
Testing Structure-from-Motion imaging 
technique to quantify Blue mussels (Mytilus 

spp.) abundance 
 

                        Thord Håkon Bakke 
 

 
 

      Master thesis in Aquaculture 
 
         Department of Biological Sciences (BIO) 
           

   University of Bergen 
    

 June 2023 
 



  

 
 
 
 
 

                       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ãThord Håkon Bakke 
 
2023 
 
Testing Structure-from-Motion imaging technique to quantify Blue mussels (Mytilus spp.) 
abundance 
 
University of Bergen 



  

 
Acknowledgements  
 
 

 

I would like to express my gratitude to my supervisors at the Institute of Marine research, 

Antonio Garcia and Tore Strohmeier, for their continuous guidance, invaluable feedback, and 

relentless encouragement throughout this work. Their expertise and commitment have been 

crucial in shaping my master's journey. I also want to acknowledge and thank Thorolf 

Magnesen, my internal supervisor at the University of Bergen, for his valuable guidance during 

my research. 

 

I also want to thank my family and partner, who have provided steady support and love 

throughout this challenging journey. Their constant belief in my abilities and tireless 

encouragement have been a source of strength and inspiration. 

 

Lastly, I want to extend my sincerest thanks to my classmates, in particular, the lads at my 

study hall for who has been a pillar of support during this journey. Their presence, 

understanding, and constant encouragement have been invaluable to me, providing much-

needed comfort during the most challenging times of this journey. 

 

Thank you all for your solid faith in my abilities and for your constant comfort that has made 

this accomplishment possible. This thesis would not have been achievable without your 

continuous support and belief in me.  

 

 
 
 
 
 
 



  

Abstract 
 

Recent reports have highlighted changes in the population dynamics of blue mussels, 

emphasizing the necessity of gathering quantitative data on a large scale. This would help 

determine whether the population of intertidal mussels is exhibiting changes over time, 

surpassing the natural variability inherent in these ecosystems. This work aims to establish a 

systematic procedure for obtaining quantitative data on blue mussel dynamics leveraging 

information from 3D models generated through the Structure-from-Motion. The study sought 

to correlate fieldwork-collected datasets (biomass and length distribution) and complexity 

metrics (vector dispersion, fractal dimension and rugosity) derived from these 3D models. A 

weak linear relationship between complexity metrics and biological metrics was observed, 

although both groups showed substantial internal correlation. Principal component analysis of 

each group did not reveal clear grouping, indicating limited variability among the metrics. The 

principal component regression analysis revealed that a significant proportion of the variation, 

particularly in biomass, could be explained by the first five principal components derived from 

the complexity metrics. 

 

The canonical correlation analysis further confirmed the potential relationship between 

complexity metrics and biological metrics. Notably, the fractal dimension metric appeared to 

be the most impactful complexity metric. Employing this metric at an ultra-high resolution 

could have the potential to accurately capture microscale details, although it might require an 

increased computational power. However, to gain a more extensive and thorough 

comprehension of surface complexity, it is recommended that this metric be employed 

alongside other complexity measurements. Despite several challenges, including small sample 

sizes, homogeneity of mussels, and photo quality, the results demonstrate the potential of 

Structure-from-Motion as a method for generating 3D models. Future research should focus on 

enhancing the consistency of image capture, employing calibrated cameras to boost accuracy, 

and conducting in-depth analyses to identify the complexity metrics that most effectively 

quantify microscale surface complexity. Moreover, once a reliable workflow is established, 

integrating machine learning algorithms for object detection could enhance its efficiency. This 

enhancement, when combined with the application of the SfM technique and the extensive 

surveying capabilities of drones, could present a powerful method for gathering comprehensive 

quantitative data on the dynamics of blue mussels.  
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1 Introduction 
 
 

1.1 Background for the project 
 
Based on a general concern for the disappearances and population changes of a key intertidal 

species (Andersen et al., 2016), the Institute of Marine Research (IMR) established a 

monitoring program for blue mussel populations along the Norwegian coast in 2020. The 

objective of the program is to elucidate if the abundance of intertidal mussels is changing over 

time beyond the inherent randomness and natural variation in the ecosystems. In the programs 

first year a method for monitoring blue mussels was developed (Strohmeier et al., 2022), and 

the potential for new technology (i.e. images and machine learning) to monitor the populations 

was reviewed. Acquiring quantitative data trough efficient methods is necessary to gain a better 

understanding of the population dynamics of blue mussels. The presence of blue mussels has 

been confirmed extensively along the Norwegian coast, from secluded fjords to the more 

exposed coastal areas (Strohmeier et al., 2022). The widespread distribution of blue mussels 

along the Norwegian coast can be attributed to a variety of factors, including the species' 

reproductive strategy, ocean currents, and the availability of suitable habitats (Demmer et al., 

2022). In light of the persistent environmental transformations driven by climate change and 

human activities (Berge et al., 2005), combined with the broad dispersion of mussels across 

coastal regions, it is becoming increasingly crucial to collect quantitative information over 

large areas to efficiently track these alterations.  

 

Traditional methods to acquire quantitative data about blue mussels distribution and abundance 

has been time-consuming and there are novel methods that possibly can gain the same or a 

broader insight more efficiently. Using both flying drones and underwater ROVs (Remotely 

Operated Vehicle) are becoming more and more common when collecting data within a broad 

range of industries, and they are increasingly used to map marine resources and habitats 

(Ventura et al., 2023). Today, there are a broad range of affordable low-altitude airborne 

sensors available,  with the capacity to collect imagery and bathymetric information which are 

comparable to information collected from more expensive LiDAR techniques which uses light 

in the form of a pulsed laser to measure distances (Casella et al., 2017). Using methods such 

as Structure-from-Motion (SfM) based on captured images might be an effective method to 
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gain this data. Developing this method is therefore one of the targets of the project. Combining 

this approach with the capacity of machine learning algorithms to detect objects could present 

a potent tool for enhancing the monitoring of blue mussels. 

 

 

1.2 What are blue mussels? 

 
Blue mussel (Mytilus spp.) is a medium size marine bivalve mollusc in the family of Mytilidae, 

more commonly referred as mussels. The mussel has two shell valves that are similar in size 

and triangular in shape. These valves are attached together at the anterior by the means of 

ligament and this area is called umbo. The adult mussels are sessile. Blue mussels have separate 

sexes and releases eggs and sperm into the water column for fertilization. Individual females 

can produce between 7 to 40 million eggs, depending on shell length. However, one study 

suggests that only 1 % of larvae reach adulthood (Thompson, 1979). Typically, spawning 

occurs biannually in spring and autumn. The exact timing of spawning is contingent on food 

availability, hence its correlation with phytoplankton blooms (Beyer et al., 2017). 

 

Mussels are a type of meroplankton, which implies that they undergo both pelagic and benthic 

phases during their life cycle. The life cycle of mussels consists of two planktonic stages and 

two settling stages. The initial settling stage occurs when the planktonic mussel larvae develop 

their foot, which enables them to crawl over surfaces and adhere to them using byssus threads. 

They would typically attach themselves to larger algae to access space and food, as there is 

studies that suggests that there may be less competition for resources in among seaweed than 

within mussel banks with larger mussels (Newell & Moran, 1989). Once the juvenile mussels 

have grown to about 1-1.5 mm in size, they return to the planktonic stage and settle a second 

time. During this stage, they would typically adhere to a more stable substrate such as rocks, 

piers or other shells, forming clusters or banks (Newell & Moran, 1989). Blue mussels have 

the potential to live for almost 20 years and can reach lengths of up to 10 cm. However, it is 

rare for mussels to exceed 8 cm in length or live beyond 10 years (Beyer et al., 2017).  

 

Blue mussels are found in temperate waters all over the world and are subject for both 

harvesting and intensive aquaculture (Goldberg, 1975). In Norway, they are found throughout 

the whole coast. They often form mussel beds (Figure 1.1) in sub littoral and littoral zones. 



 9 

These mussels beds can become several centimetres thick (Baxter et al., 2022). Blue mussels 

tolerate a large variation in both temperature and salinity. They are suspension feeders and feed 

on phytoplankton and other inorganic and organic particles by pumping and filtering large 

volumes of water over their large ciliated gills. This seawater filtration makes the species 

suitable as a bioindicator in coastal waters since they also efficiently accumulate pollutants 

from seawater (Goldberg, 1975).  

 

 
Figure 1.1: Large mussels beds during low tide in the Hardanger Fjord, Norway.  
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1.3 Why are blue mussels important? 
 
1.3.1 Blue Mussels role in the ecosystem 
 
A definition of an ecosystem is any unit that includes all organisms that function together in a 

given area interacting with the physical environment so that the flow of energy leads to clearly 

defined biotic structure and cycling of materials between living an non-living parts (Lin & Lin, 

2006). Changes within an ecosystem can be a result of naturally occurring events. However, 

pollution or environmental change due to human activity often imposes stress to these systems 

(Loeb & Spacie, 1994). In an aquatic ecosystem, different organisms provide varied degree of 

ecological services. Blue mussels are considered as one of the more ecologically important  

species as they provide a broad set of essential ecological services that can also alter the effect 

of human activity on aquatic ecosystems (Beyer et al., 2017). They are often referred to as 

“ecosystems engineers” because of the way they modify their habitat, making it more suitable 

for themselves but also other organisms. They increase biodiversity in a habitat by providing a 

substrate for algae and refuge for small animals. Given the fact that they are suspension feeders 

and therefore consume particulate matter from the water column they clear, this species clear 

the water by removing phytoplankton, bacteria and fungi attached to non-living organic 

particles (Smaal et al., 2019). Furthermore, by filtering phytoplankton, including toxic algae, 

blue mussels can inhibit or prevent harmful blooms (Mafra et al., 2010). The shells they leave 

behind also work as an important habitat for other species, sheltering them from predation, 

trapping sediment, and creating refuge. The mussels are also an important source of food for a 

broad range of species (Norling, 2009). 

 

Being an important habitat builder for many species of algae and fauna, beds of blue mussels 

sustain a high biodiversity and are therefore resilient to disturbances. Blue mussels also play a 

role in carbon storage (Filgueira et al., 2019; Sea et al., 2022), and this is assumed to be related 

to carbon stored in the mussel beds. Blue mussels role in the CO2 cycle has been assessed as 

the balance between respiration, shell calcium carbonate sequestration and CO2 release during 

biogenic calcification. However, this assessment ignores the ecosystem interactions that occur 

at population level, which can significantly alter the CO2 cycle. Furthermore, their potential 

role differs in the context of non-harvested vs. harvested population, given the fact that 

harvesting represents a net extraction of mussels from the ocean (Filgueira et al., 2019). 
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However, the amount of carbon from decomposed mussels that is actually sequestrated for the 

future has been considered to be minimal (Gundersen et al., 2017).  

 

Additionally, mussels can mitigate the ongoing eutrophication of the oceans caused by human 

activities due to its filter-feeding capabilities. Eutrophication is considered a serious threat to 

aquatic ecosystems all over the world (Chislock et al., 2013). In the Baltic sea as much as 97 

% of the open sea is considered affected by eutrophication (HELCOM, 2018). Eutrophication 

is particularly prominent in semi-closed estuaries and regional seas. Excessive amounts of 

phosphorus and nitrogen from both present sources and pollution from the past leads to massive 

algae blooms (Kotta et al., 2020). The result of this is a widespread increase of hypoxia and 

anoxia and an increasing vulnerability to ocean acidification which again leads to loss of 

biodiversity and ecosystem functions and services (Malone & Newton, 2020). The impact of a 

raising global mean sea temperature also enhances this effect and can lead to expanded dead 

zones and increased risk for cyanobacteria blooms (Meier et al., 2017). Blue mussels can 

reduce the effect of eutrophication by being harvested and used for food, fertilizer and animal 

feed. The excessive nutrients that have been accumulated within the mussels will then be 

removed from the system and mitigate the eutrophication process (Kotta et al., 2020).   

 

Another vital service of blue mussels, is the ability they have to take up, and thereby remove, 

organic pollutants and toxic substances from the water (Beyer et al., 2017). They were among 

the first species used to assess the environmental quality of seawater (Anonymous, 1886). 

Given its filter feeding habits, the mussels can reduce the amount of cyanobacteria, 

phytoplankton and toxins in the water column. Thus, contribute to filtering, water purification 

and removing of hazardous substances. Mussels have the capacity to store quite large amounts 

of toxins without being affected themselves (Gundersen et al., 2017). Due to their abilities, 

mussels are widely used as bioindicators of environmental health and quality of an ecosystem. 

Bioindicators are defined as organisms that  respond to change in the coastal system, including 

pollutants and environmental stressors, and can therefore provide valuable  information 

(Poulsen et al., 2021).  

 

In the brackish Baltic sea, blue mussels live under low-salinity conditions. However, they are 

still very  abundant (Westerbom et al., 2002). The blue mussels constitute of 70 % of the coastal 

biomass in the Baltic, which therefore contribute greatly to the ecosystems structure and 

function (Gundersen et al., 2017). For decades, policy initiatives to reduce external nutrient 
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loads have so far failed to control eutrophication of the Baltic sea, which is caused by a release 

of significant amounts of phosphorus and nitrogen. To mitigate this problem, protecting the 

blue mussels is considered an important measure. Another promising measure is farming and 

harvesting of the native species to further mitigate eutrophication in the Baltic sea. Harvesting 

farmed mussels can be a cost-effective complement to land-based measures by increasing the 

nutrient removal in the Baltic sea (Kotta et al., 2020).  

 
1.3.2 Cultural and economic value of blue mussels  
 

In 2022, global bivalve mollusc exports were valued at USD 4.3 billion, with mussels, 

specifically those from the Mytilidae family, contributing to 6.2% of total live weight mollusc 

production (FAO, 2022). They are found in the intertidal zones worldwide, and their presence 

is deeply rooted in the culinary and cultural heritage of numerous coastal communities. 

Archaeological evidence suggests that human consumption of blue mussels dates back to the 

Mesolithic era, around 10,000–5,000 BCE (Andersen, 2014). This species has been particularly 

prevalent in European cuisines and maintains cultural relevance among many indigenous tribes 

in North America (Deur & Turner, 2006). Historically, blue mussels have been used more 

frequently as bait than for direct human consumption. Nonetheless, their nutritional value is 

considerable, being rich sources of Vitamin B-12, selenium, manganese, and containing a 

healthy proportion of Omega-3 fatty acids (Gundersen et al., 2017). The recreational activity 

of blue mussel picking, a cultural service intrinsic to many coastal societies, offers individuals 

the satisfaction of gathering their own food. Mussel beds also enhance the aesthetic appeal for 

divers and snorkelers and contribute to maintaining water quality suitable for swimming 

(Gundersen et al., 2017).  

 

The majority of mussels gathered prior to the 19th century came from wild mussel beds 

(Lovshin, 1996). However, the requirement for storing and distributing fishing products led to 

the beginning of mussel aquaculture in the 19th century. Since then, this sector of the economy 

has experienced significant growth, with aquaculture producing 1.11 million tonnes of live 

weight mussels (Mytildae) in 2020. The most common practices of mussels farming include 

longline culture, raft culture and bottom culture (FAO, 2022). Historically, there has not been 

much blue mussel cultivation in Norway. Nevertheless, 2163 tons were produced in 2021 

(Fiskeridirektoratet, 2021), and the sector has started looking into the possibility of using 

mussels as fish feed. This might result in an increased demand for mussels, which could be 
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profitable for mussel farms (Torrissen et al., 2018). In recent years, there has been increased 

interest in integrating blue mussel aquaculture with other form of marine farming, such as 

seaweed cultivation and fish farming. This approach is called Integrated Multitrophic 

Aquaculture (IMTA) and aims to create a more sustainable and efficient system by using the 

waste products of one species to benefit the others (Reid et al., 2020).   

 

1.4 Status on population today 
 
There has been an increasing concern about the decrease in blue mussels population in the 

Nordic countries, in particular in the coastal waters of Eastern Norway and Western Sweden 

(Baden et al., 2021). This is based on reports from both scientists and people collecting mussels 

themselves. On the Swedish coast, the wild stocks of blue mussels have disappeared despite 

any reports about overharvesting in the area. Based on observations, disappearances began 

already in the late 1990s, but with the biggest drop in the 2000s (Baden et al., 2021). There 

have also been reports about disappearing and mortality of adult blue mussels from the 

Norwegian coast (Mortensen et al., 2021; Strohmeier, Tore et al., 2022).  

  

However, it is not only in Norway that there has been reports that the blue mussel population 

might be changing. There has been reports that the distribution of the blue mussel population 

in the North Atlantic is changing. In the west North Atlantic, blue mussels have now been 

observed as far north as Svalbard, after a 1000 year absence. This was made possible due to 

the unusual high northward mass transport of warm Atlantic water resulting in higher sea-

surface temperatures along the coast of Svalbard (Berge et al., 2005). On the other side of the 

Atlantic, the distribution range of the blue mussel is also changing. Along the southern portion 

of its range, blue mussel populations have experienced very high mortality that has been 

directly associated with high summer temperatures. The southern range edge of blue mussel 

has undergone a geographic contraction over the last five decades, resulting in a shift of 

approximately 350 km to the north of its previous limit at Cape Hatteras in North Carolina 

(Jones et al., 2010). Blue mussel populations in the Gulf of Maine have also been shown to be 

significantly declining over the past few decades. Numerous factors, including an increased 

predation by invading species, habitat modification, and climate change, have been connected 

to this reduction (Ruiz et al., 2011).  The decrease of blue mussel populations have been linked 

to climate change, diseases, habitat disruption and predation (Baden et al., 2021). However, 
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the reason for the possible reduction in Norway has yet not been identified. It has been 

suggested that hybridisation with other Mytilus species could be the cause, but at the southeast 

coast of Norway M. edulis is the only species present. This disputes the fact that a hybridization 

might be the cause (Brooks & Farmen, 2013).  

 

Traditionally, blue mussels have not been extensively monitored in Norway and there is limited 

knowledge about the natural variation of the species. However, one study analysed  changes in 

the occurrence of mussels in the outer Oslofjord based on data from the programs “Økokyst” 

and “Lange tidsserier”. This analysis showed a decrease in the occurrence of adult shells for 

the period 1990-2013. In contrast to adult mussels, juvenile mussels showed a steady increase 

in occurrences for the period 1990-2020 (Nøland, 2021). In general, previous investigation 

form a limited starting point for comparing data on development of the stock.   

 

Investigations carried out in 2021 and 2022 shows that blue mussels occur in every region, 

from deep within the fjord to the exposed coastline of Norway. The Oslofjord has the least 

continuous occurrences of mussels, and in the middle and inner part of the fjord there is a 

dominance of older mussels indicating that there has been a limited recruitment into the stock. 

Preliminary results show that blue mussel distribution is not directly determined by 

environmental factors alone. Within all regions, there are many different microhabitats within 

the intertidal zone, with also the occurrence of predators changing throughout the coast. All of 

these factors must be taken into consideration over time to determine changes in the stock and 

the reason for the changes (Strohmeier et al., 2022).  

 

Nonetheless, merely documenting the presence of blue mussels may not provide a 

comprehensive understanding of the shifts in their population dynamics. Integrating 

quantitative data about biological metrics(BM), such as biomass, size, and numbers, helps 

describe the population's dynamics while also connecting these parameters to the significant 

ecosystem services that blue mussels provide. For example, the population's biomass delivers 

insights into the total organic matter the mussels produce, explaining their ecological 

productivity and filtration capacity (Riisgård et al., 2014). Moreover, the length distribution in 

the population provides critical information regarding the age structure, growth rates, and 

mortality patterns, which is instrumental in projecting future population trends (Seed, 1992). 

Gathering data on the abundance of blue mussels represents another critical aspect of their 

population dynamics. This provides vital insights into their reproductive success, mortality 
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rates, and spatial distribution. For example, high population numbers may suggest conditions 

favourable to reproduction, low predation, and decreased mortality from disease or 

environmental factors, collectively demonstrating a robust and stable population (Suchanek, 

1992).  

 

1.5 Structure-from-motion 
 
High-resolution topography has normally been associated with high costs and logistics, but 

with the rapid on-going technological revolution, more affordable options have emerged 

(Westoby et al., 2012). Traditionally, 3D photogrammetry based on 2D photos relied on 

stereoscopic photos, which means that a scene had to include specified targets with known 3D 

positions (Snavely et al., 2007). There are also more modern methods such as the use of 

LIDAR, but this is quite time-consuming and requires specialized personnel and equipment 

(Jaboyedoff et al., 2012). SfM, on the other hand, is a low-cost and user-friendly 

photogrammetric technique that generates high-resolution 3D models by a bundle adjustment 

procedure based  on identification of matching features in multiple overlapping, offset images. 

The recent advance in computers processing capacity has made that processes, that previously 

required very expensive computers, now can be done on personal computers with standard 

specifications (Leiserson et al., 2020).  

 

There are several application software’s such as Meshroom (AliceVision, 2018) and Agisoft 

Metashape (Agisoft, 2022) that are able to create 3D mesh models from a set of 2D 

photographs. Some of the application software also support cloud computing, which is very 

beneficial when operating with large data sets, and much of the mesh creation can be done on 

remote servers. Meshroom is a free, open-source 3D reconstruction software based on the 

AliceVision framework. It is available for both Windows and Linux. The program has been 

designed to easily obtain a 3D model from multiple images with minimal user interaction, and 

to also provide advanced users a solution where it is possible to modify to suit their creative or 

technical needs (Griwodz et al., 2021). In other words, you do not need any previous experience 

to use this program. The resulting 3D model generated by SfM can be exported and further 

analysed in other programs such as Rhinoceros 3D to calculate the complexity metrics (CM) 

giving information about the 3D model. Rhinoceros 3D is a commercial 3D computer graphics 
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and computer-aided design software that was developed by Robert McNeel and Associates 

(McNeel, 2010).  

 

1.6 Drones/Cameras  
 
 
The use of drones, or unmanned aerial vehicles (UAVs), for collecting quantitative data has 

become increasingly popular in recent years due to numerous advantages over traditional data 

collection methods (Portosi et al., 2019). One of the key advantages of using drones for data 

collection is their ability to cover large areas in a short amount of time (Sousa & Gonçalves, 

2011). Normally, to collect images of blue mussels, there has been a need to manually go to 

each mussel patch to acquire the photos for data collection. Using drones will make this 

operation more efficient and smooth.  

 

Another advantage of using drones for data collection is their ability to access areas that are 

difficult or even impossible to reach by any other means. For example, if the terrain is rugged 

and challenging for humans to access, drones can be a good option to collect data in these areas. 

Due to UAVs increased popularity, their price has significantly decreased in recent years, 

making it more accessible to a wider range of users. This has led to an increased accessibility 

to applications for drones, such as aerial photography and videography (van der Merwe et al., 

2020). On the other side, drones can easily be affected by the weather and if it is strong wind 

or rain, the use of drones can be difficult. Additionally, when using drones you do not have the 

possibility to do anything hands on, such as removing algae covering the mussels, and one is 

limited to the visible tidal sone. With flying drones the time of operation can be a limiting 

factor, but this is steadily increasing with advancements in battery technology.   

 

1.7 Machine learning and object detection  
 
 
Machine learning is known as a subfield of artificial intelligence that enables computers to 

learn and improve without being explicitly programmed. One of the most significant 

applications used in a broad set of fields is object identification, which involves training 

algorithms to recognize objects in images or videos. Object identification includes several 

steps, such as data collection, data pre-processing, model training and model testing (Reig et 

al., 2020). 
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As a part of the IMR project, an evaluation of machine learning programs for identifying blue 

mussels was conducted. After reviewing several annotation programs, VIAME was selected 

for its advantageous capabilities. Annotation for machine learning from photos can be 

categorized into three types: classification, object detection, and segmentation, each providing 

different time of annotation for training the algorithm to recognize mussels. U-Net was utilized 

as the program for training the algorithm, and initial results indicate that the algorithm can 

recognize mussels patches. However, further annotation work is necessary to enhance the 

algorithms accuracy. The incorporation of this automation into the workflow has the potential 

to enhance the efficiency of the image analysis process. Integrating machine learning will 

eliminate the manual selection of mussels and provide masked photos with mussels. This 

optimized workflow, which visually represents this integration, can be viewed in Figure 1.2.  

 
 

Figure 1.2: The workflow implemented with artificial intelligence (machine learning), trained 
by U-net to automate and improve the performance of the method. 
 

 
1.8 Aim of study (Objectives) 
 

The primary aim of this study, conducted in collaboration with the Institute of Marine 

Research, was to explore and test emerging technologies, specifically drones/cameras and 

Structure-from-Motion (SfM), for the purpose of assessing blue mussels' size and density 

within the intertidal zone.  To achieve this, several sub aims was set up to establish a workflow:  

1. Capture images of quadrants covered with mussels and generate 3D models utilizing 

the SfM technique. 
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2. Conduct sampling of the mussels within the same quadrants to gather data on biomass 

and length distribution to generate biological metrics (BM). 

3. Evaluate different complexity metrics (CM) to derive information about the surface 

complexity of each quadrant. 

4. Establish a correlation between the selected CM  and the BM 

 

Once a workflow is established, it also enables integration of machine learning programs for 

object detection to further streamline the process. 
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2 Material and methods 
 

2.1 Area of study and fieldwork 
 
The study sites were located in the Hardanger fjord, close to the Hardanger bridge (Figure 2.1). 

The data presented and analysed in this thesis is based on photos and sampling from these sites. 

The sampling was conducted during low tide. If not, most of the mussels would be covered by 

water and collecting adequate photos would be challenging.  

 

 
Figure 2.1. Map showing three study sites (A, B , C) where quadrants of mussels were collected 
and photographed. The map was generated with ArcGIS ArcMap.   
 

Three sites which had continuous mussel coverage were chosen. Every study site in Hardanger 

fjord was reachable by boat. A diver swam from the boat to the site. The diver then placed a 

0.4 m x 0.4 m quadrant several places at each site (Figure 2.2), which included a sample number 

and meter mark for reference purposes. Several overlapping photos of the quadrants were 

recorded using Olympus TG-6 and a Samsung SM-G78. The camera was positioned 

horizontally, directly over the quadrant, with at least 70 % overlap between images. There were 

7-10 photos taken of each 0.4 x 0.4 m quadrant. The mussels within the quadrant were then 

scraped of the rock (Figure 2.3) and collected into a bucket for further analysis. 
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Figure 2.2: Placing the quadrants and scraping off the mussels within the quadrant.  

 
Figure 2.3: Quadrants after the collection of mussels.  
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Due to poor weather conditions, we were not able to test the drone at the Hardangerfjorden 

location. However, a test with DJI Air 2s drone was conducted at several locations close to 

Austevoll. The drone was easy to manoeuvre, even from the boat, and the drone was used in 

manual mode to get as close to the rock as possible to get satisfying photos from each location. 

The manoeuvrability demonstrated by the drone exercise could indicate that capturing images 

under conditions similar to those used with traditional cameras is feasible. A transect of 

overlapping photos along the rocks with continuous mussels patches was created to test the 

photos from the drone and these were of high quality. 

 

2.2 Sampling of biological metrics 
 
The mussels from each quadrant was collected in buckets and total biomass for each quadrant 

was weighed. Each quadrant was then subsampled by splitting the mussels into equal parts, 

weighed again and each individual mussel were measured to obtain the length. Based on this 

information, the biological metrics was calculated (Table 6 in appendix). The mode, mean, and 

median mussel length for each quadrant was calculated using base R-studio functions (R Core 

Team, 2022). Biomass (g/m2) and numbers/m2 was calculated based on the numbers and weight 

of the mussels of each quadrant. Subsequently, a histogram was generated for each quadrant, 

demonstrating the length distribution of the mussels, as shown in Figure 5.1 in the appendix.  

  
2.3 Models generation 
 
Several 3D models from each quadrant were created using SfM techniques based on the 2D 

photos taken with an overlap of 80 %, which is recommended according to the Meshroom 

manual (Meshroom, 2021a). The photos recorded were loaded into Meshroom, a free open-

source 3D Reconstruction Software (Figure 2.4).  
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Figure 2.4: Screenshot show
ing the M

eshroom
 w

orkflow
. In this exam

ple , the  final node, "Texturing", is utilized as the concluding step to 

add texture to the m
odel. 
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The initial phase involved importing images that overlapped from each quadrant into 

Meshroom, with each quadrant's project being saved separately. A basic workflow was 

followed using 5 different nodes, each possessing unique attributes (Meshroom, 2021a).  

 

1) The first node to process was the "Structure-from-motion" node, which generates a point 

cloud symbolizing the exterior surface of an object, along with a representation of the diverse 

positions from which each photograph was captured. 

2)  If the initial results meet the expectations, the subsequent node, "Depth maps", is processed, 

selecting either 4 or 8 under "Downscale" to diminish the image sizes, thereby accelerating the 

computation speed.  

3) The "Meshing mode" node was then utilized (Figure 2.5), which allows for the adjustment 

of the maximum number of points; in this instance, the limit was set to approximately 1.1 

million points. Having a higher number of points will require more processing time, depending 

on the computers specifications. Also within this node, a "Custom Bounding box" was 

activated to constrain the computation to a specific area. In this scenario, the area encompassing 

the quadrant of mussels was selected.  

4.) Upon the creation of the mesh, the "Keep only the largest mesh" option was enabled within 

the "Mesh filtering" node. 

5) Lastly, the mesh was textured by computing the “Texturing” node, adding colour and detail 

to the 3D model (Figure 2.6).  
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Figure 2.5: Mesh of the quadrant created in Meshroom after computing “Meshing mode”.  

 

 
Figure 2.6: Final Textured 3D model from Meshroom, after colour and detail has been 

enhanced to the model.  
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Every step from the “Structure-from-motion” is automatically saved in in the mesh filtering 

subfolder of the Meshroom cache folder, so there is no need to further export it at the end of 

the process. The files needed for calculating CM were therefore loaded directly from the 

Meshroom cache folder.  

 
2.4 Calculation of biological metrics 
 

For all the quadrants biomass and abundance metrics were standardized to the area covered by 

mussels (AM) by dividing biomass and number of mussels with the area covered by mussels 

(1) and (2).  

            

  

																																										!"#$%&&(()	
+,

= 	𝑔/𝑚-		                          (1) 

																																						./$012&(3)	#4$/&&15&
+,

= 		𝑛/𝑚-              (2)

  

For quadrants that were entirely covered by mussels, the area (AM) equalled 0.16 m². In cases 

where the quadrants were not completely covered by mussels, the area occupied by the mussels 

within the quadrant was determined using the SketchAndCalc program (Icalc, 2020) . This was 

accomplished by sketching a polygon around the sections of the quadrant where mussels were 

present. The program was calibrated with the meter visible in the quadrant's photograph (as 

shown in Figure 2.5). 
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Figure 2.5: In cases where the quadrants were not completely covered by mussels, the 

proportion of the quadrant covered by mussels were calculated using SketchAndCalc. 

 

 
2.5 Complexity assessment 
 
The following analysis of the CM was then conveyed in Robert McNeels Rhinoceros 3D 

(McNeel, 2010). Rhino 3D is a 3D computer graphics and computer-aided design (CAD) 

application software and is a 3D modelling tool to improve product design. The textured model 

from MeshRoom was imported into Rhino 3D as a wavefront (.OBJ) file. The area selected for 

the complexity assessment was the area within the quadrant, and this area of the model was 

trimmed by creating a box with specific measurements using the “MeshTrim” function in 

Rhino. Three different CM were computed: rugosity, vector dispersion and fractal dimension. 

These metrics were calculated following the workflow described in Young et al., (2017) and 

by using the python scripts created by Young (2018). First, only the quadrants fully covered 

by mussels were analysed. To gather more data, quadrants with lower coverage were also 

subjected to subsampling and analysis. Sections corresponding to ¼ of the quadrants, 
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specifically those areas that had full mussel coverage, were chosen for subsampling. The CM 

for these sections were then calculated in the same manner as those for the fully covered 

quadrants. 

 

Rugosity is a complexity metric commonly used in traditional coral reef research (Yanovski et 

al., 2017). It is typically computed in situ, by using the chain-and tape method, where a chain 

is positioned over a topography and the given length is then divided by the total length of the 

chain.  To measure linear rugosity on a 3D model, a created mesh plane of twelve panels were 

intersected with the 3D model of the quadrant by using the function “MeshIntersect” in Rhino. 

The intersect created was then aligned and a custom python script for rugosity was run (Young, 

2018), and following script asked to select the curves that were created based on the surface of 

the model. The output from the script gave the rugosity, as a result of calculating the length of 

the chain divided by the total length of the curve following the surface of the model. The output 

was given as rugosity for each curve, so for each quadrant, average and standard deviation were 

calculated.  

 

 
Figure 2.6: The figure to the right shows 0.4 x 0.4 m quadrant of the mussels and the figure to 

the left its respective transects used to calculate rugosity. The transects was created using 

Rhinosaurus 3D.  
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Vector dispersion (1/k) is considered to be an appropriate metric for measuring surface 

irregularity. It is defined as an estimate of vector variance for all individual surfaces considered 

(Carleton & Sammarco, 1987). Therefore, it measures the uniformity in angles of a surface. 

The output will be a value between 0 and 1, where 0 indicates a completely flat plane and the 

closer the value is to 1, the more complex the surface. This metric must be calculated at a 

certain resolution, and a 1 cm resolution was chosen, following the outline of Carleton & 

Sammarco (1987). Firstly, a planar “helper” surface was placed above the mesh of mussels, 

with the reef mesh positioned with one corner of the quadrant at the origin. Furthermore, to 

calculate this metric, a Python script for vector dispersion (Young, 2018) was run in the 

command section of Rhinosaurus 3D.  

 

 

  
Figure 2.7: To the right, one quadrant (0.4 x 0.4 m) of mussels besides a grid of points spaced 

1 cm apart to calculate vector dispersion.   

 
The script created a grid of points with a prolific gauge over the physical surface, and the 

projected a grid of points, spaced 1 cm apart on the highest Z-point of the mesh. Then the script 

made triangles between each adjacent points and computed the directional cosines of triangles 

normal vectors. Lastly it computed 1/k using equations 3 and 4.  
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In these equations (3) and (4), i indicates the number of triangles created between surfaces 

points and cosx, which is the directional cosine of a triangles normal vector in the x direction. 

Same applies for cosy  in y direction and cosz in z direction. Like rugosity, average vector 

dispersion and standard deviation were calculated for each quadrant.  

 

Fractal dimension (FD) was chosen as a complexity metric because it is regarded as an accurate 

and sophisticated measurement to assess surface complexity. It has been shown to be suitable 

to describe the complexity of coral reefs (Bradbury & Reichelt, 1983) and could therefore also 

be well suited to assess the complexity of the surface of mussels beds. The method was 

developed based on the idea of mathematician Benoit Mandelbrot (Mandelbrot, 1983). It gives 

a value for a surface between 2 and 3 where a larger value indicates greater complexity. The 

resolution used to calculate fractal dimension can vary based on the objective of the research, 

for example defining the resolutions to get information about a specific species and its 

distinctive habitat requirements. In this case, fractal dimension is used to acquire as much 

information as possible about the surface within the quadrant, therefore multiple intervals were 

chosen. 

 

FD reveals how the area of a surface changes with resolution. This describes the relationship 

between the resolution of a model and its surface area. The surface area will increase with finer 

resolution (Young et al., 2017). The resolutions (d)  used in this study were 17.5 cm, 35 cm 

and 70 cm. To acquire FD, another python script was used on the quadrants in Rhinosaurus 3D 

(Young, 2018). Necessary alterations of the script were done to get desired resolutions for each 

quadrant. The script for FD re-rendered the model at the given resolution d by putting a grid 

spaced at d onto the model, almost like dropping a blanket on it. The script then connected 

(3) 

(4)
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adjacent points and formed a new surface that was plotted against d on a logarithmic scale and 

the slopes between points were determined.   

 

 
Figure 2.8: Fractal dimension for different resolutions (17.5 cm, 30 cm and 70 cm) for a 

quadrant of 0.4 m x 0.4 m. Generated with Rhinosaurus 3D. 

 
2.6 Accuracy assessment 
 
A meter was positioned adjacent to each quadrant, serving as a reference point. This was to 

assess the accuracy of the 3D models created by Meshroom before the model was trimmed to 

only the 0.4 x 0.4 m area within the quadrant. Using the meter as a reference point, the length 

from each edge of the quadrant, which was positioned on the mussel beds, was determined to 

be 44 cm wide. To do the measuring, the OBJ. file from the 3D models was imported into a 

program called Meshlab (Meshlab, 2022). After some calibration of the program, it was 

possible to measure distances on the 3D model. The relative error of the constructed 3D model, 

was estimated by dividing absolute difference between model length (ML) minus the actual 

length (AL) that is known divided by actual length (5).  

 

																																																	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 |,9:+9|
+9

	     (5) 
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2.7 Augmentation method 
 

To extract more information and better assess the variability of complexity metrics from each 

full quadrant, an augmentation technique was used to increase the number of replicates. Each 

quadrant was divided into four smaller quadrants and the CM were extracted from each 

quadrant. This resulted in different metrics but all of them corresponded to the same biological 

data that was recorded for the full quadrant.  

 
Figure 2.10: A quadrant with full coverage divided into four smaller quadrants to calculate 

complexity metrics for each of them . 
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2.8 Model of Workflow 
 
 
 

 
Figure 2.9: Workflow of the collection of complexity metrics using Meshroom and 

Rhinosaurus 3D. 
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2.9 Statistical Analysis 
 
A correlation analysis was utilized to explore the relationships between the CM and the 

information provided by the BM. All the analysis were conducted using R (R Core Team, 

2022). First, a correlation analysis was performed to determine whether there was a linear 

relationship between the BM (biomass/m2, numbers/m2, median, mode, mean) and the 

complexity metrics (fractal dimension, vector dispersion, and rugosity). Normally, Pearson 

correlation would be used in this situation, but a Spearman rank correlation was chosen instead 

because some of the metrics did not exhibit normal distribution (as demonstrated by visual 

inspection of the variable histograms (Figure 5.2 in Appendix) and a Shapiro-Wilks test, 

presented in the "Results" section). Spearman rank correlation is a non-parametric measure of 

association, which means it does not presuppose a certain data distribution. It gauges the 

monotonic relationship between two variables, which may or may not be linear. Spearman 

correlation is less susceptible to outliers because it is based on the ranks of the data rather than 

the actual values.  

 

Due to the Spearman ranked correlation showing a weak linear relationship between the CM 

and BM but high correlation separately between those two group of variables, a principal 

component analysis (PCA) of each of the group was conducted in order to reduce the 

dimensionality of the data. By generating new vectors called principal components, PCA aids 

in reducing the number of dimensions while preserving as much information as possible. These 

elements are unrelated to one another and are linear combinations of the initial variables. It was 

simpler to visualize the data in a scatterplot when the dimensionality of a dataset was reduced. 

This made patterns, clusters, or outliers visible that were not initially visible in the high-

dimensional space.  

 

To assess the potential of the complexity metrics PCs (Principal Components)  in describing 

the biological metrics a principal component regression (PCR) was used. PCR is a technique 

that combines PCA and linear regression, and can be useful when there is a large number of 

predictor variables that may be highly correlated. Firstly, the explained variance of each PCs 

was determined by creating a cumulative variance plot. An appropriate number of PCs was 

chosen to explain a significant number of the total variance while balancing the trade-off 

between model complexity and explained variance. The optimal number of PCs was selected 

using cross-validation, to mitigate the problem of overfitting. It involves partitioning the data 
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set into subsets, then estimating the model on one subset (called the training set) and validating 

the model on the other subsets (called the validation set). Subsequently, you get the Root Mean 

Square Error of Prediction (RMSEP), which serves as a measure of the discrepancies between 

the model's predicted values and the actual observed values. In addition, you receive the 

Adjusted Coefficient of Variation (adjCV). This metric considers the sample size, offering a 

more precise gauge of dispersion, especially for smaller sample sizes. The selected PCs based 

on the CM were applied to the different BM as the response variable. The model was fit to the 

data to obtain the regression coefficients and the R- squared (R2 ) of every linear regression. R2 

is a measure of how well the regression predictions approximate the real data points. Every 

linear regression was checked for normality using a QQ plot to check the assumption of 

normality for the residuals. An R2 of 100 percent indicates that all changes in the dependent 

variable are completely explained by changes in the independent variables.  

 

The use of PCR therefore helped to address, multicollinearity issues, reduced noise and 

improved interpretability. Some of the PCs explain a considerable part in describing the 

variance in the data and they are therefore further investigated in order to identify which CM 

variable contributes the most to those PCs. To further look into the relationship between the 

CM and BM, a canonical correlation analysis (CCA) was conducted to provide additional 

insights into the correlation structure of the datasets. This analysis may reveal more complex 

or subtle relationships between the two datasets, given the fact that CCA can capture 

multivariate correlations that are not detectable by univariate correlation measures or by PCA, 

which only considers one dataset at a time. CCA, in contrast, finds linear combinations of the 

variables in each dataset that are maximally correlated with each other. The canonical 

correlations, which have a range of -1 to 1, express how closely each pair of canonical variates 

is related. The first pair is determined in such a way as to maximize the correlation between 

the two sets of variables. The second pair is computed under the constraint that it is uncorrelated 

with the first pair, and so on for subsequent pairs. The pairs are therefore ordered by the amount 

of shared variance they explain, with the first pair explaining the most, the second pair the 

second most and so on. The canonical pairs showing a high correlation were further examined 

by looking into their coefficients to identify which variables of the original datasets that 

contributed most to these relationships.  
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3 Results  
 
3.1 Exploring the distribution of complexity and biological metrics 
 
A total of 4316 mussels were measured by length. There was a large difference in the size 

distribution between the quadrants with a mean value for each quadrant ranging from 6.6 mm 

to 23.8, and with a mean value for the total of mussels of 10.41 mm. The examined mussels in 

this study represent the smaller half of the species' full size range with the total mussels having 

a size range of 63 mm and a mean length of 10.41 mm. The biological metrics are illustrated 

in Figure 3.1a, with numbers/m2 and average weight per mussel(g) displaying notable outliers.   

 
Figure 3.1a : Boxplot of biological metrics (  (biomass(g)/m2) x 10-4 , (numbers/m2) x 10-4) , 

median(mm) x 10-1, mean(mm) x 10-1, average weight per mussel(g) x 10-1 ).  

 

Boxplots presenting the distribution of the complexity metrics revealed some substantial 

outliers among the metrics, in particular for vector dispersion (Figure 3.1b) and fractal 

dimension (Figure 3.1c).  
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Figure 3.1b : Boxplots of complexity metrics (vector dispersion x 10, Std(s) vector dispersion, 

rugosity, Std (s) rugosity) for every quadrant. 

 
Figure 3.1c: Boxplot of complexity metrics (fractal dimension 70 cm, fractal dimension 35 cm, 

fractal dimension 17.5 cm).  
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3.2 Correlation analysis 
 
According to the Shapiro-Wilkins test (Table 1 & 2) and visual interpretation of the histogram 

plot (Figure 5.1 in appendix), most of the variables had p-values that were lower to the selected 

significance level (P 0.05), indicating that they did not have a normal distribution.  

 
Table 1: Shapiro-Wilks test (significance level p) for complexity metrics : vector dispersion 

(VD), vector dispersion standard deviation (VD SD), rugosity, rugosity standard deviation 

(SD), fractal dimension (FD) ( 70 cm , 35 cm, 17.5 cm) 

  
 VD VD SD Rugosity Rugosity SD FD 70 cm FD 35 cm FD 17.5 cm 

 
p-values 3.78e-06 

 
6.99e-01 
 

3.70e-02 
 

2.20e-01 
 

2.49e-05 
 

5.20e-06 
 

1.35e-07 
 

 

 

Table 2: p-values from Shapiro-Wilks test for biological metrics.  
 

 Biomass/m2 Numbers/m2 

 
Mode  
 

Mean  
  

Median  
 

Weight Per Mussel 
 

p-values  7.45e-04 
 

4.03e-05 
 

7.44e-12 
 

1.69e-08  
 

3.52e-08 
 

2.88e-05 
 

 

The Spearman rank correlation found a poor correlation between the variables from the two 

groups (CM and BM), but a substantial correlation within each group (Figure 3.2). This 

indicates a weak linear relationship between CM and BM.  However, biomass (g/m2) was an 

exception, and the correlation coefficients (r) was 0.73 and 0.70 with fractal dimension 35 cm 

and vector dispersion SD respectively (Figure 3.2).  
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Figure 3.2: Spearman Ranked Correlation demonstrating the strength and direction between 
biological and complexity metrics.  
 
 
3.3 Principal Component analysis 
 
 

The cumulative explained variance plot for the PCs based on CM and BM was created to 

determine the relative importance of each PC (Figure 3.3a and Figure 3.3b). PC1 (68.32 %) 

and PC2 (11.44 %) explained 79.76 % of the variance for the PCs of the CM. PC1 (59.09 %) 

and PC2 (23.65 %) explained 82.74 % of the variance for the BM.  
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Figure 3.3a: Cumulative variance explained (%) for each PC created from the complexity 

metrics.  
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Figure 3.3b: Cumulative variance explained (%) for each PC created from the biological 

metrics.  

 

The PCA plot was made with the CM (Figure 3.4a) for the two first PCs and displayed no clear 

grouping and one defined outlier. Rugosity and rugosity standard deviation displayed a strong 

negative correlation while both fractal dimension (FD) and vector dispersion was grouped 

together.  
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Figure 3.4a: PCA of complexity metrics.  

 

The same plot was created for the BM (Figure 3.4b) and did also not display any grouping. 

However, mode, median and mean displayed a strong negative correlation with Numbers/m2.  

 

 
 
Figure 3.4b: PCA of biological metrics.  
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3.4 Principal Component Regression (PCR) 
 

Cross-validation (CrV) revealed that five components (PC1–PC5) offered the best prediction 

for the response variable with the smallest Root Mean Squared Error of Prediction (RMSEP) 

and adjCV (Table 3). 

 

Table 3: Root Mean Squared Error from the Cross-validation. Intercept describing the baseline 

of the model without any PCs. 

 
 Intercept 1 comps  2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 

CrV 6917 6276 6521 6748 6390 5385 5442 5454 

adjCV 6917 6261 6503 6795 6190 5338 5396 5393 

 

PCs 1 through 5 were used to identify any underlying patterns in the data. Table 4 describes 

the R2 for each linear regression from the biological measurements as the response variable 

and a new selection of PCs produced from the CM as the predictor variables. Every QQ plot 

indicated that the residuals were normally distributed. Biomass and weight per mussels had the 

highest R2, with biomass for PC1-PC5 having an R2 of 0.5416. 

 

Table 4:  Displaying R2 for different combinations of PCs against the biological metrics, with 

the largest values highlighted.  

 
 Biomass/m2 Numbers/m2 Mode Mean Median Weight per mussel 

R2  

(PC1) 

0.2112 0.0587 0.006752 0.0114 0.001171 0.1077 

R2 

 (PC1-PC2) 

0.2172 0.0587 0.05317 0.0372 0.004021 0.1078 

R2  

(PC1-PC3) 

0.2497 0.06857 0.05411 0.0377 0.005765 0.113 

R2  

(PC1-PC4) 

0.4702 0.07422 0.07797 0.1532 0.08633 0.3438 

R2 

(PC1-PC5) 

0.5416 0.08074 0.08024 0.1636 0.09981 0.3522 
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Plots displaying the linear relationship for the usually most determining PCs (PC1 & PC2) 

against the variables of the biological variables is illustrated in figure 3.5a and figure 3.5b. The 

plot with PC1 presented mostly a negative correlation, in particular with biomass/m2 and 

weight per mussel which corresponds with R2 from table 4. The linear regression plot for PC2 

shows a weak correlation with most of the BM. However, the linear regression plot for PC4 

(Figure 3.5c) showed a stronger positive correlation with the BM.  
 

 
 

Figure 3.5a: Linear regression for each variable against PC1.  
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Figure 3.5b: Linear regression for each variable against PC2. 

 

 
Figure 3.5c: Linear regression for each variable against PC4. 
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PC1 and PC4 explains a substantial part of the variance in the data and it is therefore further 

investigated in order to identify which variable contributes the most. The variable of FD 17.5 

cm (Figure 3.6a ) contributes most to PC1, however, there is a quite similar contribution to 

PC1 for each variable. PC4 on the other hand, has a substantial contribution from FD 35 cm 

and Vector Dispersion SD (Figure 3.6b) 

 

 

 
Figure 3.6a : Displaying the value contributions (%) of each variable for PC1. The dotted line 

representing the average contrbution of variables.  
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Figure 3.6b: Displaying the value contributions (%) of each variable for PC4. The dotted line 

representing the average contrbution of variables. 

 
3.5 Canonical Correlation Analysis 
 

The first canonical variates of BM and CM show a strong positive linear correlation of 0.796 

(Figure 3.7). This means that changes in the BM dataset are strongly associated with changes 

in the CM dataset, according to the new variables (canonical variates) created for the analysis. 

The second pairs correlation is moderately high at 0.651, and suggests a relatively strong 

relationship, with changes in one variable often associated with changes in the other. While the 

third pair of canonical variates exhibits a more moderate correlation of 0.386, and suggests that 

changes in one of these variables are associated with changes in the other, but not as 

consistently as with a higher correlation. The coefficients used to build the two first pairs of 
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canonical variates were examined to determine which variables in the datasets contributing 

most to these relationships, given that the two first pairs have a much higher value than the 

rest. 

 
Figure 3.7: Scatterplot of First Canonical Variates with regression line indicating a strong linear 

relationship.  

 

Table 5 : Displaying the coefficients of the canonical pairs. The sign of the coefficient indicates 

positive or negative relationship, while the magnitude of the coefficient indicates the strength 

of the relationship. The first pairs are most relevant, and their values are highlighted.  

 
 Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Pair 7 
Vector Dispersion -2.46 -0.36   -1.58   0.28  3.91    3.19 2.93 

Vector Dispersion SD 9.74 -7.60    1.46 -1.07 1.71   1.17 -8.61 

Rugosity        -1.59  3.37  -4.28   -0.13  1.93  10.24  -1.20 

Rugosity SD           -3.58  2.74 -11.84   -1.98 -5.73   14.69 4.89 

FD 70 cm               8.59   4.15 10.26 -37.05 17.45 -20.48  14.25 
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FD 35 cm               6.71 7.14 12.55 8.07 -1.80   3.70 10.21 

FD 17.5 cm            -2.08  7.25 -10.95    9.22 -5.45 -1.04 -13.27 

 

Looking at the coefficients for the first pair based on CM (Table 5) , “Vector Dispersion SD” 

(9.74) and "FD 70 cm" (8.59) have the highest coefficients, suggesting that they have the 

strongest influence on the first canonical variate. In the second pair, “Vector Dispersion SD” 

shows a high negative coefficient (-7.60) indicating a negative relationship, while FD 35 cm 

(7.14) and FD 17.5 (7.25) indicating a positive relationship. Lastly, the Permutation test on the 

CCA results (with 10000 permutations) showed a p-value of 0.09249 which means that the 

result is not statistically significant at the 0.05 level.  

 
3.6 Accuracy measurement 
 
Using the meter as a reference point, the length from each edge of the quadrant that was placed 

on the mussel beds was measured as 44 cm wide. Actual length (AL) is the length measured 

by the meter. The error between AL and Measured length (ML) was 0.07 %.  

 

 

 
Figure 3.8: Measuring length of the 3D model using Meshlab to test the accuracy of the model.  
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4 Discussion  
 
 

The objective of this thesis was to construct a systematic procedure capable of generating 

quantitative data on blue mussel dynamics, utilizing the information extracted from 3D models 

of the mussels created via the SfM technique. In pursuit of this goal, the study endeavoured to 

find a correlation between fieldwork-collected biological datasets and the CM obtained from 

the 3D models generated through SfM. While some degree of correlation was observed 

between surface complexity and blue mussel biomass, this correlation failed to reach a level of 

statistical significance. Regardless, the established correlation does suggest the potential of this 

method, indicating that its further improvement could give valuable results. The study proposes 

that the fractal dimension might serve as the most effective complexity metric in illustrating 

the relationship between the surface complexity of the 3D models and the biological metrics. 

It should, however, be supplemented with additional complexity metrics to ensure a more 

holistic understanding of surface complexity. The outcomes of this study could have been 

impacted by several factors, including the limited biological sample size, the homogeneity of 

the mussels populations at the study sites, and variations in camera settings and distances 

during the process of image capture. To minimize the potential influence of these factors, it is 

recommended to increase the sample size, maintain a consistent scale and camera settings, and 

ensure accurate measurements. Once an optimized workflow is established, incorporating 

machine learning algorithms for object detection could significantly enhance workflow 

efficiency. 

 

 
4.1 Exploring the correlation between CM and BM 
 

Due to non-normally distributed data, the Spearman rank correlation was used (Schober et al., 

2018) and this showed a poor correlation between the two groups, CM and BM, but a 

substantial relationship within the groups individually. This indicated a weak linear 

relationship between CM and BM, and a PCA of each of the groups was conducted in order to 

reduce the dimensions of the data. This would highlight the most important variables driving 

the variation in the dataset, and is often used to find a correlation between ecological metrics 

(Toosi et al., 2022). Neither the PCA of the CM nor the BM showed any clear grouping, 

meaning there was not much variability between the metrics. However since they are highly 
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correlated between each other separately, it suggested that using PCs could still be useful. A 

PCR is an effective technique for dealing with highly correlated predictor variables (Pires et 

al., 2008) and was performed with a number of PCs derived from CM as predictor variables. 

Cross-validation was used to establish the ideal number of PCs for the final PCR, and has 

proven to be effective for selecting the number of components (Josse & Husson, 2012).  The 

rise in RMSEP from one to three components (Table 3),  indicated that PC2 and PC3 might not 

have much information to add to the prediction.  

 

The highest R-squared from the linear regression suggested that PC1-PC5 based on the CM 

could explain more than half of the variance in biomass (Table 4). The R-squared changes 

drastically for biomass and weight per mussel when adding PC4 , indicating that PC4 explain 

a substantial part of the variance for the variables. The plot with PC1 presented mostly a 

negative correlation, in particular with biomass  and weight per mussel which corresponds with 

values from Table 3. The linear regression plot for PC2 shows a weak correlation with most of 

the BM, confirming the fact that PC2 has little information to provide to the prediction. The 

linear regression plot for PC4 shows a stronger positive correlation with the BM, validating the 

information given by Table 3 and 4.  

 

The relationship between CM and BM was further investigated by performing a canonical 

correlation analysis to find more intricate or subtle relationships between the two datasets, 

given the fact that CCA can capture multivariate correlations that are not detectable by 

univariate correlation measures or by PCA, which only considers one dataset at a time (Palmer, 

1993). The first pair of canonical variates showed a reasonably strong positive relationship, 

indicating that the datasets may be meaningfully related while the second pair showed a 

relationship that was moderately strong. The variables that contribute the most to these pairs 

were identified by looking at the coefficients of the first two pairs. The fractal dimension has 

been extensively utilized as a metric to quantify surface complexity (Bradbury & Reichelt, 

1983). Coherent with the PCA results, fractal dimension had the strongest influence on the first 

and second canonical variates (Table 5), reinforcing the idea that fractal dimension could be 

the most useful complexity metric to extract using this method. However, "Vector Dispersion 

SD" also had a high coefficient for the first canonical variate (Table 5), indicating that this 

metric may add value as well. Lastly, the Permutation test on the CCA results (with 10000 

permutations) showed a p-value of 0.09249 which means that the result is not statistically 

significant at the 0.05 level. In other words, there was no strong evidence to conclude that there 
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is a significant correlation between the two sets of variables based on this test. Nonetheless, 

based on the outcomes presented, SfM demonstrates its potential as a suitable technique for 

generating 3D models with information that can be utilized to acquire quantitative data on blue 

mussel size and biomass.  

 
 

4.2 Observations and possible factors affecting the 3D models  
 
There are several factors in this workflow to be taken into consideration. Firstly, the small 

biological sample collected have a limited statistical power and may not be able to detect 

significant differences or correlations, even if they exist in the population. Ideally, all of the 

collected quadrants would be used, but some of them had a low coverage of mussels, making 

their inclusion complicated and of little value. The homogeneity of the patches mussels 

photographed and collected during fieldwork made it more challenging to detect significant 

correlations with the CM. Nonetheless, identifying and sampling mussel patches with high 

variability proved to be a challenge, given the population dynamics in Hardangerfjorden and 

the established low variability of these populations (Strohmeier et al., 2022). Furthermore, 

when collecting and counting mussels, many of the smallest mussels might not have been 

collected due to their size making them challenging to collect, which could have influenced the 

size distribution within the samples. 

 

 

The photos taken to create the 3D models could also have affected the results. Due to 

unfavourable weather conditions, drone image capturing was not carried out during the final 

study. However, as described in material & method, a test during good weather with a DJI Air 

2s drone at various locations near Austevoll demonstrated high-quality imagery. Drones offer 

the advantage of accessing areas that are difficult or impossible to reach through other methods, 

but it is essential to consider their limitations, such as susceptibility to weather-related 

disruptions. In this thesis, photos were taken with both an Olympus TG-6 and a Samsung SM-

G78, but due to the Olympus malfunctioning during sampling, only photos from the Samsung 

SM-G78 were used. Consequently, the photos were taken with different metering mode and 

exposure times to acquire the best quality, which could have affected the final 3D models. Yet, 

Meshroom, the 3D reconstruction software used, includes a camera calibration step in its 

pipeline. It uses information embedded in the images' metadata (EXIF data), such as the camera 

model, focal length, and sensor size, to estimate the camera's intrinsic parameters (Meshroom, 
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2021a). Nonetheless, Meshrooms automatic calibration may not perfectly account for all 

variations, especially if your images have a wide range of different exposure times. 

 

The scale at which the images are taken (e.g., distance between the camera and the subject and 

camera sensor resolution) can also influence the level of detail captured and the overall 

accuracy of the 3D model. Meshroom detects key points (features) in each image and then 

matches them across multiple images (Westoby et al., 2012). The software is designed to 

handle variations in scale, rotation, and illumination by using scale-invariant feature detectors 

and descriptors, such as SIFT (Scale-Invariant Feature Transform) or AKAZE (Meshroom, 

2021b). These methods are robust to changes in scale, which helps ensure that features can be 

matched even when images are taken from different distances. However, smaller scales (i.e., 

capturing images from a greater distance) generally result in lower resolution models, while 

larger scales (i.e., capturing images from a closer distance) can provide higher resolution and 

more accurate models. Closer distance will therefore have a smaller ground sampling distance 

(Westoby et al., 2012).  

 

An article by Li & Lan (2019), discusses how reconstructions of objects (or scenes) using SfM 

based on monocular camera or multiple uncalibrated cameras are only possible up to an 

unknown scale. To recover the absolute scale, additional information or constraints are often 

needed. These can include known measurements of the object or scene, the use of calibrated 

cameras with known focal lengths, or the inclusion of external sensors (e.g., GPS, 

accelerometers) to provide information about the camera's position and orientation during the 

image acquisition process. This approach could have a potential to obtain absolute scale. 

However, an accuracy test was conducted and gave an error between the actual length and 

measured length to be only 0.07 %. Nevertheless, to minimize these potential issues, it would 

be recommended to maintain an even more consistent distance from the quadrants containing 

mussels when capturing images and to use calibrated cameras with similar exposure time to 

increase the accuracy of the models created by SfM.  

 

4.3 Investigating the use of complexity metrics 
 

Three different CM were calculated to describe surface complexity using the method described 

by Young et al., (2017). Rugosity has commonly been used to measure habitat complexity. 

Rugosity is easy to measure and calculate, making it a popular choice among researchers. In 
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the workflow suggested by Young et al., (2017), only a few chains were positioned over the 

topography. To capture more of the complexity, several chains were added (Figure 2.6).   

However, since rugosity is inherently tied to the surface area, it may not capture other aspects 

of habitat complexity, such as the spatial arrangement or distribution of features within a given 

area. This limitation could make rugosity less effective for assessing complexity on a 

microscale, where the arrangement and distribution of features might be more critical than the 

surface area itself  (Loke & Chisholm, 2022). There was an indication that this might have been 

reflected in the results, with rugosity having the lowest correlation with BM and low 

contribution to the PCs (except PC1) and one of the canonical pairs.  

 

Fractal dimension is another commonly metric used to calculate complexity, and can capture 

aspects of habitat structure that are not captured by rugosity, such as the degree of branching 

or clustering (Loke & Chisholm, 2022). Fractal dimension was the complexity metric that 

correlated the most to the BM, and with significant contribution to PC1 (FD 17.5cm) and PC4 

(FD 35 cm ) as well as having a strong influence on the two first pairs canonical variates (Table 

5). The self-similarity and scale-invariant properties of fractal dimension might reveal 

important aspects of habitat structure that might capture the complexity on a microscale, 

making it a suitable measurement. Other research has suggested that fractal dimension may be 

correlated with certain biological variables, however, the strength of this correlation varies, and 

the results are not always consistent across different studies and contexts (Loke & Chisholm, 

2022).  

 

Vector dispersion is a less common complexity metric considered to be appropriate for 

measuring surface complexity in terms of surface angle variation. Due to its simple range (0-

1) and positive response to increasing surface irregularity and sensitivity to biological or 

ecological population variables it can be a useful measurement (Carleton & Sammarco, 1987) 

In terms of this study, vector dispersion was not the most important contributor to describe the 

variance correlated to the BM. However, vector dispersion did have a large contribution to PC1 

(Figure 3.6a) and Vector dispersion SD having the same for PCA 2 (Figure 3.6b), displaying 

its potential to describe complexity. Other similar studies have used vector dispersion to 

measure complexity at microscale. Carleton & Sammarco (1987) discovered that at fine scales 

(millimeter to centimeter), vector dispersion accounted for 36% of the variation in coral genus 

richness. However, Mccormick (1994)  found that at coarser scales (meter), vector dispersion 

explained only 19%, 8%, and 2% of the variation in fish species richness on coral reefs, 
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respectively. In a more recent study conducted at the same location and similar scales, Torres-

Pulliza et al., (2020) reported that surface height range accounted for a mere 4% of the variation 

in coral species richness. Nonetheless, it is worth noting that these results could be influenced 

by the different species under study, and this factor should be considered when interpreting the 

findings. 

 

 

4.4 Recommendations for future research 
 
In future studies applying the method used in this thesis, several improvements could enhance 

the outcomes. Firstly, increasing the sample size should help capture more variability within 

the biological datasets, although population dynamics may sometimes limit such variability. 

Secondly, ensuring consistent scale and camera settings during image collection could prove 

beneficial. While some research suggests that uncalibrated photos can produce accurate and 

precise models at small scales  (Young et al., 2017), calibrated images could improve the results 

of SfM applications. Using advanced data processing techniques to account for differences in 

camera settings could also improve the results. 

 

The scale at which images are captured significantly impacts the level of detail and overall 

accuracy of the 3D models generated using SfM. While current software can handle some 

variations in scale, future advancements in these methods might further improve the models. 

Li & Lan (2019) suggests a technique for recovering absolute scale in SfM based on motion 

constraints defined by a relative free fall motion between the camera and the object. The 

suggested closed-form analytical solution appears to function effectively in practice, but it also 

highlights the need to minimize uncertainties related to camera properties and experiment 

designs. To address potential issues with resolution and scale, it is recommended to maintain a 

consistent distance from the quadrants containing mussels during image capture and to use 

calibrated cameras with known exposure time. These steps can help enhance the accuracy of 

the models created using SfM. 

 

This study suggests that the fractal dimension could potentially serve as the most powerful 

metric for depicting the correlation between surface complexity and biological variables. 

Utilizing this measurement at an extremely high resolution could effectively capture 

microscale details, though it may necessitate robust computational resources. Nevertheless, to 
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gain a comprehensive and in-depth understanding of surface complexity, this metric should be 

used in tandem with other CM. These could include metrics like vector dispersion or rugosity, 

among others, which may also be advantageous in providing a detailed representation of 

surface complexity. Slope is another potential metric that could be utilized, and it has already 

frequently used metric in marine studies (Friedman et al., 2012). Slope captures the steepness 

or incline of the surface of a model. It can provide information about the local shape and 

changes in the surface of the model. The complexity of a model can be inferred from the variety 

and intensity of its slopes (Friedman et al., 2012) .  

 
Future research that combines the current approach with the capabilities of machine learning 

algorithms for object detection has the potential to greatly enhance this method. By employing 

object detection techniques, such as those trained using programs like U-Net, the workflow can 

be streamlined through the automatic recognition of mussel patches. Integrating this 

automation into the existing workflow could improve the efficiency of the image analysis 

process and such a workflow is visually presented in Figure 1.2. Preliminary results suggest 

that the algorithms used can successfully identify mussels, and with further annotation efforts, 

their performance can be further improved. By developing a workflow that combines the SfM 

technique, drones capable of surveying large areas, and machine learning algorithms to 

improve efficiency, there is a tremendous opportunity to enhance our understanding of blue 

mussels dynamics. This integrated approach enables the effective collection of quantitative 

data on blue mussel size, biomass, and coverage, leading to valuable insights into their 

population dynamics.  
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5 Conclusion 
 
In conclusion, this thesis aimed to develop a systematic process for generating quantitative data 

on blue mussel dynamics by extracting information from 3D models created using the SfM 

technique. The study attempted to establish a correlation between fieldwork-collected datasets 

and CM derived from these 3D models. Although the results showed some correlation between 

the CM and BM, the relationship was not statistically significant. However, the correlation 

proves the potential of this method and that further developing this method could be valuable. 

The study suggests that fractal dimension could be the most useful complexity metric to 

describe the relationship between surface complexity of the 3D models and BM, but this metric 

should be used in conjunction with other CM to provide a more comprehensive understanding 

of surface complexity. 

 

Factors such as limited biological sample size, homogeneity of mussels, and variations in 

camera settings and distances during image capture may have influenced the results. 

Minimizing possible errors inflicted by these factors would be beneficial. This would include 

increasing the sample size, ensuring consistent scale and camera settings. When a satisfying 

workflow is created, integrating machine learning algorithms for object detection would 

improve the workflow efficiency. This study, while not definitive, illustrates the potential of 

SfM as a viable technique for constructing 3D models. These models can subsequently serve 

as a foundation for generating comprehensive quantitative data. Such data can offer valuable 

insights into the dynamics of blue mussels, such as mussel size, total biomass, and coverage 

area, all of which correlate with the significant ecosystem services provided by these 

organisms. Gathering information beyond simply mapping blue mussel presence, can 

substantially enhance our understanding of their population dynamics, enabling both effective 

conservation  measurements and sustainable utilization of these vital marine resources.  
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Appendix A – Tables and figures 
 
 
Table 6: Biological metrics with calculated biomass(g/m2) and numbers (n/m2) 
 

 

Quadrant Biomass(g) g/m2 

Number of 

Mussels (n) n/m2 Mode Mean Median 

Average Weight 

Per Mussel (g) 

1 4910 30678 4576 28600 4 15.19 13 34.34 

2 2450 15312 2368 14800 3 12.65 12 16.55 

3 1230 12611 3321 34501 5 10.94 10 2.97 

4 1050 14780 3008 42306 4 10.01 9 2.79 

5 4000 25000 2008 12550 18 23.76 24 15.94 

6 940 13662 1664 24186 3 9.73 6 9.04 

10 2973 18581 8352 52200 3 9.87 6 11.39 

13 1857 11606 2472 15450 4 8.89 7 6.01 

15 496 9810 3008 59493 3 6.65 5 2.63 

16 2629 16431 6240 39000 4 8.78 6 13.48 

18 1593 9956 3360 21000 4 10.93 11 15.17 

19 2892 18075 4448 27800 4 10.87 7 20.81 

22 1166 9109 1584 12375 16 12.00 13 11.78 

23 1149 9449 5664 46578 3 8.19 6 6.49 

24 1156 7225 2688 16800 2 10.70 7.5 13.76 

 

 

Table 7:  Complexity metrics with vector dispersion (VD), vector dispersion standard 

deviation, rugosity, rugosity standard deviation, and the different fractal dimension (FD) (70 

cm, 35 cm and 17.5 cm) 
 
Quadrant 

VD 
Average 

VD  
SD 

Rugosity 
Average 

Rugosity SD FD 70 cm FD 35 cm FD 17.5 cm 

Q1* 0.0949 0.0518 0.9187 0.0335 2.0083 2.0268 2.0450 

Q1_1 0.0671 0.0430 0.9247 0.0389 2.0029 2.0168 2.0128 

Q1_2 0.0720 0.0678 0.9282 0.0424 1.9996 2.0134 2.0095 

Q1_3 0.0494 0.0386 0.9450 0.0244 2.0080 2.0108 2.0087 

Q1_4 0.0506 0.0438 0.9440 0.0374 2.0050 2.0102 2.0090 

Q2* 0.1244 0.0342 0.9176 0.0357 2.0021 2.0112 2.0112 

Q2_1 0.0667 0.0561 0.9377 0.0345 2.0026 2.0069 2.0116 

Q2_2 0.0598 0.0494 0.9328 0.0361 2.0019 2.0082 2.0088 

Q2_3 0.0396 0.0302 0.9298 0.0324 2.0032 2.0118 2.0127 

Q2_4 0.0356 0.0231 0.9329 0.0274 2.0011 2.0043 2.0111 

Q3 0.0567 0.0294 0.9053 0.0605 2.0046 2.0058 2.0116 

Q4 0.0156 0.0081 0.9800 0.0105 2.0016 2.0006 2.0019 

Q5* 0.1551 0.0476 0.9128 0.0317 2.0137 2.0353 2.0468 

Q5_1 0.0536 0.0414 0.9717 0.0222 2.0055 2.0188 2.0116 

Q5_2 0.0536 0.0384 0.9761 0.0155 2.0054 2.0139 2.0181 
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Q5_3 0.0299 0.0244 0.9795 0.0186 2.0091 2.0035 2.0098 

Q5_4 0.0563 0.0347 0.9710 0.0147 2.0042 2.0131 2.0181 

Q6 0.0474 0.0257 0.8866 0.0494 2.0016 2.0055 2.0195 

Q10* 0.1645 0.0522 0.9071 0.0334 2.0048 2.0229 2.0373 

Q10_1 0.0747 0.0386 0.9564 0.0194 2.0125 2.0104 2.0207 

Q10_2 0.0524 0.0331 0.9569 0.0554 2.0090 2.0224 2.0168 

Q10_3 0.0726 0.0467 0.9568 0.0265 2.0055 2.0052 2.0301 

Q10_4 0.0450 0.0286 0.9786 0.0178 2.0059 2.0038 2.0139 

Q13* 0.1195 0.0446 0.9372 0.0306 2.0109 2.0051 2.0094 

Q13_1 0.0316 0.0213 0.9864 0.0057 2.0023 2.0030 2.0065 

Q13_2 0.0463 0.0265 0.9774 0.0149 2.0009 2.0018 2.0117 

Q13_3 0.0255 0.0155 0.9870 0.0075 2.0005 2.0032 2.0070 

Q13_4 0.0435 0.0209 0.9784 0.0144 2.0036 2.0026 2.0072 

Q15 0.0494 0.0244 0.9383 0.0290 2.0001 2.0048 2.0075 

Q16* 0.2060 0.0616 0.8847 0.0436 2.0128 2.0191 2.0559 

Q16_1 0.0800 0.0348 0.9565 0.0165 2.0068 2.0182 2.0358 

Q16_2 0.0657 0.0331 0.9672 0.0189 2.0021 2.0077 2.0221 

Q16_3 0.0883 0.0476 0.9371 0.0563 2.0129 2.0162 2.0355 

Q16_4 0.0528 0.0260 0.9772 0.0080 2.0032 2.0082 2.0116 

Q18* 0.2053 0.0363 0.8931 0.0243 1.9942 2.0121 2.0190 

Q18_1 0.0603 0.0235 0.9714 0.0165 2.0040 2.0025 2.0113 

Q18_2 0.0703 0.0262 0.9716 0.0125 2.0010 2.0020 2.0102 

Q18_3 0.0645 0.0315 0.9714 0.0116 2.0009 2.0049 2.0144 

Q18_4 0.0645 0.0299 0.9753 0.0121 2.0030 2.0049 2.0095 

Q19* 0.2026 0.0593 0.8481 0.0653 2.0274 2.0420 2.0898 

Q19_1 0.0695 0.0421 0.9424 0.0302 2.0046 2.0453 2.0207 

Q19_2 0.0749 0.0326 0.9530 0.0243 2.0094 2.0184 2.0190 

Q19_3 0.0768 0.0528 0.9357 0.0376 2.0092 2.0157 2.0359 

Q19_4 0.0720 0.0398 0.9447 0.0413 2.0086 2.0328 2.0295 

Q22 0.0483 0.0204 0.9318 0.0291 1.9997 2.0033 2.0099 

Q23 0.0431 0.0222 0.9446 0.0224 2.0019 2.0028 2.0091 

Q24* 0.0184 0.0109 0.9935 0.0026 2.0004 2.0019 2.0034 

Q24_1 0.0032 0.0031 0.9986 0.0007 2.0002 2.0010 2.0007 

Q24_2 0.0042 0.0035 0.9983 0.0009 2.0001 2.0001 2.0014 

Q24_3 0.0040 0.0029 0.9934 0.0234 2.0001 2.0009 2.0011 

Q24_4 0.0052 0.0050 0.9978 0.0014 2.0007 2.0012 2.0014 
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Figure 5.1: Length distribution for the mussels size of 23 quadrants with mussels.  
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Figure 5.2. Histograms illustrating the distribution of complexity metrics and biological 

metrics . 
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Appendix B – Models 
 
 

 
 
Figure  5.3: Models of quadrant 1 to 4. 
 
 

 
 
Figure 5.4: Models of quadrant 5, 10 , 13 and 15.  
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Figure 5.5: Models of quadrant 16, 18, 19 and 24.  


