
Semantic Word Error Rate: A Metric
Based on Semantic Distance

Espen Stokke

Samia Touileb, MediaFutures
Lubos Steskal, TV2

Department of Information Science and Media Studies

University of Bergen

May 31, 2023

2

Scientific environment

This study is carried out at the Department of Information Science and Media Studies,
University of Bergen. Supervision is conducted as a collaboration between MediaFu-
tures Research Centre for Responsible Media Technology & Innovation and TV2, with
supervisors from both affiliations.

ii Scientific environment

Acknowledgements

I would like to express my sincerest gratitude to my supervisors, Samia Touileb and
Lubos Steskal, for their guidance, mentorship, and detailed feedback throughout the
course of this thesis.

I would also like to thank my parents, Karen and Kristian, for their constant support
during my time studying.

I am also thankful to Katrine, who helped me in staying focused and hydrated
through the final weeks.

Espen James Rodriguez Stokke
Bergen, Norway, 31.05.2023

iv Acknowledgements

Abstract

As the Norwegian broadcasting company TV2 wishes to develop new tools for evalu-
ating automatically generated transcripts, we explore the development and evaluation
of a new metric for evaluation based on the semantic distance between transcripts. The
is achieved through utilizing pre-trained Norwegian BERT models to represent words
as word embeddings, and computing the cosine distance between them. The metric is
evaluated on the Norwegian Parliamentary Speech Corpus, which provides audio files
along with their professionally written transcripts. The audio files are run through a
speech to text service, producing automatically generated transcripts that will be eval-
uated by the metric up against the professional transcripts. In addition, the metric is
evaluated by comparing it to human judgement of semantic distance, which is cap-
tured by gathering data through an online survey. The results indicate that our metric
manages to capture the human opinion of semantic distance to some degree, and can
function as a useful metric for evaluating transcripts. The results also show that choice
of BERT model can significantly effect the performance of the metric.

vi Abstract

Contents

Scientific environment i

Acknowledgements iii

Abstract v

1 Introduction 1
1.1 Problem Statement . 1

1.2 Objectives . 2

1.3 Contribution . 2

1.4 Research Questions . 2

1.5 Thesis outline . 3

2 Background 5
2.1 Natural Language Processing . 5

2.1.1 Regular Expressions . 6

2.1.2 Stop Words . 6

2.1.3 Language Models . 7

2.1.4 Word Embeddings . 8

2.1.5 Transformer Networks . 10

2.1.6 BERT . 11

2.2 Automatic Speech Recognition . 14

2.2.1 End-to-End Speech Recognition 14

2.3 Correction of ASR . 15

2.4 Metrics . 16

2.4.1 WER . 16

2.4.2 Cosine Distance . 17

2.5 Semantic WER . 18

viii CONTENTS

3 Data 21
3.1 Norwegian Parliamentary Speech Corpus 21

3.2 Automatically Generated Transcripts 25

4 Methods 27
4.1 Data Processing . 27

4.2 Implementation . 29

4.2.1 Additional Models . 33

4.3 Parameters . 34

4.3.1 Case Sensitivity . 35

4.3.2 Stop Words . 35

4.3.3 Punctuation . 37

4.3.4 Applying an Activation Function 38

4.4 Severity analysis . 39

5 Evaluation 41
5.1 Semantic Word Error Rate Scores . 41

5.1.1 Parameters . 42

5.1.2 Combined parameters . 43

5.2 Grouping by Severity . 43

5.3 Qualitative Sentence Comparison . 44

5.3.1 Comparing Random Sentences 45

5.3.2 Artificially Produced Sentences 46

5.4 Detecting the Most Severe Words . 46

5.5 Correlation . 47

5.5.1 Word Error Rate Correlation 47

5.5.2 Human Word Error Rate . 48

6 Results 53
6.1 Model Performance . 53

6.1.1 Effect of Parameters . 54

6.2 Correlation . 59

6.2.1 Word Error Rate . 60

6.2.2 Human Word Error Rate . 61

6.3 Sentence Analysis . 63

6.3.1 Word Severity . 63

6.3.2 Sentence Comparison . 68

6.4 Summary . 71

CONTENTS ix

7 Discussion and Conclusion 73
7.1 Discussion . 73

7.1.1 Difference in Model Performance 73
7.1.2 Parameters . 74
7.1.3 Weaknesses . 74
7.1.4 Limitations . 76

7.2 Conclusion . 77
7.3 Future Work . 78

A Appendix 79
A.1 NPSC Train-Test-Evaluation split . 79
A.2 HWER . 79

x CONTENTS

List of Figures

4.1 A diagram of the data pre-processing pipeline. 30
4.2 An example of input and output of right-pad function, showing how

sentences are equalized in length . 31
4.3 A flow chart illustrating the logic of the Semantic Word Error Rate

function . 32
4.4 An example of how sentences are transformed when case insensitivity

is toggled. 35
4.5 An example of two sentences after removal of stop words. 36
4.6 An example of how sentences are transformed punctuation is removed. . 37
4.7 An example of how the cosine distances between two sentences can be

transformed with an activation function. For this example, binary step
is used. 38

5.1 Screenshot of the Human Word Error Rate survey 49

xii LIST OF FIGURES

Chapter 1

Introduction

The proliferation of automatic speech recognition (ASR) systems in recent years has
contributed significantly to improving access to various forms of content for individuals
around the world. Broadcast media, in particular, have embraced these technologies as
means to create a more inclusive environment, notably for the deaf and hard-of-hearing
community, by automatically creating accurate subtitles for live broadcasts. One such
example is the Norwegian broadcasting company TV2, which is keen on enhancing the
accessibility and quality of their content.

The utilization of ASR systems in broadcasting presents unique challenges that are
different from more controlled use-cases like personal assistant devices. In broadcast-
ing, these systems must accurately transcribe a wide array of speech, often with com-
plex topics, multiple speakers, diverse accents, and background noise. Subtitles that
reflect these complexities accurately are not just a matter of convenience but essential
for inclusive communication.

As a major broadcasting network, TV2 acknowledges the necessity of integrating
ASR systems into their workflow. The utilization of automatically generated transcripts
has the potential to significantly enhance the accessibility of their content, particularly
for live broadcasts, by enabling the instantaneous creation of subtitles. However, the
implementation of such systems demands a system in place for monitoring the level of
quality of the generated transcripts, in order to ensure that these transcripts accurately
represent and reflect their content.

1.1 Problem Statement

To ensure that the transcripts provided by their speech to text systems are of acceptable
quality, TV2 wishes to further develop tools to monitor the performance of automati-
cally generated transcripts. This is where the current thesis aims to contribute by creat-
ing a metric that measures the quality of a generated ASR output. The metric we wish

2 Introduction

to develop measures the semantic distance between transcripts and their gold standard.
Traditional metrics for evaluating transcripts, such as Word Error Rate (WER), are

based on measuring the syntactic similarity between transcripts. However, such metrics
often fail to capture the semantic congruity. Transcripts might be syntactically different
but semantically identical, yet be penalized by traditional metrics.

For example, the sentences “It was a good day” and “Today was a great evening”
convey a very similar meaning, but a metric based on syntactic evaluation would pe-
nalize the sentences for not being a verbatim match. This highlights the need for an
alternate metric to aid in providing a fuller understanding of the quality of transcripts
produced from ASR systems.

1.2 Objectives

The main objective of this thesis is to explore the feasibility of developing a metric
that penalizes transcripts for their semantic distance, rather than penalizing syntactical
distance. This will be conducted by utilized state of the art pre-trained Norwegian
language models. Large-scale transformer models are pre-trained on huge amounts
of data and achieve state-of-the-art performance in a wide range of natural language
processing tasks. Further, the objective is to measure the metrics ability to successfully
capture semantic distance between transcripts.

1.3 Contribution

Due to the small amount of Norwegian speakers, the state of the field of natural lan-
guage processing is naturally not as advanced for the Norwegian language as for other
larger languages like English. Metrics for semantic distance currently exist for the En-
glish language, and this thesis aims to provide a first analysis of how such metrics can
be applied to the Norwegian language by developing a similar metric that uses BERT
models pre-trained on Norwegian data.

Additionally, in an attempt to capture the human judgement of semantic distance,
we create a survey collecting feedback from people on how distant they perceive sen-
tences to be semantically, providing us with data that depicts human evaluation on a
small set of the sentences.

1.4 Research Questions

This thesis aims to explore and answer the following research questions:

1.5 Thesis outline 3

• RQ1: How does semantic-WER compare to other existing metrics for evaluating
transcripts?

• RQ2: How can semantic-WER be evaluated and validated against human judg-
ments of semantic similarity or relatedness?

• RQ3: How does the performance of semantic-WER compare when using differ-
ent models for semantic representation?

1.5 Thesis outline

The work of this thesis will be presented in the following chapters:

Chapter 2: Background – provides a brief overview of relevant concepts and tech-
nology in the field of natural language processing, ASR, as well as related work within
measuring semantics.

Chapter 3: Data – describes the dataset the metric will be tested on.

Chapter 4: Methods – presents the steps included in processing the data and imple-
menting the metric.

Chapter 5: Evaluation – explains the approaches involved for evaluating the perfor-
mance of the metric.

Chapter 6: Results – presents the results produced by the evaluation process.

Chapter 7: Discussion and Conclusion – discusses the implications of the results as
well as the strengths, weaknesses, and limitations of the metric. Finally, we conclude
and discuss possible future works.

4 Introduction

Chapter 2

Background

2.1 Natural Language Processing

Natural Language Processing (NLP) is a subfield of Artificial Intelligence (AI) that
focuses on enabling computers to understand, interpret, and generate human language.
NLP combines techniques from computer science, linguistics, and statistics to process
and analyze large volumes of natural language data.

The ultimate goal of NLP is to enable computers to understand natural language in
the same way that humans do, so that they can interact with humans in a more intuitive
and natural way. This involves teaching computers to recognize patterns and structures
in language, such as grammar, syntax, and semantics. NLP is used in a wide range
of applications, including machine translation, sentiment analysis, text classification,
question answering, and speech recognition.

One of the main challenges in NLP is the complexity of human language. Language
is highly contextual, meaning that the same word or phrase can have different mean-
ings depending on the context in which it is used. Language is also ambiguous, with
multiple interpretations and nuances that can be difficult for computers to understand.
In addition, language is constantly evolving, with new words and expressions emerging
all the time.

Despite these challenges, NLP has made significant progress in recent years, thanks
to advances in machine learning and deep learning techniques. Today, NLP is used
in a wide range of industries, including healthcare, finance, and e-commerce, to au-
tomate and streamline tasks that would otherwise require human intervention. As the
volume of natural language data continues to grow, NLP is poised to become even more
important in the years ahead.

6 Background

2.1.1 Regular Expressions
Regular expressions, also known as regex, are a powerful tool used to describe patterns
in text. They are a sequence of characters that define a search pattern, which can be used
to match and manipulate text. Regular expressions are commonly used in programming
languages, text editors, and command-line tools for tasks such as search and replace,
data validation, and text parsing.

A regular expression is made up of literal characters, metacharacters, and quanti-
fiers. Literal characters represent themselves and match exact characters in the text.
Metacharacters, on the other hand, have a special meaning and can match more than
one character or a certain type of character. For example, the "." (dot) metacharacter
matches any single character, while the "". metacharacter matches any digit. Quanti-
fiers specify how many times a character or a pattern should be matched, such as the
"*" quantifier which means "zero or more times".

Regular expressions provide a flexible and efficient way to search and manipulate
text. They can be used to find and extract specific information from a text document,
such as email addresses or phone numbers. They can also be used to validate user input
on a web form, ensuring that the data entered by the user follows a certain pattern or
format. With regular expressions, complex text processing tasks can be accomplished
quickly and easily, making them a valuable tool for anyone working with text data.

2.1.2 Stop Words
Stop words, also known as noise words or function words, are common words in a lan-
guage that hold little semantic value and are often used for structural or grammatical
purposes Manning et al. (2008). Examples of stop words in English include "a", "an",
"the", "and", "in", "is", "of", "for", and "with" among others. These words are consid-
ered "stop" words because they can often be filtered or "stopped" from text processing
algorithms without significantly impacting the analysis or interpretation of the text.

In certain text processing tasks, such as keyword extraction, text classification, and
document clustering, stop words can be considered as "noise" that might hinder the
performance of the algorithms Rajaraman et al. (2014). Since stop words are common
and occur frequently in text, they can negatively impact the efficiency and accuracy of
these tasks. By removing stop words, the algorithms can focus on the more meaningful
and content-rich words that contribute to the overall semantic meaning of the text. This
filtering process can improve the performance and accuracy of NLP models, as well as
reduce computational complexity and storage requirements.

Various techniques and resources exist to identify and remove stop words from a

2.1 Natural Language Processing 7

given text. These include pre-defined stop word lists, which are available for many
languages and can be easily integrated into text processing pipelines Manning et al.
(2008). Additionally, more advanced approaches, such as using statistical measures
like term frequency-inverse document frequency (TF-IDF), can help to determine the
importance of a word in a document or a collection of documents and assist in filtering
out stop words Ramos (2003).

In conclusion, stop words are common words with little semantic value that play
a vital role in the structure and context of a language. Although they are essential for
certain NLP tasks, their removal can be beneficial in others where the focus is on ex-
tracting meaningful information and reducing noise in the data. Understanding stop
words and their role in NLP is crucial for effectively measuring semantic distances be-
tween words, as it enables the development of more accurate and efficient text analysis
algorithms.

2.1.3 Language Models
One of the fundamental concepts in NLP is the notion of a language model. Language
models are probabilistic frameworks for predicting sequences of words. They assign
probabilities to sequences of words, which can be used to determine the likelihood of a
given sentence or to generate text (Goodfellow et al., 2016). Early versions of language
models were predominantly n-gram models, which based their predictions on the prior
n words in a sequence (Jurafsky and Martin, 2008). However, these models struggled
to capture the long-term dependencies and complexities of human language.

A significant advancement came with the introduction of recurrent neural networks
(RNNs) and long short-term memory (LSTM) networks (Hochreiter and Schmidhuber,
1997). These deep learning models introduced the capability to remember and make
use of information from past inputs, allowing for the modeling of long-term dependen-
cies in text.

Recently, a transformative shift has occurred in the language modeling landscape
with the development of Transformer-based models (Vaswani et al., 2017). These mod-
els use a mechanism called self-attention, enabling them to focus on different parts of
the input when producing an output, providing an effective way to handle long-range
dependencies.

Googles Bidirectional Encoder Representations from Transformers (BERT) (Devlin
et al., 2019) and OpenAIs Generative Pretrained Transformer (GPT) series, including
GPT-4 (Brown et al., 2020; Radford et al., 2018), are among the most popular and
powerful models based on the Transformer architecture. These models are pretrained
on vast amounts of text and can generate human-like text, understand the sentiment of

8 Background

a sentence, answer questions, and much more.

However, despite these advances, creating language models that understand and
generate human language with high accuracy, efficiency, and human-like nuance re-
mains a challenging problem. It continues to be an active area of research with great
potential for advancement and impact.

2.1.4 Word Embeddings

Word embeddings are a type of natural language processing (NLP) technique that rep-
resents words as dense vectors in a high-dimensional space. Each dimension in the
vector represents a different feature or attribute of the word, such as its meaning, con-
text, or relationship to other words. Word embeddings are used to capture the semantic
and syntactic relationships between words, and are widely used in NLP tasks such as
text classification, sentiment analysis, and machine translation.

One of the most popular methods for creating word embeddings is the Word2Vec
algorithm, which was introduced by Mikolov et al. (2013). Word2Vec is based on a
neural network architecture that learns to predict the context in which words occur in
a large corpus of text. The resulting word embeddings capture the similarities and
differences between words based on their co-occurrence patterns in the text.

Another popular method for creating word embeddings is the GloVe algorithm,
which was introduced by Pennington et al. (2014). GloVe is based on a matrix fac-
torization approach that uses global word co-occurrence statistics to learn the word
embeddings. Like Word2Vec, GloVe embeddings capture the semantic and syntactic
relationships between words, and have been shown to be effective in a wide range of
NLP tasks.

Word embeddings have many practical applications in NLP, including improving
the accuracy of text classification and sentiment analysis models, and enhancing the
performance of machine translation systems. They have also been used to analyze the
semantic and syntactic structure of natural language, and to study how language evolves
over time.

In recent years, researchers have developed more advanced methods for creating
word embeddings, such as contextualized embeddings and multilingual embeddings.
These embeddings capture more nuanced relationships between words by taking into
account the context in which they occur, and are able to handle multiple languages
simultaneously.

2.1 Natural Language Processing 9

Contextualized Embeddings

Contextualized embeddings have become an important area of research in natural
language processing (NLP) in recent years. Traditional word embeddings, such as
word2vec and GloVe, represent each word in a fixed and context-independent manner,
which can limit their effectiveness in tasks that require understanding of the nuances of
language (Mikolov et al., 2013; Pennington et al., 2014).

In contrast, contextualized embeddings take into account the context in which a
word appears and generate a different embedding for the same word depending on its
context. This allows them to capture more nuanced meanings and relationships between
words, making them particularly useful for tasks such as text classification, sentiment
analysis, and machine translation (Devlin et al., 2019; Peters et al., 2018).

One popular approach to generating contextualized embeddings is through the use
of transformer models, such as BERT (Bidirectional Encoder Representations from
Transformers) and GPT (Generative Pre-trained Transformer). These models are pre-
trained on large corpora of text data and are able to generate high-quality embeddings
for individual words, as well as for entire sentences or paragraphs (Devlin et al., 2019;
Radford et al., 2018).

BERT, for example, uses a masked language modeling task during pre-training,
where it is trained to predict the masked words in a given sentence. This allows it to
capture the context-dependent relationships between words and generate embeddings
that are specific to the context in which they appear. Similarly, GPT is trained on a
language modeling task, where it is trained to predict the next word in a given sentence
based on the preceding context (Radford et al., 2018).

Contextualized embeddings have been shown to outperform traditional word em-
beddings in a variety of NLP tasks, such as question answering, sentiment analysis,
and named entity recognition (Devlin et al., 2019; Peters et al., 2018).

Multilingual Embeddings

Multilingual embeddings are a type of contextualized embeddings that have gained
significant attention in recent years due to the increasing need for natural language
processing (NLP) systems that can handle multiple languages. These embeddings are
designed to be applicable across multiple languages, enabling the same model to be
used for tasks in multiple languages without the need for language-specific training.

One of the early approaches to multilingual embeddings was to learn a shared em-
bedding space for multiple languages. For instance, the polyglot embedding method
(Al-Rfou’ et al., 2013) used a shared embedding space to represent words across mul-
tiple languages. However, these methods did not always result in the best embeddings

10 Background

for each individual language.
Recent approaches have utilized pre-trained transformer models, such as mBERT

(multilingual BERT) and XLM-RoBERTa (cross-lingual language model RoBERTa) to
learn multilingual contextualized embeddings. These models are pre-trained on large
datasets of text in multiple languages and can generate high-quality contextualized em-
beddings for words in each of these languages (Conneau et al., 2020; Devlin et al.,
2019).

mBERT, for example, was pre-trained on a large corpus of text in 104 languages and
can generate high-quality contextualized embeddings for each of these languages. It
has been shown to perform well on a variety of cross-lingual tasks, such as cross-lingual
sentiment analysis and machine translation (Pires et al., 2019; Wu and Dredze, 2019).
Similarly, XLM-RoBERTa is pre-trained on a large corpus of text in 100 languages and
has achieved state-of-the-art performance on many cross-lingual tasks Conneau et al.
(2020).

Multilingual embeddings have the potential to greatly improve the performance
of NLP systems for multilingual applications, particularly in low-resource languages
where training data may be limited.

2.1.5 Transformer Networks
Transformer networks, first introduced by Vaswani et al.(Vaswani et al., 2017), have
revolutionized the field of natural language processing (NLP) and have since become
the backbone of state-of-the-art language models like BERT (Devlin et al., 2019), GPT
(Radford et al., 2018), and T5 (Raffel et al., 2019). The key innovation behind trans-
formers is their ability to effectively model long-range dependencies in sequences,
which is achieved by utilizing self-attention mechanisms. This section provides an
overview of the transformer architecture, its key components, and the motivation be-
hind its development.

The development of transformer networks can be traced back to the limitations of
previous architectures, such as recurrent neural networks (RNNs) and convolutional
neural networks (CNNs). While these models achieved considerable success in natural
language processing tasks, their sequential nature made it difficult to process long-
range dependencies and parallelize training (Vaswani et al., 2017).

The transformer model introduced a new approach called the self-attention mecha-
nism, which allowed it to learn and represent long-range dependencies more effectively.
In this mechanism, the model computes a weighted sum of all input tokens, with the
weights determined by the relevance of each token to the others (Vaswani et al., 2017).
This attention-based method enables the model to capture relationships between words

2.1 Natural Language Processing 11

in a sequence, regardless of their distance.
A transformer network consists of an encoder and a decoder, both built using mul-

tiple layers of self-attention and feed-forward layers. The encoder takes an input se-
quence, applies self-attention, and generates a high-level representation of the input.
The decoder uses this representation to generate an output sequence, applying self-
attention within its layers and attending to the encoder’s outputs (Vaswani et al., 2017).

Since the transformer model does not inherently capture the order of input tokens,
Vaswani et al. (2017) introduced positional encoding to provide information about the
positions of tokens in a sequence. These encodings are added to the input embeddings
before being fed into the model, allowing the network to learn and utilize positional
information effectively.

Large-scale transformer models are pre-trained on massive amounts of text data us-
ing unsupervised learning techniques. These models are typically fine-tuned on smaller,
task-specific datasets to achieve state-of-the-art performance in a wide range of natural
language processing tasks (Devlin et al., 2019; Radford et al., 2018).

2.1.6 BERT
Bidirectional Encoder Representations from Transformers (BERT) is a powerful lan-
guage model introduced by Devlin et al. (2019). BERT is based on the Transformer
architecture and is trained on a large corpus of text data using a self-supervised learn-
ing approach, which allows it to capture the context and meaning of words in a sentence
more effectively than traditional language models.

One of the key features of BERT is its ability to capture the bidirectional context
of words in a sentence. Unlike traditional language models that process text in a left-
to-right or right-to-left manner, BERT processes text in both directions simultaneously,
allowing it to capture the full context of each word in a sentence. This results in more
accurate predictions of the meaning of words in context and has led to significant im-
provements in a wide range of NLP tasks, such as question answering, text classifica-
tion, and named entity recognition.

BERT has also been designed to handle multiple languages and can be trained on
large datasets in different languages. This makes it a valuable tool for researchers and
developers working on multilingual NLP applications.

Since its introduction, BERT has been widely adopted in the NLP community and
has inspired the development of several variants and extensions, such as RoBERTa, AL-
BERT, and ELECTRA. These models build on the success of BERT by incorporating
additional training techniques, such as larger datasets and different training objectives,
to further improve performance on various NLP tasks.

12 Background

BERT and its variants have achieved state-of-the-art performance on many bench-
mark datasets and are rapidly becoming the standard baseline for many NLP tasks. As
the field of NLP continues to evolve, it is likely that BERT and its derivatives will con-
tinue to play an important role in developing more advanced and accurate language
models.

NB-BERT

NB-BERT, one of the best performing language models for the Norwegian language,
was created by the AI lab at the National Library of Norway (Kummervold et al., 2021).
It has outperformed mBert, a multilingual model, on numerous NLP tasks for both
Bokmål and Nynorsk, including named entity recognition, part of speech tagging and
sentence classification.

NB-BERT is trained on 109.1 GB of text consisting comprising a set of 18,438M
words after deduplication. The model is initated from the pre-trained mBERT weights.
mBERT was trained on 104 languages, including both Bokmål and Nynorsk Norwegian
(Devlin et al., 2019).

NorBERT 1 & NorBERT2

NorLM, an ongoing community iniative, introduced both NorELMo and NorBERT1,
based on ELMo and BERT respectively, which are the first large-scale monolingual
language models for Norwegian (Kutuzov et al., 2021). NorBERT1 is trained specifi-
cally for the Norwegian language and can be used for the same purposes as the original
BERT. The vocabulary size of the model is 30,000, which consists of almost exclusively
Norwegian words.

The model is trained on the Norsk Aviskorpus (NAK)1, which is a collection of
Norwegian news texts in both Bokmål and Nynorsk, consisting of 1.7 billion words.
The model is also trained on data from both Bokmål and Nynorsk Wikipedia, consisting
of 160 million and 40 million words respectively. In total, the training corpus comprises
about two billion word tokens in 203 million sentences.

NorBert1 is trained from scratch for Norwegian and utilizes a training setup built
on the work conducted by the creators of FinBERT (Virtanen et al., 2019). It features a
custom WordPiece vocabulary, containing a much better coverage of Norwegian words
than NB-BERT, which uses the same vocabulary as mBERT.

NorBERT2 is trained on the non-copyrighted part of the Norwegian Colossal Cor-
pus2 and a random sample of the Norwegian part of the C4 web-crawled corpus3, com-

1https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-no-sbr-4/
2https://huggingface.co/datasets/NbAiLab/NCC
3https://aclanthology.org/2021.naacl-main.41/

https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-no-sbr-4/
https://huggingface.co/datasets/NbAiLab/NCC
https://aclanthology.org/2021.naacl-main.41/

2.1 Natural Language Processing 13

prising of 5 billion words and 9.5 billion words respectively. In total, NorBERT2’s
training corpora consists of about 15 billion word tokens in about 1 billion sentences,
containing both Bokmål and Nynorsk text.

S-BERT

S-BERT (Sentence-BERT) is a modification of the BERT architecture that is specifi-
cally designed for sentence embeddings (Reimers and Gurevych, 2019). Sentence em-
beddings are a way of representing the meaning of a sentence in a vector form, which
can be useful for a variety of natural language processing tasks, such as text classifica-
tion, information retrieval, and similarity matching.

S-BERT works by fine-tuning a pre-trained BERT model on a sentence-level ob-
jective, rather than a word-level objective as in the original BERT model (Reimers and
Gurevych, 2019). This allows the model to learn more effective sentence-level repre-
sentations that capture the semantic meaning of the sentence, rather than just the indi-
vidual words. S-BERT achieves this by using a siamese network architecture, where
two copies of the pre-trained BERT model are used to encode two sentences, and the
similarity between the encoded vectors is used as a proxy for the semantic similarity of
the sentences.

S-BERT has been shown to achieve state-of-the-art performance on a range of
sentence-level natural language processing tasks, such as semantic textual similarity,
paraphrase detection, and text classification (Reimers and Gurevych, 2019). It has also
been used in a variety of practical applications, such as search engines, chatbots, and
recommendation systems.

Overall, S-BERT represents a significant advance in the field of sentence embed-
dings and has the potential to improve the performance of many natural language pro-
cessing applications.

XLM-RoBERTA

XLM-RoBERTa is a powerful cross-lingual language model that was developed by
Facebook AI (Conneau et al., 2020). It is based on the RoBERTa architecture, which
is itself a variant of the BERT model, and has been pre-trained on a massive amount
of text data from over 100 languages. This allows it to understand and generate text
in multiple languages, making it particularly useful for cross-lingual natural language
processing tasks.

The XLM-RoBERTa model achieved state-of-the-art results on a number of bench-
mark datasets for multilingual language modeling, including the XNLI cross-lingual
classification task and the XTREME benchmark for cross-lingual understanding (Con-

14 Background

neau et al., 2020). It has also been used in a range of natural language processing
applications, including machine translation, sentiment analysis, and question answer-
ing.

XLM-RoBERTa’s superior performance can be attributed to several key factors, in-
cluding its large-scale pre-training on diverse text sources, its use of dynamic masking
during pre-training, and its fine-tuning on downstream tasks using a simple and ef-
fective training strategy (Conneau et al., 2020). Overall, XLM-RoBERTa represents
a significant advance in the field of cross-lingual language modeling and has the po-
tential to revolutionize the way we approach multilingual natural language processing
tasks.

2.2 Automatic Speech Recognition

Automatic Speech Recognition (ASR) is the technology which allows for communica-
tion between human beings and information processing devices through speech, rather
than the more traditional approaches such as using a keyboard (Arora and Singh, 2012).
Speech is the fastest and most widely means of communication among humans, how-
ever, for it to be useful in the context of machine interaction, the machine must under-
stand speech with a high accuracy.

Several parameters contribute to affecting the accuracy of ASR systems, some of
them being word recognition, vocabulary, environment, noise, and word pronunciation.
In addition to these parameters, ASR systems face several difficulties such as having
to understand dialects, and the lack of contextual information such as a speaker’s body
language.

2.2.1 End-to-End Speech Recognition
Previously, automatic speech recognition was largely based on Hidden Markov Models,
where HMM-GMM became the mainstream acoustic model. This changed after Li
Deng and Hinton proposed applying neural networks and deep learning to the field,
which resulted in an upsurge in research of speech technology.

As developing speech recognition systems may be complicated, end-to-end speech
recognition has been proposed as a solution. End-to-end is a system where a sequence
of input acoustic features are directly mapped to a sequence of words. The system
is trained to optimize criteria relevant to our final evaluation metric.In contrast, con-
ventional ASR often includes separately trained acoustic, pronunciation and language
model components.

Deep Learning has brought significant advancements to the field, leading to the

2.3 Correction of ASR 15

development of end-to-end speech recognition systems. These models learn to map the
raw audio input to the corresponding textual transcription, circumventing the need for
explicit intermediate representations (Hinton et al., 2012).

The two main models of end-to-end speech recognition are Connectionist Temporal
Classification (CTC) (Graves et al., 2006) and the Attention model. Unfortunately,
E2E speech recognition with CTC still relies on language models to get better results.

Later, the advent of sequence-to-sequence models, initially applied to machine
translation tasks, introduced an encoder-decoder framework to the speech recognition
problem (Sutskever et al., 2014). The encoder processes the input sequence, which is
audio features, and the decoder generates the output sequence , which is transcribed
text.

Recently, Transformer-based models, with their self-attention mechanism, have also
been successfully applied to speech recognition tasks, providing an effective way to
handle long-range dependencies in the audio input (Vaswani et al., 2017).

Despite these advances, creating end-to-end speech recognition systems that can
handle variations in accent, noise, speaker characteristics, and different languages with
high accuracy remains a challenging problem. It continues to be an active area of
research with significant potential for practical applications.

2.3 Correction of ASR

Even though ASR has progressed to the point where it can be applied commer-
cially, high error rates in some speech recognition domains remain a major barrier to
widespread adoption of the speech technology, especially for the applications of con-
tinuous large vocabulary speech recognition. The continuing presence of errors in ASR
has increased the need for alternate ways to detect and correct such errors automati-
cally.

In recent years the use of E2E models has emerged, outperforming the conven-
tional models built on Hidden Markov Models. E2E models are easier and faster to
implement, train and deploy, in contrast to prior models that require training several
independent components.

To improve the accuracy of speech recognition, independently trained language
models have been used on ASR models to re-score the list of n-best hypotheses. This
introduces a tradeoff between speed and performance where simple N-gram models
will re-score quickly, while more advanced models like transformers will perform bet-
terHrinchuk et al. (2020).

Language model re-scoring can be effective, however, it may not have much effect
if the ground truth word is wrongly given a low score by the ASR model. Additionally,

16 Background

traditional left-to-right models may accumulate errors as a result of an early wrong
word, as the error will affect the scores of all succeeding words. This paper aims to
address these issues by training a transformer model that corrects errors by translating
erroneous outputs to correct language.

For the baseline ASR model, Jasper is used, which is a deep convolutional E2E
model. For re-scoring the hypotheses, two models are used, a 6-gram KenLM and a
Transformer-XL model. For correction of the outputs, a transformer model is used,
with two different options for initializing weight, the first being random initialization,
and the second being using the weights of BERT, a pre-trained model.

The best performing model was the model initialized with pre-trained BERT
weights for both encoder and decoder, which was able to successfully correct errors
in the ASR outputs where a mistakenly generated context would negatively affect tra-
ditional left-to-right language models.

2.4 Metrics

To measure the accuracy and quality of the output of ASR systems, some metrics and
tools are needed. These require access to the correct transcripts to assess the quality of
the generated ones.

2.4.1 WER
For ASR evaluation, the Word Error Rate (WER) is the most popular metric. WER is
derived from the Levenshtein distance, which is also called the edit distance (Mccowan
et al., 2004). The edit distance from one string to another is determined by the num-
ber of insertions, deletions and substitutions that are required to transform one string
into the other. The WER is calculated by taking the edit distance of a reference word
sequence and a generated transcript and normalizing it by dividing by the length of the
reference word sequence. The formula for WER is defined as such:

WER =
S+D+ I

Nr
(2.1)

The reason for normalizing the edit distance is so that the metric can be compared
across different systems with different tasks in mind.

Even though WER is the most popular metric for evaluating ASR systems, it has
its disadvantages and shortcomings. The first one being that it is not a true percentage

2.4 Metrics 17

due to not having an upper bound (Errattahi et al., 2018). This results in the metric not
necessarily providing information on how good a system performs by itself, but rather
how it compares to another.

However, the WER is still effective for cases of speech recognition, such as dic-
tation, where the error can be corrected by typing. For other tasks it is necessary to
consider alternative evaluation methods.

While it is mostly quoted as the Word Error Rate, it can also be quoted as the word
recognition rate, which is defined as such:

WRR = 1−WER (2.2)

Another measure used, often for word recognition systems, is the Word Correct
Rate. The WCR does not take insertion errors into consideration and is defined as:

WCR =
H
Nr

(2.3)

For the equation, note that H = Nr − (S+D).

2.4.2 Cosine Distance

Cosine distance is a widely used metric in natural language processing (NLP) to mea-
sure the similarity between two vectors. It has been employed in many NLP applica-
tions such as text classification, information retrieval, and clustering tasks(Li, 2013).

Cosine distance calculates the cosine of the angle between two vectors, and returns
a value between 0 and 1, where 0 indicates no similarity and 1 indicates perfect sim-
ilarity. In the context of NLP, cosine distance is often used to calculate the similarity
between two text documents represented as vectors of word counts or word embeddings
(Manning et al., 2008; Salton et al., 1975).

For example, if we have two text documents represented as vectors x and y, where
each element in the vector represents the frequency of a particular word in the docu-
ment, we can calculate the cosine distance between the two vectors using the following
formula:

18 Background

CosineDistance(x,y) =
(xy)

(||x||||y||)
(2.4)

Here, the dot product of x and y is divided by the product of their magnitudes,
which results in a value between -1 and 1. The resulting value represents the cosine
of the angle between the two vectors, and the cosine distance is equal to 1 minus the
cosine similarity.

One advantage of using cosine distance is that it is insensitive to the magnitude of
the vectors, and only takes into account the direction of the vectors. This means that
even if two vectors have different lengths, they can still be considered similar if they
have the same direction. Additionally, cosine distance is computationally efficient,
making it a popular choice for large-scale NLP tasks (Goldberg, 2015).

2.5 Semantic WER

Despite significant advances within E2E ASR systems, the ways of evaluating the qual-
ity of speech recognition systems remain largely unchanged with Word Error Rate still
being the standard metric for evaluation. WER is calculated by total error count nor-
malized by the reference length, where the total error count consists of the sum of
substitutions, insertions, and deletions. A limitation of WER is that both content words
and function words are equally important, which is not ideal. WER fails to capture
semantic differences between hypotheses, making WER less ideal for evaluating ASR
correctness.

To improve the usability of WER, Roy (2021). proposes an alternative evaluation
metric called Semantic-WER which aims to build upon WER to include the semantic
weight of the words in a sentence. SWER introduces weights to substitution, deletion
and insertion. The substitution weight has four cases:

• 1, if the reference word belongs to the set of named entities and sentiment words.

• The character error rate of the reference word and hypothesis word if the reference
word belongs to the set of spelled out entities.

• 1 if the cosine similarity of the embeddings of the reference and hypothesis words
is less than 0.6 and the reference word does not belong to the set of named entities
and sentiment words.

• 0 if the cosine similarity of the embeddings of the reference and hypothesis words

2.5 Semantic WER 19

is greater than 0.6 and the reference word does not belong to the set of named
entities and sentiment words.

This results in the WER not penalizing semantically similar words, so that for a
reference word go and a hypothesis word goes a substitution penalty is not applied.
Similar rules are applied to deletion of words.

To evaluate the results of the SWER, it was compared to the WER and the Human
WER, which is a score created by humans subjectively scoring sentences. The results
show that the SWER was closer in score to the HWER than the WER, meaning that
SWERs scoring may be more accurate in scoring sentences according to how humans
perceive them.

20 Background

Chapter 3

Data

For this thesis the Norwegian Parliamentary Speech Corpus (NPSC)1 was used. This
dataset consists of audio files from the Norwegian parliament, as well as their transcrip-
tions which have been transcribed by trained professionals. An automatic speech recog-
nition system was run on the audio files to generate automatic transcriptions, which then
could be compared and evaluated up against the gold standard transcriptions.

3.1 Norwegian Parliamentary Speech Corpus

The Norwegian Parliamentary was created in 2019-2021 by the Norwegian Language
Bank at the National Library of Norway. The corpus contains recordings of speech
from inside the Norwegian parliament, as well as the corresponding orthographic tran-
scriptions.

The transcriptions are written in both of Norway’s written languages, Norwegian
Bokmål and Norwegian Nynorsk. For each sentence the original written language is
annotated. Additionally, metadata is included for all speakers which contains data on
the speaker such as their name, spoken dialect, place of birth, date of birth, and gender.
For all speakers, information on their dialect is included. However, since the other data
is extracted from WikiData, some fields have null values for some speakers.

The transcriptions are performed manually by linguists and philologists who have
undergone appropriate training. Then the manual transcriptions are checked to ensure
that they are accurate and consistent.

The corpus was primarily created with the intention of being an open-source dataset
utilized for development of automatic speech recognition. There are several reasons
for the Norwegian parliament being chosen as the source of the data, one being that
the speakers are well known individuals, making details on most of the speakers’ back-

1https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-58/

https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-58/

22 Data

grounds simple to acquire from the public domain. Another reason is that the par-
liament consists of speakers from all regions of Norway, which results in a corpus
containing a wide variety of Norwegian dialects.

The audio files make up a total duration of 140 hours, 20 minutes, and 16 seconds,
which is shortened to approximately 126 hours when pauses are excluded. For meetings
with a duration longer than six hours, the audio is cut at approximately 6 hours and 10
minutes, which results in some files having sentences end mid-sentence at the end.

For the files containing the metadata and the transcriptions, the data is formatted in
JavaScript Object Notation (JSON), encoded in UTF-8.

The corpus was transcribed with some guiding principles, which consist of con-
sistency, standardized orthography, faithful rendering of speach, and flagging of non-
standard speech. To ensure the data set adheres to these principles, the transcribers
followed a set of common guidelines.

Additionally, a set of conventions have been followed for certain aspects of the data
set. The first convention being that each full sentence shall be a segment in the tran-
scription. The second convention is that non-standard language should be annotated
as such. Considering the fact that there are many dialects, yet only two written lan-
guages, there exists a fair amount of words which deviate orally from their written
version. These words are flagged in the data set as having non-standard spelling. The
final convention regards hesitations, interruptions and inaudible speech. Hesitations
are flagged with a special_status, where its value corresponds to either HESITATION,
INTERRUPTED, INAUDIBLE, or OVERLAPPING, where OVERLAPPING is used for
when multiple speakers are speaking at once.

The transcribers have written the transcriptions to be of the "spoken domain", which
means that the transcriptions should be as faithful to the speech as ortography allows.
Specifically, numbers, years, and dates are written with letters as they are pronounced,
e.g. the number 100 000 is written as hundre tusen. Additionally, abbreviations are not
used unless the speaker specifically pronounces the abbreviation.

For each sentence exists a corresponding normalized sentence where numbers,
years, dates, and percentages are written as digits, and standard abbreviations are used
where it is appropriate.

Seeing as the data set only contains approximately 12% Nynorsk, the creators of
the data set ran a script using machine translation to convert all Bokmål sentences to
Nynorsk. Since they then already had the script in place, they applied the same pro-
cess, but from Nynorsk to Bokmål. This results in the data set containing machine
translations to the opposite written language for all sentences. However, the machine
translated sentences do not have the same guarantee of quality as the manually tran-
scribed ones. Finally, the corpus contains some English sentences, but none of these

3.1 Norwegian Parliamentary Speech Corpus 23

Duration (h) Nynorsk (%) Female (%) Sentence length West. (%) East. (%) Sout. (%) Nort. (%) Trønd. (%)

Train 100.3 12.8 37.7 18.7 26.5 46.1 6.5 11.9 9.1
Test 12.3 13 39.9 18 35 44.4 4.6 9.4 6.5
Eval 13.1 12.7 41.8 18 32.2 43.6 7.6 7.7 8.8
Total 125.7 12.8 38.3 18.6 27.9 45.6 6.4 11.2 8.8

Table 3.1: Data split statistics.

are translated and are contained in the data set in their original form.

For this thesis, the sentences without normalization will be used, in their original
written language, meaning the data has not been affected by machine translation. The
reason for this is to provide the best gold standard transcriptions for comparison with
the automatically generated transcriptions later on.

Each folder in the data set is named after the date of the meeting, and contains files
named after the date and time of the audio recording in the format yyyymmdd-hhmmss.
A data split based on the folder names has been defined in advance. The data split aims
to approximately split the data into a train-test-evaluation split of 80-10-10 based on
audio duration, where pauses are excluded. The reason the split is based on folders is
because a folder a contains one meeting day, and making the splits contain full days
is beneficial for Natural Language Processing tasks where context in the text matters.
The full overview of which split each folder belongs to can be seen in Table A.1

The data was split with the goal of each split maintaining an equal distribution of
Nynorsk speakers, female speakers, and sentence length. The splits vary 4.1% in the
percentage of female speakers, where the lowest percentage is 37.7 and the largest is
41.8. For Nynorsk, the test set contains the largest percentage, with 13% Nynorsk
speakers. While the smallest percentage is found in the evaluation set, with 12.7%.
This makes a difference of 0.3%, meaning the distribution of Nynorsk speakers across
splits is evenly distributed. Finally, for average sentence length, the splits differ from 18
to 18.6 words per sentence, meaning the data splits are very similar in average length.

The creators of the data set did not take distribution of dialects into consideration
upon splitting the set, however, upon investigation the distributions of dialects are fairly
reasonable in the resulting splits. A complete overview of statistics for the splits can be
seen in Table 3.1.

Regarding the size of the data set, it contains a total of 1 152 471 words, which
divided by 267 speakers yields an average of 4316.37 words per speaker. These words
make up 61 862 sentences, resulting in an average of 231.69 sentences per speaker. The
average length of a sentence is 18.7 words.

As mentioned, the data set includes 267 different speakers, where Eastern Norway
is the most prominent dialect, and Southern Norway is the least. For one speaker the
dialect is marked as unclear. A complete overview of dialect distribution can be seen

24 Data

Number of speakers Sentences Words

Eastern 116 28 184 487 215
Western 70 17 068 345 091
Northern 33 7 015 131 800
Southern 19 5 463 81 799
Unclear 1 18 49

Table 3.2: Dialect distribution.

Number of speakers Sentences Words

Male 154 37 720 712 163
Female 111 24 039 438 787
None 2 103 1 521

Table 3.3: Gender distribution.

in Table 3.2. Eastern Norwegian speakers make up a total of 28 184 sentences, while
the least represented dialect, Southern Norwegian, only makes up 4 114 sentences. The
second most used dialect is Western Norwegian with 17 068, which is a reasonably
large amount compared to the lesser used dialects. A distribution of sentences per
dialect can be seen in Table 3.2.

Considering the large difference in represenation between the most used and least
used dialects, any experimental result based on this data set may contain a certain bias
towards the over represented groups.

The gender distribution in the data set is to some extent even with 111 female speak-
ers making up 24 039 sentences containing a total of 438 787 words, while there are
154 male speakers who make up 37 720 sentences for a total of 712 163 words. As seen
in Table 3.3, there is a significantly larger amount of data from male speakers, however,
the amount of data from female speakers should make up a large enough amount for
experiments to be conducted without yielding a too significant bias. There are two
speakers with unidentified genders, which could be a result of the audio transcribed be-
ing inaudible due to e.g. microphone issues, or perhaps the speakers not fitting in to the
binary gender categories.

Seeing as this data set only groups dialects into Eastern Norway, Southern Norway,
Western Norway, Northern Norway, and Trøndelag, it may be interesting to look at
where the speakers are born, since e.g. Eastern Norway contains many more dialects
than just one. An overview of which counties the speakers are born in can be seen in
Table 3.4. It is worth noting that since this particular data is fetched from WikiData, its
value is missing for a significant amount of speakers.

There are several factors that contribute to this dataset being selected for this project.

3.2 Automatically Generated Transcripts 25

Number of speakers

Agder 11
Innlandet 15
Møre og Romsdal 15
Nordland 11
Oslo 22
Rogaland 15
Troms og Finnmark 17
Trøndelag 20
Vestfold og Telemark 13
Vestland 29
Viken 36
None 63

Table 3.4: Speaker County Distribution.

Firstly, it is a considerably large dataset, containing speakers with different dialects and
genders, which ultimately provides a diverse representation of the Norwegian language.
Secondly, the dataset is manually annotated by professionals, which provides a guar-
antee of quality of the data. Finally, the dataset is publicly available and free to use,
allowing other researchers to more easily replicate the experiments in this project.

3.2 Automatically Generated Transcripts

To produce the automatically generated transcripts needed for this project’s experi-
ments, the audio files included in the NPSC were run through a third party commercial
service which provides speech-to-text conversion. The NPSC dataset contains one au-
dio file per folder, meaning the resulting transcription will contain the same segment of
sentences as the folder’s respective JSON-file.

The files output from the speech-to-text system are .txt files containing all the tran-
scribed text for its respective audio file in a single long document. The started of the
document is denoted by some metadata providing information on the file’s name, the
provider of the transcript, i.e. the third party that generated it, and finally the date and
time the transcript was produced.

After the first three lines of metadata, the main contents of transcriptions begin.
The transcripts are divided on a sentence level, where each sentence is marked with a
timestamp describing what time in the audio file the sentence corresponds to. When no
speech is detected for a certain amount of time in the audio, the transcripts are marked
with a timestamp and white space where the sentence usually would have been. These
timestamps are seemingly added in intervals of circa 10 seconds.

26 Data

As the transcripts from the NPSC dataset are stored as JSON objects and the auto-
matically generated transcripts are stored in .txt files, some data processing tasks must
be performed to get the transcripts in the same format. A thorough explaination of these
steps are later described in section 4.1.

Chapter 4

Methods

The aim of this project is to create an alternate metric for evaluating speech-to-text
systems that takes semantics into context. The commonly used Word Error Rate (WER)
suffers from certain limitations, such as all errors weighing equally.

The metric, which we will call Semantic-WER, attempts to extend the WER by
incorporating the semantic context of words. This is done by representing each word
as an embedding and calculating the cosine distance between the two embeddings.
Additionally, the metric is extended with several optional parameters allowing for more
flexibility in its use.

The code for this project is uploaded to a public repository on GitHub1.

4.1 Data Processing

As mentioned in chapter 3, this project utilizes an open-source dataset from the Norwe-
gian Parliament containing audio files of speech as well as their professionally written
respective transcriptions. These professionally written transcripts will be referred to as
the “reference text” or as the “gold label transcripts” as of now. The audio files from the
dataset are run through a 3rd party commercial speech-to-text service providing us with
automatically generated transcriptions. These will be referred to as the automatically
generated transcripts, or simply just transcripts..

Seeing as the transcripts provided by the third party commercial service are format-
ted differently from the NPSC data, some pre-processing and alignment must be done
to facilitate for sentence-level comparison.

First, the generated transcripts need to be cleaned of certain elements, such as the
metadata on the first lines, as well as the timestamps above sentences. This is done
using regular expressions that find and remove timestamps. Additionally, regular ex-

1https://github.com/sfimediafutures/MA_Espen-James-Rodriguez-Stokke

https://github.com/sfimediafutures/MA_Espen-James-Rodriguez-Stokke

28 Methods

pressions are used to remove unnecessary white spaces, shaping the document as one
long paragraph.

To facilitate for alignment of the gold label sentences with the generated ones, we
merge all the sentences from the NPSC dataset’s JSON-file into one big document to
match the shape of the generated transcripts.

As the manually annotated data from the NPSC dataset includes special tokens for
hesitation and stuttering, these must be removed since they will prevent the transcripts
from aligning properly. These special tokens include tokens for coughing which is
represented as <qq>, as well as inaudible speech which is marked as <INAUDIBLE>
Since these special tokens are marked with angle brackets, they can easily be removed
with regular expressions.

Once both transcript documents have been cleaned, they are tokenized using regular
expressions to divide the documents into lists of words and punctuation. Now that both
transcripts are cleaned from unnecessary tokens and have equal shape, they can be
aligned.

Once the two transcripts are both represented as two lists of strings, they can be
aligned using the Needleman-Wunsch algorithm(Likic, 2008), which is an algorithm
from bio-informatics that uses dynamic programming to align protein or nucleotide
sequences. It provides an optimal alignment based on a scoring system that assigns
values to matches, mismatches, and gaps. It obtains the resulting output by inserting
gaps, which in our case is represented by an empty string.

The output of the algorithm was slightly modified for this use case to make the
output be a list of lists-data structure, where each list contains two elements. The first
element is the token from the generated transcript, and the second element is the token
from the gold label transcript. If either of the transcripts is missing a token, the element
will be an empty string.

Both transcripts are then cleaned of special tokens and white spaces, and ultimately
reduced to two large documents of purely sentences. Then the documents are aligned
using the Needleman-Wunsch algorithm, and output to a list of lists, where each list
contains an automatically transcribed word at index 0, and the gold label word at index
1.

As the transcriptions had to be divided into single words for the sake of alignment,
they must now be regrouped as sentences as this project aims to compare texts on a
sentence-level. Seeing as we wish to evaluate the quality of the transcripts generated
by the ASR system, we let the generated transcripts decide when a sentence comes to
an end.

To merge the words into sentences, we iterate over our list of lists containing words,
and whenever a token in the set of {. ! ?} is found, the preceding sequence of tokens

4.2 Implementation 29

is appended to a new list. This ultimately results in a new, similar list of lists where
instead of containing transcript words and gold label words, the nested lists contain
transcript sentences and gold label sentences.

To summarize, we have taken textual data in different formats, cleaned and pre-
processed them to be of the same shape, aligned them, and finally segmented the
words into sentences to facilitate sentence-level comparison. A diagram illustrating
an overview of the entire process can be seen in Figure 4.1.

4.2 Implementation

For our metric, two main approaches were initially attempted. The first approach in-
volved loading both a BERT-tokenizer and a BERT-model from HuggingFace2 and
then encoding sentences using the tokenizer. The input-IDs returned from the encod-
ing are then fed into the BERT-model which will provide us with word embeddings.
However, with this approach the BERT-embeddings contain special tokens which will
have to be accounted for.

For the sake of simplicity, a second approach was explored where HuggingFace’s
pipeline function is utilized. By providing the pipeline function with the task of feature
extraction and the name of the desired BERT-model, it will return a pipeline object that
can take in a sentence and input and return a list of embeddings as output. As opposed
to the first proposed approach, this method allows for retrieving embeddings in a single
step, which makes for a more simplistic approach.

The metric itself is implemented as a function that takes two sentences represented
as lists of words as input, as well as HuggingFace pipeline object. The idea behind
taking the pipeline as input is so to ensure that the Semantic-WER function is model
agnostic, making it a simple matter to change which BERT model is used for creat-
ing the word embeddings. This allows for experimenting with different models and
comparing how they perform on the dataset.

In our dataset of post-processed sentences, all sentences are of the same length.
However, the Semantic-WER function should allow for sentences of different length
for several reasons. One of them being that speech-to-text systems may not pick up on
certain words, or divide compound words into multiple words, which will result in a
transcript that is different in length from the gold label text.

To deal with sentences of different lengths, our semantic-WER function calls upon
another function to equalize the length of the lists. This helper function essentially
takes the shortest of the lists and right-pads it, which means it adds empty strings to it

2https://huggingface.co/

https://huggingface.co/

30 Methods

Figure 4.1: A diagram of the data pre-processing pipeline.

4.2 Implementation 31

to acquire the same length as of the longer one. An example of the input and output of
the right-pad function can be seen in Figure 4.2

Figure 4.2: An example of input and output of right-pad function, showing how sentences are equalized
in length

Optimally, the function would locate where in the sentence the missing word is
and append an empty string at that location. This would help prevent the sentences
from becoming unaligned. When the sentences are unaligned, the wrong words will
be compared against each other adding additional semantic distance in the final score.
However, correcting this potential error by detecting missing words is outside of the
scope for this project and is left for future work. An alternate approach using S-BERT
is explored later on in Section 4.2.1

The calculation of the Semantic-WER score is quite simple in itself, as it aims to
build upon how Word Error Rate is calculated. First and foremost, the sentences are
converted to lists of word embeddings using the model given as input. Then the lists
of embeddings are iterated over simultaneously and cosine distance between each pair
of embeddings is calculated using SciPy’s3 function for cosine distance and stored in a
list. Finally, the list of distances is summed together and divided by the length of the
first sentence. It is worth noting that this is the length of the sentence after padding has
potentially been added, making it arbitrary if the first or second sentence is chosen as
they are bound to be of the same length.

SWER =
1
n1

n1

∑
i=1

dist(s1[i],s2[i]) (4.1)

The equation for the Semantic-WER can be seen in equation 4.1. Note that n1
represents the length of the automatically generated transcript, while s1 and s2 repre-
sent the transcript and gold label sentence respectively, represented as embeddings. A
flowchart illustrating the logic inside the Semantic Word Error Rate function can be
seen in Figure 4.3.

As the NPSC dataset is divided into several batches of data, we initially test the
function on a single batch of data and its speech-to-text generated transcript. Post-
processing our data batch contains 553 sentences. Calculating the Word Error Rate on
our post-processed data is a simple process, since with our list of lists representation

3https://docs.scipy.org/doc/scipy/index.html

https://docs.scipy.org/doc/scipy/index.html

32 Methods

Figure 4.3: A flow chart illustrating the logic of the Semantic Word Error Rate function

4.2 Implementation 33

if the nested list contains two different words, then that will count as one error. This
means we can iterate over our list, count errors, then finally divide by the length of
the outer list. The Word Error Rate will later be used as an important baseline for
comparison with our Semantic-WER.

As it is of great interest to discover how different models perform in different set-
tings, all experiments are conducted using three different models, NorBERT4, Nor-
BERT25, and NB-BERT6. First and foremost, we explore the feasibility of including
and excluding case sensitivity, stop words, and punctuation.

Secondly, we explore using the large multi-lingual model XLM-RoBERTa, as well
as S-BERT, which can compute embeddings on a sentence-level for more than 100
languages. To limit the scope of this thesis, this is done without the implementation of
our parameters.

As mentioned in chapter 3, the dataset is divided into several folders, where each
folder represents one day of speech in the Norwegian Parliament. To get an idea of how
our SWER-function initially performs, we run it once on a single folder for each of our
selected Norwegian BERT models.

4.2.1 Additional Models

Mainly the experimentation focuses on Norwegian BERT models, as the transcriptions
in the data set are in Norwegian. However, it is valuable to also test the metric when it
is given multilingual models to compare the results. This way we can to some degree
compare how the Norwegian BERT models perform in comparison to the multilingual
ones. Additionally, one of the multilingual models we will use functions on a sentence
level, which may deem different results as our other models operate on a word-level.

XLM-RoBERTa

As our main models are trained specifically for the Norwegian language, it is of interest
to compare their results to a multilingual model. For that reason, we experiment with
how the SWER metric performs given the multilingal model XLM-RoBERTa.

Due to the SWER-function treating BERT models as a plug-in component, this is
simply achieved by switching which model we provide to the function with XLM-
RoBERTa.

4https://huggingface.co/ltg/norbert
5https://huggingface.co/ltg/norbert2
6https://huggingface.co/NbAiLab/nb-bert-basehttps://huggingface.co/ltg/norbert

https://huggingface.co/ltg/norbert
https://huggingface.co/ltg/norbert2
https://huggingface.co/NbAiLab/nb-bert-basehttps://huggingface.co/ltg/norbert

34 Methods

S-BERT

S-BERT, which converts entire sentences to embeddings, can prove to be a useful tool
for comparison of the semantics of sentences. As our other language models take sen-
tences and produce embeddings word for word, S-BERT will produce an embedding
that represents the entire sentence. This may be beneficial, seeing as we will be com-
paring entire sentences at once, instead of comparing sentences word by word.

S-BERT provides a wide range of pre-trained models, including “distiluse-base-
multilingual-cased-v2”, which works for 50 languages, one of them being Norwegian.

Although models specifically trained for Norwegian may perform better in certain
tasks, S-BERT may perform better in our case since it manages to represent entire sen-
tences at once. This solves an underlying problem with our implementation of SWER,
which is that it assumes that the sentences are perfectly aligned. If the sentences are
not aligned, our function for calculating SWER will be comparing the wrong words
against each other. There also exists scenarios where the speech-to-text system gen-
erating transcripts misses one or more words, resulting in the generated transcripts
eventually becoming misaligned somewhere in a sentence. This exact behaviour can
be difficult to correct, making the approach of representing entire sentences as embed-
dings more feasible.

Since S-BERT works on entire sentences instead of single words, we need a dif-
ferent implementation than the one we have in our SWER function. However, this
implementation is easily achieved by simply converting the sentences with S-BERT,
and then computing the cosine distance between two sentence embeddings.

4.3 Parameters

Now that the main functionality behind computing the metric has been implemented,
we extend it with several parameters to tweak its performance. These parameters are
added to explore how they alter the behaviour of the metric, as well as to provide the
user with flexibility. For the sake of experimentation, we can observe the performance
of the metric compared to the standard WER after tweaking the parameters, which may
provide insight into when our metric performs best. In addition, the parameters provide
the user of the metric with the flexibility of choosing what the metric should emphasize.

The parameters consist of the possibility of including or excluding stop words,
punctuation, case sensitivity, as well as applying an activation function to the cosine
distance between word embeddings. These parameters will hopefully contribute to
allowing the user to emphasize what they consider important in the weighting of se-
mantics in sentences.

4.3 Parameters 35

4.3.1 Case Sensitivity

Figure 4.4: An example of how sentences are transformed when case insensitivity is toggled.

As the automatically generated transcripts contain a notable amount of capitaliza-
tion errors, it is of interest to test the effect of making the SWER-function case insen-
sitive. Therefore, we have added an optional parameter of case insensitivity that will
convert all words in the sentences to lowercase when applied. An example of this can
be seen in Figure 4.4.

The reasoning behind the implementation of this parameter is that words in the
Norwegian language will rarely change meaning purely as a result of different capital-
ization. Some named entities may consist of an acronym that changes meaning when
converted to lowercase. An example of this is “BIFF”, which which is the name of the
Bergen International Film Festival. When converted to lowercase, BIFF can not be dif-
ferentiated from the Norwegian word for beef, “biff”. Therefore, there are situations
where case sensitivity should be taken into consideration to preserve the semantics of
the sentences to its fullest extent.

However, in most cases the meaning of words remain the same independent of case,
and upon investigation it can be observed that BERT-embeddings of the same word
with different capitalization have a non-trivial cosine distance between them. There-
fore it is of interest to add the possibility of opting out of case sensitivity, which should
make the metric more focused on the pure semantics of sentences. Adding back case
sensitivity can be valuable when one wishes for the metric to be stricter in the evaluation
of the speech-to-text systems. As mentioned earlier, there are cases where capitaliza-
tion may change the meaning of a word, so it should be an ultimate goal to keep the
automatically generated transcripts unaltered.

4.3.2 Stop Words
To make the metric even more focused on the pure semantics of sentences, the option
for removing stop words from sentences was implemented as well. As described in
subsection 2.1.2, stop words are commonly used words in a language that are consid-
ered to have little semantic meaning and are often filtered out during natural language

36 Methods

processing tasks, such as text analysis or search engines. These words include articles
(e.g., "the," "a"), prepositions (e.g., "in," "on"), conjunctions (e.g., "and," "but"), and
other frequently occurring words (e.g., "is," "are"). Removing stop words from a data
set is often done when conducting sentiment analysis as the stop words do not contain
any significant emotional weight(Rosenberg, 2014). For sentiment analysis this may
often improve the results.

However, the value of removing stop words in the context of our metric is highly
debatable. Even though stop words may not carry emotional weight or contain a large
amount of semantic meaning by themselves, they do contribute to the grammar of sen-
tences. For example, both the Norwegian words for “before” and “after” are included
in the list of stop words. These words are opposite from each other and should result in
a significant semantic distance in the metric. However, if stop words are removed then
these two words appearing at the same index of two sentences being compared would
not add any semantic distance to the final score of the metric. Arguably, this works
against its purpose, but is included as a parameter anyway for the sake of experimenta-
tion.

The idea behind including the possibility for removing stop words is that the metric
then will focus only on the more semantically heavy words. It may make the metric less
useful for comparing entire sentences, but could still prove to be valuable for evaluating
whether a speech-to-text system has transcribed the most important words accurately.

Figure 4.5: An example of two sentences after removal of stop words.

When it comes to the implementation of the stop word-parameter, the function it-
erates over the words in both the gold label sentence and the transcript sentence and
checks if the word from either of the sentences exists in the set of stop words. If a stop
word is found, it is removed from the sentence. Additionally, the word at the corre-
sponding index from the other sentence is also removed. This builds on the assumption
that if a word in a sentence is a stop word, then its respective word in the other sentence
is also a stop word. An example where this may cause significant information loss can
be seen in Figure 4.5, where the word “bear” is removed since its corresponding word
is “there”, which is considered a stop word.

4.3 Parameters 37

This assumption results in two potential errors. The first being that if a speech-
to-text system incorrectly transcribes a word as one that is included in the list of stop
words, the correct word is removed from the reference text even if it is not necessarily
a stop word. The other potential error is that if the sentences are slightly misaligned,
then several words may wrongly be removed. If an automatically transcribed sentence
is misaligned by one word, and it has a stop word at e.g. index 2 that is supposed to
be at index 3, then both words at index 2 and 3 will be removed from the transcripts
and reference sentences. This may lead to situations where a large amount of words are
wrongly removed which ultimately can lead to artificially low SWER scores.

As there are no official lists of stop words, it is important that the SWER function is
flexible to what list of stop words it operates with. Therefore, the list of stop words is
provided to the function as an argument. This helps make the parameter for stop words
more flexible and can in turn make the function less prone to errors as mentioned above.
Since the user provides the stop words, it gives the user the ability to filter out certain
words, which could be useful in scenarios where the user knows that there are certain
words that should be ignored.

4.3.3 Punctuation
Upon investigation, it appears that the cosine distance between the embeddings of punc-
tuation symbols and the embedding of an empty string is rather large. As a result of
this, missing punctuation in the automatically generated transcripts will often affect
the final score quite significantly. For that reason, the option to exclude punctuation
from the calculation of the score was implemented. How sentences are transformed by
punctuation removal can be seen in Figure 4.6.

The idea behind this is similar to the one about removing stop words. However,
excluding punctuation is arguably more sensible as it more rarely affects the meaning
of a sentence. There are certain scenarios where punctuation can change the meaning
of a sentence, such as the sentence “Lets eat, grandma”, which drastically changes
meaning upon removing the comma. Nevertheless, given context, most sentences are
usually interpreted similarly regardless of punctuation.

Figure 4.6: An example of how sentences are transformed punctuation is removed.

One reason for disregarding punctuation is that spoken natural language is signifi-

38 Methods

cantly more free flowing than written language, and sentences in spoken language will
often contain a lot more pauses, interruptions, stuttering, and similar. This makes it a
difficult task to accurately punctuate sentences when transcribing spoken language.

Ultimately, punctuation still has an impact on the semantics of sentences and as
mentioned earlier may drastically change the meaning of sentences in some scenarios.
Therefore, the exclusion of punctuation is an optional parameter, as punctuation should
be included if one wants to evaluate the quality of transcriptions in a strict manner.

4.3.4 Applying an Activation Function

Seeing as two words, no matter how similar, will have some cosine distance between
their embeddings as long as they are not the same word, it is of interest to add the
possibility of applying an activation function. This will allow the user of the metric to
alter the values of the cosine distances before the final metric is computed. For example,
if one wishes to disregard cosine distances below a value of 0.1, this can be achieved
through supplying the metric with an activation function of own choice. Therefore,
the possibility of providing the SWER function with an activation function was added
as a parameter. Which activation function is to be used is up to the user to decide, as
different activation functions may have different strengths and weaknesses.

Figure 4.7: An example of how the cosine distances between two sentences can be transformed with an
activation function. For this example, binary step is used.

Considering implementation, the SWER function will still function as usual by con-
verting words to word embeddings and calculating the cosine distance. However, be-
fore calculating the final score, the function will run each individual cosine distance
through the provided activation function and replace the cosine distance with the value
returned by the activation function. Finally, the SWER score is computed as usual.

To test the effect of including an activation function, the simple, yet effective, binary
step function was implemented and tested. The binary step function returns 1 or 0
depending on if the value given is above or below a certain threshold. The binary step
function was here coded in a way such that the threshold can be altered, but defaults to
a threshold of 0.5. The equation for the function can be seen in Equation 4.2.

4.4 Severity analysis 39

f (x) =

1, if x ≥ 0.5

0, otherwise
(4.2)

The intuition behind applying the binary step to the cosine distances is that small
values for cosine distance will be reduced to 0, ultimately making the metric not punish
words that are considered “close enough” in meaning. On the other hand, cosine dis-
tances equal to or greater than the threshold of 0.5 will be increased to 1, which means
all words that are considered “far enough” from each other in meaning will be punished
more heavily.

4.4 Severity analysis

As of now the SWER function acts as a kind of “black box” where sentences are fed
into the function and a score is returned without much explanation as to how or why the
score is what it is. As the words are converted to word embeddings based on pre-trained
models, there are some results that may appear peculiar and unexplainable for humans.
Additionally, the score provided by SWER is dependent on the model provided, which
makes the metric subjective in a sense.

In contrast, the regular Word Error Rate metric is calculated by following a very
specific set of steps, which will always return the same score for two sentences. SWER
will also always return the same score for two sentences, but as mentioned earlier, that
requires that the same BERT model is used.

In an attempt to make the SWER metric more explainable, a parameter called
print_severity was added, which will print the words in the two sentences that result
in the largest cosine distances. To achieve this, SWER was extended with two optional
parameters, one being print_severity which is by default set to False. The other
parameter being n_severity which defines the amount of severe words one wants to
display. By default, n_severe is set to 3, meaning the three most distant words will be
printed if print_severity is set to True.

Printing the most severe words will aid in providing insight into why the score is as
it is, especially in situations where the score is considerably high. In these scenarios it
can be valuable to observe which words are critically different.

40 Methods

Chapter 5

Evaluation

As the implementation of the semantic word error rate is completed, it is of great in-
terest to evaluate how the metric performs in different scenarios. To evaluate the per-
formance of a metric itself may prove to be a difficult task, which is why qualitative
and quantitative approaches are combined in an effort to produce a full image of the
metric’s strengths and weaknesses.

It is worthy to note that the semantic word error rate does not aim to replace the
currently used metrics, but rather function as an additional tool used when assessing
the quality of ASR transcripts. An example of when combining different metrics may
be useful, is when a sentence has a low word error rate, while having a high semantic
word error rate. This could indicate that even though the transcript contains few errors,
those errors are quite severe. On the contrary, a high word error rate and a low semantic
word error rate could indicate the presence of several less severe errors.

As these examples illustrate situations where our metric functions best in combina-
tion with others, this chapter attempts to explore how the metric performs on its own.
This includes methods such as testing the metric on random sentences, as well as some
artificially constructed sentences. Additionally, our metric will be tested for how much
it correlates with word error rate, and humans’ perceptions of the semantic distances
between sentences. This is achieved by gathering data from a survey where respondents
manually rate the semantic distances between sentence pairs.

5.1 Semantic Word Error Rate Scores

As mentioned in chapter 4, the function that calculates the semantic word error rate
takes a BERT model as input, making it easy to experiment with how different BERT
models perform. For most tasks, experimentation will be performed with the three
current main BERT models, NorBERT1, NorBERT2, and NB-BERT. When the metric
is tested without any of the optional parameters, the results will also be compared

42 Evaluation

against how the metric performs using S-BERT and XLM-RoBERTa.
The experiments are conducted on a smaller batch of the NPSC dataset, namely one

folder of the NPSC dataset, which contains one day of recordings from the Norwegian
parliament. This limitation of data is an unfortunate consequence of the fact that the
transcription service the recordings were run through took a considerable amount of
time to run due to the length of the recordings, as well as the service frequently crashing
and interrupting transcribing, ultimately rendering the produced data useless.

The data used1 contains 553 sentences. This sample size is rather small, however,
the data fortunately consists of a balanced mix of sentences transcribed both correctly
and incorrectly providing us with a sufficient range of quality of transcribed sentences
to experiment with. All sentences are stored in a list ordered chronologically.

For each of the three Norwegian BERT models, as well as S-BERT and XLM-
RoBERTa, the semantic word error rate (SWER) function is run on all 553 sentences
with the default parameters. For every model, the score for each sentence is stored in
a python dictionary and then saved as a JSON file. The scores are ordered, meaning
the index of a score belongs to the sentence at the corresponding index in the list of
sentences.

5.1.1 Parameters
The process of computing and saving scores is performed several times with different
parameters. The first parameter tested is setting the case insensitivity parameter to
True, which provides us scores that allow us to observe the effects of ignoring case.

The next set of scores is produced using the activation function parameter while
preserving case sensitivity for the sentences. As the SWER function takes the activa-
tion function it uses as input, we must provide it with a function of our choice. For
this set of experiments, we provide the SWER metric with the binary step function. As
mentioned in subsection 4.3.4 and seen in Equation 4.2, the binary step function returns
the value 1 if the input is above or equal to some given threshold, and 0 if the input is
below the threshold. The reasoning behind choosing binary step for activation function
is that the intuition behind the function is understandable and its behaviour is explain-
able. Although other activation functions may produce interesting results, the results
produced may be more complicated to explain.

Further, the sentences are run through the SWER function with the option for re-
moving punctuation toggled and then finally, the SWER scores are computed with the
option for removing stop words as well. When it comes to stop words, there is no uni-
versally agreed upon list of Norwegian stop words, which is why the SWER function

1From folder “20170207”.

5.2 Grouping by Severity 43

takes the list of stop words to be used as input. For now, a list of Norwegian stop words
has been somewhat arbitrarily selected, after some initial manual analysis. The list used
is fetched from a public repository on GitHub 2.

Now the SWER scores have been computed with every parameter tested individ-
ually, facilitating the observation of the effect of each parameter on the scores on its
own.

5.1.2 Combined parameters
Since all parameters have now been tested individually, it is of interest to test how they
work in combination. Testing all possible combinations of parameter options would
quickly become an extremely computationally expensive and time consuming task,
therefore a certain set of parameters have to be selected to be tried in combination.
For this project, two combinations of parameters have been selected for experimenta-
tion.

The first set of parameters to be tested together is case sensitivity set to True, in
combination with the exclusion of punctuation. The intuition behind this combination
is to test the performance of the SWER metric with a pure focus on the textual content
of the sentences. The pros and cons of ignoring case sensitivity and punctuation are
discussed in section 4.3.

The second set of parameters to be tried in combination is the same as the previ-
ous, but extended to include the use of an activation function. The activation function
applied here is the binary step function with a threshold of 0.5. The idea is similar to
the previous combination of parameters where we focus on the textual contents of the
sentences, however cosine distances between words that are lower than 0.5 will be ig-
nored, and those above 0.5 will be increased to 1. In essence, this means the SWER
metric will look at the words in the sentences and count the ones that are significantly
different in meaning, while ignoring punctuation and case.

5.2 Grouping by Severity

When evaluating the results of testing the metric on all our data, it can be useful to
have the results grouped by score, allowing us to easily explore which sentences have
produced a high score, which have produced a medium high score, and which have
resulted in a low SWER score. Therefore, a simple function that groups sentence based
on their SWER scores was implemented.

2https://github.com/Alir3z4/stop-words

https://github.com/Alir3z4/stop-words

44 Evaluation

Group SWER range

Low < 0.15

Medium > 0.15 & ≤ 0.30

High > 0.30

Table 5.1: Default thresholds for severity grouping function.

The function takes a list of sentence pairs and their SWER scores as input, as well
as an optional parameter of thresholds, which is an array-like object containing two
thresholds. The first threshold is the “low” threshold, meaning any sentence with a
SWER score below this number will be placed in the group of sentences with a low
score. The second threshold is the “high” threshold, meaning any sentence with a score
above this is placed in the group of sentences with a high score. All the sentences with
a score between the two thresholds is placed in the medium group. If no thresholds are
provided to the function, it defaults to a low-threshold of 0.15, and a high-threshold of
0.3. These exact thresholds were chosen to divide the sentences in the dataset in such a
manner that the resulting medium and high groups are roughly equal in size.

The implementation of the function itself is quite straightforward as it simply it-
erates over the list of sentence pairs and the list of SWER scores simultaneously and
appends them to different lists based on whether their scores are above or below the
thresholds. This implementation builds on the assumption that the indexes of the sen-
tence list and the scores list match. An alternate approach would be to call the SWER
function inside the grouping function, requiring only the sentence pairs and thresholds
as input. However, this would in most cases result in additional unnecessary computa-
tion, as we already have computed the scores for the sentences.

The function returns three lists representing our groups. Each list contains tuples,
where each tuple contains two elements. The first element being the sentence, and
the second one being its SWER score. When the sentences are divided into groups of
severity for all parameters and models, the groups are exported to a JSON file for later
use.

5.3 Qualitative Sentence Comparison

So far, the evaluation of the metric has been largely based on testing the entire set
of data and averaging the scores. To get a more comprehensive understanding of the
metric’s behaviour, qualitative research should be conducted on certain sentences.

To aid us in investigating certain sentences, a function called “test_swer” was cre-
ated. This function takes a list of sentence pairs as input, as well as a BERT model.

5.3 Qualitative Sentence Comparison 45

For each sentence pair it prints out both sentences, its SWER with default parameters,
its SWER with binary step, its case insensitive SWER, and its SWER with punctua-
tion excluded. Additionally, the WER and case insensitive WER for each sentence is
printed. If a list of stop words is provided to test_swer, it will also print out the SWER
for the sentences when the words from that list are excluded.

This function is meant to serve as a tool for quickly providing a report on a set of
sentences. As SWER is intended to be a metric used in addition to the traditional word
error rate, it is of great use to see their results side by side.

5.3.1 Comparing Random Sentences

As with the regular word error rate, SWER will provide a score of 0 if two sentences
are identical. However, since our metric is based on cosine distance between word
embeddings, the metric itself will very rarely reach a score of 1, as there will in most
cases be some similarity between the word embeddings. This means that completely
unrelated sentences that share no words in common whatsoever will often result in a
score lower than 1.

So far, the metric has been tried on sentences that are supposed to be similar. How-
ever, it is also important that the metric produces a high score for sentences that are
completely unrelated. Therefore, a function that selects random sentences and com-
pares them was developed. The function, called “test_n_random_sents”, takes a num-
ber n and a BERT model as input. It then selects n pairs of random sentences from the
list of all sentences and uses our previously mentioned “test_swer” function.

This allows us to observe the word error rate and the SWER score with different
parameters for two arbitrarily selected sentences. The intention behind this is to provide
better insight into how the scores relate to each other. An example of two random
sentences selected by the function can be seen here:

Random Transcript 1:
Den gir en unik innsikt i det å både være foreldre.

Random Transcript 2:
men problemet er volum og kapasitet.

For each Norwegian BERT model we have, we test 1 random sentence pairs, result-
ing in 3 sentence pairs being tested. Due to the nature of randomness, sentences that
are somewhat similar or related may be included, but 3 sentence pairs in total should

46 Evaluation

produce a meaningful depiction of how the metric evaluates unrelated sentences.

5.3.2 Artificially Produced Sentences
In addition to the comparison of random sentences, a set of 3 sentence pairs was artifi-
cially produced. These sentences were produced to test how the metrics perform on a
specific set of sentences that explore different edge cases, as well as regular cases.

In similarity with the idea of testing random sentences, the intention here is to chal-
lenge the metric, explore its limitations, and potentially highlight some strengths as
well. An example of a sentence pair in our mock data can be seen here:

Mock sentene 1:
Det var virkelig en bra dag.

Mock sentence 2:
Det var ikke en bra dag.

This example aims to highlight a weakness with the metric, as it will likely result in
a fairly low SWER. However, the sentences are quite clearly far apart semantically as
the sentences mean the opposite from each other. This behavior can often be attributed
to antonyms being used similarly in very similar contexts.

5.4 Detecting the Most Severe Words

When the SWER metric produces high scores, it is of interest to inspect what con-
tributed to such a magnitude of score. Using the parameter described in section 4.4, we
can feed sentences to the SWER function and inspect what words contributed the most
to the final score. This way we can develop a better understanding of why the sentences
scored as high as they did.

Now it is fortunate that we have grouped our sentences earlier by severity, as we can
take the sentences previously grouped as having a high score and test these for most
severe words. This will help us in understanding what the metric considers semantically
distant. For a select set of sentences, we print the three words that contribute most to
the final error rate.

It is also interesting to view what contributes to the final score on the sentences
we have grouped as “low” or “medium” severity. However, it is quite likely that the
greatest contributors in semantic distance between these sentences are things such as

5.5 Correlation 47

punctuation and wrongly capitalised words.

5.5 Correlation

To further develop an understanding of the SWER metrics behaviour, we calculate its
correlation with two other metrics, the commonly used word error rate, as well as the
human word error rate, which is a metric we create based on human opinion of semantic
distance between sentences.

There are several different correlation coefficients we may use, such as Pearson’s
correlation coefficient, Spearman’s rank correlation coefficient, and Kendall’s rank cor-
relation coefficient (Kendall, 1938; Pearson, 1895; Spearman, 1904). Which metric is
most appropriate depends on the distribution and nature of the data. Some things to take
into consideration is if the relationship between the variables are linear or not, whether
the data contains outliers, and finally, the sample size of the data.

For our data, the relationship between the variables should be non-linear, as the
intention of the SWER metric is to provide an alternate measure to the commonly used
WER. The range of our SWER metric is from 0 to 1, which means we do not have
to deal with the presence of outliers. Finally, our sample size is considerably small.
These factors combined should be considered when choosing the correlation metric to
be used.

5.5.1 Word Error Rate Correlation
To gain some insight into how our SWER metric relates to the regularly used word
error rate, we calculate the correlation between the two metrics’ scores on our dataset.
It is important to note that the point here is not to obtain perfect correlation between
the two metrics, seeing as they measure two separate things.

The correlation is measured by computing the WER and SWER scores for our sen-
tences, and then calculating the Kendall rank correlation coefficient(Abdi, 2007) be-
tween the scores using SciPy’s kendalltau function. The Kendall rank correlation coef-
ficient was chosen as our correlation metric as it works well with small sample sizes.
The Kendall rank correlation coefficient returns a number between -1 and +1, where
+1 indicates a perfect positive association and -1 indicates a perfect negative associa-
tion. A positive relationship between two variables means as one increases, the other
increases as well, while a negative relationship means as one variable increases, the
other decreases.

The correlation between the SWER and WER scores is calculated once for each
BERT model, and for each BERT model the correlation is calculated once for each

48 Evaluation

parameter or parameter combination.

5.5.2 Human Word Error Rate
As our metric attempts to represent how far apart sentences are in meaning, it should
in some way be evaluated against the opinions of humans. Inspired by the work done
in section 2.5, a survey was created using Microsoft Forms to produce some data of the
human perception of semantic distances between the sentences in our dataset.

The survey consists of 29 pairs of sentences, where the respondents were presented
with one sentence pair at a time and asked to score them on how they perceived them
to be semantically similar. Each sentence pair consists of one sentence from the NPSC
dataset and its corresponding sentence from the automatically generated transcripts.
For each sentence pair the respondent must select a score ranging from 1 to 5 stars,
where 1 star indicates the sentences are completely unrelated in meaning and 5 stars
means the sentences are identical in meaning. An image of the survey can be seen in
Figure 5.1.

The sentence pairs in the survey are presented in random order, and the user may
answer as many of them as they prefer. The respondents are asked to use their best
intuition for scoring the sentence pairs, meaning the scores are prone to subjectivity as
the respondents perception of the scale may differ.

The survey received a total of 40 responses, averaging 20.4 sentence pairs rated
sentence pairs per response, making up a total of 817 ratings. Due to the sentences
being presented in random order, all sentence pairs received ratings. The amount of
ratings receiever per sentence pair can be seen in Table 5.2. An overview of which
sentence pairs belong to which IDs can be found in section A.2.

As the data has been collected, the average score for each sentence pair is manually
fetched and stored in a JSON file. The survey scores are loaded into a Python notebook
with the semantic word error rates for the corresponding sentences.

Since the survey scores range from 1 to 5, they are all multiplied by 0.2, to alter
their range to be from 0 to 1, making the scores’ range match the range of SWER.
Furthermore, we must address the fact that the survey scores currently measure the per-
centage of similarity, while SWER measures the distance. Therefore we must calculate
the complement of the survey scores, so that they too measure the distance. This is
done by taking each score and subtracting it from 1, which essentially inverts the met-
ric from being a "human word correct rate" to a human word error rate. The equation
for converting the survey scores to human word error rate can be seen here:

HWER = 1− (SurveyScore×0.2)

5.5 Correlation 49

Figure 5.1: Screenshot of the Human Word Error Rate survey

50 Evaluation

Sentence ID No. of Responses
1 25
2 29
3 30
4 29
5 25
6 28
7 27
8 27
9 29

10 28
11 29
12 25
13 26
14 26
15 26
16 29
17 27
18 24
19 30
20 27
21 27
22 26
23 30
24 26
25 25
26 27
27 26
28 28
29 29

Table 5.2: Number of responses each sentence pair received

Continuing, each sentence pair’s SWER for each Norwegian BERT model is com-
pared to its HWER. Additionally, the Kendall rank correlation coefficient between the
SWER score and the human error rate score is calculated for the 29 sentences. How-
ever, due to the small sample size, the correlation between the two metrics may not
provide much insight. Therefore it may be more insightful to investigate the resulting
scores on a sentence level, than simply looking at a correlation coefficient.

Previously with the regular WER, the correlation between the SWER scores and the
Word Error Rate was calculated for all combinations of parameters and BERT models.
For Human Word Error Rate this will not be done. Instead the correlation will just
be computed between Human Word Error Rate and SWER with default parameters.
This is because the default parameters of our metric can be considered as the strictest

5.5 Correlation 51

evaluation of semantic distance, which is what we want to compare the human opinion
with.

52 Evaluation

Chapter 6

Results

In the previous chapters, we presented the dataset, the methods for data processing,
as well as the methodology behind our proposed metric called Semantic Word Error
Rate, which is a metric that aims to quantify the semantic distance between two texts.
Additionally, chapter 5 presented our approach for evaluating the performance of the
metric. This chapter aims to present and analyse the results obtained from utilising this
metric, as well as discuss the implications that follow.

These results are derived from a series of experiments designed to test the effec-
tiveness and reliability of SWER in a variety of scenarios, as well as compare its per-
formance to the results of the already existing WER metric. The SWER metric is also
compared to human opinions of semantic distance through data gathered by a survey.

Through a combination of quantitative analysis and qualitative observations, we
seek to demonstrate the utility of SWER in the area of evaluating the quality of speech-
to-text systems. The presentation of these results intend to facilitate a comprehensive
understanding of the metrics’ capabilities, its potential applications, and how these are
effected by our implemented parameters.

6.1 Model Performance

After computing the SWER for all 553 sentence pairs with three Norwegian BERT
models as well as two multilingual models, the average semantic word error rates were
calculated and can be seen in Table 6.1. As mentioned in subsection 4.2.1, the multi-
lingual S-BERT model converts entire sentences to embeddings. In contrast, all other
models used here produce embeddings on a word level. The error rates here are com-
puted with the default SWER parameters, meaning the texts are not manipulated in any
manner other than the words being converted to word embeddings.

For the sake of comparison, the average word error rate for all sentence pairs is
included, as well as the average case insensitive word error rate.

54 Results

SWER

NorBERT1 8.39%
NorBERT2 11.02%
NB-BERT 12.78%
S-BERT 6.54%
XLM-RoBERTa 1.01%
Regular WER 22.74%
Case insensitive WER 14.82%

Table 6.1: Average BERT model SWER & WER on our dataset.

The model with the lowest average SWER for all sentences is XLM-RoBERTA by a
great amount with an average error rate of 1.01%. The model with the highest average
is NB-BERT, with an average semantic word error rate of 12.78%. The two other
Norwegian models are relatively close in performance as NorBERT1 & NorBERT2
have SWERs of 8.39% and 11.02% respectively. S-BERT achieved a SWER of 6.54%,
which is significantly higher than the other multilingual model XLM-RoBERTA, while
also a considerable amount lower than the Norwegian models.

In comparison, the WER for the same set of sentences is 22.74%, which is signifi-
cantly higher than all the models’ SWER. This could be an early indication that SWER
punishes errors less harshly resulting in lower error rates in general. However, it is also
worth noting the case insensitive WER for these sentences is 14.82%, meaning a lot of
the errors punished by the regular WER comes from errors such as capitalisation. Still,
all models return an average SWER lower than the case insensitive WER.

One model that stands out particularly, is XLM-RoBERTa which produced an aver-
age error rate that is remarkably lower than all the others. There may be several factors
contributing to this, one being that too many words are out of vocabulary for this multi-
lingual model, resulting in words with erroneously low cosine distances between them.
The other multilingual model, S-BERT produces a more reasonable average SWER.
However, this may be due to its nature of creating sentence embeddings. This aspect
will be revisited in subsubsection 7.1.3.

6.1.1 Effect of Parameters
Now that the behaviour of our metric using its default parameters has been established
with all our BERT models, the effect of applying the different parameters may be ex-
plored. Note that the multilingual models are not included in these further experiments.
All the parameters make the metric ignore certain errors in some way, meaning that
these can be viewed as different approaches to making the metric less strict. Addi-
tionally, two slightly different combinations of parameters were tested to observe the

6.1 Model Performance 55

NorBERT1 NorBERT2 NB-BERT

Default 8.39% 11.02% 12.78%
Case Insensitive 5.64% 8.71% 10.73%
No Punctuation 7.30% 7.68% 9.29%
With Stop Words 9.29% 13.65% 15.96%
With Binary Step 3.58% 12.13% 12.13%

Table 6.2: Parameter effect on SWER.

resulting SWER scores when parameters are combined.
The average SWER for each parameter and each BERT model has been computed

for our 553 sentence pairs, and the resulting error rates can be seen in Table 6.2.

Case Insensitivity

The first parameter was a natural inclusion as the metric aims to focus on the semantics
of the textual content. As argued in subsection 4.3.1, capitalisation will rarely effect
the semantics of words, except for some cases such as named entities where the capi-
talisation changes what the word refers to or means.

Upon investigation, it can be observed that with NorBERT1 the cosine distance be-
tween the word embedding for “Dessverre” and the word embedding for “dessverre” is
0.32, which is considerably large given the semantic difference between the two, which
is arguably none. Therefore it is sensible for a metric that focuses on the semantics to
provide an option for case insensitivity.

As one may see in Table 6.2, when case insensitivity is applied, all models’ average
SWER decrease by roughly 2%. The reasoning behind this notable decrease can likely
be attributed to the amount of capitalisation errors generated by the speech-to-text sys-
tem. These capitalisation errors may in turn be caused by errors in punctuation, which
is a likely error as speech-to-text systems often struggle with properly identifying when
sentences end.

Punctuation Exclusion

The option for excluding punctuation from the texts when computing the metric is quite
similar in motivation as the option for case insensitivity. As mentioned, speech-to-text
systems may often struggle with identifying the ends of sentences, nonetheless where
commas should be placed.

Between the word embedding for “,” and the word embedding for a blank string,
there is a cosine distance of 0.34, meaning missing commas are noticeably punished
within the metric. Other punctuation symbols result in similar cosine distances, which

56 Results

become even larger if the symbols are compared to words. However, it is arguable
whether this behaviour is unwanted. As argued in subsection 4.3.3, the meaning of a
sentence can in fact be altered drastically by its punctuation.

The results in Table 6.2 show that the average SWER for all models are reduced by
roughly 2% to 3.5%, meaning that this parameter contributes significantly to making
the metric behave less strictly. Whether this behaviour is desired depends on the user’s
opinion on the importance of punctuation, as this parameter makes a trade-off between
weighing grammatical accuracy and focusing purely on the semantic content of the
words in the sentences.

Stop Words

Whether removing stop words is sensible for a metric focused on evaluating transcripts
is debatable seeing as the input text is manipulated and altered considerably when doing
so. This was discussed further in subsection 4.3.2, where it is demonstrated how words
that are usually included in the lists of stop words may alter the meaning of sentences
significantly. However, the experimenting with this parameter produce some interesting
results.

As seen in Table 6.2, the average SWER increases for all models when enabling
the parameter for removing stop words. This may seem counter-intuitive as removing
words should result in less errors, however, what is happening is that for each word that
is removed, the length we divide the sum of cosine distances by is reduced by 1. This
results in errors from words that are not considered to be stop words will weigh more
heavily in the final score, as a consequence of the sentence length the sum of distances
is divided by is reduced by 1 for each stop word pair removed from the transcript.

Even though the average SWER for all models increase, it would not necessarily be
correct to state that this parameter makes the metric more strict, as words are removed
from the input making the metric ignore certain grammatical aspects. Nonetheless,
applying this parameter may have altered the metric to be a better indicator of the
presence of severe errors in the transcript, as the focus is shifted towards the words that
weigh more heavily.

Another thing worth noting, is that with the stop words parameter, NorBERT2 and
NB-BERT experience a noticeably larger increase in average SWER than NorBERT1.
This could stem from several reasons, one perhaps being that NorBERT2 and NB-
BERT produce lower cosine distances between words that do not carry much semantic
meaning, i.e. the words we have considered to be stop words.

6.1 Model Performance 57

Binary Step

Our final parameter is the possibility of adding an activation function, which we ex-
perimented with by applying the binary step function, a function that increases values
to 1 or decreases them to 0, depending on whether they exceed the given threshold.
Applying other activation functions could yield interesting results, however, such ex-
perimentation was outside the scope of this project.

Looking at the performances of the different models in Table 6.2, one can see that
applying the binary step function to the models alters the result quite differently be-
tween them. The first thing to stand out is that the activation function greatly reduces
the average SWER for NorBERT1, which could be interpreted as NorBERT1 rarely
producing embeddings with a cosine distance equal to or greater than 0.5, making most
cosine distances being reduced to 0 within the SWER function.

On the contrary, NorBERT2 experiences an increase slightly above 1% on average
SWER. This means that, generally, values are being increased more than decreased by
the binary step function. Our final model, NB-BERT, experiences a slight decrease of
0.65%, which may be interpreted as the binary step function not making a significant
impact on the final average error rate.

To further develop an understanding of how the binary step function behaves inside
the SWER function, some test sentences were run through SWER with the binary step
function. An interesting example can be seen here:

Automatically generated transcript:
Det opereres med ulike tall på forekomst av autisme, men cirka 1 % av befolkningen
har autisme.

Gold label:
det opereres med ulike tall på forekomst av autisme men cirka én prosent av befolknin-
gen har autisme.

This automatically generated transcript has 4 differences from the gold label, which
divided by 19 tokens results in a word error rate of 21.05%. The four differences in the
transcripts are the capitalisation of “Det”, the presence of a comma, “1” as a number
instead of “én”, and the “%” symbol instead of the corresponding word for the symbol.

The semantic word error rate for this sentence pair is 6.11%, which is an arguably
more representative error rate for these sentences than the significantly higher word
error rate. However, one may even argue that the semantic word error rate for these
equal to or close to 0, seeing as the sentences are arguably identical in meaning.

58 Results

Parameters

Combination 1 Case insensitive, no punctuation
Combination 2 Case insensitive, no punctuation, binary step

Table 6.3: Parameter combinations.

This is where the binary step function produces promising results. As all the word
embeddings for all the differences in the transcripts produce cosine distances below
0.5, they are reduced to 0 by the binary step function, ultimately producing a SWER of
0.00%. Though, it is important to emphasise that this is simply one sentence-pair and
this behaviour may not always serve as optimally across other sentences in the dataset.

An interesting result is the fact that the binary step function also worked as an
additional way to deal with capitalisation and punctuation errors without removing
punctuation or converting the transcripts to lowercase. This could especially work as a
solution for the named entity issue mentioned in subsection 4.3.1, where our example
word “BIFF” changes meaning entirely when converted to lowercase.

As we have seen that capitalisation errors and missing punctuation usually results in
a cosine distance of roughly 0.3, we could attempt to prune these out by ignoring cosine
distances below a threshold such as e.g. 0.35. However, increasing values above this
threshold to 1 would result in many cosine distances being increased greatly. Therefore,
it could be an idea to implement an activation function inspired by the Rectified Linear
Unit (ReLU) activation function. A potential function such as this can be seen here:

f (x) =

0 if x < 0.35

x if x ≥ 0.35

For this function, if a value is below 0.35, it is reduced to 0. Otherwise if the
value is above that threshold, the value remains unchanged. This is purely an example
of an activation function that could be interesting to experiment, and there are likely
numerous other activation functions that can produce more promising results.

Combined Parameters

As the results of applying the parameters individually have been presented, it is of
interest to look into how they performed in combination. For this, two combinations of
parameters were crafted, which we will name “Combination 1” and “Combination 2”.
Their parameters can be seen in Table 6.3. The results of the parameter combinations
are presented in Table 6.4.

6.2 Correlation 59

NorBERT1 NorBERT2 NB-BERT

Combination 1 3.95% 4.94% 6.76%
Combination 2 2.40% 6.08% 6.46%

Table 6.4: Combined parameters average SWER.

For the first combination of case insensitivity and exclusion of punctuation, the
average SWER is drastically reduced for all models. A motivation for this exact com-
bination of parameters was that a punctuation error will often lead to a following capi-
talisation error, meaning these errors can ultimately effect the final score significantly.

The error rates from this combination can be viewed as representing the semantic
distance purely between the words of the sentences. This combination could be benefi-
cial in scenarios where one wishes to evaluate sentences in a less strict manner, making
the metric aim its focus on the words contained in the sentences.

The second combination is the same as the first one, but extended with applying the
binary step function. As we previously explored in subsubsection 6.1.1, the binary step
function already contributes to removing punctuation and capitalisation errors from the
final score, which in turn makes it interesting to see how binary step effects the average
SWER when capitalisation and punctuation already has been accounted for.

The error rate for combination 2 in Table 6.4 show that for NorBERT1 the average
SWER evidently becomes quite low with an average of 2.40%, which is considerably
lower than NorBERT1’s result for combination 1. For this combination of parameters
and this model it appears that most sources contributing to the metric have been filtered
out, which is not desirable for a metric intended for evaluation. In this case, the metric
has arguably become too lenient.

For the two remaining models, the addition of the binary step function exhibits
behaviour quite similar to when it was introduced by itself, as it increases the average
SWER slightly for NorBERT2 and decreases the average SWER slightly for NB-BERT.
This combination of parameters seems to give more promising results with NorBERT2
and NB-BERT than for NorBERT1, however, it is still arguable that the combination of
parameters generally makes the metric too lenient.

6.2 Correlation

For all BERT models and all parameters, including the two parameter combinations, the
SWER scores’ correlation with the regular word error rate of the same sentences has
been calculated. In addition, the correlation with case insensitive WER was calculated.
Finally, in an attempt to uncover how well SWER as a metric matches the human opin-

60 Results

ion of semantic distance, the SWER scores’ correlation with HWER, a metric based on
survey data, is calculated. The correlation metric used is the Kendall rank correlation
coefficient, which returns a value from -1 to +1, where -1 indicates a perfect negative
relationship and +1 indicates a perfect positive relationship.

6.2.1 Word Error Rate

The first metric SWER is compared to is the word error rate. As mentioned in sec-
tion 5.5, a perfect positive relationship between the two metrics is not desired, as the
motivation behind SWER is to provide an alternate metric to WER that contributes
with different insights on the quality of transcripts. A perfect negative relationship is
not necessarily desired either, as we want the metrics to act independent from one an-
other to some degree.

Case Sensitive

From computing the correlation between SWER and WER, the results generally indi-
cate a quite strong correlation between the two metrics. The correlation between SWER
and case sensitive WER for all Norwegian BERT models and parameters can be seen
in Table 6.5.

The results vary, with the lowest correlation with WER stemming from NorBERT1
with combination 2 of parameters applied. This model and parameter combination
resulted in a correlation of +0.25, which indicates a slight correlation between the two
metrics. On the contrary, NorBERT1 with default parameters for SWER ended up
with a correlation of +0.78, indicating a significantly strong relationship with the WER
metric.

Ranging from +0.25 to +0.78, it is apparent that SWER generally correlates well
with WER. A positive correlation between the two metrics can be interpreted as the
semantic distance of sentences increases as a consequence of the amount of incorrect
words in a sentence. Sensibly, the more incorrect words in a transcript, the further the
semantics of the transcript shift.

Looking at the choice of parameters, default SWER has a notably high correlation
with WER for all models. This result is expected to some degree as the metrics are cal-
culated similarly. It is when parameters are applied that the correlation decreases. As
SWER attempts to provide distinct insight into the quality of transcripts, these param-
eters might contribute to providing a different perspective when evaluating transcripts.

6.2 Correlation 61

NorBERT1 NorBERT2 NB-BERT

Default +0.78 +0.73 +0.72
Case Insensitive +0.59 +0.60 +0.60
No Punctuation +0.61 +0.59 +0.59
Stop Words +0.59 +0.57 +0.57
Binary Step +0.28 +0.59 +0.56
Combination 1 +0.41 +0.41 +0.41
Combination 2 +0.25 +0.36 +0.37

Table 6.5: SWER correlation with WER.

NorBERT1 NorBERT2 NB-BERT

Default +0.62 +0.72 +0.76
Case Insensitive +0.87 +0.85 +0.85
No Punctuation +0.41 +0.45 +0.50
Stop Words +0.55 +0.61 +0.64
Binary Step +0.26 +0.73 +0.73
Combination 1 +0.62 +0.62 +0.62
Combination 2 +0.37 +0.51 +0.53

Table 6.6: SWER correlation with case insensitive WER.

Case Insensitive

As we alter the WER metric to be case insensitive, the correlation with SWER shifts in
value as well. The most noticeable difference is that case insensitive SWER carries a
remarkably high correlation with case insensitive WER. It is expected that the metrics
correlate better when both are case insensitive, however, a correlation of +0.87 for case
insensitive NorBERT1 indicates that the metrics ultimately offer the same insight.

The correlation between default SWER and WER experiences an unsurprising de-
crease as case insensitivity is applied to WER.

Generally, an increase for most parameters and models can be observed as a result
of ignoring case for WER. This may be an indication of WER punishing capitalisation
errors heavily.

6.2.2 Human Word Error Rate
As described in subsection 5.5.2, a survey was created containing 29 sentence pairs in
attempt to capture the human opinion of semantic distance between the sentence pairs.
The survey received 40 responses, where each respondent evaluated an average of 20.4
sentence pairs, resulting in a total of 817 ratings.

The scores from the survey results were processed to match the shape of our SWER

62 Results

Correlation

NorBERT1 +0.34
NorBERT2 +0.36
NB-BERT +0.36

Table 6.7: SWER correlation with human word error rate.

metric, then the semantic word error rate was computed for the sentences for each of
our Norwegian BERT models. The human word error rate, along the semantic word
error rates for the first 10 sentence pairs can be viewed in Table 6.8. The remaining
sentences’ HWER and SWER can be found in section A.2 Note that the semantic word
error rate has been computed with the default parameters, meaning the punctuation is
not ignored and the sentences are case sensitive. To

An observation from the survey results is that as little as one word can strongly
effect people’s interpretation of a sentence’s meaning. This is often quite valid, as a
sentence’s meaning can often change entirely because of a single word, an example
being the presence of the word “not” which can negate a sentence, potentially altering
it to mean something entirely opposite.

An example sentence pair from the survey that highlights the strength of human
interpretation and the weakness of a computational approach can be seen here:

Automatically generated transcript:
Det er ikke søtt og møtet hevet.

Gold label:
det er ikke sett. og møtet

This sentence pair resulted in a human word error rate of 66.4%, meaning people
found the sentences to be highly unrelated in meaning. With SWER, this sentence
pair scored 20.95% with NorBERT1, 24.87% with NorBERT2, and 36.54% with NB-
BERT. Even though these error rates are considerably high, they are significantly lower
than human word error rate of 66.4%.

This exact sentence pair may function as an argument against our metrics’ word-for-
word approach in counting semantic distance, as humans rather evaluate the semantic
distance between sentences by comparing them on sentence-level, instead of compar-
ing one word at a time. This sentence pair would also achieve a lower SWER with
punctuation excluded, as the absence of a full stop in the automatically generated tran-
script causes a one-off error, where the wrong words are being compared to each other

6.3 Sentence Analysis 63

after it.
For our 29 selected sentences, the correlation between their SWER and HWER can

be seen in Table 6.7. The results present a slight correlation between SWER and HWER
for all three BERT models, ranging from +0.34 to +0.36. This suggest a moderately
positive correlation between metrics, indicating a discernible relationship between the
values of the two. However, a correlation below +0.50 does not indicate a remarkably
strong correlation between the metrics.

It is crucial to emphasise that these exact results are based on a small sample size.
The insights derived from this correlation coefficient would likely be more valuable if
the survey data consisted of more sentence pairs and more responses.

6.3 Sentence Analysis

So far, the metric has been evaluated with quantitative approaches, depicting the met-
ric’s performance in different scenarios using our implemented parameters, as well as
to what degree it correlates with other metrics. Further, we delve deeper into the met-
ric, attempting to gain a deeper understanding of its performance by running a small
set of sentences through the SWER function and investigating the results more closely.

Firstly, we divide our set of 553 sentence pairs into three groups. The three groups
represent sentences with a low SWER, sentences with a medium SWER, and sentences
with a high SWER. The low SWER group consists of sentences below a 15% SWER,
while the medium group consists of sentences above 15% and below or equal to 30%.
Finally, the high group contains all sentences above 30%.

The sentences were divided into groups for all different parameters, including the
parameter combinations, using all three BERT models. The resulting number of sen-
tences per group can be seen in Table 6.9. This table aims to provide a better picture
of the SWER distribution. For instance, one can observe that combination 2 of param-
eters results in a significantly low amount of sentences with a SWER above 30% with
only 6 sentences in that group.

6.3.1 Word Severity
To investigate the greatest contributors to sentences’ final semantic word error rate, we
print the three most severe words for three sentences in each of our sentence groups.
This is done with NorBERT1 using the default parameters. The results can be seen in
Table 6.10, Table 6.11, and Table 6.12. For each sentence pair, the highest contributor
to the SWER is displayed in the column labelled “1. word”, while the second and third
highest contributors are seen in the “2. word” and “3. word” columns respectively. If

64 Results

Transcript Gold Label HWER Nor1 Nor2 NB

Man otte og 20 år. mann åtteogtyve år. 49.6% 35.94% 55.64% 61.72%

Olaug Nilssen horn er
hustra med at jeg har
på den nasjonale cc,
og hun har nettopp
satt opp et stykke som
heter stort og stygt.

Olaug Nilssen hun er
husdramatiker på Den
Nationale Scene. hun
har nettopp satt opp et
stykke som heter og
Stort og stygt

37.2% 30.83% 38.03% 48.61%

I dag jobber hun 20 %,
er 80 % sykmeldt, og
hun er ikke ulykkelig,
men hun er sliten .

i dag jobber hun tjue
prosent er åtti prosent
sykemeldt. hun er ikke
ulykkelig men hun er
sliten.

12.6% 33.18% 43.74% 53.67%

Kanskje hvert 10. kanskje hvert tiende 4.8% 29.53% 33.82% 44.52%

Har vi gitt forstår slakk
til kommunene?

har vi gitt for stor slack
til kommunene

57.6% 29.71% 33.82% 38.75%

Det er ikke søtt og
møtet hevet.

det er ikke sett. og
møtet

66.4% 20.95% 24.87% 36.54%

Er at jeg har en hy-
potese og den hypote-
sen gruer på .

er at jeg har en hy-
potese. og den hy-
potesen går ut på

55.6% 22.69% 26.37% 30.82%

Det semi der det
fungerer, så tar spe-
sialisthelsetjenesten
en aktiv rolle veiled-
ningsrolle.

det ser vi. der det fun-
gerer så tar spesialis-
thelsetjeneste en aktiv
rolle veiledningsrolle.

51.8% 40.82% 46.38% 56.82%

Elektroniske fag-
prosedyre for tidlig og
intensiv behandling
basert på atferdsanal-
yse det som nå har
fått navnet eibi og
dette vil og bli publis-
ert på helsebiblioteket
i våren tjuesytten, og
det er jo et felles.

elektronisk fag-
prosedyre for tidlig og
intensiv behandling
basert på atferdsanal-
yse det som nå har
fått navnet EIBI. og
dette vil òg bli publis-
ert på Helsebiblioteket
våren tjuesytten og
det er jo et felles

17.2% 17.98% 22.84% 27.49%

Men det kommer i en
dialog ved hjelp av
pasient og brukerom-
budene som nå og
har et ansvar innenfor
dette området.

ned men komme i
en dialog ved hjelp
av pasient - og
brukerombudene som
nå òg har et ansvar
inn forbi dette om-
rådet her.

46.4% 25.13% 31.97% 38.75%

Table 6.8: Results for the first 10 sentences from human word error rate (HWER) survey. Where Nor1,
Nor2, and NB stand for respectively NorBERT1, NorBERT2, and NB-BERT.

6.3 Sentence Analysis 65

Parameter Model < 15% 15% < & ≤30% > 30%

Default
NorBERT1 489 41 23

NorBERT2 455 67 31

NB-BERT 419 95 39

Case insensitive
NorBERT1 512 21 20

NorBERT2 482 48 23

NB-BERT 451 74 28

No punctuation
NorBERT1 503 27 23

NorBERT2 506 25 22

NB-BERT 483 42 28

Stop words
NorBERT1 455 63 35

NorBERT2 383 116 54

NB-BERT 344 140 69

Binary step
NorBERT1 516 27 10

NorBERT2 424 90 39

NB-BERT 421 89 43

Combination 1
NorBERT1 526 7 20

NorBERT2 522 12 19

NB-BERT 505 22 26

Combination 2
NorBERT1 533 14 6

NorBERT2 512 19 22

NB-BERT 503 27 23

Table 6.9: Number of sentences in certain SWER ranges.

66 Results

Transcript Gold Label 1. word 2. word 3. word

Sønnen vår er
språkløs.

sønnen vår er
språkløs

"Sønnen" -
"sønnen"

Kommunen
vår har ingen
kunnskap om
alibi.

kommunen
vår har ingen
kunnskap om
EIBI tidligere

"alibi" - "EIBI" "." - "tidligere" "Kommunen" -
"kommunen"

Hvem skal ha
ansvaret?

hvem skal ha
ansvaret.

"?" - "." "Hvem" -
"hvem"

Table 6.10: Most severe word pairs for three low SWER sentences with NorBERT1 and default param-
eters.

Transcript Gold Label 1. word 2. word 3. word

Og noen
steder?

og noen steder "?" - "" "Og" - "og"

Stor ruiter vær
så god presi-
dent.

de Ruiter vær
så god. presi-
dent

"ruiter" -
"Ruiter"

"Stor" - "de" "" - "."

Og så dårlige
holdninger.

også dårlige
holdninger

"Og" - "" "så" - "også"

Table 6.11: Most severe word pairs for three medium SWER sentences with NorBERT1 and default
parameters.

there are fewer than 3 errors for a pair of sentences, the row may contain some blank
cells.

Since there were so few sentences for NorBERT1 with combination 2 of parameters
in the high SWER group, the three most severe words for all six of its sentences were
printed. This is to investigate what separates these high SWER sentence pairs from the
rest for this combination. The results are displayed in Table 6.13.

For the most severe errors for sentences from the low SWER group with NorBERT1
in Table 6.10, the results correspond well with our expectations. Most of the contrib-
utors to the SWER scores in general seem to be capitalisation errors and erroneous
punctuation. For the second sentence, the error producing the highest cosine distance
is the comparison of the word “alibi” with the named entity “EIBI”, which is a desired
behaviour as these two words refer to very different things. The second highest con-
tributor to the error rate is the comparison of a full stop with the word “tidligere”. The
comparison of these two tokens occurs as a consequence of the ASR system missing
the word “tidligere”, and it is reasonable that it is the second highest contributor to the
SWER of the sentences.

6.3 Sentence Analysis 67

Transcript Gold Label 1. word 2. word 3. word

Det er ruiter. de Ruiter "." - "Ruiter" "ruiter" - "de" "Det" - ""

Man otte og 20
år.

mann åtteog-
tyve år.

"20" - "åtteog-
tyve"

"otte" - "" "Man" - ""

Gutt, 17 år. gutt sytten år "17" - "sytten" "," - "gutt" "Gutt" - ""

Table 6.12: Most severe word pairs for three high SWER sentences with NorBERT1 and default param-
eters.

Looking at the medium SWER sentences in Table 6.11, the most severe words are
quite similar to the previously mentioned cases, as capitalisation and punctuation errors
seem to be a recurring theme. However, something to take notice of is the third sentence
pair. In this case the ASR system has transcribed the word “også” as two separate
words, “og” and “så”. This word separation ultimately results in producing two errors,
and since the sentence is relatively short, the SWER ends up being considerably high.
Arguably, the SWER for this sentence pair should be much lower as the sentences share
the exact same meaning.

For our final group with default parameters, seen in Table 6.12, the high SWER
group, we witness some different cases of behaviour. For the first sentence pair, the
ASR system has mistaken “de”, which is a part of a surname, as “Det er”. This is a
quite considerable error, and due to the short length of the sentence it produces a high
SWER which can be considered reasonable. The next sentence is also short, which
means less errors are needed to produce a high SWER. For this sentence pair, the ASR
system makes a significant error in parsing the number “åtteogtyve”, dividing it into
three words, “otte”, “og”, and “tyve”. The word “otte” is considerably distant from
the number “åtte” so it can be argued that the metric performed well in evaluating this
transcript. The final sentence pair in this group is identical in meaning, yet resulted
in a high SWER. This is partly due to the presence of a comma causing some slight
misalignment. However, the biggest contributor to the error rate appears to be the word
pair of “17” and “sytten”, which is clearly undesirable behaviour as “sytten” is just the
number 17 spelled out in written form. The high cosine distance between the word
embeddings for these two tokens underline the importance of model selection, as the
cosine distance between these should be remarkably lower.

As combination 2 of parameters with NorBERT1 only resulted in 6 sentences with
a SWER above 30%, we investigate these more closely to see why they achieved a
noticeably higher SWER than the others. The results are displayed in Table 6.13. The
two first sentence pairs are the same as in Table 6.12. The remaining ones have clearly
produced a high SWER as a consequence of short sentence length and faulty alignment

68 Results

Transcript Gold Label 1. word 2. word 3. word

Man otte og 20
år.

mann åtteog-
tyve år.

"20" - "åtteog-
tyve"

"otte" - "" "Man" - ""

Gutt, 17 år. gutt sytten år "17" - "sytten" "Gutt" - ""

Anette drang-
sholt, som er
leder i autisme-
foren.

Annette Drang-
sholt som er
leder i Autisme-
foren

"drangsholt" -
"Annette"

"autismeforen"
- ""

"Annette" - ""

Utvalget fores-
lår 8.

Utvalet foreslår ""Utvalget" -
"utvalet"

"8" - ""

Anders. Andersen "Anders" - ""

Ja. hevet "Ja" - ""

Table 6.13: Most severe word pairs for high SWER sentences with combination 2 of parameters and
NorBERT1 as model

.

of the transcripts. This strongly indicates that this choice of model and parameters
makes the metric too lenient, generally producing too low error rates.

6.3.2 Sentence Comparison

With the intentions of exploring the strengths and weaknesses of the semantic word er-
ror rate, we conduct a series of experiments on a small selection of sentences. First
we test the results SWER produce when evaluating completely unrelated sentences.
Further, we investigate the semantic word error rates of some artificially produced sen-
tences to potentially highlight some limitations and strengths of the metric.

Random Sentences

To test the strictness of SWER as a metric, we calculate the SWER of two random
sentences once for each BERT model. This is done to develop a better understanding
of what value the metric returns for sentences that are seemingly unrelated. Addition-
ally, the sentences are tested with binary step applied to see whether the function will
contribute to increasing or decreasing the error rate.

NorBERT1 Random Transcript:
Sentence 1: Den gir en unik innsikt i det å både være foreldre.
Sentence 2: men problemet er volum og kapasitet.

6.3 Sentence Analysis 69

The first pair of random sentences is a clear example of two sentences that should
ideally result in a high SWER as they are evidently unrelated and semantically distant.
The word error rate for these sentences is 100%, meaning no tokens are the same. On
the contrary, the SWER for the sentences is 33.02%. For two completely unrelated
sentences, this error rate is arguably too low. With binary step applied as an activation
function, the error rate is reduced 8.34%, which is undeniably an undesired behaviour
in this case.

NorBERT2 Random Transcript:
Sentence 1: statsråd Høie vær så god.
Sentence 2: Der oppstår det fryktelig mye konflikter ofte.

This next example also produced two strongly unrelated sentences, with a word
error rate of 100%. This sentence pair produces a SWER of 44.37%, which is a slight
improvement from the previous sentence pair. However, this still indicates that the
metric is too lenient when evaluating highly dissimilar transcripts. With binary step
applied, the SWER experiences a notable reduction to 37.50%.

NB-BERT Random Transcript:
Sentence 1: Habiliteringstjenesten forteller at brukere.
Sentence 2:Det opereres med ulike tall på forekomst av autisme, men cirka 1 % av
befolkningen har autisme.

Our final example consists of yet another sentence pair that results in a word error
rate of 100%. The SWER for these sentences is 80.90%, which is significantly better
than the previous examples considering the semantic word error rate should be high for
unrelated sentences. With binary step applied, the SWER increases to 94.73%.

These three random sentence pairs combined suggest that the SWER may be too
lenient, producing error rates lower than desired for sentences that are critically differ-
ent. A potential fix to this could be an alternate activation function, similar to what we
discussed in subsubsection 6.1.1, which punishes cosine distances more heavily.

The results from this experiment make a strong case for why the SWER should not
be considered as a replacement for the traditional WER, but rather as a supplement.

70 Results

Artificially Produced Sentences

Continuing, we test SWER on our set of three artificially produced sentences. These
sentences were crafted with the intention of exploring edge case behaviour of the met-
ric. The first sentence pair in our mock data aims to highlight the consequence of a
negation being mistaken for another word, heavily altering the semantics of the sen-
tence.

These artificially produced sentences are tested with SWER using default settings
and NorBERT2 as choice of model. The choice of model is somewhat arbitrary. How-
ever, so far, NorBERT2 has seem to produce fairly balanced results, making it a viable
choice for this short series of experiments.

Artificial Sentence Pair 1:
Sentence 1: Det var virkelig en bra dag.
Sentence 2: Det var ikke en bra dag.

This sentence pair results in a SWER of 4.35% which is due to only one word being
dissimilar in the sentences. However, the desired behaviour would be a far higher
SWER, seeing as the two sentences have quite the opposite meaning from each other.

The next sentence pair is intended to find out what the SWER is for two sentences
that are worded quite differently but essentially share the same meaning. The sentences
are intended to consist of a large amount of synonyms sharing the same index, to see
what the semantic word error becomes when the sentences consist of syntactically dif-
ferent, yet semantically close, words.

Artificial Sentence Pair 2:
Sentence 1: Kjøretøyet suste unna i høy fart.
Sentence 2: Bilen kjørte vekk i enorm hastighet.

These two sentences have a word error rate of 71.42%, meaning almost all the
tokens are different from each other. The SWER for the sentences is 20.12% which
is much less than the WER, meaning SWER successfully captures some similarity
between them. It is worth noting that with binary step applied, the SWER is 0.00%.
However, as observed with the randomly selected sentences, the binary step may seem
to often reduce cosine distances more than desired.

The final mock sentence-pair intends to depict a one-off error, where due to the
absence of a comma, the wrong words are being compared for a large part of the sen-

6.4 Summary 71

tences.

Artificial Sentence Pair 3:
Sentence 1: På fredag , så dro jeg ikke på jobb fordi jeg var syk.
Sentence 2: På fredag så dro jeg ikke på jobb fordi jeg var syk.

After the first two tokens, one sentence is shifted as a consequence of the presence
of a comma. This causes the word “dro” to be compared to “jeg”, and “jeg” to “ikke”,
etc. The SWER for this sentence pair is 30.23%, which would desirably be lower as
the sentences basically have identical meanings. This example sentence-pair makes
a good argument for why a sentence-level approach may be better than our current
word-for-word comparison.

6.4 Summary

This chapter has presented average semantic word error rates when using different
BERT models, as well as the effect of including various combinations of parameters.
Additionally, to gain a deeper understanding of the metrics’ behaviour, we computed
its correlation with regular word error rate, case insensitive word error rate, and our
survey based human word error. Furthermore, and to investigate the results closer, we
then grouped the sentences by their semantic word error rate for all model and param-
eter combinations and looked into what words contribute to increasing the error rate.
Finally, we test the metric on a set a of random unrelated sentences, as well as some ar-
tificially produced sentences, to explore the metrics’ behaviours in some scenarios one
could consider as edge cases.

72 Results

Chapter 7

Discussion and Conclusion

Throughout this thesis, the development and evaluation of the Semantic Word Error
Rate (SWER) as a tool for evaluating automatic Speech Recognition (ASR) systems
have been at the forefront. The objective was to extend upon the existing Word Er-
ror Rate (WER) metric to implement the aspect of taking semantic information into
consideration.

This chapter aims to discuss the implications of the results, including the effects of
the parameters, the limitations of the metrics, and some potential areas of improvement.
Finally, the thesis is concluded by summarizing how we adressed the research questions
we set out to explore.

7.1 Discussion

The results show that average semantic word error rates for our dataset varies greatly
dependent on choice of model and parameters. Fortunately, the metric offers flexibil-
ity over these choices, as the choice of BERT model is provided to the metric, while
parameters are optional.

Additionally, when analysing the results on sentences closely, some weaknesses of
the metric became clear, as well as its limitations which have effected the outcomes of
the results.

7.1.1 Difference in Model Performance

As the metric builds upon the cosine distances between the word embeddings produced
by the provided BERT model, selection of BERT model can effect SWER’s output
greatly. On a general level, it is apparent that NorBERT1 produces the lowest semantic
word error rates, while NB-BERT tends to produce the highest.

74 Discussion and Conclusion

Both multilingual models we tested, XLM-RoBERTa and S-BERT, produced sig-
nificantly lower error rates in average, where XLM-RoBERTa resulted in a remarkably
low average SWER for the dataset. It is important to underline that the goal of the
metric is to accurately evaluate transcripts, not achieve a low error rate, meaning these
results should not necessarily be interpreted as positive. However, they contribute to
highlighting the importance of model selection when using the metric.

7.1.2 Parameters
For the sake of both experimentation and increasing the usability of the metric, a set
of parameters were implemented. The three first parameters, which are stop word re-
moval, punctuation exclusion, and case insensitivity, all have in common that they ma-
nipulate the textual input before the metric is computed. These parameters are not
strictly necessary from a user point of view, as the user can always simply manipulate
the textual input on their own before applying the metric. However, the inclusion of
these parameters is interesting from an experimental point of view, as they allow us to
observe how they ultimately alter the output of the metric.

When enabling case insensitivity or punctuation exclusion, the average SWER will
naturally decline, as the parameters relax the strictness of the metric. On the contrary,
removing stop words from the transcript tends to increase the SWER for transcripts.
This occurs as a result of the fact that for every word pair removed from the transcripts,
the length the sum of the cosine distances is divided by is reduced by one. An alternate
implementation that may be explored, is making the metric divide the sum of the cosine
distances by the original sentence length, i.e. before the removal of stop words.

A strength of the stop word parameter, is the fact that the list of stop words must be
supplied by the user. This effectively makes the parameter function as a filter, where
the user may supply a list of words they wish the metric to disregard.

The final parameter, the option for including an activation function, enables the user
to alter the values of the cosine distances before the final computation of the metric
occurs. The experimentation of applying the binary step as activation function did not
produce any remarkable results, however, the flexibility the parameter offers to the user
can still be of great value as other activation functions may produce more promising
results.

7.1.3 Weaknesses
As mentioned, the qualitative sentence analysis underlined some current weaknesses of
the semantic word error rate. There are two main weaknesses, that would improve the

7.1 Discussion 75

metric significantly if addressed. The first one being that the metric seems to be too
lenient in its error rates, and the second one being the aspect of it comparing one pair
of words at a time.

Lenience

The first issue with the metric, is that it rarely will approach an error rate of 100%. For
a sentence pair to achieve a SWER this high, every word pair’s embeddings produce
a cosine distance of 1.00 between them, which is highly unlikely. To compensate for
this, implementing a weighting of cosine distances could potentially improve the range
of the metric. This could alternatively be achieved through the activation function
parameter by supplying a function that increases the cosine distances.

An observation to be made when looking at the results of human word error rate on
the sentences in Table 6.8, is that the respondents may punish sentences heavily for a
single error if they consider that error to drastically alter the semantics of the sentence.
A good example for this is the fifth sentence pair in Table 6.8, where the presence of
the word “slakk” in place of “slack” results in a HWER of 57.6%. If the SWER metric
wishes to strive towards matching human opinion of semantic distance, this type of
strictness should somehow be reflected in the metric.

Word for Word Comparison

Another weakness of the metric lies in the implementation, as sentences are evaluated
by comparing word pair for word pair. This implementation builds on the assumption
that corresponding words exist at the same index in the sentence pairs. This assump-
tion makes the metric quite error prone, as transcripts may often be misaligned to some
degree as we experienced with our data. Additionally, ASR systems may often miss
a word, or a comma for example. This may cause the transcriptions that are being
compared to eventually become misaligned by one token, causing the wrong word em-
beddings to be compared to each other.

A potential approach to addressing this issue is by using S-BERT which possesses
the ability to compute sentence embeddings. The application of S-BERT was explored
to a small degree in subsection 4.2.1. However, using S-BERT in combination with our
implemented parameters was left out of the scope of this thesis, meaning the viability
of this is currently left unexplored.

76 Discussion and Conclusion

7.1.4 Limitations
Along the course of this thesis, some limitations were met, effecting the final results to
some degree. These limitations are presented here, as well as improvements that could
be made to potentially overcome these.

Data Limitations

A quite severe limitation that arose for this project, was the lack of automatically gen-
erated transcripts, that occurred as a result of errors on behalf of the 3rd party speech
to text provider. Due to sheer size of the audio files, generating the transcripts was a
time consuming process, which often ended up being interrupted, ultimately hindering
our gathering of data. Fortunately, one audio file was able to be transcribed, providing
us with enough data to produce some meaningful results.

Another limitation, though less severe, is the fact that the transcripts were divided
into sentences dependent on the placement of punctuation in the automatically gener-
ated transcripts during the data pre-processing. As a consequence of this, whenever
the ASR system misplaces punctuation in the automatic transcripts, the corresponding
gold label sentence will be unnaturally split. An arguably better approach would be
to divide the transcripts into sentences based on the punctuation in the gold label tran-
scripts, as the quality of these transcripts are assured and represent what the automatic
transcripts strive to match in quality.

The final limitation within the domain of our data, is the amount of data collected
by our survey for the human word error rate metric. Optimally, we would collect more
survey data from more respondents on a broader span of sentences. However, due to
a limited time span, only data from 40 respondents was collected. Fortunately, the
resulting sample size is still of considerable size, enabling the representation of human
opinion to some degree.

Alignment

In our pre-processing of the data, we attempt to align two considerably large transcripts
at once. The outcome is quite satisfactory, yet it is evident for some sentence pairs that
they are misaligned. For these sentence pairs we then experience the issues mentioned
in subsubsection 7.1.3, where the wrong words are being compared.

To address this, other approaches to aligning transcripts could be explored. For
example, in the function for SWER, after equalising the lengths of the sentences, an
alignment function could be called to apply alignment on a sentence level, in contrast
to applying it to our entire dataset at once.

7.2 Conclusion 77

7.2 Conclusion

This thesis has sought to address a set of research questions related to the development
and evaluation of the semantic word error rate, which we will address now.

• RQ1: How does semantic-WER compare to other existing metrics for evaluating
transcripts?

• RQ2: How can semantic-WER be evaluated and validated against human judge-
ments of semantic similarity or relatedness?

• RQ3: How does the performance of semantic-WER compare when using differ-
ent models for semantic representation?

For the first research question, we explored the correlation between SWER and the
traditional WER. The results can be seen in Table 6.5, indicate a strong correlation
between the two metrics, which is likely a result of the fact that the implementation of
SWER is heavily built upon WER’s. To compare the two, they still represent different
aspects of quality when evaluating transcripts as WER has a syntactical focus, while
SWER has a semantic focus.

Ideally, these metrics should be used in combination to depict different perspectives
of the transcripts’ quality. For example, if a sentence pair results in a low WER, but
a high SWER, it may be an indication of the presence of a few, yet critical errors. On
the contrary, a high WER combined with a low SWER may indicate the presence of
several trivial errors.

The second research question was explored by the creation of a survey, collecting
ratings from humans on how close they perceived sentences to be semantically. Though
these opinions are undeniably due to subjectivity, by aggregating them and making
them match the shape of SWER with some processing, we are able to compare the
results of our metric with the judgement of humans. Ultimately, the results show that
there is some correlation between SWER and the results of human judgement.

For our final research question, we have explored how the resulting semantic word
error rates differ when different BERT models are applied. The results show that the
error rates may differ significantly dependent on model choice, where some models
may generally produce lower cosine distances, while others generally will produce
higher ones. Therefore, it is of importance to make a conscious decision in choice of
BERT model when utilising the SWER metric.

78 Discussion and Conclusion

7.3 Future Work

As this thesis has built a foundation for the semantic word error rate, further work
remains to improve the applicability of the metric.

The first aspect of the metric with a significant potential for improvement is address-
ing the issue with the word-for-word comparison mentioned in subsubsection 7.1.3.
This could be achieved by utilising a sentence-level approach, such as S-BERT, or per-
haps exploring more advanced approaches for sentence alignment.

A natural next step for the metric would be to develop an interface for it. As of now,
the function for the metric exists inside a Python Notebook, which is not optimal for
usability. A clear improvement would be to develop a command line interface where
the user e.g. selects a BERT model and provides sentences as input and receives the
SWER as output. This command line tool could also benefit from integrating other
evaluation metrics to create a comprehensive evaluation framework for ASR systems.

Appendix A

Appendix

A.1 NPSC Train-Test-Evaluation split

Table A.1 contains an overview of which folders belong to which data split when di-
viding the dataset into a train-test-evaluation split.

A.2 HWER

In Table A.2, Table A.3 and Table A.4, are all sentences from the Human Word Error
Rate survey, along with their sentence ID, HWER, and SWERs for each of the three
Norwegian BERT models.

Split Folder names

Train

20170110, 20170208, 20170215, 20170216, 20170222,
20170314, 20170322, 20170323, 20170403, 20170405,
20170419, 20170426, 20170503, 20170510, 20170516,
20170613, 20170615, 20171007, 20171012, 20171018,
20171024, 20171208, 20171211, 20180316, 20180321,
20180404, 20180410, 20180411, 20180601, 20180613,
20180615

Test 20171219, 20180530, 20171122, 20170207
Evaluation 20180611, 20180201, 20170209, 20180307, 20180109

Table A.1: Distribution of train-test-evaluation data in NPSC dataset.

80 Appendix

ID Transcript Gold Label HWER Nor1 Nor2 NB
1 Man otte og 20 år. mann åtteogtyve år. 49.6% 35.94% 55.64% 61.72%
2 Olaug Nilssen horn

er hustra med at
jeg har på den
nasjonale cc, og
hun har nettopp
satt opp et stykke
som heter stort og
stygt.

Olaug Nilssen hun
er husdramatiker
på Den Nationale
Scene. hun har
nettopp satt opp et
stykke som heter
og Stort og stygt

37.2% 30.83% 38.03% 48.61%

3 I dag jobber hun 20
%, er 80 % syk-
meldt, og hun er
ikke ulykkelig, men
hun er sliten.

i dag jobber hun
tjue prosent er åtti
prosent sykemeldt.
hun er ikke ulykkelig
men hun er sliten.

12.6% 33.18% 43.74% 53.67%

4 Kanskje hvert 10. kanskje hvert tiende 4.8% 29.53% 33.82% 44.52%
5 Har vi gitt forstår

slakk til kom-
munene?

har vi gitt for stor
slack til kom-
munene

57.6% 29.71% 33.82% 38.75%

6 Det er ikke søtt og
møtet hevet.

det er ikke sett. og
møtet

66.4% 20.95% 24.87% 36.54%

7 Er at jeg har en hy-
potese og den hy-
potesen gruer på.

er at jeg har en hy-
potese. og den hy-
potesen går ut på

55.6% 22.69% 26.37% 30.82%

8 Det semi der det
fungerer, så tar
spesialisthelsetjen-
esten en aktiv rolle
veiledningsrolle.

det ser vi. der det
fungerer så tar spe-
sialisthelsetjeneste
en aktiv rolle veiled-
ningsrolle.

51.8% 40.82% 46.38% 56.82%

9 Elektroniske fag-
prosedyre for tidlig
og intensiv behan-
dling basert på
atferdsanalyse det
som nå har fått
navnet eibi og dette
vil og bli publisert
på helsebiblioteket i
våren tjuesytten, og
det er jo et felles.

elektronisk fag-
prosedyre for tidlig
og intensiv be-
handling basert
på atferdsanalyse
det som nå har
fått navnet EIBI.
og dette vil òg bli
publisert på Helse-
biblioteket våren
tjuesytten og det er
jo et felles

17.2% 17.98% 22.84% 27.49%

Table A.2: Results for sentences 1 to 9 from human word error rate (HWER) survey.

A.2 HWER 81

ID Transcript Gold Label HWER Nor1 Nor2 NB
10 Men det kommer

i en dialog ved
hjelp av pasient og
brukerombudene
som nå og har et
ansvar innenfor
dette området.

ned men komme i
en dialog ved hjelp
av pasient - og
brukerombudene
som nå òg har et
ansvar inn forbi
dette området her.

46.4% 25.13% 31.97% 38.75%

11 Lyset i tunnelen
er nettopp at vi
har denne kom-
petansen.

lyset i tunnelen
er nettopp at vi
har denne kom-
petansen

98.0% 7.59% 8.48% 9.16%

12 Der oppfølging
av våre innbyg-
gere med autisme
fungerer preges
denne høy kom-
petanse fra spe-
sialisthelsetjen-
esten og kom-
munene.

der oppfølging av
våre innbyggere
med autisme fun-
gerer preges den
av høy kompetanse
fra spesialis-
thelsetjenesten og
kommunene

81.6% 18.42% 23.16% 28.07%

13 Hun sier jeg er vok-
sen.

hun sier. jeg er vok-
sen.

63.0% 26.25% 37.41% 46.38%

14 Læreren min lytter
til meg og la meg
tenke , selv om jeg
tenker seint.

læreren min lytter
til meg og lar meg
tenke selv selv om
jeg tenker seint.

80.0% 5.9% 6.71% 7.76%

15 Jeg ønsker meg en
jobb.

jeg ønsker meg en
jobb.

97.6% 5.81% 7.74% 3.19%

16 Jeg har hatt 17
forskjellige arbei-
dsgivere , kommer
i konflikt og forstår
dårlig kollegaene
mine.

jeg har hatt sytten
forskjellige arbei-
dsgivere kommer i
konflikt og forstår
dårlig kollegaene
mine.

81.4% 29.14% 37.08% 43.4%

17 Jeg har reist fra 3
samboer og 5 barn.

jeg har reist fra tre
samboere og fem
barn.

85.20% 13.08% 11.62% 9.84%

18 Kommunen vår har
ingen kunnskap om
alibi.

kommunen vår har
ingen kunnskap om
EIBI tidligere

29.2% 14.67% 15.02% 17.24%

Table A.3: Results for sentences 10 to 18 from human word error rate (HWER) survey.

82 Appendix

ID Transcript Gold Label HWER Nor1 Nor2 NB
19 Vi vurderer om vi

var rime og opp
familien si opp job-
ber og flytte til en
plass vi kan få hjelp
, og det vises vilje
til at det blir gitt tjen-
ester som vil gi ham
mulighet til utvikling
og språk.

vi vurderer om vi
må rive opp familien
si opp jobber og fly-
tte til en plass vi kan
få hjelp og det vises
vilje til at det blir
gitt tjenester som vil
gi han mulighet til
utvikling og språk.

56.6% 4.7% 6.75% 7.91%

20 Og det er stor vari-
asjon i hvordan
mennesker med
autisme fungerer i
hverdagslivet.

og det er stor vari-
asjon i hvordan
mennesker med
autisme fungerer i
hverdagslivet.

97.8% 3.26% 2.42% 2.75%

21 Det skjer allerede
en positiv utvikling i
noen kommuner.

det skjer allerede
en positiv utvikling i
noen kommuner.

97.0% 3.48% 2.43% 2.23%

22 Vi er nødt til å lære
mer av de som har
funnet gode mod-
eller og løsninger
fra mennesker med
sammensatte be-
hov.

vi er nødt å lære
mer av de som har
funnet gode mod-
eller og løsninger
for mennesker med
sammensatte be-
hov.

84.6% 5.15% 5.7% 7.08%

23 Denne debatten har
vi hatt med jevne
mellomrom de siste
årene , uten at vi
har kommet helt i
mål.

denne debatten har
vi hatt med jevne
mellomrom de siste
årene uten at vi har
kommet helt i mål.

96.0% 2.85% 4.85% 4.78%

24 Savner nok au eit
system for å sikre
kvalitet i tjenestene.

jeg savner nok au
et system for å sikre
kvalitet i tjenestene.

87.6% 31.39% 41.16% 58.55%

25 Bare å understreke
et par poeng.

jeg bare under-
streke et par
poeng.

64.0% 9.57% 10.01% 14.31%

26 De er det bare å
bruke, så jeg er
glad for det.

de er det bare å
bruke. så er jeg òg
glad for det

77.0% 21.02% 24.97% 31.17%

Table A.4: Results for sentences 19 to 26 from human word error rate (HWER) survey.

A.2 HWER 83

ID Transcript Gold Label HWER Nor1 Nor2 NB
27 Sak 2 er referat og

det foreligger ikke
referat, og dermed
er Dagens kart fer-
digbehandlet.

sak to er referat og
det foreligger ikke
referat og dermed
er dagens kart fer-
digbehandlet.

89.2% 5.6% 5.59% 6.7%

28 Berre 25 % av
utviklingshemma i
yrkesaktiv alder er i
jobb.

berre femogtjue
prosent av
utviklingshemma i
yrkesaktiv alder er i
jobb.

94.2% 8.19% 10.31% 10.61%

29 Er pappa til en
gutt på 6 år med
autisme.

jeg er pappa til en
gutt på seks år med
autisme.

81.4% 38.19% 46.57% 61.21%

Table A.5: Results for sentences 27 to 29 from human word error rate (HWER) survey.

84 Appendix

Bibliography

Abdi, H. (2007), The kendall rank correlation coefficient, Encyclopedia of Measure-
ment and Statistics. Sage, Thousand Oaks, CA, pp. 508–510. 5.5.1

Al-Rfou’, R., B. Perozzi, and S. Skiena (2013), Polyglot: Distributed word representa-
tions for multilingual NLP, in Proceedings of the Seventeenth Conference on Com-
putational Natural Language Learning, pp. 183–192, Association for Computational
Linguistics, Sofia, Bulgaria. 2.1.4

Arora, S., and R. Singh (2012), Automatic speech recognition: A review, International
Journal of Computer Applications, 60, 34–44, doi:10.5120/9722-4190. 2.2

Brown, T. B., B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakan-
tan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCan-
dlish, A. Radford, I. Sutskever, and D. Amodei (2020), Language models are few-
shot learners. 2.1.3

Conneau, A., K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmán,
E. Grave, M. Ott, L. Zettlemoyer, and V. Stoyanov (2020), Unsupervised cross-
lingual representation learning at scale. 2.1.4, 2.1.6

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova (2019), Bert: Pre-training of deep
bidirectional transformers for language understanding. 2.1.3, 2.1.4, 2.1.4, 2.1.5,
2.1.6, 2.1.6

Errattahi, R., A. El Hannani, and H. Ouahmane (2018), Automatic speech recognition
errors detection and correction: A review, Procedia Computer Science, 128, 32–37,
doi:https://doi.org/10.1016/j.procs.2018.03.005, 1st International Conference on
Natural Language and Speech Processing. 2.4.1

Goldberg, Y. (2015), A primer on neural network models for natural language process-
ing. 2.4.2

86 BIBLIOGRAPHY

Goodfellow, I., Y. Bengio, and A. Courville (2016), Deep learning, MIT press. 2.1.3

Graves, A., S. Fernández, F. Gomez, and J. Schmidhuber (2006), Connectionist tempo-
ral classification: Labelling unsegmented sequence data with recurrent neural ’net-
works, pp. 369–376, doi:10.1145/1143844.1143891. 2.2.1

Hinton, G., L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Van-
houcke, P. Nguyen, T. N. Sainath, and B. Kingsbury (2012), Deep neural networks for
acoustic modeling in speech recognition: The shared views of four research groups,
IEEE Signal Processing Magazine, 29(6), 82–97, doi:10.1109/MSP.2012.2205597.
2.2.1

Hochreiter, S., and J. Schmidhuber (1997), Long short-term memory, Neural computa-
tion, 9, 1735–80, doi:10.1162/neco.1997.9.8.1735. 2.1.3

Hrinchuk, O., M. Popova, and B. Ginsburg (2020), Correction of automatic speech
recognition with transformer sequence-to-sequence model, pp. 7074–7078, doi:10.1
109/ICASSP40776.2020.9053051. 2.3

Jurafsky, D., and J. Martin (2008), Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics, and Speech Recogni-
tion, vol. 2. 2.1.3

Kendall, M. G. (1938), A new measure of rank correlation, Biometrika, 30(1/2), 81–93.
5.5

Kummervold, P. E., J. De la Rosa, F. Wetjen, and S. A. Brygfjeld (2021), Operational-
izing a national digital library: The case for a Norwegian transformer model, in
Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaL-
iDa), pp. 20–29, Linköping University Electronic Press, Sweden, Reykjavik, Iceland
(Online). 2.1.6

Kutuzov, A., J. Barnes, E. Velldal, L. Øvrelid, and S. Oepen (2021), Large-scale con-
textualised language modelling for Norwegian, in Proceedings of the 23rd Nordic
Conference on Computational Linguistics (NoDaLiDa), pp. 30–40, Linköping Uni-
versity Electronic Press, Sweden, Reykjavik, Iceland (Online). 2.1.6

Li, B. (2013), Distance weighted cosine similarity measure for text classification, doi:
10.1007/978-3-642-41278-3_74. 2.4.2

Likic, V. (2008), The needleman-wunsch algorithm for sequence alignment, Lecture
given at the 7th Melbourne Bioinformatics Course, Bi021 Molecular Science and
Biotechnology Institute, University of Melbourne, pp. 1–46. 4.1

BIBLIOGRAPHY 87

Manning, C. D., P. Raghavan, and H. Schütze (2008), Introduction to Information Re-
trieval, Cambridge University Press. 2.1.2, 2.4.2

Mccowan, I., D. Moore, J. Dines, D. Gatica-Perez, M. Flynn, P. Wellner, and
H. Bourlard (2004), On the use of information retrieval measures for speech recog-
nition evaluation. 2.4.1

Mikolov, T., K. Chen, G. Corrado, and J. Dean (2013), Efficient estimation of word
representations in vector space, Proceedings of Workshop at ICLR, 2013. 2.1.4, 2.1.4

Pearson, K. (1895), Note on regression and inheritance in the case of two parents,
Proceedings of the Royal Society of London, 58, 240–242. 5.5

Pennington, J., R. Socher, and C. Manning (2014), GloVe: Global vectors for word
representation, in Proceedings of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pp. 1532–1543, Association for Computational
Linguistics, Doha, Qatar, doi:10.3115/v1/D14-1162. 2.1.4, 2.1.4

Peters, M., M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer
(2018), Deep contextualized word representations. 2.1.4

Pires, T., E. Schlinger, and D. Garrette (2019), How multilingual is multilingual
BERT?, in Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics, pp. 4996–5001, Association for Computational Linguistics,
Florence, Italy, doi:10.18653/v1/P19-1493. 2.1.4

Radford, A., K. Narasimhan, T. Salimans, and I. Sutskever (2018), Improving language
understanding by generative pre-training. 2.1.3, 2.1.4, 2.1.5

Rajaraman, A., J. Leskovec, and J. Ullman (2014), Mining of Massive Datasets, doi:
10.1017/CBO9781139058452. 2.1.2

Ramos, J. (2003), Using tf-idf to determine word relevance in document queries. 2.1.2

Reimers, N., and I. Gurevych (2019), Sentence-bert: Sentence embeddings using
siamese bert-networks. 2.1.6

Rosenberg, D. (2014), Stop, words, Representations, 127(1), 83–92. 4.3.2

Roy, S. (2021), Semantic-wer: A unified metric for the evaluation of asr transcript for
end usability. 2.5

Salton, G., A. Wong, and C. S. Yang (1975), A vector space model for automatic in-
dexing, Commun. ACM, 18(11), 613620, doi:10.1145/361219.361220. 2.4.2

88 BIBLIOGRAPHY

Spearman, C. (1904), The proof and measurement of association between two things,
The American Journal of Psychology, 15(1), 72–101. 5.5

Sutskever, I., O. Vinyals, and Q. V. Le (2014), Sequence to sequence learning with
neural networks. 2.2.1

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin (2017), Attention is all you need, Advances in neural information
processing systems, 30. 2.1.3, 2.1.5, 2.2.1

Virtanen, A., J. Kanerva, R. Ilo, J. Luoma, J. Luotolahti, T. Salakoski, F. Ginter, and
S. Pyysalo (2019), Multilingual is not enough: Bert for finnish. 2.1.6

Wu, S., and M. Dredze (2019), Beto, bentz, becas: The surprising cross-lingual effec-
tiveness of BERT, in Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 833–844, Association for Computa-
tional Linguistics, Hong Kong, China, doi:10.18653/v1/D19-1077. 2.1.4

	Scientific environment
	Acknowledgements
	Abstract
	Introduction
	Problem Statement
	Objectives
	Contribution
	Research Questions
	Thesis outline

	Background
	Natural Language Processing
	Regular Expressions
	Stop Words
	Language Models
	Word Embeddings
	Transformer Networks
	BERT

	Automatic Speech Recognition
	End-to-End Speech Recognition

	Correction of ASR
	Metrics
	WER
	Cosine Distance

	Semantic WER

	Data
	Norwegian Parliamentary Speech Corpus
	Automatically Generated Transcripts

	Methods
	Data Processing
	Implementation
	Additional Models

	Parameters
	Case Sensitivity
	Stop Words
	Punctuation
	Applying an Activation Function

	Severity analysis

	Evaluation
	Semantic Word Error Rate Scores
	Parameters
	Combined parameters

	Grouping by Severity
	Qualitative Sentence Comparison
	Comparing Random Sentences
	Artificially Produced Sentences

	Detecting the Most Severe Words
	Correlation
	Word Error Rate Correlation
	Human Word Error Rate

	Results
	Model Performance
	Effect of Parameters

	Correlation
	Word Error Rate
	Human Word Error Rate

	Sentence Analysis
	Word Severity
	Sentence Comparison

	Summary

	Discussion and Conclusion
	Discussion
	Difference in Model Performance
	Parameters
	Weaknesses
	Limitations

	Conclusion
	Future Work

	Appendix
	NPSC Train-Test-Evaluation split
	HWER

