
University of Bergen
Department of Informatics

Parallel Community Detection in

Incremental Graphs

Author: Magnus Tønnessen

Supervisors: Fredrik Manne, Johannes Langguth

June, 2023

Abstract

The problem of community detection in large, expanding real-world networks presents

significant challenges due to the scale and complexity of these networks. Traditional

algorithms struggle to provide optimal solutions or require unviable computational

resources. In this thesis, we address these challenges by exploring, designing and evaluating

parallel computing strategies for community detection in incremental graphs. We provide

a novel parallel implementation of the NCLiC algorithm by dividing its phases into

parallel tasks using a shared memory approach. The algorithm has been extensively tested

on various graphs. The results demonstrate promising performance improvements and

scalability while retaining the quality of the partitions. The parallel implementation of

the Leiden algorithm used for pre-clustering shows virtually no loss in modularity and

obtained speedups up to a factor of 10.3. The refinement and merging phases of the

parallel NCLiC algorithm obtained speedups up to 18.42 and 10.36, respectively, resulting

in a total speedup of up to a factor of 6.73.

Acknowledgements

I would like to express my deepest gratitude to my supervisors, Fredrik Manne and

Johannes Langguth, for their unwavering support and guidance throughout the entire

duration of my master’s thesis. Their expertise, patience and invaluable feedback have

been instrumental in shaping this research work.

I would also like to thank my fellow student for the discussions, collaborations and

shared experiences, and my better half and family for their persistent encouragement

and for putting up with me. Their belief in my abilities has been a constant source of

motivation.

Magnus Tønnessen

Thursday 1st June, 2023

“The way the processor industry is going, is to add more and

more cores, but nobody knows how to program those things.

I mean, two, yeah; four, not really; eight, forget it.”

– Steve Jobs, Apple

Contents

1 Introduction 1

1.1 Problem . 1

1.2 Thesis Outline . 2

2 Background 3

2.1 Network Science . 3

2.2 Community Detection . 5

2.2.1 Modularity . 5

2.3 Incremental Graphs . 7

2.4 Parallelism . 8

2.5 Programming Language . 9

2.5.1 Rust . 10

2.5.2 Concurrency in Rust and C++ 12

2.5.3 Synchronisation Mechanisms in Rust 14

2.5.4 Summary . 15

3 Community Detection Algorithms 16

3.1 The Louvain Algorithm . 16

3.2 The Leiden Algorithm . 19

3.3 The NCLiC Algorithm . 23

3.3.1 Data Structures . 23

3.3.2 Implementation . 24

3.3.3 Refinement . 25

3.3.4 NCLiC Steps . 26

3.3.5 NCLiC Example . 28

4 Related Work 31

4.1 Parallelised Community Detection . 31

ii

5 Parallel NCLiC 32

5.1 Building the Graph . 32

5.2 Pre-clustering . 33

5.2.1 Parallel Local Moving . 33

5.2.2 Parallel Refinement . 36

5.3 Merging . 38

5.4 Refinement . 40

5.5 Summary . 42

6 Experiments 43

6.1 Data Sets . 43

6.2 Hardware . 44

6.3 Experimental Setup . 44

6.4 Results . 44

6.4.1 Parallel Leiden . 45

6.4.2 Sequential NCLiC . 47

6.4.3 Parallel NCLiC . 49

7 Conclusion and Future work 56

7.1 Conclusion . 56

7.2 Future Work . 58

List of Acronyms and Abbreviations 59

Bibliography 60

iii

List of Figures

2.1 Example of a weighted graph . 4

2.2 Example of a graph with communities 5

2.3 Different modularity scores for the graph in Figure 2.1 6

3.1 Steps of the Louvain algorithm . 18

3.2 Steps of the Leiden algorithm . 22

3.3 Steps of the NCLiC algorithm . 26

3.4 A graph to be clustered by the NCLiC algorithm 28

3.5 Graph G after the initial chunk of edges is processed 28

3.6 Graph G after merging of the second chunk of edges 29

3.7 Graph G after merging of the third chunk of edges 29

3.8 Graph G after merging of the last chunk of edges 30

6.1 Speedup of the parallel Leiden algorithm on DIMACS10 45

6.2 Modularity retention of the parallel Leiden algorithm on DIMACS10 . . 46

6.3 Execution time of parallel Leiden algorithm on random geometric graphs 46

6.4 Speedup of the parallel Leiden algorithm on rgg n 2 24 s0 47

6.5 Incremental Leiden versus NCLiC on SNAP Twitter 48

6.6 Modularity retention of NCLiC on DIMACS10 49

6.7 Modularity retention versus threads of parallel NCLiC on DIMACS10 . . 49

6.8 Modularity retention versus chunks of parallel NCLiC on DIMACS10 . . 50

6.9 Distribution of modularity retention of parallel NCLiC on DIMACS10 . . 50

6.10 Execution time of parallel NCLiC on random geometric graphs 50

6.11 Execution time of parallel NCLiC on GAP-web 51

6.12 Speedup of parallel NCLiC on GAP-web 52

6.13 Modularity retention of parallel NCLiC on GAP-web 52

6.14 Execution time and speedup of phases in parallel NCLiC on GAP-web . 53

iv

List of Tables

6.1 Maximum speedup of phases in parallel NCLiC on GAP-web 54

v

List of Algorithms

1 The Louvain algorithm . 17

2 Local moving phase of the Louvain algorithm 17

3 Aggregation phase of the Louvain algorithm 17

4 The Leiden algorithm . 19

5 Local moving phase of the Leiden algorithm 20

6 Refinement phase of the Leiden algorithm 21

7 NCLiC algorithm . 24

8 Refinement phase of the NCLiC algorithm 25

9 Local moving phase of the parallel Leiden algorithm 33

10 Working threads in the parallel local moving phase 34

11 Waiting threads in the parallel local moving phase 35

12 Refinement phase of the parallel Leiden algorithm 37

13 Graph merging phase of the parallel NCLiC algorithm 39

14 Refinement phase of the parallel NCLiC algorithm 41

vi

Listings

2.1 Example of how the ownership model works with compiler errors 10

2.2 Parallel iteration in C++ . 13

2.3 Parallel iteration in Rust . 13

2.4 Parallel tasks in C++ . 13

2.5 Parallel tasks in Rust . 13

2.6 Example of Mutex in Rust . 14

2.7 Example of RwLock in Rust . 15

2.8 Example of AtomicUsize in Rust . 15

vii

Chapter 1

Introduction

1.1 Problem

As society delves further into the epoch of the Information Age, we are witnessing an

increasing number of large real-world networks. These complex structures have become

omnipresent, from social networks and web graphs to biological systems and transportation

networks, representing the essence of interconnectedness in various domains. Along with

the explosive growth of data, many of these networks are not static but are continuously

expanding in size and complexity day by day. The sheer enormity of the networks is

forcing researchers to reconceive traditional methods of data analysis and pattern discovery,

focusing on methods that can scale and adapt to the increasing demands of growing

networks.

Community detection is one such approach that offers insightful information about

graphs. Communities, also often referred to as clusters, are defined as groups of vertices

with denser connections within the group than with the rest of the graph. Unveiling

these communities can yield valuable information about the underlying structure of the

graphs, revealing their organisational principles and functional mechanisms. Community

detection, therefore, has significant implications for various fields, including sociology,

biology, computer science and physics, where it has been applied to areas such as unveiling

hidden graph properties, predicting future graph growth and optimising resource allocation.

1

However, the process of community detection in ever-growing graphs introduces

significant challenges. Traditional algorithms struggle to keep up with the scale and

complexity of contemporary graphs, often leading to sub-optimal solutions or unviable

computational demands. In response to these challenges, there is a pressing need to

explore more efficient algorithmic strategies that can scale effectively to large and growing

graphs.

Parallel computing emerges as a promising solution to this scalability issue. By

dividing the computational tasks and distributing them across multiple processors, parallel

computing allows for simultaneous data processing, enabling an approach to significantly

reduce computation times and improve performance. In the context of community

detection, leveraging parallel computing can lead to more efficient and scalable algorithms

capable of handling large, complex graphs with enhanced precision and speed.

The focus of this thesis is to explore, design, and evaluate parallel computing strategies

for community detection in incremental graph; graphs generated by continuously arriving

chunks of edges. We propose a novel parallel implementation of the NCLiC algorithm and

establish some requirements for the algorithm, to minimise the loss in quality and fully

utilise the available resources. Through extensive testing, we analyse the performance

of the algorithm in terms of efficiency and quality. Our parallel implementation shows

promising results in terms of the quality of the communities detected, efficiency and

scalability.

1.2 Thesis Outline

• Chapter 1 Presents the problem and the goal of the thesis

• Chapter 2 Presents the theoretical background of the thesis, including network

science, community detection, incremental graphs and parallelism

• Chapter 3 Presents existing community detection algorithms

(Louvain, Leiden, NCLiC) relevant to this thesis

• Chapter 4 Presents related parallel algorithms and research

• Chapter 5 Presents and discusses our implementation

of the parallel NCLiC algorithm

• Chapter 6 Presents and discusses the results of the tests of the algorithm

• Chapter 7 Conclusion and future work

2

Chapter 2

Background

In this chapter, we present the theoretical background for this thesis, including network

science, community detection and modularity, incremental graphs and parallelism. We

also discuss the choice of programming language used to implement the parallel algorithm.

2.1 Network Science

Network science is the study of large and complex networks, such as social networks,

biological networks, transportation networks, and information networks [22]. This field

aims to understand how the structure of a network influences its behaviour and how the

interactions between its components shape the network’s properties. Its roots go back

to Königsberg in 1735 when the Swiss mathematician Euler proved that the well-known

problem The Bridges of Königsberg could not be solved [13]. With new types of networks

continuously appearing, such as information and social media networks, the field is more

relevant than ever.

A graph is a data structure consisting of a set of vertices and a set of edges that

connect the vertices. The vertices represent the entities in the graph, for example, people

in a social network, neurons in the brain, or websites on the internet. The edges represent

the relationships between these entities, such as friendships between people, synaptic

connections between neurons, or hyperlinks between websites.

3

A weighted graph G is defined as a triple G = (V,E,w), where V is the set of vertices,

E is the set of edges and w is a weight function that assigns a weight to each edge.

The edges in a weighted graph are typically represented as pairs of vertices, where each

pair represents a connection between two entities. The weight of an edge represents the

strength of the relationship or the distance between the entities it connects. The open

neighbourhood of a vertex v is the set of vertices that share an edge with v, formally

defined as NG(v) = {u | {u, v} ∈ E(G)}.

0

1

2

3

4 5

6

7

83

2

3 1

4

5

4

1

3

3

6

2

2

Figure 2.1: Example of a weighted graph

Figure 2.1 shows an example of a graph. The graph has nine vertices, labelled from

0 to 8, and 13 edges, with different weights. The graph can be formally defined as

G = (V,E,w) where V is the set of vertices 0 to 8, and E is the set of edges, where each

edge is represented {i, j} if there is an edge between vertices i and j and w is the weight

function. An example of an open neighbourhood is NG(4) = {2, 3, 5}.

A real-world example that could be modelled as a weighted graph is a road network,

where each vertex represents a city, and each edge represents a road connecting two cities.

Weights can be assigned to the graph’s edges to reflect the distance between the cities or

the time it takes to travel between them.

The structure of a graph can be described using various measures such as degree

distribution, centrality and clustering coefficient. Degree distribution [8] refers to the

pattern of connections between the entities in a graph, while centrality [6] measures the

importance of a vertex within a graph and can be used to identify critical vertices. The

clustering coefficient [33] measures the tendency of vertices in a graph to cluster together.

4

2.2 Community Detection

Community detection is the process of identifying sets of vertices within a graph that

are more densely connected to each other than to vertices in other communities. It

is a fundamental problem in network analysis on applications in various fields such

as social networks, biology, and transportation systems. Community detection aims

to uncover a graph’s underlying structure and provide insights into its properties.

Figure 2.2 shows how the graph in Figure 2.1 can be partitioned into two communities

indicated by the colouring of the vertices. The partition in the figure can be defined as

P = {{0, 1, 2, 3, 4}, {5, 6, 7, 8}}.

0

1

2

3

4 5

6

7

83

2

3 1

4

5

4

1

3

3

6

2

2

Figure 2.2: Example of a graph with communities

2.2.1 Modularity

The problem of community detection is often formulated as an optimisation problem.

The goal is to maximise a quality function that measures the strength of the community

structure, subject to certain constraints. The most common quality function in community

detection is modularity, introduced by Newman and Girvan in 2004 [26]. Modularity

measures the deviation of the number of edges within communities from what would be

expected in a random graph with the same degree sequence [18]. The modularity score

for unweighted and undirected graphs lies in the range [−0.5, 1]. A positive modularity

score indicates a graph with a community structure denser than expected in a graph with

randomly distributed edges, while a negative score indicates a sparser structure.

5

The modularity Q of a partition of a graph into communities is defined as

Q =
1

2m

∑
i,j∈V (G)

(
Aij − γ

kikj
2m

)
δ(ci, cj)

where

• Aij is the weight of the edge between vertices i and j

• γ ∈ [0, 1] is the resolution parameter, which sets a lower limit for the density of the

communities

• m is the total weight of the edges in the graph

• ki and kj are the sums of the weights of the edges incident to vertices i and j,

respectively

• ci and cj are the communities that vertices i and j belong to

• δ(ci, cj) is the Kronecker delta which takes the value 1 if ci = cj, i.e. vertices i and

j belong to the same community, and 0 otherwise

Figure 2.3 depicts how different partitions will affect the modularity score for the

graph in Figure 2.1. In the optimal partition, only one edge connects the communities,

whereas, in the sub-optimal partition, the communities share 3 edges. The partition with

only one community results in a modularity score of 0, and with all vertices in singleton

communities, the modularity is negative.

Optimal partition
Q = 0.41

Sub-optimal partition
Q = 0.22

Single community
Q = 0

Negative modularity
Q = −0.12

Figure 2.3: Different modularity scores for the graph in Figure 2.1

6

Although modularity is a widely used measure for community detection in complex

graphs, it has some weaknesses that can affect performance. One weakness of modularity

is its resolution limit, which refers to the inability to detect smaller communities embedded

within larger ones [15]. Real-world networks often consist of many small communities

rather than a few large ones, meaning the resolution limit may have significant practical

implications. Modularity also tends to produce communities of similar size, which may

not reflect the actual structure of the network, where some communities are naturally

larger or smaller.

Finding the partition of a graph that results in optimal modularity is NP-complete [7],

which means that finding the exact solution is computationally intractable for large

graphs. Therefore, various heuristics have been proposed to compute good solutions.

Some approaches include simulated annealing [16], extremal optimisation [12], hierarchical

agglomeration [9] and spectral algorithms [25]. Each has its strengths and weaknesses,

and the choice of which one to use will depend on the specific characteristics of the graph

being analysed and the research question at hand. In this thesis, we mainly focus on two

heuristics for community detection in static graphs: the well-known Louvain algorithm

and the more recent Leiden algorithm, explained respectively in Sections 3.1 and 3.2.

2.3 Incremental Graphs

Data streams are sequences of data elements generated and processed continuously over

time [17]. They are characterised by their infinite length, dynamic nature, and unbounded

data volume. Real-world examples of streaming data include computer logs, stock prices

and social media events. Such services generate vast amounts of data we often want to

process and analyse instantly. However, if instant data processing is not crucial, we can

let the data pile up in a chunk, decided by a size limit or time frame. Processing chunks

of data may speed up the process and improve the quality of the computations.

Incremental graphs are graphs generated from chunks of data and constantly change as

new vertices and edges are added or existing vertices and edges are deleted. The study of

dynamic graphs is an active area of research, and computations of interest include, among

others, finding a minimum spanning tree, predicting the probability of a link appearing or,

in our case, detecting communities. Methods designed for static graphs can be extremely

computationally expensive to apply repeatedly for each new chunk of data that arrives.

Thus, methods specifically developed to analyse incremental graphs are needed.

7

Community detection is already a complex process when performed on static graphs

where all information is known beforehand. It becomes even more complex when applied to

incremental graphs, where new information arrives continuously. When static algorithms

are used to detect communities in an incremental graph, the asymptotic running time of

the algorithm depends on the size of the entire graph and increases every time new data

arrives. Hence, the processing time of repeatedly reclustering the whole graph eventually

exceeds the interval at which the data arrives. Therefore, an algorithm designed for

community detection in incremental graphs would have to depend solely on the size of

the arriving data. In this thesis, we focus on such an algorithm designed for community

detection in incremental graphs, called the NCLiC algorithm, explained in Section 3.3.

2.4 Parallelism

As problems become computationally harder and the instances become larger, the need

for effective algorithms increases. Parallelism is a fundamental concept in computing and

refers to the simultaneous execution of multiple tasks or processes within a computer

system. In its essence, parallel programming is about dividing computational tasks into

smaller, independent units that can be executed concurrently. This can be achieved at

several levels, including data, task, and instruction level parallelism. Data parallelism

refers to the simultaneous processing of large data sets, often using vector or array

operations. Task parallelism involves the concurrent execution of different tasks, while

instruction parallelism relates to executing multiple instructions from a single instruction

stream simultaneously.

Common paradigms of parallel programming include shared memory, distributed

memory, and hybrid models. In the shared memory paradigm, all processes share a

common address space, and communication between them occurs via reading and writing

to shared variables. In the distributed memory paradigm, each process has its own private

memory. Processes communicate by sending and receiving messages.

Parallel programming can offer substantial benefits. The most significant advantage is

speed. By dividing a problem into smaller parts that can be solved concurrently, parallel

programming can significantly reduce the time required to process large data sets or solve

complex computational problems. This is particularly beneficial in fields like network

science, where handling large-scale networks can be computationally expensive.

8

However, parallel programming also brings challenges. Designing parallel algorithms

can be complex, requiring careful synchronisation of tasks to avoid issues such as race

conditions [24] or deadlocks [10]. Furthermore, the overhead involved in coordination and

communication between tasks can sometimes offset the benefits of parallelism, particularly

for small-scale problems or when the tasks are not entirely independent. Moreover, not all

problems are inherently parallelisable, known as Amdahl’s law [1], meaning that there’s

a limit to the speedup that can be achieved by adding more processing elements. The

scalability of parallel programs is also an essential factor, as efficient parallel programs

should maintain performance gains as the number of processors increases.

Another aspect that is crucial for effective parallel programming is selecting the right

programming language. A programming language optimised for parallelism can harness the

full potential of multi-core processors and distributed systems, improving performance and

scalability. By carefully considering the language, developers can maximise performance,

scalability, and the efficient execution of concurrent tasks.

2.5 Programming Language

Two programming languages were considered to implement the algorithms used in this

thesis. C++ has long been the preferred language for high-performance computing due to

its ability to produce low-level code and optimise memory and processing resources. It is

a high-level, general-purpose programming language introduced by Stroustrup in 1985 [28]

and was designed as an extension to C, incorporating object-oriented programming and

other features to improve performance and flexibility. The language’s extensive history

has led to vast knowledge, libraries and tools developers can leverage when working on

complex concurrent systems. However, C++’s manual memory management and complex

syntax can make it difficult to write safe concurrent code and may result in subtle and

hard-to-find bugs.

Rust, on the other hand, is a more recent language, developed by Hoare in 2010 [20] and

backed by Mozilla Research, with the first stable release in 2015. Rust was developed with

performance, memory safety and concurrency as a foundation, making it particularly well-

suited for high-performance computing. The language aims to be as efficient and portable

as C++ without sacrificing safety, and since it does not perform garbage collection,

Rust is often faster than other memory-safe languages [3]. In the following sections, we

compare parallelism in Rust and C++, and explain which synchronisation mechanisms

Rust provides.

9

2.5.1 Rust

The most conspicuous feature in Rust is how the language manages memory with the

so-called ownership model. The ownership model enforces a set of strict rules on resource

access and sharing that the compiler checks.

1 fn function_1(s: String) -> String { return s; }

2 fn function_2(s: &String) -> usize { return s.len(); }

3 fn function_3(s: &mut String) { s.push_str(", World!"); }

4

5 fn main() {

6 let s1 = String::from("Hello");

7 let mut s2 = function_1(s1);

8

9 println!("s1: {}", s1);

10 -> use of moved value: ‘s1‘

11

12 let length = function_2(&s2);

13

14 let s3 = &mut s2;

15 function_3(s3);

16

17 let s4 = &mut s2;

18 -> cannot borrow ‘s2‘ as mutable more than once at a time

19 let s5 = &s2;

20 -> cannot borrow ‘s2‘ as immutable because it is also borrowed as mutable

21 }

Listing 2.1: Example of how the ownership model works with compiler errors

Listing 2.1 shows three different methods for accessing variables in Rust and compile-

time errors that occur when the rules of the ownership model are broken. The keyword

mut defines a variable as mutable. Variable s1 in line 6 is immutable, which means that a

new value cannot be reassigned to s1. Variable s2 in line 7 is defined as mutable and can

be assigned a new value later in the execution.

The first method to access a variable is to give ownership of the value to another

variable. In line 7, the ownership of the value in variable s1 is given to function 1. At

this point, s1 is no longer a valid variable because it does not own a value and cannot

be used further. When function 1 returns the value, the ownership is given to variable

s2. In line 9, the program tries to print the value of s1, which is detected during compile

time and will result in an error message.

10

The second method is to give an immutable reference to the value, called borrowing,

which is denoted with an ampersand &. In line 12, an immutable reference to variable s2

is borrowed to function 2, meaning the function cannot change the value, only read it,

even though variable s2 is defined as mutable. With the immutable reference given to

function 2, it reads the value and returns the length of the string.

The last method is to give a mutable reference to the value. In line 14, variable s3

borrows a mutable (mut) reference (&) to variable s2, which is then passed to function 3.

This means that function 3 can change the value of s2. When function 3 is done

executing, variable s2 will have the value "Hello, World!".

An important rule that is enforced by the ownership model is that there can either

exist one mutable reference or one or more immutable references to the same variable

simultaneously. In line 17, the compiler will give an error message because variable s3

has already borrowed a mutable reference to s2. For the same reason, variable s5 cannot

borrow an immutable reference to s2 in line 19.

The ownership model in Rust ensures memory safety and completely avoids data

races by ensuring that all references point to valid data and that mutable and immutable

references cannot exist simultaneously. This feature is essential when working with

concurrency because memory can only be altered by one thread or read by multiple

threads. Another outcome of how the ownership model keeps control of the references

to variables is that Rust does not need a garbage collector. When a variable goes out of

scope, the rules of the ownership model guarantee that no references to the variable exist.

Hence, the allocated memory can be freed instantly. Since it does not perform garbage

collection, Rust is often faster than other memory-safe languages [3]. The ownership

model helps developers avoid common memory management pitfalls and often discovers

potential bugs during compile time, resulting in safer and more reliable concurrent code.

Understanding run-time errors is often more manageable because of the absence of several

potential bugs in compiled programs.

11

2.5.2 Concurrency in Rust and C++

C++ and Rust offer different approaches to concurrency, and the use case depends on the

specific needs of the project. In this thesis, we worked with shared memory, which means

that memory safety and avoiding race conditions were in focus. This section compares the

concurrency mechanisms available in both languages, focusing on the OpenMP library in

C++ and the Rayon library in Rust, comparing their features, similarities, and differences

to provide an understanding of their concurrency models.

OpenMP is an application programming interface (API) that supports shared-memory

code parallelisation in C++, C, and Fortran. The API uses compiler directives to execute

parallel code, simplifying the code needed to introduce parallelisation. The simple syntax

needed to distribute tasks among available processors in a system easily has made it an

attractive choice for parallel programming in C++. OpenMP has been widely adopted in

high-performance computing and scientific applications, where its ease of use, portability,

and performance-tuning capabilities are highly valued.

Rayon is a parallelism library for Rust that utilises a work-stealing algorithm to

distribute tasks among threads effectively. Rayon provides an intuitive, well-documented

API that allows developers to execute parallel tasks easily without manual thread man-

agement or synchronisation. Combined with the ownership model, the parallel iterators

and scoped thread pools provided by Rayon make it easy to implement safe, concurrent

code. Additionally, Rayon’s focus on safety and zero-cost abstractions aligns with Rust’s

core principles, making it a popular choice for concurrency in Rust.

OpenMP and Rayon provide simple, high-level abstractions for parallel programming,

allowing developers to implement concurrency with minimal code changes. They both

support dynamic task scheduling, which helps in efficiently distributing tasks among

available threads. However, there are some key differences between the two libraries.

While OpenMP employs a shared-memory model, Rayon is designed around Rust’s

ownership system, focusing on safety and avoiding data races. This makes Rayon’s

approach to concurrency more predictable and less prone to bugs.

In terms of performance, OpenMP’s maturity and widespread use in high-performance

computing might give it an edge in certain applications. However, Rayon’s work-stealing

algorithm and focus on safety make it a strong contender in the Rust ecosystem. The

choice between OpenMP and Rayon ultimately depends on the specific use case and the

desired trade-offs between performance, safety, and ease of use.

12

1 #pragma omp parallel for reduction(+:sum)

2 for (int i = 0; i < N; i++) {

3 if (arr[i] % 2 == 0) {

4 sum += arr[i] * arr[i];

5 }

6 }

Listing 2.2: Parallel iteration in C++

1 let sum = arr

2 .par_iter()

3 .filter(|n| n % 2 == 0)

4 .map(|n| n * n)

5 .sum();

Listing 2.3: Parallel iteration in Rust

Listings 2.2 and 2.3 shows examples of how a set of operations can be applied to all

elements in an array with a parallel for loop in C++ and with a parallel iterator in Rust.

The code calculates the sum of all even squares between 0 and a number N.

In line 1 in Listing 2.2 the compiler directive #pragma omp parallel for tells the

compiler that the line that follows is a for loop that should be executed in parallel. The

reduction(+:sum) part specifies that the reduction operation should be performed, doing

a summation of the elements, into the variable sum.

Listing 2.3 shows how the same operation can be done in Rust. Data parallelism like

this is usually handled with parallel iterators. By calling the method par iter from the

Rayon library, Rust converts the array into a parallel iterator. The chained methods

filter, map and sum will then be applied to each element in parallel, and the result will

be assigned to the variable sum. Using a parallel iterator gives an important guarantee

that reflects one of the principles of Rust: only one thread is able to access each element

of the iterator, which gives complete memory safety and ensures that a data race can

never happen.

1 #pragma omp parallel sections

2 {

3 #pragma omp section

4 {

5 task_a();

6 }

7 #pragma omp section

8 {

9 task_b();

10 }

11 }

Listing 2.4: Parallel tasks in C++

1 rayon::scope(|s|

2 {

3 s.spawn(|_|

4 {

5 task_a();

6 });

7 s.spawn(|_|

8 {

9 task_b();

10 });

11 });

Listing 2.5: Parallel tasks in Rust

Listings 2.4 and 2.5 shows how two tasks can be executed in parallel in C++ and Rust.

The syntax is more similar when executing parallel tasks than in the summation example.

In line 1 in Listing 2.4, a compiler directive is used to specify that the following block of

code contains OpenMP sections that should be executed in parallel. Then two sections

13

are created in lines 3 and 7, where task a() and task b() are executed in parallel. Each

section is executed by a single thread, and each thread can only execute one section.

In line 1 in Listing 2.5, a Rayon scope is created, similar to the sections block in

Listing 2.4. Inside the scope, two threads are spawned in lines 3 and 7 and are given one

task each, also similar to how the section blocks are executed in Listing 2.4. The scope

enables the execution of parallel tasks, but it also enforces the rules of the ownership

model. The main thread will not exit the scope until all threads spawned in the scope

are done executing their tasks. This ensures both that the threads will not try to access

invalid pointers during execution and that all memory allocated in the scope can safely

be freed when the scope is exited.

An unfortunate consequence of the strict rules of the ownership model is that the

compiler will not compile a program if one of the rules is broken, even in cases where the

developer can guarantee memory safety. The strict rule set may lead to extensive use

of atomic variables and mutexes to guarantee safe mutable access to shared resources,

which in some cases can result in a lack of performance compared to C++, where access

to shared resources is unrestricted.

2.5.3 Synchronisation Mechanisms in Rust

In Rust, data synchronisation is a crucial aspect of multi-threaded programming that

ensures the consistency and safety of data across threads. Several synchronisation mech-

anisms are provided by Rust’s standard library. In our implementation, three such

techniques are used: Mutex, RwLock, and Atomic variables.

1 let data = Mutex::new(5);

2 {

3 *data.lock().unwrap() += 1;

4 }

Listing 2.6: Example of Mutex in Rust

The Mutex type in Rust provides mutual

exclusion to a data structure, allowing only

one thread to access some data at any given

time. To access the data, a thread must first

acquire a lock on the Mutex. When a thread

t has acquired the lock, other threads have

to wait to access the data until t releases the lock. Listing 2.6 shows an example of how

Mutex can protect data. The lock is automatically released when the thread exits the

scope that the lock was acquired.

14

1 let data = RwLock::new(5);

2 {

3 *data.write().unwrap() += 1;

4 }

5 {

6 let r = data.read().unwrap();

7 }

Listing 2.7: Example of RwLock in Rust

RwLock (Read/Write Lock) is a type

that provides a mechanism for read/write

locking. It is similar to the Mutex, but is

less strict. The RwLock allow multiple read-

ers or one writer to access the data at the

same time. The implementation of RwLock

is more complex than that of Mutex, but it

can lead to better performance when there are many read accesses and few write accesses.

Listing 2.7 shows an example of how threads can acquire read and write access to a

variable protected by an RwLock. Same as for the Mutex, the lock acquired from a RwLock

by a thread is automatically released when the thread exits the scope it was acquired.

1 let data = AtomicUsize::new(5);

2 data.fetch_add(1, Ordering::SeqCst);

Listing 2.8: Example of AtomicUsize in Rust

Atomic variables are a type of variable

that can be safely accessed and modified

by multiple threads concurrently. They

are a foundational building block for more

complex synchronisation primitives. Listing 2.8 shows how an AtomicUsize can be

initialised and atomically incremented.

The specific use case of these synchronisation techniques depends on the implementation

of the algorithm and how threads access them, but they are all crucial for developing safe

and efficient concurrent programs in Rust.

2.5.4 Summary

Rust’s ecosystem includes several powerful yet simple libraries for concurrent programming.

The robust low-level concurrency features such as threads, mutexes, channels, and

async/await combined with high-level concurrency libraries like Rayon, and guaranteed

memory safety from the ownership model, make Rust a safer and more modern alternative

to C++ for concurrent programming, ensuring that the resulting code is both comparable

performant and significantly more secure. Comparing the performance of the two

programming languages is out of the scope of this thesis, and we chose Rust as an

interesting alternative to the obvious choice of C++ for high-performance computing.

15

Chapter 3

Community Detection Algorithms

As mentioned in Section 2.2.1, several algorithms have been developed to detect

communities in static graphs, each with its strengths and weaknesses, and one of the most

used algorithms is the Louvain algorithm.

The Louvain algorithm [4] is a fast and scalable algorithm that aims to optimise the

modularity of a partitioning of the graph into communities by iteratively moving vertices

between communities. While the Louvain algorithm has been shown to perform well on

many types of graphs, it can sometimes produce sub-optimal results on certain types of

graphs with specific structural properties.

The Leiden algorithm [29] is an improved version of the Louvain algorithm. It addresses

some limitations, such as the tendency to merge small communities, create disconnected

communities and the sensitivity to the order in which vertices are processed. Overall,

the Leiden algorithm has been shown to outperform the Louvain algorithm on several

benchmarks and real-world networks [29, pp. 9-11], and it has become a popular choice

for community detection in many fields.

3.1 The Louvain Algorithm

The Louvain algorithm is a widely used community detection heuristic in network science,

introduced by Blondel et al. in 2008 [4]. It is known for its ability to detect communities

in large graphs efficiently and has several advantages over other community detection

algorithms. It is computationally efficient and can handle very large graphs, is reasonably

easy to implement and does not require prior knowledge about the graph’s layout.

16

Algorithm 1 The Louvain algorithm
1: function Louvain(Graph G, Partion P)
2: do
3: P ←MoveVertices(G,P) ▷ Move vertices between communities
4: done ← |P| = |v(G)| ▷ Terminate when each community consists of only one vertex
5: if not done then
6: G← AggregateGraph(G,Prefined) ▷ Create aggregate graph based on partition P
7: P ← Singleton(G) ▷ Assign each vertex in aggregate graph to its own community
8: end if
9: while not done
10: return flat∗(P)
11: end function

Algorithm 1 shows the outline of the Louvain algorithm. The algorithm repeatedly

improves the partition P and aggregates the graph until each community consists of only

one vertex. Algorithms 2 and 3 explains in depth how the moving and aggregation works.

Algorithm 2 Local moving phase of the Louvain algorithm
1: function MoveVertices(Graph G, Partition P)
2: do
3: Qold = Q(P)
4: for v ∈ V (G) do ▷ Visit vertices (in random order)
5: C′ ← argmaxC∈P∪∅ ∆QP (v 7→ C) ▷ Determine the best cluster for vertex v
6: if ∆QP (v 7→ C′) > 0 then ▷ Perform only strict positive vertex movements
7: v 7→ C′ ▷ Move vertex v to cluster C′

8: end if
9: end for
10: while Q(P) > Qold ▷ Continue as long as the modularity increases
11: return P
12: end function

Algorithm 2 shows the local moving phase of the Louvain algorithm. The algorithm

works by iteratively moving vertices between communities to maximise the modularity of

the graph partition. The outermost do-while loop in line 2 runs as long as modularity

increases. In each iteration, the algorithm determines the best move for each vertex (line 5).

This could be to one of the neighbouring communities or to a singleton community. If

there is a positive gain in modularity, the vertex is moved in line 7, otherwise it remains

in its current community. This process is repeated until no further increase in modularity

is possible, which is checked in line 10. The moving phase of the algorithm is depicted

from step a) to b) in Figure 3.1

Algorithm 3 Aggregation phase of the Louvain algorithm
1: function AggregateGraph(Graph G, Partition P)
2: V ← P ▷ Communities become vertices in aggregate graph
3: E ← {(C,D) | (u, v) ∈ E(G), u ∈ C ∈ P, v ∈ D ∈ P} ▷ Edges between vertices in community C and D are merged
4: return Graph(V , E)
5: end function

17

When all vertices are stable, i.e. moving a vertex will not increase modularity, the

graph is aggregated into a new graph with a coarser level of granularity. The aggregation

is based on the partitioning of the vertices from the previous phase, shown in Algorithm 3.

On line 2 the set of vertices in the new graph is set to be equal to the set of communities

in P, and on line 3, the set of edges in the new graph is created such that if there is an

edge between vertices u and v in the old graph, there should be an edge between the

vertices representing their respective communities C and D. The aggregation phase is

depicted from step b) to c) in Figure 3.1 [29, p. 2].

Figure 3.1: Steps of the Louvain algorithm

Despite the efficiency and simplicity of the Louvain algorithm, it does have its

limitations [29, pp. 2-4]. One major weakness is the resolution limit of the modu-

larity, which refers to the minimum size of the communities that can be detected by the

algorithm. At each level of the algorithm, it tries to move vertices to other communities

to increase modularity, and when the size of a community C is smaller than a certain

18

threshold, the algorithm is more likely to merge C into another community because doing

so may improve modularity more than keeping C on its own. The Louvain algorithm

also has a tendency to produce badly connected or unconnected communities, which can

result in sub-optimal modularity. Another weakness is that it tends to produce different

community structures depending on the initial conditions, leading to instability in the

results. Also, the type and structure of the graph may greatly affect the algorithm’s

ability to optimise the modularity.

3.2 The Leiden Algorithm

The Leiden algorithm is a community detection heuristic that was first introduced by

Traag et al. in 2019 [29]. It is a refinement of the Louvain algorithm, and like the

Louvain algorithm, the Leiden algorithm is a hierarchical clustering algorithm that works

by iteratively moving vertices between communities to increase modularity. However,

unlike the Louvain algorithm, the Leiden algorithm uses a refinement strategy to optimise

the modularity even further, which takes into account both the internal connectivity of

communities and their degree of separation from each other. This improvement strategy

allows the Leiden algorithm to more effectively identify communities of vertices that are

densely connected to each other and well-separated from the rest of the graph.

Algorithm 4 The Leiden algorithm
1: function Leiden(Graph G, Partion P)
2: do
3: P ←MoveVerticesFast(G,P) ▷ Move vertices between communities
4: done ← |P| = |v(G)| ▷ Terminate when each community consists of only one vertex
5: if not done then
6: Prefined ← RefinePartition(G,P) ▷ Refine partition P
7: G← AggregateGraph(G,Prefined) ▷ Create aggregate graph based on refined partition Prefined

8: P ← {{v | v ⊆ C, v ∈ V (G)} | C ∈ P} ▷ But maintain partition P
9: end if
10: while not done
11: return flat∗(P)
12: end function

Algorithm 4 shows the outline of the Leiden algorithm. It looks similar to the Louvain

algorithm, except for the refinement step in line 6. In addition to the refinement step,

the partition P after the aggregation of G is a little different. Algorithms 5 and 6

show the improved local moving and the refinement step of the Leiden algorithm. The

AggregateGraph function used in the Leiden algorithm is the same as in the Louvain

algorithm, explained in Algorithm 3.

19

Algorithm 5 Local moving phase of the Leiden algorithm
1: function MoveVerticesFast(Graph G, Partition P)
2: Q← Queue(V (G)) ▷ Add all vertices to queue (in random order)
3: do
4: v ← Q.remove() ▷ Pop next vertex from queue
5: C′ ← argmaxC∈P∪∅ ∆HP (v 7→ C) ▷ Determine the best community for vertex v
6: if ∆HP (v 7→ C′) > 0 then ▷ Perform only strict positive vertex movements
7: v 7→ C′ ▷ Move vertex v to cluster C′

8: N ← {u | {u, v} ∈ E(G), u ̸∈ C′} ▷ Identify neighbours of vertex v that are not in community C′

9: Q.add(N −Q) ▷ Add non-queued neighbours to queue
10: end if
11: while Q ̸= ∅ ▷ Continue until there are no more vertices to process
12: return P
13: end function

Algorithm 5 shows the local moving phase of the Leiden algorithm. It starts in the

same way as the Louvain algorithm, with each vertex being a community on its own. Then,

the algorithm iteratively moves vertices between communities to improve modularity. At

each iteration, the Leiden algorithm considers moving each vertex to its neighbouring

communities and calculates the change in modularity that would result from the move.

The algorithm then selects the move that results in the greatest increase in modularity

and makes that move.

At this point, the Leiden algorithm differs from the Louvain algorithm. In the Louvain

algorithm, if at least one vertex is moved to a new cluster, the local moving phase will

repeat and iterate through all the vertices of the graph. The local moving phase in the

Leiden algorithm processes a queue of vertices initiated by all vertices in the graph and

proceeds until the queue is empty. When a vertex v is moved to a new community C ′,

all the neighbours of v that belong to a different community than C ′ (line 8) and are

not already in the queue will be added to the queue, as shown on line 9. This results in

significantly fewer vertices being processed; hence, lower running time. The process is

repeated until no further moves can be made that result in an increase in modularity.

Figure 3.2 step a) to b) shows how the local moving phase is initiated with a singleton

partition and results in three communities of different sizes.

The largest improvement from Louvain to Leiden is the refinement phase, depicted in

Algorithm 6. Whereas the Louvain algorithm jumps from the local moving phase straight

to the aggregation of the graph, the Leiden algorithm tries to refine the partition before

aggregating the graph. In the refinement phase, the primary objective of the Leiden

algorithm is to optimise and enhance the quality of the partition discovered during the

local moving phase.

20

Algorithm 6 Refinement phase of the Leiden algorithm
1: function RefinePartition(Graph G, Partition P)
2: Prefined ← SingletonPartition(G) ▷ Assign each vertex to its own community
3: for C ∈ P do ▷ Visit communities
4: Prefined ← RefineCommunity(G,Prefined, C) ▷ Refine community C
5: end for
6: return Prefined

7: end function

8: function RefineCommunity(Graph G, Partition P, Subset S)
9: R← {v | v ∈ S,E(v, S − v) ≥ γ∥v∥ · (∥S∥ − ∥v∥)} ▷ Find all well-connected vertices
10: for v ∈ R do ▷ Visit vertices (in random order)
11: if |P(v)| = 1 then ▷ Consider only vertices in singleton communities
12: T ← {C | C ∈ P, C ⊆ S,E(C, S − C) ≥ γ∥C∥ · (∥S∥ − ∥C∥)} ▷ Find all well-connected communities

13: Pr(C′ = C) ∼
{
exp(1

θ
∆QP (v 7→ C)) if QP (v 7→ C) ≥ 0

0 otherwise
for C ∈ T ▷ Choose random cluster C′

14: v 7→ C′ ▷ Move vertex v to cluster C′

15: end if
16: end for
17: return P
18: end function

The refinement process starts by initialising a partition, where each vertex is assigned

to its own community (line 2) and then iteratively refines each community in the partition

produced by the local moving phase. For each community S, a set R of vertices that are

well-connected within S is computed on line 9. This set is determined by comparing the

edge connections of each vertex within S to a threshold value that depends on the chosen

resolution parameter and the total edge weight within S. The algorithm then iterates

through each vertex in the set of well-connected vertices in random order, considering

only vertices that are in a singleton community.

On line 12, the algorithm computes a set T of all well-connected neighbour communities

within community S. This ensures that only communities with strong connections relative

to their size are considered. Once the set of well-connected neighbour communities is

identified, the algorithm computes the probability of moving a vertex v to a different

community within this set. This probability is based on the change in the modularity

caused by moving v to a different community and is determined using an exponential

function of the change in modularity. The degree of randomness in the selection of a

community is determined by a parameter θ > 0. The algorithm only considers moving v

to communities that result in a non-negative modularity change. After computing the

probabilities, the algorithm randomly selects a community from the set of well-connected

communities based on the calculated probabilities and moves v to the chosen community.

After the refinement phase is concluded, communities in P often will have been split

into multiple communities in Prefined, but not always. As a result of Leiden detecting

communities within communities, it tends to produce more communities than Louvain.

The refinement phase is critical in improving the overall performance of the Leiden

21

algorithm and ensuring that the community partition is more accurate and representative

of the graph structure compared to other modularity optimisation algorithms, such as the

Louvain algorithm [29, pp. 7-11].

The refinement phase is depicted in Figure 3.2 [29, p. 4] from state b) to c) where

it detects two new communities within the red and green communities, resulting in a

partition consisting of five communities being aggregated into a graph, whereas Louvain

only aggregated three communities. The aggregate phase of the Leiden algorithm is

identical to that of the Louvain algorithm, portrayed in Algorithm 3.

Figure 3.2: Steps of the Leiden algorithm

The Leiden algorithm has been shown to be highly effective in identifying communities

in a wide range of complex real-world networks, including social networks, biological

networks, and technological networks [29, pp. 10-11]. It has also been shown to outperform

other state-of-the-art community detection algorithms in terms of both accuracy and

speed. Even though the Leiden algorithm is one of the more efficient algorithms for

community detection in static graphs, it falls behind when trying to detect communities

in incremental graphs. If the Leiden algorithm were to be used to cluster an incremental

graph, the whole graph would have to be reclustered every time new data arrived, which

would quickly lead to an unviable execution time. Hence, we need an algorithm designed

specifically for incremental graphs.

22

3.3 The NCLiC Algorithm

The Neighbourhood-to-Community Link Counting (NCLiC) algorithm is an algorithm

designed for community detection in incremental graphs, introduced by Tumanis in

2021 [31, pp. 79-85]. The algorithm works by continuously processing chunks of edges,

represented by two vertices, which may be either two vertices already processed, one old

and one new vertex, or two new vertices. First, the vertices in the arriving chunks are

clustered using the Leiden algorithm. The partition is then merged with the communities

of previously processed vertices using a refinement step. The refinement phase is based on

the assumption that if a majority of the neighbours of a vertex v belong to a community,

there is a high probability that v belongs to the same community. The algorithm also

assumes that the Leiden algorithm produces local partitions that are close to optimal.

The aim of the refinement phase is to merge the partitions with the lowest modularity

loss possible.

3.3.1 Data Structures

The NCLiC algorithm uses three data structures to store data of all previously processed

vertices:

• G: A dynamic graph consisting of the vertices and edges from processed chunks.

• P : A dynamic array to keep track of the current community of vertices in V (G).

• NCC : A dynamic array consisting of |V (G)| hash maps. The hash map at index i

keeps track of the communities of the vertices adjacent to the vertex with id i.

Data Structure 1 Dynamic graph data structure
1: Graph {
2: n vertices: Integer representing the number of vertices in the graph
3: n edges: Integer representing the number of edges in the graph
4: adj lists: Dynamic array of linked lists representing the adjacency lists with edge weights for each vertex
5: vertex weights: Dynamic array of sums of edge weights incident to each vertex
6: label to id: Associative array mapping vertex labels to ids
7: id to label: Dynamic array mapping vertex ids to labels
8: }

The graph structure shown in Data Structure 1 uses mainly four data structures to

store information about the graph. The variables n vertices and n edges are integers

that store the number of vertices and edges in the graph. Variable adj lists is a dynamic

array with n vertices elements, where index i of the array contains a pointer to a linked

list containing the neighbours and edge weights of the vertex with id i. If the edge weights

23

are not given as part of the chunk, the weight is set to 1. Variable vertex weights is a

dynamic array with n vertices elements, where index i of the array contains an integer

representing the weight of the vertex with id i. The weight of a vertex v is the sum of the

edge weights of the edges incident to v.

To reduce the amount of memory needed and to exploit the advantages of processing

data stored in contiguous memory sections [19], all the vertices are assigned a zero-indexed

id. Thus, two more data structures are needed to store mappings from label to id and

vice-versa. Variable label to id is a hash map mapping the original label of the vertices

to ids and variable id to label is a dynamic array of size |V (G)| that maps the assigned

ids to the original labels. Another benefit of relabelling the new vertices when they are

merged into G is that the partition P and the neighbour community count NCC can be

stored in dynamic arrays of size |V (G)|, avoiding unnecessary allocation of memory.

3.3.2 Implementation

Algorithm 7 shows the outline of the NCLiC algorithm. First, the algorithm initialises

three data structures to store information about already processed chunks: an empty

graph G, an empty partition P and an empty array NCC. Chunks are then processed

iteratively and for each iteration, four steps are applied:

1. Build a graph Gi from the edges in chunk Si and a singleton partition Pi of the

vertices in Gi, shown on lines 6 through 9

2. Pre-cluster Gi using the Leiden algorithm and merge the communities of the new

vertices into P , shown on line 10

3. Merge the vertices and edges of Gi into G, shown in lines 11 and 12

4. Refine the new partition based on the neighbour community count, shown on line 13

Algorithm 7 NCLiC algorithm
1: function NCLiC(Data stream S)
2: G← Graph() ▷ Initialise empty graph
3: P ← empty array ▷ Initialise empty partition
4: NCC ← empty array ▷ Initialise empty array for neighbour community count
5: while S has next do
6: Read Si ▷ Read chunk of edges from S
7: V (Gi)← {v | {u, v} ∈ Si or {v, u} ∈ Si}
8: E(Gi)← {e | e ∈ Si} ▷ Initialise graph from chunk
9: Pi ← SingletonPartition(Gi) ▷ Initialise singleton partition for chunk
10: P(V (Gi) \ V (G))← Leiden(Gi,Pi) ▷ Pre-cluster the chunk and store communities of new vertices
11: V (G)← V (G) ∪ V (Gi) ▷ Merge chunk into the main graph
12: E(G)← E(G) ∪ E(Gi)
13: RefineCommunities(P, G,Gi, NCC) ▷ Refine the pre-clustered chunk
14: end while
15: end function

24

3.3.3 Refinement

Algorithm 8 shows the refinement phase of the NCLiC algorithm. The algorithm iterates

through each vertex v in the new graph Gi. If v has not been part of an earlier chunk, it

is assigned an empty neighbour community count on line 4. Then, on line 7, the NCC

of v will be updated with the communities of the neighbours of v in Gi. On line 9, the

algorithm finds the community most common among the neighbours of v. In case of a

tie, a community is chosen randomly between the most common communities. If the

chosen community C differs from the current one, two things will happen. First, vertex v

is moved to C. Second, the algorithm calculates the probability of whether the neighbour

community count of the neighbours of v in G should be updated. This is based on the

difference between the average degree in G and the degree of v, which means that vertices

with a low degree compared to the average degree have a higher chance of being updated

than those with a high degree. The reason that the probability decreases with increasing

degree is based on the assumption that a vertex with several neighbours has a higher

probability of being in the “best” community compared to vertices with few neighbours.

Algorithm 8 Refinement phase of the NCLiC algorithm
1: function RefineCommunities(Partition P, Graph G, Graph Gi, HashMap NCC)
2: for v ∈ V (Gi) do ▷ Iterate through vertices in Gi

3: if v /∈ V (G) then
4: NCC[v]← empty hash map ▷ Initialise neighbour community count for new vertex v
5: end if
6: for w ∈ NGi

(v) do
7: NCC[v][P(w)]← +1 ▷ Increment count of all neighbour communities of v
8: end for
9: Cnew ← argmax(NCC[v]) ▷ Find the community Cnew that most neighbours of v are assigned to
10: if P(v) ̸= Cnew then
11: Cold ← P(v)
12: v 7→ Cnew ▷ Move v to Cnew

13: x← avgdegree− degree(v)

14: p←
(

x√
1+x2

+ 1

)/
2 ▷ Calculate the probability that the NCC of neighbours should be updated

15: if random < p then
16: for w ∈ NG(v) do ▷ Update NCC for all neighbours of v
17: NCC[w][Cold] ← −1 ▷ Decrease count of old community
18: NCC[w][Cnew]← +1 ▷ Increase count of new community
19: end for
20: end if
21: end if
22: end for
23: end function

When a chunk is processed, the Leiden algorithm produces a community partition

with close-to-optimal modularity locally. However, this might not be the optimal choice

of community for all vertices when merged into graph G. The refinement phase ensures

that the final community partition in the whole graph G is more accurate and that the

modularity loss is minimised.

25

3.3.4 NCLiC Steps

The example in Figure 3.3 [31, p. 80] shows how the NCLiC algorithm processes one

chunk. The large, grey boxes in the steps represent the graph Gi built from the incoming

chunk Si. The small grey boxes represent graph G, consisting of previously processed

vertices and edges. Vertices 5 and 6 have been part of an earlier chunk and are already

assigned communities. However, edges {5, 7}, {5, 8} and {6, 8} are part of chunk Si, hence,

the vertices are processed in this iteration as well.

1

2

3

4 5

6

7

8

Rest of

graph

Incoming chunk (Gi) In memory (G)

1

2

3

4 5

6

7

8

Rest of

graph

Incoming chunk (Gi) In memory (G)

1

2

3

4 5

6

7

8

Rest of

graph

Incoming chunk (Gi) In memory (G)

1

2

3

4 5

6

7

8

Rest of

graph

Incoming chunk (Gi) In memory (G)

Step 1: Build graph

Step 2: Pre-cluster Step 3.1: Refine 1-4

Step 3.2: Refine 5-8

Figure 3.3: Steps of the NCLiC algorithm

Step 1: Build graph Chunk Si is read from the data stream followed by the

construction of the graph Gi. Note that vertices 5 and 6 have been part of an earlier

chunk and are already placed in the red and the blue community, respectively.

Step 2: Pre-cluster The Leiden algorithm is used to partition the vertices into

communities that yield the highest modularity score. Vertices 5 and 6 are already assigned

communities, and the result of the Leiden algorithm does therefore not affect them. The

rest of the vertices are partitioned into two communities, indicated by green and yellow.

26

Step 3.1: Refine vertices 1 through 4 The refinement phase iteratively processes

vertices 1 through 4. However, because the majority of their neighbours are placed in the

green community, none of the vertices will be moved to another community.

Step 3.2: Refine vertices 5 through 8 The refinement phase iteratively processes

vertices 5 through 8.

• Vertex 5 has three neighbours in graph G placed in the red community and two

neighbours placed in the yellow community; hence, vertex 5 will remain in the red

community.

• Vertex 6 has two neighbours, vertex 8 in the yellow community and one vertex in

graph G in the blue community. There is a tie, and vertex 6 will randomly choose

between remaining in the blue community or moving to the yellow community.

• Vertex 7 has three neighbours assigned to different communities, green, yellow and

red. Thus it will be moved to either the green, the red or remain in the yellow

community. This is again chosen randomly.

• The results of the random choices for vertices 6 and 7 decides what happens to

vertex 8. The possible combinations of neighbouring communities are:

– Red (5), green/yellow (7), blue (6) → vertex 8 is randomly placed in one of

the four communities.

– Red (5), green (7), yellow (6) → vertex 8 is randomly placed in one of the

three communities.

– Red (5), yellow (7), yellow (6) → vertex 8 has two neighbours in the yellow

community and will remain there.

– Red (5), red (7), yellow/blue (6) → vertex 8 has two neighbours in the red

community and will be moved to this.

The example in Figure 3.3 shows both the strengths and the weaknesses of the NCLiC

algorithm. Vertices with few previously processed neighbours are likely to be moved

around several times, for instance, vertex 6, which may be the only vertex placed in the

yellow community after the refinement step is done. This will, however, be stabilised when

several chunks have been processed, as seen for vertex 5, which has enough neighbours

in the red community in G to remain there, regardless of the local partition of Gi. It is

important to note that because of the neighbour community count, NCC, the algorithm

can decide that vertex 5 is stable without actually iterating through its neighbours in G.

27

3.3.5 NCLiC Example

Figures 3.5 through 3.8 [31, pp. 82-84] depict how the NCLiC algorithm works when

processing the graph in Figure 3.4 represented as four chunks of edges.

1

2

3

4

5

6 7 8

9

15

10

11

12

13

14

16 17

18

Figure 3.4: A graph to be clustered by the NCLiC algorithm

The graph in Figure 3.4 shows a clear community structure consisting of three clusters.

1

2

3

4

5

6 7 8

9

10

11

12

13

Figure 3.5: Graph G after the initial chunk of edges is processed

Figure 3.5 shows the first chunk, which consists of the following edges:

{{1, 3}, {1, 6}, {2, 5}, {2, 6}, {4, 7}, {8, 13}, {9, 10}, {11, 12}}

After running the Leiden algorithm on the chunk, the vertices are partitioned into five

communities. When processing the initial chunk, the algorithm skips the refinement phase.

28

This is because running the refinement step would, at best, result in the same partition

as the Leiden algorithm did.

1

2

3

4

5

6 7 8

9

10

11

12

13

Figure 3.6: Graph G after merging of the second chunk of edges

Figure 3.6 shows the result given by the NCLiC algorithm after the second chunk has

been processed. This chunk consists of the following edges:

{{1, 5}, {3, 5}, {4, 5}, {4, 6}, {8, 10}, {9, 11}, {9, 13}, {12, 13}}

Vertices 1, 2, 3, 5 and 6 were already part of the red community and remain there. Vertex

4 has gotten two new neighbours in this chunk, 5 and 6, which are both assigned to the

red community; hence, the refinement phase moves vertex 4 to the red community. Vertex

7 is not part of any edges in the chunk and will not be processed in the refinement phase,

even though it has a neighbour in the red community. Vertices 8 through 13 will all be

moved into the same community as a result of running the Leiden algorithm and the

refinement phase.

1

2

3

4

5

6 7 8

9

10

11

12

13

Figure 3.7: Graph G after merging of the third chunk of edges

Figure 3.7 shows the result given by the NCLiC algorithm after the third chunk has

been processed. This chunk consists of the following edges:

{{1, 2}, {2, 3}, {3, 4}, {6, 7}, {7, 8}, {8, 9}, {10, 11}, {10, 12}, {11, 13}}

29

Even though there are several new edges, only one vertex changes community. Vertex 7

has two neighbours in the red community and one neighbour in the green community,

and the refinement phase moves the vertex to the community that most of its neighbours

are assigned to.

1

2

3

4

5

6 7 8

9

10

11

12

13

14

15

16 17

18

Figure 3.8: Graph G after merging of the last chunk of edges

Figure 3.8 shows the result given by the NCLiC algorithm after the last chunk has

been processed. This chunk consists of the following edges:

{{4, 15}, {9, 15}, {14, 15}, {14, 16}, {14, 17}, {14, 18}, {15, 18}, {16, 17}, {16, 18}}

The Leiden algorithm assigns all the new vertices 14 through 18 to one community:

orange. The only vertex with neighbours in another community is vertex 15, but with

two neighbours in the orange community, the refinement phase does not affect it. When

all chunks are processed, the vertices are partitioned into three communities that display

the clear community structure of the graph.

The NCLiC algorithm has been shown to be highly effective in clustering incremental

graphs [31, p. 102]. It far outperforms offline algorithms while retaining a significant

fraction of the quality of the communities. However, as the amount of data in real-

world networks increases rapidly, there is a need for even further development of this

algorithm to handle the scale and complexity of these networks, raising the question for this

thesis: How can the Neighbourhood-to-Community Link Counting algorithm

be parallelised?

30

Chapter 4

Related Work

4.1 Parallelised Community Detection

To the best of our knowledge, there exists little research on the parallelisation of algorithms

designed for community detection in streaming and incremental graphs. There do, however,

exist several approaches to parallelise community detection in static graphs, using different

community detection algorithms with different parallelisation techniques. In 2018 Zeng et

al. introduced an MPI implementation of the Infomap algorithm [35], obtaining speedups

up to a factor of 6 compared to the sequential implementation. Naim et al. introduced a

GPU implementation of the Louvain algorithm in 2017 [23], obtaining speedups up to a

factor of 270 compared to the sequential algorithm.

Even though the Leiden algorithm is a relatively recent algorithm, parallelisation of

the algorithm has been explored to some extent. A parallel implementation of the local

moving phase of the algorithm was introduced by Verweij in 2019 [32]. The algorithm

obtained a speed-up of up to 1.65, depending on the size and density of the graph being

clustered.

A bachelor thesis written by Nguyen in 2021 [27] introduced a parallel implementation

of the Leiden algorithm using a shared memory approach, where both the local moving

phase and the refinement phase were parallelised. The parallel algorithm achieved up to

28 times speed up for the local moving phase and up to 15 times for the refinement phase,

and preserving virtually the same modularity as the sequential implementation.

31

Chapter 5

Parallel NCLiC

In this chapter, we present the details of our novel implementation of the parallel NCLiC

algorithm. The algorithm repeatedly applies four steps: graph building, pre-clustering,

graph merging and refinement, shown in Section 3.3.4. We consider if and how these

can be parallelised and which precautions must be taken, and we present the parallel

implementation of the steps. The advantages and limitations of the implementations are

also discussed.

5.1 Building the Graph

The first step when a new chunk arrives is building a graph Gi from the edges of the chunk.

The graph building is done sequentially in the parallel implementation of the algorithm.

If the graph was to be built in parallel, the graph structure would have to be implemented

with several synchronisation mechanisms, such as mutexes and atomic variables, to ensure

memory safety and eliminate the possibility of race conditions, according to the rules of

the ownership model in Rust, explained in Section 2.5.1.

When performing parallel pre-clustering, Gi is only read by multiple threads and never

written to, which means that an immutable reference to the graph structure could be shared

between threads without further synchronisation mechanisms while still obeying the rules

of the ownership model. The pre-clustering of Gi is a significantly more time-consuming

operation than building it, thus, running the clustering algorithm on a graph structure

containing synchronisation mechanisms would lead to more overhead than building the

graph in parallel would speed up the process.

32

5.2 Pre-clustering

In this section, we cover our implementation of the parallel Leiden algorithm, inspired

by the implementation by Nguyen [27]. The Leiden algorithm consists of three steps,

explained in Section 3.2. Algorithms 9 through 12 explains the parallel implementation of

the fast local moving and refinement phases.

5.2.1 Parallel Local Moving

The pseudocode of the parallel local moving phase is split in three, Algorithms 9 through 11,

to improve readability. First, we define the shared and thread-local data structure used in

the implementation:

• Global

– global Q: A shared thread-safe queue of arrays of vertices that should be

processed.

– in queue: A shared array of size |V (G)| where the atomic boolean at index i

determines whether the vertex with id i is in the queue or not.

– threads waiting: A shared atomic integer representing the number of threads

currently waiting for work.

• Local

– local Q: A thread-local queue initialised for each thread consisting of vertices

that should be processed. When a thread pops an array of vertices from the

global queue, the vertices are pushed to the local queue.

– new queue: A thread-local array where each thread store vertices that should

be reprocessed.

Algorithm 9 Local moving phase of the parallel Leiden algorithm
1: function ParallelMoveVerticesFast(Graph G, Partition P)
2: global Q ← empty queue ▷ Initialise thread-safe empty global queue
3: in queue ← [true for v ∈ V (G)] ▷ Set all vertices as in queue
4: threads waiting ← 0 ▷ Initialise atomic integer to keep track of waiting threads
5: vertices per thread ← |V (G)| / num threads ▷ Split vertices evenly among threads
6: - Open parallel region -
7: first vertex ← thread id × vertices per thread

8: last vertex ← (thread id+ 1) × vertices per thread

9: local Q ←
[
first vertex, last vertex

)
▷ Initialise local queue

10: while local Q ̸= ∅ do ▷ Work as long as the local queue is not empty
11: Move vertices in the local queue (Algorithm 10)
12: Get work from the local or global queue or wait (Algorithm 11
13: end while
14: - Close parallel region -
15: return P
16: end function

33

Algorithm 9 shows the outline of the parallel local moving phase. In lines 2 through 5

the global variables are initialised. In line 6, the threads are initialised and are assigned

non-overlapping sets of vertices in line 9. As long as a thread t has vertices in the

local queue, it will continue working. In line 11, t processes the vertices in its local

queue, explained in Algorithm 10 and when all vertices in the local queue have been

processed, t proceeds to line 12, where it either gets more vertices to process or wait

for another thread to push work to the global queue. This step is explained in Algorithm 11.

Algorithm 10 Working threads in the parallel local moving phase
1: new queue ← empty queue ▷ Initialise empty queue to keep track of neighbour vertices
2: for v ∈ local Q do ▷ Iterate through vertices in local queue
3: C′ ← argmaxC∈P∪∅ ∆HP (v 7→ C) ▷ Determine the best community for vertex v
4: if ∆HP (v 7→ C′) > 0 then ▷ Perform only strict positive vertex movements
5: v 7→ C′ ▷ Move vertex v to cluster C′

6: for w ∈ NG(v) do ▷ Iterate through neighbours of v
7: if CompareAndSwap(w) and P (w) ̸= C′ then
8: new queue.push(w) ▷ Add neighbour to the new queue
9: if new queue.size() = 1000 then
10: global Q.push(new queue) ▷ Push new queue to global queue
11: WakeAllThreads() ▷ Notify waiting threads that there is available work
12: new queue← empty queue ▷ Empty new queue
13: end if
14: end if
15: end for
16: in queue[v] ← false ▷ Set vertex v as not in queue
17: end if
18: end for

Algorithm 10 shows how a thread t processes vertices in the local queue. First, an

empty array new queue is initialised, which is used to store neighbours of moved vertices.

Thread t then iterates through the vertices in its local queue. The best move for each

vertex is determined the same way as in the sequential algorithm. If vertex v is moved to

a new community, the neighbours of v should be reprocessed. The neighbours of v are

iterated through in line 6. A neighbour w should only be queued if it is not already in the

queue and if the current community of w is the community v was moved to. The function

CompareAndSwap is an atomic operation that will either set in queue[w] = true and

return true if w was not in the queue or change nothing and return false otherwise.

This ensures that no thread places the same vertex in the queue twice. If neighbour

w was not already in the queue, it is pushed to the array new queue, and if new queue

reaches 1000 vertices, the array is pushed to the global queue to give waiting threads

work. The size limit of 1000 was chosen to minimise unwanted overhead and idle time

for threads. A low limit would lead to overhead from threads trying to acquire access

to global queue too often, and a high limit would lead to idle threads waiting for work

for too long. After pushing the array to the global queue, thread t signals all waiting

threads that new vertices were pushed and empties new queue. When all neighbours of

34

v are processed, v will be set as not in the queue, and thread t will proceed to the next

vertex in the local queue.

Algorithm 11 Waiting threads in the parallel local moving phase
1: if new queue ̸= ∅ then ▷ Local work is available
2: local Q ← new queue

3: continue

4: end if
5: if global Q ̸= ∅ then ▷ Global work is available
6: local Q ← global Q.pop()

7: continue

8: end if
9: threads waiting.fetch add(1) ▷ Increment counter of waiting threads
10: if threads waiting < num threads then ▷ Some threads are still working
11: Wait() ▷ Wait for work
12: if threads waiting < num threads then
13: threads waiting.fetch sub(1) ▷ Decrement counter of waiting threads
14: if global Q ̸= ∅ then ▷ Work is available
15: local Q ← global Q.pop() ▷ Try to take work from the global queue
16: end if
17: continue

18: end if
19: end if
20: WakeAllThreads() ▷ Notify threads that they should stop working
21: break

Algorithm 11 shows what thread t does after the vertices in its local queue are

processed. First, it will check if there are any vertices in the local array new queue. If so,

these are pushed to the local queue, and t will continue to the next iteration of the while

loop shown in Algorithm 9. If new queue is empty, the next step is to get work from the

global queue. The global queue is synchronised, meaning that only one thread can pop an

element from the queue simultaneously.

If both the local and global queues are empty, t will wait for more work to be pushed to

the global queue by one of the other threads. First, the atomic variable threads waiting

will be incremented in line 9 to signal that it is idle. If t is not the only thread working,

i.e. the statement on line 10 is true, it will wait to be signalled. At this point, two events

can wake up t. If another thread has pushed work to the global queue, shown on line 11

in Algorithm 10, t will be signalled to wake up, decrement threads waiting, pop work

from the global queue, and continue to the next iteration in the while loop.

The second case where thread t will be woken is when all threads are done working.

When a thread t′ reaches line 10 and threads waiting = num threads, it will jump to

line 20 and signal all threads that there is no more work. Thread t, waiting in line 11,

will then jump to line 20, and on the following line break the while loop.

35

5.2.2 Parallel Refinement

When implementing a parallel version of the refinement phase, it is important to

remember why it was originally introduced. The refinement phase guarantees the absence

of disconnected communities and increases connectivity within communities overall.

These properties have to be upheld in the parallel version as well, guaranteed by these

requirements:

• A vertex v has to be well-connected to its initial community S

• The target community C has to be well-connected.

• v has to be a singleton at the time of the move

In the sequential implementation, shown in Algorithm 6, the communities in P are

processed iteratively. The most straightforward approach to parallelise the refinement

phase would be to parallelise the for loop iterating through the communities. However,

this will cause idle threads and uneven workload. If there are fewer communities in the

partition than there are available threads, only |P| threads will work. Also, the sizes of

the communities might be very different, meaning an uneven workload for the threads,

probably resulting in idle threads.

To fully utilise the available threads, the vertices in G are iterated through instead of

refining the partition community-wise. Each vertex is processed once, which means that

iterating through the vertices in parallel will give a more even workload for each thread.

However, this requires more synchronisation mechanisms to guarantee that the properties

of the sequential refinement phase are upheld. The first requirement does not need to be

synchronised since the initial community S is never changed during the refinement phase.

Hence, two things must be true when vertex v is moved to community C: vertex v has to

be in a singleton community, and C has to be well connected.

The problem is that both requirements might be fulfilled when the best community

C is calculated but false when vertex v is moved. This problem is solved by locking the

access to the current community of v and to community C, ensuring that no vertex can

be moved to the community v is currently in, and no vertices can be moved away from

C. Hence, when v moves, its current community is guaranteed to be a singleton, and

community C is guaranteed to be well-connected.

36

Finding the best community for a vertex v is calculated the same way as in the

sequential algorithm, by first finding all well-connected communities and then giving each

community C ′ a probability of being chosen based on the increase in modularity of moving

v to C ′, shown in lines 12 and 13 in Algorithm 6. Then, the thread will try to move v

from its current community C to C ′ either until it succeeds or until another vertex w is

moved to C, meaning v is not a singleton anymore and should not be moved, at which

point the thread proceeds to the next vertex in the for loop.

Algorithm 12 Refinement phase of the parallel Leiden algorithm
1: function ParallelRefinePartition(Graph G, Partition P)
2: Prefined ← SingletonPartition(G) ▷ Assign each vertex to its own community
3: parallel for v ∈ V (G) do ▷ Iterate through vertices of G
4: if is singleton[v] and E(v, S − v) ≥ γ∥v∥ · (∥S∥ − ∥v∥) then ▷ Only consider well-connected vertices
5: critical vertices ← {w | w ∈ NG(v) and P(v) = P(w)} ▷ Neighbours of v in the same community
6: Find new community C′

7: LockLowerFirst(v, C′) ▷ Lock lower number first to avoid deadlock
8: if is singleton[v] then
9: while C′ = ∅ do ▷ Do not move to empty community
10: Unlock(v, C′) ▷ Unlock vertex v and community C′

11: Update refined community weights
12: Find new community C′

13: if is singleton[v] then
14: LockLowerFirst(v, C′)
15: else
16: break ▷ v is no longer a singleton and should not be moved
17: end if
18: end while
19: if is singleton[v] then
20: Update refined community weights
21: v 7→ C′ ▷ Move vertex v to community C′

22: is singleton[C′] ← false ▷ C′ is no longer a singleton
23: end if
24: end if
25: end if
26: Unlock(v, C′) ▷ Unlock vertex v and community C′

27: end parallel for
28: return Prefined

29: end function

Three synchronised data structures are needed to avoid race conditions and deadlocks

and to guarantee that the requirements are upheld. One array should define the total

weight of the internal edges in the refined communities, and one should define the total

weight of the external edges going out of the refined communities. These are used to

decide whether the communities are well-connected.

The threads also need an array, is singleton, of atomic booleans that determines

whether the vertices are in singleton communities or are moved. All values are initialised

as true and will be set to false as the vertices move. The last data structure needed is

an array of locks, one for each community, used to block access to the current community

of a vertex v and its chosen community C ′ to ensure the requirements hold.

37

In addition to the shared data structures, each thread has an array critical vertices,

consisting of the neighbours of the vertex v being processed, that are part of the same

community as v. These are the only vertices affecting whether v should recalculate its

best community.

Algorithm 12 shows the parallel implementation of the refinement phase of the Leiden

algorithm. In line 4 thread t checks if vertex v should be processed, according to the

requirements mentioned. Then, its neighbours in the same community are stored in

critical vertices. A community C ′ is chosen, shown in Algorithm 6. The communities

are locked in line 7. A resource hierarchy [11] is used to avoid a deadlock, meaning the

community with the lowest index is locked first.

There is some time from community C ′ is found to thread t acquires exclusive access

to v and C ′. In the meantime, two things can happen: a vertex w could have been moved

to the community v is in, hence, v is not a singleton anymore, or, if C ′ was a singleton,

the vertex in C ′ could have been moved, and C ′ is empty. If v is no longer a singleton, t

will jump to line 26, release the locks and proceed to the next vertex. However, if v is

still a singleton, t has to check that C ′ is not empty. In lines 9 through 18, thread t will

repeatedly unlock v and C ′, update weight arrays, find new C ′ and lock v and C ′ as long

as the chosen C ′ is empty. If v at any point is no longer a singleton, the while loop will

break. When t exits the while loop, it has found a new community C ′ for v and locked

both before anything changed. Vertex v can now be moved to C ′, which is no longer a

singleton community, and the move meets both requirements.

5.3 Merging

The sequential implementation of the NCLiC algorithm uses a dynamic graph structure

to store the already processed vertices and edges. The graph structure used in the parallel

implementation is similar, except that it contains several synchronisation mechanisms to

ensure memory safety and avoid race conditions.

The variables n vertices and n edges are implemented as AtomicUsize (2.8). This

avoids race conditions when multiple threads try to increment the variables during the

merging of the graphs. The array of adjacency lists adj lists is a dynamic array, the

same as in the non-thread-safe graph structure. However, the linked list at each index

is protected by an RwLock (2.7). In the refinement phase, the adjacency lists are never

38

written to but are often read by multiple threads, as seen on lines 8 and 23 in Algorithm 14.

Hence, an RwLock will be efficient because it reduces the time threads wait to get read

access. The array vertex weights is never read or written to by any threads in the

refinement phase, but to obey the rules of the ownership model, the data still has to be

thread-safe. To ensure memory safety, the elements in the array are atomic variables. The

array id to label ensures memory safety the same way as the vertex weights array

does, by protecting the variable at each index with atomics. The hash map label to id

is protected using the third-party library DashMap [34]; a concurrent hash map that allows

for thread-safe reads and writes of the values.

Algorithm 13 Graph merging phase of the parallel NCLiC algorithm
1: function MergeGraph(Graph G, Graph Gi)
2: G.n edges← +Gi.n edges ▷ Increment number of edges
3: parallel for v ∈ V (Gi) do ▷ Prallel iterate through vertices of Gi

4: vertex label ← Gi.id to label[v]
5: if vertex label /∈ G.label to id.keys then ▷ Only consider vertices not in G
6: vertex id ← G.n vertices.FetchAdd() ▷ Assign unique id to v and increase the variable n vertices

7: G.label to id[vertex label] ← vertex id ▷ Map label to id
8: G.id to label[vertex id] ← vertex label ▷ Map id to label
9: G.vertex weights[vertex id] ← +Gi.vertex weights[v] ▷ Increment vertex weight with weight of v in Gi

10: end if
11: end parallel for

12: parallel for v ∈ V (Gi) do ▷ Iterate vertices of Gi

13: vertex label ← Gi.id to label[v]
14: vertex id ← G.label to id[vertex label] ▷ Get id of v in G
15: for w ∈ NGi

(v) do ▷ Iterate neighbours of vertex v in Gi

16: neighbour label ← Gi.id to label[w]

17: neighbour id ← G.label to id[neighbour label] ▷ Get id of w in G
18: G.adj lists[vertex id].push(neighbour id) ▷ Add neighbour to adjacency list
19: end for
20: end parallel for
21: end function

Algorithm 13 shows the implementation of the merging of graph Gi into graph G,

occurring in two steps. First, the vertices are merged into the graph. Only vertices that

are not already in G should be considered; hence, the threads check on line 5 that the

original labels of the vertices are not in the mapping from label to ids. If a vertex v should

be merged into G, it is assigned an id, and because the vertices in G are zero-indexed,

G.n vertices will be the next unique id. To avoid a data race, this is an atomic variable.

When the function FetchAdd() is called on this variable, it will be atomically incremented,

and the previous value will be assigned to v. Hence, all vertices not already part of G will

be assigned a unique id. Then, G.id to label and G.label to id will be updated, and

G.vertex weights will be incremented with the weight of v in Gi. From the guarantee

that vertex id and vertex label are unique values, it follows that a data race cannot

be introduced in this step.

39

When all vertices are added, the edges should be added. The vertices in Gi are iterated

through in parallel. When a thread t processes a vertex v, it will first get the label of v

from Gi in line 16, then get the id of v in G from the label in line 17. Then, for each

neighbour w of v, thread t will obtain the id of w in G and push w to the adjacency list

of v. As mentioned in section 5.4, iterating through the neighbours of all vertices might

result in uneven workload among the threads, and thus iterating through the edges might

be better. However, because the variable adj lists is protected by an RwLock, repeatedly

acquiring and releasing the lock will lead to unwanted overhead. When iterating through

the neighbours of v, only thread t will have to acquire the lock. This can be done before

the for loop in line 15, and released when all neighbours are pushed to the adjacency list,

in line 19.

5.4 Refinement

In the sequential implementation of the NCLiC algorithm, the refinement step iterates

through the vertices in the new graph Gi and for each vertex v, it performs four steps.

The first step is to initialise NCC, if the vertex has not been part of an earlier chunk. The

next step is to update the neighbour community count NCC with the new communities

of the neighbours of v in Gi. The third step is to decide whether v should move to another

community. The last step only occurs if the algorithm decides that v should move. If

so, v is moved, and the neighbour community count of its neighbours might be updated

based on the degree of v. In the sequential implementation, all four steps are applied to a

vertex v before proceeding to the next vertex.

The steps in the parallel implementation are the same as in the sequential one, but

they occur in a different order. To avoid race conditions, each step has to be applied to

all vertices before proceeding to the next step. This means that the parallel refinement

phase has to be split into four separate steps, and synchronisation mechanisms must be

introduced for the data structures. In addition to the data structures already mentioned

in Section 3.3.1, the parallel refine phase needs an array, new communities, to store the

new communities chosen for the vertices between the second and third steps.

Two data structures are read and written to in the refinement phase and must have

synchronisation mechanisms to ensure memory safety and obey the rules of the ownership

model. Multiple threads access the array NCC in the first and last steps. Accessing two

separate indices simultaneously will not introduce a race condition, but two threads can

40

not be allowed to write to a hash map at the same index simultaneously. Because the

hash maps are more often written to than read, they are protected using a Mutex. This

ensures mutually exclusive access to the hash maps when reading and writing.

The implementation of partition P has to ensure memory safety as well. In the first

step, P is read by multiple threads concurrently and in the last step, P is read and written

to by multiple threads. P is represented by an array where each element is implemented

as an atomic variable to ensure exclusive access to read and update the values.

Even though the array new communities is written to by multiple threads, each index

will only be written to by one thread once and, in a separate step, be read by one

thread once; hence, no race condition will occur. Because the ownership model can verify

during compile time that no race conditions will occur, the array does not need extra

synchronisation mechanisms.

Algorithm 14 Refinement phase of the parallel NCLiC algorithm
1: function RefineCommunities(Partition P, Graph G, Graph Gi, HashMap NCC)
2: new communities ← empty array ▷ Initialise empty array to store new communities
3: parallel for v ∈ V (Gi) do
4: if v /∈ V (G) then
5: NCC[v]← empty hash map ▷ Initialise neighbour community count for new vertex v
6: end if
7: end parallel for

8: parallel for {v, w} ∈ E(Gi) do ▷ Iterate through edges in Gi in parallel
9: NCC[v][P(w)]← +1 ▷ Increment count of the community of neighbour w of v
10: NCC[w][P(v)]← +1 ▷ Increment count of the community of neighbour v of w
11: end parallel for

12: parallel for v ∈ V (Gi) do
13: new communities[v] ← argmax(NCC[v]) ▷ Find the community that most neighbours of v are assigned to
14: end parallel for

15: parallel for v in V (Gi) do ▷ Iterate through vertices in Gi in parallel
16: Cold ← P(v)
17: Cnew ← new communities[v]
18: if Cold ̸= Cnew then
19: v 7→ Cnew ▷ Move v to Cnew

20: x← avgdegree− degree(v)

21: p←
(

x√
1+x2

+ 1

)/
2 ▷ Calculate the probability that the NCC of neighbours should be updated

22: if random < p then
23: for w ∈ NG(v) do ▷ Update NCC for all neighbours of v
24: NCC[w][Cold] ← −1 ▷ Decrease count of old community
25: NCC[w][Cnew]← +1 ▷ Increase count of new community
26: end for
27: end if
28: end if
29: end parallel for
30: end function

Algorithm 14 shows the refinement phase of the parallel NCLiC algorithm. In line 2,

the empty array new communities is initialised. The first step is to initialise the neighbour

community count NCC for the new vertices V (Gi) \ V (G), in line 5.

41

The next step is to update the neighbour community count for all the vertices in Gi.

In the sequential implementation, the neighbours of the vertex v currently being processed

are iterated over to count the communities adjacent to v. However, because the degree

of the vertices may differ, this approach may distribute the work unevenly among the

threads. To update the neighbour community count of all vertices, this step requires that

all neighbours of all vertices are iterated over and their communities counted. This is the

same as iterating through all the edges in Gi, as seen in line 8. For each edge {v, w}, the
neighbour community count of vertex v and w is incremented. This approach distributes

the work more evenly among all the threads.

The third step is to compute the most common community among the neighbours for

all vertices and store the results in the array new communities, seen in line 13. This step

has to be separated from the last step because, in the last step, the neighbour community

count is updated several times and would definitely introduce a race condition when

reading and updating the values simultaneously.

The last step is to move the vertices to their chosen communities. The threads iterate

concurrently through the vertices in Gi. For each vertex v, thread t checks whether the

current community of v is the same as the community chosen in the previous step in line 18.

If they differ, v will be moved to its new community. Then, t will compute the probability

that the NCC of the neighbours of v should be updated, explained in Section 3.3.2. The

neighbours of v are then iterated through in line 23, and the NCC of each neighbour is

updated. Iterating through the neighbours might result in an uneven workload for the

threads as a result of the difference in the degrees of the vertices. However, because the

probability of whether the update should happen is decreasing with an increasing degree

of v, the uneven workload among the threads is insignificant.

5.5 Summary

In this chapter, we have presented an approach to parallelise the NCLiC algorithm.

For the pre-clustering, a parallel implementation of the Leiden algorithm is used. All

steps of the algorithm are parallelised, with a specific focus on the fast local moving

and refinement phases. The refinement phase of the NCLiC algorithm is parallelised

by reordering the steps applied to the vertices. This enables the threads to process the

vertices simultaneously and ensures an even workload. In the merging phase, the vertices

of the arriving chunk are merged into the larger graph in parallel, followed by the parallel

merging of all the edges.

42

Chapter 6

Experiments

In this chapter, we explain how the tests were run, on which datasets and why, the

hardware used to run the tests, and the experimental setup for the tests. The results of

the tests are presented and we discuss which factors affect the efficiency of the algorithm.

6.1 Data Sets

To test the sequential and parallel implementations of the Leiden algorithm, tests were

run on the DIMACS10 graph set [2], consisting of 151 graphs. The DIMACS10 challenge

considered the problems of graph clustering and graph partitioning, and the data set is

designed to be a standardised benchmark for these problems. The graphs vary in size,

with the smallest having 39 vertices and 340 edges and the largest having over 16 million

vertices and 265 million edges. The data set also consists of some multigraphs, but due to

the fact that the NCLiC algorithm is not meant for these types of graphs, they were not

considered, resulting in a total of 145 graphs used for our tests. When clustered by the

sequential Leiden algorithm, 115 graphs have a modularity of more than 0.9, 16 graphs

have a modularity between 0.8 and 0.9, and 14 graphs have a modularity of less than 0.8.

The sequential NCLiC algorithm was run on the SNAP Twitter graph [21] to compare

its performance to that of the original Python implementation by Tumanis [31, p. 89]. The

algorithm was tested on the DIMACS10 data set as well to analyse the average modularity

retention of the sequential NCLiC algorithm compared to the Leiden algorithm and the

average modularity retention of the parallel NCLiC algorithm compared to the sequential

43

implementation. The scaling of the parallel NCLiC algorithm was also tested on a very

large graph: GAP-web [5] with |V | = 50 mill. and |E| = 9, 3 bill. The GAP Benchmark

Suite is used as a standardised benchmark for graph algorithms and was chosen for the

experiments in this thesis due to the size of the graphs.

6.2 Hardware

The experiments were run on the Simula eX3 super computer [14] on a dual processor

node with the AMD EPYC Milan 7763 64-core processor with a base clock speed of

2.45 GHz and a total of 256 threads using multithreading. The node has 2 TB DDR4

main memory and 7.6 TB GB local NVMe scratch storage. The source code was compiled

using the rustc compiler version 1.67.0.

6.3 Experimental Setup

The Leiden algorithm was run on all graphs in the DIMACS10 data set to test parallel

scaling and modularity retention of the parallel implementation compared to the sequential

implementation. The algorithm was run for two iterations, with a resolution of 1.0 and

a randomness of 0.01. These settings were used both for the separate Leiden tests and

when used for pre-clustering in the NCLiC algorithm. To make the tests reproducible, all

tests were run with the same parameters and without shuffling the data sets.

The NCLiC algorithm was tested on several graphs, sliced into k chunks. The first

chunk was set to be 20% of the total number of edges in the graphs, and the rest of the

edges were evenly divided among the k − 1 remaining chunks. The choice of the size of

the initial chunk is discussed in [31, pp. 90-91]. The tests were run with k increasing by a

power of two, k = 1, 2, 4, ..., 1024, 2048, to be able to detect changes when k was small

and discover trends in modularity retention and scalability as k grew.

6.4 Results

In this section, we present and discuss the results of the parallel Leiden algorithm,

the sequential NCLiC algorithm and the parallel NCLiC algorithm. We present

44

the execution times of the algorithms and the speedups achieved compared to the

sequential implementations. To evaluate the quality of the partitions discovered by

the algorithms, we compare the modularity achieved by the parallel algorithms to that of

the sequential implementations and measure the percentage of the modularity the parallel

implementations retains, hereafter referred to as modularity retention.

6.4.1 Parallel Leiden

DIMACS10 Graphs

First, we present the results of the parallel implementation of the Leiden algorithm used

in the pre-clustering phase of the NCLiC algorithm. The algorithm was tested on the

DIMACS10 data set with up to 256 threads. As the DIMACS10 graphs differ significantly

in both size and optimal modularity, a good way to analyse the performance of the

algorithm on this data set is to cluster each graph in the data set with the sequential

and the parallel Leiden algorithm and look at the average speedup of the graphs and the

average modularity retention.

(a) Average speedup (b) Maximum speedup

Figure 6.1: Speedup of the parallel Leiden algorithm on DIMACS10

Figure 6.1 shows the speedup of the parallel Leiden algorithm compared to the

sequential implementation on the graphs in the DIMACS10 data set. Figure 6.1a shows

the average speedup of the three phases of the algorithm, and the total speedup. As

shown, the local moving obtained the most speedup with up to an average factor of 5.5,

resulting in an average total speedup of 2.9 compared to the sequential implementation.

45

Because the speedup of the algorithm is highly dependent on the size of the graph being

clustered and the DIMACS10 data set consists of several small graphs, we included the

maximum speedups as well, shown in Figure 6.1b. In this plot, the local moving phase

achieves a speedup of up to a factor 21.9 with a maximum total speedup of up to a factor

of 10.3 compared to the sequential Leiden algorithm.

Figure 6.2: Modularity retention of the parallel Leiden algorithm on DIMACS10

Figure 6.2 shows the average modularity retention achieved by the parallel Leiden

algorithm on the DIMACS10 graphs. The average modularity retention stays above 99.8%

for all threads. For 97.5% of the tests, the resulting modularity retention was over 99.5%,

and 90% of the tests resulted in more than 99,9% modularity retention.

Random Geometric Graphs

Figure 6.3: Execution time of parallel Leiden
algorithm on random geometric graphs

Figure 6.3 shows the execution time of each

number of threads as the size of the graph

increases, run on the random geometric

graphs from the DIMACS10 data set. The

execution times can give an indication of

the scalability of the algorithm, as the time

used for a lower number of threads clearly

increases faster than for the higher numbers.

However, using 64 and 128 threads, the ex-

ecution times are approximately the same

for all numbers of vertices.

46

(a) Execution time versus number of threads (b) Speedup versus number of threads

Figure 6.4: Speedup of the parallel Leiden algorithm on rgg n 2 24 s0

Figure 6.4 shows the execution time and speedup of the parallel Leiden algorithm on

the largest graph in the DIMACS10 data set: rgg n 2 24 s0, with 224 vertices. Figure 6.4a

shows how the execution time is distributed among the three phases of the algorithm as

the number of threads increases. The sequential execution time is included. With one

thread, the local moving phase takes around three times longer than the refinement phase

and nine times longer than the aggregation phase. However, for graphs of this size and

structure, the local moving scales better than the other phases, with a speedup of up to a

factor of 11, shown in Figure 6.4b. The refinement phase and aggregation phase achieved

speedups up to 6.6 and 3.3, respectively. The maximum speedup of the whole algorithm

is 7.6, using 64 threads. The modularity retention of the parallel Leiden algorithm on

rgg n 2 24 s0 stays above 99.997% for all thread configurations.

The parallel Leiden algorithm proved to be effective on large graphs and loses virtually

no modularity compared to the sequential implementation. An important factor that

affects the efficiency of the algorithm is the structure of the graph being clustered, as

clustering graphs with a high density turned out to give more speedup compared to sparser

graphs of the same size. This is, however, merely an observation and has not been tested

thoroughly in this thesis.

6.4.2 Sequential NCLiC

Here we present a comparison of the sequential NCLiC algorithm and the Incremental

Leiden algorithm, that is, running Leiden each time a new chunk is merged into the

graph. We also look at the quality of the partitions discovered by the sequential NCLiC

algorithm, compared to the partitions the Leiden algorithm found.

47

Incremental Leiden

Figure 6.5 shows a comparison of the NCLiC and the Incremental Leiden algorithms.

(a) Execution times (b) Modularity retention

Figure 6.5: Incremental Leiden versus NCLiC on SNAP Twitter

Figure 6.5a shows the execution times of the algorithms when the number of chunks

increases. Note that the y-axis is in logarithmic scale. The sequential NCLiC algorithm

clearly uses a significantly shorter time than the Incremental Leiden algorithm. However,

the cost of the reduced execution time is a reduction in modularity. Figure 6.5b shows the

modularity retention of the NCLiC algorithm, compared to the modularity that Leiden

achieved. The modularity quickly drops to around 93%, but after that, it flattens out and

increases slightly as the number of chunks increases.

DIMACS10 Graphs

The modularity achieved by NCLiC differs from graph to graph, depending on the size

and structure of the graph, and the size of the chunks. Figure 6.6a shows the average

modularity retention of the graphs in DIMACS10 when the number of chunks increases.

The average modularity retention slowly decreases when the number of chunks increases

and seems to flatten as the number of chunks approaches 2048. Figure 6.6b shows

the distribution of modularity retentions of the graphs in DIMACS10. The modularity

retention for each graph is the average modularity retention of all chunks from one to

2048, increasing by a power of two. More than 93% of the DIMACS10 graphs retained a

modularity higher than 70%, and over 22% of the graphs had a modularity retention of

90 to 100%.

48

(a) Average modularity retention (b) Frequency of modularity retention

Figure 6.6: Modularity retention of NCLiC on DIMACS10

6.4.3 Parallel NCLiC

In this last section, we present the results of the parallel NCLiC algorithm. First, we

present the results of running the algorithm on the DIMACS10 data set, followed by an

in-depth analysis of the results from the tests run on the GAP-web graph.

DIMACS10 Graphs

Figures 6.7 through 6.9 shows the average modularity achieved by the parallel NCLiC

algorithm on the DIMACS10 graphs.

Figure 6.7: Modularity retention versus
threads of parallel NCLiC on DIMACS10

Figure 6.7 shows the modularity

retention for each number of chunks, with

an increasing number of threads. Not

surprisingly will a lower number of chunks,

in general, result in higher modularity

retention than a higher number of chunks.

The interesting thing to note is that, as the

number of threads increases, the modularity

retention remains at approximately the same

level for all numbers of chunks, which

gives an indication that the number of

threads does not have much impact on the

modularity retention.

49

Figure 6.8: Modularity retention versus
chunks of parallel NCLiC on DIMACS10

Figure 6.8 shows the modularity

retention of each thread configuration as

the number of chunks increases. As seen in

Figure 6.7, the number of threads does not

affect the modularity significantly; hence,

the lines are mostly overlapping. The mod-

ularity retention of all thread configurations

starts at 100% and steadily decreases as the

number of chunks increases, down to around

88% for 2048 chunks. It is, however, impor-

tant to remember that this is the average

of all the graphs and that the modularity

retention differs depending on the size and

structure of the graph.

Figure 6.9: Distribution of modularity
retention of parallel NCLiC on DIMACS10

Figure 6.9 shows the distribution of

modularity retentions of the graphs in

DIMACS10. The modularity retention of

each graph is the average of all chunks from

one to 2048 and all threads from one to 256,

both increasing by a power of two. More

than 90% of the graphs have modularity

retention higher than 80%, and more than

79% of the graphs retained a modularity

higher than 90% compared to the sequential

implementation.

Figure 6.10: Execution time of parallel
NCLiC on random geometric graphs

Figure 6.10 shows the execution times of

the sequential and parallel NCLiC algorithm

for various numbers of threads on the

random geometric graphs, with 16 chunks.

As seen in Figure 6.3, the parallel Leiden

algorithm is more efficient for larger graphs.

The same pattern can be seen for the parallel

NCLiC algorithm, with the execution times

with eight or more threads increasing slower

than the sequential execution time, as the

size of the graph increases.

50

GAP-web Graph

Figures 6.11 through 6.13 show the execution time, speedup and modularity retention of

the parallel NCLiC algorithm on the GAP-web graph.

(a) Execution time versus threads (b) Execution time versus chunks

Figure 6.11: Execution time of parallel NCLiC on GAP-web

Figure 6.11a shows the execution time of running the algorithm with an increasing

number of threads for different numbers of chunks. The execution times follow roughly

the same pattern as the number of threads increases. For a low number of threads, a

higher number of chunks tends to be faster than for a low number of chunks. However,

when the number of threads increases, the execution time of the higher number of chunks

is more than twice the execution time for the lower number of threads. This could be a

result of the threads trying to acquire access to data structures, and with smaller chunks,

there is a higher probability they try to acquire locks simultaneously.

Figure 6.11b shows the execution time of each thread as the number of chunks increases.

The execution time of the sequential NCLiC algorithm is also included. Most of the

execution times follow the same pattern, where they increase slightly with the number

of chunks. The plot clearly shows that for all numbers of chunks, the execution times

from using eight up to 256 threads are lower than the sequential one. The execution

of the parallel implementation using one thread is slightly slower than the sequential

implementation. With four threads, the execution is slower up to 128 chunks, where it

becomes slightly faster. The execution using two threads is slower for all numbers of

chunks. This is also reflected in Figure 6.11a, where the execution times peak significantly

with two threads.

51

(a) Speedup versus threads (b) Speedup versus chunks

Figure 6.12: Speedup of parallel NCLiC on GAP-web

Figure 6.12a shows the speedup of the algorithm for different numbers of chunks

with an increasing number of threads. This plot shows that the number of chunks, or

more precisely, the size of each chunk, affects the speedup significantly, which is probably

affected by the fact that the speedup of Leiden is very dependent on the size of the graph

being clustered. The trend can also be seen in Figure 6.12b, where the number of threads

with the most speedup decreases as the number of chunks increases.

(a) Modularity retention versus threads (b) Modularity retention versus chunks

Figure 6.13: Modularity retention of parallel NCLiC on GAP-web

Figure 6.13a shows the modularity retention of the parallel NCLiC algorithm compared

to that of the sequential NCLiC algorithm for each number of chunks, with an increasing

number of threads. These results show the same pattern as the average of the DIMACS10

52

graphs did in Figure 6.7, with a lower number of chunks giving higher modularity retention

than a higher number of chunks, and with a relatively stable level of modularity retention

as the number of threads increases. For this particular graph, the modularity retention is

above 88% for all numbers of chunks.

Figure 6.13b shows the modularity retention of each thread configuration as the number

of chunks increases. As seen in the previous plot, the number of threads does not affect

the modularity significantly; hence, the lines are mostly overlapping. For all threads,

the modularity drops to around 94% of the modularity obtained from the sequential

implementation for up to 64 chunks. It then drops down to 90% with 256 chunks and, in

contrast to the average for the DIMACS10 graphs in Figure 6.8, the modularity retention

increases slightly up to 2048 chunks.

The results of running the parallel NCLiC algorithm on the GAP-web graph show

some trends, both in terms of execution time and modularity retention. First of all, we

can conclude that the number of threads used to run the algorithm has little to no effect

on the modularity score. The most important factor that affects the modularity is the

number of chunks used when running the algorithm, which can be explained by the fact

that the Leiden algorithm is able to perform a better local pre-clustering with larger

chunks, and the refinement phase of NCLiC will not have to merge the partitions as often.

This trend could also be seen when comparing the sequential NCLiC algorithm to the

Leiden algorithm in Section 6.4.2.

(a) Execution time (b) Speedup

Figure 6.14: Execution time and speedup of phases in parallel NCLiC on GAP-web

Figure 6.14 shows the execution time and speedup of the different phases of the parallel

NCLiC algorithm for 16 chunks. Figure 6.14a shows the execution time for each phase,

53

including the sequential execution time. An interesting note is that all three phases take

up a significant amount of the total execution time, showing the importance of parallelising

and speeding up all phases. The execution times follow the pattern seen in Figure 6.11a,

where the execution time peaks with two threads and then decreases as the number of

threads increases. Figure 6.14b shows the speedup of the different phases. As mentioned,

the execution time of both the sequential and parallel implementation depends heavily on

the size of the chunks being processed. Hence, the speedup of the different phases varies

from chunk size to chunk size. For 16 chunks, the pre-clustering and refinement phase

scales up to 128 threads. The merging of the graphs scales up to 64 threads, along with

the execution of the whole algorithm.

Chunks
Pre-clustering Refinement Merge graphs Total
Speedup Threads Speedup Threads Speedup Threads Speedup Threads

1 8.48 64 - - 5.27 64 6.3 64
2 8.91 128 18.42 128 4.64 64 6.72 64
4 7.91 64 12.53 128 4.82 64 6.67 64
8 6.9 64 9.74 128 6.24 64 6.73 128

16 5.43 128 7.49 128 6.6 64 5.91 64
32 4.47 64 6.59 128 8.37 64 5.86 128
64 3.94 64 5.71 128 10.36 128 5.77 128

128 3.72 64 5.19 128 9.45 128 5.11 128
256 3.65 64 4.38 128 8.35 128 4.6 128
512 3.45 64 3.46 128 6.48 128 4.05 64

1024 3.07 16 2.92 128 5.77 128 3.46 64
2048 2.9 16 2.25 128 4.63 128 2.83 64

Table 6.1: Maximum speedup of phases in parallel NCLiC on GAP-web

Table 6.1 shows the maximum speedup for each phase for all numbers of chunks,

together with the number of threads used to achieve the speedup. The pre-clustering

achieves a speedup of 8.91 using two chunks and decreases down to 2.9 as the number of

chunks increases. A drop in speedup as the number of chunks increases is expected, as

the efficiency of the parallel Leiden algorithm is very dependent on the size of the graph

being clustered. The pre-clustering phase scales up to 64 threads for most chunks, but for

the two highest numbers of chunks, the pre-clustering only scales up to 16 threads.

The efficiency of the refinement phase is clearly affected by the size of the chunks, as

it starts with a speedup of 18.42 for two chunks, which decreases steadily down to 2.25 for

2048 chunks. It does, however, scale up to 128 threads, the maximum number of threads

without using multithreading, for all numbers of chunks. Same as for the pre-clustering

54

phase, less work per chunk results in more overhead in total. Note that for one chunk,

the refinement phase is not used; hence, it is blank.

The merging of the graphs also shows a clear dependency on the size of the chunks,

with an increasing speedup from 4.64 for two chunks up to 10.36 for 64 chunks, with 128

threads, and then decreases down to 4.63 for 2048 chunks. In contrast to the other two

phases, the speedup of the merging phase increases up to 64 chunks, which is probably

the best number of chunks to minimise overhead from locking data structures while still

processing vertices in parallel effectively.

The total speedup peaks at a factor of 6.73 compared to the sequential implementation,

with 8 chunks and 128 threads. From 8 chunks, the speedup slowly decreases to 2.83 for

2048 chunks.

55

Chapter 7

Conclusion and Future work

7.1 Conclusion

With the increasing number of complex real-world networks, there is a corresponding need

for improved data analysis and pattern discovery. Community detection can yield valuable

information about the underlying structure of graphs, revealing their organisational

principles and functional mechanisms. However, traditional algorithms struggle to keep

up with the scale and complexity of incremental graphs, often leading to sub-optimal

solutions or unviable computational demands. Parallel computing emerges as a promising

solution to this scalability issue.

In this thesis, we explored different strategies to parallelise the NCLiC algorithm. The

algorithm consists of four steps, repeated for each chunk of data that arrives: building

a graph of the chunk, pre-clustering the chunk, refining the partition produced by the

pre-clustering and merging the chunk into the graph consisting of already processed

vertices and edges. We introduced a novel parallel version of the NCLiC algorithm, where

all steps except for the graph building are parallelised, using a shared memory approach.

The algorithms were evaluated through extensive testing. The algorithms were tested

on the DIMACS10 data set to discover trends in the algorithm on different types of graphs.

In addition, the parallel NCLiC algorithm was tested on the GAP-web graph, with 50.6

million vertices and 1.9 billion edges, to discover trends in scaling and modularity retention

on a very large graph.

56

A parallel implementation of the well-known Leiden algorithm is used for the pre-

clustering phase. The parallel Leiden algorithm showed promising results, with virtually

no loss in modularity: an average of 0.1% for the DIMACS10 graphs and 0.003% for the

largest of the DIMACS10 graphs. The algorithm obtained speedups up to a factor of 10.3

compared to the sequential implementation. When used in the pre-clustering phase of the

NCLiC algorithm on the GAP-web graph, the Leiden algorithm scaled up to 128 threads.

The refinement phase of the parallel NCLiC algorithm is similar to the sequential

implementation but with some modifications to ensure memory safety and to effectively

utilise all available threads. Instead of processing vertices one by one, the algorithm is split

into four separate steps to be able to process all vertices simultaneously. The refinement

phase of the NCLiC algorithm obtained speedups up to a factor of 18.42, dependent on

the size of the chunk being processed, scaling up to 128 threads for all numbers of chunks.

The merging of the chunk into the main graph was also parallelised by first adding

the vertices to the graph in parallel, followed by the edges. The merging of the graphs

obtained speedups up to a factor of 10.36, scaling up to 64 threads with up to 32 chunks

and up to 128 threads for chunk sizes higher than 32.

The whole parallel NCLiC algorithm obtained speedups up to a factor of 6.73 with

128 threads. The number of threads showed to have little to no effect on the modularity

retention, both for the average of the DIMACS10 graphs and the GAP-web graph. The

modularity retention was, however, affected by the number of chunks, the same trend

seen for the sequential NCLiC algorithm when compared to the modularity of the Leiden

algorithm, and is probably also dependent on the structure of the graph.

Throughout this thesis, we have explored possible approaches and established some

requirements for parallelising the NCLiC algorithm. We have provided an algorithm

that achieves significant speedup but also discovered some challenges that can lay the

foundation for further research. My hope is that the work presented here may be useful

for potential future research in the field of community detection and graph theory.

57

7.2 Future Work

In the pre-clustering phase, a parallel implementation of the Leiden algorithm is used.

The NCLiC algorithm is, however, not bound to using this algorithm to pre-cluster the

incoming chunks. Exploring the possibility of using optional algorithms for community

detection could result in increased performance in terms of efficiency, scalability and

quality. The same applies to the merging of the chunk into the larger graph, as other

graph structures might prove to be more efficient and scalable.

The quality of the communities detected is measured using modularity, but same as

for the pre-clustering phase, the NCLiC algorithm is not bound to this measure. Several

quality measures exist, for example, the Constant Potts Model [30]. Testing different

quality functions might result in increased quality and efficiency, both sequentially and

parallel.

The algorithm was tested on the DIMACS10 data set and the GAP-web graph to

get an indication of the performance of the algorithm in terms of efficiency, scalability

and modularity retention. Testing the algorithm on even larger and more graphs could,

however, provide improved results and might give an even deeper understanding of the

strengths and weaknesses of the algorithm.

58

List of Acronyms and Abbreviations

API application programming interface.

NCLiC Neighbourhood-to-Community Link Counting.

59

Bibliography

[1] Amdahl, G. M. Validity of the single processor approach to achieving large scale

computing capabilities. In Proceedings of the April 18-20, 1967, spring joint computer

conference, pages 483–485, 1967.

URL: https://doi.org/10.1145/1465482.1465560.

[2] Bader, D. A., Meyerhenke, H., Sanders, P., and Wagner, D. Graph partitioning and

graph clustering, volume 588. American Mathematical Society Providence, RI, 2013.

URL: https://sparse.tamu.edu/DIMACS10.

[3] Balasubramanian, A., Baranowski, M. S., Burtsev, A., Panda, A., Rakamarić, Z.,

and Ryzhyk, L. System programming in rust: Beyond safety. In Proceedings of the

16th workshop on hot topics in operating systems, pages 156–161, 2017.

URL: https://doi.org/10.1145/3102980.3103006.

[4] Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. Fast unfolding

of communities in large networks. Journal of statistical mechanics: theory and

experiment, 2008(10):P10008, 2008.

URL: https://doi.org/10.1088/1742-5468/2008/10/P10008.

[5] Boldi, P., Codenotti, B., Santini, M., and Vigna, S. Ubicrawler: A scalable fully

distributed web crawler. Software: Practice and Experience, 34(8):711–726, 2004.

URL: https://sparse.tamu.edu/GAP.

[6] Borgatti, S. P. Centrality and network flow. Social networks, 27(1):55–71, 2005.

URL: https://doi.org/10.1016/j.socnet.2004.11.008.

[7] Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., and

Wagner, D. On modularity - np-completeness and beyond. ITI Wagner, Faculty of

Informatics, Universität Karlsruhe (TH), Tech. Rep, 19:2006, 2006.

URL: https://i11www.iti.kit.edu/extra/publications/bdgghnw-omnpcb-06.pdf.

60

https://doi.org/10.1145/1465482.1465560
https://sparse.tamu.edu/DIMACS10
https://doi.org/10.1145/3102980.3103006
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://sparse.tamu.edu/GAP
https://doi.org/10.1016/j.socnet.2004.11.008
https://i11www.iti.kit.edu/extra/publications/bdgghnw-omnpcb-06.pdf

[8] Britton, T., Deijfen, M., and Martin-Löf, A. Generating simple random graphs with

prescribed degree distribution. Journal of statistical physics, 124:1377–1397, 2006.

URL: https://doi.org/10.1007/s10955-006-9168-x.

[9] Clauset, A., Newman, M. E. J., and Moore, C. Finding community structure in very

large networks. Physical review E, 70(6):066111, 2004.

URL: https://doi.org/10.1103/PhysRevE.70.066111.

[10] Coffman, E. G., Elphick, M., and Shoshani, A. System deadlocks. ACM Computing

Surveys (CSUR), 3(2):67–78, 1971.

URL: https://doi.org/10.1145/356586.356588.

[11] Dijkstra, E. W. Hierarchical ordering of sequential processes. Acta informatica, 1:

115–138, 1971.

URL: https://doi.org/10.1007/BF00289519.

[12] Duch, J. and Arenas, A. Community detection in complex networks using extremal

optimization. Physical review E, 72(2):027104, 2005.

URL: https://doi.org/10.1103/PhysRevE.72.027104.

[13] Euler, L. Solutio problematis ad geometriam situs pertinentis. Commentarii

academiae scientiarum Petropolitanae, pages 128–140, 1741.

URL: https://scholarlycommons.pacific.edu/euler-works/53.

[14] eX3. Experimental infrastructure for exploration of exascale computing.

URL: https://www.ex3.simula.no/.

[15] Fortunato, S. and Barthelemy, M. Resolution limit in community detection. Proceed-

ings of the national academy of sciences, 104(1):36–41, 2007.

URL: https://doi.org/10.1073/pnas.0605965104.

[16] Guimera, R. and Nunes Amaral, L. A. Functional cartography of complex metabolic

networks. nature, 433(7028):895–900, 2005.

URL: https://doi.org/10.1038/nature03288.

[17] Haas, P. J. Data-stream sampling: Basic techniques and results. Data Stream

Management: Processing High-Speed Data Streams, pages 13–44, 2016.

URL: https://doi.org/10.1007/978-3-540-28608-0 2.

[18] Hofmeister, M. Spectral radius and degree sequence. Mathematische Nachrichten,

139(1):37–44, 1988.

URL: https://doi.org/10.1002/mana.19881390105.

61

https://doi.org/10.1007/s10955-006-9168-x
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1145/356586.356588
https://doi.org/10.1007/BF00289519
https://doi.org/10.1103/PhysRevE.72.027104
https://scholarlycommons.pacific.edu/euler-works/53
https://www.ex3.simula.no/
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1038/nature03288
https://doi.org/10.1007/978-3-540-28608-0_2
https://doi.org/10.1002/mana.19881390105

[19] Khalaf, E. G. and Tucci, R. Semi-contiguous memory allocation for efficient

sequential-access. In CDES, pages 135–140, 2006.

URL: https://www.researchgate.net/publication/220863115 Semi-

Contiguous Memory Allocation for Efficient Sequential-Access.

[20] Klabnik, S. and Nichols, C. The Rust programming language. No Starch Press, 2023.

URL: https://books.google.no/books?id=SE2GEAAAQBAJ&pg=PR.

[21] Leskovec, J. and Mcauley, J. Learning to discover social circles in ego networks.

Advances in neural information processing systems, 25, 2012.

URL: https://snap.stanford.edu/data/ego-Twitter.html.

[22] Lewis, T. G. Network science: Theory and applications. John Wiley & Sons, 2011.

URL: https://books.google.no/books?id=eVddjxBhLsoC&pg=PT15.

[23] Naim, M., Manne, F., Halappanavar, M., and Tumeo, A. Community detection on

the gpu. In 2017 IEEE International Parallel and Distributed Processing Symposium

(IPDPS), pages 625–634. IEEE, 2017.

URL: https://doi.org/10.1109/IPDPS.2017.16.

[24] Netzer, R. H. B. and Miller, B. P. What are race conditions? Some issues and

formalizations. ACM Letters on Programming Languages and Systems (LOPLAS), 1

(1):74–88, 1992.

URL: https://doi.org/10.1145/130616.130623.

[25] Newman, M. E. J. Finding community structure in networks using the eigenvectors

of matrices. Physical review E, 74(3):036104, 2006.

URL: https://doi.org/10.1103/PhysRevE.74.036104.

[26] Newman, M. E. J. and Girvan, M. Finding and evaluating community structure in

networks. Physical review E, 69(2):026113, 2004.

URL: https://doi.org/10.1103/PhysRevE.69.026113.

[27] Nguyen, F. Leiden-based parallel community detection. Master’s thesis, Karlsruhe

Institute of Technology, 2021.

URL: https://i11www.iti.kit.edu/ media/teaching/theses/ba-nguyen-21.pdf.

[28] Stroustrup, B. An overview of the c++ programming language. Handbook of object

technology, page 72, 1999.

URL: https://www.stroustrup.com/crc.pdf.

62

https://www.researchgate.net/publication/220863115_Semi-Contiguous_Memory_Allocation_for_Efficient_Sequential-Access
https://www.researchgate.net/publication/220863115_Semi-Contiguous_Memory_Allocation_for_Efficient_Sequential-Access
https://books.google.no/books?id=SE2GEAAAQBAJ&pg=PR
https://snap.stanford.edu/data/ego-Twitter.html
https://books.google.no/books?id=eVddjxBhLsoC&pg=PT15
https://doi.org/10.1109/IPDPS.2017.16
https://doi.org/10.1145/130616.130623
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1103/PhysRevE.69.026113
https://i11www.iti.kit.edu/_media/teaching/theses/ba-nguyen-21.pdf
https://www.stroustrup.com/crc.pdf

[29] Traag, V. A., Waltman, L., and van Eck, N. J. From louvain to leiden: guaranteeing

well-connected communities. Scientific reports, 9(1):5233, 2019.

URL: https://doi.org/10.1038/s41598-019-41695-z.

[30] Traag, V. A., Van Dooren, P., and Nesterov, Y. Narrow scope for resolution-limit-free

community detection. Physical Review E, 84(1):016114, 2011.

URL: https://arxiv.org/pdf/1104.3083.pdf.

[31] Tumanis, A. Graph clustering for long term twitter observations community

detection in incremental graphs. Master’s thesis, University of Oslo, 2021.

URL: https://www.duo.uio.no/bitstream/handle/10852/86015/1/

UiO IFI Master Thesis Aigars Tumanis.pdf.

[32] Verweij, G. Faster community detection without loss of quality: Parallelizing the

leiden algorithm. Master’s thesis, Leiden University, 2019.

URL: https://theses.liacs.nl/pdf/2019-2020-VerweijGeerten.pdf.

[33] Watts, D. J. and Strogatz, S. H. Collective dynamics of ‘small-world’networks. nature,

393(6684):440–442, 1998.

URL: https://doi.org/10.1038/30918.

[34] Wejdenst̊al, J. Dashmap.

URL: https://docs.rs/dashmap/latest/dashmap/.

[35] Zeng, J. and Yu, H. A distributed infomap algorithm for scalable and high-quality

community detection. In Proceedings of the 47th International Conference on Parallel

Processing, pages 1–11, 2018.

URL: https://doi.org/10.1145/3225058.3225137.

63

https://doi.org/10.1038/s41598-019-41695-z
https://arxiv.org/pdf/1104.3083.pdf
https://www.duo.uio.no/bitstream/handle/10852/86015/1/UiO_IFI_Master_Thesis_Aigars_Tumanis.pdf
https://www.duo.uio.no/bitstream/handle/10852/86015/1/UiO_IFI_Master_Thesis_Aigars_Tumanis.pdf
https://theses.liacs.nl/pdf/2019-2020-VerweijGeerten.pdf
https://doi.org/10.1038/30918
https://docs.rs/dashmap/latest/dashmap/
https://doi.org/10.1145/3225058.3225137

	Introduction
	Problem
	Thesis Outline

	Background
	Network Science
	Community Detection
	Modularity

	Incremental Graphs
	Parallelism
	Programming Language
	Rust
	Concurrency in Rust and C++
	Synchronisation Mechanisms in Rust
	Summary

	Community Detection Algorithms
	The Louvain Algorithm
	The Leiden Algorithm
	The NCLiC Algorithm
	Data Structures
	Implementation
	Refinement
	NCLiC Steps
	NCLiC Example

	Related Work
	Parallelised Community Detection

	Parallel NCLiC
	Building the Graph
	Pre-clustering
	Parallel Local Moving
	Parallel Refinement

	Merging
	Refinement
	Summary

	Experiments
	Data Sets
	Hardware
	Experimental Setup
	Results
	Parallel Leiden
	Sequential NCLiC
	Parallel NCLiC

	Conclusion and Future work
	Conclusion
	Future Work

	List of Acronyms and Abbreviations
	Bibliography

