortest vector in a lattice is Hermite’s Theorem, which
can be stated as follows
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Theorem 2 (Hermite’s theorem) Every lattice L of dimension n contains a nonzero
lattice vector b such that ||b|| ≤

√
n(det(L))1/n

From Theorem 2 we can say that λ1(L) ≤
√

n(det(L))1/n. By applying the boud n
times we get

det(L)≤
n

∏
i=1

λi(L)≤ nn/2 det(L)

From this bound we can see that the length of the shortest vector is dependent on the
determinant of the lattice, meaning that if it has a low determinant there exist shorter
vectors to find.

However, there usually exist vectors that are shorter than this bound, and here the
Gaussian Heuristic comes in. The expected shortest length of a non-zero lattice vector
in L is given by the following formula

σ(L) =
√

n
2πe

(det(L))1/n (2.4)

The Gaussian Heuristic says that we expect the shortest vector to be approximately
this length. We define the Gaussian Heuristic as

Definition 9 (Gaussian Heuristic) The shortest nonzero vector in L will satisfy the
approximation λ1(L)≈ σ(L).

Later in Subsection 2.3 we will look at lattice problems where a goal is to look for
short vectors in a lattice. Here these theorems are useful as the Gaussian Heuristic gives
us an estimation of how long the lattice vector is.

At last, we define sublattices

Definition 10 Let L and L′ be lattices such that L′ ⊆ L. We say that L′ is a sublattice of
L.

2.2.1 Gram-Schmidt Orthogonalization
Gram-Schmidt orthogonalization is a well-known concept from linear algebra, and we
will see that it is important for some of the lattice reduction algorithms later. We define
a Gram-Schmidt basis as

Definition 11 Let b1, . . . ,bn be a basis of independent vectors in Rn. A Gram-Schmidt
basis consists of orthogonal vectors, such that the space spanned by < b1, . . . ,bi > and
< b∗1, . . . ,b

∗
i > are the same for all i, where i = 1, . . . ,n.

One can calculate a Gram-Schmidt basis from a lattice basis by using Algorithm 1.
We let b1, . . . ,bn be a basis for a vector space V ⊂ Rm. Then we use the algorithm to
create an orthogonal basis b∗1, . . . ,b

∗
n for V .

So what happens when we put a lattice basis through the Gram-Schmidt orthogo-
nalization algorithm is that we get a basis back that is orthogonal. The basis we get
back is usually not a basis for the lattice, but it does however have the same determi-
nant as the original lattice basis. We will use this fact later when we in Section 3.1.1
describe the LLL algorithm.
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Algorithm 1 Gram-Schmidt Algorithm

Require: Basis {b1, . . . ,bn}
Ensure: Gram basis {b∗1, . . . ,b∗n}

b∗1← b1
for i = 2,3, . . . ,n do

for j = 1,2, . . . , j < i do

Compute µi, j =
<bi,b∗j>
||b∗j ||2

end for
b∗i ← bi−∑

i−1
j=1(µi, jb∗j)

end for

Projection of a lattice vector

As seen above we can denote the projection of bi onto Span(b1, . . . ,bi−1)
⊥ as b∗i . Now

we are going to look closer at what this means. First we introduce another notation for
projection which is projS(x), where S is the space where we want to project vector x
onto. We let S = span(b1, . . . ,bi−1), which also is the same as span(b∗1, . . . ,b

∗
i−1). If

we want to do a projection of x onto S we do as follows

projS(x) =
< x,b∗1 >
||b∗1||2

b∗1 + · · ·+
< x,b∗i−1 >

||b∗i−1||2
b∗i−1

However, what we use more in this thesis is projection onto the orthogonal space
S⊥. This is quite easy when we have projection onto the space S. To project x onto S⊥

we do the following

projS⊥(x) = x−projS(x)

This is exactly what is happening when we do a Gram-Schmidt orthogonalization,
and the process can be seen inside the for-loop of the pseudo-code above. A projection
can be visualized as seen in Figure 2.1. The figure shows both projection onto a space
and its orthogonal space.

Figure 2.1: Projection of x onto S and S⊥
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The context of a lattice

Later in the thesis, we will refer to what we call a context of a lattice. The context can
be denoted as L[l:r], where [l : r] is the context itself.

In the contexts, l and r represent indices from which lattice vectors we are looking
at. We can look at our basis as column vectors where the first column (leftmost) will be
at index 1, while the last column (rightmost) will be index n, where n is the dimension
of the lattice. We also note that l and r in the context have the property 1≤ l < r ≤ n.

The lattice L[l:r] is generated by the basis B[l:r]. We let the basis B = {b1, . . . ,bn}
and we say that S = span(b1, . . . ,bl−1). Then we can write out B[l:r] as

B[l:r] = {projS⊥(bl), . . . ,projS⊥(br−1)}

So what we see from this notation is that all of the vectors in the context are pro-
jected onto the space orthogonal to the space spanned by the lattice vectors that are to
the left of the context.

2.3 Shortest Vector Problem

When working with lattices one of the main problems is finding a shortest nonzero
lattice vector. This problem is known as the shortest vector problem (SVP), and it turns
out to be a rather hard problem. When trying to solve SVP in a lattice we sometimes
know how short the Euclidean norm of a shortest vector is, but this is not always the
case. However, the issue is not finding this length but finding a lattice vector that has
the desired length. We say we want to find a shortest vector and not the shortest vector
as there usually exist multiple vectors that have the same norm. An example is if we
work with a two-dimensional lattice that has the basis {(0,1),(1,0)} ( which is in Z2),
then both of the basis vectors will have the same norm and be a shortest vector. We also
know that if lattice vector b is a shortest vector, then also −b will be a shortest vector
since these will always have the same norm.

There also exists an approximation version of SVP, and this is called apprSVP. Now
we do not need to find a shortest vector, but we want to find a vector that is at most
f (n)λ1(L) in length. Here f (n) is a function of n (the dimension), and the hardness of
apprSVP depends on which function you use as f (n). ApprSVP is a problem that we
are able to solve within some factor using for instance LLL reduction which we will
look at in Chapter 3. If the function chosen is small, the problem gets very difficult as
well.

2.3.1 Other Lattice Problems
Another similar problem to SVP is the closest vector problem (CVP). The goal is now
to find the closest lattice vector b to a given vector a, where a is not in the lattice. Vector
b needs to be a lattice vector that makes the smallest Euclidean norm

minb∈L||a−b||

where b runs over all lattice vectors.
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CVP is also considered to be a very difficult problem to solve, and in practice, it is
even a little harder than SVP [10]. In similarity with SVP, also CVP has an approximate
version of the problem. We will not look any closer at this, but it is the same concept
as with apprSVP.

The shortest basis problem (SBP) is another variant of the problems above, and there
also exist many versions of this problem. The problem is to obtain a lattice basis that is
short according to some measures. An example of a measure could be the biggest norm
of the basis vectors being minimized. The reason it exists variations of this problem is
the fact that you can decide on the measurement factor.

As already stated SVP is a very hard problem, which makes it interesting to use in
cryptography. SVP will be the focus problem of this thesis. In the next chapter, we are
going to look at reduction algorithms, where the goal is to find short vectors.
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Chapter 3

Lattice Reduction

A method for finding short vectors in a lattice is using lattice reduction algorithms.
With lattice reduction, we try to reduce the length of the basis vectors we begin with, to
something shorter. The goal of lattice reduction is to obtain a better basis (see below)
for the lattice. The most well-known lattice reduction algorithm is called the LLL
algorithm, which will be further described in Section 3.1.1. It is also possible to split
lattice reduction into two different categories when thinking about types of methods for
the reduction. These are called enumeration and sieving. This thesis will be focusing
on the sieving method.

What is a good basis?

As mentioned in Section 2.2 a basis of a lattice is not unique, so there are many dif-
ferent lattice bases that generate the same lattice. One of the goals of lattice reduction
is to obtain a better basis, but what does a "good basis" mean? There is no definite
answer, but we usually mean that the basis contains lattice vectors that are reasonably
short and nearly orthogonal. A way to measure how good a basis is can be done by us-
ing Hadamard’s ratio (see Section 2.2). As stated the Hadamard’s ratio gives a value
between 0 and 1 and the closer the value is to 1, the better the basis is.

3.1 Lattice Reduction Algorithms

There are two different methods used for lattice reduction: enumeration and sieving,
and we are now going to give a brief description of the difference between them. In
enumeration, we do an exhaustive search to find combinations of the basis vectors that
have a norm that is shorter than some predefined bound. We can look at the search as a
depth-first search tree.

The idea of sieving however is based on having a database with lattice vectors, then
looking at the length of the difference or sum between the vector pairs (||b1± b2||).
Like this, we obtain shorter vectors by taking this difference or sum. So the main
idea is to start with many vectors, and then gradually obtain shorter and shorter lattice
vectors, where we continuously replace the longer vectors with the new shorter ones.
Like this, the shorter vectors always become a part of the next iteration of the sieve.
This process is continued until we reach a desired lattice vector with a length within
some given bound.
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In summary, there are two main methods for lattice reduction, but which one works
the best? In theory, it is the sieving method that should work the best, however, this is
not always the case in practice. If we are working on big lattices it seems that sieving
is the better method, while for smaller lattices enumeration is the best. However, it
has been debated where the crossing point of dimension for where sieving starts to
work better. In 2014 Daniele Micciancio and Michael Walter estimated lattices of up
to dimension 120 to be where enumeration works the best [17]. However, as the years
have passed this estimation has become lower and lower. Léo Ducas showed in [5]
just 4 years later that this estimation could be set down to 90. In 2019, by using G6K
with optimization it is stated in [2] that the crossing point is at dimension 70. Today
the records for solving the SVP challenges (see Section 3.4) are done using a sieving
method using G6K [35].

Continuing on we are going to look at some of the most well-known lattice reduction
algorithms: the LLL algorithm and the BKZ algorithm.

3.1.1 The LLL Algorithm
The LLL algorithm was published in 1982 by Lenstra, Lenstra, and Lovász [15], and
the algorithm returns a lattice basis that is said to be LLL-reduced. The LLL-reduced
basis is considered a good basis, here meaning that we get an upper bound for both
the norm of the vectors and their perpendicularity. These bounds can be seen in the
Equations 3.1-3.3. For a basis to be LLL-reduced, it must satisfy two conditions called
size condition and Lovász condition which are defined as follows:

Definition 12 Let B = {b1, . . . ,bn} be a basis for the lattice L, and let the assosiated
Gram-Schmidt basis be B∗ = {b∗1, . . . ,b∗n}. The basis B is said to be LLL-reduced if it
fulfills the following conditions:

Size condition: |µi, j|=
|< bi,b∗j > |
||b∗j ||2

≤ 1
2

, for all 1≤ j < i≤ n

Lovász condition: ||b∗i ||2 ≥ (
3
4
−µ

2
i,i−1)||b∗i−1||2 , for all 1 < i≤ n

Now we know what an LLL-reduced basis is, but how can we find them? It turns
out that we can find LLL-reduced bases for any lattice, meaning that there always exists
an LLL-reduced basis for a given lattice. The way of obtaining an LLL-reduced basis
is by using the LLL algorithm, which is given in a simplified version in Algorithm 2.

The algorithm consists of three main events: size reduction, checking the Lovász
condition, and swapping the lattice vectors. First, we loop over the basis and perform a
size reduction on each of the lattice vectors. This is quite an easy process to do, and it is
done in stages rather than all at once. The LLL algorithm also has to update its Gram-
Schmidt basis (see Section 2.2.1), as this is an important part of the algorithm. It is
also important to note that the order of the lattice vectors matters, and here the Lovász
condition comes in. If the Lovász condition is satisfied we continue on to the next
lattice vector and repeat the while loop, if it is not met we swap the order of the lattice
vectors and go back one step in the basis. When the basis is both size-reduced and all
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Algorithm 2 LLL Algorithm

Require: basis B = {b1, . . . ,bn} for lattice L
Ensure: LLL-reduced basis for L

k = 2
B∗ = computeGramSchmidt(B)
while k ≤ n do

for j = k−1, . . . ,1 do
bk = bk−dµk, jcb j
updateGramSchmidt(b1, . . . ,bn)

end for
if LovászCondititon(k) then

k = k+1
else

swap(bk,bk−1)
updateGramSchmidt(b1, . . . ,bn)
k = max(k−1,2)

end if
end while

of the lattice vectors satisfy the Lovász condition we have an LLL-reduced basis, and
the algorithm terminates. It is also important to mention that an LLL-reduced basis will
have the lattice vectors in an order where they are sorted on lengths, so the first one is
always the shortest, and so on.

The LLL algorithm will terminate in polynomial time [10, p. 443], and returns a
basis that satisfies the following bounds [10, p. 441]

n

∏
i=1
||bi|| ≤ 2n(n−1)/4 det(L) (3.1)

||b j|| ≤ 2(i−1)/2||b∗i || for all 1≤ j ≤ i≤ n (3.2)
As mentioned, the order of the basis vectors is in ascending order, meaning that

the first basis vector should be the shortest one. Hence the first lattice vector in the
LLL-reduced basis will meet the following bounds

||b1|| ≤ 2(n−1)/4|det(L)|1/n and ||b1|| ≤ 2(n−1)/2
λ1(L) (3.3)

The reason that the bounds in 3.3 hold from the bounds 3.1 and 3.2 is:
First we set j = 1 in (3.2) and multiply over n times ||b1||n ≤ ∏

n
i=1 2(i−1)/2||b∗i ||.

From [10, Prop.7.68] we know that ∏
n
i=1 ||b∗i || = |det(L)|, and multiplying out the

2(i−1)/2 factors we get

||b1||n ≤ 2n(n−1)/4
n

∏
i=1
||b∗i ||= 2n(n−1)/4 det(L)

We then take the n-th root of the equation and obtain ||b1|| ≤ 2(n−1)/4|det(L)|1/n,
which is the first bound in equation 3.3. The second part of bound 3.3 can be found
proved in [10].

The bounds from (3.3) express that an LLL-reduced basis will be able to solve
apprSVP within a factor of 2(n−1)/2 in polynomial time.
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3.1.2 The BKZ Algorithm
The BKZ algorithm is a block reduction algorithm and it was introduced in the late
1980s by Schnorr [28]. The algorithm is a generalization of the well-known LLL algo-
rithm we saw above. In BKZ we look at one block of the basis at a time, where the size
of this block is decided by a parameter β . A block is a projected sublattice, meaning
that the current block consists of basis vectors that are projected onto the orthogonal
space that is spanned by the basis vectors that are previous to the block. We denote it
as span(b1, . . . ,bi−1)

⊥ when the block starts at index i. The block can be compared to
what we called context in Section 2.2, and by "previous to the block", we refer to the
order of lattice vectors in the basis.

The block moves up as B[1,β ],B[2,β+1] until we have reached the end of the basis. We
call this process a BKZ tour, and at each step of the tour the current block is reduced. It
is important to notice that we try to solve SVP in each block, either using enumeration
or sieving. The short vector that we find in each (projected) block is then lifted and put
into the lattice basis. The vector will be put into the leftmost position in the block. As
we continue to solve SVP on the various blocks, the results in these might change as
vectors are moved around the block during its tour. The BKZ-tour is therefore repeated
until there are no more changes to be done to the basis or some other stop condition
is met, and it will then return a BKZ-reduced basis. The basis that the BKZ algorithm
returns will be of good quality and will contain short vectors.

We mentioned that BKZ is a generalization of LLL, and BKZ with β = 2 is similar
to LLL. We know that the algorithm will terminate in polynomial time when β = 2, but
is this true for all other β? BKZ will solve apprSVP within a factor of approximately
β n/β [10, p. 427]. So the bigger we have β , the shorter lattice vectors we should be
able to find. However, increasing β comes at a cost of running time. This means that
we have a trade-off between the quality of the basis and running time.

3.2 Lattice Sieving

We begin this section by introducing the concept of sieving before we go into more
detail on the different approaches one can take.

In 2001 Ajtai, Kumar, and Sivakumar introduced in a paper the first sieving algo-
rithm with the concept of a sieving approach for lattice reduction [1]. In the paper, they
demonstrate how this new technique is able to solve SVP for dimensions that earlier
had been considered difficult to do.

The whole idea of lattice sieving is in short based on looking at pairs of lattice
points and then taking the sum or difference between these. If the sum of the lengths
reveals a shorter norm we have found a shorter vector, which also will belong to the
lattice. It belongs to the lattice as it is a linear combination of two other lattice vectors.
In many sieving algorithms, we choose the lattice vectors we want to take pairs from in
a database. The databases can be created differently, some will sample many vectors in
the beginning and then use this as a base, while others might build the database as they
go. We will see later in the section below which algorithms implemented in G6K use
which approaches.

Another important aspect of sieving is the fact that we want to keep the shorter
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vectors we obtain along the way. We want this as these can contribute to discovering
new and shorter lattice vectors. In some methods, we will keep on updating the same
database, and in others, we change out the old database with a new one that contains
the shorter lattice vectors we have found. As we continue on with iterations of taking
pairs and updating the database we will get shorter and shorter lattice vectors until we
obtain a shortest nonzero lattice vector.

Since Ajtai et al. released their paper on the sieving method there have been multiple
attempts by different people to utilize this, and also make it more effective. We will look
at some different approaches in Section 3.3.1, where we look at the sieving algorithms
implemented in G6K.

3.3 General Sieve Kernel

General Sieve Kernel (G6K) is a framework that was presented in an article in 2019
[2]. Following this framework, we also have a Python library with the same name.
This library is developed by some of the authors of the article and other contributors.
G6K provides a set of lattice reduction algorithms that focus on the sieving method. In
their sieving strategies, they usually split the lattice they are working on into blocks of
smaller sublattices where they reduce each block. We will have a closer look at this
later in the section.

G6K uses FPYLLL, which is a Python interface for FPLLL (a package for lattice re-
duction). FPLLL provides a wide range of lattice types and lattice reduction algorithms
such as LLL. We look at the different lattice types it provides below. G6K follows the
structure of FPYLLL so these can be integrated together easily.

Both G6K and FPYLLL are open-source using the GNU General Public License
v2.0, which means that it is free software that anybody can download and use with
disclosure of source. The functions that G6K provides are also designed to be easy to
tweak. Like this people are able to experiment and test out things as they use the library.
It is also designed in a scalable way, meaning that it should be easy to parallelize the
code and also use modern architectures such as multi-core processors and GPUs for
optimizing efficiency.

3.3.1 Sieving Algorithms in G6K
In this section, we are going to look closer at the different sieving algorithms that G6K
provides. These are used in the experiments we are going to do in Chapter 4.

Nguyen-Vidick Sieve (nv)

Nguyen-Vidick is a heuristic sieving algorithm that was proposed in 2008 to show that
sieving algorithms were practical [18]. It works by first sampling many random and
possibly long lattice vectors in a list/database, and then it will apply a sieve on this list.
The sieving part consists of going through all the pairwise combinations of the lattice
vectors by summing them together. If the sum is smaller than the original vectors, this
new vector is added to a new list. These new vectors will also be a part of the lattice as
any such combination of lattice vectors will create a vector that is in the lattice. Then
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the sieving process is repeated on the new list, and it will continue doing so. Like this,
we will work with smaller and smaller lists after each sieve and continuously discard
old lists. During this process, there is a possibility of throwing away short vectors that
could be of value for the reduction. Hence, one could look at this as wasteful, and today
the algorithm is not used a lot in practice[14].

BeckerGamaJoux Sieve (bgj1)

The main idea behind the bgj1 algorithm was introduced by Becker, Gama, and Joux
in 2015 [3]. The idea was to implement an algorithm for finding pairs of neighbors
in a database. What we mean by neighbors are lattice vectors that are close to being
parallel to each other. When the pairs are close to being parallel there is a bigger chance
of getting a result that is what we seek, namely shorter vectors. The algorithm fills
buckets according to a filtering rule, where the center of the bucket is a random vector.
In G6K bgj1 only has one level of filtering, meaning it is a simpler version of what it
has the potential to be. In the buckets, it performs pairwise tests to find shorter vectors
(the sieving part as described in Section 3.2), so each bucket represents a database. The
bucket size is based on the cost of both filling the bucket and operations done inside the
bucket. The algorithm terminates heuristically when the sieving has finished in a given
amount of buckets.

Gauss Sieve (gauss)

The Gauss sieve was introduced in 2010 by Daniele Micciancio and Panagiotis Voul-
garis [16]. The main idea behind the Gauss sieve is to have a list/database D that
obtains shorter and shorter lattice vectors. An important difference to nv is that we
begin with an empty D, and then fill it up as we go. To obtain shorter vectors the al-
gorithm picks a vector x, and by using the vectors in the database tries to reduce it by
taking ||x±y||(y ∈D), before this vector is also added to the database. While trying to
reduce x, Gauss also tries to reduce the vectors already in the database. It does this by
replacing y or x with x±y if (||x±y||)≤ max(||x||, ||y||). Like this, the database gets
updated as much as we can in each round with shorter vectors. This process continues
until we have a lattice vector that is of a desired length.

Triple Sieve (hk3)

Gottfried Herold and Elena Kirshanova introduced an idea in the paper "Improved Al-
gorithms for the Approximate k-List Problem in Euclidean Norm" in 2017 based on
doing sieving on k lattice vectors [9]. The paper explains how to incorporate the k-list
problem into sieving. The goal of doing this is to reduce memory, and the technique
is not a sieving method in itself and it can be combined with other existing sieving
algorithms.

In G6K this idea is implemented and is called hk3 or triple sieve. The sieving
algorithm uses Gauss sieve as a base and uses a 2-sieve (the normal sieving technique)
and a 3-sieve. What we mean by 3-sieve is that if the vectors x,y,z are in the database
D and ||x± y± z|| is short, we replace the longest vector with the found vector in the
database D. It is also shown that you are able to find shorter vectors with 3-sieve than a
2-sieve when the same database is used. Due to this we can use a smaller database and
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reduce memory usage. The implementation in G6K also uses some filtering techniques
as well, and here they use the one from their bgj1 algorithm.

BDGL Sieve (bdgl, bdgl1, bdgl2, bdgl3)

The bdgl algorithm is very similar to the bgj1 algorithm, and the difference is only in
how the center of a bucket is chosen. In bdgl x is chosen from a spherical code, and not
a lattice vector. What is important to note here is that the decoding is expensive and
will therefore give some overhead.

In G6K we are provided with bdgl, bdgl1, bdgl2, bdgl3 where the difference
is what its blocks parameter is set as. The blocks parameter can be either 1,2, or
3. If you use bdgl the blocks parameter is set to be none, where in the code it will
give it a value that is valid, which we have found to be 2. So in other words bdgl is
bdgl2. However, blocks can also differ based on which dimension you are trying to
sieve on, hence even though you are using bdgl3 the blocks parameter could be set to
1 instead of 3 if the dimension allows it to be. This is in G6K decided by dividing the
dimension with 28 (rounded down), and if this is less than the blocks parameter given,
it is set to be this value. Why the dividing number is 28 is not specified. Hence the
bdgl-algorithms should behave similarly when the dimension is low, and the difference
is more apparent when the dimension increases. As mentioned this algorithm uses
buckets as well, and the number of buckets is also decided based on the blocks and
some other parameters.

3.3.2 Lattice Types in G6K
The G6K library uses the FPYLLL library for creating the lattices given as matrices of
basis vectors. To create a random matrix/lattice we use the command

A = IntegerMatrix.random(dimension, type, bits)
Some of the matrices also have other parameters, but these are the basic ones that all

of them use. The parameter dimension is an integer that decides which dimension the
lattice will have. The type parameter is which type the lattice should be, and these are
described below. At last, the bits parameter is an integer telling how big the numbers
in the basis vectors should be (at maximum).

In this section, we are going to look closer at some of the types of lattices that
FPYLLL provides which we have used in the experiments later in Chapter 4. FPYLLL
also provides two other types called lower triangular matrices and simdioph matrices,
but we are not going to look at these in this thesis.

q-ary (qary)

The q-ary lattice type uses either bits or q, and a k as extra parameters in the command
when you create the lattice. The type parameter needs to be set as qary. In the
experiments we have used bits instead of q, so here it will sample an integer q that
is smaller or of the same size as the bits we chose. Now a lattice is generated whose
determinant is equal to qk. The lattice basis is of the following form[

qIk×k | 0
H | Ik×(n−k)

]
(3.4)
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Here I is an identity matrix, which means that we just have zeros except for the diagonal
which consists of ones. It has two blocks that are I, where one is multiplied with q as
well. Then we have H which is a k× (n− k) matrix that contains uniformly random
integers modulo q (recall that n is the dimension). At last, we have a block that only
contains zeros.

NTRULike (ntrulike)

This type of matrix comes from the NTRU cryptosystem, and the NTRU matrix is built
up to follow a certain pattern. We split the lattice into four blocks that all are of the same
size (N×N). First, we have a block that contains the identity matrix I. The rows of the
block to the right of I contain all cyclic rotations of the coefficients of a polynomial h.
Here h is an element of Zq[x]/(xN − 1) sampled uniformly at random. The value of q
is either given as a parameter or is generated based on the bits parameter. The lower
part of the lattice begins with a block containing a zero matrix, and to the right for this
we have another identity matrix block, but this one is also multiplied by an integer q.
The following matrix is a representation of the NTRU lattice[

I | rotation(h)
0 | qI

]
(3.5)

G6K provides a very similar type which is called NTRULike. To generate the NTRU-
Like lattice we write ntrulike as the type parameter. In our experiments, we also do
not use the extra q parameter and only use bits.

A comment/warning from the documentation of FPYLLL states that "the NTRU-
Like lattice does not produce genuine NTRU lattice with an unusually short dense sub-
lattice" [33].

Knapsack (intrel)

In the knapsack lattice, the first column of the matrix contains different random num-
bers, while the rest of the lattice basis is an identity matrix (see Example 3.6). When
making the lattice we write intrel as the type parameter to get the knapsack lattice.
The size of the random numbers is given by the bits parameter.

a 0 . . . 0
b 1 . . . 0
... 0 . . . 0
z 0 0 1

 (3.6)

Uniform lattices (uniform)

This is a lattice where all the entries are integers sampled uniformly at random. The
length of the integers is less than or equal to the bits that is provided by the user. To
get the uniform lattice we write uniform as the type parameter. An example is as
follows a b c

d e f
g h i

 (3.7)
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3.3.3 Lattice Reduction Strategies in G6K
The G6K framework introduces some advanced strategies and new operations for lat-
tice reduction. There are five primary operations that the strategies use, and we will
first have a look at these. Before we go into detail we first need to state how we visu-
alize our lattice basis. The basis consists of column vectors where b1 is the left-most
vector, and bn is the vector the right-most.

The different operations work on the context of the lattice (see Section 2.2), which
we repeat is a part of the basis that is projected. We denote it as L[l:r], where 0 ≤ l <
r ≤ n, which will be the lattice generated from the projected basis B[l:r].

Basic Lattice Operations

All of the following lattice operations take place within a context of a lattice, and the
operations also are able to somewhat keep the shortness of the vectors.

Before we look at the operations it is important to note that we now are looking at
the coefficients of the lattice vectors, and not the lattice vectors themselves. This is due
to how the database in G6K works. The coefficients of a lattice vector are denoted as
(v1, . . . ,vn), and is what is actually stored in the database. In the operations below we
will use d = r− l in the notation of the coefficients.

• (ER) Extend Right, which is also called inclusion by G6K. The goal is to increase
the context by one step to the right by adding a 0 to the rightmost position in the
context. It can be written as follows L[l:r]→ L[l:r+1]. Where the coefficients of the
lattice vectors in the projected lattice are (v1, . . . ,vd)→ (v1, . . . ,vd,0).

• (SL) Shrink Left, where we decrease the context by removing the leftmost coef-
ficient in the context. This operation is also called projection by G6K, and it can
be shown as L[l:r]→ L[l+1:r]. Now the lattice basis shrinks by simply removing
the first vector coefficient as (v1, . . . ,vd)→ (v2, . . . ,vd)

• (EL) Extend left, consists of increasing the context, but this time we do it by
adding a coefficient at the leftmost position in the context. G6K here adds a con-
stant c, which is determined by the formula c = ∑

d
j=0 µl−1,l+ jv j. This operation

is also known as Babai-lift and is expressed as L[l:r]→ L[l−1:r], where the coeffi-
cients are (v1, . . . ,vd)→ (−dcc,v1 . . . ,vd).

• (I) Insert function, which turns out to be a bit complicated. The insert operation
lets us insert a vector b at position i using a local change of basis operation. To
do this type of operation a unimodular matrix is needed, and the way this is done
in G6K is a complex operation.

• (S) Sieve, which performs a sieving algorithm on a given lattice/sublattice.

Lattice Reduction Strategies

The main concept of the G6K framework is the Pump algorithm, which uses a progres-
sive sieving strategy and "dimensions for free". The "dimension for free" is a trick that
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was introduced by Léo Ducas in [5] and it is making sieving faster, and G6K uses it in
its strategies.

The progressive sieve has usually been done from left to right, but as G6K now
provides the possibility for the opposite direction they tested this out and it turned out
to be performing better. Due to this the Pump algorithm takes advantage of that and
performs the operations in the other direction. Pump is described as

Pumpκ, f ,β ,s : Resetκ,κ+β ,κ+β ,(EL,S)
β− f ,(I,Ss)β− f (3.8)

The parameters Pump needs are κ , f , β and s. The first parameter κ is an integer
value that indicates the start of the lifting context. The second parameter of Pump is f
and it represents the "dimensions for free". The blocksize we want Pump to work on is
given by the β parameter. At last, the s parameter is either 0 or 1 to indicate whether
sieving takes place or not in the last half of the procedure (pump-down phase).

The first part of Pump is the Reset operation, which simply is emptying the database
and setting l = κ +β and r = κ +β . Next up is the extending left and then sieve with
one of the algorithms from their sieving algorithm β − f times. This first part we call
"pump-up". After that we begin the "pump-down" phase. It begins by inserting vectors
and then it is optional if we want to sieve the current block or not. In our experiments
we will not be using the s = 1, meaning we will never sieve on the "pump-down".
Hence we can simply look at Pump as the following

Pumpκ, f ,β : Resetκ,κ+β ,κ+β ,(EL,S)
β− f ,(I)β− f (3.9)

So now we have the Pump algorithm, let us look at some applications of Pump that
G6K provides. The first strategy that is presented is the WorkOut routine. The WorkOut
contains Pumps that follow the sequence

WorkOutκ,β , f , f+,s :Pumpκ,β− f+,β ,s,Pumpκ,β−2 f+,β ,s, (3.10)

Pumpκ,β−3 f+,β ,s . . .Pumpκ, f ,β ,s

This has been used in their experiments for solving SVP in the SVP challenges.
Continuing, the WorkOut routine has also become incorporated into a version of the
BKZ algorithm.

Another strategy that also consists of a sequence of Pumps is the PumpNJumpTour.
In similarity to WorkOut, also this can be made into a version of the BKZ algorithm. In
the PumpNJumpTour we use Pump on blocks of the lattice that we jump between. The
PumpNJumpTour can be described using this sequence of Pump:

PumpNJumpTourβ , f ′, j :Pump0,0,β− f ′,Pump0, j,β− f ′+ j, . . . ,Pump0, f ′,β , (3.11)

Pump j, f ′,β ,Pump2 j, f ′,β , . . .

We are going to look closer at this strategy in Section 4.2 where we do some experi-
ments with it.
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3.4 Darmstadt’s SVP Challenges

The SVP challenge is a challenge by Technische Universität Darmstadt to see how big
dimensions we are able to solve SVP in [35]. Since we can not always know for sure
that we have found a shortest vector, the challenge is to find a vector that is shorter
than 1.05σ(L), where σ(L) is the Gaussian heuristic (see Equation 2.4). Today the
record for the highest dimension where it has been found a short vector within the
approximation factor is 180. The record was set by using a sieving algorithm from
G6K using a GPU implementation and can be found in the SVP challenge’s Hall of
Fame.

There are two ways to get a place in the Hall of Fame. One is finding a shorter
vector than the shortest one found for the same dimension. The other way is finding a
vector with a Euclidean norm less than the approximation 1.05 of the shortest vector
in a higher dimension. Looking at the Hall of Fame we can see that sieving is the
dominant method used. In the top ten we also see that it is mostly versions of G6K that
are used for solving SVP.

The record for the shortest vector found in the highest dimension was set in 2021.
There has not been any higher dimension than 180 where SVP has been solved as
we know of today. However, there have been entries to the Hall of Fame in 2022 as
well, but these have not been for higher dimensions, but shorter vectors for existing
dimensions.

The motivation for the SVP challenge is to better understand the algorithms used
to solve SVP, and also for being able to compare the methods to each other. As future
cryptographic standards (see Section 1.4) will be based on the hardness of solving SVP,
it is important that we understand potential threats against it.
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Chapter 4

Experiments and Results

In this section, we are going to report on experiments we have done. All experiments
were performed using the G6K library [34]. The experiments have been run on a server
with 96 cores of type AMD EPYC 7451, a CPU with 2.5 GHz clock frequency, and
up to 192GB RAM available. Each experiment used a single core. Our goal for the
following experiments is to test how different sieving algorithms compare to each other
and investigate different sieving strategies.

We are going to look at different types of lattices, and the performance of different
sieving algorithms while we change the lattice dimension. Will there be a sieving
algorithm that is best independent of both lattice type or dimension, or will it vary?

In the second section, we are going to study one of the strategies introduced by G6K
[2]. We will try to improve upon a version of the PumpNJumpTour presented in [2]. We
will then compare the versions on different lattices with different parameters.

For the last experiment, we want to use what we have learned from the two ex-
periments above, tweak the Pump algorithm according to the results we got in Sec-
tion 4.1, and use it in PumpNJumpTour. We will then test the different versions of
PumpNJumpTour on the lattices that gave more different results in the experiment from
Section 4.2. Will the observations from the other experiments give us better results than
what the default Pump does?

REMARK: In the following experiments we will present norms that have been given
in the results. These values will be squared as this is how G6K returns the norms as
well. This also makes it so we have cleaner numbers to work with.

4.1 Lattice Type vs Sieving Algorithm

One of the first things that seemed interesting was to have a look at how the different
sieving algorithms work with different types and dimensions of lattices. Will one siev-
ing algorithm work better regardless of which lattice type or dimension we use to sieve
on, or will this vary? In the G6K library, there are chosen default sieving algorithms
(gauss and hk3), hence we assume the G6K team believes these are the best sieving
algorithms overall. We suppose this choice has been supported by experiments as well,
but these are not really shown, hence we want to have a closer look at this. Also, we
wanted to see how the different sieving algorithms react to the different types of lattices
in different dimensions, and if there are any patterns.
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In these experiments, we will test the lattices of type q-ary, NTRULike, knapsack,
and uniform (see Section 3.3.2). We then go through the sieving algorithms: nv,
bgj1, gauss, bdgl1, and bdgl2 (see Section 3.3.1) and keep track of how long time
they use on a single sieve and their shortest vector found. We do the experiments on
five different dimensions of each lattice type: 40,50,60,70, and 80. As we are not
looking at higher dimensions bdgl3 will never be bdgl3 (see Section 3.3.1), hence we
will not use this for our experiment. We also note that bdgl2 does not start before we
use dimension 60.

In the experiments, we use the G6K library, where we first generate a lattice of a
specific type and dimension. Then we will run the different sieving algorithms once
each on the specific lattice. For each lattice, we record the length of the shortest vector
the algorithm finds, the time it takes to find it, and what dimension we sieve on.

The experiment will be done 10 times where we use different seeds for each of
the lattices. After this has been done, we will look at the data we have gathered and
calculate the average timing used on each dimension for each lattice type. For all of the
experiments, we save the data in tables which can be found in the Appendix. The data
consists of which dimension we are working with, how long time the sieving algorithm
took on average, a best norm found, which sieving algorithm was used, and the time
it took divided by the best time among the different sieving algorithms. Since we are
doing the same experiment multiple times we can detect what the common pattern
could be, and also catch if there are some special cases for some specific seed used
in the experiments. We also note that the tables in the Appendix contain values for
bdgl, bdgl1, bdgl2 and bdgl3. This is to observe if the bdgl-algorithms behave as
expected.

The lessons learned from these experiments will be further studied in the experi-
ments in Section 4.3

q-ary

We begin with the q-ary lattice, which is described in Section 3.3.2. For the lattices
we use the parameters bits=70 and k=n/2 on all of the q-ary lattices in the different
dimensions n.

In Table 1 in the Appendix we can see the data we collected from our experiment.
The data in this table is an average of the 10 different q-ary lattices. The norms in the
table are taken from the first lattice we tested to show how all algorithms are able to find
the same shortest vector norm for each dimension. Using this table we have visualized
the results in Figure 4.1 where the dimension of the lattice is the x-axis and the y-axis
is the time divided by the best time. Note that with this scaling of the y-axis, all of the
algorithms will have values ≥ 1, and the fastest sieving algorithm will be equal to 1.
This scaling is chosen for easier comparison between the algorithms.

We see from Figure 4.1 that the gauss algorithm appears to give the best results
up until dimension 60. By best we mean that it is both the fastest and is able to find
the same shortest vector as the other algorithms. In the figure, we clearly see that
dimension 60 also seems to be a crossing point for many of the algorithms. When we
reach dimension 70 we see that bdgl2 becomes the best. We see that bdgl1 is a little
slower than bdgl2, but it becomes better than gauss in this dimension.

Also bgj1 is getting better than gauss after dimension 60, but not as good as the
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Figure 4.1: Results from the experiment on q-ary Lattice from Table 1

bdgl’s. Having a look at nv we see that after dimension 60 it is the worse of the
algorithms, and continues to be so. Before dimension 60 it is just middling, so not
the best but not really the worst either.

NTRULike

For the NTRULike lattice, we use the parameter bits=70 for all of the dimensions,
and we do not use the q parameter for this experiment. Looking at the NTRULike
lattice (see Section 3.3.2) we can see some more variation in the results in Table 2 in
the Appendix. Also in this table, the timings are averages of 10 runs of each. For the
norms, this is the result we got from an NTRULike lattice just to show the pattern of
how the different algorithms find short vectors.

At first glance, it could seem that the nv algorithm always is the fastest. However,
it always finds a much longer vector than the shortest vector found by the other algo-
rithms. It is also unclear if the nv algorithm has even tried to do any reduction at all.
To verify this we check what the basis vectors norms are in the lattice before we sieve.
We find that the basis vectors actually have a shorter norm, and when we run nv we are
finding worse vectors than before after one sieve. Hence we are just going to ignore
this algorithm, and in Figure 4.2 we are not considering the nv algorithm at all.

Another comment that needs to be made is that in one run of the experiment of the
bgj1 algorithm in dimensions 70 and 80, we did encounter a "Saturation Error". This
error means that we were not able to find a short enough vector, and we will look closer
at this in the knapsack section. We have chosen to look away from this when taking the
average of the timings as it does not happen often. However, it is important to note that
this could happen.

Also in one run of bdgl1 in dimension 40, it uses a much longer time than usual. It
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also found a longer vector that is more similar to what nv finds. Since the difference in
the timings is so big, it ends up not really giving us a reasonable average. Hence, we
look away from this outlier when we are taking the average. Again, it is important to
note that this could also happen when we are working in the NTRULike lattice.

From Table 2 in the Appendix we see that at first only gauss always finds the
shortest vector. We do know the length of the shortest vector as this is special for the
NTRU lattice. However, the other algorithms also find vector lengths that are quite
short. If we examine these lengths closely, we can see that these are multiples of the
shortest vector that gauss has found. This is also a property that the NTRU lattice has,
that there will be vectors that are multiples of the shortest vector that are still shorter
than λ2(L) (see Section 2.2). This should not be very difficult to implement a check for
in G6K, as you can check the following. If the shortest vector found is v1b1+ . . .+vnbn
where all vi have a common factor f (which we do think happens for NTRULike), then
(v1/ f )b1 + . . .+(vn/ f )bn be f times shorter.

In Figure 4.2 we have not taken into consideration that the different algorithms find
different shortest vectors at first. We do this as gauss is both fastest and finds the
shorter vectors until the rest of the algorithms catch up. When we reach dimension
70 all of them are able to find the same shortest vector, and this is usually the case.
Gauss is also the fastest algorithm until dimension 70, so we say that gauss is the best
algorithm until dimension 70 is reached. When we look at dimension 70 we see that
the bdgl1 algorithm is the fastest now. However, as we increase the dimension again
to 80, we see that it is now bdgl2 that is the fastest. An observation that we can make
from Table 2 in the Appendix is how different the bdgl-algorithms behave even though
they should be the same (see Section 3.3.1). This contrasts with the q-ary lattice where
they were nearly identical to each other. So for the bdgl-algorithms, it seems that for
NTRULike it behaves more unexpectedly even though it should be the same.

For bgj1 we see that this algorithm starts to outperform gauss in dimensions higher
than 70. So an observation is that for the NTRULike lattice the crossing point between
gauss and the other algorithms seem to be in dimension 70. Which is different from
the q-ary lattice, where it was in dimension 60.

Knapsack

Now we are going to look at the knapsack lattice, where we use the parameter bits=70
for all the dimensions of the lattice. With a quick look at Table 3 in the Appendix,
we see that all of the algorithms are able to find the same shortest vector, meaning we
mostly need to look at how fast the algorithms are. Figure 4.3 shows the data plotted
from this table, where the x-axis represents the dimension, and the y-axis represents
time/best time. As with the other tables, the numbers are an average of the timings
from 10 runs, and the norms are taken from a knapsack lattice we used.

The first thing we need to comment on is that we get saturation errors for all of the
bdgl-algorithms in some of the runs in dimension 60. The error is raised when the sieve
cannot find short enough vectors according to some radius. However, why we get this
error is unknown, and on the G6K’s GitHub page, one of the creators Léo Ducas said
the following, when asked about this issue [6]:

Saturation issues remain mysterious to us as well, and occur in specific
scenario indeed. We have not found a satisfying solution to the issue.
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Figure 4.2: Results from the experiment on NTRULike Lattice from Table 2

So to find the average of the different bdgl versions, we have only taken the average
of those who did not get a saturation error. Hence also in Table 3 in the Appendix we
show a run without any saturation errors.

In similarity to the q-ary lattice, we see that gauss is the best algorithm up to dimen-
sion 60. When we reach dimension 70 it again changes, and now the bdgl-algorithms
are faster with bdgl2 being the fastest. Hence we see a pattern now where when the di-
mension grows the bdgl-algorithms become better. We also see that bgj1 compared to
gauss is a better option of an algorithm as the dimension increases from 60. The nv
algorithm also in similarity to gauss gets worse after dimension 60, and before this, it
is not really the best or worse.

An observation we can note is that the figures for both the q-ary and the knapsack
lattice are very similar. We see the same patterns for the algorithms, and the crossing
point is 60 for both.

Uniform Lattice

At last, we have a look at the uniform lattices. For the uniform lattice, we use the
parameter bits=20, and we keep this smaller than the other lattice types as the basis is
just an unstructured matrix consisting of randomly chosen integers. The norms of the
shortest vectors the different sieving algorithms find are all the same, hence we just look
at the best times. The results are given in Figure 4.4, where we again have dimension as
the x-axis and the y-axis as time divided by the best time of all the algorithms. The plot
is based on the data in Table 4 in the Appendix, which contains the average timings
for 10 runs of each algorithm in each dimension. The norms in the table are from a
uniform lattice used in the experiment.

Again the gauss algorithm is the fastest up to dimension 60, and then the bdgl-
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Figure 4.3: Results from the experiment on knapsack Lattice from Table 3

algorithms take the lead. The bdgl-algorithms behave a bit differently, where bdgl1 is
a little slower than bdgl2.

Taking a look at bgj1, we see it is slower than the bdgl’s, but faster than gauss
after dimension 60. Again nv is the worst algorithm after dimension 60, and before
this point, it is not the best either. This is the same behavior as seen in both q-ary and
knapsack lattices, and all of their plots follow the same patterns.

Summary

To summarize this experiment we have tested out different sieving algorithms on dif-
ferent types of lattices. We have looked at the different dimensions to see if we find if
a sieving algorithm works best in general or if there are any patterns.

To conclude, it seems that overall gauss is the best sieving algorithm for all of the
lattices, up until dimension 60. The authors of G6K had a similar conclusion, but their
crossing point was mentioned in [2, Sec. 5] to be at dimension 50 and not 60, which
we have found it to be. We also see that the NTRULike lattice behaves differently than
the other lattice types and the crossing point appears to be closer to 70 than 60.

After the crossing point, it is one of the bdgl-algorithms that work better. This ap-
plies to most of the lattice types. Also bgj1 gets ahead after this crossing point, but
is not a better option than one of the bdgl’s. Also, another comment for the bdgl-
algorithms is that bdgl1 is usually the worse choice, and bdgl2 normally performs
better. The only exception we saw for this is in the NTRULike lattice, where in dimen-
sion 70 it performed the best of the algorithms.

Another thing we also can remark from our experiments is that nv follows the same
pattern as gauss, but always takes longer time than gauss. If we look at the tables in
the Appendix, we see that nv uses the longest time after dimension 60 out of all the
algorithms. This behavior was expected as it is believed to be the least efficient among
the sieving algorithms. We have not seen a single lattice where it makes sense to sieve
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Figure 4.4: Results from the experiment on uniform Lattice from Table 4

with nv. So here we see that theory and practice agree.
In conclusion, gauss works well up until dimension 60 for all of the lattice types

we have tested on. After this crossing point is reached it is a version of bdgl that works
better in general. At most times we see that bdgl2 is the best choice between the bdgl’s.
As G6K has set the default bdgl to have blocks=2 (identical to bdgl2), it makes sense
with the results we have gotten that they have chosen this.

Comment on triple sieve (hk3)

The default algorithm set for the sieving in G6K is either gauss or hk3, depending on
which dimension you have (50 is set to be the cross-over point). However, when we
tried to sieve using a single sieve with hk3 we only got Saturation Errors. The only
exception was for lattices in dimension 40, while for all the others it did not work. We
sent an issue to G6K’s GitHub page and asked why it was not possible to use, but at
this time of writing, we have not received an answer for this [26]. Having also looked
through the code base it could seem to be some kind of rank loss bug, but we cannot
know for sure. Hence, we have not used the hk3 algorithm for this experiment.

4.2 Reversing PumpNJumpTour

An advanced sieving strategy in G6K is the PumpNJumpTour. The strategy uses the
Pump algorithm (3.9) on different blocks in the lattice, and we recall from Section 3.3.3
that PumpNJumpTour is following the sequence

PumpNJumpTourβ , f ′, j :Pump0,0,β− f ′,Pump0, j,β− f ′+ j, . . . ,Pump0, f ′,β , (4.1)

Pump j, f ′,β ,Pump2 j, f ′,β , . . .

BKZ can be seen as a special case of PumpNJumpTour where j = 1. In PumpNJumpTour
the block we are working on can move more than one step at each time, and we say
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that it can take a jump further in the lattice. The algorithm does this from left to right.
What if we tweak the algorithm to change the order we are doing things to see if this
could be a better approach?

In this experiment we are going to look at a simplified version of the strategy which
is presented in [2]. The simple version works as follows

SimplePumpNJumpTourβ , f , j : Pump0, f ,β ,Pump j, f ,β ,Pump2 j, f ,β , . . . (4.2)

The difference between PumpNJumpTour and SimplePumpNJumpTour is that
PumpNJumpTour has a phase at the beginning where it uses multiple Pumps on the first
block. It will iteratively go through the first block and extend the scope it used Pump
on until we reach the full blocksize. After this phase, it will start to use Pump only on
whole blocks. SimplePumpNJumpTour is not implemented in G6K, so we have slightly
adapted the code for the PumpNJumpTour method (pump_n_jump_bkz_tour()) in
G6K to go from 4.1 to 4.2.

For the experiment, we need to implement a reversed version of
SimplePumpNJumpTour, which we can use in the comparison. In the reversed version
of the simple algorithm, we reverse the order of the contexts that we execute Pump on.
The reversed version of SimplePumpNJumpTour can be specified as

ReversedPumpNJumpTourβ , f , j :Pumpn−β , f ,β ,Pumpn−β− j, f ,β , (4.3)

Pumpn−β−2 j, f ,β , . . . ,Pump0, f ,β

Now that we have reversed the order, we expect the algorithm to show a different
behavior than SimplePumpNJumpTour as the short vectors that we find will be put to
the left in the basis. This means we will reuse them as the context block moves to
the left in contrast to SimplePumpNJumpTour where newly found short vectors are not
used when the block moves to the right in the basis. One of the reasons this could
be interesting was that Albrecht et al., reported in an experiment ([2, sec. 4.1]) that
pumping in the left direction (right to left) performed better than in the opposite way.
We wonder if this could also apply to the PumpNjumpTour order.

In the following experiments, we will look at the same lattice types we looked at in
Section 4.1. We will then see how SimplePumpNJumpTour and
ReversedPumpNJumpTour compare on different lattice types and see how their behav-
ior differs from each other. We will report on the shortest norm the algorithms are able
to find, and also look at how well each of them performs on average.

REMARK: Both the simple and reversed versions of PumpNJumpTour use about
the same amount of time on each round. As there were no notable differences here, we
have not chosen to focus on the timings in this experiment. However, what we do need
to remember is that the bigger we set the jump parameter the shorter time a tour takes.

q-ary lattice

In the first part of the experiment, we look at the q-ary lattice. The lattice will be of
dimension 120 with bits=70 and k=60. First, we keep the parameter blocksize as
30, and the jump parameter is kept as the default jump= 1. We also set a seed to make
sure we are working on the same lattice for all the experiments.
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We will run a single tour of SimplePumpNJumpTour and ReversedPumpNJumpTour
to see how different results we get. After a single run of both algorithms on the same
lattice we got the following results

• Shortest vector norm after one round of SimplePumpNJumpTour:
42214994127042295611392

• Shortest vector norm after one round of ReversedPumpNJumpTour:
19981260646730723958784

We see that we get different results, and 1.998×1022 < 4.221×1022, which means
that the reversed version was able to find a shorter vector. This is interesting as it corre-
sponds to our hypothesis, but does this apply to multiple rounds of the pumpNJumpTour
algorithms?

We are going to run SimplePumpNJumpTour and ReversedPumpNJumpTour 10
times each to see how the behavior is affected. Will the reversed algorithm still do
better?

To get a better picture of the behavior we are going to look at the average be-
havior. Both SimplePumpNJumpTour and ReversedPumpNJumpTour will be run on
10 different q-ary lattices. All of the lattices use the same parameters, which are
dimension=120, k=60, bits=70. We will examine the algorithms for three dif-
ferent values of blocksize, which are 30,40, and 50, and we will also look at two
different jump values, 1 and 5. For each blocksize we will look at how the different
algorithms with different jump values compare to each other.

For the experiments, we have looked at the following for each blocksize. We
have lists A1, . . . ,A4 which each represent a different version of the algorithms. So for
instance A1 represents the SimplePumpNJumpTour with jump=1. These lists again con-
tain 10 lists s1, . . . ,s10 each, where each si is a different q-ary lattice. A list si contains
the shortest vector norm found in each round of the algorithm, so si will contain 10 val-
ues as we do 10 rounds. All of s1, . . . ,s10 contains the norms for the different lattices.
When we have done this for all of the 4 different versions of the algorithms, we start to
compare them.

First we look at how A1[s1] . . .A4[s1] compare to each other. By this, we mean first
find the smallest norm, and then update the values by dividing all of s1[ j] with the
smallest value min(Ai(s1[ j])). This is done for each Ai[si]. Now all of Ai contains lists
of how well they usually compare against the other algorithms.

The next step is to take the average of each Ai. To do this we look at the si’s, which
we recall each has 10 values. We take the average of s1[1], . . . ,s10[1], and get one value
that tells us how well this algorithm compares to the others in the first round of it. We
do this for all si[ j]. Now we have a list of ten values in total, which tells us how well
Ai compares to the other Ai’s. The same is then done for all of the Ai’s. Now we have
the average values for each of the algorithm versions, and these are then plotted in the
figures. In the figures, we have rounds as the x-axis and the y-axis represents how well
they compare against the other algorithms. As with the experiments in Section 4.1, the
value 1 is the best an algorithm can get.

The experiments are divided based on the blocksize, and we begin with
blocksize=30. The results are plotted in Figure 4.5.
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Figure 4.5: Results from the experiments on q-ary lattice with blocksize 30

From Figure 4.5 we see that in the first iteration, it is the ReversedPumpNJumpTour
that finds the shorter vectors, but as we move on this changes. After a few iterations, it
is the SimplePumpNJumpTour that finds the shorter ones. Now we do see an opposite
behavior than what we were expecting. With the algorithms using jump=5, we can
see for blocksize=30 they are worse than those who have jump=1. However, the
algorithms using jump=5 also use shorter time on each tour, meaning this method is
faster. So we have a trade-off between the timings of the tours and the shortest norm
they are able to find. However, at this point it seems like SimplePumpNJumpTour works
the best after a few rounds.

We will now explore the other blocksize values for our experiment, and see how
this affects the algorithms. Next up is blocksize of 40, and the results can be seen
in Figure 4.6. Again we observe that both instantiations of ReversedPumpNJumpTour
find shorter vector norms in the beginning, but they are overtaken by
SimplePumpNJumpTour after a few rounds.

At last we have blocksize = 50, where we find the results in Figure 4.7
This plot is very similar to what we already have seen. It begins with

ReversedPumpNJumpTour being the best in both versions and then this changes to
SimplePumpNJumpTour. In this case, it is very clear that SimplePumpNJumpTour with
jump=1 is the best algorithm after the first round. We also note that for this blocksize
there is also a clearer pattern for the different versions. For SimplePumpNJumpTour,
we see that with both jump=5 and jump=1 it follows the same pattern. The difference
is that when jump=5 the plot is shifted higher than jump=1. The same applies for
ReversedPumpNJumpTour.

To summarize the three plots we can see that the behavior is quite similar in the three
cases. ReversedPumpNJumpTour initially finds the shortest vector among the tested
algorithms, but is outperformed by SimplePumpNJumpTour over multiple rounds.
Another observation is that the crossing point between SimplePumpNJumpTour and
ReversedPumpNJumpTour with jump=1 comes faster the bigger we set the blocksize
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Figure 4.6: Results from the experiments on q-ary lattice with blocksize 40

Figure 4.7: Results from the experiments on q-ary lattice with blocksize 50
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as. The same applies for SimplePumpNJumpTour and ReversedPumpNJumpTour with
jump=5.

As we now have seen it seems to be the original order that finds the shorter vec-
tors after a while. However, after the first round the shorter vector is found by
ReversedPumpNJumpTour, and there is also a big difference in the norm. Hence it
could be interesting to see if beginning the tour with a reversed order has any impact
on if we are able to find shorter vectors faster.

For this experiment, we test with the different blocksizes and jump values as we
did before. As before, we keep running the algorithms for 10 rounds on 10 dif-
ferent q-ary lattices. We do one where we just iterate SimplePumpNJumpTour, and
one where we start with one iteration of ReversedPumpNJumpTour and then iterate
SimplePumpNJumpTour from there on, which we call AlternativePumpNJumpTour.

However, the results showed us that we did not get any better performance doing
this, and it did not benefit from working on a better basis, which
ReversedPumpNJumpTour provided.

NTRULike lattice

We look at the NTRULike lattice where we have bits as 70 and dimension as 60. We
note here that the whole lattice then will be of dimension 120, as it doubles the input in
the creation. A single run of ReversedPumpNJumpTour and SimplePumpNJumpTour
gives the following norms

• Shortest vector norm after one round of SimplePumpNJumpTour: 60

• Shortest vector norm after one round of ReversedPumpNJumpTour: 60

The results are the same for both of the versions, hence we do not really see any differ-
ence for the NTRULike lattice. Due to this, it is not really interesting to look closer at
this type of lattice.

Knapsack lattice

Next is the knapsack lattice where we keep the bits as 70 and dimension as 120. We
then got the following norms from a single run of the two different PumpNJumpTour
versions

• Shortest vector norm after one round of SimplePumpNJumpTour: 35

• Shortest vector norm after one round of ReversedPumpNJumpTour: 28

With the knapsack lattice, it is also the ReversedPumpNJumpTour that returns the
shorter lattice vector after one run. We see that the knapsack behaves quite similarly to
the q-ary lattice.

Now we are going to run 10 iterations of the algorithms on 10 different knapsack
lattices. We split the experiments based on blocksize, and we again look at the val-
ues 30,40, and 50. For each blocksize we will consider SimplePumpNJumpTour and
ReversedPumpNJumpTour with the parameter jump as 1 and 5. This means we will
compare 4 versions in total per blocksize. The plots are made from data collected in
the same way as described in the q-ary part of this experiment. The x-axis represents
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rounds, and the y-axis is the norm found by the algorithm divided by the shortest found
in that round, meaning how the different algorithms compare to each other.

First we look at blocksize=30, where we can see the results in Figure 4.8. The plot
shows us that ReversedPumpNJumpTour with jump=1, as expected in the first round
finds the shorter norm, but this time it also works the best for almost all of the rounds
(except round 2). This is a contrast to what we saw with the q-ary lattice above. The
result is more of what we expected would happen, but will this be true for the other
blocksizes?

Figure 4.8: Results from experiments with PumpNJumpTour on knapsack lattice using blocksize=30

We increase the blocksize to 40, and the results har shown in Figure 4.9. In
comparison to Figure 4.8, we see that this plot is very different. First, we note that
between ReversedPumpNJumpTour and SimplePumpNJumpTour with jump=1, it is
the reversed version that is the best. However, in this case SimplePumpNJumpTour
with jump=5 does a better job than both of them and in the end is able to find the
shorter vector on average. The gap between SimplePumpNJumpTour with jump=5 and
ReversedPumpNJumpTour with jump=1 is quite close, thus in this case it is difficult
to know exactly which of them works the best, as they are quite similar. However,
what we can note is that the running time of the algorithm is shorter when jump=5 than
jump=1.

When blocksize=50 we get the plot in Figure 4.10. We can again see that it
is SimplePumpNJumpTour with jump=5 and ReversedPumpNJumpTour with jump=1
that works the best for blocksize=50. If we look very closely at the plot we can
see that in the end it is ReversedPumpNJumpTour that usually finds the shorter vector.
However, as the plots are so similar in the end, it is difficult to say for sure that one is
better than the other. This is the same we saw for blocksize=40.
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Figure 4.9: Results from experiments with PumpNJumpTour on knapsack lattice using blocksize=40

Uniform lattices

At last, we have the uniform lattice where the bits are at 20, and of dimension 120.
For a uniform lattice, we found that both versions find the same shortest norm which
was

• Shortest vector norm after one round of SimplePumpNJumpTour:
14312666654444

• Shortest vector norm after one round of ReversedPumpNJumpTour:
14312666654444

We again run both SimplePumpNJumpTour and ReversedPumpNJumpTour 10
rounds to see how the algorithms then behave. This was done on 10 different uni-
form lattices with the blocksize as 30,40, and 50 with jump as 1 and 5. For these
most of the time, the algorithms were all able to find the same shortest vector and did
not improve much. Hence there is no algorithm that is distinct from the others, and it
is not that interesting to look at the uniform lattice any further. We will therefore not
do any more experiments with the uniform lattice.

Summary

In this experiment, we have taken a closer look at the order of sieving contexts in the
PumpNJumpTour strategy. We have looked at what happens if we go from right to left
instead of left to right, as this will reuse the inserted short vectors when doing Pump in
the next context. Our hypothesis was that this could be a more efficient way to obtain
shorter lattice vectors. To experiment we first did a single round of the tour on the q-ary
lattice. This seemed to support our initial hypothesis. We also tested this on the other
lattice types, and it also showed that the reversed order found a shorter or the same
length as the original order after a single round.



4.3 Changing the Pump Algorithm for the PumpNJumpTour 47

Figure 4.10: Results from experiments with PumpNJumpTour on knapsack lattice using blocksize=50

However, as we ran the different PumpNJumpTour versions multiple times we see
another behavior. We run both SimplePumpNJumpTour and ReversedPumpNJumpTour
for 10 rounds each. In this part of the experiment we mainly focused on knapsack and
q-ary lattices. We tested with different values of the parameters blocksize and jump.

For the q-ary lattice we see that SimplePumpNJumpTour is the better choice, and
the bigger blocksize we have, the quicker SimplePumpNJumpTour becomes the better
option. As for the jump parameter, we can see that it does not benefit to increase this
from 1, as it is always SimplePumpNJumpTour with jump=1 that is the best option
according to our plots (4.5, 4.6, 4.7).

On the other hand, we see different results for the knapsack lattice. The
ReversedPumpNJumpTour will usually be able to find the shorter vector of the different
versions with jump=1. However, in this case, we also see that SimplePumpNJumpTour
is benefitting from an increased jump value, and is also a good choice of algorithm
version for the knapsack lattice. When we have the blocksize=30, it is however clear
that ReversedPumpNJumpTour works the best.

So to conclude we see that the choice of strategy to use depends on which lattice
type we want to do lattice reduction on. Further, we can decide on the jump parameter
depending on what we set the blocksize as.

4.3 Changing the Pump Algorithm for the PumpNJumpTour

In the experiments above we have studied which sieving method works the best accord-
ing to lattice type and dimension. We have also experimented with one of the strategies
shown in [2], the PumpNJumpTour. For this experiment, we are using the results we
have obtained from the two previous ones. To do this we are going to do some changes
to the Pump algorithm, as this is used in PumpNJumpTour, and it is in Pump we set the
sieving method. To check which sieving method Pump is going to use it will first check
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if the block it is going to sieve is bigger or smaller than the crossing point value. The
crossing point is called the gauss_crossover in G6K, and it is set as 50. The sieving
algorithm used will then either be gauss or hk3 depending on the gauss_crossover,
or if it is an initial sieve. Pump will always use gauss as inital sieve. As mentioned in
Section 4.1, if we use hk3 as sieve first, we get a saturation error.

For this experiment, we will change the gauss_crossover to 60, rather than 50.
The reason for this was that we saw in the experiments in Section 4.1 that gauss was
the fastest algorithm until this dimension. What we do need to have in mind, is that we
have not tested with the hk3 algorithm, so this could potentially be faster before this
crossing point. The other change we will be doing is what sieving algorithm Pump will
use after the gauss_crossover, which will be bdgl2 instead of hk3.

Having changed Pump we are going to use it in the SimplePumpNJumpTour (Equa-
tion 4.2) and ReversedPumpNJumpTour (Equation 4.3). Now we are going to compare
how well the SimplePumpNJumpTour works with the modified Pump against the de-
fault Pump. The same is going to be done for ReversedPumpNJumpTour. We will then
compare these two versions of SimplePumpNJumpTour and ReversedPumpNJumpTour
against each other.

The experiment will focus on q-ary and knapsack lattices as these were the only two
types of lattices that gave different results between reverse and simple PumpNJumpTour
in the experiment in Section 4.2.

Knapsack lattice

We begin with the knapsack lattice as with this lattice we got better results using
the ReversedPumpNJumpTour in the past experiment. The knapsack lattice is now
set to have bits=70, and dimension=150. As mentioned in the last experiment the
PumpNJumpTour uses two parameters: blocksize and jump. The first thing we are
going to comment on is the blocksize, as the dimension of the block is what decides
on which sieving algorithm Pump is choosing. Therefore we have to look at a big-
ger blocksize than in the last experiment, so the sieving algorithm will do significant
sieving on both sides of the crossover point.

We focus on how the different strategy versions behave when we set blocksize=70
and set jump=1. First, we test it out with SimplePumpNJumpTour, and we will
report on how long time the strategy uses, and the length of the shortest vector
found after 10 rounds. Recall that the default values are gauss_crossover=50,
sieve_after_crossover=hk3, and the modified values are gauss_crossover=60,
sieve_after_crossover=bdgl2.

• SimplePumpNJumpTour with default values: Norm = 18, time = 486.9418 sec

• SimplePumpNJumpTour with modified values: Norm = 16, time = 319.0167 sec

What we can gather from this is that the SimplePumpNJumpTour using our modified
values takes less amount of time than what the default values do, and it is also able to
find a shorter vector than the default values. Let us see if it will be any different when
we use ReversedPumpNJumpTour.

• ReversedPumpNJumpTour with default values: Norm = 16, time = 486.1472 sec
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• ReversedPumpNJumpTour with modified values: Norm = 16, time = 339.2943
sec

ReversedPumpNJumpTour is able to find a shorter/ same norm as
SimplePumpNJumpTour, but we also see the same pattern in timings. So with
blocksize=70 it seems bdgl2 is faster than hk3.

Now we have only looked at one knapsack lattice, so to get a better understanding
of the common behavior of the different versions, we test on 10 different knapsack
lattices. We will then report on how well they perform against each other based on both
timings and norm length found. For the timings, it is simply to take the average time
each algorithm uses on the 10 different lattices, and then divide it by the shortest time
of the algorithms. The norms, on the other hand, are done the same way as described
in Section 4.2 for q-ary lattices. The results can be found in Table 4.1.

Algorithm (avg) time/best time (avg) norm/best norm
SimplePumpNJumpTour default values 1.51903 1.07046

SimplePumpNJumpTour modified values 1.0 1.06583
ReveresedPumpNJumpTour default values 1.50916 1.0776
ReversedPumpNJumpTour modified values 1.02747 1.06542

Table 4.1: Table showing how the different PumpNJumpTour versions compare to each other in knap-
sack lattices based on time and norm found in the last round. Data is based on Table 5 in the Appendix

In Table 5 in the Appendix, we see the data Table 4.1 is based on. What we can
gather from Table 4.1 is that it is the modified versions of the algorithms that are faster.
What we also can see is that for the last round of the tours, each algorithm is usually
able to find the same norm on average. The modified values on average do more often
also find the shorter vector, meaning that for the knapsack lattice, it seems the modified
versions are the better choice.

q-ary lattice

For the q-ary lattice we know that SimplePumpNJumpTour finds shorter vectors than
ReversedPumpNJumpTour from previous experiments. However, we do still want to
compare how hk3 and bdgl2 behave.

The q-ary lattice has dimension=150, bits=70 and k=75 as parameters. In the
following experiments we will for ReversedPumpNJumpTour and
SimplePumpNJumpTour use the parameters blocksize=70 while we keep jump=1.

At first we look at the difference between hk3 and bdgl2 using
SimplePumpNJumpTour, and we will report the norm found after 10 rounds and the
time these 10 rounds took.

• SimplePumpNJumpTour with default values: Norm = 1.3655× 1022, time =
988.8556 sec

• SimplePumpNJumpTour with modified values: Norm = 1.2538× 1022, time =
920.2901 sec

We see that SimplePumpNJumpTour using the modified values for gauss_crossover
and sieve_after_crossover, finds the shorter vector. It does also spend less time
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than the default version to find it. Will this also be the case for ReversedPumpNJumpTour?
We get the following results from ReversedPumpNJumpTour

• ReversedPumpNJumpTour with default values: Norm = 1.8498× 1022, time =
968.0108 sec

• ReversedPumpNJumpTour with modified values: Norm = 2.0493×1022, time =
952.5273 sec

This time we see the opposite behavior of what we saw with SimplePumpNJumpTour,
as with ReversedPumpNJumpTour it is hk3 that finds the shorter vector. The timings
are also not as different in this case compared to knapsack, but we see that our modified
values also for q-ary are faster.

However, we need to check if this is the common behavior of the four versions. We
do the same as we did with the knapsack lattice, run them on 10 different q-ary lattices,
and take the average on times and norms found compared to each other. The results are
reported in Table 4.2, where the data comes from Table 6 in the Appendix.

Algorithm (avg) time/best time (avg) norm/best norm
SimplePumpNJumpTour default values 1.06974 1.02526

SimplePumpNJumpTour modified values 1.0 1.47986
ReveresedPumpNJumpTour default values 1.04187 1.03187
ReversedPumpNJumpTour modified values 1.02841 1.56588

Table 4.2: Table showing how the different PumpNJumpTour versions compare to each other on q-ary
lattice based on time and norm found in the last round. Data is based on Tabel 6 in the Appendix.

From Table 4.2 we see that the time each algorithm uses is very similar on average.
However, when we look at the norms found it shows that hk3 usually finds the better
norm with either SimplePumpNJumpTour or ReversedPumpNJumpTour. Hence when
using PumpNJumpTour on a q-ary lattice it would be best to use what G6K already
provides: PumpNJumpTour with default values.

Summary

We have looked closer at PumpNJumpTour, and specifically the Pump algorithm it uti-
lizes. G6K has set default values for which sieving algorithm Pump uses, and when
to change the sieving algorithm. From an earlier experiment in Section 4.1, we con-
cluded with bdgl2 being the best sieving algorithm from dimension 60, and in this
experiment, we have compared this to the default values in G6K. We look at both
SimplePumpNJumpTour and ReversedPumpNJumpTour on q-ary and knapsack lat-
tices. The reason we have only looked at these two lattice types was that from the exper-
iment in Section 4.2 these were the types where simple and reversed PumpNJumpTour
give different results.

For the q-ary lattice, there was very little difference in the time it took for each
algorithm to finish. However, the norm found had a bigger variance, and we could see
that bdgl2 was not able to find as short norms as hk3 did. There is not much difference
between ReversedPumpNJumpTour or SimplePumpNJumpTour, but as we saw in 4.2,
the SimplePumpNJumpTour is ultimately the best strategy for q-ary.



4.3 Changing the Pump Algorithm for the PumpNJumpTour 51

On the knapsack lattice, the strategies behave more differently than for the q-
ary lattice. The norms they find in the end are approximately the same, but the
timings differ. We see that our modified values with gauss_crossover=60 and
sieve_after_crossover= bdgl2 are the faster of the strategies. As the norms do not
differ that much, it could be better for knapsack lattices to use PumpNJumpTour with
the modified values of gauss_crossover=60 and sieve_after_crossover=bdgl2.
The difference between ReversedPumpNJumpTour and SimpePumpNJumpTour are not
that notable for this experiment, hence one could use either.
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Chapter 5

Discussion and Conclusion

5.1 Discussion

One of the first things we had to do before starting the experiments was to download
and be able to use the G6K library. Getting G6K to work after downloading it turned
out to be rather difficult. As G6K requires that you have FPLLL/FPYLLL, which then
again requires other extensions, meaning a lot had to be installed. To download all
of these extra features was rather difficult starting from scratch on a normal laptop.
However, when we were using the server we were using to conduct the experiments
on, it worked without any trouble because the machine already had all of the required
libraries installed. So it was rather difficult and frustrating to get G6K to work on a
machine without any of the required libraries.

When we first had G6K up and running we were able to test out the library, which
was a nice experience. G6K provides examples of how to create lattices and do sieving
on them. They also have easy versions of the Pump algorithm and examples of how to
use it. This was helpful, as one got to play around with G6K without many of the extra
elements it requires for using the other algorithms they have implemented.

After getting the hang of how the library is built up, it was easy to set up experiments
so that we were able to do what we wanted to do. Adding algorithms, or editing those
that were in the library was easy, and changing the parameters as we did in the last
experiment in Chapter 4, was pleasant.

The documentation, on the other hand, could be improved. We struggled with un-
derstanding why the triple sieve (hk3) did not work to sieve straight away. It seemed
like this was a bug, but there was not any explanation as to why we could not do that.
Hence for this part, G6K could improve. Also as reported for the experiments we expe-
rienced "Saturation errors", and as stated the G6K team was not always sure as to why
they occurred sometimes. This was a frustrating error to get because we did not have
any idea as to why this was the case or how to fix the problem.

Even though G6K can be improved, it is an important tool for lattice reduction. In
Section 3.4 we saw that G6K is used to solve SVP for the biggest dimension (180) as of
now. The largest dimension a different algorithm has been able to solve SVP for is 152.
This indicates how strong the tool G6K can be for lattice reduction. G6K was quite
easy to use, meaning it should be doable for many people to utilize G6K’s potential.
Since it also is built in a way to incorporate your own strategies, it is well suited for
further experimentation.
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5.2 Future Work

In our experiments, we have worked with G6K and our observations indicate some
things that can be looked at further. As the G6K strategies contain many parameters
in their implementation, there are many more experiments that can be done by simply
changing these. However, we are going to look closer at some other work that could
have been done based on the results we have got.

First, for our experiments, our results are only based on 10 different lattices of each
lattice type. As we chose to focus on trying out as many different things as possible,
we did not have the time to test more. Hence for some of the more interesting results,
they could be redone for more lattices to see if this is indeed the expected results for the
strategy. By doing this we will get a more solid statistic, which supports or contradicts
the results we have obtained.

An observation we made in the first experiment was with NTRULike lattices and
that all the sieving algorithms (except for nv) were able to find short vectors. However,
some of these were just multiples of the shortest vector. In Section 4.1 we presented
a way to check this by controlling if there is a common factor in the coefficients that
produce the short vector that is found. Hence implementing this control check by the
G6K team could be done, making it easier to obtain a shortest vector instead of a
multiple of it.

Another observation we have made from the experiments is that for the lattice
type knapsack, we usually get better results using a reversed version of the strategy
PumpNJumpTour. For the q-ary lattice we did not get the same results as with knap-
sack, and it did not really benefit from using a reversed version. It can seem from the
results that which lattice reduction strategy we use can give different results depending
on which lattice type we have. We are not sure why this is the case, hence it could be
interesting to have a further look at this.

As mentioned in Section 4.2, we only did our experiments on a simple version of the
implemented PumpNJumpTour. It could be interesting to implement a reversed version
of the more advanced version of the algorithm as well and see if there is any improve-
ment. The same experiments can be done as described in Section 4.2, but substitute
SimplePumpNJumpTour with the more optimistic version of PumpNJumpTour and its
reversed version.

At last, we also saw in the experiments in Section 4.3 that using bdgl2 rather than
hk3 was faster on both knapsack and q-ary lattices when doing PumpNJumpTour. The
experiment can be expanded to also include uniform lattices and NTRULike lattices to
see if this is the case as well or if these behave differently.

There are multiple things that can be worked on further, and G6K has a lot of dif-
ferent parameters to play with. The suggestions from this section are based on our
experiences with G6K and what we regard as the most relevant.

5.3 Conclusion

Lattice-based cryptography has come to stay. NIST has in its competition selected new
standards for post-quantum secure cryptography, several of which are lattice-based.
This means that it is going to be more important than ever to understand the lattice
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problems. Lattice-based cryptography is often based on the hardness of solving SVP,
which today there are no known methods to solve efficiently, it is considered both NP-
hard and quantum-safe.

The biggest threat to SVP is lattice reduction. We have seen different strategies
and algorithms for lattice reduction, and today the current record for solving approxi-
mate SVP is dimension 180 according to Darmstadt’s challenge. We also see from this
challenge that the sieving approach using G6K is the best approach as of now. NIST
has as mentioned in Section 1.4 now chosen CRYSTALS-KYBER (Kyber) to be a new
quantum-safe standard. For Kyber there are three different security levels 1, 3, and 5.
To find a private key in Kyber it is estimated that we need to solve SVP for lattices in di-
mension 375 (level 1), dimension 586 (level 2), or dimension 829 (level 5). As of now,
we still have a long way to go until we are able to solve SVP for such high dimensions.

However, it is important that we continue the research on lattice reduction methods
to make sure that our standardization is safe. As we have seen in this thesis there are
sieving strategies that can be further improved depending on which lattice structure we
are working with. However, there is still more to discover about lattices and lattice
reduction.
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Appendix

Tables from experiments in Section 4.1

The tables contain results from the experiments performed in Section 4.1. Each table
shows which values we gathered for each lattice type. The data in the tables consist
of the columns: dimension used, the time it took to sieve in seconds, The norm of
the shortest vector found, which sieving algorithm was used, and how well it performs
compared to the other algorithms based on time (time/best time).

Comment for the norm column: as the timings are averages of 10 different run-
nings on 10 different lattices, the norms are just from the first lattice used. As it makes
no sense to take the average norm as we are looking at different lattices, hence this
decision.

In the tables we also see values for all the different bdgl-algorithms, even though we
are only looking at bdgl1 and bdgl2 in the experiments. We have them just to check
that they behave the way they are supposed to. The bdgl’s that are not used in the plots
are marked with a "*[X]", where X is the blocks it should represent for the current
dimension.
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Dimension Time in sec Norm∗ Algorithm Time / Best time
40 0.135887 1305212710240913542656 nv 1.70208
40 0.120323 1305212710240913542656 bgj1 1.50713
40 0.079836 1305212710240913542656 gauss 1.0
40 0.204543 1305212710240913542656 bdgl*[1] 2.56204
40 0.207446 1305212710240913542656 bdgl1 2.5984
40 0.207079 1305212710240913542656 bdgl2*[1] 2.5938
40 0.205544 1305212710240913542656 bdgl3*[1] 2.57458
50 1.710862 1703685500853410666240 nv 1.76106
50 1.41706 1703685500853410666240 bgj1 1.45864
50 0.971497 1703685500853410666240 gauss 1.0
50 2.000753 1703685500853410666240 bdgl*[1] 2.05945
50 1.998967 1703685500853410666240 bdgl1 2.05762
50 2.022229 1703685500853410666240 bdgl2*[1] 2.08156
50 2.024907 1703685500853410666240 bdgl3*[1] 2.08432
60 31.918268 1828904046391914733952 nv 1.63138
60 21.173534 1828904046391914733952 bgj1 1.08221
60 19.565151 1828904046391914733952 gauss 1.0
60 19.949617 1828904046391914733952 bdgl*[2] 1.01965
60 23.176816 1828904046391914733952 bdgl1 1.1846
60 20.026027 1828904046391914733952 bdgl2 1.02356
60 20.186024 1828904046391914733952 bdgl3*[2] 1.03173
70 646.171706 2277394420634882318336 nv 3.10605
70 302.909659 2277394420634882318336 bgj1 1.45604
70 429.202474 2277394420634882318336 gauss 2.06311
70 208.036503 2277394420634882318336 bdgl*[2] 1.0
70 281.892827 2277394420634882318336 bdgl1 1.35502
70 208.686594 2277394420634882318336 bdgl2 1.00312
70 208.739093 2277394420634882318336 bdgl3*[2] 1.00338
80 16371.704859 2548073717437254073088 nv 6.90728
80 4768.727656 2548073717437254073088 bgj1 2.01194
80 14649.176769 2548073717437254073088 gauss 6.18054
80 2398.577419 2548073717437254073088 bdgl*[2] 1.01197
80 3827.53684 2548073717437254073088 bdgl1 1.61485
80 2370.208476 2548073717437254073088 bdgl2 1.0
80 2371.3622 2548073717437254073088 bdgl3*[2] 1.00049

Table 1: q-ary lattice results, * represents that this algorithm is not in the Figure, while [X] tells us
what the blocks parameter in bdgl value is.
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Dimension Time in sec Norm Algorithm Time / Best time
40 0.003335 38709266093397243744256 nv x
40 0.112188 323208000 bgj1 1.37799
40 0.081414 20 gauss 1.0
40 0.185298 112500 bdgl*[1] 2.276
40 0.185121 1280180 bdgl1 2.27382
40 0.186773 119658320 bdgl2*[1] 2.29412
40 0.184663 100820 bdgl3*[1] 2.2682
50 0.017719 43358728633507495776256 nv x
50 1.32439 2656900 bgj1 1.8567
50 0.713302 25 gauss 1.0
50 1.819009 2025 bdgl*[1] 2.55012
50 1.859778 6400 bdgl1 2.60728
50 1.824911 9025 bdgl2*[1] 2.5584
50 1.803038 12100 bdgl3*[1] 2.52773
60 0.088429 40900873858977346433024 nv x
60 18.164793 270 bgj1 1.59298
60 11.402991 30 gauss 1.0
60 18.016136 30 bdgl*[2] 1.57995
60 20.045811 30 bdgl1 1.75794
60 18.42987 30 bdgl2 1.61623
60 18.413868 30 bdgl3*[2] 1.61483
70 0.473175 32556079570709546491904 nv x
70 263.717643 35 bgj1 1.08524
70 246.205991 35 gauss 1.01318
70 275.025263 35 bdgl*[2] 1.13177
70 243.003946 35 bdgl1 1.0
70 272.339978 35 bdgl2 1.12072
70 369.153409 35 bdgl3*[2] 1.51913
80 2.563437 57429056118738805788672 nv x
80 3799.039622 40 bgj1 1.33525
80 7333.943162 40 gauss 2.57766
80 3422.294221 40 bdgl*[2] 1.20284
80 3148.562514 40 bdgl1 1.10663
80 2845.189109 40 bdgl2 1.0
80 2976.25058 40 bdgl3*[2] 1.04606

Table 2: NTRULike lattice results, * represents that this algorithm is not in the Figure, while [X] tells
us what the blocks parameter in bdgl value is.
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Dimension Time in sec Norm Algorithm Time / Best time
40 0.126994 30 nv 1.65092
40 0.123092 30 bgj1 1.6002
40 0.076923 30 gauss 1.0
40 0.206216 30 bdgl*[1] 2.68081
40 0.20912 30 bdgl1 2.71856
40 0.208083 30 bdgl2*[1] 2.70508
40 0.206996 30 bdgl3*[1] 2.69095
50 1.696395 25 nv 1.74982
50 1.49367 25 bgj1 1.54071
50 0.969469 25 gauss 1.0
50 2.041456 25 bdgl*[1] 2.10575
50 2.060941 25 bdgl1 2.12585
50 2.068436 25 bdgl2*[1] 2.13358
50 2.068436 25 bdgl3*[1] 2.13358
60 32.477311 21 nv 1.6696
60 22.863862 21 bgj1 1.17539
60 19.452196 21 gauss 1.0
60 20.71266 21 bdgl*[2] 1.0648
60 23.822738 21 bdgl1 1.22468
60 20.380401 21 bdgl2 1.04772
60 20.524032 21 bdgl3*[2] 1.0551
70 619.367999 18 nv 2.93865
70 304.196811 18 bgj1 1.44329
70 399.234018 18 gauss 1.89421
70 210.765891 18 bdgl*[2] 1.0
70 283.760023 18 bdgl1 1.34633
70 211.284208 18 bdgl2 1.00246
70 210.766525 18 bdgl3*[2] 1.0
80 14939.570141 16 nv 6.63313
80 4357.922003 16 bgj1 1.93491
80 12164.853384 16 gauss 5.40116
80 2270.150535 16 bdgl*[2] 1.00794
80 3622.917927 16 bdgl1 1.60857
80 2252.265945 16 bdgl2 1.0
80 2259.903428 16 bdgl3*[2] 1.00339

Table 3: Knapsack lattice results, * represents that this algorithm is not in the Figure, while [X] tells us
what the blocks parameter in bdgl value is.
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Dimension Time in sec Norm Algorithm Time / Best time
40 0.132172 3517333461444 nv 1.70897
40 0.121733 3517333461444 bgj1 1.574
40 0.07734 3517333461444 gauss 1.0
40 0.207219 3517333461444 bdgl*[1] 2.67933
40 0.206285 3517333461444 bdgl1 2.66725
40 0.205643 3550463705195 bdgl2*[1] 2.65895
40 0.205843 3517333461444 bdgl3*[1] 2.66153
50 1.701509 5130513218068 nv 1.71199
50 1.404872 5130513218068 bgj1 1.41353
50 0.993875 5130513218068 gauss 1.0
50 2.062319 5130513218068 bdgl*[1] 2.07503
50 2.064121 5130513218068 bdgl1 2.07684
50 2.063109 5130513218068 bdgl2*[1] 2.07582
50 2.078737 5130513218068 bdgl3*[1] 2.09155
60 32.157044 5783564359637 nv 1.61498
60 21.712963 5783564359637 bgj1 1.09046
60 19.911691 5783564359637 gauss 1.0
60 20.625894 5783564359637 bdgl*[2] 1.03587
60 24.142661 5783564359637 bdgl1 1.21249
60 20.870412 5783564359637 bdgl2 1.04815
60 20.783174 5783564359637 bdgl3*[2] 1.04377
70 652.230525 6394343272663 nv 3.04018
70 303.077991 6394343272663 bgj1 1.41271
70 431.111389 6394343272663 gauss 2.0095
70 214.537143 6394343272663 bdgl*[2] 1.0
70 290.718633 6394343272663 bdgl1 1.3551
70 215.166757 6394343272663 bdgl2 1.00293
70 215.014877 6394343272663 bdgl3*[2] 1.00223
80 16696.506639 8650650517322 nv 6.74841
80 4939.995864 8650650517322 bgj1 1.99665
80 13981.003844 8650650517322 gauss 5.65085
80 2474.140249 8650650517322 bdgl*[2] 1.0
80 3991.259828 8650650517322 bdgl1 1.61319
80 2483.227435 8650650517322 bdgl2 1.00367
80 2480.537546 8650650517322 bdgl3*[2] 1.00259

Table 4: Uniform lattice results, * represents that this algorithm is not in the Figure, while [X] tells us
what the blocks parameter in bdgl value is.

Tables from experiments in Section 4.3

In this section, we find the data gathered for the tables used in Section 4.3. The table
contains which algorithm we use, the norms found, time used in seconds, and which
lattice this data is from. For the q-ary latticed in Table 6 we are not looking at all the
norms but the last vector norm found as the numbers are so big it became very messy
to show them all.
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Algorithm Norms Time Seed
SimplePumpNJumpTour - default [18, 18, 18, 18, 18, 18, 18, 18, 18, 18] 486.9418 0x1337

[20, 19, 19, 17, 17, 17, 17, 17, 17, 17] 495.8485 0x1228
[19, 19, 16, 16, 16, 16, 16, 16, 16, 16] 485.9951 0x1234
[17, 17, 17, 17, 17, 17, 17, 17, 17, 17] 496.479 0x5678
[19, 19, 19, 19, 19, 19, 19, 17, 17, 17] 499.9388 0x9534
[18, 18, 18, 18, 18, 18, 18, 18, 18, 18] 497.0467 0x3564
[19, 19, 19, 19, 18, 18, 18, 18, 18, 18] 487.5777 0x1278
[21, 19, 19, 19, 19, 19, 15, 15, 15, 15] 496.9351 0xabcd
[18, 18, 18, 18, 18, 18, 18, 18, 18, 18] 492.6572 0xef22
[23, 20, 20, 19, 19, 19, 15, 15, 15, 15] 499.4689 0x4444

SimplePumpNJumpTour - modified [21, 18, 18, 18, 16, 16, 16, 16, 16, 16] 319.0167 0x1337
[18, 18, 17, 17, 17, 17, 17, 17, 17, 17] 322.0889 0x1228
[20, 18, 18, 18, 17, 17, 17, 16, 16, 16] 330.5361 0x1234
[18, 18, 18, 18, 18, 18, 18, 18, 18, 18] 324.257 0x5678
[18, 18, 18, 18, 18, 18, 17, 17, 17, 17] 330.2325 0x9534
[18, 15, 15, 15, 15, 15, 15, 15, 15, 15] 325.262 0x3564
[21, 19, 19, 17, 17, 17, 17, 17, 17, 17] 319.2819 0x1278
[18, 18, 18, 18, 18, 18, 18, 18, 18, 18] 331.234 0xabcd
[20, 18, 18, 18, 18, 18, 18, 18, 18, 18] 327.0199 0xef22
[20, 20, 19, 19, 19, 19, 19, 19, 19, 18] 322.4128 0x4444

ReversedPumpNJumpTour - default [18, 18, 18, 16, 16, 16, 16, 16, 16, 16] 486.1472 0x1337
[21, 19, 18, 18, 18, 16, 16, 16, 16, 16] 491.9993 0x1228
[19, 19, 19, 19, 18, 18, 18, 18, 18, 18] 482.4157 0x1234
[20, 19, 17, 17, 17, 17, 17, 17, 17, 17] 495.0013 0x5678
[19, 18, 18, 18, 17, 17, 17, 17, 17, 17] 492.2047 0x9534
[17, 17, 17, 17, 17, 17, 17, 17, 17, 17] 490.4515 0x3564
[18, 18, 16, 16, 16, 16, 16, 16, 16, 16] 487.0034 0x1278
[19, 18, 18, 18, 18, 18, 18, 18, 18, 18] 492.4457 0xabcd
[17, 17, 17, 17, 17, 17, 17, 17, 17, 17] 495.8065 0xef22
[19, 19, 18, 16, 16, 16, 16, 16, 16, 16] 493.3296 0x4444

ReversedPumpNJumpTour - modified [18, 18, 18, 18, 18, 18, 18, 16, 16, 16] 339.2943 0x1337
[19, 18, 18, 18, 17, 17, 17, 17, 17, 16] 335.841 0x1228
[19, 19, 19, 18, 18, 18, 18, 18, 18, 18] 331.617 0x1234
[20, 17, 17, 17, 17, 17, 17, 17, 17, 17] 332.56 0x5678
[19, 19, 19, 15, 15, 15, 15, 15, 15, 15] 328.2032 0x9534
[18, 17, 17, 17, 17, 17, 17, 17, 17, 17] 338.4838 0x3564
[19, 19, 19, 19, 19, 19, 17, 17, 17, 17] 334.4255 0x1278
[20, 20, 20, 19, 19, 18, 17, 17, 17, 17] 336.0598 0xabcd
[17, 17, 17, 17, 17, 17, 17, 17, 17, 17] 337.041 0xef22
[19, 18, 18, 18, 18, 18, 18, 18, 18, 18] 327.1178 0x4444

Table 5: Data from knapsack experiment on PumpNJumpTour with tweaked Pump. Blocksize=70,
jump=1
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Algorithm Best Norm Time Seed
SimplePumpNJumpTour - default 13655094479723986248704 988.8556 0x1337

23413116640586056425472 984.3853 0x1228
28497850362935412813824 984.6697 0x1234
20191802170637059235840 992.2837 0x5678
1762382690775110354048 986.1828 0x9534
21945378440289460414464 988.1728 0x3564
5293884471580134394368 997.8186 0x1278
2797323984533100586752 987.5037 0xabcd
2593666870851111853056 981.7224 0xef22
22990580541134193518592 991.0914 0x4444

SimplePumpNJumpTour - modified 12538353199977033611264 920.2901 0x1337
23961253393596297871360 924.2941 0x1228
31510163260253967740928 921.6578 0x1234
21278828717220612429824 920.015 0x5678
1881462440033416643968 926.906 0x9534
21385969068148730458112 920.6825 0x3564
5464396169943912053248 923.8766 0x1278
2569007559439324906752 926.8994 0xabcd
2686955287806472258816 926.7544 0xef22
21927429444992930564096 927.0614 0x4444

ReversedPumpNJumpTour - default 18498465397367546359808 968.0108 0x1337
38877923156327789166592 961.749 0x1228
44036214027853265133568 957.6766 0x1234
31904141503088612784128 964.4213 0x5678
2672531588111411647232 959.3421 0x9534
28052617011961920509952 953.6359 0x3564
6435448519767777082368 957.2856 0x1278
3912991887284951251968 966.3937 0xabcd
3441602921643626237952 970.3276 0xef22
36039631388255109496832 966.3925 0x4444

ReversedPumpNJumpTour - modified 20493500782456373278720 952.5273 0x1337
31419905992969788413952 945.4036 0x1228
46151856793271043928064 952.3993 0x1234
31913238063305925199872 948.4451 0x5678
3022879437899461450496 946.7952 0x9534
30017839825830861864960 945.6137 0x3564
7718746423535312714752 951.1008 0x1278
4040830631419387191808 949.7025 0xabcd
4100424490332026724352 955.5973, 0xef22
38409153346551253598208 953.3168 0x4444

Table 6: Data from q-ary experiment on PumpNJumpTour with tweaked Pump. Blocksize=70, jump=1


	Acknowledgements
	Abstract
	Introduction
	Cryptography Through History
	Modern Cryptography
	Post-Quantum Cryptography
	Quantum Computers

	Standardization of Quantum-Safe Algorithms
	Task Description

	Background
	Notation
	Lattice Theory
	Gram-Schmidt Orthogonalization

	Shortest Vector Problem
	Other Lattice Problems


	Lattice Reduction
	Lattice Reduction Algorithms
	The LLL Algorithm
	The BKZ Algorithm

	Lattice Sieving
	General Sieve Kernel
	Sieving Algorithms in G6K
	Lattice Types in G6K
	Lattice Reduction Strategies in G6K

	Darmstadt's SVP Challenges

	Experiments and Results
	Lattice Type vs Sieving Algorithm
	Reversing PumpNJumpTour
	Changing the Pump Algorithm for the PumpNJumpTour

	Discussion and Conclusion
	Discussion
	Future Work
	Conclusion

	Appendix

