
Prototyping and Evaluation of
Sensor Data Integration in

Cloud Platforms

Marcus Korsnes Morlandstø

Master’s thesis in Software Engineering

Department of Computer science, Electrical
engineering and Mathematical sciences,

Western Norway University of Applied Sciences

Department of Informatics,
University of Bergen

September 2022

1

Abstract

The SFI Smart Ocean centre has initiated a long-running project which consists
of developing a wireless and autonomous marine observation system for mon-
itoring of underwater environments and structures. The increasing popularity
of integrating the Internet of Things (IoT) with Cloud Computing has led to
promising infrastructures that could realize Smart Ocean’s goals. The project
will utilize underwater wireless sensor networks (UWSNs) for collecting data
in the marine environments and develop a cloud-based platform for retrieving,
processing, and storing all the sensor data. Currently, the project is in its early
stages and the collaborating partners are researching approaches and technolo-
gies that can potentially be utilized. This thesis contributes to the centre’s
ongoing research, focusing on the aspect of how sensor data can be integrated
into three different cloud platforms: Microsoft Azure, Amazon Web Services,
and the Google Cloud Platform. The goals were to develop prototypes that
could successfully send data to the chosen cloud platforms and evaluate their
applicability in context of the Smart Ocean project. In order to determine the
most suitable option, each platform was evaluated based on set of defined cri-
teria, focusing on their sensor data integration capabilities. The thesis has also
investigated the cloud platforms’ supported protocol bindings, as well as several
candidate technologies for metadata standards and compared them in surveys.
Our evaluation results shows that all three cloud platforms handle sensor data
integration in very similar ways, offering a set of cloud services relevant for cre-
ating diverse IoT solutions. However, the Google Cloud Platform ranks at the
bottom due to the lack of IoT focus on their platform, with less service options,
features, and capabilities compared to the other two. Both Microsoft Azure and
Amazon Web Services rank very close to each other, as they provide many of
the same sensor data integration capabilities, making them the most applicable
options.

Acknowledgements

I would like to thank my supervisors, Lars Michael Kristensen and Tosin Daniel
Oyetoyan for supporting me the whole way, and providing feedback and guidance
when I needed it. I also want to thank fellow Smart Ocean master student, Tore
Berven for his collaboration on the development of the Real-Time Collector
client interface, that we used separately for our own thesis goals.

2

Contents

1 Introduction 6
1.1 Context . 7

1.1.1 Work packages . 7
1.1.2 Pilot Demonstrators . 8
1.1.3 Motivation . 8

1.2 Problem Description . 9
1.3 Methodology . 10
1.4 Outline . 11

2 Background 12
2.1 Internet of Things . 12

2.1.1 IoT Elements . 13
2.1.2 General Layered IoT Architecture 14
2.1.3 Internet of Underwater Things 16

2.2 Cloud Computing . 17
2.2.1 Service Models . 17
2.2.2 IoT Cloud Platform Components 18
2.2.3 Sensor-Cloud Infrastructure 19

2.3 Application Layer for IoT . 21
2.3.1 Data Serialization Formats 21
2.3.2 Communication Models 22
2.3.3 Representational State Transfer (REST) 23

2.4 Interoperability . 25
2.4.1 Interoperability Levels . 25
2.4.2 Metadata . 25
2.4.3 IoT Frameworks . 26

3 A Survey on Application Layer Protocols and Metadata Stan-
dards 28
3.1 Application Layer Protocols . 28

3.1.1 HyperText Transfer Protocol (HTTP) 28
3.1.2 Message Queuing Telemetry Transport (MQTT) 29
3.1.3 Advanced Message Queuing Protocol (AMQP) 29
3.1.4 Constrained Application Protocol (CoAp) 30
3.1.5 WebSocket . 30
3.1.6 Protocol Summary . 31

3.2 Metadata Industry Standards . 32

3

3.2.1 IP for Smart Objects (IPSO) 32
3.2.2 Open Connectivity Foundation (OCF) 34
3.2.3 Open Platform Communications Unified Architecture (OPC

UA) . 36
3.2.4 Open Geospatial Consortium’s Sensor Web Enablement

(OGC SWE) . 37
3.2.5 World Wide Web Consortium (W3C) 39
3.2.6 Metadata Summary . 41

4 Cloud Platforms 44
4.1 Microsoft Azure . 44

4.1.1 Azure IoT Overview . 44
4.1.2 Azure Protocol Bindings, SDKs and APIs 46

4.2 Amazon Web Services . 47
4.2.1 AWS IoT Overview . 48
4.2.2 AWS Protocol Bindings, SDKs, and APIs 49

4.3 Google Cloud Platform . 50
4.3.1 GCP IoT Overview . 50
4.3.2 GCP Protocol Bindings, SDKs, and APIs 51

4.4 Cloud Platform Summary . 52

5 Design and Implementation 55
5.1 Virtual Sensors and Client Interface 55

5.1.1 AADI Device Simulator 55
5.1.2 AADI Real-Time Collector 55
5.1.3 Client Interface . 56

5.2 Prototype Design and Workflow 58
5.3 Prototype 1 - Microsoft Azure . 58

5.3.1 Azure IoT Hub and Device Setup 59
5.3.2 Azure Implementation with Device SDK 60
5.3.3 Azure Deployment and Output 62

5.4 Prototype 2 - Amazon Web Services 63
5.4.1 AWS IoT Core and Device Setup 63
5.4.2 AWS Implementation with HTTPS 66
5.4.3 AWS Implementation with MQTT 68
5.4.4 AWS Deployment and Output 69

5.5 Prototype 3 - Google Cloud Platform 70
5.5.1 GCP IoT Core and Device Setup 71
5.5.2 GCP data integration with HTTPS 71
5.5.3 GCP Implementation with MQTT 76
5.5.4 GCP Deployment and Output 78

6 Evaluation 80
6.1 Evaluation Criteria . 80

6.1.1 Interoperability . 80
6.1.2 IoT Support . 80
6.1.3 Device Connectivity . 81
6.1.4 Data Management . 81
6.1.5 Ease of Implementation 81

6.2 Cloud Platform Evaluations . 81

4

6.2.1 Microsoft Azure Evaluation 81
6.2.2 Amazon Web Services Evaluation 83
6.2.3 Google Cloud Platform Evaluation 85

7 Conclusion and Future Work 88
7.1 Summary . 88
7.2 Research Questions . 89

7.2.1 Research Question 1 . 89
7.2.2 Research Question 2 . 90
7.2.3 Research Question 3 . 90

7.3 Conclusion . 91
7.4 Related Work . 92
7.5 Future Work . 92

A Source code 96

B XML Sensor Data Sample from the AADI Device Simulator 97

5

Chapter 1

Introduction

The Norwegian ocean industries are among the world leaders in operations and
technology in offshore, petroleum and fisheries. The oceans are critical for food
supply, climate regulation, transportation and energy production. As a result,
there is a need for efficient and reliable ways of collecting data and monitoring
changes in the marine environment. The SFI Smart Ocean project [182] has a
goal to develop a flexible, wireless and autonomous marine observation system
that will ensure sustainable use and monitoring of underwater environments,
installations, and ocean resources.

Over the last decade, the use of Internet of Things (IoT) technology has been
rapidly increasing and has opened for new approaches for creating smarter and
more efficient systems and applications. The different IoT devices can sense
and collect data from their surrounding environments and send the data to
their corresponding IoT system via the Internet. Unfortunately, IoT also has
many limitations when it comes to storage, scalability, computation, and data
management. On the other hand, Cloud Computing provides massive com-
puting and storage capabilities, high scalability, software services, and efficient
data management. Therefore, IoT is now more often integrated with Cloud
Computing to make up for its limitations. With this approach, it is possible to
create a high-performance computing and storage infrastructure for real-time
processing and storing of data from millions of IoT devices, that collaborates
with several applications in a cloud environment among multiple organizations,
enabling information sharing on a large scale [8].

There exists many extensions of the IoT-term that are being used to differentiate
the functionalities and characteristics of ”things”. The Internet of Underwater
Things (IoUT) [190] is a novel class of IoT, and is defined as ”a complex sys-
tem that consists of multiple heterogeneous sensor networks that can sense,
monitor and identify underwater objects by wired or wireless communication.”
The platform to be developed in the Smart Ocean project will use the IoUT as
a foundation, and integrate underwater wireless sensor networks (UWSN) for
enabling more flexible and cost-effective approaches for multi-parameter mon-
itoring in the ocean. In combination with Cloud Computing, the final Smart
Ocean platform will support a complete data value chain from communication

6

and processing, to storage capabilities, big data analytics and visualization [182].
The approach of integrating wireless sensor networks with Cloud Computing is
commonly referred to as a sensor-cloud infrastructure [269].

There are still aspects in the Smart Ocean project that requires further research.
One of the topics is investigating how sensor data can be integrated and handled
in cloud platforms. There exist many candidate technologies and approaches,
but not all will have the capabilities or meet the requirements needed to realize
the SFI Smart Ocean’s vision. In this thesis, we investigate and experimentally
evaluate three selected cloud platforms. The selected cloud platforms are Mi-
crosoft Azure, Amazon Web Services, and Google Cloud Platform. We develop
prototypes for each cloud platform, in order to test their sensor data integration
capabilities. Relevant protocol bindings, service APIs and industry standards
for sensor metadata are also be investigated. The main goal is to put forward
potential technologies and solutions that can be used for sensor data integration
in the future Smart Ocean platform.

1.1 Context

The SFI Smart Ocean is a centre for research-based innovation, hosted by the
Department of Physics and Technology at the University of Bergen (UIB). The
project involves active cooperation between several research and industry part-
ners, as well as observers from national authorities [183]. The Western Norway
University of Applied Sciences (HVL) is one of the research partners collab-
orating on the project. The work associated with this thesis contributes to
the ongoing tasks in WP3 (see section 1.1.1) that are coordinated by HVL.
The project is currently in its early stages and the project’s research tasks and
scientific methods are split into three different work packages and four pilot
demonstrators.

1.1.1 Work packages

Each work package (WP) has their own activities and focus areas, where all the
partners are split up to work and collaborate on one or more of these different
packages. The three WPs are as follows [182, 184].

WP1 - Autonomous sensors and measurement strategies: This
WP evolves around development of autonomous sensor technologies, and
measurement methods and strategies for improving real-time monitoring
of underwater environments and structures. The marine smart sensors
will include embedded preprocessing and compression of data, acoustic
modem compatibility, and smart operation for low energy use.

WP2 - Wireless network communication: This WP concerns the
communication technology aspects of the project. It involves develop-
ment of an acoustic underwater wireless technology platform that will be
assembled to energy-efficient UWSNs for long-term marine monitoring.
The hardware and software components also needs to be optimized in
terms of limited battery capacity, efficiency, and reliability.

WP3 - Software technology and big-data middleware: This WP

7

is coordinated by HVL. It includes development and implementation of
the cloud-based Smart Ocean platform and will comprise a set of software
frameworks that enables the integration of external and internal ocean
data sources, data storage and processing, application deployment, and
visualization of big-data sets. The platform will enable data spaces based
on a uniform and standardized set of APIs and data formats. Its main
function will be to receive and process the data produced by the hetero-
geneous underwater sensors.

1.1.2 Pilot Demonstrators

The pilot demonstrators (PDs) constitute an overarching work package where
the objective is to establish in-sea facilities and environments for research and
testing of the different components that is being developed under WP1-WP3 and
demonstrate these system components under realistic operational conditions.
Four PDs have currently been defined by Smart Ocean, but the number of test
sites is presumed to be expanded during the project’s life cycle [182, 184].

PD1 - Local scale environmental monitoring: A test site is set
up at the Austevoll Research Station near Bergen. It provides a multi-
purpose local-scaled wireless network of autonomous sensors that will be
used for monitoring oceanographic and seabed environmental parameters.
Several modular rigs with sensors are being placed where a range of sen-
sors and communication systems can be included. PD1 will contain and
demonstrate all major Smart Ocean monitoring system components and
functionalities. During the time of writing this thesis, PD1 is the only
case study accessible while the other PDs will be available later.

PD2 - Mesoscale environmental monitoring: A real-time and scal-
able ocean multipurpose observing system will later be established as an
extension of PD1 at Austevoll, paving the way for longer scale commu-
nication, geo-positioning, and mesoscale environmental monitoring, using
acoustic tomography and passive acoustics.

PD3 - Integrity measurements offshore wind: Another test site will
be established and used for research, development, testing, and demonstra-
tion of sensors for integrity monitoring of bottom-mounted and floating
wind turbine structures.

PD4 - Integrity measurements oil and gas: Similar to PD3, a test
site will be established and used for research, development, testing, and
demonstration of sensors, but in this case it is for integrity monitoring of
oil and gas installations.

1.1.3 Motivation

Realize the SFI Smart Ocean project will require a large amount of various
resources. Creating a cloud-based IoT platform involves many challenging as-
pects. By developing frameworks and utilizing existing technologies, standards
and cloud platforms, there is potential to simplify many core aspects of the
development and implementation processes in the Smart Ocean project. Hence,

8

trying to narrow it down to some of the most relevant and promising options
can go a long way. This thesis contributes to the ongoing research in WP3
on sensor data integration in the cloud, existing metadata industry standards,
protocol bindings, and service APIs. The software technologies being developed
in WP3 are validated through the development of prototypes that are linked
to the consortium pilot demonstrators and through the deployment of reference
implementations that integrates with external systems and data services. Since
PD1 is currently the only available case study, we have focused on developing
prototypes that are tested at this test site. The physical underwater sensors at
Austevoll are not yet available for experimental evaluation, during the writing
of this thesis. Instead, virtual sensors are used in order to simulate the behavior
and data streams to one of the physical sensors related to the PD1 case study.

1.2 Problem Description

In order to contribute to the research and determine optimal solutions, we have
specified the objectives to achieve, and the scope of the thesis. This thesis inves-
tigates the three chosen cloud platforms, develop prototypes and evaluate their
applicability in a Smart Ocean context. In order to establish interoperability be-
tween all the various underwater sensors and the future Smart Ocean platform,
existing industry standards for metadata are also investigated to present possi-
ble solutions for universally representing the sensors’ descriptions, data syntax
and semantics. When integrating sensor data to the three cloud platforms,
we need to negotiate access to each platform based on their supported protocol
bindings and service APIs. Hence, we have investigated relevant communication
protocols and APIs for determining the most applicable options. The research
questions given for this thesis are as follows:

R1 How does common cloud platforms such as Microsoft Azure, Amazon
Web Services and Google Cloud Platform handle sensor data integration?
What are the associated and common concepts?

R2 What industry standards exists for sensor metadata, e.g. descriptions of
the sensors, data syntax, and semantics?

R3 What kind of APIs and protocol bindings are required and relevant in
order to produce data on the three cloud platforms?

To achieve any substantial results, we undertake surveys on the cloud platforms
and existing research literature, related to the research questions above. Finding
efficient solutions for sensor data integration depends on many different factors.
We have examined and compared the different candidate technologies, and de-
veloped prototypes for testing the cloud platforms’ sensor data integration ca-
pabilities, with the goal to identify the most suitable platform and technologies.
The following are contributions of this thesis:

• Development of sensor data integration prototypes for each of the three
cloud platforms.

• Present the applicable technologies and approaches for sensor data inte-
gration based on the findings.

9

• Identification of limitations and shortcomings based on the technologies’
capabilities.

1.3 Methodology

To answer the research questions, we need a research method to evaluate the
technologies and approaches. This thesis has used Brown and Wallnau’s tech-
nology delta evaluation framework [30] as a foundation. The framework consists
of three phases, a descriptive modeling phase, an experiment design phase, and
lastly an experiment evaluation phase. Figure 1.1 shows a model of the frame-
work.

Figure 1.1: Technology Delta Evaluation Framework [30]

The descriptive modelling phase consists of discovering the impact and distinc-
tive features of candidate technologies, while also understanding their historical
and technological antecedents. We create requirements based on the technology
features of interest and their relationship to usage contexts. These requirements
form the basis for the experimental evaluation phase. For this thesis, the tech-
nologies we consider are metadata industry standards, IoT technology and cloud
platforms.

The experiment design phase works as the planning phase. Here, we conduct
an empirical comparative feature analysis for a more detailed investigation of
the technologies and platforms. Our research questions are then investigated
for gathering refutable evidence. In our case, we have compared the features,
advantages, and disadvantages of the candidate technologies, and designed how
the prototypes will be implemented for checking against the core requirements.

10

This is done in order to generate sufficient evidence for answering our research
questions.

Finally, in the experimental evaluation phase we conduct experiments, gather
evidence, and analyze it. From here, the research questions are answered. This
means evaluating the sensor data integration capabilities of each cloud platform
based on the prototypes’ applicability and our theoretical findings. The informa-
tion gathered are then used for evaluating each platform separately, according
to a defined set of evaluation criteria. The thesis has decided on the following
criteria: Interoperability, IoT support, device connectivity, data management,
and ease of implementation.

1.4 Outline

The rest of the thesis outline are as follows:

Chapter 2 - Background: Covers theoretical background for concepts and
literature relevant to sensor data integration in the three chosen cloud platforms.

Chapter 3 - A Survey on Application Layer Protocols and Metadata
Industry Standards: Presents and compares relevant application layer pro-
tocols and metadata industry standards.

Chapter 4 - Cloud Platforms: Presents a detailed overview of the three
chosen cloud platforms, and compares their features and services.

Chapter 5 - Design and Implementation: Describes the design and imple-
mentation of the prototypes developed for sensor data integration in the three
cloud platforms, using Smart Ocean’s pilot demonstrator 1 (PD1) as a case
study.

Chapter 6 - Evaluation: Here, we evaluate the three cloud platforms based
on the thesis’ defined evaluation criteria.

Chapter 7 - Conclusion and Future Work: In the final chapter, we discuss
our findings and results, and answer our research questions. Then we give a
final conclusion and cover future work.

11

Chapter 2

Background

This chapter provides theoretical background for paradigms and technologies
relevant for sensor data integration in the three cloud platforms that are under
evaluation for the Smart Ocean project.

2.1 Internet of Things

The European Research Cluster on the Internet of Things (IERC) [248] defines
IoT as ”a dynamic global network infrastructure with self-configuring capa-
bilities based on standard and interoperable communication protocols where
physical and virtual ”things” have identities, physical attributes, and virtual
personalities and use intelligent interfaces, and are seamlessly integrated into
the information network.”

In short, the IoT is comprised of connecting ”things” from the physical world
to the Internet, bridging the gap between the physical and virtual worlds. The
”things” in the IoT spans many different types of physical devices, appliances
and machines that have capabilities to sense, actuate and monitor their different
surroundings [173]. There are also things with edge computing capabilities,
often referred to as edge nodes. Edge nodes are sensors and smart things that
have the ability to perform local preprocessing on the collected data in order to
improve data transmission over the network and offload some of the processing
pressure in IoT system [267, 107].

The IoT builds upon the concept of machine-to-machine (M2M) communica-
tion which allows for information exchanges between two or more machines
with minimal to no human intervention. While M2M relies on point-to-point
connectivity and is generally designed for isolated network environments, IoT
greatly expands on M2M’s capabilities in terms of scalability, networking and
interoperability. The IoT can interconnect with billions of devices over the
Internet and the various types of data collected can be exchanged with other
devices and applications, or be transferred to centralized servers or cloud-based
applications for processing, storage and visualization [21]. In this section we
describe the IoT’s essential elements, general architecture, and its novel class,
the Internet of Underwater Things (IoUT).

12

2.1.1 IoT Elements

IoT technology comes with many functionalities and in order to use them prop-
erly, six essential elements are required. These are identification, sensing, com-
munication, computation, services and semantics [31, 11, 108, 68]. We describe
these elements below.

Identification
With the IoT, it is important to ensure correct identification for each physical
thing in the system. There mainly exists two identification processes: naming
and addressing. Naming refers to the thing’s specific name, and addressing
refers to its unique IP address that are used for network communication. Sev-
eral things can share the same name, but the addressing needs to be unique for
each of them. Technologies such as electron products codes (EPC) and ubiq-
uitous codes (uCode) [105] can be used for naming the devices. The methods
for addressing typically involves using common internet protocols such as IPv4
[92], IPv6 [89] and 6LoWPAN [177] for assigning the unique IP addresses to
each thing.

Sensing
Sensing in the IoT involves using physical things that have the capabilities to
collect information from their surroundings and transferring it to correspond-
ing endpoints where the information can be stored. The exists many different
types of Internet-enabled things that provide sensing capabilities for collecting
information.

Communication
One of the main purposes of IoT is enabling physical things to connect and
communicate over the Internet. With communication, the things can transfer
and receive various types of information. There exists many technologies that
provides communication such as Bluetooth [34], WiFi [83], Ethernet [84], and
cellular communications like 2G, 3G, and 4G [176, 93].

Computation
When the collected information has been transferred and received by the con-
suming endpoints, various hardware, software and cloud platform components
can be utilized to perform computation on the information. For hardware, inte-
grated circuit boards such as Arduino and Raspberry Pi can be used, whereas
operating systems plays a major role for processing in software applications.
Cloud platforms are also an important computational aspect of IoT as they
provide high computation capabilities, including real-time processing.

Services
There mainly exists four types of services that can be provided by IoT systems.
The first service is the Identity-Related Service, which is used for identification
of the physical things that sends requests. The second service is the Informa-
tion Aggregation Service that collects and processes all the information. The

13

third service is the Collaborative-Aware Service which makes decisions accord-
ing to the collected information and sends back responses to the things. The
last service is the Ubiquitous Service, which aims to deliver communication to
the things, independent of time and place [70, 266].

Semantics
Semantics are contextual information that are used for discovering each physical
thing in the system and extraction of their resources and modelling information.
An IoT system must be able to interpret and accept all the receiving information
and make appropriate decisions. They achieve this by using existing standards
or specified descriptions, ontologies and schemas that ensures interoperability in
the IoT system. This will be discussed in more detail in chapter 2.4 and chapter
3.2.

2.1.2 General Layered IoT Architecture

In this section we provide an overview of a general layered architecture for the
IoT. There have been several architectures for the IoT that have been proposed
over the years by different researchers, but due to the wide range of different
IoT areas and scenarios, there exists no single architecture that can address
all the requirements that each IoT area brings [67]. In [12], sixteen different
IoT architectures were identified, and the studies done in [106] and [189] shows
that most layered IoT architectures ranges between three to seven layers, with
different levels of complexity. Many IoT companies are also aiming towards
standardizing the complex IoT areas by releasing IoT reference architectures in
order to provide strong starting points for developers that wants to build IoT
solutions [189]. Reference architectures are recommended architectures that are
derived from other more specific and concrete architectures [22].

For this overview, we focus on a well-known five-layer architecture [265, 196,
104, 245] that represents most of the common building blocks of an IoT system.
In the early research stages, a basic three-layer architecture was introduced and
consisted of these layers: The perception layer, network layer, and application
layer. The five-layer architecture builds upon the three-layer variant and adds
two more layers: The middleware layer and business layer, which better rep-
resent the current state of the IoT paradigm. Figure 2.1 shows the layered
structure.

• Perception Layer: This is the physical layer which consists of all the
”things” in the IoT system. The IoT devices senses and collects different
physical parameters around their respectable environments. The main
task of the perception layer is to perceive the collected information and
convert it to digital signals which is then passed over to the network layer
for transmission.

• Network Layer: This layer is responsible for securely and reliably trans-
mitting the information gathered from the perception layer to the middle-
ware layer for processing, either directly or via gateways. Many different
networking protocols can be used, depending on whether the connection
is wired or wireless.

14

Business Layer

Application Layer

Network Layer

Middleware Layer

Perception Layer

Connects IoT devices with cloud technologies
Reliably transmits all the data from the perception layer

Data processing, storage and analysis
Cloud computing, ubiquitous computing and decision units

Sensors, actuators, things, and edge devices
Senses the environment and collect data

Provides application services based on the users needs
Monitoring, analytics, control and visualization

Involves collaboration with users and partners
Business processes, privacy and system management

Figure 2.1: The Five-Layer IoT Architecture

• Middleware Layer: Also known as the processing layer, the middle-
ware layer connects all the components and data streams by linking to
the devices or gateways in the network layer, and on the other side in-
tegrate with applications and services in the application layer. Its main
tasks is to store, analyze, and process all the data that comes from the
network layer. Due to the large volumes of data that often comes through,
the middleware layer uses different technologies such as databases, Cloud
Computing, Ubiquitous Computing, and big data processing for managing
all the data.

• Application Layer: This layer is responsible for delivering applications
and services to end users based on their needs. This can be anything
from device monitoring and management, to data visualization, or report
creation based on the processed information.

• Business Layer: The business layer is responsible for managing the over-
all IoT system and its applications and services that are communicating
with each other. The data received from the application layer can be
utilized for creating different business processes and models, in order to
determine future actions, innovations and business strategies. This is when
the owners and collaborative partners receives the value from the IoT.

15

2.1.3 Internet of Underwater Things

The Internet of Underwater Things (IoUT) [190] is a novel class of the IoT
for underwater environments and will be the foundation for collecting data in
the SFI Smart Ocean project. The functionalities and structure of the IoUT is
similar to land-based IoT, but due to the unique characteristics and challenges
of underwater environments, general design approaches for land-based IoT can-
not directly be adopted. Underwater environments affects the sensors network
coverage and data transmission capabilities. An IoUT system typically consists
of underwater sensors, sinks that collects data from the sensors and forwards it
to the surface, and different stations that receives the data. Figure 2.2 shows a
general model of an IoUT system.

Sensing
Field

Sensor
Nodes

UWSN 1

Acoustic
Links

UWSN n

Surface Station

Sink Nodes

Floating Station

Base Station

Satellite

Radio Frequency
Communication

Cloud

Figure 2.2: General Model of IoUT [111, 101]

Data collection in underwater environments nowadays is primarily done through
monitoring from ships, buoys, and autonomous vehicles [183]. Underwater wire-
less sensor networks (UWSNs) are the main type of sensors that will be utilized
for collecting underwater data in the Smart Ocean project. A general wireless
sensor network (WSN) can be described as a network that contains distributed
heterogeneous sensors, called nodes. These nodes cooperatively communicate
through wireless links and collects information from their sensing field areas.
The collected data is then sent to sinks that can either preprocess some of

16

the data locally, or forward it via connected networks or gateways [7, 10]. In
UWSNs, each sensor node are distributed across the underwater environments
and use acoustic communication in order to sense, collect and transfer underwa-
ter information. Unfortunately, acoustic communication has high latency and
low bandwidth [201]. It is especially important that these underwater sensor
nodes avoid large headers in order to efficiently transfer the data. The collected
data gets transmitted to near sinks connected to certain stations, which then
either preprocesses or directly forwards the data to the nearest onshore base
station where the data gets analysed, or sent to the cloud via the Internet for
storage and processing purposes [82].

2.2 Cloud Computing

The U.S. National Institute of Standards and Technology (NIST) [250] defines
Cloud Computing as ”a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications, and services) that can be rapidly provi-
sioned and released with minimal management effort or service provider inter-
action.”

Cloud Computing provides several applications and services that offers com-
putation, communication, and storage resources at low cost. This is a main
reason why it has become a promising technology for supporting IoT systems
[260]. The future Smart Ocean Platform will include a set of Cloud Comput-
ing resources in order to provide a secure and operational infrastructure that
can manage, store and process all the incoming sensor data. In this section we
present relevant service models, IoT cloud platforms, and a general overview of
the sensor-cloud infrastructure.

2.2.1 Service Models

With Cloud Computing, there are several ways cloud providers can deliver ser-
vices to end users. NIST defines three main ways: Infrastructure-as-a-Service,
Platform-as-a-Service, and Software-as-a-Service [250].

Infrastructure-as-a-Service (IaaS)
IaaS is a Cloud Computing service model that only offers the most fundamental
computing resources to the users, such as virtual machines, servers, storage, net-
working and hosting environments. The cloud provider controls the underlying
cloud infrastructure, while the users are responsible for deploying the operating
system and the applications that are going to be executed on the cloud service.
The users are also responsible for development and updating the applications, as
well as monitoring their operational statuses. IaaS offers the most freedom and
control to the users, at the expense of less abstraction and more responsibility
[20, 250, 57].

Platform-as-a-Service (PaaS)
PaaS is a higher level of abstraction then IaaS where the cloud provider manages
everything from servers, networks, storage, and operating system. It controls

17

the underlying infrastructure as well as providing updates for the runtime en-
vironments and supporting services. This makes it simpler for the users, but
they are still responsible for the development, configuration and management of
the deployed applications on the cloud service. Nowadays, PaaS is often built
around containers that virtualize the operating system, which only contains the
necessary executables and configurations needed for running the applications
[20, 250, 57].

Software-as-a-Service (SaaS)
With SaaS, entire applications run on the provider’s cloud service. Users can
access these applications by using a web browser, desktop client, or APIs that
integrates with their applications. Since the cloud service provider manages
both the application and data, users typically have very limited control over the
application, with the exception of user-specific settings [20, 250, 57].

2.2.2 IoT Cloud Platform Components

The cloud itself is a collection of servers and databases that are located in data
centers. A cloud platform is a comprehensive suite of integrated cloud services
that can facilitate many of the common features needed for building diverse
IT solutions. In context of the IoT, data collected from heterogeneous devices
can be sent via the Internet and allocated to several cloud platform services
to perform operations on them. There exists many different variants of cloud
platforms provided by many different vendors, ranging from open-source com-
munities to large commercial vendors such as Microsoft, Google, and Amazon,
which currently holds the largest cloud market shares [256]. The scope of cloud
offerings varies for each individual cloud platform, but a cloud platform utilized
for the IoT typically consists of the following components: cloud gateway, dig-
ital twins, stream processing, storage, security and management, and business
integration [174, 198, 1]. Figure 2.3 shows a high level architecture on how these
components work together.

• Cloud gateway: A cloud gateway works as a control point that interface
with connected IoT devices. Its main tasks is to acquire and route their
incoming data to specified destinations and services in the cloud, using
appropriate data ingestion techniques. The cloud platform’s active rules
and policies determine how individual data is routed.

• Digital twins: A digital twin is a synchronized, digital representation
replica that simulate the state and behavior of a physical IoT device.
These digital representations are stored in the cloud and are used to simu-
late and predict the behavior of their physical counterparts. This reduces
the need to always rely on connecting to the physical devices directly, since
the digital twins are always available in cloud.

• Storage: Storage services can store data for long-time archival purposes,
or perform demanding analytics and machine learning processing on them.
The databases are quite scalable in size and typically provide both rela-
tional SQL databases for structured data, and NoSQL databases for un-
structured data. Supported queries and APIs are used to retrieve stored

18

data, which can then be to sent other connected cloud services and appli-
cations.

• Stream Processing: Stream processing services operate on data flows
that are being routed with relatively low latency. These services can pro-
cess incoming data in near real-time, or implement temporal storage for
the most recent data sets and perform moderate analytics on them. The
stream processes can involve multiple input streams and output streams.
The output stream data can be forwarded to other cloud services and
applications, using supported queries and APIs.

• Security and management: Cloud platforms need to arrange for secure
device communication over the network, as well as security and manage-
ment in the cloud environment. The platforms can provide identity and
access management (IAM), rules and policy creation, secure monitoring,
data protection and transport encryption. With device provisioning, each
device gets an unique ID in combination with a certificate and public/pri-
vate keys embedded in them for gateway authentication. The cloud’s iden-
tity registry contains all the registered devices where they can be managed
by the users.

• Business integration: The business oriented cloud services are the ones
that produce value to the consumers, while most of the other components
are mainly used for gathering insights about data. Business integration in-
volve enterprise services that provide functionalities such as visualization,
notification, and system management.

Storage

Cloud
Gateway Digital Twins

Business
Integration

&
Other Cloud

Services

Devices

Stream Processing

Security and Management

Figure 2.3: High Level Architecture of IoT Cloud Components [174, 1]

2.2.3 Sensor-Cloud Infrastructure

As mentioned earlier, the SFI Smart Ocean wants to realize the IoUT in their
project, where UWSNs are utilized as the main IoT device type in the system.
By integrating WSNs (or UWSNs) with Cloud Computing, we get what is com-
monly referred to as a sensor-cloud infrastructure [269]. While the sensor-cloud
infrastructure is conceptually similar to many other IoT-cloud integration ap-
proaches, sensor-cloud emphasizes an approach for managing, organizing and
monitoring multiple WSNs at the same time on a shared network.

19

The infrastructure consists of using Cloud Computing’s resource offerings to
create virtual representations of all the physical sensors. By creating virtual
sensors, users do not need to worry about the physical sensors real locations,
nor their different specifications. For standardization, the users creates vir-
tual sensor templates for the different physical sensors that contains their data.
While there can be many different types of physical sensors, many of them may
also share several constraints. In these cases, users can also create templates for
specified virtual sensor groups to add more flexibility. The templates are stored
and processed in the cloud and can be dynamically and automatically provi-
sioned when needed. Figure 2.4 shows the relationship between the physical
sensors, virtual sensors and virtual sensor groups.

Figure 2.4: Relationship Between the Physical Sensors, Virtual Sensors and
Virtual Sensor Groups [269]

When it comes to architecture and workflow, there exists several architectures
[8], but they all mostly follow the same main principles. Figure 2.5 provides
a general architecture that highlights how a sensor-cloud infrastructure can be
utilized. The developers creates a solution framework of cloud services that ab-
stracts much of the system environment’s complexity. This include many of the
cloud components that were presented in section 2.2.2. The clients access the
sensor-cloud infrastructure’s portal with different user-roles. The roles can be
administrators who manages and monitors the infrastructure’s services, sensor
owners that can register, delete or monitor their sensors, or end users who re-
quests and utilize various sensor data from the virtual sensors. Once they have
entered the infrastructure’s user interface, there are several available options the
clients can choose to perform. Virtual sensor templates and their resources can
be requested, registered or reserved via automatic provisioning. Sensor informa-
tion can be retrieved for monitoring and visualization purposes, and the sensors
virtual machines can be accessed for control. The sensor-cloud infrastructure
provides virtualization, standardization, automation and monitoring of multiple
WSNs in an interoperable manner.

20

Figure 2.5: Sensor-cloud Architecture [269]

2.3 Application Layer for IoT

The application layer is the layer that lies on the very top of the Open Systems
Interconnection (OSI) model and the simpler Transfer Control Protocol/Inter-
net Protocol (TCP/IP) model [192, 9]. The application layer contains many
different standards and protocols for handling the communication and message
exchanges between the application entities in IoT systems [191]. In this sec-
tion, we describe some of the application layer’s most relevant standards for
sensor data integration in the selected cloud platforms. The only exception is
the application layer protocols which will get its own section in chapter 3.1.

2.3.1 Data Serialization Formats

In IoT systems, data serialization formats are used for encoding collected data
into messages that can be exchanged and interpreted by receiving endpoints for
storage and sharing purposes. These data serialization formats allows the infor-
mation to be maintained and recovered in its original structure. Each format
have a different effect on the device resource usage, processing, and communi-
cation efficiency. As a result, it is important to choose data formats that suits
each IoT environment [191, 175]. This section presents some of the most widely
used formats for the IoT.

Extensible Markup Language (XML)
XML [264, 28] is a commonly used text-based format for representing and shar-
ing structured information. It is stored in a hierarchical format and its syntax
rules are strict, meaning that XML documents will not get processed in case of
errors. In XML, each information element is represented in a name-value pair
(also called key-value pair) with the value contained between start-tags: <> and
end-tags: </>. Here is an example: <name>value</name>. The name is the
defined attribute or property name specified in the document, while the value
represents its current content or state. There also exists a more compact rep-
resentation of the XML format, called Efficient XML Interchange (EXI) [199].

21

The EXI format is more intended for resource-constrained environments as it
converts XML messages to binary, optimizing the utilization and performance
of the computational resources.

JavaScript Object Notation (JSON)
JSON [257, 55] is another widely-used text-based data serialization format. The
data is stored in a hierarchical format and uses a syntax that consists of a small
set of formatting rules with braces, brackets, colons, and commas. The syntax
does not specify any complete data interchanges, but provides the framework
needed for attaching the desired semantics. Just like XML, each information
element is represented in a name-value pair, only that it is structured differently
in JSON. Here is an example: {”name” : value}. The value can be either an
object, array, integer, string, true, false, or null. There also exists another vari-
ant of the JSON format called JSON-LD [263]. JSON-LD is a JSON format for
serializing Linked Data, which is a way to create interpretable data with strong
relationships across the web.

Comma-Separated Values (CSV)
CSV is yet another text-based data serialization format. It is a format that is
often used for storing and exchanging large amounts of tabulated data in var-
ious cloud platforms. As the format-name suggests, the values are separated
by commas and are delimited by basic line breaks (CRLF). The name-value
pairs can for example be described as: ’name1,name2,name3 CRLF’ which con-
tains: ’value1,value2,value3 CRLF’. CSV are supported by a wide range of
database and spreadsheet programs, which makes it easy to import CSV files
and work with the data, as well as exporting the files into other more efficient
formats for processing. The CSV format is considered to be semi-structured
as it cannot represent hierarchical data naturally. The relations between the
data is usually handled by multiple CSV files that are linked through the use of
column-contained foreign keys [170, 246].

2.3.2 Communication Models

When application layer entities communicate and exchange messages over a net-
work, they are usually following the rules of a specified communication model.
In this this section we present the two most relevant communication models for
communication in the IoT.

Request-Response Model
Request-Response is a communication model that consists of a client and a
server. The client sends requests to the server, while the server responds to
each request. Based on the request, the server’s response can provide the client
with specified resources, or perform more internal functions within the system.
Each pair of request-response messages is independent and the communication
model works in a stateless manner, meaning that the server does not keep any
session information. The client’s request must contain all the necessary infor-
mation that the server needs in order to process and respond to the request [21].
Figure 2.6 shows the request-response communication model.

22

Client

Server

Resources
Receives
requests

&
sends

responses

Request

Response

Request-Response

Lookup

Fetch

Sends
requests

&
receives

responses

Figure 2.6: Request-Response Communication Model [21]

Publish-Subscribe Model
Publish-Subscribe is another communication model that consists of publishers,
subscribers, and a broker. Here the publishers and subscribers are the clients,
while the broker act as the server. The broker contains different topics that
clients can either publish or subscribe to. Publishers sends messages to the
broker which then forwards the messages to specific topics on the server. Other
clients can subscribe to these topics and then only receive messages from these
topics explicitly. Subscribers receives the messages the moment they are pub-
lished on the server. Publishers and subscribers are also not aware of each other
[21]. Figure 2.7 shows the publish-subscribe communication model.

BrokerPublisher

Topic 1

Subscriber 1

Topic 2
Publish

Publish-Subscribe

Sends topic 1
message Subscriber 2

Subscriber 3
Sends topic 2

message

Publish

Figure 2.7: Publish-Subscribe Communication Model [21]

2.3.3 Representational State Transfer (REST)

An application programming interface (API) is a set of rules that define how
applications or services can connect and communicate with each other through

23

a documented interface. With the use of APIs, various data can be queried,
parsed and exchanged in a simplified and secure manner [56]. REST is an
architectural style for creating web services and web APIs, and is the primary
design model for API utilization in IoT and Cloud Computing. The REST
architecture was first introduced by Roy Fielding [61] in the year 2000. A
REST API follows the request-response model, and interacts between a client
and a server based on the resources available. The resources are addressed using
Uniform Resource Identifiers (URIs), and are typically represented in text-based
formats such as XML or JSON. REST APIs communicate using HTTP based
commands such as POST, GET, PUT, and DELETE in order to perform the
standardized CREATE, READ, UPDATE, and DELETE (CRUD) operations in
general databases. The architecture also comes with six architectural constraints
that needs to be followed in order for it to be declared as a RESTful API [58,
21].

• Client-Server: The principle behind this constraint is to ensure that the
client and server are fully decoupled and independent of each other. The
client should not know anything about the server and its content, and only
be concerned with the information contained in the URI of each request.
Similarly, the server should not know anything about the client besides
the request and only be concerned with passing the requested information
in the response.

• Stateless: By being stateless, each request needs to include all the in-
formation needed in order for it to be processed on the server-side. The
server is not allowed to store any session data related to a client’s request.

• Cacheable: The constraint requires the responses to label themselves as
either cahchable or non-cachable, when possible. If a response is cachable,
then the client is allowed to keep the response data for reusing purposes.
The goal is to eliminate unnecessary interactions between the client and
the server, increasing performance and scalability.

• Layered System: Between the client and server are different layers that
the requests and responses goes through. The layers should be designed
with separated concerns that do not effect the requests and responses in
any way. The client and the server should also be agnostic to whether
they communicate with the endpoint or an immediate layer.

• Uniform Interface: This constraint evolves around making sure that the
communication method between the client and server is uniform. Requests
that asks for the same resources should be identical, and each resource
representation should only contain information that the client might need.

• Code on Demand: This is the only optional constraint. While the con-
tents of the resources are usually static, sometimes the server’s responses
can contain scripts or executable code to run on the client-side. In these
scenarios, the code should only be executed on-demand.

24

2.4 Interoperability

One of the main goals of the IoT is to achieve interoperability in their sys-
tems. However, achieving interoperability is also one of the IoT’s biggest design
challenges. The reason for this is that there exist no universal standard for rep-
resenting data in the IoT. An IoT system can span many types of devices with
different data syntax, descriptions and semantics which often leads to interop-
erability issues. There exists many definitions on interoperability, but most of
them agree on same principles, which is being able to utilize, understand, and
exchange information between system endpoints [261, 53]. This section provide
an overview of relevant interoperability levels, metadata, and IoT frameworks.

2.4.1 Interoperability Levels

There are mainly three interoperability levels of relevance for IoT systems: tech-
nical interoperability, syntactical interoperability, and semantic interoperability
[18, 261, 72]. We describe each of these three levels below.

Technical Interoperability
Technical interoperability is strongly related to hardware, software and plat-
form components with machine-to-machine (M2M) communication capabilities.
It is the interoperability level that enables heterogeneous IoT devices to com-
municate and exchange messages over a network, without necessarily under-
standing the meaning or content of the messages. This interoperability level
is typically achieved be utilizing standardized communication protocols such as
HTTP, MQTT, AMQP and CoAp (see chapter 3.1).

Syntactic Interoperability
Syntactic interoperability is related to how data is represented and how it can
be retrieved in IoT systems. Data representation is usually realized through
the use of standardized data formats such as JSON, XML and CSV, while stan-
dardized query languages can be utilized by users for retrieving the desired data.

Semantic Interoperability
Semantic interoperability ensures a common understanding of the information
exchanged between IoT devices and system endpoints. The interoperability level
facilitates machine understanding of data by providing contextual information
for semantic data representations in the system. Consuming endpoints are then
able to understand the data through the adherence to common specifications.

2.4.2 Metadata

For the Smart Ocean project, it is necessary to define universal metadata repre-
sentations for the various underwater sensors in order to ensure interoperability.
Metadata can in its simplest definition be described as ”data about data”. It
can provide specified information about the content, context and structure of
different resources, which adds value by making it easier to locate, retrieve, or-
ganize, analyze and manage each resource [195, 85].

25

Descriptions
Metadata descriptions defines specified content-information that are critical for
establishing an accurate understanding of a resource. The main purpose of
these descriptions is to facilitate discovery and identification of each resource.
In context of the IoT, important resource descriptions can be information about
telemetry data, events, states, locations, settings, and serial numbers, which pro-
vides the necessary information for distinguishing each resource in the system.

Semantics
Semantics describes the ”meaning” of data, which expresses the representation
of metadata in a contextual manner. They provide annotations for representing
a resource’s properties and capabilities, using a well-defined set of vocabulary
terms. Semantics typically involves ontologies which defines a set of formal
descriptions and relationships that are used to describe a specific domain, ab-
stracting the heterogeneity of systems.

Data syntax
Data syntax specifies the rules of how metadata information is structured which
allows it to be stored, transferred, and queried. The syntax declares the gram-
mar, data relationships, and hierarchical design of metadata. The metadata
information can be expressed in many different markup languages, program-
ming languages, and serialization formats.

2.4.3 IoT Frameworks

Another way of dealing with interoperability is developing or utilizing existing
IoT frameworks. An IoT framework provides an information model and other
specifications in order to facilitate interoperability in IoT systems. These frame-
works are typically designed for interfacing between the application layer and
transport layer in order to abstract much of the system complexity. With this
approach, applications and platforms are able to interact with the framework’s
data directly. IoT frameworks typically support several standardized commu-
nication technologies and message exchange techniques that all the IoT devices
must follow, which simplifies how devices interconnect with the IoT system.
With the following specifications, IoT frameworks have the potential to ensure
the syntactic and semantic levels of interoperability. [32, 175]

• Information model: Are abstract data model representations that de-
scribe the information of the IoT devices. The information model usu-
ally includes information like data types, attributes, properties, relations,
schema definitions and metadata descriptions that facilitates universal
data representations in the IoT system.

• Payload serialization: The payload data needs to be serialized into a
format that receiving endpoints are able to interpret. IoT frameworks
often support a common set of data serialization formats. Examples are
JSON and XML which uses a high-level syntax that represents the data
elements in name-value pairs.

• Protocol bindings: Specifies the supported application layer protocols

26

that the IoT devices communicate over. The bindings may also include
the operated port numbers that each protocol uses. Examples are HTTP,
MQTT, AMQP and CoAp (see chapter 3.1).

• Identification and discovery: IoT frameworks needs to offer conven-
tions for giving unique identifications for each IoT device, such as naming
and addressing methods in order for them to be discovered in the system.

• Security: An IoT framework usually contains a specified security perime-
ter that all IoT devices must follow in order to successfully connect and
communicate in the system. Depending on framework, the integrated
security may involve several authorization, authentication and/or encryp-
tion capabilities.

27

Chapter 3

A Survey on Application
Layer Protocols and
Metadata Standards

Besides evaluating the selected cloud platforms, another goal is to investigate
relevant protocol bindings and metadata industry standards that can potentially
be used in the Smart Ocean project. This chapter presents a survey on relevant
application layer protocols that can be used for sending sensor messages to the
three cloud platforms, as well as metadata industry standards that can be used
for creating interoperable sensor data representations.

3.1 Application Layer Protocols

The application layer protocols define how applications send messages over the
network. The messages are encoded in the application layer and encapsulated
in the transport layer for transportation, while port numbers are used for ad-
dressing [21]. In this section we describe some of the most common and relevant
protocols that are utilized in the IoT.

3.1.1 HyperText Transfer Protocol (HTTP)

HTTP is the universal protocol utilized for the World Wide Web (WWW). It is
based around the request-response model where the client uses different HTTP
commands to send requests to a server. These commands are GET, POST,
PUT, DELETE, HEAD, TRACE, OPTIONS, and CONNECT. For security,
HTTP uses either the Transport Layer Security (TLS) protocol or the Secure
Socket Layer (SSL) protocol, resulting in the secure version of HTTP, known
as HTTPS. Universal Resource Identifiers (URIs) are used to identify HTTP’s
resources. Since REST API’s uses HTTP commands for transferring data, the
RESTful architecture can easily be implemented into IoT systems. For trans-
portation, HTTP uses the Transmission Control Protocol (TCP) which guaran-
tees reliable and successful delivery as long as the connection is not interrupted.

28

Unfortunately, HTTP is known for having large header sizes due to its textual
format. In combination with the required TCP packets that comes with each
request, makes HTTP a very heavy protocol. As many IoT devices often have
limited bandwidth and battery-power, this makes HTTP not a suitable proto-
col for resource constrained environments. HTTP/1.1 [60] is currently the most
widely adopted version of the protocol, but there exist a newer version named
HTTP/2 [24]. This version is showing promising improvements over HTTP/1.1
with lower latency, full request-response multiplexing and compression of the
header fields that reduces the header sizes. However, all the three cloud plat-
forms evaluated for this thesis, still only supports the HTTP/1.1 version for
sending IoT data to their cloud gateways [21, 54, 59, 23].

3.1.2 Message Queuing Telemetry Transport (MQTT)

MQTT is a machine-to-machine (M2M) message protocol based around the
publish-subscribe model. Here, the clients are either publishers or subscribers,
while the server is a message broker that coordinates all the messages for each
topic. Just like HTTP, it runs over TCP and uses TSL/SSL for security. Com-
mands such as CONNECT, DISCONNECT, PUBLISH, SUBSCRIBE, UNSUB-
SCRIBE, and CLOSE are utilized with this protocol. MQTT provides three
levels of quality of service (QoS): level 0-2, which makes its message delivery
quite reliable. These QoS levels are (0) at most once which is suitable if data
loss is acceptable; (1) at least once which ensures delivery, but it may incur
duplicates; and (2) exactly once that guaranties message delivery without du-
plicates. Which level to use depends on the requirements of each IoT system.
The MQTT protocol is flexible and lightweight, and suits many diverse appli-
cation scenarios. It is primarily used for devices that require efficient use of
bandwidth and battery-power, making it an ideal protocol for IoT. Currently,
the most widely adopted version is MQTT 3.1.1 [179], while MQTT 5.0 [180] is
the newest version that comes with several new features and benefits over ver-
sion 3.1.1. Unfortunately, the three evaluated cloud platforms are still primarily
using version 3.1.1, with little to no support for version 5.0. The cloud platforms
also only provide support for QoS level 0 and 1, and not level 2 [21, 268, 197, 54].

3.1.3 Advanced Message Queuing Protocol (AMQP)

AMQP is a communication protocol that is primarily designed for exchanging
business-oriented messages between system endpoints. AMQP runs over TCP
and supports the publish-subscribe model. The publish-subscribe approach is
similar to MQTT, but the key difference is that the broker is divided into two
main components: exchanges and queues. The exchange component receives
publisher-messages which then distribute copies of the messages to queues for
each topic. Subscribers connect to these queues and then receives the mes-
sages whenever they are available. Just like MQTT, it also supports the same
three levels of QoS and uses TLS/SSL for security. It also supports the Simple
Authentication and Security Layer (SASL) framework that provides additional
authentication mechanisms and data security. The AMQP protocol provides a
higher level of security and more messaging queuing capabilities then MQTT,
but the protocol is also more complex and were designed for more general pur-

29

pose usage rather then for IoT specifically. The protocol is commonly imple-
mented for high performance messaging in server-based enterprise environments
[181, 21, 197, 54].

3.1.4 Constrained Application Protocol (CoAp)

CoAp is a web transfer protocol optimized for machine-to-machine (M2M) ap-
plications. It has many of the same characteristics as HTTP, but is designed
for resource-constrained environments. Like HTTP, CoAp follows the request-
response model and is based on the REST model, using commands such as GET,
PUT, POST, and DELETE. However, unlike HTTP, the protocol uses the User
Datagram Protocol (UDP) instead of TCP for transportation which leads to
more efficient transmissions, but also more unreliable messaging. CoAp de-
fines a message layer that consists of four messaging types for dealing with the
UDP transmissions: Confirmable (CON), Non-confirmable (NON), Acknowl-
edgement (ACK), and Reset (RST). A request that requires reliable messaging
uses a CON messages which contains a default timer and retransmits the re-
quest until the server responds with an ACK message, acknowledging successful
delivery. In cases where the server is not able to process a CON message within
the timeout, it responds with a RST message instead. For requests that does
not require reliable messaging, a NON message is sent instead. These requests
do not receive any response messages, but still offers detection for duplicates
via its unique message ID. The CON and NON messages forms the QoS sup-
port for this protocol. For security, CoAp uses the Datagram Transport Layer
Security (DTLS) protocol or IP Security (IPSec). With its low latency and effi-
cient utility in resource-constrained environments, CoAp is a suitable protocol
for IoT usage in scenarios that allows for unreliable messaging. [21, 247, 25, 197].

3.1.5 WebSocket

The WebSocket protocol supports full-duplex, bidirectional communication over
a single socket. The main purpose of this protocol is to enable mechanisms for
sending data through web applications, that needs two-way communication.
The connection starts with the client initializing a handshake with the server to
establish a session. As the handshake is similar to HTTP, the web servers are
able to handle connections for both WebSocket and HTTP through the same
port. However, the WebSocket protocol does not follow request-response model
after the initial handshake, as the clients and servers exchange messages in an
asynchronous full-duplex connection. The protocol message runs over TCP and
provide secure sessions via TLS/SSL. The WebSocket protocol supports bidirec-
tional communication, but also supports publish-subscribe messaging by using
its sub-protocol called WebSocket Application Messaging Protocol (WAMP)
[71]. While the protocol’s use cases are limited to primarily web applications,
it provides real-time communication, security, reliable transmission, and small
header sizes. [21, 103, 110].

30

3.1.6 Protocol Summary

We have now described some of the most common application layer protocols
that are used in IoT scenarios. Each protocol has its advantages and disadvan-
tages when it comes to its use cases. In table 3.1, we give an overview of the
features of each protocol.

Parameters HTTP MQTT AMQP CoAp WebSocket

Transport TCP TCP TCP UDP TCP

Header Size
Large,

Undefined
2 Bytes 8 Bytes 4 Bytes 16 Bytes

Message Size
Large,

Undefined

Up to max

256 MB
Undefined

Usually Small

Enough to fit a

Single IP Datagram

Undefined

Encoding Textual Binary Binary Binary Textual/Binary

Communication

Model

Request/

Response

Publish/

Subscribe

Publish/

Subscribe

Request/

Response

Bidirectional,

Publish/

Subscribe

QoS TCP Based 3 Levels 3 Levels
Confirmable or

Non-confirmable
TCP Based

Security TLS/SSL TLS/SSL
TLS/SSL,

IPSec, SASL
DTLS, IPSec TLS/SSL

Standard IETF [60] OASIS [179, 180] OASIS [181] IETF [247] IETF [110]

Table 3.1: Application Layer Protocol Overview

With HTTP, applications must repeat the headers with each request and re-
sponse which increases latency. HTTP is a also a very heavy and resource-
demanding protocol, which is not very ideal for efficiently transmitting IoT
data between endpoints. Regardless, the HTTP protocol is still relevant due
to the wide usage of REST API’s in IoT systems, where HTTP commands are
used. The CoAp protocol were explicitly designed for resource-constrained en-
vironments, making it an ideal protocol for the IoT. It offers small header sizes,
asynchronous communication, and avoids unnecessary retransmissions unlike
HTTP, which reduces latency and power consumption of IoT devices. However,
the CoAp protocol’s largest drawback is its messaging over UDP, making it not
ideal for IoT scenarios where reliable messaging is a requirement. Both MQTT
and AMQP uses publish-subscribe messaging with the same three QoS levels
and provide small headers sizes, and reliable messaging via TCP. Both proto-
cols are viable options for IoT, but MQTT was specifically designed for IoT,
while AMQP were designed for more general purpose message queuing. AMQP
provides more security then MQTT, but it is also a more complex protocol
to implement. MQTT is a more simple and developer-friendly protocol, and
offers slightly more efficient messaging then AMQP due to its smaller header
size. Lastly, the WebSocket protocol does not have many utilization purposes
in IoT beyond sending messages through web applications, where the protocol
is mandatory. Other protocols such as MQTT and AMQP can also be binded
with WebSocket and exchange messages, using their own rules on top of the
WebSocket protocol.

31

3.2 Metadata Industry Standards

There exists several metadata industry standards that can provide sensor de-
scriptions, data syntax, and semantics for the Smart Ocean project. In this
section, we present some of the potential standards for usage in IoT scenarios.

3.2.1 IP for Smart Objects (IPSO)

The IPSO Working Group [252] is one of several collaborative working groups in
the Open Mobile Alliance (OMA) SpecWorks [255]. The IPSO Working Group
focuses on enabling communication between smart objects in IoT systems. It
supports and manages a Smart Object Registry [253, 254] that consists of mul-
tiple defined smart objects. These smart object are meant to be used by anyone
who require IoT-based metadata representations in their projects. The IPSO
object model is designed to work with other RESTful enabled application lay-
ers and frameworks for enabling interoperable message exchanging between IoT
devices and system endpoints. IPSO is also especially designed to work with
the OMA Lightweight Machine-to-Machine (LWM2M) specification which pro-
vides security, management, interfaces and protocols such as CoAp or HTTP.
Together, they enable users to develop entire IoT systems, using their com-
prehensive set of defined object models for providing semantic interoperability.
Figure 3.1 shows a model of the general LWM2M and IPSO stack.

Application Software Device Management

REST Server

HTTP

6LoWPAN IPv4 / IPv6

802.15.4

Application

Data Models

API and Services

Application Protocol

Routing

Wi-Fi / Ethernet

MCU - 16KiB RAM MPU

HW Network

Hardware

IPSO Smart Objects

LWM2M Framework

CoAp

Figure 3.1: LWM2M and IPSO Stack

All of IPSO’s objects are registered in the LWM2M OMA Naming Authority
(OMNA) [254], and are mapped into a URI path structure that consist of three
different components: Object ID, Instance ID, and Resource ID. These compo-
nents are separated by a ”/” character and are represented in the following form:
Object ID/Instance ID/Resource ID. The Object ID contains the registered ID
of a defined object in OMNA. The Instance ID represents a particular instance of
the object, while the Resource ID represents observable properties of the object.

32

As an example, we describe IPSO’s defined humidity object [251]. Humidity’s
Object ID is registered with the number 3304 in OMNA. The Instance ID are 0
as there currently is only one instance of the object. 5700 is humidity’s defined
Resource ID for representing the ”Sensor Value” property. This results in the
following URI: 3304/0/5700. Figure 3.2 shows humidity’s object and resource
definitions, including a simple usage example. Physical objects are able to link
multiple defined smart objects together for diverse metadata representations
such as temperature, humidity, voltage and over 50 other defined smart objects
[96].

IPSO Objects

IPSO 3304 Humidity

IPSO 3303 Temperature

IPSO 3316 Voltage

Real Sensor

IPSO 3304/0

IPSO 3303/0

IPSO 3316/0

IPSO 3304/1

IPSO 3303/1

 Sensor Value - 3304/0/5700 = 31.2

Multiple Registered
IPSO Objects

Real Sensor Using
Instances of the

IPSO Objects

ID Name Operations Instances Mandatory Type Range or
Enumeration Units Description

5700 Sensor
Value Read Single Mandatory Float Last or Current Measured

Value from the Sensor

5701 Sensor
Units Execute Single Optional String Measurement Units Definition

5601
Min

Measured
Value

Read Single Optional Float
The minimum value

measured by the sensor
since power ON or reset

5602
Max

Measured
Value

Read Single Optional Float
The minimum value

measured by the sensor
since power ON or reset

5603 Min Range
Value Read Single Optional Float The minimum value that can

be measured by the sensor

5604 Max Range
Value Read Single Optional Float The maximum value that can

be measured by the sensor

5605

Reset Min
and Max

Measured
Values

Read Single Optional
Reset the Min and Max

Measured Values to Current
Value

IPSO Humidity Resource Definitions

Name Object ID Object URN Instances Mandatory

Humidity 3304 urn:oma:lwm2m:ext:3304 Multiple Optional

IPSO Humidity Object Definition

 Sensor Value - 3303/0/5700 = 23.7

 Max Range Value - 3303/1/5604 = 100.0

 Sensor Value - 3316/0/5700 = 78.2

 Min Range Value - 3304/1/5603 = 0.0

Figure 3.2: IPSO Humidity Object Definition and Usage Example [251]

33

3.2.2 Open Connectivity Foundation (OCF)

The Open Connectivity Foundation (OCF) [4] prescribes an entire IoT frame-
work which currently consists of 19 specifications on their website [5], as of
version 2.2.5. To mention a few, the core framework specifies the mandatory
architectures, features, resources, and protocols for enabling IoT implementa-
tions with OCF. Another specification describes OCF’s security aspects, while
their bridging specification defines translations and mappings for establishing
compatible bridges between OCF resources and other non-OCF standards. It
also provides specifications for defined resource types and device types for the
OCF resource model that will by our primary focus for this overview.

The OCF framework provides core functionalities for exchanging messages be-
tween applications and systems in an interoperable manner. It provides ca-
pabilities for identification and addressing, device discovery and management,
defining resource models and more. In order to utilize the framework, the devel-
opers need to implement the required specification functionalities. OCF enables
framework interactions between clients and servers where the servers contains in-
stances of the relevant object representations, while the clients sends requests to
a server for retrieving object states. Interactions between the clients and servers
are performed using RESTful operations such as CREATE, READ, UPDATE,
DELETE, and NOTIFY (CRUDN) that can be mapped to both the CoAP and
MQTT protocols [2]. Figure 3.3 shows OCF’s functional block diagram of the
required functionalities.

Figure 3.3: OCF Functional Block Diagram [2]

OCF’s resource model provides abstractions for defining different resource types
and device types that can operate in diverse application environments. OCF’s

34

current resource type specification [3] defines 180 different resource types that
can be utilized for various metadata representations. The device specification
consists of different device representations that define a list of the minimum
required resource types that needs to be implemented for each specified device
type. Each resource begins with the URI prefix: where ”oic” is the reserved
namespace for all OCF specifications.

An OCF resource type consists of several built-in properties: ”rt”, ”if”, ”n”,
and ”id”. The first one, ”rt”, declares the specified ID of a resource type with
the following URI prefix: ”oic.r.{type name}”, where ”oic.r” is the reserved
namespace for all OCF specified resource types. Next, ”if” declares the the
supported OCF interfaces for each resource type which are used to provide
defined access rules for the API requests and responses. ”n” is an optional
property for declaring a human-readable name to the resource. Lastly, ”id” is
another optional property for declaring a unique identifier for a specific resource
instance. Additional properties are enabled based on each defined resource type.
All the resource properties are represented in name-value pairs and are stored in
JSON schemas. As an example, figure 3.4 shows the definition of the humidity
resource type, which has the following prefix ”oic.r.humidity”.

5700

Resource ID

Property name Value type Mandatory Access mode Description

rt Array No Read Only The Resource Type.

desiredHumidity Integer No Read Write The desired value for humidity.

humidity Integer Yes Read Only The current sensed value for
humidity.

n Array of strings,
integers and boolean No Read Write

id Array of strings,
integers and boolean No Read Write

if Array No Read Only The OCF Interface set supported
by this Resource.

desiredHumidity Integer Yes Read Write The desired value for humidity.

The Property definitions of the Resource with type "rt" = "oic.r.humidity"

CREATE READ UPDATE DELETE NOTIFY

get post observe

The CRUDN operations of the Resource with type "rt" = "oic.r.humidity"

Figure 3.4: OCF Humidity Resource Type Definition [3]

35

3.2.3 Open Platform Communications Unified Architec-
ture (OPC UA)

OPC UA is a platform-independent standard that integrates a framework for
enabling abstract message exchanges between systems and applications in di-
verse industrial domains. The standard provides an extensive specification on
their website [66] that consists of multiple parts.

OPC UA’s information model specification [65] provides flexible ways for digi-
tally describing many different physical objects and processes, for representing
the structure and semantics of data. OPC UA provides a basic unit of infor-
mation that is referred to as a node, which is used to create every other related
type of information in the model. These interconnected nodes are structured
in an object-oriented manner, which forms the OPC UA address space model
[63]. The OPC UA address space model defines a meta model that establishes
the main rules for how OPC UA information models can be created and rep-
resented. The model defines base node class that extends a hierarchy of eight
other optional node classes that inherits from it. These node classes are: Object,
ObjectType, Variable, VariableType, DataType, ReferenceType, Method, and
View. These node classes can be used for describing and representing all kinds
of metadata and system information based on the users requirements. Each
node class provide a set of both mandatory and optional attributes, while the
relationships between the nodes are defined using references. Figure 3.5 shows
a high level representation of the meta model.

Figure 3.5: OPC UA Meta Model [63]

The OPC UA defines a client-server based architecture for enabling interoper-
able message exchanging. The defined address space model is contained in a

36

OPC UA Server application, which implements several services [64] and exposes
the node-based information models, enabling resource discovery. An OPC UA
Client can then send requests to the OPC UA Server and retrieve accessible
data. Messages are usually sent via requests and responses using HTTP, but
the OPC UA standard also provide options for sending messages using pub-
lishers and subscribes with MQTT or AMQP. For data encodings, OPC UA
supports several formats, including binary, JSON and XML [62]. Figure 3.6
shows a general OPC UA Server architecture.

OPC UA Server API

OPC UA Address Space

OPC UA Server Application

OPC UA Server

Subscription

View

Real Objects

Node

Node

Node

Node

Node Node

Node

Node

Monitored
Item

Response
Message

Request
Message

Publish
Message

Notification
Message

OPC UA
Communication
Stack

OPC UA Client OPC UA Client

Figure 3.6: OPC UA Server Architecture [62]

3.2.4 Open Geospatial Consortium’s Sensor Web Enable-
ment (OGC SWE)

The Open Geospatial Consortium (OGC) [40] is an international industry con-
sortium that develops standards for providing geographical information on the
web. Among their available standards are the Sensor Web Enablement (SWE),
which is a framework for standardizing the Sensor Web. The OGC SWE defines
the Sensor Web as ”web accessible sensor networks and archived sensor data that
can be discovered and accessed using standard protocols and application pro-

37

gramming interfaces” [194]. To achieve this, the OGC SWE has incorporated
several open standards for data models, encodings, and service interfaces.

• Sensor Model Language (SensorML): SensorML [41] provides a frame-
work for describing sensor systems and processes. SensorML treats all sen-
sor system components as processes which can contain information such
as inputs, outputs, parameters, methods and metadata descriptions. Its
specification defines an information model and XML schema encodings
that can be used for enabling discovery, task processing, and exploitation
of observational data of sensors in the system. SensorML’s official schemas
can be found here: http://schemas.opengis.net/sensorML/.

• Observations and Measurements (O&M): O&M [36] provides ab-
stract information models and XML schema encodings for describing and
exchanging observations and measurements from sensors. An observation
comprises of observing a feature of interest, defining appropriate feature
properties and metadata, and procedures which are processes described
in SensorML for producing the resulting measurement values. The O&M
model information can be exchanged between different system endpoints.
O&M’s official schemas can be found here: http://schemas.opengis.

net/om/.

• SWE Common Data Model: SWE Common [44] provides low-level
data model definitions for exchanging sensor data between OGC SWE
framework entities. It enables an XML encoding that should be utilized
by the other OGC SWE standards to ensure better framework interoper-
ability.

• Sensor Observation Service (SOS) SOS [42] is a web service interface
for requesting, querying, and retrieving sensor observations, sensor meta-
data, and sensor system information. SOS’s official schemas can be found
here: https://schemas.opengis.net/sos/.

• Sensor Planning Service (SPS) SPS [43] is a web interface for send-
ing user-driven requests to the sensor system. It can involve acquisition
and tasking of sensors, or gathering information about other OGC SWE
services in order to provide access to the data collected by tasked sensors.
SPS’s official schemas can be found here: https://schemas.opengis.

net/sps/.

• PUCK Protocol Standard: PUCK [37] is a instrument protocol that
can used for retrieving SensorML information and metadata from devices
that enables the RS232 serial port or Ethernet connections.

Other OGC standards of interest are the SensorThings [38] standard, which is
a RESTful API that provides interconnections between IoT systems and ap-
plications for tasking, managing and retrieving IoT data. Another standard is
WaterML [39], which describes an information model for representing and ex-
changing observational underwater data, using other existing OGC standards.
Lastly, the SWE Service Model [45] contains eight different packages with differ-
ent data types that are commonly integrated with the other OGC SWE services.

The OGC SWE standards can cooperate in several ways for enabling diverse
sensor system use case scenarios. An example of this is shown in figure 3.7. The

38

http://schemas.opengis.net/sensorML/
http://schemas.opengis.net/om/
http://schemas.opengis.net/om/
https://schemas.opengis.net/sos/
https://schemas.opengis.net/sps/
https://schemas.opengis.net/sps/

SOS and SPS services can be established based on SensorML sensor system
descriptions. The sensor system retrieves SensorML metadata from sensors via
the PUCK protocol, and register them to a catalog for enabling sensor discovery
to client applications. The sensor system also registers to the SOS, and the SOS
registers to the catalog. A client application #1 can for example send a request
to SPS for tasking the sensor system to sample its sensors and publish their
observations and measurements to SOS, using the O&M and SWE Common
standards. A client application #2 can then connect to SOS and retrieve the
observational data [19, 91, 259]. This is only some of the possible use cases that
the OGC SWE standards can provide.

Client App #2

Sensor
Observation

Service (SOS)

Sensor Planning
Service (SPS)

Sensor System
(SensorML)

Sensor
Observation
Repository

Client App #1

Catalog (CAT)

Register Sensor System

User Task Requests

Retrieve O&M

Lookup

Retrieve O&MPublish O&M

Task
Sensor
System

Register SOS

Sensors

PUCK

Figure 3.7: OGC SWE Functional Architecture and Interactions [19, 91, 259]

3.2.5 World Wide Web Consortium (W3C)

The World Wide Web Consortium (W3C) [48] is an international organization
that focuses on developing standards for the World Wide Web. Several stan-
dards have been developed under their ”Semantic Web” and ”Semantic Sensor
Network Incubator Group” that can be utilized for enabling semantic interop-
erability in IoT systems. Below, we describe the different standards.

Semantic Web
The Semantic Web [47] standards expands the capabilities on the web by pro-
viding meaning, ontologies and structure to web data. The standards are based
around Linked Data [46], which consists of linking structured data with other
data for facilitating machine understanding and relationships between web re-
sources. The main standards of interest are RDF, RDFS, OWL, and SPARQL,
which forms the Web of Data.

• Resource Description Framework (RDF): RDF [50, 88] defines graph-
based models for representing semantic resources and their relationships
on the web. The standard creates statements in form of triples, which
contains the three following components: a subject, a predicate, and an
object. An RDF triple can be seen as a directed graph where the subject
and the object are nodes, while the predicate is the edge between them,
directing against the object. Related sets of RDF triples forms the RDF

39

graph models, linking together all the resources. RDF provides a vocab-
ulary of 8 classes and 7 properties, and are are using URIs for identifiers
and the XML format for data syntax. RDF’s namespace can be found
here: http://www.w3.org/1999/02/22-rdf-syntax-ns#.

• Resource Description Framework Schema (RDFS): RDFS [29] is an
extension of RDF’s vocabulary that allows for taxonomic and hierarchical
descriptions of RDF elements. RDFS provides 6 additional classes and
9 additional properties, giving a total of 12 classes and 16 properties for
representing various resources and relationships. It also defines the domain
and range of the RDF/RDFS properties. RDFS’s namespace can be found
here: http://www.w3.org/2000/01/rdf-schema#.

• Web Ontology Language (OWL): OWL [249, 49, 109, 185] is an ontol-
ogy language that extends the vocabulary on top of RDF. However, com-
pared to RDFS, OWL’s vocabulary provides more expressive and logical
descriptions to assign additional meaning to RDF triples in RDF graphs.
OWL helps enriching RDF information with more meaningful semantics
which can be useful in many scenarios. The standard’s vocabulary con-
sists of 17 classes and 23 properties. OWL’s namespace can be found here:
http://www.w3.org/2002/07/owl#.

• SPARQL Protocol and RDF Query Language (SPARQL): SPARQL
[200, 51, 69] is an SQL-like query language used for querying RDF data. Its
syntax and semantics supports aggregation, sub-queries, negation, prop-
erty paths and several functions. The standard uses four query forms: SE-
LECT, CONSTRUCT, ASK, and DESCRIBE. SELECT extracts values
from RDF triples that matches a specified pattern, CONSTRUCT obtains
an RDF graph and reconstructs it into a specified graph template, ASK
returns a boolean based on whether the query pattern matches or not,
and DESCRIBE obtains an RDF graph and describes its resources. Data
formats such as JSON, XML and CSV/TSV can be utilized for serializing
SPARQL results obtained from SELECT and ASK queries.

The combined usage of these standards gives users many flexible options for en-
abling semantic interoperability in web-based services and applications, which
are commonly adapted in the domain of IoT. Figure 3.8 gives an example on
how the standards can be utilized together, with the exception of OWL.

Semantic Sensor Network Incubator Group
The W3C’s Semantic Sensor Network Incubator Group [35] has produced two
ontology standards for enabling sensor-based semantics. These standards are
the Semantic Sensor Network (SSN) and Sensor, Observation, Sample, and Ac-
tuator (SOSA) ontologies [86]. The SSN/SOSA ontologies were highly influ-
enced by the OGC SWE’s existing standards such as SensorML and O&M,
as they already provided well-established annotations of sensors, observations
and measurements. However, unlike the OGC SWE standards, the SSN/SOSA
standards are fully integrated and compatible with the W3C’s Semantic Web
standards.

• Semantic Sensor Network (SSN): SSN [86] is an ontology language for
describing sensors, observations, procedures, and properties for features of

40

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#

Subject ObjectPredicate
RDF Triple
Format

RDF/RDFS
Graph
Example

SPARQL
Query

Asks for a list of
all publications

SELECT ?pub WHERE
{
 ?pub rdf:type ex:Publication
}

Figure 3.8: RDF, RDFS, and SPARQL Example [87]

interest. In the beginning, SSN was originally built around the Stimulus
Sensor Observation (SSO) [95] design pattern, which provided a common
ground for the SSN ontologies, as well as addressing the needs for light-
weight semantics in Linked Data scenarios. In the newest versions, SSO is
replaced by SOSA. Currently, the SSN ontology consists of 6 classes and
15 properties that can be utilized independently or collaboratively with
SOSA’s own classes and properties. They both provide different scopes
with distinct ontologies that are suitable for different use cases. SSN’s
namespace can be found here: https://www.w3.org/ns/ssn/.

• Sensor, Observation, Sample, and Actuator (SOSA): SOSA [86]
provides a light-weight ontology for modelling interactions between sen-
sors, observations, samplings, and actuators. The ontology can either be
used standalone, or together with SSN for broadening its use case sce-
narios. SOSA is an improved and expanded version of the SSO design
pattern, providing a more modular ontology. SSO were limited to the
scope of sensors and their observations, while SOSA extended the scope
to also include classes and properties for for actuators and sampling. Cur-
rently, the SOSA ontology consists of 13 classes and 23 properties. SOSA’s
namespace can be found here: https://www.w3.org/ns/sosa/.

The SSN/SOSA ontologies defines several conceptual modules that covers all
their main concepts. Figure 3.9 gives an overview of the conceptual ontology
modules, as well as utilization of the main SSN/SOSA classes and properties
from a observation perspective. The SSN components are shown in blue, while
the SOSA components are shown in green.

3.2.6 Metadata Summary

The goal of all these standards is to accommodate for the lack universal meta-
data representations in the IoT and provide standardized ways for enabling

41

https://www.w3.org/ns/ssn/
https://www.w3.org/ns/sosa/

Figure 3.9: Overview of the SSN (Blue) and SOSA (Green) Classes and Prop-
erties [86]

syntactic and semantic interoperability to heterogeneous systems. Some provide
information models with multiple object type definitions and semantic ontolo-
gies, while others provide entire IoT frameworks. The IPSO standard provide
an object model that defines over 50 different smart objects. The standard
is integrated as an information model layer on top of the LwM2M framework
for providing more extensive metadata representations, enhancing the frame-
work’s semantic interoperability. The OPC UA provides an IoT framework
that are mainly aimed towards industrial domains. The OPC UA’s informa-
tion model uses an object-oriented, node-based terminology for creating flexible
and relational descriptions of different sensors and machinery. The OPC UA’s
specification provides services, mappings, security and supported communica-
tion technologies for abstract message exchanging between other applications
and systems. The OCF also provides an entire IoT framework with multiple
specifications that enable similar functionalities to OPC UA, allowing for ab-
stract interactions and message exchanges with other applications and systems.
The OCF’s most recent resource type specification defines 180 different types
of resources that can be used for defining diverse metadata representations of
sensors and other IoT-based entities. For the OGC SWE, the SensorML, O&M,
and SWE Common Data Model standards form their information model, while
the framework’s other standards provides service interfaces. The framework’s
standards can be integrated together in order to enable system architectures for
requesting, tasking, managing, and retrieving various sensor data. The W3C’s
Semantic Web standards such as RDF, RDFS, OWL, and SPARQL provide the
necessities for achieving semantic interoperability in web based heterogeneous
systems, and can represent data in all kinds of different domains. For more IoT-
specific domains, the SSN/SOSA standards can be applied to the Semantic Web
standards, as they provide general-purpose ontologies for describing different as-
pects of sensors, observations and their processes. All the presented standards

42

have both similar and different characteristics, but with the same purpose of vir-
tually representing physical objects in an interpretative and contextual manner
that facilities interoperable machine understandings.

43

Chapter 4

Cloud Platforms

This thesis evaluates three well established cloud platforms in order to assess
their applicability and determine their potential use in the Smart Ocean project.
In this chapter we give a detailed overview of the services, features and related
concepts between the three cloud platforms.

4.1 Microsoft Azure

Microsoft Azure is a cloud platform developed by Microsoft, starting in 2010.
Today, it is one of the largest and most popular cloud platforms on the market,
with over 200 products on offering to assist users in developing their desired IT
solutions [169]. In this section we give an overview of Microsoft Azure’s offerings
that are relevant to sensor data integration.

4.1.1 Azure IoT Overview

The Azure IoT is Microsoft’s collection of relevant cloud services and applica-
tions that offers the components needed for building diverse IoT solutions on
their platform. Figure 4.1 shows Microsoft’s IoT reference architecture [151]
with the recommended components, but no solution requires all of them. An
Azure IoT solution involves (1) things that collects and sends data, (2) insights
that can be gained based on the received data, and (3) actions that can be taken
based on the acquired insights [126].

Things
The things are the physical devices or IoT applications that sends data to Azure.
Azure IoT offers support for many types of IoT devices from different micro
controller units running on either Azure RTOS [130] or Azure Sphere [131], to
developer boards like Arduino or Raspberry Pi running on Azure’s IoT devel-
oper kits [158]. Besides general IoT device support, Azure also offer support
for various IoT edge devices by connecting them through edge gateways, us-
ing the Azure IoT Edge [121] service. These are devices that may be more
resource-constrained, performs local preprocessing, or uses other communica-

44

Figure 4.1: Azure IoT Reference Architecture [151]

tion protocols that are not supported by the platform and needs translation.

Cloud Gateway
The Azure IoT Hub [123] is Microsoft Azure’s cloud gateway service that allows
billions of IoT devices to securely connect and send data to the cloud. The
service supports several connectivity options for IoT device integration, with
both direct and indirect cloud gateway utilities, as well as edge gateways via
the Azure IoT Edge service. The IoT Hub securely connects the devices via TLS
encryption and provide both device-to-cloud (D2C) and cloud-to-device (C2D)
messaging. The hub also provides device provisioning with per-device authen-
tication, using either symmetric keys, X.509 certificates, or Trusted Platform
Module (TPM). The Device Provisioning Service (DPS) [122] can also be inte-
grated with IoT Hub in order to provide scalable and automatic provisioning
without human intervention in a secure manner. In order to ingest received
data to other cloud services and applications, the IoT Hub defines rules in an
SQL-like query syntax to authorize where individual flows of data are routed.
The IoT Hub also provide integration of digital twins for each cloud registered
device. The digital twins are represented in JSON documents that contains
desired and reported properties, tags, and state information of their physical
counterparts [123]. The Azure Digital Twins [119] service allows users to design
graph models of digital twins and further contextualize them in expandable,
digital environments.

Insights
Once the IoT devices have successfully connected to the cloud, the received IoT
data can then be processed and explored in several ways in order to gather
insights about them [126]. The data typically gets routed either to a stream
processing path, a warm storage path, or a cold storage path. The stream pro-
cessing path is used for processing acquired data in near real-time. If incoming
data flows gets processed with higher latency, then the data can either be stored

45

in the warm storage path or cold storage path. The warm storage path tem-
porarily stores recent data sets that can accommodate for longer delays and
more detailed processing. The cold storage path is used for long-term storage
of data, where time consuming analytics and batch processes can be performed
on them. For the stream processing path, Azure provide several services that
implements stream processing engines. Azure Stream Analytics [166] provides
real-time analytics and processing of data from multiple data sources at once,
while HDInsight [168] can be used for implementing several third-party frame-
works for processing their data on the platform. For the warm storage path, the
Azure Cosmos DB [116] service provide NoSQL databases for storing unstruc-
tured data, while the Azure SQL Database [132] service provide relational SQL
databases for storing structured data. Lastly, for the cold storage path, services
such as Azure Data Lake [137] or Azure Blob Storage [115] allows for archiving
massive volumes of data. Meanwhile, services like Azure Machine Learning [125]
or Azure Databricks [118] can be used to analyze the cold data. Additionally,
Azure also offers multi-purpose services such as Azure Data Explorer [117] and
Azure Time Series Insights [133] which provide both near real-time processing,
storage, and analytics of large data volumes.

Actions
When insights have been gathered, different actions can be performed in order
manage the cloud environment and produce value. Azure offers several business
and managements services that can be integrated in the solutions. To mention
a few, Power BI [135] is Microsoft’s primary tool for visualizing data in Azure.
Various services can connect and route their data to Power BI for data visu-
alization, modeling, analysis, and creating business reports, using the service’s
interactive dashboards. For security, Azure Active Directory [113] is used for
general identity and access management (IAM) in the cloud, while Microsoft
Defender for IoT [153] provide a security environment for identifying IoT de-
vices, and detecting their vulnerabilities and threats. Azure App Service [114]
allows users to build and deploy their web applications and REST APIs on the
platform, while Azure Monitor [127] provide general user-level monitoring and
diagnostics of all the integrated applications and cloud services.

4.1.2 Azure Protocol Bindings, SDKs and APIs

Microsoft Azure provides several protocols, SDKs and APIs for enabling ap-
plications and systems to integrate and communicate with the platform. For
device communication with IoT Hub, the platform supports HTTP 1.1 over
native TLS, MQTT 3.1.1, and AMQP 1.0, where both the MQTT and AMQP
protocol can optionally bind with WebSocket for communication via web appli-
cations [134]. HTTPS can be utilized via REST API posting, while MQTT and
AMQP provide brokered messaging to specific topics. MQTT supports QoS
level 0 and 1, but not level 2. In order for the devices to successfully send data
to IoT Hub, the user must specify the chosen protocol’s required endpoint and
port number, serialize the payload data into a supported format, and add the
device’s registered authentication information in the message exchange. Table
4.1 shows Microsoft Azure’s supported protocol bindings. Azure also technically
supports other protocols via Azure IoT Edge, which allows protocols such as

46

Protocol Authentication Port Endpoint

HTTPS 1.1

Symmetric Keys,

X.509 Certificates,

Trusted Platform Module

443
{iot-hub-name}/devices/{device-id}/

messages/events?api-version=2020-03-13

MQTT 3.1.1

Symmetric Keys,

X.509 Certificates,

Trusted Platform Module

8883
Client ID: {iot-hub-name}.azure-devices.net/,

Topic ID: devices/{device-id}/messages/events

AMQP 1.0

Symmetric Keys,

X.509 Certificates,

Trusted Platform Module

5671
amqps://{device-id}@sas.{iot-hub-name}:{iot-hub-name}

.azure-devices.net/devices/{device-id}/messages/events

MQTT over

WebSocket

Symmetic Keys

X.509 Certificates,

Trusted Platform Module

443

Client ID: wss://{iot-hub-name}.azure-devices.net:433/

$iothub/websocket

Topic ID: devices/{device-id}/messages/events

AMQP over

WebSocket

Symmetic Keys

X.509 Certificates,

Trusted Platform Module

443
wss://{iot-hub-name}.azure-devices.net:433/

$iothub/websocket

Table 4.1: Microsoft Azure Protocol Bindings

CoAp or OPC UA Servers to be used via edge gateways and send data to IoT
Hub. Legacy devices that uses other non-supported protocols can also connect
to an indirect cloud gateway and be translated to a platform supported protocol
before entering the direct cloud gateway.

Azure offers multiple service SDKs for developing back-end applications in many
different languages [159], that can manage the user’s cloud services. For the IoT
Hub service, Azure offers both service SDKs that can be used for working with
the hub via applications, and device SDKs [157] for facilitating the develop-
ment of device client applications that can connect to the IoT Hub via Azure’s
supported protocols bindings. These clients can send D2C data, and optionally
receive C2D data from the IoT Hub. Azure’s device SDKs is available for the
following languages: .NET, Python, Java, Node.js, C and embedded C [157].
Microsoft also provides an entire REST APIs reference documentation [129] for
communicating and interacting with multiple cloud services. The REST API
for IoT Hub [146] allows users to access and configure settings in the service,
send device messages, update and retrieve device twins, and more.

4.2 Amazon Web Services

Amazon Web Services is currently the most popular cloud platform, holding the
largest cloud market share of any other platform. The cloud platform started
back in 2006 [208] with the introduction of its Simple Storage Service (S3) and
has since spanned its offerings to over 200 widely adopted products [228]. In this
section, we give an overview of Amazon’s relevant cloud services and features
for integrating sensor data to their platform.

47

4.2.1 AWS IoT Overview

Amazon Web Services provides multiple IoT services and general purpose ser-
vices that can be integrated together for developing diverse IoT solutions on
the platform. Amazon also provides a general IoT reference architecture, illus-
trated in their official AWS IoT Core developer guide [241]. Figure 4.2 shows
the architecture, where the green components are the IoT-specified services,
while the blue components showcase several general purpose services that can
be integrated in the IoT solution.

Devices Message
Broker

Rules
Engine

Device
Shadows

Amazon Kinesis

Amazon DynamoDB

IoT
Applications

Security and Identity

AWS Lambda

Amazon S3

Amazon SNS

Amazon SQS

AWS SDK

Things SDK

Figure 4.2: AWS IoT Core Architecture

Devices
Amazon provide several device and software options for connecting and sending
data to the platform. AWS IoT ExpressLink [218] provides a comprehensive set
of developed hardware modules from Amazon’s collaborative partners, that can
be easily integrated with the platform’s services. The FreeRTOS [235] service
provides a real-time operating system that can run on different microcontrollers
for connecting to the platform’s cloud gateways. For edge devices, the AWS
IoT Greengrass [220] service provides open-source device software to run on
devices or IoT client applications for enabling local preprocessing and message
exchanging to the cloud via edge gateways. Meanwhile, users can deploy and
manage the edge devices from the AWS portal. Besides these services, Amazon
Web Services also offers multiple service SDKs for communication with different
services, and device SDKs for simplifying the development of client applications
for sending device data to to the cloud.

Cloud Gateway
AWS IoT Core [214] is Amazon’s main service for securely connecting and man-
aging IoT devices in the cloud, and forwarding the data to other connected
cloud services and applications. IoT Core consists of a message broker that
devices can publish messages to, based on their defined topics. Device shadows
is IoT Core’s name-variant for digital twins, which can be created for storing
the reported and desired states of devices in JSON documents. Security and

48

identification is provided through device provisioning, authentication files, pay-
load transit encryption, and AWS IAM [210]. The service offers support for
several authentication formats, including X.509 certificates, SigV4, and custom
authentication tokens using JSON Web Tokens (JWTs) or OAuth. Additional
management and security can be integrated also be integrated with the use of
AWS IoT Device Defender [215] and AWS IoT Device Management [216]. The
rules engine defines the data ingestion rules for how individual flows of data are
routed to other services, using a SQL-like language syntax.

Supporting Services
Amazon Web Services provides several relevant services for gathering insights
and performing action on ingested data from IoT Core. AWS Lambda [224] can
be used enabling serverless, on-demand execution of custom code for responding
to triggered events in the system. Amazon Kinesis [204] provides real-time
stream processing of different kinds of streams that are separated into four
different modules. The modules involves analytics streams, data streams, video
streams, and lastly data Firehouse which is used to transforming and prepare
data streams to be loaded into data stores. Amazon DynamoDB [203] and
Amazon Simple Storage Service (S3) [207] is the two main storage services that
is used for IoT purposes. Amazon DynamoDB provides fast and flexible NoSQL
databases for storing data both temporally and long-term. Amazon S3 provides
a heavily scalable object storage that can store large data volumes for long-term
archiving of data. Other services such as Amazon Simple Notification Service
(SNS) [206] can be used for sending and receiving notifications from various
system sources, while Amazon Simple Queue Service (SQS) [aws] can store
data in distributed queues that can be retrieved by different applications and
services. Finally, Amazon QuickSight [205] provide general utilities business
processes and visualization of data that are queried from output streams and
storage spaces.

4.2.2 AWS Protocol Bindings, SDKs, and APIs

Amazon Web Services supports the following protocols for sending messages to
AWS IoT Core: HTTP 1.1 via native TLS, MQTT 3.1.1, and MQTT over Web-
Socket [234]. All message are sent to specified topics in the service’s message
broker. With the MQTT protocol, devices and IoT applications can publish
and subscribe to topics with QoS level 0 or 1, while the HTTPS protocol only
allows for publishing to topics via REST API posting. Devices and client con-
nections needs to use the applied protocol’s unique endpoint and supported port
number. Additionally, they also need to input their provisioned device’s authen-
tication information. Table 4.2 shows the supported protocol bindings. Similar
to Microsoft Azure, Amazon Web Services allows for utilization of other non-
supported protocols via edge computing, using AWS IoT Greengrass and AWS
IoT SiteWise. For SDK support, Amazon Web Services provides service SDKs
for nine different languages, and IoT device SDKs for five different languages
[242]. For API support, the majority are based on REST. Amazon provides an
entire API reference document for IoT [223].

49

Protocol Authentication Port Endpoint

HTTPS 1.1

SigV4,

X.509 Certificates,

Custom Authentication

443,

8883
https://{iot-core-name}:{port}/topics/{topic}?qos={0 or 1}

MQTT 3.1.1
X.509 Certificates,

Custom Authentication

443,

8883

Client ID: {iot-core-name},

Topic ID: {topic}

MQTT over

WebSocket

SigV4,

Custom Authentication
443 wss://{iot-core-name}:433/mqtt

Table 4.2: Amazon Web Services Protocol Bindings

4.3 Google Cloud Platform

Google Cloud Platform is Google’s suite of available Cloud Computing services.
The platform came on the market in 2011, and has since become one of the
most popular cloud platforms available, with over 100 products available. In
this section we give an overview of the cloud platform, focusing on the sensor
data integration aspects.

4.3.1 GCP IoT Overview

Similar to the two previous cloud platforms, Google Cloud Platform also pro-
vides an IoT reference architecture [75] that contains Google’s most relevant
cloud services for developing IoT solutions on their platform. Figure 4.3 shows
Google’s reference architecture. We now go through the main IoT components,
following the flow of the architecture.

Figure 4.3: GCP IoT Reference Architecture [75]

Devices
Google Cloud Platform allows the use of several developer boards such as Ar-
duino and Raspberry Pi for building IoT applications to send data. Google

50

in particular has a large focus when it comes to machine learning, and allows
for cloud integration with the TensorFlow framework. Google has developed
custom hardware chip called TensorFlow Processing Unit (TPU) [243] which
run on TensorFlow for building and executing machine learning models on the
platform. Google has also made an edge version of the chip, called Edge TPU
[244] for running ML models on the edge with TensorFlow Lite, accelerating
ML training in the cloud.

Cloud Gateway
In order to send IoT data to Google Cloud Platform, the devices and IoT appli-
cations need to negotiate access to the GCP IoT Core [75] service. The service
provides two different protocol bridges that act as the gateway-options. IoT
Core provide device provisioning via its device manager, and creates registries
where related devices are stored. Each device gets a public/private key pair for
authentication where X.509 client certificates are used as the public key, while
the private key is needed for creating a the mandatory JWT. Google’s Cloud
Pub/Sub [77] service establishes brokered messaging capabilities for IoT Core.
Each registry binds to created subscriptions and topic in order to enable an
endpoint where messages can be stored.

Supported Services
In order to ingest data to other services, the platform provides pipelines that
are offered by Cloud DataFlow [231]. DataFlow provide both routing of data to
other service endpoints, as well stream processing capabilities. For storage of
temporal data, Cloud Datastore [233] provide NoSQL databases, while Cloud
BigTable [226] provides relational SQL databases. The Cloud Storage [229]
service can be used for long-term archiving of data. BigQuery [225] enables
high-scalable data querying to other services. It can route data to AI Plat-
form [202] for performing machine learning, while Datalab [232] can be used
for data exploration and analysis. Lastly, Google’s Data Studio [230] provides
dashboards for data visualization and general business integration.

4.3.2 GCP Protocol Bindings, SDKs, and APIs

In the Google Cloud Platform, devices can connect and send messages either
through their HTTP bridge [78] or MQTT bridge [79]. Its supports HTTPS
1.1 over REST API posting for broker publishing, and both publishing and
subscribing with MQTT 3.1.1. JWTs needs to be used for authentication over
both protocol bridges. The Google Cloud Platform provides multiple service
SDKs [227], but only provide device SDK support for Embedded C. For APIs,
most of them are based around REST, but the Google Cloud Platform also
offers gRPC API support for some of its cloud services, but in case of sensor
data integration, REST APIs are still utilized as Google’s IoT Core service only
supports HTTP/1.1, and gRPC only works over HTTP/2. The main APIs of
interest is the Cloud IoT API [73] and the Cloud Pub/Sub API [33] which is
required in order to send messages to IoT Core and publish them to topics in
Cloud Pub/Sub.

51

Protocol Authentication Port Endpoint

HTTPS 1.1 JSON Web Tokens 443

https://cloudiotdevice.googleapis.com/v1/projects/

{project-id}/locations/{cloud-region}/registries/

{registry-id}/devices/{device-id}:publishEvent

MQTT 3.1.1
JSON Web Tokens,

X.509 Certificates

443,

8883

Client ID: projects/{project-id}/locations/{cloud-region}/

registries/{registry-id}/devices/{device-id},

Topic ID: devices/{device-id}/{topic}

Table 4.3: Google Cloud Platform Protocol Bindings

4.4 Cloud Platform Summary

We have now given an overview over each platform’s most essential aspects
for our thesis. In table 4.4 below, we compare the cloud platforms’ most rele-
vant features and services. While there are differences, they all fundamentally
handle sensor data integration in very similar ways. Each platform has their
own IoT service hub (IoT Hub/Core) which provide cloud gateway connections
to the IoT devices, using their required protocol bindings and authentication
mechanisms. IoT Hub/Core also provide device provisioning and general tech-
niques for ingesting data to other services. All three platforms offers various
general purpose services for providing data processing, storage, and business
integration. Additionally, they also offer similar services for enabling serverless
computing, application deployment, containers, and virtual machines. In terms
of differences, the amount language and protocol support varies for each cloud
platform. Microsoft Azure is the only platform that supports the AMQP pro-
tocol, while the two others are mainly limited to HTTPS and MQTT. Google
Cloud Platform do not provide any options for digital twins, and have very lim-
ited device SDK support compared to the other two platforms. In terms of edge
computing, both Microsoft and Amazon provide IoT-specified edge computing
services on their platform. Google do also provide edge computing, but not any
services that are specifically designed for IoT usage. Instead, Google are using
the combined effort of the Anthos [209], Google Distributed Cloud Edge [239],
and Google Kubernetes Engine [240] services for distributing managed hard-
ware and software solutions that extends Google’s cloud services to the edge.
It uses containers and virtual machines for allowing users to run their desired
cloud services closer to where their data is being produced and consumed. Ama-
zon currently is the cloud market leader of the three, with Microsoft in second
place, and Google Cloud Platform in third place. Amazon is also the most ma-
ture platform of the three as it started in 2006, and currently offers the most
available cloud services of all the three platforms. Even so, Microsoft Azure is
not far behind in terms of service offerings, and also provide many of the same
features and capabilities for sensor data integration. Google Cloud Platform
also provide many of the essential features and capabilities for enabling sensor
data integration, but are also lacking in several areas when compared to the
other two cloud platforms.

Parameters Azure AWS GCP

Starting Year 2010 2006 2011

52

Service Models

IaaS,

PaaS,

SaaS

IaaS,

PaaS,

SaaS

IaaS,

PaaS,

SaaS

Device Software

Azure RTOS,

Azure Sphere,

Azure Plug and Play,

Device SDKs

FreeRTOS,

AWS IoT ExpressLink,

Device SDKs

CPU/GPU/Edge TPU,

Device SDKs

Cloud Gateway Azure IoT Hub AWS IoT Core GCP IoT Core

IoT Message

Protocols

HTTPS,

MQTT,

AMQP,

MQTT over WebSocket,

AMQP over WebSocket

HTTPS,

MQTT,

MQTT over WebSocket

HTTPS,

MQTT

Serverless

Computing
Azure Functions AWS Lambda Functions Cloud Functions

Device

Authentication

Symmetric Keys,

X.509 Certificates,

Trusted Platform Module

X.509 Certificates,

SigV4,

OAuth,

JSON Web Tokens

X.509 Certificates,

OAuth,

JSON Web Tokens

Security
TLS Encryption,

Azure Active Directory

TLS Encryption,

Amazon Cognito,

AWS IAM

TLS Encryption,

Google Cloud IAM

Device SDKs

.NET,

Python,

Java,

Node.js,

C,

Embedded C

Python,

Java,

C++,

JavaScript,

Embedded C

Embedded C

API Integration REST-based REST-based
REST-based,

gRPC-based

Service SDKs

and APIs

.NET,

Python,

Java,

C++,

C,

JavaScript/TypeScript,

Go,

.NET,

Python,

Java,

C++,

JavaScript,

Node.js,

PHP,

Ruby,

Go

.NET,

Python,

Java,

C++,

Node.js,

PHP,

Ruby,

Go

53

Storage

Azure SQL DB,

Azure Cosmos DB,

Azure Blob Storage,

Azure Data Lake

Amazon S3,

DynamoDB

Cloud Storage,

Cloud BigTable,

Cloud Datastore

Analytics

Azure Stream Analytics,

Azure HDInsight,

Azure Data Explorer,

Time Series Insights

AWS IoT SiteWise,

AWS IoT Analytics,

Amazon Kinesis

BigQuery,

Cloud Datalab,

Cloud Dataflow

Visualization Power BI Amazon QuickSight
Looker,

Google Data Studio

ML and AI
Azure Machine Learning,

Azure Data Bricks

Amazon SageMaker,

Amazon Augmented AI

Cloud ML Engine,

AI Platform

Virtual Machine Azure Virtual Machine Amazon EC2 Google Compute Engine

Container Azure Kubernetes Service
AWS Elastic Container,

AWS Kubernetes Service
Google Kubernetes Engine

Deployment Azure App Service AWS Elastic Beanstalk Google App Engine

Digital Twins Azure Digital Twins
AWS IoT TwinMaker,

AWS IoT Device Shadow
N/A

Edge

Computing
Azure IoT Edge

AWS IoT Greengrass,

AWS IoT SiteWise

Edge TPU,

Anthos,

Distributed Cloud Edge,

Google Kubernetes Engine

Additional IoT

Related Services

Azure IoT Central,

MS Defender for IoT,

Azure IoT Hub DPS,

Azure Percept,

Windows for IoT

Amazon SNS and SQS,

AWS IoT Events,

AWS IoT Things Graph,

AWS IoT Defender,

AWS IoT FleetWise,

AWS IoT Device Management

Cloud Pub/Sub,

Table 4.4: Cloud Platform Comparison

54

Chapter 5

Design and Implementation

In this chapter, we go over the design and implementation aspects of the sensor
data integration prototypes. Several client applications have been developed for
each cloud platform, using SFI Smart Ocean’s pilot demonstrator 1 as a case
study. The GitHub link to all the code can be found in Appendix A.

5.1 Virtual Sensors and Client Interface

Aanderaa Data Instruments AS (AADI) [15] is one of the collaborating partners
in the Smart Ocean project that are supplying with sensors and instrumentation
for pilot demonstrator 1 (PD1). As mentioned in chapter 1.1.3, the physical
underwater sensors for PD1 are not yet available for experimental prototyping.
Instead, virtual sensors are used to simulate the physical sensors and instruments
data streams. AADI have developed two applications that are being used for
the sensor data integration prototypes: The AADI Device Simulator and the
AADI Real-Time Collector. We have also developed a client interface that can
communicate with these applications.

5.1.1 AADI Device Simulator

The AADI Device Simulator (DS) is an application that has the ability to simu-
late several of AADI’s existing sensors and instruments. One of their offerings is
the Seaguard platform [16] which spans multiple connected sensors and instru-
ments that senses and collects various underwater parameters. The application
simulates the Seaguard devices by producing the exact same data in XML for-
mats. A new XML file is created every few seconds, where its attribute values
are randomized each time. This is the virtual sensor messages that are going to
be sent to the cloud platforms with our prototypes.

5.1.2 AADI Real-Time Collector

The second application is the AADI Real-Time Collector (RTC). The RTC is
used to configure and control all the devices from AADI. The RTC can connect
to each AADI device using their designated IP addresses and port numbers, and

55

receive their data in real time. It can connect with the DS and receive its data
as well. The RTC also allows other client applications to connect with the RTC
through the Windows Communication Foundation (WCF) framework [138]. The
clients can subscribe to a particular device and request its incoming messages.
Depending on the scenario, these client applications can then visualize the data,
store the data in a database, send the data to other applications, or in our case:
send the data to different cloud platforms. Figure 5.1 shows the DS on the left
and the RTC on the right.

Figure 5.1: AADI Device Simulator and AADI Real-Time Collector

5.1.3 Client Interface

The RTC application currently only support connections with .NET client ap-
plications that are enabling the WCF framework. The latest .NET version that
fully supports the WCF framework is .NET Framework 4.8 [140]. Hence, the
client interface as well as all our prototype applications are developed using this
.NET version. All the projects are created using the Visual Studio IDE [165]
and are contained in one solution [167]. The client interface consists of three
separate projects that operate together for connecting and subscribing to the
RTC devices, and forwarding the sensor messages to other applications.

RTC Client
The RTC client project consists of a console application that enables users to
configure how they want to connect and subscribe to the RTC application, in
order to retrieve the sensor messages. The client is capable of sending the ac-
quired sensor messages to other applications in several ways. The client’s main
approach relies on the use of Microsoft Message Queuing (MSMQ) [150]. MSMQ
enables an asynchronous queue that are decoupled from the applications. It al-
lows applications to communicate across heterogeneous networks and systems
that run at different times. The RTC client forwards its received sensor mes-
sages to this queue, where they are stored until other connecting applications
retrieves them. All the projects in our Visual Studio solution uses developed
methods for communicating with the MSMQ. This is how all our prototypes
retrieves the sensor messages from the RTC client. The project utilizes the
AADI.Realtime.Collector.ClientInterface.dll class library [17] that contains the

56

classes and interfaces needed to successfully establish connection with the RTC.
The RTC allows client applications to connect in one of the three following ways:

• IPC Service: The Inter Process Communication (IPC) [145] service is
chosen if both the RTC application and client application are running on
the same machine. IPC establishes a duplex (two-way) communication
between the RTC and client interface through a named pipe [155]. This
the most efficient way for connecting with the RTC.

• TCP Service: The TCP service is chosen if the RTC and client applica-
tion are running on two separate machines on the same internal network.
The client interface inputs the TCP service’s IP address and port number
in order to establish the connection with RTC.

• ASMX Web Service: The ASP.NET Web Service (ASMX) [112] ex-
poses an interface that establishes a one-way connection over HTTP for
enabling the RTC and the client application to communicate. This option
is chosen if both applications are running on separate machines outside
the local network. The client application inputs the ASMX Web Service’s
IP address and port number in order to establish connection the RTC.

Web API
A project containing a REST API has also been created. The web API serves
as another option for sending the RTC client’s retrieved sensor messages to
other applications that are able to fetch its data. The project relies on MSMQ
for retrieving the sensor messages, and then sends the data via HTTP POST
commands. The web API also requires the Internet Information Service (IIS)
[144]. IIS enables a web server running on the operating system, that hosts a
WCF service for sending messages with the web API.

There are also another option for .NET applications that don’t enable either
IIS or MSMQ, to retrieve sensor data from the RTC client. They do this by
integrating their own self-hosted web API, using the Open Web Interface for
.NET (OWIN) [156]. OWIN enables web applications to be decoupled from the
web server, and provides a pipeline-based middleware for handling the requests
and responses between them. The RTC client creates a general message queue,
using .NET’s own Message class [149]. By entering the self-hosted API’s specific
hosting endpoint in the RTC client console, the OWIN-based applications are
able to request the sensor messages from this queue.

Class Library
Another created project contains a class library called MessageHandling. It
consists of multiple helper methods that are called by the different projects in
the solution. The MessageHandling class contains methods for communicating
with the MSMQ, creating message queue for OWIN applications, and serializing
XML sensor messages to JSON. Some of the methods are utilized by the RTC
client and web API, while others are utilized by the sensor data integration
prototypes. The MessageHandling class library were created to facilitate the
development process and provide more flexible functionality in the solution.

57

5.2 Prototype Design and Workflow

In this section, we describe the overall design and workflow between all the com-
ponents. The DS and RTC applications are running locally on our computer.
The DS produces virtual sensor messages every few seconds, while the RTC es-
tablishes connection with the DS through our computer’s local IP address and
default port number. The RTC registers a device entity that receives the sensor
messages from the DS. While these two applications are actively running, we
initialize the client interface projects in Visual Studio and our client console ap-
plication will start up. After choosing the appropriate connection settings in the
console, our client interface connects and subscribes to the RTC’s established
device and requests its sensor messages. The client interface then continuously
forwards the newly retrieved sensor messages to the MSMQ, making them ac-
cessible to our prototypes. Each prototype consists of several client console
applications that are designed for each platform-supported protocol binding. In
our Visual Studio solution, we run our prototype of choice which collects the
sensor messages from MSMQ, serializes them to JSON, and then sends them
to the cloud platform’s IoT message hub service (IoT Hub/Core). Each run-
ning prototype continues to collect and send virtual sensor messages from the
MSMQ until the user manually quits the application. Figure 5.2 shows a high
level model of the relationships between the components. For the rest of this
chapter, we go over the prototype implementations for each cloud platform.

AADI Device
Simulator

AADI Real-Time
Collector Azure MQTT Client

Azure HTTPS Client

Azure AMQP Client

Client Interface

AWS HTTPS Client

AWS MQTT Client

GCP HTTPS Client

GCP MQTT Client

Azure IoT Hub

GCP IoT Core

AWS IoT Core

IIS Hosted
Web API

OWIN Self-hosted
Web API

Figure 5.2: Model of the relationships between the different components

5.3 Prototype 1 - Microsoft Azure

The first prototype is sensor data integration with Microsoft Azure. The pro-
totype consists of one client application that continuously retrieves sensor data
from the client interface and sends it to Azure IoT Hub, either via HTTPS,
MQTT, or AMQP. The client uses Azure’s supported device SDK for .NET.

58

5.3.1 Azure IoT Hub and Device Setup

Before our prototype can send the sensor messages to Microsoft Azure, there
are several prerequisites that needs to be fulfilled on the cloud platform. The
user first and foremost, needs to create an Azure account and then log in to
the Azure portal. Azure IoT Hub [123] is the cloud service we are going to
be using for receiving the prototype’s messages in the cloud. We first create
a resource group [148], which is a container that holds all the services that
are used in a particular solution. From here, we can start setting up our IoT
Hub and input the required information [136]. In the basics section, we give
our hub a name, selects our region, add our account subscription, and choose
our created resource group. In the management section, we choose the desired
pricing and scale tier. There are mainly two tiers, a standard tier that allows
the user to take advantage of all the hub’s features, and a cheaper basic tier
that limits several features like IoT edge, C2D messaging, and digital twins.
Each tier also provide different scaling levels that determine the extra cost and
number of messages that can be sent to the hub per day [124]. After choosing
the appropriate settings, we then review and create our IoT Hub.

Once we have our IoT Hub, we can start creating devices through IoT Hub
device provisioning. We navigate into our IoT Hub and create a device. We
give our device a name that will be the ID for that particular device. We also
have several authentication options to choose from, including symmetric keys,
self-signed X.509 certificate, or signed X.509 certificate authority (CA). For our
setup, we choose the symmetric keys option with auto-generation on for the
primary and secondary keys. After the device has been created, we can enter
our device’s information where we can see our primary and secondary key values,
as well the primary connection string that we need for our prototype. Figure 5.3
shows the device creation and its information. We now have the prerequisites
in order. Next we give an overview of the prototype implementation with the
.NET device SDK.

Figure 5.3: Azure Device Creation (1) and Device Information (2)

59

5.3.2 Azure Implementation with Device SDK

Microsoft Azure is the only cloud platform of the three that offers device
SDK support for .NET. This simplifies the implementation process as the Mi-
crosoft.Azure.Devices.Client library [154] offers several classes, interfaces, enums
and delegates that reduces the amount of code needed to successfully send sensor
messages to our IoT Hub. If device SDKs were not available, we would have to
utilize other open-source libraries for MQTT and AMQP, and language specific
methods for developing REST API posting requests with HTTPS. Examples
of this with HTTPS and MQTT are shown in the client implementations for
Amazon Web Services in section 5.4, and Google Cloud Platform in section 5.5.

We begin by declaring several arguments. The DeviceClient class [139] contains
methods for sending and receiving IoT Hub messages, while the iotHubName,
deviceId and primaryKey strings contains the name of our IoT Hub, the name
ID of our created device, and the device’s related primary key. These string-
values will be unique for each user. Then all of these values are used in the
last string, creating the full connection string needed to authenticate our device
with IoT Hub.

1 private stat ic DeviceCl i ent azureC l i en t ;
2

3 private stat ic s t r i n g iotHubName = ”{your i o t hub name}” ;
4 private stat ic s t r i n g dev i c e Id = ”{your dev i ce name}” ;
5 private stat ic s t r i n g primaryKey = ”{ dev i ce primary key}” ;
6

7 private stat ic s t r i n g connec t i onSt r ing = $”HostName={iotHubName } .
azure−d ev i c e s . net ; DeviceId={dev i c e Id } ; SharedAccessKey={
primaryKey}” ;

The device SDK library’s TransportType enum [164], allows us to select our
communication protocol of choice for sending sensor messages to IoT Hub. We
can choose between HTTPS 1.1, MQTT 3.1.1, AMQP 1.0, MQTT over Web-
Socket, or AMQP over WebSocket. All the needed functionality for each proto-
col is contained in this one line.

1 private stat ic readonly TransportType pro to co l = TransportType .
Mqtt ;

2 // p r i v a t e s t a t i c readonly TransportType pro to co l = TransportType .
Http1 ;

3 // p r i v a t e s t a t i c readonly TransportType pro to co l = TransportType .
Amqp;

4 // p r i v a t e s t a t i c readonly TransportType pro to co l = TransportType .
Mqtt WebSocket Only ;

5 // p r i v a t e s t a t i c readonly TransportType pro to co l = TransportType .
Amqp WebSocket Only

Next, we have the method developed for retrieving the XML messages from the
client interface via MSMQ, serialize them to JSON, and then sending them to
IoT Hub. The method uses the task asynchronous programming model [163]
to reduce potential blocking of processes that needs to complete before other
processes can continue, making the application more responsive. The method
consists of a while-loop that will continue until the user manually quits the
client. On line 9, we use the ReadMessagesFromClient method from our Mes-
sageHandling class library to collect all the current available messages in the

60

MSMQ. We create an array list that has the same length as the current amount
of messages. If the MSMQ is empty, the loop waits for five seconds and tries
again. If the MSMQ has available messages, each message will be serialized to
JSON and transformed to a sequence of one to four bytes using UTF-8 encod-
ing [141]. Then on line 28, we use the Azure’s SendEventAsync method that
sends the current JSON message to IoT Hub, before the loop starts over and
repeats the process for the next sensor message. This method works as the ba-
sis for collecting and sending sensor messages in all the prototypes, with some
adjustments to suit each client.

1 private stat ic async Task SendDeviceToCloudMessagesAsync (
Cancel lat ionToken c t s) {

2 s t r i n g [] messages ;
3 s t r i n g [] jsonMessage ;
4 int messageCounter = 0 ;
5 int counter ;
6

7 while (! c t s . I sCance l l a t i onReques ted) {
8 counter = 0 ;
9 messages = MessageHandling . ReadMessagesFromClient () ;

10 jsonMessage = new s t r i n g [messages . Length] ;
11

12 i f (messages . Length == 0 | | messages == null) {
13 Console . WriteLine (”There i s no messages in the queue”) ;
14 await Task . Delay (5000) ;
15 } else {
16 f o r each (s t r i n g sensorMessage in messages) {
17 // Create JSON message
18 jsonMessage [counter] = MessageHandling .

S e r i a l i z eToJson (sensorMessage) ;
19 us ing var message = new Message (Encoding . ASCII .

GetBytes (jsonMessage [counter])) {
20 ContentType = ” a p p l i c a t i o n / j son ” ,
21 ContentEncoding = ” utf−8” ,
22 } ;
23 counter++;
24 messageCounter++;
25

26 // Send the te l emetry message
27 await azur eC l i en t . SendEventAsync (message) ;
28 Console . WriteLine ($”{DateTime .Now} > Message {

messageCounter} sent ”) ;
29 await Task . Delay (5000) ;
30 }
31 }
32 }
33 }

We also create a method for validating our connection string. The IotHub-
ConnectionStringBuilder class [147] takes our created connection string in as a
parameter and and validates it based on the IoT Hub host name, device ID,
and primary key. We get an exception error if the connection string is invalid.

1 private stat ic void Val idateConnect ionStr ing (s t r i n g [] a rgs) {
2 i f (args . Any()) {
3 try{
4 var cs = IotHubConnect ionStr ingBui lder . Create (args [0]) ;
5 connec t i onSt r ing = cs . ToString () ;
6 }catch (Exception) {

61

7 Console . WriteLine ($” Error : Unrecognizable parameter ’{
args [0] } ’ as connect ion s t r i n g . ”) ;

8 Environment . Exit (1) ;
9 }

10 } else {
11 try{
12 = IotHubConnect ionStr ingBui lder . Create (

connec t i onSt r ing) ;
13 }catch (Exception) {
14 Console . WriteLine ($” Error : Unrecognizable parameter ’{

connec t i onSt r ing } ’ as connect ion s t r i n g ”) ;
15 Environment . Exit (1) ;
16 }
17 }
18 }

Finally, the main method initializes all the methods. Our connection string
gets validated before it gets passed in as a parameter in the DeviceClient class,
together with our chosen protocol. We also set up a cancellation token that lets
the user manually quit the client by typing CTRL-C in the console. When the
DeviceClient has established a connection with our IoT Hub, our sensor mes-
saging method will continue to send messages in a loop, until the user manually
quits the client.

1 private stat ic async Task Main (s t r i n g [] a rgs) {
2 Console . WriteLine (” I n i t a l i z i n g Azure Device C l i en t . Press CTRL−

C to e x i t . . . ”) ;
3

4 // This method v a l i d a t e s our connect ion s t r i n g as a parameter
5 Val idateConnect ionStr ing (args) ;
6

7 //The Dev iceCl i ent connects to the IoT hub us ing our connect ion
s t r i n g and chosen pro to co l

8 azureC l i en t = Dev iceCl i ent . CreateFromConnectionString (
connect ionStr ing , p ro to co l) ;

9

10 // Sets up a cond i t i on to qu i t the c l i e n t , p r e s s CTRL−C to qu i t
11 us ing var c t s = new Cancel lat ionTokenSource () ;
12 Console . CancelKeyPress += (sender , eventArgs) => {
13 eventArgs . Cancel = true ;
14 azureC l i en t . CloseAsync () ;
15 azureC l i en t . Dispose () ;
16 c t s . Cancel () ;
17 Console . WriteLine (” Ex i t ing . . . ”) ;
18 } ;
19

20 //Method f o r sending senso r data to IoT Hub
21 await SendDeviceToCloudMessagesAsync (c t s . Token) ;
22 }

5.3.3 Azure Deployment and Output

Before the prototype deployment, the DS and RTC applications must be running
in the background, and actively produce sensor messages. In Visual Studio, we
choose the projects that are going to run on startup. We select the client
interface projects and the Azure client project. When we run the applications,
we get two consoles displayed as shown in figure 5.4, the client interface console

62

on the left, and the Azure client console on the right. In the client interface
console we need to choose the IPC service, since both the client interface and
the RTC are running on the same machine. If the console gives information that
the RTC client successfully connected to the RTC, the client interface will then
start receiving XML sensor messages and make them accessible for the Azure
client via MSMQ. The Azure client then collects all the current messages in
MSMQ and sends them to IoT Hub. New MSMQ messages are collected each
time the loop repeats. If the Azure client successfully connected to IoT Hub,
the console will write that the messages has been sent. The exact same process
will be done for all the other prototypes as well.

Figure 5.4: Application Deployment

Azure IoT Hub has no direct way of displaying the received sensor messages in
the portal, without routing them to other services. However, Microsoft offers
a graphical tool, called the Azure IoT Explorer [143], that can be downloaded
and installed on the user’s computer. The tool allows us to connect with our
IoT Hub and interact with the connected devices. We select our device and go
to the telemetry tab. Here, we can see the sensor messages being received in
real time while our Azure prototype is running. Figure 5.5 shows an image of
the sensor messages being successfully integrated to Azure IoT Hub.

5.4 Prototype 2 - Amazon Web Services

In the second prototype, we develop clients for sending sensor messages to Ama-
zon Web Services, using AWS IoT Core. Two client applications are created,
one for HTTPS and one for MQTT. Since Amazon does not offer device SDK
support for .NET, we need to utilize open-source MQTT libraries and create
.NET methods for sending REST API posting requests with HTTPS.

5.4.1 AWS IoT Core and Device Setup

Once again, we need to do the necessary setup on the cloud platform before we
can send our sensor messages. We first create an AWS account which automat-
ically sign’s us up for all services on the cloud platform, and then we log in to
the AWS portal. In the search bar, we search for AWS IoT Core and enter the
service. For our prototypes, we need our IoT Core service’s cloud region and

63

Figure 5.5: Azure Sensor Message Output

unique endpoint. In the right-top corner we choose the cloud region we want to
use, and if we navigate to the settings option, we find the unique endpoint for
our IoT Core service.

For device creation there are several options including registration of single
devices, device groups, device types, and provisioning templates for multiple
devices. For our setup we only create a single device. There are several proper-
ties that can be added to a device, but we only give the device a unique name
ID and move on. Next we configure the device’s authentication where users

64

can either upload their own self-signed certificates or CA certificates, or auto-
generate a certificate, public key, and private key, which is the option we choose.
Lastly, we create a policy for managing the device’s access. We name the pol-
icy and then add the following actions: iot:Publish, iot:Subscribe, iot:Connect,
iot:Receive. When the created policy is added to the device, we then download
the auto-generated certificate, public key, and private key, as well as Amazon’s
official CA root certificate: Amazon Root CA 1. Figure 5.6 shows the created
policy and download page for the authentication files.

Figure 5.6: AWS Device Policy Creation (1) and Authentication Files (2)

We add the downloaded authentication files to a separate folder. The files will
have long generated names, but for simplicity we rename them to ”certificate”,
while keeping ”AmazonRootCA1” as it is. For our prototypes we need to re-
format the file types due to the difficulty of formatting .PEM files in C. We
manually reformat the downloaded files to the following file types:

• Certificate: certificate.cert.pem

• Public key: certificate.public.key

• Private key: certificate.private.key

• Amazon root certificate: AmazonRootCA1.crt

Then we use the reformatted files in the following OpenSSL command [238] that
we execute in a terminal. This is done to chain the certificate, private key, and

65

Amazon root certificate into a .PFX client certificate file that our .NET clients
can understand. The user also need to add a custom password for the client
certificate in the command.

1 opens s l pkcs12 −export −in c e r t i f i c a t e . c e r t . pem −inkey c e r t i f i c a t e .
private . key −passout pass :{ your c e r t i f i c a t e password} −out
c e r t i f i c a t e . c e r t . pfx − c e r t f i l e AmazonRootCA1 . c r t

The executed command outputs the client certificate: certificate.cert.pfx. The
client certificate, its custom password, and the Amazon CA root certificate are
the files we need for our prototype. We now have the required setup, and move
on to the client implementations.

5.4.2 AWS Implementation with HTTPS

The HTTPS client publishes messages to a specified topic in IoT Core’s message
broker, using REST API posting. We define the following arguments that will
be unique for each user, with the exception of the port number. They are all
used for creating the client-specific endpoint and topic-specific request URL.

1 private stat ic s t r i n g c l i e n t C e r t = ” c e r t i f i c a t e . c e r t . pfx ” ;
2 private stat ic s t r i n g certPassword = ”{your c e r t i f i c a t e password}” ;
3 private stat ic s t r i n g t o p i c I d = ”{your t op i c name}}” ;
4 private stat ic s t r i n g io tCore Id = ”{your i o t core id }” ;
5 private stat ic s t r i n g cloudRegion = ”{your c loud reg i on }”
6 private stat ic int httpsPort = 8443 ;
7

8 private stat ic s t r i n g endpoint = $”{ i o tCore Id } .{ cloudRegion } .
amazonaws . com” ;

9 private stat ic s t r i n g requestURL = $” https ://{ endpoint } :{ httpsPort
}/ t o p i c s /{ t o p i c I d }? qos=1” ;

The main method creates a X.509 certificate instance with the X509Certificate2
class [172], using our client certificate and password as input. Then we set up a
condition for quitting the client by typing CTRL-C in the console, when running
the application. Lastly, it initializes the method for sending sensor messages to
the cloud platform. The method takes in our request URL, client certificate
instance, and the cancellation token.

1 stat ic void Main(s t r i n g [] a rgs) {
2 Console . WriteLine (” I n i t a l i z i n g AWS HTTP c l i e n t . Press CTRL−C to

e x i t . . . ”) ;
3

4 //Reads our c l i e n t c e r t i f i c a t e and c e r t i f i c a t e password
5 X509Cer t i f i c a t e2 c l i e n t C e r t i f i c a t e = new X509Cer t i f i c a t e2 (Path .

Combine (AppDomain . CurrentDomain . BaseDirectory , c l i e n t C e r t) ,
certPassword) ;

6

7 // Sets up a cond i t i on to qu i t the c l i e n t
8 us ing var c t s = new Cancel lat ionTokenSource () ;
9 Console . CancelKeyPress += (sender , eventArgs) => {

10 eventArgs . Cancel = true ;
11 c t s . Cancel () ;
12 Console . WriteLine (” Ex i t ing . . . ”) ;
13 } ;
14

15 SendDeviceToCloudMessages (requestURL , c l i e n t C e r t i f i c a t e , c t s .
Token) ;

66

16 }

The sensor messaging method uses .NET’s HttpWebRequest class [142] for cre-
ating and sending HTTPS posting requests to the AWS IoT Core. The method’s
structure is quite similar to Azure’s sensor messaging method, with the main
differences being the code between line 24-33. The method obtains the sensor
messages from MSMQ, serializes them to JSON, and then byte encodes them
into a UTF-8 format. For the HTTPS header, we pass in the payload’s content-
length and sets the content-type to application/json. We add the request URL
for the URI, and also add our client certificate for the device authentication.
Then we use .NET’s System.IO.Stream class [162] for writing the request data,
which transfers it to AWS IoT Core.

1 private stat ic void SendDeviceToCloudMessages (s t r i n g requestURL ,
X509Cer t i f i c a t e2 c l i en tC e r t , Cance l lat ionToken ct) {

2 s t r i n g [] messages ;
3 s t r i n g [] jsonMessage ;
4 int messageCounter = 0 ;
5 int counter ;
6 HttpWebRequest r eque s t ;
7

8 while (! c t . I sCance l l a t i onReques t ed) {
9 counter = 0 ;

10 messages = MessageHandling . ReadMessagesFromClient () ;
11 jsonMessage = new s t r i n g [messages . Length] ;
12 i f (messages . Length == 0 | | messages == null) {
13 Console . WriteLine (”There i s no messages in the queue”) ;
14 Thread . S leep (5000) ;
15 } else {
16 f o r each (s t r i n g sensorMessage in messages) {
17 // Create JSON message
18 jsonMessage [counter] = MessageHandling .

S e r i a l i z eToJson (sensorMessage) ;
19 byte [] byteArray = Encoding .UTF8. GetBytes (

jsonMessage [counter]) ;
20

21 counter++;
22 messageCounter++;
23

24 r eque s t = (HttpWebRequest) WebRequest . Create (
requestURL) ;

25 r eque s t . Method = ”POST” ;
26 r eque s t . ContentLength = byteArray . Length ;
27 r eque s t . ContentType = ” a p p l i c a t i o n / j son ” ;
28 r eque s t . KeepAlive = true ;
29 r eque s t . C l i e n t C e r t i f i c a t e s . Add(c l i e n t C e r t) ;
30

31 Stream dataStream = reques t . GetRequestStream () ;
32 dataStream . Write (byteArray , 0 , byteArray . Length) ;
33 dataStream . Close () ;
34

35 Console . WriteLine ($”{DateTime .Now} > Message {
messageCounter} sent ”) ;

36 Thread . S leep (5000) ;
37 }
38 }
39 }
40 }

67

5.4.3 AWS Implementation with MQTT

For the MQTT implementation, we are using the M2Mqtt [186] open-source
library for developing our MQTT client in .NET. In order to successfully con-
nect with IoT Core, the following arguments are required. Both the Amazon
root certificate and the client certificate with its password is needed for authen-
tication. Additionally, we need our device ID, our topic name, our IoT Core
endpoint, and the MQTT port number which is 8883.

1 private stat ic s t r i n g caCert = ”AmazonRootCA1 . c r t ” ;
2 private stat ic s t r i n g c l i e n t C e r t = ” c e r t i f i c a t e . c e r t . pfx ” ;
3 private stat ic s t r i n g certPassword = ”{your c e r t i f i c a t e password}” ;
4

5 private stat ic s t r i n g dev i c e Id = ”{your dev i ce name}” ;
6 private stat ic s t r i n g t op i c = ”{your to p i c name}” ;
7 private stat ic s t r i n g io tCore Id = ”{your i o t core id }” ;
8 private stat ic s t r i n g cloudRegion = ”{your c loud reg i on }”
9 private stat ic int mqttPort = 8883 ;

10

11 private stat ic s t r i n g endpoint = $”{ i o tCore Id } .{ cloudRegion } .
amazonaws . com” ;

For the main method, we first pass in both the Amazon root certificate, and our
client certificate in order create an X.509 certificate instance of each of them.
On line 11, we create our MQTT client using the MqttClient class from the
M2Mqtt library, and pass in the required arguments and certificate instances.
Next, we create our standard cancellation token for manually quitting the client.
We connect our MQTT client AWS IoT Core by passing in our device ID as a
parameter. Lastly, we initiate our sensor messaging method.

1 stat ic void Main(s t r i n g [] a rgs) {
2 Console . WriteLine (” I n i t i a l i z i n g AWS IoT MQTT c l i e n t . Press CTRL

−C to e x i t . . . ”) ;
3

4 //Reads the CA c e r t i f i c a t e
5 X509Cer t i f i c a t e c a C e r t i f i c a t e = X509Cer t i f i c a t e .

CreateFromCertFile (Path . Combine (AppDomain . CurrentDomain .
BaseDirectory , caCert)) ;

6

7 //Reads our c l i e n t c e r t i f i c a t e and c e r t i f i c a t e password
8 X509Cer t i f i c a t e2 c l i e n t C e r t i f i c a t e = new X509Cer t i f i c a t e2 (Path .

Combine (AppDomain . CurrentDomain . BaseDirectory , c l i e n t C e r t) ,
certPassword) ;

9

10 // Creates the MQTT c l i e n t by pas s ing in our arguments
11 var c l i e n t = new MqttClient (endpoint , mqttPort , true ,

c a C e r t i f i c a t e , c l i e n t C e r t i f i c a t e , MqttSs lProtoco l s . TLSv1 2)
;

12

13 // Sets up a cond i t i on to qu i t the c l i e n t
14 us ing var c t s = new Cancel lat ionTokenSource () ;
15 Console . CancelKeyPress += (sender , eventArgs) => {
16 eventArgs . Cancel = true ;
17 c t s . Cancel () ;
18 Console . WriteLine (” Ex i t ing . . . ”) ;
19 } ;
20

21 // Connects the MQTT c l i e n t our dev i c e in the c loud
22 c l i e n t . Connect (dev i c e Id) ;
23

68

24 //The method f o r sending data to the c loud
25 SendDeviceToCloudMessages (c t s . Token , c l i e n t , t op i c) ;
26 }

The sensor messaging method collects the currently available messages from
MSMQ, serializes the messages to JSON, and reformat the payload into bytes
with UTF-8 encoding. On line 24, the MQTT client takes in our topic name
and payload as parameters, and then publishes each message to the specified
topic in IoT Core’s message broker.

1 private stat ic void SendDeviceToCloudMessages (Cancel lat ionToken cts
, MqttClient mqttClient , s t r i n g t op i c) {

2 s t r i n g [] messages ;
3 s t r i n g [] jsonMessage ;
4 int messageCounter = 0 ;
5 int counter ;
6

7 while (! c t s . I sCance l l a t i onReques ted) {
8 counter = 0 ;
9 messages = MessageHandling . ReadMessagesFromClient () ;

10 jsonMessage = new s t r i n g [messages . Length] ;
11 i f (messages . Length == 0 | | messages == null) {
12 Console . WriteLine (”There i s no messages in the queue”) ;
13 Thread . S leep (5000) ;
14 } else {
15 f o r each (s t r i n g sensorMessage in messages) {
16 // Create JSON message
17 jsonMessage [counter] = MessageHandling .

S e r i a l i z eToJson (sensorMessage) ;
18 byte [] byteArray = Encoding .UTF8. GetBytes (

jsonMessage [counter]) ;
19

20 counter++;
21 messageCounter++;
22

23 // Send the te l emetry message
24 mqttCl ient . Publ i sh (top ic , byteArray) ;
25 Console . WriteLine ($”{DateTime .Now} > Message ” +

messageCounter + ” sent ”) ;
26 Thread . S leep (5000) ;
27 }
28 }
29 }
30 }

5.4.4 AWS Deployment and Output

The prototype deployment is done in the same way as the prototype deployment
for Microsoft Azure. The DS and RTC applications must be actively running
in the background. In Visual Studio, we choose the client interface projects and
then either the HTTPS client or MQTT client to run on startup. We then run
the chosen projects and get up the client interface console and the prototype
client console. In client interface console we specify that both the RTC and client
applications are running on the same machine. If the client interface successfully
connected to the RTC, it will start receiving virtual sensor messages and forward
them to the MSMQ. If the prototype client application successfully established
connection with AWS IoT Core, the console then start printing messages in the

69

console each time a new sensor message was sent to the cloud. The deployment
is exactly the same as shown in figure 5.4 with Azure. Next, we head over to
our IoT Core in the AWS portal and navigate to the MQTT test client. There
we enter our topic name, which in our case were ”dotnet/test”, and click on the
subscribe button. Our published messages will then be displayed as shown in
figure 5.7.

Figure 5.7: AWS Sensor Message Payload Output

5.5 Prototype 3 - Google Cloud Platform

The third and final prototype is sensor data integration with Google Cloud
Platform. The prototype consists of a HTTPS client and a MQTT client for
sending sensor messages to GCP IoT Core. Google does not offer device SDK
support for .NET, meaning that we again need to utilize open-source libraries
for MQTT and REST API requests with HTTPS. The implementation approach
is quite similar to the Amazon Web Services prototype, with some exceptions.

70

5.5.1 GCP IoT Core and Device Setup

For our setup, we must first create a Google Cloud Platform account and once
logged in, we create a project with a proper name. From here, we can start
setting up the necessary services. IoT Core [75] is the main service that we are
going to use, but Google’s Pub/Sub [77] service is also needed for creating topics
and subscriptions in order to have an endpoint where the sensor messages can
be published. In order to use these services, we first need to enable two API’s
in our account: The Cloud IoT API [73] and the Cloud Pub/Sub API [33].

We start by creating a topic and subscription on the Pub/Sub service. There
are two types of topics: event-topics and state-topics. The event-topic is used
for aggregation of the received sensor messages, routed from IoT Core. The
state-topics are optional topics that can be created for monitoring the state of
each created device, which usually involves configuration updates or reporting of
device changes. The event-topic is the only type we are using for our prototype.
After the topics are created, we create a subscription that we bind to our event-
topic. The subscription is used for directing the sensor messages to different
subscribers. The messages can either be pushed or pulled as needed.

For the IoT Core configuration, we must first create a registry. In the registry
creation, we bind it to our created topic and select both the HTTP and MQTT
protocol. When the registry creation is complete, we can start creating devices
and add them to the registry. In order to send data to GCP IoT Core, we need
to generate a device key pair to authenticate each created device. This is done
by executing the following OpenSSL command in the Cloud Shell terminal [74].

1 opens s l req −x509 −newkey r sa :2048 −keyout r s a p r i v a t e . pem −nodes −
out \ r s a c e r t . pem −subj ”/CN=unused”

When the command is executed, we get an output with two .PEM files. A
client certificate file: rsa cert.pem, and a private key: rsa private.pem. We also
need to download Google’s official certificate authority root file which can be
found here: https://pki.goog/roots.pem. The content of the rsa cert.pem
file needs to be copied and added to the associated device in our IoT Core
registry as a public key in the RS256 X509 format, as shown in figure 5.8. We
now have the required GCP setup for sending messages to IoT Core. Next, we
go over the .NET implementation for the HTTPS client and the MQTT client.

5.5.2 GCP data integration with HTTPS

The HTTPS client provides the code needed for publishing sensor messages over
Google’s HTTP bridge [78]. The HTTP bridge requires the use of the cloudiot-
device REST resource [80] from the Cloud IoT API in order to enable device
communication on the service. The cloudiotdevice REST resource provides a
method called publishEvent [76] which is the method we need to use for publish-
ing messages to GCP IoT Core. Below we have defined the necessary arguments
for the client. Most of them are used for creating the publishEvent method’s
specific request URL.

1 private stat ic s t r i n g certPr ivateKey = ” r s a p r i v a t e . pem” ;
2 private stat ic s t r i n g httpBridgeHostName = ” c l o u d i o t d e v i c e .

g o o g l e a p i s . com” ;

71

https://pki.goog/roots.pem

Figure 5.8: GCP Registry Creation (1) and Device Creation (2)

3 private stat ic s t r i n g p r o j e c t I d = ”{your p r o j e c t name}” ;
4 private stat ic s t r i n g cloudRegion = ”{your i o t core r eg i on }” ;
5 private stat ic s t r i n g r e g i s t r y I d = ”{your r e g i s t r y name}” ;
6 private stat ic s t r i n g dev i c e Id = ”{your dev i ce name}” ;
7 private stat ic s t r i n g t o p i c I d = ”{your t op i c name}” ;
8

9 private s t r i n g requestURL = $” https ://{ httpBridgeHostName}/v1/
p r o j e c t s /{ p r o j e c t I d }/ l o c a t i o n s /{ cloudRegion }/ r e g i s t r i e s /{
r e g i s t r y I d }/ d e v i c e s /{ dev i c e Id } : publ i shEvent ” ;

The main method initializes a condition for quiting the client using CTRL-C,
and the method for sending the sensor messages to GCP IoT Core. The method
takes in the request URL, cancellation token, as well as a created JSON Web
Token [81] which we will be showing next.

1 public stat ic void Main(s t r i n g [] a rgs) {
2 Console . WriteLine (” I n i t a l i z i n g GCP HTTP c l i e n t . Press CTRL−C to

e x i t . . . ”) ;
3

4 // Sets up a cond i t i on to qu i t the c l i e n t
5 us ing var c t s = new Cancel lat ionTokenSource () ;
6 Console . CancelKeyPress += (sender , eventArgs) =>
7 {

72

8 eventArgs . Cancel = true ;
9 c t s . Cancel () ;

10 Console . WriteLine (” Ex i t ing . . . ”) ;
11 } ;
12

13 SendDeviceToCloudMessages (requestURL , JwtToken (certPr ivateKey) ,
c t s . Token) ;

14 }

Unlike the clients developed for Amazon’s prototype, each device must also
prepare a JSON Web Token (JWT). JWT’s are used for enabling time-limited
device authentication for connecting to GCP IoT Core, and are mandatory for
both HTTPS and MQTT. For HTTPS, the JWT must be included in the header
of each HTTPS request. For MQTT, the JWT must be passed in the password
field of the CONNECT message. The creation of a JWT for GCP IoT Core
requires a JWT Web Signature [99] and a JWT header [100].

The JWT Web Signature must contain a secret key, which in our case is the
generated certificate private key: rsa private.pem, in combination with a set of
the three following claims.

• iat (”Issued At”): This claim contains the exact timestamp when the
JWT was created. The time must be specified in Unix seconds elapsed
since the Unix epoch which is 00:00:00 UTC on January 1, 1970.

• exp (”Expiration”): This is the expiration timestamp when the JWT
is no longer valid. It is created using the iat timestamp + the number of
chosen seconds the JWT is valid. A JWT can only be valid for maximum
24 hours (86400 seconds).

• aud (”Audience”): This claim uses is a single string that contains our
project ID where the devices are registered.

Next, the JWT header must include two fields, one field for the token type, and
a digital signature algorithm for the second field. The token type is ”JWT”,
while the digital signature algorithm can be either a Rivest-Shamir-Adleman
(RSA) key [94, 98], or a Elliptic Curve key [102, 97] using SHA-256. In our
case, we use an RSA key.

Following the method from line 3-19, we read the content of our private key
using Bouncy Castle’s PemReader class [27], and then use the RSAParemeters
struct [161] for structuring the private key into a raw RSA key form. Then on
line 22, we perform RSA encryption on the private key, using the RSACryp-
toServiceProvider class [160]. From line 24-34, we create the three required
claims for the JWT web signature. Then from line 36-38, we create the JWT
itself using the JavaScript Object Signing and Encryption (JOSE) [262] library
for .NET. We pass in the developed claims, RSA key, and SHA-256 algorithm,
and encode it to the the final JWT string we need. The exact same method is
used for both the HTTPS client and the MQTT client.

1 private stat ic s t r i n g JwtToken (s t r i n g certPr ivateKey) {
2

3 s t r i n g privateKey = F i l e . ReadAllText (certPr ivateKey) ;
4

5 RSAParameters rsaParams ;

73

6

7 i f (privateKey . IndexOf (”−−−−−BEGIN PRIVATE KEY−−−−−”) < 0) {
8 throw new NotSupportedException (” I n v a l i d p r i v a t e key was

used . ”) ;
9 }

10

11 // Reads the p r i v a t e key f i l e .
12 us ing (var s r = new Str ingReader (privateKey)) {
13 var pemReader = new PemReader (s r) ;
14 var KeyParameter = (AsymmetricKeyParameter) pemReader .

ReadObject () ;
15 var privateRsaParams = KeyParameter as

RsaPrivateCrtKeyParameters ;
16 rsaParams = D o t N e t U t i l i t i e s . ToRSAParameters (

privateRsaParams) ;
17 pemReader . Reader . Close () ;
18 s r . Close () ;
19 }
20

21 //RSA encrypt p r i v a t e key
22 RSACryptoServiceProvider r sa = new RSACryptoServiceProvider () ;
23 r sa . ImportParameters (rsaParams) ;
24

25 DateTime dtnow = DateTime .Now;
26 long i a t = ((DateTimeOffset) dtnow) . ToUnixTimeSeconds () ; //Unix
27 long exp = i a t + 3600 ; //Token e x p i r e s in 3600 seconds
28

29 // Creates the the three r equ i r ed cla im f i e l d s .
30 var c la ims = new Dict ionary<s t r i ng , ob ject >(){
31 {” i a t ” , i a t } // (” I s sued At”)
32 ,{ ”exp” , exp} // (” Expi rat ion ”)
33 ,{ ”aud” , p r o j e c t I d } // (” Audience ”)
34 } ;
35

36 s t r i n g token = JWT. Encode (c la ims //The r equ i r ed c la ims
37 , r sa //RSA privateKey
38 , JwsAlgorithm . RS256) ; // S ignature with SHA−256 a lgor i thm
39

40 return token ;
41 }

We once again utilize the .NET HttpWebRequest class [142] for sending REST
API posting requests to GCP IoT Core. In order to successfully send sensor
data via the HTTP bridge, we need to strictly follow the requirements of the
API’s publishEvent method [76]. We have already defined the method’s specified
request URL, but the request body must contain the three following fields: a
subFolder-string, a binaryData-string, and a gatewayInfo-object. In our case,
we only need the subFolder and binaryData, since our device is not binded to
any gateway in GCP IoT Core. The subFolder must contain our topic ID, while
the binaryData contains our payload data which needs to be formatted in the
base64-encoded binary format. After the information is added to the fields, the
request body needs to be formatted into a JSON structure, and then formatted
into bytes using UTF-8 encoding. We pass the request body’s content-length
in the header, as well as the content-type which is application/json. Lastly, we
need to pass in our JWT in the header, specified in the following name-value
pair form: ”Authorization”: ”Bearer ” + JWT. The final created request is
then written to the dataStream method for transmission over GCP IoT Core’s
HTTP bridge.

74

1 private stat ic void SendDeviceToCloudMessages (s t r i n g requestURL ,
s t r i n g token , Cancel lat ionToken c t s) {

2 s t r i n g [] messages ;
3 s t r i n g [] jsonMessage ;
4 int messageCounter = 0 ;
5 int counter ;
6 HttpWebRequest r eque s t ;
7 Payload payload ;
8

9 while (! c t s . I sCance l l a t i onReques ted) {
10 counter = 0 ;
11 messages = MessageHandling . ReadMessagesFromClient () ;
12 jsonMessage = new s t r i n g [messages . Length] ;
13 i f (messages . Length == 0 | | messages == null) {
14 Console . WriteLine (”There i s no messages in the queue”) ;
15 Thread . S leep (5000) ;
16 } else {
17 f o r each (s t r i n g sensorMessage in messages) {
18 // Create JSON message
19 jsonMessage [counter] = MessageHandling .

S e r i a l i z eToJson (sensorMessage) ;
20

21 // Encodes message to base64−s t r i n g
22 s t r i n g base64data = Convert . ToBase64String (Encoding

.UTF8. GetBytes (jsonMessage [counter])) ;
23

24 counter++;
25 messageCounter++;
26

27 // Creates the r equ i r ed reque s t body
28 payload = new Payload{
29 binaryData = base64data ,
30 subFolder = t o p i c I d
31 } ;
32 s t r i n g requestBody = JsonConvert . S e r i a l i z e O b j e c t (

payload) ;
33 byte [] byteArray = Encoding .UTF8. GetBytes (

requestBody) ;
34

35 //Add the nece s sa ry s e t t i n g s to the r eque s t
36 r eque s t = (HttpWebRequest) WebRequest . Create (

requestURL) ;
37 r eque s t . Method = ”POST” ;
38 r eque s t . ContentLength = byteArray . Length ;
39 r eque s t . ContentType = ” a p p l i c a t i o n / j son ” ;
40 r eque s t . KeepAlive = true ;
41 r eque s t . Headers . Add(” Author i zat ion ” , ” Bearer ” +

token) ;
42

43 // Publ i sh ing te lementry data
44 Stream dataStream = reques t . GetRequestStream () ;
45 dataStream . Write (byteArray , 0 , byteArray . Length) ;
46 dataStream . Close () ;
47

48 Console . WriteLine ($”{DateTime .Now} > Publ i sh ing
Message ” + messageCounter) ;

49 Thread . S leep (5000) ;
50 }
51 }
52 }
53 }

75

5.5.3 GCP Implementation with MQTT

The MQTT client publishes sensor messages to GCP IoT Core over Google’s
MQTT bridge [79]. GCP IoT Core’s broker listens over the 8883 port, using
mqtt.googleapis.com as the the host name. It also requires the use of Google’s
official CA root file for authentication, and our private key for the JWT creation.
The rest of the arguments is needed for creating the MQTT bridge’s required
client ID path and topic path.

1 private stat ic s t r i n g caCert = ” roo t s . pem” ;
2 private stat ic s t r i n g certPr ivateKey = ” r s a p r i v a t e . pem” ;
3 private stat ic s t r i n g mqttBridgeHostName = ”mqtt . g o o g l e a p i s . com” ;
4 private stat ic int mqttPort = 8883 ;
5

6 private stat ic s t r i n g p r o j e c t I d = ”{your p r o j e c t name}” ;
7 private stat ic s t r i n g cloudRegion = ”{your i o t core r eg i on }” ;
8 private stat ic s t r i n g r e g i s t r y I d = ”{your r e g i s t r y name}” ;
9 private stat ic s t r i n g dev i c e Id = ”{your dev i ce name}” ;

10 private stat ic s t r i n g t o p i c I d = ”{ t op i c name}” ;
11

12 private stat ic s t r i n g c l i e n t I d = $” p r o j e c t s /{ p r o j e c t I d }/ l o c a t i o n s /{
cloudRegion }/ r e g i s t r i e s /{ r e g i s t r y I d }/ d e v i c e s /{ dev i c e Id }” ;

13 private stat ic s t r i n g deviceTopic = $”/ d e v i c e s /{ dev i c e Id }/{ t o p i c I d }
” ;

Just like with Amazon’s MQTT client, we again use the M2Mqtt [186] open-
source library for developing our MQTT client in .NET. From line 5-14 we read
the content of Google’s CA root .PEM file, reformatting it to base64 binary,
and stores it in a byte array. This is done so we can pass in the CA root file as
parameter in the X509Certificate class [171]. Next we create the MQTT client
using our newly created certificate instance, the MQTT bridge’s supported host
name and port, and TLS v1.2 for initiating the security protocol handshake. We
also set up the usual cancellation token for manually quitting the client. Then
we connect our MQTT client to IoT Core’s MQTT bridge, by passing in our
defined client ID path and created JWT, using the exact same JWT method
that was introduced in the HTTP implementation. Finally, we initialize our
sensor messaging method.

1 stat ic void Main(s t r i n g [] a rgs) {
2 Console . WriteLine (” I n i t a l i z i n g GCP MQTT c l i e n t . Press CTRL−C to

e x i t . . . ”) ;
3

4 //Reads the content o f the CA root f i l e and formats the .PEM
f i l e to a base64 format , s to r ed in a byte array

5 byte [] data ;
6 us ing (Fi leStream f s = F i l e . OpenRead(Path . GetDirectoryName (

Assembly . GetEntryAssembly () . Locat ion) + ”\\” + caCert)) {
7 data = new byte [f s . Length] ;
8 f s . Read (data , 0 , data . Length) ;
9 i f (data [0] != 0x30) {

10 // Using the PEM method on l i n e 45−53
11 data = PEM(”CERTIFICATE” , data) ;
12 }
13 f s . Close () ;
14 }
15

16 // Creates X.509 c e r t i f i c a t e i n s t ance o f the re formatted CA root
17 X509Cer t i f i c a t e c l i e n t C e r t i f i c a t e = new X509Cer t i f i c a t e (data) ;

76

18

19 // Crates MQTT c l i e n t us ing our c e r t i f i c a t e and arguments
20 MqttClient c l i e n t = new MqttClient (mqttBridgeHostName , mqttPort

, true , null , c l i e n t C e r t i f i c a t e , MqttSs lProtoco l s . TLSv1 2) ;
21

22 // Sets up a cond i t i on to qu i t the c l i e n t
23 us ing var c t s = new Cancel lat ionTokenSource () ;
24 Console . CancelKeyPress += (sender , eventArgs) => {
25 c l i e n t . Disconnect () ;
26 eventArgs . Cancel = true ;
27 c t s . Cancel () ;
28 Console . WriteLine (” Ex i t ing . . . ”) ;
29 } ;
30

31 // Connects MQTT c l i e n t to IoT Core with our c l i e n t ID , username
as nu l l , and JWT f o r au then t i c a t i on

32 c l i e n t . Connect (c l i e n t I d , null , JwtToken (c e r t)) ;
33

34 //Method f o r sending senso r messages to GCP IoT Core
35 SendDeviceToCloudMessages (c l i e n t , deviceTopic , c t s . Token) ;
36 }
37

38 //Method f o r base64 encoding Google ’ s CA root f i l e (r oo t s . pem)
39 private stat ic byte [] PEM(s t r i n g type , byte [] data) {
40 s t r i n g pem = Encoding . ASCII . GetStr ing (data) ;
41 s t r i n g header = St r ing . Format (”−−−−−BEGIN {0}−−−−−\n” , type) ;
42 s t r i n g f o o t e r = St r ing . Format (”\n−−−−−END {0}−−−−−” , type) ;
43 int s t a r t = pem . IndexOf (header) + header . Length ;
44 int end = pem . IndexOf (f oo t e r , s t a r t) ;
45 s t r i n g base64 = pem . Substr ing (s ta r t , (end − s t a r t)) ;
46 return Convert . FromBase64String (base64) ;
47 }

The sensor messaging method collects the currently available sensor messages
from MSMQ, serialize them to JSON, and then formats the JSON message
into bytes using UTF-8 encoding. On line 24, the MQTT client takes in our
topic-path string, payload message, and declare that we use QoS level 1. Then
each sensor message gets sent to IoT Core and published to our topic in Cloud
Pub/Sub.

1 private stat ic void SendDeviceToCloudMessages (MqttClient c l i e n t ,
s t r i n g deviceTopic , Cancel lat ionToken c t s) {

2 s t r i n g [] messages ;
3 s t r i n g [] jsonMessage ;
4 int messageCounter = 0 ;
5 int counter ;
6

7 while (c l i e n t . IsConnected && ! c t s . I sCance l l a t i onReques ted) {
8 counter = 0 ;
9 messages = MessageHandling . ReadMessagesFromClient () ;

10 jsonMessage = new s t r i n g [messages . Length] ;
11 i f (messages . Length == 0 | | messages == null) {
12 Console . WriteLine (”There i s no messages in the queue”) ;
13 Thread . S leep (5000) ;
14 } else {
15 f o r each (s t r i n g sensorMessage in messages) {
16 // Create JSON message
17 jsonMessage [counter] = MessageHandling .

S e r i a l i z eToJson (sensorMessage) ;
18 byte [] bMessage = Encoding .UTF8. GetBytes (

jsonMessage [counter]) ;

77

19

20 messageCounter++;
21 counter++;
22

23 //Send the te l emetry message
24 c l i e n t . Publ i sh (deviceTopic , bMessage , MqttMsgBase .

QOS LEVEL AT LEAST ONCE, fa l se) ;
25 Thread . S leep (5000) ;
26 }
27 }
28 }
29 }

5.5.4 GCP Deployment and Output

Similar to the deployment of the prototypes for Azure and Amazon, we choose
the client interface and then either the HTTPS client or MQTT client to run on
startup in Visual Studio. AADI’s DS and RTC applications must be running
in the background as well. We initialize the console applications, write the
required information in the client interface and if everything was successful, the
clients writes in the console each time a new message was sent to IoT Core.
The process is exactly the same as shown in figure 5.4 with Azure. While the
clients are running, we head over to the GCP portal and navigate to our created
subscription in the Pub/Sub service, and pull the received sensor messages. We
then get all the current messages displayed as shown in figure 5.9.

78

Figure 5.9: GCP Sensor Message Output

79

Chapter 6

Evaluation

In this chapter, we are evaluating the three cloud platforms based on a defined
set of evaluation criteria, focusing on their sensor data integration aspects.

6.1 Evaluation Criteria

Before we evaluate the cloud platforms, we define the chosen set of criteria
for this thesis. The defined criteria are inspired by existing functional, non-
functional, and architectural requirements for middleware technology and IoT
platforms [6, 193, 52]. Some of these requirements are combined together or
excluded due to irrelevance, in order to better suit them to the sensor data
integration aspects we are focusing on. The final criteria are based around
qualitative principles.

6.1.1 Interoperability

The cloud platforms should be able to communicate and exchange messages
from various heterogeneous IoT devices and applications in an interoperable
manner. The criterion evolves around how many of the interoperability lev-
els defined in chapter 2.4.1, are supported by each cloud platform. Technical
interoperability involves supported communication technologies for exchanging
messages over the network. Syntactic interoperability consists of formatting
and encoding technologies for interpreting and retrieving information. Lastly,
semantic interoperability provides contextual data in order to ensure common
understandings of the exchanged information between endpoints.

6.1.2 IoT Support

For this criterion, we want to find out the amount of IoT support each cloud
platform offers. This is done to unravel how much each vendor prioritizes IoT
on their platform, which will determine how applicable the cloud platforms are
for sensor data integration purposes. The criteria focus on the amount of IoT-
specific cloud services available on each platform, and their combined versatility
of capabilities. Other relevant general-purpose cloud services are excluded.

80

6.1.3 Device Connectivity

This criterion focuses on how IoT devices are connected and managed in each
cloud platform. This includes aspects such as device provisioning, security,
and gateway utility. Device provisioning consists of registering each physical
IoT device in the cloud, giving them unique identification and authentication.
Security involves aspects such as rule-based authorization, identity and access
management (IAM), and encryption of payload data. Gateway utility concerns
the different type of gateways that IoT devices are able to connect with.

6.1.4 Data Management

In this context, data management refers to how each cloud platform manages
data received from IoT devices. This includes how the data is ingested, pro-
cessed, stored, and visualized, using their various services on offering. Data
ingestion involves how flows of data are queried and routed from one or more
sources to an endpoint. Data processing is typically done either through real-
time stream processing or longer batch processes. For storage, the platforms
usually provide different types of databases, such as relational SQL databases
and NoSQL databases. Lastly, visualization services can query data from stor-
age spaces and output streams, and graphically view the retrieved data for
analysis and monitoring.

6.1.5 Ease of Implementation

This criterion evolves around how easy it is to implement the necessary code for
sending IoT data to each cloud platform. This includes the amount of code that
needs to be written by the developer, the extent of provided documentation and
software tool support to simplify development, and the platform prerequisites
needed to be set up in advance before data can be sent to each platform.

6.2 Cloud Platform Evaluations

In this section, we evaluate the three cloud platforms based on the evaluation
criteria defined in section 6.1. Each cloud platform is evaluated separately.

6.2.1 Microsoft Azure Evaluation

Interoperability
Microsoft Azure supports several communication protocols, including REST
API posting via HTTPS 1.1, and brokered messaging via MQTT 3.1.1 and
AMQP 1.0 where both protocols also enable messaging over WebSocket. Azure
also provides SDKs and APIs for multiple languages for integration between
applications and systems, ensuring technical interoperability on the platform.
When it comes to syntactic interoperability, the platform supports several seri-
alization formats for encoding data, with the most favorable ones being JSON
and CSV for IoT message exchanging. Azure provides SQL-like query languages
and APIs that can be used for retrieving desired data, depending on the ser-
vices in use. Unfortunately, Microsoft Azure does not have any direct support
for semantic interoperability, as the responsibility is left to the developers to

81

define the information model for how the applications and cloud services are
going interpret the exchanged data and metadata. As a result, Microsoft Azure
only supports technical and syntactic interoperability.

IoT Support
After investigating Microsoft Azure’s official website, we find nine IoT-specific
cloud services for Azure. Azure IoT Hub [123] is the main IoT service that
acts as the cloud gateway for securely connecting and managing billions of IoT
devices. The service also provides device provisioning, ingestion of data, and
digital twins. Azure IoT Hub Device Provisioning Service (DPS) [122] is a
helper service for facilitating scalable and automatic device provisioning in the
cloud. Azure Digital Twins [119] provides graph modelling of digital twins for
contextualizing them in virtual environments. Azure IoT Central [120] enables
a high-level environment for simplifying development of IoT solutions. It pro-
vides web application user interfaces that are integrated with IoT Hub and the
other connected PaaS services for facilitating monitoring, management, tem-
plate creation of devices. Azure IoT Edge [121] provide the edge computing
capabilities on the platform, including container modules for enabling business
logic on edge devices, an edge runtime environment for running and managing
the edge devices and modules, and a cloud-interface for monitoring the edge
devices. Microsoft Defender for IoT [153] enables a security environment across
the user’s IoT infrastructure that provides unified detection and protection of
device threats. Azure RTOS [130] and Azure Sphere [131] provides different de-
vice software that can run on different developer boards and microcontrollers.
Finally, Azure Percept [128] is a platform of different hardware, software, and
service components for that simplifies development of Azure AI models and
technologies on the edge, with options for integrating them to other IoT ser-
vices.

Device Connectivity
In Microsoft Azure, IoT devices can connect to cloud gateways either directly or
indirectly [151]. Direct gateway connections involve IP capable IoT devices that
are using the platform’s supported communication protocols. Indirect gateway
connections involves either edge gateways, custom gateways, or both. Edge
gateways involves devices that connect via Azure IoT Edge, while custom gate-
ways can be utilized for devices that need protocol translations or customized
processing before entering the direct cloud gateway. Azure IoT Hub performs
device provisioning at a per-device level, where each device gets an unique ID,
and authentication using either symmetric keys, X.509 certificates or TPMs.
IoT Hub’s DPS can be integrated for more scalable and automatic device provi-
sioning. For security, the platform encrypts payload data with TLS, and defines
rules for authorizing how devices can be ingested. The Microsoft Defender for
IoT service can also be integrated for enabling unified threat protection for the
IoT devices. Azure Active Directory provides the general IAM functionalities
for access in cloud.

Data Management
Azure IoT Hub uses an SQL-like syntax language for writing the rules for how

82

individual data is ingested to endpoints. As mentioned in chapter 4.1.1, Azure
provides options for both warm storage and cold storage. For real-time stream
processing, Azure Stream Analytics is the most common option. If the streamed
data flows have higher latency, Azure Cosmos DB can be used for storing warm
data in NoSQL databases, while Azure SQL Database provide warm data stor-
age in relational SQL databases. For cold storage, Azure Data Lake or Azure
Blob Storage allows for storing massive volumes of data for long-term purposes.
Meanwhile, services such as Azure Machine Learning or Azure Databricks can
be used to perform batch processing and analytics on the cold data. Another
option is the Time Series Insights service which provides both data aggrega-
tion, analytics, and storage capabilities. Output streams and stored data can
be queried and routed to Power BI for visualization, using dashboards.

Ease of Implementation
Microsoft Azure is the only platform of the three that provided device SDK
support for .NET, which simplified the implementation substantially. Azure’s
official GitHub provides repositories with device SDK sample code for each
supported language [152], making it easy for developers to get started. On
their official website, they also provide documentation for all of their available
services, including general information, tutorials, and several code examples,
depending on the service. For the prerequisites, we needed to register an Azure
account, create a resource group, create an IoT Hub, and provision a device
with symmetric keys authentication. These were the only mandatory steps
needed for gathering the required authentication and endpoint information for
our prototype. The prototype for Microsoft Azure only consisted of one client
application since the device SDK’s TransportType enum easily allows users to
choose which communication protocol they want to use, by only changing one
line in the code. Our final implementation of the prototype resulted in 150 lines
of code in total.

6.2.2 Amazon Web Services Evaluation

Interoperability
Amazon Web Services supports both technical and syntactic interoperability,
but not semantic interoperability, due to the platform being model agnostic.
The developers are responsible for defining the information model for how the
platform interprets the incoming data and metadata. For technical interoper-
ability, the platform supports HTTPS 1.1 over REST API posting, MQTT 3.1.1
over brokered messaging, and MQTT over WebSocket for web applications. The
platform also supports a large number of SDKs and APIs for integrating and
communicating with the platform. For syntactic interoperability, Amazon Web
Services provide SQL-like querying and APIs for retrieving data from various
cloud services. For data representation, the platform supports many common
serialization formats such as JSON, XML, and CSV. For IoT messaging, JSON
seems to be the most favorable option.

IoT Support
Amazon Web Services lists thirteen IoT-specified services on their website. AWS
IoT Core [214] is used for device provisioning, data ingestion, digital twin reg-

83

istration, and securely connecting billions of IoT devices to the platform. AWS
IoT Device Management [216] can be integrated with AWS IoT Core for provid-
ing extended management capabilities over the devices, while AWS IoT Device
Defender [215] can be integrated for simplifying device authentication and ex-
tend the device security and monitoring capabilities. AWS IoT TwinMaker
[212] allows users to easily create digital twin representations of more real-world
data entities. AWS IoT Greengrass [220] and AWS IoT SiteWise [222] provide
the platform’s edge computing capabilities. AWS IoT Greengrass provide edge
runtime software for enabling IoT devices to preprocess data locally and still
managing them in the cloud, while AWS IoT SiteWise can interface with indus-
trial equipment and legacy protocols for collecting, analyzing, and monitoring
their data at scale. AWS IoT Analytics [213] is an analytics service that provides
stream processing, monitoring, and time-series storage for massive volumes of
data. FreeRTOS [235] provide an open-source operating system to run on mi-
crocontrollers for creating resource-constrained devices that can connect and
send data to the cloud. AWS IoT Events [217] simplifies the steps for detecting
and responding to events from IoT devices and applications at scale. AWS IoT
1-Click [211] provides out of the box functionalities for easily associating devices
with desired AWS Lambda Functions, enabling simple device-triggering of ac-
tions. AWS IoT RoboRunner [221] is robotics service that provides integration
of different robot types and application building for managing them. AWS IoT
ExpressLink [218] provides a catalog of hardware modules that were developed
by AWS partners, that can easily be utilized and connected to the cloud. Lastly,
AWS IoT FleetWise [219] is a specified service for easily collecting data from ve-
hicles and transferring them to cloud. While the number of IoT-specific services
are abundant, some of them are designed for very specific use cases, particularly
the last five mentioned ones, i.e. AWS IoT Events, AWS IoT 1-Click, AWS IoT
RoboRunner, AWS IoT ExpressLink, and AWS IoT FleetWise.

Device Connectivity
Amazon Web Services allows devices to connect to the cloud either through the
use of supported protocol bindings or through enabled edge gateways. AWS
IoT Core provides device provisioning for each device. AWS IoT Management
can be integrated for extensive monitoring and management capabilities, in-
cluding bulk registering and group organization of devices. For authentication,
different X.509 certificates are typically used, but users can also create custom
authentication tokens with JSON Web Tokens (JWTs) and OAuth. Optionally,
SigV4 can be used for authentication with HTTPS and MQTT over WebSocket
in particular. A defined policy must also be attached to each device before it
is allowed to access the cloud. For security, payload messages in transit are en-
crypted through TLS, while AWS IAM can specify rules, roles and user access in
the cloud. AWS IoT Defender can also be integrated for for enabling additional
security.

Data Management
In Amazon Web Services, data ingestion is performed through AWS IoT Core’s
rules engine, using a SQL-like syntax language for defining the rules. Sev-
eral rules can also be triggered based on specified events with AWS Lambda
Functions, executing serverless code. For real-time stream processing, Amazon

84

Kinesis provide separated modules for data streams, analytics streams, video
streams, and Data Firehose. For storage options, Amazon DynamoDB provide
flexible, name-value NoSQL databases that can be used for both temporal and
long-term storage, while AWS Simple Storage Service (S3) is an object stor-
age with massive scalability capabilities for long-term storage of massive data
volumes. For visualization purposes, Amazon QuickSight provide multiple in-
teractive dashboards for analysis, business processes and graphical monitoring
of queried output streams and stored data.

Ease of Implementation
The prototype developed for Amazon Web Services consisted of two client ap-
plications. One client for sending messages with HTTPS, and another client for
sending messages with MQTT. The platform provides IoT device SDKs for five
different programming languages, but unfortunately not for .NET. The HTTPS
client were developed using .NET methods for REST API posting, while the
MQTT client used the M2Mqtt open-source library. The platform’s official web-
site provides developer guides for the majority of their cloud services, including
AWS IoT Core [214]. On their official GitHub [236], they provide documentation
for all their SDKs and device SDKs, including code samples for the supported
languages. Additionally, the platform also provides another GitHub [237] that
is fully dedicated providing code samples for various use case scenarios, includ-
ing traditional IoT client implementations in .NET. For the prerequisites, we
needed to sign up for an account, configure AWS IoT Core, and provision a
device. For authentication, we chose the option for auto-generating a X.509
certificate, public key, and private key set. We also needed to create and attach
a policy to our device. We then downloaded the authentication files, including
Amazon’s official CA root file. For simplifying certificate conversion in .NET,
we reformatted the downloaded files and then executed an OpenSSL command
for chaining the authentication files to a .NET interpretable client certificate.
Once the certificate conversion was in order, the implementation process was
relatively straight forward due to their excellent code documentation. For the
amount of code, the final HTTP client implementation only consisted of 92 lines
of code, while the MQTT client only required 85 lines of code.

6.2.3 Google Cloud Platform Evaluation

Interoperability
Similar to the two previous platforms, the Google Cloud Platform only supports
technical and syntactic interoperability, while the developers are responsible for
establishing the information model for enabling semantic interoperability on the
platform. For technical interoperability, the Google Cloud Platform supports
HTTPS 1.1 publishing via REST API posting, and MQTT 3.1.1 for both pub-
lishing and subscribing to the broker. It also supports various SDKs and APIs
for multiple languages that can be used for communicating and integrating with
the platform, through different applications and systems. For syntactic inter-
operability the platform supports multiple common data formats, depending on
the service. JSON is the most favorable option when serializing IoT payload
data for transportation to the cloud. For data retrieval, the BigQuery service

85

can be used for querying desired data, including several APIs.

IoT Support
When it comes to Google Cloud Platform’s IoT support, it technically only has
one cloud service that is fully dedicated to IoT: IoT Core [75]. IoT Core’s two
main components are its device manager, and the two protocol bridges. The
device manager registers and authenticates devices through provisioning, as well
as monitoring them. The devices can securely connect to IoT Core via one of
two protocol bridges in order to send messages to the platform. IoT Core is
heavily reliant on the Cloud Pub/Sub service for providing brokered endpoint
messaging and proper data ingestion to other services. However, Cloud Pub-
/Sub is a general-purpose cloud service that is used for much more then only
supporting IoT Core.

Device Connectivity
Devices can connect to Google Cloud Platform either via the HTTP bridge or
MQTT bridge. Both bridges are broker-based with publishers and subscribers.
In case of the HTTP bridge, messages can only be published. For device provi-
sioning, IoT Core’s device manager provides registry creation and authentication
of devices. Each registry is bind to one or more Cloud Pub/Sub topics where
devices publish their messages. Each device can be authenticated through the
use of X.509 certificates and JWTs. Additionally, Google’s official CA root file
is also required for connections over the MQTT bridge. A public/private key
pair can be created where the public key (client certificate) is added to the reg-
istered device in IoT Core, while the private key is needed for the creation of
the JWT. For JWT’s verification signature, it supports RSA or Elliptic Curve
algorithms. For security, payload messages under transmission are encrypted
using TLS 1.2. Google’s Cloud IAM service is used for managing cloud access,
while the Cloud DataFlow service enables pipelines for forwarding data to other
services.

Data Management
In the Google Cloud Platform, data are ingested through pipelines, using Cloud
DataFlow. In one pipeline, Google Cloud Functions can deploy serverless func-
tions for automatic event-triggering in response to new published messages in
Cloud Pub/Sub. In another parallel pipeline, the Cloud DataFlow can route
flows of data to other service endpoints. DataFlow also provide unified stream
processing and batch processing of data. For storage of low-latency data (warm
data), the Google Cloud Platform offers Cloud Datastore for storage in NoSQL
databases, while Cloud BigTable provides storage in relational SQL databases.
For long-term storage, the Cloud Storage service can be used. BigQuery is a
fully managed data warehouse with its main functionality being high-scalable
data querying. It can route data to services such as the AI Platform for training
ML models, or Datalab for exploration, transformation, and analysis of data.
BigQuery can also route output streams or stored data to Google’s Data Studio
where users can visualize the data and perform business processes, using dash-
boards.

86

Ease of Implementation
For our Google Cloud Platform prototype, we developed an HTTPS client for
publishing messages over the HTTP bridge, and an MQTT client for the publish-
ing messages over the MQTT bridge. The platform only provides device SDK
support for the Embedded C language, which meant that we needed implement
the clients in more traditional ways. Fortunately, IoT Core’s documentation on
their official website [75] provide general information, guides, and example code
for publishing data to IoT Core. The platform’s official GitHub [188] also pro-
vide sample code for several languages, using open-source libraries for MQTT.
For the platform prerequisites, we needed set up both the IoT Core and Cloud
Pub/Sub service. In the Cloud Pub/Sub service, we needed to create a subscrip-
tion and an event topic. In IoT Core, we created a registry for our devices, and
then registered one device. For authentication we executed an OpenSSL com-
mand for creating a client certificate and private key pair, as shown in chapter
5.5.1. Then, the client certificate information needed to be added to our regis-
tered device as a public key. We also needed to download Google’s official CA
root file. For both client implementation, we needed to programmatically create
a JWT and strictly follow the requirements of their respectable protocol bridge.
The MQTT client in particular also needed to convert the CA root file in the
code before being able to create a X.509 certificate instance of it, making the
implementation rather challenging. Regarding the amount of code, the HTTP
client ended up on 164 lines, while the MQTT client required 186 lines of code.

87

Chapter 7

Conclusion and Future
Work

In the final chapter, we discuss the thesis’ findings and results, and answer our
research questions. Then we give our final conclusion and cover the future work
that can be done further.

7.1 Summary

In this thesis, we have prototyped and experimentally evaluated the sensor
data integration capabilities of three selected cloud platforms in a Smart Ocean
context. A multi-purpose .NET client application has been developed with the
ability to request sensor messages from the AADI Real-Time Collector and make
them available to other applications, using MSMQ and web APIs. The three
sensor data integration prototypes are able to receive the sensor messages from
the client interface and successfully integrate them to all three cloud platforms,
using their supported protocol bindings.

In the previous chapter, we evaluated the three cloud platforms based on a set
of defined evaluation criteria. The results show that all three cloud platforms
offers the same amount of interoperability levels with support for both techni-
cal and syntactic interoperability, but are lacking when it comes to semantic
interoperability. Metadata can be stored and processed on the platforms, but
they do not necessarily understand the meaning of the information. The survey
done in chapter 3.2 highlights several metadata industry standards that can be
utilized for integrating support for semantic interoperability in the cloud plat-
forms. Regardless of the platform of choice, the developers needs to adapt to
each platform’s specific SDKs and APIs, and negotiate device access based on
their specified authentication requirements.

When it comes to IoT support, Amazon Web Services offers the largest amount
of services dedicated to IoT with thirteen IoT services. Microsoft Azure offers
nine IoT services in total, while Google Cloud Platform only has one service fully
dedicated to IoT. The platforms’ main IoT service is their IoT Hub/Core service

88

that provides the device provisioning, data ingestion and cloud gateway utilities
needed for connecting and managing IoT devices on their platforms. However,
Microsoft and Amazon’s platform has the the upper hand due to the amount
of other supportive IoT services that provides more flexible IoT capabilities
then Google’s platform. The Google Cloud Platform offers the least amount of
protocol support and almost no device SDK support. It also currently have no
options for digital twins, and its way of offering edge computing is much less
elegant and intuitive compared to Azure IoT Edge and AWS IoT Greengrass.
These findings clearly shows that Google does not prioritize IoT on the same
level as Microsoft and Amazon does on their respective cloud platforms. Besides
their IoT-specific cloud services, all three platforms provides several general
cloud services that can aid in the processing, storage, and business integration
aspects of the IoT solutions.

For the implementation aspects, all three cloud platforms offers great documen-
tation both on their official GitHubs and websites, and provides a wide range
of SDK and API support for many different programming languages. Microsoft
Azure was the only platform of the three that offered device SDK support
for .NET, while the prototypes for Amazon Web Services and Google Cloud
Platform needed to be developed using .NET specific REST API methods for
HTTPS and open-source libraries for MQTT. Regardless, all the prototyped
client applications required less then 200 lines of code. The prototypes devel-
oped for the Google Cloud Platform ended up being the most challenging one
due to the required JWT implementation and certificate conversion in .NET.
The prototypes developed for Amazon Web Services were easier to implement
then Google, mostly due to the fact that they did not require JWTs, and that
we converted the certificates in advance and only needed to pass them in as they
were in the code. The implementation would have definitely been simplified if
we were using another programming language that supported Amazon’s avail-
able device SDKs. The prototype developed for Microsoft Azure ended up being
the easiest to implement, mostly due the use of the device SDK. If we were not
using the device SDK, the difficulty level would probably be more similar to the
two other prototype implementations.

All three cloud platforms offers the essential components needed for successful
sensor data integration, but also lack in some areas depending on the platform
of choice. We conclude that Google Cloud Platform is overall the most inferior
platform option of three for sensor data integration. Both Microsoft Azure and
Amazon Web Services lies on a very similar level where it can be a matter of
preference, as they provide most of the same sensor data integration capabilities.

7.2 Research Questions

We have now presented all our research and results, and gained enough evidence
to answer our research questions, which were described back in chapter 1.2.

7.2.1 Research Question 1

The first research question, R1, was about how the three cloud platforms han-
dled sensor data integration and what their associated and common concepts

89

were. In chapter 4, we gave an overview over each cloud platform and described
their relevant services and features, as well as comparing their offerings in ta-
ble 4.4. In chapter 5, we show the required platform setup and implementation
needed to successfully send sensor messages to each cloud platform, using Smart
Ocean’s pilot demonstrator 1 as a case study. We then evaluated each cloud
platform in chapter 6 using a set of defined evaluation criteria that were rele-
vant to their sensor data integration aspects. As we have shown, all three cloud
platforms handles sensor data integration in a very similar manner. Each cloud
platform provides a main IoT service hub that acts as the cloud gateway where
physical IoT devices can securely connect to. Once devices are authenticated
and connected to the cloud, they can start sending data to the IoT service hub.
From here, the data can be routed to other connected services for processing,
storage, business integration, and other utilities. The amount of services uti-
lized is entirely up to each user as they develop end-to-end IoT solutions based
on their own requirements and needs. All three platforms offers the essential
components needed for sensor data integration, but Microsoft Azure or Amazon
Web Services are overall the better choices, while Google Cloud Platform lacks
in several areas.

7.2.2 Research Question 2

The second research question, R2, was about what industry standards existed for
sensor metadata, in terms of sensor descriptions, data syntax, and semantics.
In chapter 3.2, we gave an overview of several metadata industry standards
that can potentially be utilized in the Smart Ocean project. The investigated
standards were: IPSO, OCF, OPC UA, OGC SWE, and W3C. The W3C’s
Semantic Web provide RDF and RDFS for resource descriptions in form of
graph-based data models. The OWL standard can be used to semantically
enrich the RDF data models, while the SQARQL standard enables querying
of RDF data models. These standards can provide metadata for all kinds of
web resources, while the SSN/SOSA provides sensor-oriented ontologies for the
other Semantic Web standards. The OGC SWE framework offers SensorML
for descriptions of both sensors and sensor systems, while the O&M standard
provide schemas for observational data and measurements. IPSO provides a
a data model with over 50 defined smart objects for representing IoT-based
metadata. OCF’s framework include a specification with 180 defined resource
types. OPC UA provide a versatile, object-oriented data model for describing all
kinds of metadata, using a flexible set of node-based classes and type definitions.
For data syntax, all the standards supports either one or more common data
formats such as JSON, XML, CSV, or binary for expressing the metadata.

7.2.3 Research Question 3

The third and final research question, R3, was about which APIs and protocol
bindings were required and relevant in order to produce data to each of the three
cloud platforms. In chapter 3.1, we conducted a survey on some of the most rel-
evant application layer protocols for IoT scenarios. In chapter 4.1.3, 4.2.3, and
4.3.3, we highlight the supported protocol bindings and APIs for each respec-
tive cloud platform. The platforms’ supported protocols are mainly HTTPS 1.1
over REST API messaging, and MQTT 3.1.1 over brokered messaging, while

90

Microsoft Azure in particular also additionally supports AMQP 1.0. Both Mi-
crosoft and Amazon also allows for WebSocket binding with their broker-enabled
protocols. Other different non-supported protocols can also be utilized over edge
computing, depending on the platform. Overall, MQTT (or optionally AMQP,
in case of Microsoft Azure) is the most ideal IoT protocol to choose from as it
is supported on all the three cloud platforms, offers reliable messaging via TCP,
small header sizes, and efficient data transmission. HTTP as earlier mentioned,
is not the most ideal IoT protocol, but it still has its purpose as the majority
of the cloud platforms’ APIs are based on REST implementations (see chapter
2.3.3), using HTTP commands for CRUD operations.

7.3 Conclusion

The internet of things and cloud computing paradigms are under continuous
development and new technologies and solutions are constantly on the rise by
devoted researchers and organizations. Even at their current evolution stages,
their technology offerings shows great potential for aiding in the development of
the future Smart Ocean Platform. The cloud platforms evaluated in this thesis
are currently the three most popular cloud platforms on the market who have
their own unique ways of offering services. However, they are only three of over
600 available IoT cloud platforms as shown in the 2021 report by IoT Analytics
[13]. This means that there are potentially better cloud platforms to choose
from. At the same time, Microsoft, Amazon and Google’s cloud platforms holds
the largest market shares for a reason. They are all flexible cloud platforms that
offers a large set of various cloud services that can support the SFI Smart Ocean
project in many ways, both for sensor data integration and other aspects.

Interoperability is still a major concern as there still does not exists any universal
standard for dealing with these issues. The three cloud platforms offers both
technical and syntactic interoperability, but lacks in semantic interoperability.
As a result, the semantic interoperability must be addressed and established
before the data enters the cloud gateways. The best course of action is to
choose an ideal set of existing standards, protocols, and data formats that suits
the organization’s requirements, and create frameworks accordingly. The thesis
highlights several potential metadata industry standards that can be utilized for
addressing the semantic interoperability challenges in the Smart Ocean project.

As discussed in section 7.1, the Google Cloud Platform ranks at the bottom as
the most inferior cloud platform of the three, based on our evaluation criteria.
Both Microsoft Azure and Amazon Web Services are better options due to their
higher focus on IoT, and more diverse capabilities, features, and service options
for sensor data integration purposes. Which of the two is the superior one is not
as clear-cut since they generally lie on a very similar level and provide most of
the same IoT capabilities. Amazon Web Services is currently the cloud market
leader and supports the largest amount of services in total, even though some of
them are aimed towards very specific use cases. This is where the strategies differ
between the two vendors, as Microsoft provide less services with more features,
while Amazon provide more services with more condensed and specified features
for each of them, adding more flexible options to the users. In the end, both
Microsoft Azure and Amazon Web Services are recommended to be used in

91

the Smart Ocean project. Nevertheless, all three cloud vendors are constantly
introducing new features and capabilities to their platforms, which may or may
not change their current standings in the future.

7.4 Related Work

The emergence of integrating IoT with Cloud Computing has opened up for
many new promising architectures and approaches for developing more efficient
systems, but it has also introduces several new challenges as well. There is cur-
rently an overwhelmingly large amount of competing standards, protocols, and
cloud platforms to choose from when deciding on a technology stack for IoT-
cloud integration. For aspects around the integration of the IoT with Cloud
Computing, there exists several comprehensive surveys [26, 178] that provides
overviews of common components, architectures, and approaches that demon-
strates the effective complementary of the two paradigms. In order to help
increasing semantic interoperability in IoT platforms, the IoT European Plat-
forms Initiative (IoT-EPI) [14] has initiated seven different projects (AGILE,
BIG IoT, INTER-IoT, VICINITY, SymbIoTe, bIoTope, and TagItSmart) that
focuses on providing dynamic architectures and semantic interoperability across
IoT platforms for multiple use case scenarios. There has also been several pa-
pers [197, 54, 23] that compares common communication protocols for the IoT,
where MQTT comes forward as one of the most ideal protocols to choose from.
In [187], the authors provide an overview of general IoT-cloud architectures,
and performs a comparative analysis between Microsoft Azure, Amazon Web
Services and Google Cloud Platform. It involved a comparative analysis of their
parallel IoT services, as well as a performance analysis on their different costs
and messaging times. For the IoT service analysis, they compared them us-
ing seven different key points. Their focus was not on declaring a winner, but
rather highlight their characteristics and provide a comprehensible overview to
developers so they can make an informative choice when considering a suitable
platform for their IoT use cases.

7.5 Future Work

The future work of this thesis first and foremost relies on whether the SFI Smart
Ocean chooses to go with one of the three evaluated cloud platforms in their
project or not. There are as mentioned many other cloud platforms to choose
from, but both Microsoft Azure and Amazon Web Services has shown to be
solid options for sensor data integration in the cloud. When a cloud platform
has been selected, the Smart Ocean developers needs to learn the specifications
of the platform, and decide on an appropriate IoT solution for the project.

Regarding our developed prototypes, we were limited to using .NET Framework
4.8 due to the lack of compatibility options with the AADI Real-Time Collector.
This is not ideal since .NET Framework 4.8 are at this point a legacy version,
and the three cloud platforms’ .NET support are mainly aiming towards the
newer .NET Core versions. Fortunately, our developed client interface offers a
work-around for avoiding these language restrictions. The acquired sensor data
can be sent to other applications, using our developed web API. A solution

92

is then to develop applications in other programming languages of choice that
are able to fetch the web API data, and then utilize the data in these applica-
tions. The SFI Smart Ocean should also implement a graphical interface for the
prototypes to allow users to input the required endpoint and authentication in-
formation for each device. For this thesis, the information were only hard-coded
in, as we only prototyped with one device for each cloud platform. The MQTT
protocol is shown to be the most applicable option of the supported protocols
on the platforms. However, the fact that all three cloud platforms are still lim-
ited to MQTT 3.1.1 and not version 5.0, with only support for QoS level 0 and
1, and not 2, is rather disappointing. These limitations can possibly restrict
potential MQTT messaging use cases on the platforms. A possible solution for
enabling MQTT’s full potential, is integrating a third-party MQTT broker such
as HiveMQ [90]. This broker in particular is compliant with all three cloud plat-
forms and provides full support for both version 3.1.1 and 5.0, with none of the
limitations [258]. The use of device SDKs simplifies the device implementation
processes on the platforms, but they also restricts several functionalities of each
protocol specification.

There is also a lot more that can be done on the subject of metadata and in-
teroperability. The thesis has presented several potential options for enabling
semantic interoperability, but they have not been prototyped or tested in a
Smart Ocean context. It will require further investigation in order to confi-
dently determine the most suitable options for the project. In terms of cloud
platform compatibility, the OPC UA standard in particular is already supported
by Microsoft Azure and Amazon Web Services via their edge computing services,
which indicates a promising place to start for further investigation. While edge
computing has not been a major focus of this thesis, it will be more relevant
as the Smart Ocean project progresses further. Utilizing edge nodes and local
preprocessing of data before forwarding it to the cloud platform has major ad-
vantages. Once the SFI Smart Ocean enables edge nodes for experimentation
in their project, further prototyping should be carried out for the chosen cloud
platform’s edge computing services.

93

List of Figures

1.1 Technology Delta Evaluation Framework [30] 10

2.1 The Five-Layer IoT Architecture 15
2.2 General Model of IoUT [111, 101] 16
2.3 High Level Architecture of IoT Cloud Components [174, 1] . . . 19
2.4 Relationship Between the Physical Sensors, Virtual Sensors and

Virtual Sensor Groups [269] . 20
2.5 Sensor-cloud Architecture [269] 21
2.6 Request-Response Communication Model [21] 23
2.7 Publish-Subscribe Communication Model [21] 23

3.1 LWM2M and IPSO Stack . 32
3.2 IPSO Humidity Object Definition and Usage Example [251] . . . 33
3.3 OCF Functional Block Diagram [2] 34
3.4 OCF Humidity Resource Type Definition [3] 35
3.5 OPC UA Meta Model [63] . 36
3.6 OPC UA Server Architecture [62] 37
3.7 OGC SWE Functional Architecture and Interactions [19, 91, 259] 39
3.8 RDF, RDFS, and SPARQL Example [87] 41
3.9 Overview of the SSN (Blue) and SOSA (Green) Classes and Prop-

erties [86] . 42

4.1 Azure IoT Reference Architecture [151] 45
4.2 AWS IoT Core Architecture . 48
4.3 GCP IoT Reference Architecture [75] 50

5.1 AADI Device Simulator and AADI Real-Time Collector 56
5.2 Model of the relationships between the different components . . . 58
5.3 Azure Device Creation (1) and Device Information (2) 59
5.4 Application Deployment . 63
5.5 Azure Sensor Message Output . 64
5.6 AWS Device Policy Creation (1) and Authentication Files (2) . . 65
5.7 AWS Sensor Message Payload Output 70
5.8 GCP Registry Creation (1) and Device Creation (2) 72
5.9 GCP Sensor Message Output . 79

94

List of Tables

3.1 Application Layer Protocol Overview 31

4.1 Microsoft Azure Protocol Bindings 47
4.2 Amazon Web Services Protocol Bindings 50
4.3 Google Cloud Platform Protocol Bindings 52
4.4 Cloud Platform Comparison . 54

95

Appendix A

Source code

The source code for the sensor data integration prototypes is available at this
URL: https://github.com/smartoceanplatform/sensor-cloud-integration-msc.

For more detailed documentation regarding utilization of the Real-Time Col-
lector client application itself, see the following URL: https://github.com/
smartoceanplatform/rtdc-integrator/blob/main/README.md.

96

https://github.com/smartoceanplatform/sensor-cloud-integration-msc
https://github.com/smartoceanplatform/rtdc-integrator/blob/main/README.md
https://github.com/smartoceanplatform/rtdc-integrator/blob/main/README.md

Appendix B

XML Sensor Data Sample
from the AADI Device
Simulator

1 <?xml ve r s i o n=” 1 .0 ” encoding=” utf−8”?>
2 <Device ID=”4430−999” Sess ionID=”4430−999−2010−11−12T09 : 5 4 : 5 0 Z”

Descr=” Seaguard CTD SW” Ser ia lNo=”999” ProdNo=”4430” ProdName=”
Seaguard CTD SW” DeviceType=” Instrument ” ProtocolVer=”4” xmlns=
” http ://www. aadi . no/RTOutSchema”>

3 <Time>2022−01−16T16 : 03 : 13 . 2177045Z</Time>
4 <TimeCorrection>0</TimeCorrection>
5 <S i t e I n f o >
6 <V e r t i c a l P o s i t i o n >0</V e r t i c a l P o s i t i o n >
7 <Owner>AADI</Owner>
8 <Reference>Technology Department</Reference>
9 </S i t e I n f o >

10 <Data Sess ionID=”2022−01−16T11 : 4 7 : 1 6 Z”>
11 <Time>2022−01−16T16 : 03 : 13 . 2177045Z</Time>
12 <RecordNumber>3064</RecordNumber>
13 <SensorData ID=”SN100−0” Descr=”System Parameters ” Ser ia lNo

=”0” ProdNo=”SN100” ProdName=”System Node” ProtocolVer=
”4”>

14 <Parameters>
15 <Point ID=”0” Descr=” Battery Voltage ” Type=”VT R4”

Format=”” Unit=”V” RangeMin=”0” RangeMax=”15”>
16 <Value >2.124000</Value>
17 </Point>
18 <Point ID=”1” Descr=”Memory Used” Type=”VT I4”

Format=”” Unit=” Bytes ” RangeMin=”0” RangeMax=”
12455936”>

19 <Value>8806400</Value>
20 </Point>
21 <Point ID=”2” Descr=” I n t e r v a l ” Type=”VT I4” Format=

”” Unit=”ms” RangeMin=”” RangeMax=””>
22 <Value>5006</Value>
23 </Point>
24 </Parameters>
25 </SensorData>
26 <SensorData ID=”AN100−0” Descr=”Analog Sensors ” Ser ia lNo=”0

” ProdNo=”AN100” ProdName=”Analog Sensors ” ProtocolVer=

97

”4”>
27 <Parameters>
28 <Point ID=”0” Descr=”Channel 1” Type=”VT R8” Format

=”%0.3 f ” Unit=”V” RangeMin=”−5” RangeMax=”5”>
29 <Value>4.643</Value>
30 </Point>
31 <Point ID=”1” Descr=”Channel 2” Type=”VT R8” Format

=”%0.3 f ” Unit=”V” RangeMin=”−5” RangeMax=”5”>
32 <Value>−3.010</Value>
33 </Point>
34 <Point ID=”2” Descr=”Channel 3” Type=”VT R8” Format

=”%0.3 f ” Unit=”V” RangeMin=”−5” RangeMax=”5”>
35 <Value>4.993</Value>
36 </Point>
37 <Point ID=”3” Descr=”Channel 4” Type=”VT R8” Format

=”%0.3 f ” Unit=”V” RangeMin=”−5” RangeMax=”5”>
38 <Value>4.296</Value>
39 </Point>
40 </Parameters>
41 </SensorData>
42 <SensorData ID=”4117B−39” Descr=” Pressure Sensor ” Ser ia lNo=

”39” ProdNo=”4117B” ProdName=” Pressure Sensor ”
ProtocolVer=”4”>

43 <Parameters>
44 <Point ID=”0” Descr=” Pressure ” Type=”VT R4” Format=

”%0.3 f ” Unit=”kPa” RangeMin=”0” RangeMax=”1000”
>

45 <Value >205.656</Value>
46 </Point>
47 <Point ID=”1” Descr=”Temperature” Type=”VT R4”

Format=”%0.3 f ” Unit=”DegC” RangeMin=”−5”
RangeMax=”35”>

48 <Value>10.861</Value>
49 </Point>
50 <Point ID=”2” Descr=”Rawdata Pressure ” Type=”VT I4”

Format=”%u” Unit=”” RangeMin=”” RangeMax=””>
51 <Value>10250</Value>
52 </Point>
53 <Point ID=”3” Descr=”Rawdata Temperature” Type=”

VT I4” Format=”%d” Unit=”” RangeMin=”” RangeMax
=””>

54 <Value>30390</Value>
55 </Point>
56 </Parameters>
57 </SensorData>
58 <SensorData ID=”4060−43” Descr=”Temperature Sensor ”

Ser ia lNo=”43” ProdNo=”4060” ProdName=”Temperature
Sensor ” ProtocolVer=”4”>

59 <Parameters>
60 <Point ID=”0” Descr=”Temperature” Type=”VT R4”

Format=”%0.3 f ” Unit=”DegC” RangeMin=”−5”
RangeMax=”40”>

61 <Value>10.862</Value>
62 </Point>
63 </Parameters>
64 </SensorData>
65 <SensorData ID=”4319−62” Descr=” Conduct iv i ty Sensor ”

Ser ia lNo=”62” ProdNo=”4319” ProdName=” Conduct iv i ty
Sensor ” ProtocolVer=”4”>

66 <Parameters>
67 <Point ID=”0” Descr=” Conduct iv i ty ” Type=”VT R4”

Format=”%0.3 f ” Unit=”mS/cm” RangeMin=”0”

98

RangeMax=”75”>
68 <Value>30.133</Value>
69 </Point>
70 <Point ID=”1” Descr=”Temperature” Type=”VT R4”

Format=”%0.3 f ” Unit=”Deg .C” RangeMin=”−5”
RangeMax=”35”>

71 <Value>10.866</Value>
72 </Point>
73 </Parameters>
74 </SensorData>
75 <SensorData ID=”4648−19” Descr=”Wave And Tide Sensor ”

Ser ia lNo=”19” ProdNo=”4648” ProdName=”Wave And Tide
Sensor ” ProtocolVer=”4”>

76 <Parameters>
77 <Point ID=”0” Descr=” Pressure ” Type=”VT R4” Format=

”%0.3 f ” Unit=”kPa” RangeMin=”0” RangeMax=”1000”
>

78 <Value >205.657</Value>
79 </Point>
80 <Point ID=”1” Descr=”Temperature” Type=”VT R4”

Format=”%0.3 f ” Unit=”DegC” RangeMin=”−5”
RangeMax=”35”>

81 <Value>10.865</Value>
82 </Point>
83 <Point ID=”2” Descr=”Rawdata Pressure ” Type=”VT I4”

Format=”%u” Unit=”” RangeMin=”” RangeMax=””>
84 <Value>78193</Value>
85 </Point>
86 <Point ID=”3” Descr=”Rawdata Temperature” Type=”

VT I4” Format=”%d” Unit=”” RangeMin=”” RangeMax
=””>

87 <Value>30488</Value>
88 </Point>
89 <Point ID=”29” Descr=”Tide Pressure ” Type=”VT R4”

Format=”%0.3 f ” Unit=”kPa” RangeMin=”0” RangeMax
=”700”>

90 <Value >205.654</Value>
91 </Point>
92 <Point ID=”30” Descr=”Tide Level ” Type=”VT R4”

Format=”%0.3 f ” Unit=”m” RangeMin=”0” RangeMax=”
300”>

93 <Value>10.633</Value>
94 </Point>
95 <Point ID=”5” Descr=” Sign . Height ” Type=”VT R4”

Format=”%0.3 f ” Unit=”m” RangeMin=”0” RangeMax=”
10”>

96 <Value>3.275</Value>
97 </Point>
98 <Point ID=”6” Descr=”Max Height ” Type=”VT R4”

Format=”%0.3 f ” Unit=”m” RangeMin=”0” RangeMax=”
10”>

99 <Value>4.055</Value>
100 </Point>
101 <Point ID=”7” Descr=”Mean Period ” Type=”VT R4”

Format=”%0.3 f ” Unit=” s ” RangeMin=”0” RangeMax=”
10”>

102 <Value>6.625</Value>
103 </Point>
104 <Point ID=”8” Descr=”Peak Period ” Type=”VT R4”

Format=”%0.3 f ” Unit=” s ” RangeMin=”0” RangeMax=”
10”>

105 <Value>6.652</Value>

99

106 </Point>
107 <Point ID=”9” Descr=”Energy Period ” Type=”VT R4”

Format=”%0.3 f ” Unit=” s ” RangeMin=”0” RangeMax=”
10”>

108 <Value>6.547</Value>
109 </Point>
110 <Point ID=”10” Descr=”Mean Zero Cross ing ” Type=”

VT R4” Format=”%0.3 f ” Unit=” s ” RangeMin=”0”
RangeMax=”10”>

111 <Value>6.532</Value>
112 </Point>
113 <Point ID=”11” Descr=” Steepness ” Type=”VT R4”

Format=”%0.3 f ” Unit=”” RangeMin=”0” RangeMax=”
0 .2 ”>

114 <Value>0.100</Value>
115 </Point>
116 <Point ID=”12” Descr=” I r r e g u l a r i t y ” Type=”VT R4”

Format=”%0.3 f ” Unit=”” RangeMin=”0” RangeMax=”1
”>

117 <Value>0.501</Value>
118 </Point>
119 </Parameters>
120 </SensorData>
121 </Data>
122 </Device>

100

Bibliography

[1] The Industrial Internet Consortium (IIC). “The Industrial Internet Ref-
erence Architecture Version 1.9.” eng. In: (2019), pp. 1–58. url: https:
//www.iiconsortium.org/pdf/IIRA-v1.9.pdf.

[2] Open Connectivity Foundation (OCF). OCF Core Framework Specifica-
tion 2.2.5. url: https://openconnectivity.org/specs/OCF_Core_
Specification_v2.2.5.pdf. (accessed: 16.06.2022).

[3] Open Connectivity Foundation (OCF). OCF Resource Type Specification
2.2.5. url: https://openconnectivity.org/specs/OCF_Resource_
Type_Specification_v2.2.5.pdf. (accessed: 16.06.2022).

[4] Open Connectivity Foundation (OCF). OCF Solving The IoT Standards
Gap. url: https://openconnectivity.org/. (accessed: 16.06.2022).

[5] Open Connectivity Foundation (OCF). OCF Specification 2.2.5. url:
https://openconnectivity.org/developer/specifications/. (ac-
cessed: 16.06.2022).

[6] Preeti Agarwal and Mansaf Alam. “Open Service Platforms for IoT.”
In: Internet of Things (IoT): Concepts and Applications. Ed. by Mansaf
Alam, Kashish Ara Shakil, and Samiya Khan. Cham: Springer Interna-
tional Publishing, 2020, pp. 43–59. isbn: 978-3-030-37468-6. doi: 10.

1007/978-3-030-37468-6_3. url: https://doi.org/10.1007/978-
3-030-37468-6_3.

[7] Ian F Akyildiz et al. “Wireless sensor networks: a survey.” In: Computer
networks (2002), pp. 393–422. doi: https://doi.org/10.1016/S1389-
1286(01)00302-4.

[8] Atif Alamri et al. “A Survey on Sensor-Cloud: Architecture, Applications,
and Approaches.” eng. In: (2013), pp. 1–18. doi: https://doi.org/10.
1155/2013/917923.

[9] Mohammed M Alani. “Guide to OSI and TCP/IP models.” In: (2014).
doi: https://doi.org/10.1007/978-3-319-05152-9.

[10] Afrah Ali and Alauddin Al-Omary. “Integrating Wireless Sensor Net-
works with Cloud Computing, a Survey.” In: 2020 International Con-
ference on Data Analytics for Business and Industry: Way Towards a
Sustainable Economy (ICDABI). IEEE. 2020, pp. 1–6. doi: https://
doi.org/10.1109/ICDABI51230.2020.9325681.

[11] Syed Arshad Ali, Manzoor Ansari, and Mansaf Alam. “Resource Man-
agement Techniques for Cloud-Based IoT Environment.” In: Internet of
Things (IoT): Concepts and Applications. Ed. by Mansaf Alam, Kashish
Ara Shakil, and Samiya Khan. Cham: Springer International Publishing,

101

https://www.iiconsortium.org/pdf/IIRA-v1.9.pdf
https://www.iiconsortium.org/pdf/IIRA-v1.9.pdf
https://openconnectivity.org/specs/OCF_Core_Specification_v2.2.5.pdf
https://openconnectivity.org/specs/OCF_Core_Specification_v2.2.5.pdf
https://openconnectivity.org/specs/OCF_Resource_Type_Specification_v2.2.5.pdf
https://openconnectivity.org/specs/OCF_Resource_Type_Specification_v2.2.5.pdf
https://openconnectivity.org/
https://openconnectivity.org/developer/specifications/
https://doi.org/10.1007/978-3-030-37468-6_3
https://doi.org/10.1007/978-3-030-37468-6_3
https://doi.org/10.1007/978-3-030-37468-6_3
https://doi.org/10.1007/978-3-030-37468-6_3
https://doi.org/https://doi.org/10.1016/S1389-1286(01)00302-4
https://doi.org/https://doi.org/10.1016/S1389-1286(01)00302-4
https://doi.org/https://doi.org/10.1155/2013/917923
https://doi.org/https://doi.org/10.1155/2013/917923
https://doi.org/https://doi.org/10.1007/978-3-319-05152-9
https://doi.org/https://doi.org/10.1109/ICDABI51230.2020.9325681
https://doi.org/https://doi.org/10.1109/ICDABI51230.2020.9325681

2020, pp. 63–87. isbn: 978-3-030-37468-6. doi: 10.1007/978-3-030-
37468-6_4.

[12] Fatma Alshohoumi et al. “Systematic review of existing IoT architectures
security and privacy issues and concerns.” In: Int. J. Adv. Comput. Sci.
Appl (2019), pp. 232–251. doi: http://dx.doi.org/10.14569/IJACSA.
2019.0100733.

[13] IoT Analytcs. 2021 List of IoT Platforms Companies. url: https://
iot-analytics.com/product/list-of-iot-platform-companies/.
(accessed: 17.07.2022).

[14] Bröring Arne et al. “Advancing IoT platforms interoperability.” In: (2018).
url: https://iot-epi.eu/wp-content/uploads/2018/07/Advancing-
IoT-Platform-Interoperability-2018-IoT-EPI.pdf.

[15] Aanderaa Data Instruments AS. About Aanderaa and Xylem. url: https:
//www.aanderaa.com/about. (accessed: 20.07.2022).

[16] Aanderaa Data Instruments AS. “SEAGUARD Platform.” In: (2018).
url: https://www.aanderaa.com/media/pdfs/seaguard-platform.
pdf.

[17] Aanderaa Data Instruments AS. “TD278 AADI Real-Time Programming
Reference.” In: (2011). url: https://github.com/smartoceanplatform/
rtdc- integrator/blob/main/Documentation/TD278%5C%20AADI%

5C%20Real-Time%5C%20Programming%5C%20Reference.pdf%20(NB:

%20Requires%20Access).
[18] Zoran B Babovic. “Semantic Internet of Things Platforms-Examples

of Two Different Approaches for Cloud Environment.” In: 2019 27th
Telecommunications Forum (TELFOR). IEEE. 2019, pp. 1–8.

[19] Zoran Babovic and Veljko Milutinovic. “Novel system architectures for
semantic-based integration of sensor networks.” In: Advances in Comput-
ers. Elsevier, 2013, pp. 91–183. doi: https://doi.org/10.1016/B978-
0-12-408091-1.00002-6.

[20] Arshdeep Bahga and Vijay Madisetti. Cloud computing: A hands-on
approach. CreateSpace Independent Publishing Platform, 2013. isbn:
9781494435141.

[21] Arshdeep Bahga and Vijay Madisetti. Internet of Things: A Hands-On
Approach. VPT, 2014. isbn: 9780996025515.

[22] T Bangemann et al. “Industrie 4.0-Technical Assets: Basic terminology
concepts life cycles and administration models.” In: VDI/VDE and ZVEI
(2016).

[23] Cüneyt Bayılmış et al. “A survey on communication protocols and per-
formance evaluations for Internet of Things.” In: Digital Communications
and Networks (2022). doi: https://doi.org/10.1016/j.dcan.2022.
03.013.

[24] Mike Belshe, Roberto Peon, and Martin Thomson. Hypertext Transfer
Protocol Version 2 (HTTP/2). RFC 7540. May 2015. doi: 10.17487/
RFC7540. url: https://www.rfc-editor.org/info/rfc7540.

[25] Carsten Bormann. CoAp - Overview. url: https://coap.technology/.
(accessed: 17.03.2022).

[26] Alessio Botta et al. “Integration of cloud computing and internet of
things: a survey.” In: Future generation computer systems (2016), pp. 684–
700. doi: https://doi.org/10.1016/j.future.2015.09.021.

102

https://doi.org/10.1007/978-3-030-37468-6_4
https://doi.org/10.1007/978-3-030-37468-6_4
https://doi.org/http://dx.doi.org/10.14569/IJACSA.2019.0100733
https://doi.org/http://dx.doi.org/10.14569/IJACSA.2019.0100733
https://iot-analytics.com/product/list-of-iot-platform-companies/
https://iot-analytics.com/product/list-of-iot-platform-companies/
https://iot-epi.eu/wp-content/uploads/2018/07/Advancing-IoT-Platform-Interoperability-2018-IoT-EPI.pdf
https://iot-epi.eu/wp-content/uploads/2018/07/Advancing-IoT-Platform-Interoperability-2018-IoT-EPI.pdf
https://www.aanderaa.com/about
https://www.aanderaa.com/about
https://www.aanderaa.com/media/pdfs/seaguard-platform.pdf
https://www.aanderaa.com/media/pdfs/seaguard-platform.pdf
https://github.com/smartoceanplatform/rtdc-integrator/blob/main/Documentation/TD278%5C%20AADI%5C%20Real-Time%5C%20Programming%5C%20Reference.pdf%20(NB:%20Requires%20Access)
https://github.com/smartoceanplatform/rtdc-integrator/blob/main/Documentation/TD278%5C%20AADI%5C%20Real-Time%5C%20Programming%5C%20Reference.pdf%20(NB:%20Requires%20Access)
https://github.com/smartoceanplatform/rtdc-integrator/blob/main/Documentation/TD278%5C%20AADI%5C%20Real-Time%5C%20Programming%5C%20Reference.pdf%20(NB:%20Requires%20Access)
https://github.com/smartoceanplatform/rtdc-integrator/blob/main/Documentation/TD278%5C%20AADI%5C%20Real-Time%5C%20Programming%5C%20Reference.pdf%20(NB:%20Requires%20Access)
https://doi.org/https://doi.org/10.1016/B978-0-12-408091-1.00002-6
https://doi.org/https://doi.org/10.1016/B978-0-12-408091-1.00002-6
https://doi.org/https://doi.org/10.1016/j.dcan.2022.03.013
https://doi.org/https://doi.org/10.1016/j.dcan.2022.03.013
https://doi.org/10.17487/RFC7540
https://doi.org/10.17487/RFC7540
https://www.rfc-editor.org/info/rfc7540
https://coap.technology/
https://doi.org/https://doi.org/10.1016/j.future.2015.09.021

[27] Legion of the Bouncy Castle Inc. Bouncy Castle C API. url: https:
//bouncycastle.org/csharp/index.html. (accessed: 20.07.2022).

[28] Tim Bray et al. Extensible Markup Language (XML) 1.0 (Fifth Edition).
url: https://www.w3.org/TR/xml/.

[29] Dan Brickley, Ramanathan V Guha, and Brian McBride. “RDF Schema
1.1.” In: (2014). url: https://www.w3.org/TR/rdf-schema/.

[30] Alan W. Brown and Kirt C. Wallnau. “”A Framework for Evaluating
Software Technology”.” eng. In: (1996), pp. 39–49. doi: 10.1109/52.
536457.

[31] Muhammad Burhan et al. “IoT elements, layered architectures and secu-
rity issues: A comprehensive survey.” In: Sensors (2018), pp. 1–37. doi:
http://dx.doi.org/10.3390/s18092796.

[32] Sunil Cheruvu et al. “IoT Frameworks and Complexity.” In: Demystify-
ing Internet of Things Security: Successful IoT Device/Edge and Plat-
form Security Deployment. Berkeley, CA: Apress, 2020, pp. 23–148. isbn:
978-1-4842-2896-8. doi: 10.1007/978-1-4842-2896-8_2. url: https:
//doi.org/10.1007/978-1-4842-2896-8_2.

[33] Google Cloud. Cloud Pub/Sub API. url: https://cloud.google.com/
pubsub/docs/reference/rest/. (accessed: 20.07.2022).

[34] Mario Collotta et al. “Bluetooth 5: A concrete step forward toward the
IoT.” In: IEEE Communications Magazine 56.7 (2018), pp. 125–131. doi:
https://doi.org/10.1109/MCOM.2018.1700053.

[35] Michael Compton et al. “The SSN ontology of the W3C semantic sensor
network incubator group.” In: Journal of Web Semantics (2012), pp. 25–
32. doi: https://doi.org/10.1016/j.websem.2012.05.003.

[36] Open Geospatial Consortium. Observations and Measurements. url: https:
//www.ogc.org/standards/om. (accessed: 03.05.2022).

[37] Open Geospatial Consortium. OGC PUCK Protocol Standard. url: https:
//www.ogc.org/standards/puck. (accessed: 03.05.2022).

[38] Open Geospatial Consortium. OGC SensorThings API. url: https :

//www.ogc.org/standards/swecommon. (accessed: 03.05.2022).
[39] Open Geospatial Consortium. OGC WaterML. url: https://www.ogc.

org/standards/waterml. (accessed: 03.05.2022).
[40] Open Geospatial Consortium. Open Geospatial Consortium. url: https:

//www.ogc.org/. (accessed: 03.05.2022).
[41] Open Geospatial Consortium. Sensor Model Language (SensorML). url:

https://www.ogc.org/standards/sensorml. (accessed: 03.05.2022).
[42] Open Geospatial Consortium. Sensor Observation Service. url: https:

//www.ogc.org/standards/sos. (accessed: 03.05.2022).
[43] Open Geospatial Consortium. Sensor Planning Service (SPS). url: https:

//www.ogc.org/standards/sps. (accessed: 03.05.2022).
[44] Open Geospatial Consortium. SWE Common Data Model Encoding Stan-

dard. url: https://www.ogc.org/standards/swecommon. (accessed:
03.05.2022).

[45] Open Geospatial Consortium. SWE Service Model Implementation Stan-
dard. url: https://www.ogc.org/standards/swes. (accessed: 03.05.2022).

[46] The World Wide Web Consortium. Linked Data. url: https://www.w3.
org/standards/semanticweb/data. (accessed: 08.05.2022).

[47] The World Wide Web Consortium. Semantic Web. url: https://www.
w3.org/standards/semanticweb/. (accessed: 08.05.2022).

103

https://bouncycastle.org/csharp/index.html
https://bouncycastle.org/csharp/index.html
https://www.w3.org/TR/xml/
https://www.w3.org/TR/rdf-schema/
https://doi.org/10.1109/52.536457
https://doi.org/10.1109/52.536457
https://doi.org/http://dx.doi.org/10.3390/s18092796
https://doi.org/10.1007/978-1-4842-2896-8_2
https://doi.org/10.1007/978-1-4842-2896-8_2
https://doi.org/10.1007/978-1-4842-2896-8_2
https://cloud.google.com/pubsub/docs/reference/rest/
https://cloud.google.com/pubsub/docs/reference/rest/
https://doi.org/https://doi.org/10.1109/MCOM.2018.1700053
https://doi.org/https://doi.org/10.1016/j.websem.2012.05.003
https://www.ogc.org/standards/om
https://www.ogc.org/standards/om
https://www.ogc.org/standards/puck
https://www.ogc.org/standards/puck
https://www.ogc.org/standards/swecommon
https://www.ogc.org/standards/swecommon
https://www.ogc.org/standards/waterml
https://www.ogc.org/standards/waterml
https://www.ogc.org/
https://www.ogc.org/
https://www.ogc.org/standards/sensorml
https://www.ogc.org/standards/sos
https://www.ogc.org/standards/sos
https://www.ogc.org/standards/sps
https://www.ogc.org/standards/sps
https://www.ogc.org/standards/swecommon
https://www.ogc.org/standards/swes
https://www.w3.org/standards/semanticweb/data
https://www.w3.org/standards/semanticweb/data
https://www.w3.org/standards/semanticweb/
https://www.w3.org/standards/semanticweb/

[48] The World Wide Web Consortium. W3C - Leading the web to its full
potential. url: https://www.w3.org/. (accessed: 08.05.2022).

[49] World Wide Web Consortium et al. “OWL 2 Web Ontology Language
Document Overview (Second Edition).” In: (2012). url: https://www.
w3.org/TR/owl2-overview/.

[50] World Wide Web Consortium et al. “RDF 1.1 Concepts and Abstract
Syntax.” In: (2014). url: https://www.w3.org/TR/rdf11-concepts/.

[51] World Wide Web Consortium et al. “SPARQL 1.1 Overview.” In: (2013).
url: https://www.w3.org/TR/sparql11-overview/.

[52] Mauro AA da Cruz et al. “A reference model for internet of things mid-
dleware.” In: IEEE Internet of Things Journal (2018), pp. 871–883. doi:
https://doi.org/10.1109/JIOT.2018.2796561.

[53] Saikou Y Diallo et al. “Understanding interoperability.” In: Proceed-
ings of the 2011 Emerging M&S Applications in Industry and Academia
Symposium. 2011, pp. 84–91. url: https://www.researchgate.net/
publication/220954268_Understanding_interoperability.

[54] Jasenka Dizdarević et al. “A Survey of Communication Protocols for
Internet of Things and Related Challenges of Fog and Cloud Computing
Integration.” eng. In: (2019), pp. 1–29. doi: https://doi.org/10.

1145/3292674.
[55] ECMA. “Standard ECMA-404 The JSON Data Interchange Syntax.”

In: (2017). url: https://www.ecma-international.org/wp-content/
uploads/ECMA-404_2nd_edition_december_2017.pdf.

[56] IBM Cloud Education. Application Programming Interface (API). url:
https://www.ibm.com/cloud/learn/api. (accessed: 28.05.2022).

[57] IBM Cloud Education. IaaS versus PaaS versus SaaS. url: https://
www.ibm.com/cloud/learn/iaas-paas-saas. (accessed: 27.11.2022).

[58] IBM Cloud Education. REST APIs. url: https : / / www . ibm . com /

cloud/learn/rest-apis. (accessed: 28.05.2022).
[59] Asma Elmangoush. Evaluating the features of http/2 for the internet

of things. 2017. url: https://www.researchgate.net/publication/
320453832_Evaluating_the_Features_of_HTTP2_for_the_Internet_

of_Things.
[60] Roy T. Fielding and Julian Reschke. Hypertext Transfer Protocol (HTTP/1.1):

Message Syntax and Routing. RFC 7230. June 2014. doi: 10.17487/
RFC7230.

[61] Roy Thomas Fielding. Architectural styles and the design of network-
based software architectures. University of California, Irvine, 2000.

[62] OPC Foundation. OPC Unified Architecture Part 1: Overview and Con-
cepts. url: https://opcfoundation.org/developer-tools/specifications-
unified-architecture/part-1-overview-and-concepts/. (accessed:
16.06.2022).

[63] OPC Foundation. OPC Unified Architecture Part 3: Address Space Model.
url: https://opcfoundation.org/developer-tools/specifications-
unified-architecture/part-3-address-space-model/. (accessed:
16.06.2022).

[64] OPC Foundation. OPC Unified Architecture Part 4: Services. url: https:
//opcfoundation.org/developer-tools/specifications-unified-

architecture/part-4-services/. (accessed: 16.06.2022).

104

https://www.w3.org/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/sparql11-overview/
https://doi.org/https://doi.org/10.1109/JIOT.2018.2796561
https://www.researchgate.net/publication/220954268_Understanding_interoperability
https://www.researchgate.net/publication/220954268_Understanding_interoperability
https://doi.org/https://doi.org/10.1145/3292674
https://doi.org/https://doi.org/10.1145/3292674
https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://www.ibm.com/cloud/learn/api
https://www.ibm.com/cloud/learn/iaas-paas-saas
https://www.ibm.com/cloud/learn/iaas-paas-saas
https://www.ibm.com/cloud/learn/rest-apis
https://www.ibm.com/cloud/learn/rest-apis
https://www.researchgate.net/publication/320453832_Evaluating_the_Features_of_HTTP2_for_the_Internet_of_Things
https://www.researchgate.net/publication/320453832_Evaluating_the_Features_of_HTTP2_for_the_Internet_of_Things
https://www.researchgate.net/publication/320453832_Evaluating_the_Features_of_HTTP2_for_the_Internet_of_Things
https://doi.org/10.17487/RFC7230
https://doi.org/10.17487/RFC7230
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-1-overview-and-concepts/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-1-overview-and-concepts/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-3-address-space-model/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-3-address-space-model/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-4-services/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-4-services/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-4-services/

[65] OPC Foundation. OPC Unified Architecture Part 5: Information Model.
url: https://opcfoundation.org/developer-tools/specifications-
unified - architecture / part - 5 - information - model/. (accessed:
16.06.2022).

[66] OPC Foundation. OPC Unified Architecture Specification. url: https:
//opcfoundation.org/developer-tools/specifications-unified-

architecture. (accessed: 16.06.2022).
[67] Paul Fremantle. “A reference architecture for the internet of things.” In:

WSO2 White paper (2015), pp. 02–04. url: https://docs.huihoo.
com/wso2/wso2-whitepaper-a-reference-architecture-for-the-

internet-of-things.pdf.
[68] Ala Al-Fuqaha et al. “Internet of things: A survey on enabling tech-

nologies, protocols, and applications.” In: IEEE communications surveys
& tutorials (2015), pp. 2347–2376. doi: https://doi.org/10.1109/
COMST.2015.2444095.

[69] Steve Harris Garlik, Andy Seaborne, and Eric Prud’hommeaux. “SPARQL
1.1 Query language.” In: (2013). url: https : / / www . w3 . org / TR /

sparql11-query/.
[70] Matthew Gigli, Simon GM Koo, et al. “Internet of things: services and

applications categorization.” In: Adv. Internet Things (2011), pp. 27–31.
url: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.432.6422%5C&rep=rep1%5C&type=pdf.

[71] Crossbar.io Technologies GmbH. The Web Application Messaging Proto-
col. url: https://wamp-proto.org/index.html. (accessed: 05.04.2022).

[72] Regel Gonzalez-Usach et al. “Interoperability in IoT.” In: Handbook of
research on big data and the IoT. IGI Global, 2019, pp. 149–173.

[73] Google. Cloud IoT API. url: https://cloud.google.com/iot/docs/
reference/cloudiotdevice/rest. (accessed: 20.07.2022).

[74] Google. Create an IoT Core device registry. url: https : / / cloud .

google.com/iot/docs/create-device-registry. (accessed: 20.07.2022).
[75] Google. Google Cloud IoT Core documentation. url: https://cloud.

google.com/iot/docs/. (accessed: 20.07.2022).
[76] Google. Method: projects.locations.registries.devices.publishEvent. url: https:

//cloud.google.com/iot/docs/reference/cloudiotdevice/rest/

v1/projects.locations.registries.devices/publishEvent. (ac-
cessed: 20.07.2022).

[77] Google. Pub/Sub. url: https://cloud.google.com/pubsub/. (ac-
cessed: 11.06.2022).

[78] Google. Publishing over the HTTP bridge. url: https://cloud.google.
com/iot/docs/how-tos/http-bridge. (accessed: 20.07.2022).

[79] Google. Publishing over the MQTT bridge. url: https://cloud.google.
com/iot/docs/how-tos/mqtt-bridge. (accessed: 20.07.2022).

[80] Google. Service: cloudiotdevice.googleapis.com. url: https://cloud.

google.com/iot/docs/reference/cloudiotdevice/rest. (accessed:
20.07.2022).

[81] Google. Using JSON Web Tokens (JWTs). url: https://cloud.google.
com/iot/docs/how-tos/credentials/jwts. (accessed: 20.07.2022).

[82] MP Gopinath et al. “A secure cloud-based solution for real-time mon-
itoring and management of Internet of underwater things (IOUT).” In:

105

https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-5-information-model/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-5-information-model/
https://opcfoundation.org/developer-tools/specifications-unified-architecture
https://opcfoundation.org/developer-tools/specifications-unified-architecture
https://opcfoundation.org/developer-tools/specifications-unified-architecture
https://docs.huihoo.com/wso2/wso2-whitepaper-a-reference-architecture-for-the-internet-of-things.pdf
https://docs.huihoo.com/wso2/wso2-whitepaper-a-reference-architecture-for-the-internet-of-things.pdf
https://docs.huihoo.com/wso2/wso2-whitepaper-a-reference-architecture-for-the-internet-of-things.pdf
https://doi.org/https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/https://doi.org/10.1109/COMST.2015.2444095
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.432.6422%5C&rep=rep1%5C&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.432.6422%5C&rep=rep1%5C&type=pdf
https://wamp-proto.org/index.html
https://cloud.google.com/iot/docs/reference/cloudiotdevice/rest
https://cloud.google.com/iot/docs/reference/cloudiotdevice/rest
https://cloud.google.com/iot/docs/create-device-registry
https://cloud.google.com/iot/docs/create-device-registry
https://cloud.google.com/iot/docs/
https://cloud.google.com/iot/docs/
https://cloud.google.com/iot/docs/reference/cloudiotdevice/rest/v1/projects.locations.registries.devices/publishEvent
https://cloud.google.com/iot/docs/reference/cloudiotdevice/rest/v1/projects.locations.registries.devices/publishEvent
https://cloud.google.com/iot/docs/reference/cloudiotdevice/rest/v1/projects.locations.registries.devices/publishEvent
https://cloud.google.com/pubsub/
https://cloud.google.com/iot/docs/how-tos/http-bridge
https://cloud.google.com/iot/docs/how-tos/http-bridge
https://cloud.google.com/iot/docs/how-tos/mqtt-bridge
https://cloud.google.com/iot/docs/how-tos/mqtt-bridge
https://cloud.google.com/iot/docs/reference/cloudiotdevice/rest
https://cloud.google.com/iot/docs/reference/cloudiotdevice/rest
https://cloud.google.com/iot/docs/how-tos/credentials/jwts
https://cloud.google.com/iot/docs/how-tos/credentials/jwts

Neural Computing and Applications (2019), pp. 293–308. doi: https:
//doi.org/10.1007/s00521-018-3774-9.

[83] IEEE 802.11 Working Group. url: https://www.ieee802.org/11/.
(accessed: 02.07.2022).

[84] IEEE 802.3 Working Group. url: https : / / www . ieee802 . org / 3/.
(accessed: 02.07.2022).

[85] Sara Hachem, Thiago Teixeira, and Valérie Issarny. “Ontologies for the
internet of things.” In: Proceedings of the 8th middleware doctoral sym-
posium. 2011, pp. 1–6. doi: https://doi.org/10.1145/2093190.

2093193.
[86] Armin Haller et al. “Semantic Sensor Network Ontology.” In: (2017).

url: https://www.w3.org/TR/vocab-ssn/.
[87] Sandro Hawke et al. “SPARQL 1.1 Entailment Regimes.” In: World

Wide Web Consortium (W3C) (2013). url: https://www.w3.org/

TR/sparql11-entailment/.
[88] Patrick J. Hayes and Peter F. Patel-Schneider. “RDF 1.1 Semantics.” In:

(2014). url: https://www.w3.org/TR/rdf11-mt/.
[89] Bob Hinden and Dr. Steve E. Deering. Internet Protocol, Version 6

(IPv6) Specification. RFC 2460. Dec. 1998. doi: 10.17487/RFC2460.
url: https://www.rfc-editor.org/info/rfc2460.

[90] HiveMQ. HiveMQ MQTT Broker. url: https://www.hivemq.com/

hivemq/mqtt-broker/. (accessed: 08.08.2022).
[91] Jan Höller et al. “IoT Architecture – State of the Art.” In: From Machine-

to-Machine to the Internet of Things. Elsevier, 2018, pp. 145–165. doi:
https://doi.org/10.1016/B978-0-12-407684-6.00006-1.

[92] Internet Protocol. RFC 791. Sept. 1981. doi: 10.17487/RFC0791. url:
https://www.rfc-editor.org/info/rfc791.

[93] Philip Irving and Pascal A Ochang. “Evolutionary analysis of GSM,
UMTS and LTE mobile network architectures.” In: World Scientific
News 54 (2016), pp. 27–39. url: https://sure.sunderland.ac.uk/
id/eprint/7512/.

[94] Funda Ízdemir, Zeynep Ídemiş Ízger, et al. “Rivest-Shamir-Adleman Al-
gorithm.” In: Partially Homomorphic Encryption. Springer, 2021, pp. 37–
41. isbn: 978-3-030-87629-6. doi: https://doi.org/10.1007/978-3-
030-87629-6_3.

[95] Krzysztof Janowicz and Michael Compton. “The Stimulus-Sensor-Observation
Ontology Design Pattern and its Integration into the Semantic Sensor
Network Ontology.” In: SSN. Citeseer. 2010. url: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.174.8881&rep=rep1&

type=pdf.
[96] Jaime Jimenez, Michael Koster, and Hannes Tschofenig. “IPSO smart

objects.” In: Position paper for the IOT Semantic Interoperability Work-
shop. 2016. url: https : / / www . omaspecworks . org / wp - content /

uploads/2018/03/ipso-paper.pdf.
[97] Michael Jones. JSON Web Algorithms (JWA) - Digital Signature with

ECDSA. RFC 7518. May 2015. doi: 10.17487/RFC7518. url: https:
//datatracker.ietf.org/doc/html/rfc7518#section-3.4.

[98] Michael Jones. JSON Web Algorithms (JWA) - Digital Signature with
RSASSA-PKCS1-v15. RFC 7518. May 2015. doi: 10.17487/RFC7518.

106

https://doi.org/https://doi.org/10.1007/s00521-018-3774-9
https://doi.org/https://doi.org/10.1007/s00521-018-3774-9
https://www.ieee802.org/11/
https://www.ieee802.org/3/
https://doi.org/https://doi.org/10.1145/2093190.2093193
https://doi.org/https://doi.org/10.1145/2093190.2093193
https://www.w3.org/TR/vocab-ssn/
https://www.w3.org/TR/sparql11-entailment/
https://www.w3.org/TR/sparql11-entailment/
https://www.w3.org/TR/rdf11-mt/
https://doi.org/10.17487/RFC2460
https://www.rfc-editor.org/info/rfc2460
https://www.hivemq.com/hivemq/mqtt-broker/
https://www.hivemq.com/hivemq/mqtt-broker/
https://doi.org/https://doi.org/10.1016/B978-0-12-407684-6.00006-1
https://doi.org/10.17487/RFC0791
https://www.rfc-editor.org/info/rfc791
https://sure.sunderland.ac.uk/id/eprint/7512/
https://sure.sunderland.ac.uk/id/eprint/7512/
https://doi.org/https://doi.org/10.1007/978-3-030-87629-6_3
https://doi.org/https://doi.org/10.1007/978-3-030-87629-6_3
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.174.8881&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.174.8881&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.174.8881&rep=rep1&type=pdf
https://www.omaspecworks.org/wp-content/uploads/2018/03/ipso-paper.pdf
https://www.omaspecworks.org/wp-content/uploads/2018/03/ipso-paper.pdf
https://doi.org/10.17487/RFC7518
https://datatracker.ietf.org/doc/html/rfc7518#section-3.4
https://datatracker.ietf.org/doc/html/rfc7518#section-3.4
https://doi.org/10.17487/RFC7518

url: https://datatracker.ietf.org/doc/html/rfc7518#section-
3.3.

[99] Michael Jones, John Bradley, and Nat Sakimura. JSON Web Signature
(JWS). RFC 7515. May 2015. doi: 10.17487/RFC7515. url: https:
//www.rfc-editor.org/info/rfc7515.

[100] Michael Jones, John Bradley, and Nat Sakimura. JSON Web Signature
(JWS) - JOSE Header. RFC 7515. May 2015. doi: 10.17487/RFC7515.
url: https://www.rfc-editor.org/info/rfc7515#section-4.

[101] Chien-Chi Kao et al. “A comprehensive study on the internet of under-
water things: applications, challenges, and channel models.” In: Sensors
(2017), pp. 1–20. doi: https://doi.org/10.3390/s17071477.

[102] Vivek Kapoor, Vivek Sonny Abraham, and Ramesh Singh. “Elliptic curve
cryptography.” In: Ubiquity 2008.May (2008), pp. 1–8. doi: https://
doi.org/10.1145/1386853.1378356.

[103] Vasileios Karagiannis et al. “A Survey on Application Layer Protocols
for the Internet of Things.” eng. In: (2015), pp. 9–18. url: https://
jesusalonsozarate.files.wordpress.com/2015/01/2015-transaction-

on-iot-and-cloud-computing.pdf.
[104] Rafiullah Khan et al. “Future internet: the internet of things architecture,

possible applications and key challenges.” In: 2012 10th international
conference on frontiers of information technology. IEEE. 2012, pp. 257–
260. doi: https://doi.org/10.1109/FIT.2012.53.

[105] Noboru Koshizuka and Ken Sakamura. “Ubiquitous ID: standards for
ubiquitous computing and the internet of things.” In: IEEE Pervasive
Computing (2010), pp. 98–101. doi: https://doi.org/10.1109/MPRV.
2010.87.

[106] Nallapaneni Manoj Kumar and Pradeep Kumar Mallick. “The Internet
of Things: Insights into the building blocks, component interactions, and
architecture layers.” In: Procedia computer science (2018), pp. 109–117.
doi: https://doi.org/10.1016/j.procs.2018.05.170.

[107] He Li, Kaoru Ota, and Mianxiong Dong. “Learning IoT in edge: Deep
learning for the Internet of Things with edge computing.” In: (2018),
pp. 96–101. doi: https://doi.org/10.1109/MNET.2018.1700202.

[108] Gonçalo Marques, Nuno Garcia, and Nuno Pombo. “A Survey on IoT:
Architectures, Elements, Applications, QoS, Platforms and Security Con-
cepts.” In: Advances in Mobile Cloud Computing and Big Data in the 5G
Era. Ed. by Constandinos X. Mavromoustakis, George Mastorakis, and
Ciprian Dobre. Cham: Springer International Publishing, 2017, pp. 115–
130. isbn: 978-3-319-45145-9. doi: 10.1007/978-3-319-45145-9_5.

[109] Deborah L. McGuinness, Frank Van Harmelen, et al. “OWL Web On-
tology Language Overview.” In: (2004). url: https://www.w3.org/TR/
owl-features/.

[110] Alexey Melnikov and Ian Fette. The WebSocket Protocol. RFC 6455. Dec.
2011. doi: 10.17487/RFC6455. url: https://www.rfc-editor.org/
info/rfc6455.

[111] Tommaso Melodia et al. Advances in Underwater Acoustic Networking.
2013. url: https://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.307.5052&rep=rep1&type=pdf.

107

https://datatracker.ietf.org/doc/html/rfc7518#section-3.3
https://datatracker.ietf.org/doc/html/rfc7518#section-3.3
https://doi.org/10.17487/RFC7515
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7515
https://doi.org/10.17487/RFC7515
https://www.rfc-editor.org/info/rfc7515#section-4
https://doi.org/https://doi.org/10.3390/s17071477
https://doi.org/https://doi.org/10.1145/1386853.1378356
https://doi.org/https://doi.org/10.1145/1386853.1378356
https://jesusalonsozarate.files.wordpress.com/2015/01/2015-transaction-on-iot-and-cloud-computing.pdf
https://jesusalonsozarate.files.wordpress.com/2015/01/2015-transaction-on-iot-and-cloud-computing.pdf
https://jesusalonsozarate.files.wordpress.com/2015/01/2015-transaction-on-iot-and-cloud-computing.pdf
https://doi.org/https://doi.org/10.1109/FIT.2012.53
https://doi.org/https://doi.org/10.1109/MPRV.2010.87
https://doi.org/https://doi.org/10.1109/MPRV.2010.87
https://doi.org/https://doi.org/10.1016/j.procs.2018.05.170
https://doi.org/https://doi.org/10.1109/MNET.2018.1700202
https://doi.org/10.1007/978-3-319-45145-9_5
https://www.w3.org/TR/owl-features/
https://www.w3.org/TR/owl-features/
https://doi.org/10.17487/RFC6455
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc6455
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.5052&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.5052&rep=rep1&type=pdf

[112] Microsoft. ASMX Client with a WCF Service. url: https://docs.

microsoft . com / en - us / dotnet / framework / wcf / samples / asmx -

client-with-a-wcf-service. (accessed: 21.07.2022).
[113] Microsoft. Azure Active Directory Documentation. url: https://docs.

microsoft.com/en-us/azure/active-directory/. (accessed: 20.07.2022).
[114] Microsoft. Azure App Service Documentation. url: https : / / docs .

microsoft.com/en-us/azure/app-service/. (accessed: 20.07.2022).
[115] Microsoft. Azure Blob Storage Documentation. url: https://docs.

microsoft.com/en-us/azure/storage/blobs/. (accessed: 20.07.2022).
[116] Microsoft. Azure Cosmos DB Documentation. url: https : / / docs .

microsoft.com/en-us/azure/cosmos-db/. (accessed: 20.07.2022).
[117] Microsoft. Azure Data Explorer documentation. url: https://docs.

microsoft.com/en-us/azure/data-explorer/. (accessed: 18.07.2022).
[118] Microsoft. Azure Databricks Documentation. url: https://docs.microsoft.

com/en-us/azure/databricks/. (accessed: 20.07.2022).
[119] Microsoft. Azure Digital Twins Documentation. url: https://docs.

microsoft.com/en-us/azure/digital-twins/. (accessed: 29.07.2022).
[120] Microsoft. Azure IoT Central documentation. url: https : / / docs .

microsoft.com/en-us/azure/iot-central/. (accessed: 17.08.2022).
[121] Microsoft. Azure IoT Edge documentation. url: https://docs.microsoft.

com/en- us/azure/iot- edge/?view=iotedge- 2020- 11. (accessed:
18.07.2022).

[122] Microsoft. Azure IoT Hub Device Provisioning Service (DPS) Documen-
tation. url: https://docs.microsoft.com/en-us/azure/iot-dps/.
(accessed: 20.07.2022).

[123] Microsoft. Azure IoT Hub Documentation. url: https://docs.microsoft.
com/en-us/azure/iot-hub/. (accessed: 29.07.2022).

[124] Microsoft. Azure IoT Hub pricing. url: https://azure.microsoft.
com/en-us/pricing/details/iot-hub/. (accessed: 18.07.2022).

[125] Microsoft. Azure Machine Learning Documentation. url: https : / /

docs.microsoft.com/en-us/azure/machine-learning/. (accessed:
20.07.2022).

[126] Microsoft. Azure Maps Documentation. url: https://docs.microsoft.
com/en- us/azure/architecture/reference- architectures/iot.
(accessed: 20.07.2022).

[127] Microsoft. Azure Monitor Documentation. url: https://docs.microsoft.
com/en-us/azure/azure-monitor/. (accessed: 20.07.2022).

[128] Microsoft. Azure Percept documentation. url: https://docs.microsoft.
com/en-us/azure/azure-percept/. (accessed: 17.08.2022).

[129] Microsoft. Azure REST API reference. url: https://docs.microsoft.
com/en-us/rest/api/azure/. (accessed: 27.07.2022).

[130] Microsoft. Azure RTOS Documentation. url: https://docs.microsoft.
com/en-us/azure/rtos/. (accessed: 20.07.2022).

[131] Microsoft. Azure Sphere Documentation. url: https://docs.microsoft.
com/en-us/azure-sphere/. (accessed: 20.07.2022).

[132] Microsoft. Azure SQL Documentation. url: https://docs.microsoft.
com/en-us/azure/azure-sql/?view=azuresql. (accessed: 20.07.2022).

[133] Microsoft. Azure Time Series Insights documentation. url: https://
docs.microsoft.com/nb-no/azure/time-series-insights/. (ac-
cessed: 18.07.2022).

108

https://docs.microsoft.com/en-us/dotnet/framework/wcf/samples/asmx-client-with-a-wcf-service
https://docs.microsoft.com/en-us/dotnet/framework/wcf/samples/asmx-client-with-a-wcf-service
https://docs.microsoft.com/en-us/dotnet/framework/wcf/samples/asmx-client-with-a-wcf-service
https://docs.microsoft.com/en-us/azure/active-directory/
https://docs.microsoft.com/en-us/azure/active-directory/
https://docs.microsoft.com/en-us/azure/app-service/
https://docs.microsoft.com/en-us/azure/app-service/
https://docs.microsoft.com/en-us/azure/storage/blobs/
https://docs.microsoft.com/en-us/azure/storage/blobs/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/data-explorer/
https://docs.microsoft.com/en-us/azure/data-explorer/
https://docs.microsoft.com/en-us/azure/databricks/
https://docs.microsoft.com/en-us/azure/databricks/
https://docs.microsoft.com/en-us/azure/digital-twins/
https://docs.microsoft.com/en-us/azure/digital-twins/
https://docs.microsoft.com/en-us/azure/iot-central/
https://docs.microsoft.com/en-us/azure/iot-central/
https://docs.microsoft.com/en-us/azure/iot-edge/?view=iotedge-2020-11
https://docs.microsoft.com/en-us/azure/iot-edge/?view=iotedge-2020-11
https://docs.microsoft.com/en-us/azure/iot-dps/
https://docs.microsoft.com/en-us/azure/iot-hub/
https://docs.microsoft.com/en-us/azure/iot-hub/
https://azure.microsoft.com/en-us/pricing/details/iot-hub/
https://azure.microsoft.com/en-us/pricing/details/iot-hub/
https://docs.microsoft.com/en-us/azure/machine-learning/
https://docs.microsoft.com/en-us/azure/machine-learning/
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/iot
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/iot
https://docs.microsoft.com/en-us/azure/azure-monitor/
https://docs.microsoft.com/en-us/azure/azure-monitor/
https://docs.microsoft.com/en-us/azure/azure-percept/
https://docs.microsoft.com/en-us/azure/azure-percept/
https://docs.microsoft.com/en-us/rest/api/azure/
https://docs.microsoft.com/en-us/rest/api/azure/
https://docs.microsoft.com/en-us/azure/rtos/
https://docs.microsoft.com/en-us/azure/rtos/
https://docs.microsoft.com/en-us/azure-sphere/
https://docs.microsoft.com/en-us/azure-sphere/
https://docs.microsoft.com/en-us/azure/azure-sql/?view=azuresql
https://docs.microsoft.com/en-us/azure/azure-sql/?view=azuresql
https://docs.microsoft.com/nb-no/azure/time-series-insights/
https://docs.microsoft.com/nb-no/azure/time-series-insights/

[134] Microsoft. Choose a device communication protocol. url: https : / /

docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-

protocols. (accessed: 27.07.2022).
[135] Microsoft. Connect to data in Power BI - documentation. url: https:

//docs.microsoft.com/en-us/power-bi/connect-data/. (accessed:
20.07.2022).

[136] Microsoft. Create an IoT hub using the Azure portal. url: https://

docs.microsoft.com/en- us/azure/iot- hub/iot- hub- create-

through-portal. (accessed: 18.07.2022).
[137] Microsoft. Data Lake. url: https://azure.microsoft.com/en-us/

solutions/data-lake/. (accessed: 18.07.2022).
[138] Microsoft. Develop Service-Oriented Applications with WCF. url: https:

//docs.microsoft.com/en-us/dotnet/framework/wcf/. (accessed:
21.07.2022).

[139] Microsoft. DeviceClient Class. url: https://docs.microsoft.com/en-
us/dotnet/api/microsoft.azure.devices.client.deviceclient?

view=azure-dotnet. (accessed: 18.07.2022).
[140] Microsoft. Download .NET Framework 4.8. url: https : / / dotnet .

microsoft.com/en- us/download/dotnet- framework/net48. (ac-
cessed: 21.07.2022).

[141] Microsoft. Encoding.GetBytes Method. url: https://docs.microsoft.
com/en-us/dotnet/api/system.text.encoding.getbytes?view=

netframework-4.8. (accessed: 18.07.2022).
[142] Microsoft. HttpWebRequest Class. url: https://docs.microsoft.com/

en- us/dotnet/api/system.net.httpwebrequest?view=net- 6.0.
(accessed: 20.07.2022).

[143] Microsoft. Install and use Azure IoT explorer. url: https://docs.

microsoft.com/en-us/azure/iot-fundamentals/howto-use-iot-

explorer. (accessed: 18.07.2022).
[144] Microsoft. Internet Information Services (IIS). url: https://www.iis.

net/overview. (accessed: 21.07.2022).
[145] Microsoft. Interprocess Communications. url: https://docs.microsoft.

com/en-us/windows/win32/ipc/interprocess-communications. (ac-
cessed: 21.07.2022).

[146] Microsoft. IoT Hub REST. url: https://docs.microsoft.com/en-
us/rest/api/iothub/. (accessed: 27.07.2022).

[147] Microsoft. IotHubConnectionStringBuilder Class. url: https://docs.
microsoft.com/en- us/dotnet/api/microsoft.azure.devices.

client.iothubconnectionstringbuilder?view=azure-dotnet. (ac-
cessed: 18.07.2022).

[148] Microsoft. Manage Azure resource groups by using the Azure portal. url:
https://docs.microsoft.com/en- us/azure/azure- resource-

manager/management/manage- resource- groups- portal. (accessed:
18.07.2022).

[149] Microsoft. Message Class. url: https://docs.microsoft.com/en-
us/dotnet/api/system.messaging.message?view=netframework-

4.8. (accessed: 21.07.2022).
[150] Microsoft. Message Queuing (MSMQ). url: https://docs.microsoft.

com/en-us/previous-versions/windows/desktop/legacy/ms711472(v=

vs.85). (accessed: 21.07.2022).

109

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-protocols
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-protocols
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-protocols
https://docs.microsoft.com/en-us/power-bi/connect-data/
https://docs.microsoft.com/en-us/power-bi/connect-data/
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal
https://azure.microsoft.com/en-us/solutions/data-lake/
https://azure.microsoft.com/en-us/solutions/data-lake/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.devices.client.deviceclient?view=azure-dotnet
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.devices.client.deviceclient?view=azure-dotnet
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.devices.client.deviceclient?view=azure-dotnet
https://dotnet.microsoft.com/en-us/download/dotnet-framework/net48
https://dotnet.microsoft.com/en-us/download/dotnet-framework/net48
https://docs.microsoft.com/en-us/dotnet/api/system.text.encoding.getbytes?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.text.encoding.getbytes?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.text.encoding.getbytes?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.net.httpwebrequest?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.net.httpwebrequest?view=net-6.0
https://docs.microsoft.com/en-us/azure/iot-fundamentals/howto-use-iot-explorer
https://docs.microsoft.com/en-us/azure/iot-fundamentals/howto-use-iot-explorer
https://docs.microsoft.com/en-us/azure/iot-fundamentals/howto-use-iot-explorer
https://www.iis.net/overview
https://www.iis.net/overview
https://docs.microsoft.com/en-us/windows/win32/ipc/interprocess-communications
https://docs.microsoft.com/en-us/windows/win32/ipc/interprocess-communications
https://docs.microsoft.com/en-us/rest/api/iothub/
https://docs.microsoft.com/en-us/rest/api/iothub/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.devices.client.iothubconnectionstringbuilder?view=azure-dotnet
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.devices.client.iothubconnectionstringbuilder?view=azure-dotnet
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.devices.client.iothubconnectionstringbuilder?view=azure-dotnet
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/manage-resource-groups-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/manage-resource-groups-portal
https://docs.microsoft.com/en-us/dotnet/api/system.messaging.message?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.messaging.message?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.messaging.message?view=netframework-4.8
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/ms711472(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/ms711472(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/ms711472(v=vs.85)

[151] Microsoft. “Microsoft Azure IoT Reference Architecture Version 2.1.” In:
(2018). url: https://download.microsoft.com/download/A/4/D/
A4DAD253-BC21-41D3-B9D9-87D2AE6F0719/Microsoft_Azure_IoT_

Reference_Architecture.pdf.
[152] Microsoft. Microsoft Azure IoT SDKs. url: https://github.com/

Azure/azure-iot-sdks. (accessed: 18.07.2022).
[153] Microsoft. Microsoft Defender for IoT Documentation. url: https://

docs.microsoft.com/en-us/azure/defender-for-iot/. (accessed:
20.07.2022).

[154] Microsoft. Microsoft.Azure.Devices Namespace. url: https://docs.

microsoft.com/en- us/dotnet/api/microsoft.azure.devices.

client?view=azure-dotnet. (accessed: 18.07.2022).
[155] Microsoft. Named Pipes. url: https://docs.microsoft.com/en-

us/windows/win32/ipc/named-pipes. (accessed: 21.07.2022).
[156] Microsoft. Open Web Interface for .NET (OWIN) with ASP.NET Core.

url: https://docs.microsoft.com/en-us/aspnet/core/fundamentals/
owin?view=aspnetcore-6.0. (accessed: 21.07.2022).

[157] Microsoft. Overview of Azure IoT Device SDKs. url: https://docs.
microsoft.com/en-us/azure/iot-develop/about-iot-sdks. (ac-
cessed: 27.07.2022).

[158] Microsoft. Project Catalog - IoT DevKit. url: https://microsoft.

github.io/azure-iot-developer-kit/docs/projects/. (accessed:
20.07.2022).

[159] Microsoft. Project Catalog - IoT DevKit. url: https://azure.microsoft.
com/en-us/downloads/. (accessed: 20.07.2022).

[160] Microsoft. RSACryptoServiceProvider Class. url: https://docs.microsoft.
com/en-us/dotnet/api/system.security.cryptography.rsacryptoserviceprovider?

view=net-6.0. (accessed: 20.07.2022).
[161] Microsoft. RSAParameters Struct. url: https://docs.microsoft.com/

en-us/dotnet/api/system.security.cryptography.rsaparameters?

view=net-6.0. (accessed: 20.07.2022).
[162] Microsoft. Stream Class. url: https://docs.microsoft.com/en-us/

dotnet/api/system.io.stream?view=net-6.0. (accessed: 20.07.2022).
[163] Microsoft. Task asynchronous programming model. url: https://docs.

microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/

async/task-asynchronous-programming-model. (accessed: 18.07.2022).
[164] Microsoft. TransportType Enum. url: https://docs.microsoft.com/

en-us/dotnet/api/microsoft.azure.devices.client.transporttype?

view=azure-dotnet. (accessed: 18.07.2022).
[165] Microsoft. Visual Studio: IDE and Code Editor for Software Developers

and Teams. url: https://visualstudio.microsoft.com/. (accessed:
21.07.2022).

[166] Microsoft. Welcome to Azure Stream Analytics. url: https://docs.
microsoft.com/en-us/azure/stream-analytics/stream-analytics-

introduction. (accessed: 24.04.2022).
[167] Microsoft. What are solutions and projects in Visual Studio? url: https:

//docs.microsoft.com/en-us/visualstudio/ide/solutions-and-

projects-in-visual-studio?view=vs-2022. (accessed: 21.07.2022).
[168] Microsoft. What is Azure HDInsight? url: https://docs.microsoft.

com/en-us/azure/hdinsight/hdinsight-overview. (accessed: 24.04.2022).

110

https://download.microsoft.com/download/A/4/D/A4DAD253-BC21-41D3-B9D9-87D2AE6F0719/Microsoft_Azure_IoT_Reference_Architecture.pdf
https://download.microsoft.com/download/A/4/D/A4DAD253-BC21-41D3-B9D9-87D2AE6F0719/Microsoft_Azure_IoT_Reference_Architecture.pdf
https://download.microsoft.com/download/A/4/D/A4DAD253-BC21-41D3-B9D9-87D2AE6F0719/Microsoft_Azure_IoT_Reference_Architecture.pdf
https://github.com/Azure/azure-iot-sdks
https://github.com/Azure/azure-iot-sdks
https://docs.microsoft.com/en-us/azure/defender-for-iot/
https://docs.microsoft.com/en-us/azure/defender-for-iot/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.devices.client?view=azure-dotnet
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.devices.client?view=azure-dotnet
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.devices.client?view=azure-dotnet
https://docs.microsoft.com/en-us/windows/win32/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/win32/ipc/named-pipes
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/owin?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/azure/iot-develop/about-iot-sdks
https://docs.microsoft.com/en-us/azure/iot-develop/about-iot-sdks
https://microsoft.github.io/azure-iot-developer-kit/docs/projects/
https://microsoft.github.io/azure-iot-developer-kit/docs/projects/
https://azure.microsoft.com/en-us/downloads/
https://azure.microsoft.com/en-us/downloads/
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rsacryptoserviceprovider?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rsacryptoserviceprovider?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rsacryptoserviceprovider?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rsaparameters?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rsaparameters?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rsaparameters?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.io.stream?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/task-asynchronous-programming-model
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/task-asynchronous-programming-model
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/task-asynchronous-programming-model
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.devices.client.transporttype?view=azure-dotnet
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.devices.client.transporttype?view=azure-dotnet
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.devices.client.transporttype?view=azure-dotnet
https://visualstudio.microsoft.com/
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-introduction
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-introduction
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-introduction
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/ide/solutions-and-projects-in-visual-studio?view=vs-2022
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-overview
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-overview

[169] Microsoft. What is Azure? url: https://azure.microsoft.com/en-
us/resources/cloud-computing-dictionary/what-is-azure/. (ac-
cessed: 29.07.2022).

[170] Microsoft. Working with CSV and JSON files for data solutions. url:
https://docs.microsoft.com/en-us/azure/architecture/data-

guide/scenarios/csv-and-json. (accessed: 04.08.2022).
[171] Microsoft. X509Certificate Class. url: https://docs.microsoft.com/

en-us/dotnet/api/system.security.cryptography.x509certificates.

x509certificate?view=net-6.0. (accessed: 20.07.2022).
[172] Microsoft. X509Certificate2 Class. url: https://docs.microsoft.com/

en-us/dotnet/api/system.security.cryptography.x509certificates.

x509certificate2?view=net-6.0. (accessed: 20.07.2022).
[173] Milan Milenkovic. “Chapter 1: Introduction and Overview.” In: Internet

of Things: Concepts and System Design. Cham: Springer International
Publishing, 2020, pp. 1–25. isbn: 978-3-030-41346-0. doi: 10.1007/978-
3-030-41346-0_1. url: https://doi.org/10.1007/978-3-030-
41346-0_1.

[174] Milan Milenkovic. “Chapter 4: Cloud.” In: Internet of Things: Con-
cepts and System Design. Cham: Springer International Publishing, 2020,
pp. 109–153. isbn: 978-3-030-41346-0. doi: 10.1007/978-3-030-41346-
0_4.

[175] Milan Milenkovic. “Chapter 6: IoT Data Models and Metadata.” In:
Internet of Things: Concepts and System Design. Cham: Springer In-
ternational Publishing, 2020, pp. 201–223. isbn: 978-3-030-41346-0. doi:
10.1007/978-3-030-41346-0_6. url: https://doi.org/10.1007/
978-3-030-41346-0_6.

[176] Ajay R Mishra. Fundamentals of Network Planning and Optimisation
2G/3G/4G: Evolution to 5G. John Wiley & Sons, 2018. isbn: 9781119331797.

[177] Gabriel Montenegro, Christian Schumacher, and Nandakishore Kushal-
nagar. IPv6 over Low-Power Wireless Personal Area Networks (6LoW-
PANs): Overview, Assumptions, Problem Statement, and Goals. RFC
4919. Aug. 2007. doi: 10.17487/RFC4919. url: https://www.rfc-
editor.org/info/rfc4919.

[178] Motahareh Nazari Jahantigh et al. “Integration of internet of things and
cloud computing: a systematic survey.” In: IET Communications (2020),
pp. 165–176. doi: https://doi.org/10.1049/iet-com.2019.0537.

[179] OASIS. MQTT Version 3.1.1. Oct. 2014. url: https://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html.

[180] OASIS. MQTT Version 5.0. Mar. 2019. url: https://docs.oasis-
open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

[181] OASIS. OASIS Advanced Message Queuing Protocol (AMQP) Version
1.0. Sept. 2012. url: https://docs.oasis-open.org/amqp/core/v1.
0/os/amqp-core-overview-v1.0-os.html.

[182] SFI Smart Ocean. “Flexible and cost-effective monitoring for manage-
ment of a productive and healthy ocean [Unavailable].” eng. In: (2020),
pp. 1–20.

[183] SFI Smart Ocean. SFI Smart Ocean: About the centre. url: https :

//sfismartocean.no/partnership/. (accessed: 28.10.2021).
[184] SFI Smart Ocean. SFI Smart Ocean: Work packages. url: https://

sfismartocean.no/work-packages/. (accessed: 16.02.2022).

111

https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure/
https://docs.microsoft.com/en-us/azure/architecture/data-guide/scenarios/csv-and-json
https://docs.microsoft.com/en-us/azure/architecture/data-guide/scenarios/csv-and-json
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.x509certificates.x509certificate?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.x509certificates.x509certificate?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.x509certificates.x509certificate?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.x509certificates.x509certificate2?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.x509certificates.x509certificate2?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.x509certificates.x509certificate2?view=net-6.0
https://doi.org/10.1007/978-3-030-41346-0_1
https://doi.org/10.1007/978-3-030-41346-0_1
https://doi.org/10.1007/978-3-030-41346-0_1
https://doi.org/10.1007/978-3-030-41346-0_1
https://doi.org/10.1007/978-3-030-41346-0_4
https://doi.org/10.1007/978-3-030-41346-0_4
https://doi.org/10.1007/978-3-030-41346-0_6
https://doi.org/10.1007/978-3-030-41346-0_6
https://doi.org/10.1007/978-3-030-41346-0_6
https://doi.org/10.17487/RFC4919
https://www.rfc-editor.org/info/rfc4919
https://www.rfc-editor.org/info/rfc4919
https://doi.org/https://doi.org/10.1049/iet-com.2019.0537
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
https://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
https://sfismartocean.no/partnership/
https://sfismartocean.no/partnership/
https://sfismartocean.no/work-packages/
https://sfismartocean.no/work-packages/

[185] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. “OWL Web
Ontology Language Semantics and Abstract Syntax.” In: (2004). url:
https://www.w3.org/TR/owl-semantics/.

[186] Paolo Patierno. M2Mqtt. url: https://github.com/eclipse/paho.
mqtt.m2mqtt. (accessed: 20.07.2022).

[187] Paola Pierleoni et al. “Amazon, Google and Microsoft solutions for IoT:
Architectures and a performance comparison.” In: IEEE access (2019),
pp. 5455–5470. doi: https : / / doi . org / 10 . 1109 / ACCESS . 2019 .

2961511.
[188] Google Cloud Platform. GitHub - Google Cloud Platform. url: https:

//github.com/GoogleCloudPlatform. (accessed: 26.08.2022).
[189] Sharad Pratap Singh et al. “A Survey on Internet of Things (IoT): Layer

Specific vs. Domain Specific Architecture.” In: Second International Con-
ference on Computer Networks and Communication Technologies. Ed. by
S. Smys, Tomonobu Senjyu, and Pavel Lafata. Cham: Springer Interna-
tional Publishing, 2020, pp. 333–341. isbn: 978-3-030-37051-0.

[190] Tie Qiu et al. “Underwater Internet of Things in Smart Ocean: System
Architecture and Open Issues.” eng. In: (2020), pp. 1–11. doi: 10.1109/
TII.2019.2946618.

[191] Ammar Rayes and Samer Salam. “IoT Protocol Stack: A Layered View.”
In: Internet of Things from Hype to Reality: The Road to Digitization.
Cham: Springer International Publishing, 2022, pp. 97–152. isbn: 978-
3-030-90158-5. doi: 10.1007/978- 3- 030- 90158- 5_5. url: https:

//doi.org/10.1007/978-3-030-90158-5_5.
[192] Ammar Rayes and Samer Salam. “The Internet in IoT.” In: Internet of

Things from Hype to Reality: The Road to Digitization. Cham: Springer
International Publishing, 2022, pp. 35–62. isbn: 978-3-030-90158-5. doi:
10.1007/978-3-030-90158-5_2. url: https://doi.org/10.1007/
978-3-030-90158-5_2.

[193] Mohammad Abdur Razzaque et al. “Middleware for internet of things:
a survey.” In: IEEE Internet of things journal (2015), pp. 70–95. doi:
https://doi.org/10.1109/JIOT.2015.2498900.

[194] Carl Reed et al. “Ogc R© sensor web enablement: overview and high
level architecture.” In: 2007 IEEE Autotestcon (2007), pp. 372–380. doi:
https://doi.org/10.1109/AUTEST.2007.4374243.

[195] Jenn Riley. “Understanding metadata.” In: (2017), pp. 1–45. url: http:
//groups.niso.org/higherlogic/ws/public/download/17446/

Understanding%5C%20Metadata.pdf.
[196] Omar Said and Mehedi Masud. “Towards internet of things: Survey and

future vision.” In: International Journal of Computer Networks (2013),
pp. 1–17. url: https://cs.brown.edu/courses/csci2270/archives/
2017/papers/Towards_Internet_of_Things_Survey_and_Fu.pdf.

[197] Tara Salman and Raj Jain. “A Survey of Protocols and Standards for
Internet of Things.” eng. In: (2019), pp. 1–20. doi: https://doi.org/
10.48550/arXiv.1903.11549.

[198] Amany Sarhan. “Cloud-based IoT platform: Challenges and applied so-
lutions.” In: Harnessing the Internet of Everything (IoE) for accelerated
innovation opportunities. IGI Global, 2019, pp. 116–147.

[199] John Schneider et al. Efficient XML Interchange (EXI) Format 1.0 (Sec-
ond Edition). url: https://www.w3.org/TR/exi/. (accessed: 02.05.2022).

112

https://www.w3.org/TR/owl-semantics/
https://github.com/eclipse/paho.mqtt.m2mqtt
https://github.com/eclipse/paho.mqtt.m2mqtt
https://doi.org/https://doi.org/10.1109/ACCESS.2019.2961511
https://doi.org/https://doi.org/10.1109/ACCESS.2019.2961511
https://github.com/GoogleCloudPlatform
https://github.com/GoogleCloudPlatform
https://doi.org/10.1109/TII.2019.2946618
https://doi.org/10.1109/TII.2019.2946618
https://doi.org/10.1007/978-3-030-90158-5_5
https://doi.org/10.1007/978-3-030-90158-5_5
https://doi.org/10.1007/978-3-030-90158-5_5
https://doi.org/10.1007/978-3-030-90158-5_2
https://doi.org/10.1007/978-3-030-90158-5_2
https://doi.org/10.1007/978-3-030-90158-5_2
https://doi.org/https://doi.org/10.1109/JIOT.2015.2498900
https://doi.org/https://doi.org/10.1109/AUTEST.2007.4374243
http://groups.niso.org/higherlogic/ws/public/download/17446/Understanding%5C%20Metadata.pdf
http://groups.niso.org/higherlogic/ws/public/download/17446/Understanding%5C%20Metadata.pdf
http://groups.niso.org/higherlogic/ws/public/download/17446/Understanding%5C%20Metadata.pdf
https://cs.brown.edu/courses/csci2270/archives/2017/papers/Towards_Internet_of_Things_Survey_and_Fu.pdf
https://cs.brown.edu/courses/csci2270/archives/2017/papers/Towards_Internet_of_Things_Survey_and_Fu.pdf
https://doi.org/https://doi.org/10.48550/arXiv.1903.11549
https://doi.org/https://doi.org/10.48550/arXiv.1903.11549
https://www.w3.org/TR/exi/

[200] Andy Seaborne and Eric Prud’hommeaux. “SPARQL Query Language
for RDF.” In: World Wide Web Consortium (W3C) (2008). url: https:
//www.w3.org/TR/rdf-sparql-query/.

[201] Fatih Senel et al. “Self-deployment of mobile underwater acoustic sensor
networks for maximized coverage and guaranteed connectivity.” In: Ad
Hoc Networks (2015), pp. 170–183. doi: https://doi.org/10.1016/j.
adhoc.2014.09.013.

[202] Amazon Web Services. AI Platform. url: https://cloud.google.com/
ai-platform/docs/technical-overview. (accessed: 29.08.2022).

[203] Amazon Web Services. Amazon DynamoDB Documentation. url: https:
//docs.aws.amazon.com/kinesis/index.html. (accessed: 28.08.2022).

[204] Amazon Web Services. Amazon Kinesis Documentation. url: https://
docs.aws.amazon.com/dynamodb/index.html. (accessed: 28.08.2022).

[205] Amazon Web Services. Amazon QuickSight Documentation. url: https:
//docs.aws.amazon.com/quicksight/index.html. (accessed: 28.08.2022).

[206] Amazon Web Services. Amazon Simple Notification Service Documenta-
tion. url: https://docs.aws.amazon.com/sns/index.html. (accessed:
28.08.2022).

[207] Amazon Web Services. Amazon Simple Storage Service Documentation.
url: https://docs.aws.amazon.com/s3/index.html. (accessed:
28.08.2022).

[208] Amazon Web Services. Amazon Web Services Launches. url: https:

//press.aboutamazon.com/news-releases/news-release-details/

amazon - web - services - launches - amazon - s3 - simple - storage -

service. (accessed: 26.08.2022).
[209] Amazon Web Services. Anthos Technical Overview. url: https://cloud.

google.com/anthos/docs/concepts/overview. (accessed: 29.08.2022).
[210] Amazon Web Services. AWS Identity and Access Management Docu-

mentation. url: https : / / docs . aws . amazon . com / iam/. (accessed:
26.08.2022).

[211] Amazon Web Services. AWS IoT 1-Click Documentation. url: https:
/ / docs . aws . amazon . com / iot - 1 - click / index . html. (accessed:
25.08.2022).

[212] Amazon Web Services. AWS IoT Analytics Documentation. url: https:
//docs.aws.amazon.com/iot-twinmaker/. (accessed: 25.08.2022).

[213] Amazon Web Services. AWS IoT Analytics Documentation. url: https:
//docs.aws.amazon.com/iotanalytics/. (accessed: 25.08.2022).

[214] Amazon Web Services. AWS IoT Core Documentation. url: https://
docs.aws.amazon.com/iot/index.html. (accessed: 25.08.2022).

[215] Amazon Web Services. AWS IoT Device Defender Documentation. url:
https://docs.aws.amazon.com/iot-device-defender/. (accessed:
25.08.2022).

[216] Amazon Web Services. AWS IoT Device Management Documentation.
url: https://docs.aws.amazon.com/iot- device- management/

index.html. (accessed: 25.08.2022).
[217] Amazon Web Services. AWS IoT Events Documentation. url: https:

//docs.aws.amazon.com/iotevents/. (accessed: 25.08.2022).
[218] Amazon Web Services. AWS IoT ExpressLink Documentation. url: https:

//docs.aws.amazon.com/iot-expresslink/index.html. (accessed:
25.08.2022).

113

https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://doi.org/https://doi.org/10.1016/j.adhoc.2014.09.013
https://doi.org/https://doi.org/10.1016/j.adhoc.2014.09.013
https://cloud.google.com/ai-platform/docs/technical-overview
https://cloud.google.com/ai-platform/docs/technical-overview
https://docs.aws.amazon.com/kinesis/index.html
https://docs.aws.amazon.com/kinesis/index.html
https://docs.aws.amazon.com/dynamodb/index.html
https://docs.aws.amazon.com/dynamodb/index.html
https://docs.aws.amazon.com/quicksight/index.html
https://docs.aws.amazon.com/quicksight/index.html
https://docs.aws.amazon.com/sns/index.html
https://docs.aws.amazon.com/s3/index.html
https://press.aboutamazon.com/news-releases/news-release-details/amazon-web-services-launches-amazon-s3-simple-storage-service
https://press.aboutamazon.com/news-releases/news-release-details/amazon-web-services-launches-amazon-s3-simple-storage-service
https://press.aboutamazon.com/news-releases/news-release-details/amazon-web-services-launches-amazon-s3-simple-storage-service
https://press.aboutamazon.com/news-releases/news-release-details/amazon-web-services-launches-amazon-s3-simple-storage-service
https://cloud.google.com/anthos/docs/concepts/overview
https://cloud.google.com/anthos/docs/concepts/overview
https://docs.aws.amazon.com/iam/
https://docs.aws.amazon.com/iot-1-click/index.html
https://docs.aws.amazon.com/iot-1-click/index.html
https://docs.aws.amazon.com/iot-twinmaker/
https://docs.aws.amazon.com/iot-twinmaker/
https://docs.aws.amazon.com/iotanalytics/
https://docs.aws.amazon.com/iotanalytics/
https://docs.aws.amazon.com/iot/index.html
https://docs.aws.amazon.com/iot/index.html
https://docs.aws.amazon.com/iot-device-defender/
https://docs.aws.amazon.com/iot-device-management/index.html
https://docs.aws.amazon.com/iot-device-management/index.html
https://docs.aws.amazon.com/iotevents/
https://docs.aws.amazon.com/iotevents/
https://docs.aws.amazon.com/iot-expresslink/index.html
https://docs.aws.amazon.com/iot-expresslink/index.html

[219] Amazon Web Services. AWS IoT FleetWise Documentation. url: https:
//docs.aws.amazon.com/iot- fleetwise/index.html. (accessed:
25.08.2022).

[220] Amazon Web Services. AWS IoT Greengrass Documentation. url: https:
//docs.aws.amazon.com/greengrass/index.html. (accessed: 25.08.2022).

[221] Amazon Web Services. AWS IoT RoboRunner (Preview) Documentation.
url: https://docs.aws.amazon.com/iotroborunner/. (accessed:
25.08.2022).

[222] Amazon Web Services. AWS IoT SiteWise Documentation. url: https:
//docs.aws.amazon.com/iot- sitewise/?id=docs_gateway. (ac-
cessed: 25.08.2022).

[223] Amazon Web Services. “AWS IoT: API Reference.” eng. In: (2022),
pp. 1–1093. url: https : / / docs . aws . amazon . com / iot / latest /

apireference/iot-api.pdf.
[224] Amazon Web Services. AWS Lambda Documentation. url: https://

docs.aws.amazon.com/lambda/index.html. (accessed: 28.08.2022).
[225] Amazon Web Services. BigQuery. url: https://cloud.google.com/

bigquery/. (accessed: 29.08.2022).
[226] Amazon Web Services. BigTable. url: https://cloud.google.com/

bigtable/. (accessed: 29.08.2022).
[227] Amazon Web Services. Cloud. url: https://cloud.google.com/sdk/.

(accessed: 29.08.2022).
[228] Amazon Web Services. Cloud computing with AWS. url: https://aws.

amazon.com/what-is-aws/. (accessed: 26.08.2022).
[229] Amazon Web Services. Cloud Storage. url: https://cloud.google.

com/storage/. (accessed: 29.08.2022).
[230] Amazon Web Services. Data Studio. url: https://marketingplatform.

google.com/about/data-studio/. (accessed: 29.08.2022).
[231] Amazon Web Services. DataFlow. url: https://cloud.google.com/

dataflow/. (accessed: 29.08.2022).
[232] Amazon Web Services. Datalab. url: https://cloud.google.com/

datalab/docs/. (accessed: 29.08.2022).
[233] Amazon Web Services. Datastore. url: https://cloud.google.com/

datastore/. (accessed: 29.08.2022).
[234] Amazon Web Services. Device communication protocols. url: https:

//docs.aws.amazon.com/iot/latest/developerguide/protocols.

html. (accessed: 26.08.2022).
[235] Amazon Web Services. FreeRTOS Documentation. url: https://docs.

aws.amazon.com/freertos/index.html. (accessed: 25.08.2022).
[236] Amazon Web Services. GitHub - Amazon Web Services. url: https:

//github.com/aws. (accessed: 26.08.2022).
[237] Amazon Web Services. GitHub - AWS Samples. url: https://github.

com/aws-samples. (accessed: 26.08.2022).
[238] Amazon Web Services. Github - aws-iot-dotnet-publisher-http. url: https:

//github.com/aws-samples/aws-iot-dotnet-publisher-http. (ac-
cessed: 28.08.2022).

[239] Amazon Web Services. Google Distributed Cloud Edge. url: https :

/ / cloud . google . com / distributed - cloud / edge / latest / docs /

overview. (accessed: 29.08.2022).

114

https://docs.aws.amazon.com/iot-fleetwise/index.html
https://docs.aws.amazon.com/iot-fleetwise/index.html
https://docs.aws.amazon.com/greengrass/index.html
https://docs.aws.amazon.com/greengrass/index.html
https://docs.aws.amazon.com/iotroborunner/
https://docs.aws.amazon.com/iot-sitewise/?id=docs_gateway
https://docs.aws.amazon.com/iot-sitewise/?id=docs_gateway
https://docs.aws.amazon.com/iot/latest/apireference/iot-api.pdf
https://docs.aws.amazon.com/iot/latest/apireference/iot-api.pdf
https://docs.aws.amazon.com/lambda/index.html
https://docs.aws.amazon.com/lambda/index.html
https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/
https://cloud.google.com/bigtable/
https://cloud.google.com/bigtable/
https://cloud.google.com/sdk/
https://aws.amazon.com/what-is-aws/
https://aws.amazon.com/what-is-aws/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://marketingplatform.google.com/about/data-studio/
https://marketingplatform.google.com/about/data-studio/
https://cloud.google.com/dataflow/
https://cloud.google.com/dataflow/
https://cloud.google.com/datalab/docs/
https://cloud.google.com/datalab/docs/
https://cloud.google.com/datastore/
https://cloud.google.com/datastore/
https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html
https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html
https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html
https://docs.aws.amazon.com/freertos/index.html
https://docs.aws.amazon.com/freertos/index.html
https://github.com/aws
https://github.com/aws
https://github.com/aws-samples
https://github.com/aws-samples
https://github.com/aws-samples/aws-iot-dotnet-publisher-http
https://github.com/aws-samples/aws-iot-dotnet-publisher-http
https://cloud.google.com/distributed-cloud/edge/latest/docs/overview
https://cloud.google.com/distributed-cloud/edge/latest/docs/overview
https://cloud.google.com/distributed-cloud/edge/latest/docs/overview

[240] Amazon Web Services. Google Kubernetes Engine. url: https://cloud.
google.com/kubernetes-engine/. (accessed: 29.08.2022).

[241] Amazon Web Services. How AWS IoT works. url: https : / / docs .

aws.amazon.com/iot/latest/developerguide/aws-iot-how-it-

works.html. (accessed: 26.08.2022).
[242] Amazon Web Services. Tools to Build on AWS. url: https://aws.

amazon.com/developer/tools/. (accessed: 26.08.2022).
[243] Amazon Web Services. TPU. url: https://cloud.google.com/tpu/

docs. (accessed: 28.08.2022).
[244] Amazon Web Services. TPU Edge. url: https://cloud.google.com/

edge-tpu/docs. (accessed: 28.08.2022).
[245] Pallavi Sethi and Smruti R Sarangi. “Internet of things: architectures,

protocols, and applications.” In: Journal of Electrical and Computer En-
gineering 2017 (2017). doi: https://doi.org/10.1155/2017/9324035.

[246] Yakov Shafranovich. Common format and MIME type for comma-separated
values (CSV) files. 2005. url: https://www.rfc-editor.org/rfc/
rfc4180.

[247] Zach Shelby, Klaus Hartke, and Carsten Bormann. The Constrained
Application Protocol (CoAP). RFC 7252. June 2014. doi: 10.17487/
RFC7252.

[248] Ian G. Smith. The Internet of Things 2012: New Horizons. IERC - Inter-
net of Things European Reasearch Cluster, 2012. isbn: 9780955370793.

[249] Michael K. Smith, Chris Welty, and Deborah L. McGuinness. “OWL
Web Ontology Language Guide.” In: (2004). url: https://www.w3.
org/TR/owl-guide/.

[250] Annie W Sokol, Michael D Hogan, et al. “Nist cloud computing standards
roadmap.” In: NIST Special Publication (2013). doi: https://doi.org/
10.6028/NIST.SP.500-291r2.

[251] OMA SpecWorks. Humidity. url: https://devtoolkit.openmobilealliance.
org / OEditor / LWMOView ? url = https % 5C % 3a % 5C % 2f % 5C % 2fraw .

githubusercontent.com%5C%2fOpenMobileAlliance%5C%2flwm2m-

registry%5C%2fprod%5C%2fversion_history%5C%2f3304-1_0.xml.
(accessed: 21.07.2022).

[252] OMA SpecWorks. IPSO Smart Objects Working Group. url: https://
omaspecworks.org/about/the-oma-specworks-work-program/ipso-

smart-objects-working-group/. (accessed: 21.07.2022).
[253] OMA SpecWorks. lwm2m-registry. url: https://github.com/OpenMobileAlliance/

lwm2m-registry. (accessed: 20.07.2022).
[254] OMA SpecWorks. OMA LightweightM2M (LwM2M) Object and Resource

Registry. url: https://technical.openmobilealliance.org/OMNA/
LwM2M/LwM2MRegistry.html. (accessed: 20.07.2022).

[255] OMA SpecWorks. OMA SpecWorks. url: https://omaspecworks.org/.
(accessed: 21.07.2022).

[256] Statista. Cloud infrastructure services vendor market share worldwide
from 4th quarter 2017 to 4th quarter 2021. url: https://www.statista.
com/statistics/967365/worldwide-cloud-infrastructure-services-

market-share-vendor/. (accessed: 03.07.2022).
[257] Ed. T. Bray. The JavaScript Object Notation (JSON) Data Interchange

Format. RFC 8259. Dec. 2017. doi: 10.17487/RFC8259. url: https:
//www.rfc-editor.org/info/rfc8259.

115

https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://docs.aws.amazon.com/iot/latest/developerguide/aws-iot-how-it-works.html
https://docs.aws.amazon.com/iot/latest/developerguide/aws-iot-how-it-works.html
https://docs.aws.amazon.com/iot/latest/developerguide/aws-iot-how-it-works.html
https://aws.amazon.com/developer/tools/
https://aws.amazon.com/developer/tools/
https://cloud.google.com/tpu/docs
https://cloud.google.com/tpu/docs
https://cloud.google.com/edge-tpu/docs
https://cloud.google.com/edge-tpu/docs
https://doi.org/https://doi.org/10.1155/2017/9324035
https://www.rfc-editor.org/rfc/rfc4180
https://www.rfc-editor.org/rfc/rfc4180
https://doi.org/10.17487/RFC7252
https://doi.org/10.17487/RFC7252
https://www.w3.org/TR/owl-guide/
https://www.w3.org/TR/owl-guide/
https://doi.org/https://doi.org/10.6028/NIST.SP.500-291r2
https://doi.org/https://doi.org/10.6028/NIST.SP.500-291r2
https://devtoolkit.openmobilealliance.org/OEditor/LWMOView?url=https%5C%3a%5C%2f%5C%2fraw.githubusercontent.com%5C%2fOpenMobileAlliance%5C%2flwm2m-registry%5C%2fprod%5C%2fversion_history%5C%2f3304-1_0.xml
https://devtoolkit.openmobilealliance.org/OEditor/LWMOView?url=https%5C%3a%5C%2f%5C%2fraw.githubusercontent.com%5C%2fOpenMobileAlliance%5C%2flwm2m-registry%5C%2fprod%5C%2fversion_history%5C%2f3304-1_0.xml
https://devtoolkit.openmobilealliance.org/OEditor/LWMOView?url=https%5C%3a%5C%2f%5C%2fraw.githubusercontent.com%5C%2fOpenMobileAlliance%5C%2flwm2m-registry%5C%2fprod%5C%2fversion_history%5C%2f3304-1_0.xml
https://devtoolkit.openmobilealliance.org/OEditor/LWMOView?url=https%5C%3a%5C%2f%5C%2fraw.githubusercontent.com%5C%2fOpenMobileAlliance%5C%2flwm2m-registry%5C%2fprod%5C%2fversion_history%5C%2f3304-1_0.xml
https://omaspecworks.org/about/the-oma-specworks-work-program/ipso-smart-objects-working-group/
https://omaspecworks.org/about/the-oma-specworks-work-program/ipso-smart-objects-working-group/
https://omaspecworks.org/about/the-oma-specworks-work-program/ipso-smart-objects-working-group/
https://github.com/OpenMobileAlliance/lwm2m-registry
https://github.com/OpenMobileAlliance/lwm2m-registry
https://technical.openmobilealliance.org/OMNA/LwM2M/LwM2MRegistry.html
https://technical.openmobilealliance.org/OMNA/LwM2M/LwM2MRegistry.html
https://omaspecworks.org/
https://www.statista.com/statistics/967365/worldwide-cloud-infrastructure-services-market-share-vendor/
https://www.statista.com/statistics/967365/worldwide-cloud-infrastructure-services-market-share-vendor/
https://www.statista.com/statistics/967365/worldwide-cloud-infrastructure-services-market-share-vendor/
https://doi.org/10.17487/RFC8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259

[258] The HiveMQ Team. Comparison of MQTT Support by IoT Cloud Plat-
forms. url: https://www.hivemq.com/blog/hivemq-cloud-vs-aws-
iot/. (accessed: 08.08.2022).

[259] Vlasios Tsiatsis et al. “Architecture and State-of-the-Art.” In: Internet
of Things: technologies and applications for a new age of intelligence.
Academic Press, 2018, pp. 143–180. doi: https://doi.org/10.1016/
B978-0-12-814435-0.00019-5.

[260] Himani Tyagi and Rajendra Kumar. “Cloud Computing for IoT.” In: In-
ternet of Things (IoT): Concepts and Applications. Ed. by Mansaf Alam,
Kashish Ara Shakil, and Samiya Khan. Cham: Springer International
Publishing, 2020, pp. 25–41. isbn: 978-3-030-37468-6. doi: 10.1007/978-
3-030-37468-6_2.

[261] Hans Van Der Veer and Anthony Wiles. “Achieving technical interoper-
ability.” In: European telecommunications standards institute (2008).

[262] Dmitry Vsekhvalnov. Ultimate Javascript Object Signing and Encryp-
tion (JOSE). url: https://github.com/dvsekhvalnov/jose- jwt.
(accessed: 20.07.2022).

[263] W3C. A JSON-based Serialization for Linked Data. url: https://json-
ld.org/spec/latest/json-ld/. (accessed: 02.05.2022).

[264] W3C. XML Essentials. url: https://www.w3.org/standards/xml/
core. (accessed: 28.05.2022).

[265] Miao Wu et al. “Research on the architecture of Internet of Things.”
eng. In: (2010), pp. 484–487. doi: https://doi.org/10.1109/ICACTE.
2010.5579493.

[266] Xing Xiaojiang, Wang Jianli, and Li Mingdong. “Services and key tech-
nologies of the Internet of Things.” In: Zte Communications (2020),
pp. 26–29. url: http://zte.magtechjournal.com/CN/abstract/

article_363.shtml.
[267] Wei Yu et al. “A survey on the edge computing for the Internet of

Things.” In: (2017), pp. 6900–6919. doi: https://doi.org/10.1109/
ACCESS.2017.2778504.

[268] Michael Yuan. Getting to know MQTT. url: https://developer.ibm.
com/articles/iot-mqtt-why-good-for-iot/. (accessed: 14.03.2022).

[269] Madoka Yuriyama and Takayuki Kushida. “Sensor-cloud infrastructure-
physical sensor management with virtualized sensors on cloud comput-
ing.” In: 2010 13th international conference on network-based informa-
tion systems. IEEE. 2010, pp. 1–8. doi: https://doi.org/10.1109/
NBiS.2010.32.

116

https://www.hivemq.com/blog/hivemq-cloud-vs-aws-iot/
https://www.hivemq.com/blog/hivemq-cloud-vs-aws-iot/
https://doi.org/https://doi.org/10.1016/B978-0-12-814435-0.00019-5
https://doi.org/https://doi.org/10.1016/B978-0-12-814435-0.00019-5
https://doi.org/10.1007/978-3-030-37468-6_2
https://doi.org/10.1007/978-3-030-37468-6_2
https://github.com/dvsekhvalnov/jose-jwt
https://json-ld.org/spec/latest/json-ld/
https://json-ld.org/spec/latest/json-ld/
https://www.w3.org/standards/xml/core
https://www.w3.org/standards/xml/core
https://doi.org/https://doi.org/10.1109/ICACTE.2010.5579493
https://doi.org/https://doi.org/10.1109/ICACTE.2010.5579493
http://zte.magtechjournal.com/CN/abstract/article_363.shtml
http://zte.magtechjournal.com/CN/abstract/article_363.shtml
https://doi.org/https://doi.org/10.1109/ACCESS.2017.2778504
https://doi.org/https://doi.org/10.1109/ACCESS.2017.2778504
https://developer.ibm.com/articles/iot-mqtt-why-good-for-iot/
https://developer.ibm.com/articles/iot-mqtt-why-good-for-iot/
https://doi.org/https://doi.org/10.1109/NBiS.2010.32
https://doi.org/https://doi.org/10.1109/NBiS.2010.32

	Introduction
	Context
	Work packages
	Pilot Demonstrators
	Motivation

	Problem Description
	Methodology
	Outline

	Background
	Internet of Things
	IoT Elements
	General Layered IoT Architecture
	Internet of Underwater Things

	Cloud Computing
	Service Models
	IoT Cloud Platform Components
	Sensor-Cloud Infrastructure

	Application Layer for IoT
	Data Serialization Formats
	Communication Models
	Representational State Transfer (REST)

	Interoperability
	Interoperability Levels
	Metadata
	IoT Frameworks

	A Survey on Application Layer Protocols and Metadata Standards
	Application Layer Protocols
	HyperText Transfer Protocol (HTTP)
	Message Queuing Telemetry Transport (MQTT)
	Advanced Message Queuing Protocol (AMQP)
	Constrained Application Protocol (CoAp)
	WebSocket
	Protocol Summary

	Metadata Industry Standards
	IP for Smart Objects (IPSO)
	Open Connectivity Foundation (OCF)
	Open Platform Communications Unified Architecture (OPC UA)
	Open Geospatial Consortium's Sensor Web Enablement (OGC SWE)
	World Wide Web Consortium (W3C)
	Metadata Summary

	Cloud Platforms
	Microsoft Azure
	Azure IoT Overview
	Azure Protocol Bindings, SDKs and APIs

	Amazon Web Services
	AWS IoT Overview
	AWS Protocol Bindings, SDKs, and APIs

	Google Cloud Platform
	GCP IoT Overview
	GCP Protocol Bindings, SDKs, and APIs

	Cloud Platform Summary

	Design and Implementation
	Virtual Sensors and Client Interface
	AADI Device Simulator
	AADI Real-Time Collector
	Client Interface

	Prototype Design and Workflow
	Prototype 1 - Microsoft Azure
	Azure IoT Hub and Device Setup
	Azure Implementation with Device SDK
	Azure Deployment and Output

	Prototype 2 - Amazon Web Services
	AWS IoT Core and Device Setup
	AWS Implementation with HTTPS
	AWS Implementation with MQTT
	AWS Deployment and Output

	Prototype 3 - Google Cloud Platform
	GCP IoT Core and Device Setup
	GCP data integration with HTTPS
	GCP Implementation with MQTT
	GCP Deployment and Output

	Evaluation
	Evaluation Criteria
	Interoperability
	IoT Support
	Device Connectivity
	Data Management
	Ease of Implementation

	Cloud Platform Evaluations
	Microsoft Azure Evaluation
	Amazon Web Services Evaluation
	Google Cloud Platform Evaluation

	Conclusion and Future Work
	Summary
	Research Questions
	Research Question 1
	Research Question 2
	Research Question 3

	Conclusion
	Related Work
	Future Work

	Source code
	XML Sensor Data Sample from the AADI Device Simulator

