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ABSTRACT Viruses are the most abundant biological entities in the ocean and show
great diversity in terms of size, host specificity, and infection cycle. Lytic viruses induce host
cell lysis to release their progeny and thereby redirect nutrients from higher to lower
trophic levels. Studies continue to show that marine viruses can be ingested by nonhost
organisms. However, not much is known about the role of viral particles as a nutrient
source and whether they possess a nutritional value to the grazing organisms. This review
seeks to assess the elemental composition and biogeochemical relevance of marine viruses,
including roseophages, which are a highly abundant group of bacteriophages in the marine
environment. We place a particular emphasis on the phylum Nucleocytoviricota (NCV) (for-
merly known as nucleocytoplasmic large DNA viruses [NCLDVs]), which comprises some of
the largest viral particles in the marine plankton that are well in the size range of prey for
marine grazers. Many NCVs contain lipid membranes in their capsid that are rich carbon
and energy sources, which further increases their nutritional value. Marine viruses may thus
be an important nutritional component of the marine plankton, which can be reintegrated
into the classical food web by nonhost organism grazing, a process that we coin the “viral
sweep.” Possibilities for future research to resolve this process are highlighted and discussed
in light of current technological advancements.

KEYWORDS marine viruses, Nucleocytoviricota, grazing, biogeochemistry, macronutrients,
micronutrients

Viruses are important drivers of evolution, population dynamics, and biodiversity in
the marine environment (1, 2). Furthermore, they influence the fluxes of nutrients,

organic matter, and energy (3, 4). Seawater is teeming with viruses, reaching up to
6.5 � 107 viral particles per mL of water (5), leading to the infection and death of a diverse
range of marine microbes, including bacteria and protists (single-celled eukaryotes), as well
as macroorganisms, such as fish and mollusks (6). Viral infections, particularly by lytic viruses,
can bring about subsequent cell lysis, causing an array of chemically and structurally diverse
molecules within cells to be released into the surrounding environment. As a result, viruses
play a major role in the cycling of biogeochemical elements, such as carbon (C), nitrogen
(N), and phosphorus (P), within marine ecosystems (7–9). Most notably, the process of cell
lysis diverts organic material away from the classical food web (i.e., the carbon flux from pri-
mary producers to predators), a process known as the “viral shunt” (4, 9). The effect of this
short-circuit is increased C availability for respiration by bacteria and other heterotrophic
microorganisms. Conversely, the lysis and release of sticky transparent exopolymeric particles
(TEPs) can lead to enhanced sinking of organic material from upper to lower oceanic layers,
known as the “viral shuttle” (10, 11). Also, lysogenic infections by temperate phages can
occur, which likely lead to long-term associations with the respective host and modulation
of host physiology (e.g., morphology, gene expression, and metabolism) (12, 13). Although
the presence and influence of lysogenic infections are significant in marine systems (14–16),
lysogeny itself is very complex and little is known about the induction of the lytic form.
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Therefore, the direct contribution of temperate phages as free viral particles for marine graz-
ing and nutrient cycling is currently unknown, but they will indirectly have an influence by
altering host physiology. By influencing the availability and cycling of major elements and
nutrients, viruses clearly play important roles in the structuring and functioning of marine
ecosystems.

Growth and biomass production within marine ecosystems are regulated by many fac-
tors, including the availability and concentration of macronutrients (e.g., C, N, and P) and
micronutrients (e.g., iron [Fe] and zinc). Macronutrients are the primary elements in the
building blocks of every living cell, namely, DNA, proteins, and lipid membranes. Carbon
can be fixed photoautotrophically by phytoplankton in the sunlit upper ocean layers,
which is the primary pathway for C and energy to enter the marine food web, supporting
the growth of diverse heterotrophic organisms (17). As marine microbes grow, they assimi-
late dissolved C, N, and P from their environment, which can lead to a depletion of these
macronutrients, most notably N and P. Within coastal marine environments, it is typical
that N limits microbial growth at certain times of the year, while in freshwater environ-
ments, the Mediterranean Sea, and tropical ocean waters, P is typically the primary limiting
nutrient (18–21). In addition, micronutrients, particularly Fe, frequently limit the growth of
marine microbes (22). In the Fe-limited regions of the Southern Ocean, new production is
suggested to be largely driven by Fe recycling (23). Viruses thereby can have a major con-
tribution to Fe recycling, as lytic viral infection leads to the release of host cell constituents
that are rich in bioavailable Fe (24).

Marine microorganisms have evolved several adaptations to circumvent nutrient li-
mitation that give them the ability to access and utilize various limiting compounds,
which in turn affords them a competitive advantage under nutrient-limiting conditions
(20). By feeding on microbes, heterotrophic predators (e.g., zooplankton) are often
more limited by the availability of nutrient-rich prey or detrital particles, rather than
ambient nutrient concentrations themselves. Among predatory organisms, different
feeding strategies exist, leading to variation in success in accessing potential food
sources (25). For example, filter feeders, such as pelagic tunicates and pteropods, pro-
cess large volumes of water to trap and ingest particles, which are sometimes several
magnitudes smaller than the predators themselves (26). The ability to access and uti-
lize the various components that exist in particulate form allows a competitive advant-
age and continued growth within nutrient-limited systems. Marine viruses, being the
most abundant biological particles in the ocean (4), might thus be an important food
source for heterotrophic organisms. However, their relevance as such and the extent of
predation upon them are still enigmatic.

Due to their size, viral particles fall into the pool of organic matter that is frequently
categorized as dissolved organic matter (DOM). This pool is operationally defined by fil-
tration cutoffs, typically ranging between 0.2 and 0.7 mm (27). Inspired by a paper on
the elemental stoichiometry and contribution of marine bacteriophages (viruses that
infect bacteria) to the DOM pool by Jover et al. (28), we sought to further assess the
question of the nutritional value and biogeochemical influence of marine viruses by
applying their approach to marine giant viruses (eukaryotic viruses with particularly
large genome and particle sizes). These viruses infect globally distributed marine
plankton, can have genome and particle sizes that are comparable to those of bacteria,
and can occur in abundances up to 106 mL21 (29, 30), thus likely contributing signifi-
cantly to the DOM pool. Jover et al. used a biophysical scaling model to determine that
while the contribution of bacteriophages to the dissolved organic carbon (DOC) pool
may be low due to low C/N and C/P ratios, these particles can represent significant
components of the dissolved organic N and P pools (DON and DOP, respectively) (28).
Phosphorus might be of particular importance, as viruses can represent up to 8% of
the total DOP in surface waters (28). As N- and P-rich particles, bacteriophages have
the potential to be a valuable food source for heterotrophs and could further redirect
macronutrients and energy back to higher trophic levels.
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In this review, we summarize the current literature on compositional aspects of dif-
ferent viral particles that define their role as a valuable source for nutrients and energy,
on grazing rates of marine viral particles, and on evidence for their digestion. To deter-
mine the biogeochemical impact of important virus groups in the sunlit ocean, we
expand upon earlier efforts in modeling the elemental stoichiometry of bacteriophage
particles (28) by comparing the previously assessed bacteriophages with recently
sequenced ubiquitous and abundant roseophages as well as with the larger and struc-
turally more complex giant viruses. Although lysogeny may indirectly affect grazing
and biogeochemical cycles via the rewiring of host cell metabolism, in this review, we
focus on lytic viral infections due to their release of viral particles that are directly avail-
able for marine grazers. For more in-depth commentaries on the different fates of viral
particles in the ocean, including particle adsorption and degradation as well as the
influence of environmental factors, such as UV light, the reader may refer to Mojica
and Brussaard (31) and Zhang et al. (32).

VIRUSES ARE GRAZED UPON BY DIVERSE MARINE ORGANISMS

The first observations that nonhost predators can ingest virus-like particles came from
heterotrophic nanoflagellates, predators that are 2 to 20 mm in size and thus classified as
microscopic. They were reported to be able to ingest viral particles of ;100 nm in size,
clearing about 4% of the standing viral community in 1 day (33, 34). Recently, single-cell
genomics has been applied to similarly sized protists in natural plankton communities,
revealing that a significant proportion of nonhost cells contained viral DNA (35). This was
observed in two contrasting environments, with a higher fraction of cells containing viral
DNA in the Gulf of Maine (51%) than in the Mediterranean Sea (35%). Viral sequences were
distributed nonrandomly across taxa and showed elevated numbers in specific individuals,
suggesting that predation upon viral particles is the most likely cause of this observation,
rather than virus cosorting and nonspecific attachment. Interestingly, for algae belonging to
the picozoa and choanozoa lineages, 100% of the sorted cells contained viral DNA sequen-
ces. Both picozoa and choanozoa are known suspension feeders (36, 37), where particle
ingestion is nonselective and related to a minimum prey size (25, 38), which indicates that
these groups may be significant predators of viral particles in the marine environment.

Macroorganisms have also been observed to ingest viruses. The Red Sea sponge
Negombata magnifica displayed an ability to filter viruses with a mean efficiency of 23%
(39). As this study used flow cytometry to quantify the total in situ viral community, the size
distribution of the consumed viruses was not evident. However, a more recent study using
a large marine algal virus (Phaeocystis globosa virus 07T [PgV07T]; 160 nm in diameter)
detected significant clearance by a bread crumb sponge (Halichondria panicea) (40). These
results show that not only are different sponge species able to filter viruses of various sizes,
but this is likely a general mechanism in tropical and temperate coastal areas, where
sponges are frequently found. Based on the high abundance of sponges in these environ-
ments, their filtration rates with up to 35 mL min21 sponge cm23 accompanied by high
retention efficiencies of small particles, and their importance in bentho-pelagic coupling (41,
42), sponges may be key players in removing viral particles from the water column in coastal
areas and redirecting macronutrients to higher trophic levels.

Feeding of large algal viruses has also been observed in other organisms. Using PgV07T,
Welsh et al. demonstrated that a number of zooplanktonic organisms could ingest this virus,
including the larvae of littoral crabs (Carcinus maenas), oysters (Magallana gigas), and poly-
chaetes (marine bristle worms [a mixture of species]) (40). Similarly, using another large algal
virus (Emiliania huxleyi virus 99B1 [EhV 99B1]; 180 nm in diameter), it was shown that the
globally distributed pelagic (free-swimming) tunicate Oikopleura dioica was able to trap
viruses at high rates, leading to almost 100% clearance of viral particles within ;1 day in a
closed system (43). This was also shown for O. dioica feeding on natural viral communities
(44). Many of the above-mentioned organisms are filter feeders, suggesting that viral graz-
ing may be common to this feeding class of predators. Observed clearance of large viruses,
with rates as high as 90.3 mL21 day21 individual21 (see Table S1 in the supplemental
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material), by different organisms from both coastal and open ocean habitats suggests that
nonhost grazing interactions may be widespread in marine environments, particularly
when the large size range of marine viruses is considered (;120 to 400 nm in diameter).

VIRUSES AS A FOOD SOURCE—ARE SOMEVIRUSESMORENUTRITIOUS THANOTHERS?

Although generally smaller than algal viruses, bacteriophages are estimated to be the
most numerous viruses in the marine environment (45). Not only do they frequently out-
number their bacterial counterparts, they also significantly influence bacterial community
dynamics and biogeochemistry (45, 46). On the other hand, marine bacterial community
structure strongly influences the burst size of their associated bacteriophages, as well as
bacteriophage production itself (47). Jover et al. found that bacteriophages can be signifi-
cant contributors to DON, DOP, and, to a lesser extent, DOC (28). This is because bacterio-
phages mainly consist of DNA as well as proteinaceous tails and capsids, which are com-
posed of molecules rich in N and P (48–50). An abundant and biogeochemically relevant
group of bacteriophages are roseophages, which infect the ubiquitous Roseobacteraceae
(51–53), which are commonly found in association with blooms of eukaryotic alga (52, 54).
Of the 32 roseophages currently described (55), 19 are short tailed (podoviridae), 11 are of
filamentous tail structure (siphoviridae), and two are single-stranded DNA bacteriophages.
Here, we focus on the double-stranded DNA (dsDNA) roseophages only, which were
shown to range in genome size from 35.9 kb (56) to 147.5 kb (55). Given their numerical
abundance, roseophages can be a significant fraction of the DOM pool, and if ingested,
could collectively be a significant source of nutrition.

Most marine eukaryotic viruses infecting algae and protozoans (57) belong to the phy-
lum Nucleocytoviricota (NCV) (formerly known as nucleocytoplasmic large DNA viruses
[NCLDVs]) (58). Using metagenomics, NCVs were revealed to be an abundant and wide-
spread viral group (30). These viruses are dsDNA viruses that vary in their genome and cap-
sid sizes. In general, NCVs are considered very large, with particle diameters ranging
between 120 and 520 nm and genome sizes ranging between 173 and 1,573 kb (Table S2),
which even exceed the sizes of some bacterial genomes (59). They are thus also often
referred to as giant viruses. Unlike bacteriophages, many NCVs possess capsids of tremen-
dous morphological complexity, including structures such as internal lipid membranes and
external capsid fibers (60, 61). The lipid membranes of algal NCVs can occupy up to 66% of
the interior of the viral capsid (Prymnesium kappa virus RF01 [PkV RF01]) (62) and are com-
posed of various lipid types, including C-rich triacylglycerides, P-rich phospholipids, and N-
rich betaine lipids (63, 64). Some NCV capsids are further surrounded by an outer lipid
membrane, as is the case in Emiliania huxleyi virus 86 (65) and multiple virus strains infect-
ing Micromonas pusilla (61). This structural complexity of NCV will ultimately influence their
elemental stoichiometry and the nutritional value for predators.

NCVs infect a wide range of eukaryotic hosts in diverse biogeographical regions (30,
66). Among these are also various single-cell organisms that, while they are usually present
in low abundances in the photic zone, can develop seasonally high-density blooms (67). In
these highly proliferative environments, viral infection can lead to the termination of the
bloom-forming host population and to the release of large numbers of viral particles (29,
68). Although most NCVs seem to have a rather persistent abundance throughout the year
(30, 69, 70), such “boom and bust” dynamics following host blooms may provide a tempo-
rarily abundant food source for the filter feeders among marine grazers. Furthermore, we
posit that owing to their distinct structural characteristics, NCV particles can have a signifi-
cant contribution to the marine DOM pool.

THE BIOGEOCHEMICAL IMPACT OF VIRIONS ON THE MARINE ENVIRONMENT

Following the stoichiometric model developed by Jover et al., viral particles represent
particularly N- and P-rich particles within the DOM pool (28). This model was developed to
determine the elemental composition of bacteriophages to assess their contribution to
the marine DOM pool. In short, this model assumes that the bacteriophage head is spheri-
cal (described by its external radius) and that a fraction of about 53% is filled with DNA.
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The bacteriophage capsid is described as a spherical shell with a uniform thickness of about
2.5 nm, thereby taking up a defined volume composed solely of proteins. A size-dependent
scaling is defined based on the bacteriophage head radius, with DNA scaling to the cube of
the radius and proteins scaling to the square of the radius. While the majority of bacterio-
phages have tails composed of proteins and DNA (71), the elemental stoichiometry was for
simplicity modeled for the spherical bacteriophage head only. This parameterization was
found to be appropriate for the roseophages exemplarily modeled in this review (see
below). To emphasize the biogeochemical relevance of NCV in the marine environment and
the need to improve our understanding of their contribution and fate within the DOM pool,
we applied the model of Jover et al. for a selection of NCVs and adjusted the parameters in
accordance with the current literature as described below.

NCVs have larger genomes with reduced DNA packaging densities in their virions
compared to bacteriophages, possibly due to differences in their life histories (57). This
is particularly apparent for NCVs infecting freshwater protozoa, such as Marseilleviridae
and Mimiviridae, which have an average DNA content of 0.07 (equivalent to 7%). As
the focus of this review is on the marine environment, we adjusted the filling fraction
from 0.53 6 0.04 for bacteriophages to 0.33 6 0.16, accounting for the lower DNA vol-
ume fraction in marine algal NCVs, such as Phycodnaviridae (as described in references
72 to 77 and Text S1). Furthermore, many NCVs possess an inner lipid membrane, typi-
cally a bilayer, directly below the capsid protein shell (61, 62, 78, 79). We therefore
increased the shell thickness to 10 nm following Chaudhari et al. (57). Finally, we aimed
to include the frequent occurrence of lipid membranes in NCVs by defining a simplified
elemental composition for these lipid membranes. It must be noted, however, that the
current literature on the membrane composition of NCVs is scarce. We thus computed
the elemental composition for a simple membrane bilayer with 0.5 nm2 surface area
per lipid molecule (80), composed solely of phosphatidylcholines with fatty acid chain
lengths of 16:0 and 16:1, which were reported to be the most abundant fatty acids in
marine algae (81), thus assuming that the lipid composition of algal NCV resembles
that of the host cell. For the full details on the original model for bacteriophages, the
reader may refer to Jover et al. (28), and for the full details on the modifications for ma-
rine algal NCVs, the reader may refer to Text S1 of this review.

The number of C, N, and P atoms in NCV scales with the radius of the viral particle (60
to 120 nm), leading to an elemental content that is 1 order of magnitude higher than that
of bacteriophages, in part due to their size difference (Fig. 1A to C). The presence of an
inner lipid membrane affects, in particular, the C/N ratio of the NCV particles (Fig. 1D).
While the C/N ratio is ;3 for bacteriophages (28), NCVs are less enriched in N with C/N
ratios of 4.1 to 4.6, which is closer to the C/N ratio of natural bacterial assemblages in ma-
rine environments (6.8 6 1.2) (82). The N and P contents are primarily affected by the
adjustment of the capsid-filling fraction for marine algal NCVs, leading to N/P ratios of 6.5
to 7.5 (Fig. 1D). Even higher N/P ratios for algal NCVs can be expected, assuming that some
of the remaining volume is occupied by proteins that stabilize DNA (83, 84) or help kick-
start translation upon infection (85, 86). Thus, while bacteriophages may represent P-rich
particles in the DOM pool, algal NCVs may represent more N-rich particles in this fraction.
This is principally because their N content begins scaling to the cube of the radius as the
NCV capsid is filled with DNA as well as proteins. The presence of inner lipid membranes
further increases the elemental richness, because lipid head groups are diverse, frequently
including P, N, and sulfur (S) moieties (87). The fatty acids of the NCV membrane lipids not
only strongly enrich the C content of the viral particle but also increase the energy content,
as lipids are among the more reduced, energy-rich biomolecules (88). However, the role of
viral particles as an energy source for heterotrophic organisms has yet to be demonstrated.
It has been shown in experiments that the breakdown of viral lysates was faster than that
of viral particles alone, suggesting they are not as labile (89). Also, when comparing bacte-
riophage-amended and nonamended cultures, it was reported that viruses may in fact
reduce the growth efficiency of at least some heterotrophic bacteria (90), perhaps as a
result of the energy required to break down the structural biopolymers that comprise
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viruses (i.e., DNA and proteins). In this aspect, the presence of reduced, energy-rich C in the
form of lipid membranes may be a key feature regarding the palatability of viral particles.

The sizes of NCVs infecting heterotrophic protozoans are significantly larger than those
of algal NCVs, which is also reflected in their greater C, N, and P atom counts per virion
(Fig. 1A to C). These viruses may have evolved to such large bacterial sizes to be perceived
as prey and enhance phagocytic uptake by amoebae (91), a mechanism which could also
be true for other heterotrophic protozoa. Additionally, many members of the marine plank-
ton community are mixotrophic, meaning they are able to photosynthesize as well as ac-
quire carbon through the ingestion of particles, a feeding mode that in recent years gained
increasing attention (92). Considering that mixotrophy occurs at a higher frequency than
previously acknowledged, host-virus coevolution may support increasing viral particle sizes
to mimic the host’s prey range and thus increase encounter rates with motile phagotrophic
hosts (93). Such an evolutionary strategy may explain the exceptionally large algal virus
PkV-RF01 (black diamonds in Fig. 1), which infects mixotrophic marine haptophytes (94).
There are, however, additional reasons for an increased viral particle size in certain NCVs,
including greater diversity due to increased genetic material or benefits in their ecological
niches (57). Nevertheless, as a consequence of such coevolution between a virus and its
mixo- or heterotrophic host, the grazing by nonhost organisms will also be facilitated.
Choanoflagellates are heterotrophic organisms with a nonselective feeding strategy similar

FIG 1 Elemental composition of aquatic giant viruses and bacteriophages. Atoms of carbon (A), nitrogen (B), and phosphorus
(C) per virion were derived by a size-dependent model. Color determines whether the virus infects algae (light blue; n = 29),
protozoans (dark blue; n = 24), or, for comparison, bacteria (green; n = 11). The elemental ratios of C/N and N/P are displayed
(D). Modified calculations for marine and freshwater NCVs are displayed in comparison to calculations for marine bacteriophages
that were done using the model described by Jover et al. (28). Black shapes display selected viruses for which feeding by
marine grazers has been observed, including Emiliania huxleyi virus 86 (EhV-86 [black squares]), Phaeocystis globosa virus 16T
(PgV-16T [black triangles]), and Prymnesium kappa virus RF01 (PkV-RF01 [black diamonds]). For a full list, see Table S2.
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to that of sponges, which have been shown to feed on viral particles by laboratory-based
assays (40). Two recent environmental studies using single-cell genomics (35) and metage-
nomics (66) suggest that enhanced grazing by nonhosts due to host-virus coevolution in
choanoflagellates may be more widespread in the marine environment. A positive relation-
ship was found between choanoflagellates and several NCVs, including Mimivirus, which
have been shown to infect certain marine choanoflagellates (95). These relationships could
comprise host-virus and/or predator-prey interactions. A better functional understanding
of such reported genome-based associations between viruses and previously unknown
nonhost organisms is needed to shed light on their ecological role within the marine
plankton community, especially with regard to the hetero- and mixoplankton.

THE “VIRAL SWEEP” AND ITS IMPORTANCE FOR THE MARINE FOODWEB

As reviewed above, different organisms have been observed to feed on giant viruses;
however, the extent to which these particles may contribute to host nutrition is unex-
plored. Using O. dioica and EhV as a pelagic model system (43, 44), we estimated the C, N,
and P contents that predators would gain from viral particle grazing. In this system, the
nutritional gain can be 24.2 ng C, 3.8 ng N, and 0.2 ng P individual21 day21 (see Text S1 for
calculations). For appendicularians, the reported ingestion of phytoplankton can provide
up to 11.4mg C day21 (96), in which case the contribution of viral particles to the daily die-
tary C is low (,1%), which has also been determined for sponges feeding on viruses (39).
This is similar for N and P if we assume a constant Redfield ratio of 106:16:1 C/N/P (97) in
phytoplankton and contribution to nutrition. In nanoflagellates, grazing on viruses was
suggested to contribute up to 9, 14, and 28% of C, N, and P, respectively (33), suggesting
in smaller predators, viruses have the potential to contribute significantly to host nutrition.
However, in the natural environment, many predators will feed on different particles, so
the contribution of viruses, while significant, would depend on the prey range experienced
by the predator.

Viruses are known to have diverse effects on the fate of C and other elements
within the marine environment (Fig. 2). Through the infection and lysis of phototrophic
and heterotrophic hosts, they transfer C from the particulate to the dissolved fraction
and away from the classical food web, thus making it available to other organisms,
such as bacteria (viral shunt) (7, 9). Through the lysis and release of sticky substances

FIG 2 Model of the biogeochemical consequences of viruses in the ocean. Viruses can impact the fate of
carbon and other elements within the marine environment in multiple ways. These include the viral shunt
(9), which diverts elements from the food web through cell lysis to the marine DOM pool, the viral
shuttle (10, 11), which diverts elements from the food web through enhanced aggregation and sinking to
the deep sea, and the viral sweep, as highlighted in this review, which diverts elements back into the
food web through the ingestion of viral particles. The model was adapted from Kolundžija et al. (137).
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(e.g., transparent exopolymers), viruses can lead to increased aggregation of particles
and the rapid export of material from the surface to the deep ocean (viral shuttle) (10,
11). In our model, we propose a third mechanism, the “viral sweep,” by which C is
diverted back to the classical food web through the ingestion of viral particles by ma-
rine grazers. Here, the viral infection of host cells leads to the release of viral particles
by means of budding (virus exit by envelopment of its capsid by a cellular membrane)
or lysis, which are then grazed upon by different organisms (described above). This
would allow the C assimilated from the host cell in the viral particles to be swept back
into the classical food web and passed along to higher trophic levels. In the model sys-
tem presented above, a single O. dioica organism can be responsible for 24.2 ng C,
3.8 ng N, and 0.2 ng P individual21 day21. Considering that this organism can form
dense blooms (up to 53 individuals L21) (98), with abundances and feeding rates some-
times even exceeding those of copepods (99), this could lead to a significant elemental
flow. There are also other pelagic organisms, as well as bottom-dwelling organisms
(e.g., sponges) that can contribute to the viral sweep. The relative strength of the viral
sweep would depend on several factors, including the size and abundance of viral par-
ticles, the predator organisms present and their feeding mechanisms, as well as other
factors influencing virus removal, such as UV or chemical inactivation, temperature, or
adsorption (31, 32). A current challenge is to quantify the fluxes of viral particles in the
marine environment from their sources to their sinks.

UNPEELING THE VIRAL KIWI—ARE VIRAL PARTICLES DIGESTED?

Whether organisms can digest viruses will have implications not only for the fate of
viruses as infectious particles in the marine environment but also for the nutritional gain
that a predator can achieve from ingested viral particles. However, experimental evidence
on the digestion and assimilation of viruses by marine grazers is scarce. In a recent screening
of freshwater ciliates to graze upon viruses, Halteria was found to not only ingest the viral
particles, but to also grow and divide when consuming chloroviruses as sole food source
(100). In two marine zooplankton genera, namely, Calanus and Oikopleura, fecal pellets were
found to contain infectious viruses, suggesting that some viruses can pass through the
grazer gut undigested and remain viable (44, 101). Transmission electron microscopy
images of fecal pellets and radiolarian food vacuoles from the Ross Sea reported the occur-
rence of hollow capsids, suggesting at least a partial digestion of viral particles (102).
Grazing experiments with nanoflagellates using fluorescently labeled viral particles detected
a decline in fluorescence (33), suggesting their effective digestion in these organisms. It is
likely that the biochemical conditions within the grazer’s digestive tract will play an impor-
tant role in the effective digestion of viral particles. For instance, in nanoflagellates, the
ingested prey is found in highly acidic food vacuoles, which is more likely to lead to diges-
tion than the passage through the acidic to neutral gut compartments of Calanus and
Oikopleura (103, 104). Recent infectivity experiments on four Antarctic sea ice bacterio-
phages found a significant reduction in infectious titers at pH 3 and pH 5 (105), which illus-
trates the role of acidic conditions for the inactivation of viral particles. The gut passage
time will further impact the efficiency with which ingested particles are digested and
nutrients are assimilated. Zooplankton seem to regulate this time based on various prey pa-
rameters, including prey quantity, quality, and digestibility (92, 106, 107). To shed light on
the bioavailability of marine viruses, we need a better understanding of the rates of diges-
tion and assimilation of the elements that are present within viral particles. This will further
help to determine the relevance of viral particle grazing as a feeding strategy by marine
grazers.

FUTURE PERSPECTIVES

There are many uncertainties regarding the chemical composition of marine viruses,
and indeed, many assumptions were made in our calculations. While the nucleic acid and
protein contributions can be predicted, the lipid component has to be experimentally
assessed. For most membrane-containing viruses, however, the lipid composition is
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currently unknown. Arguably, the lipid profile of marine viruses is best studied for EhV, an
algal NCV that comprises both an inner and outer lipid membrane (65). Interestingly, the
reported EhV lipid composition shows some variability (64, 108, 109), which could be a
result of differences in infection dynamics, but it could also be a consequence of various
relative contributions of extracellular membrane vesicles during sample preparation and
lipid extraction. In addition, high lipid content has been described for several algal viruses,
including the algal virus PkV RF01, which contains convoluted inner membranes that
occupy ;66% of the capsid interior (62). The composition of such lipid membranes will
contribute to the C, N, and P contents of viral particles (110). Future research should focus
on the lipidomic profiling of other NCVs, particularly as lipids not only influence the bio-
geochemical composition of virions but also play important roles in the infection dynamics
(108, 111–113).

In addition to macronutrients, micronutrients are essential for microbial life within
marine environments (114), which may be also contained in viral particles. Recently, Fe
has been discovered in the tails of bacteriophages (115), which is an important micro-
nutrient that can limit primary production in vast ocean areas (116). It has been sug-
gested that viral particles may act as organic Fe-binding ligands constituting up to
70% of the Fe attached to organic particles in the surface ocean (115). Also, the trace
element zinc, which is an important component particularly of eukaryotic proteomes
(117), has been found in the tail proteins of bacteriophages (118). As macro- and
micronutrients can limit the productivity of aquatic ecosystems (119), their acquisition
from viral particles can alleviate nutrient stress from marine organisms and increase
net production. However, whether NCVs contain micronutrients is currently unknown,
and the elemental stoichiometry of marine viruses has been primarily assessed by
modeling, owing in part to the historical technical challenges in such measurements.
Newer analytical approaches that measure elemental and isotopic compositions at the
single-cell level using X-ray microanalysis, stable isotope mass spectrometry, and
Raman microspectroscopy (120–122), offer promise of more detailed future under-
standing of the elemental composition of viruses and their role in the cycling of micro-
nutrients, such as iron and zinc, in the marine environment.

Besides the compositional aspects of viral particles, many unknowns remain regarding
the ingestion and subsequent digestion of viral particles by marine microbes. The amount
of sequencing data of different plankton size classes has significantly increased in recent
years due to global-scale ocean surveys, such as the TARA Oceans (123) and Malaspina
(124) expeditions. These metabarcoding and metagenomic resources have helped to
unravel unknown microbial interactions ranging from predator-prey to host-virus interac-
tions (30, 125) and may similarly assist in revealing novel viral grazers. A challenge thereby
is the prediction of the type of association for such frequently cooccurring organisms. In
the case of viruses cooccurring with host organisms, the association could range from ran-
dom adsorption to viral infection to grazing. Supporting evidence may be derived from
imaging-based approaches, such as laser scanning confocal microscopy (126) or environ-
mental high-content fluorescence microscopy (127), in combination with labeling techni-
ques for viral DNA or viral proteins (128–130). Recent advancements in the spatial and
mass resolution of mass spectrometry technologies, such as nanoSIMS and OrbiSIMS (131,
132), in combination with isotopic labeling may allow for the trophic transfer of viral pro-
teins upon digestion into the grazer’s proteome to be traced. This has been done recently
in the context of a host-virus interaction in the lab (133) and for single-metabolite imaging
across vesicles with a size of ;200 nm (134), which is in the size range of marine NCVs. In
addition, understanding the breakdown of viral capsids and lipid membranes can shed
light on the fate of ingested viruses within predators. This could be through tracking the
fate of fluorescent viral particles (33), monitoring the grazer’s gene expression (135) and ac-
tivity of digestive enzymes (e.g., lipases and proteases) (136), or determining if viruses pass-
ing through organisms remain infectious (44, 101). Expanding culture-based experiments
to different model systems utilizing the techniques discussed above will provide us with
necessary information on the strength of the viral sweep, as well as how widespread this
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mechanism is likely to be. Finally, an important aspect is the consequence of viral particles
as a food source on grazer fitness parameters, such as growth rates, secondary production,
or fecundity.

Although predation on marine viruses has been known for some time, research on
grazing of viral particles by marine microbes is still in its infancy. The increasing body
of knowledge on the prevalence of viruses within the marine environment and the cur-
rent technological advances provide researchers with the tools to fill this fundamental
knowledge gap. In light of a future changing ocean, we need to better understand the
fate of viral particles by grazing and the relevance of this process, here coined the “viral
sweep,” for global biogeochemical cycles.
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