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Evaluating glacial change and the subsequent water stores in high mountains is
becoming increasingly necessary, and in order to do this, models need reliable and
consistent glacier data. These often come from global inventories, usually
constructed from multi-temporal satellite imagery. However, there are
limitations to these datasets. While clean ice can be mapped relatively easily
using spectral band ratios, mapping debris-covered ice is more difficult due to the
spectral similarity of supraglacial debris to the surrounding terrain. Therefore,
analysts often employ manual delineation, a time-consuming and subjective
approach to map debris-covered ice extents. Given the increasing prevalence
of supraglacial debris in high mountain regions, such as High Mountain Asia, a
systematic, objective approach is needed. The current study presents an approach
for mapping debris-covered glaciers that integrates a convolutional neural
network and object-based image analysis into one seamless classification
workflow, applied to freely available and globally applicable Sentinel-2
multispectral, Landsat-8 thermal, Sentinel-1 interferometric coherence, and
geomorphometric datasets. The approach is applied to three different domains
in the Central Himalayan and the Karakoram ranges of High Mountain Asia that
exhibit varying climatic regimes, topographies and debris-covered glacier
characteristics. We evaluate the performance of the approach by comparison
with a manually delineated glacier inventory, achieving F-score classification
accuracies of 89.2%–93.7%. We also tested the performance of this approach
on declassified panchromatic 1970 Corona KH-4B satellite imagery in theManaslu
region of Nepal, yielding accuracies of up to 88.4%. We find our approach to be
robust, transferable to other regions, and accurate over regional (>4,000 km2)
scales. Integrating object-based image analysis with deep-learning within a single
workflow overcomes shortcomings associated with convolutional neural network
classifications and permits a more flexible and robust approach for mapping
debris-covered glaciers. The novel automated processing of panchromatic
historical imagery, such as Corona KH-4B, opens the possibility of exploiting a
wealth of multi-temporal data to understand past glacier changes.
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1 Introduction

Debris-covered glaciers are common in high-altitude mountain
ranges such as the Karakoram, the Himalayas, the Tien Shan, and to
a smaller extent the Andes and Alaska, among others (Racoviteanu
et al., 2022b). In these regions, rock debris originating from steep
slopes accumulates on the ablation area of glaciers, creating debris-
covered glacier tongues up to tens of kilometres long (Mihalcea et al.,
2006). It is estimated that supraglacial debris covers 7.3% of the
glacierised area in high mountain regions (Herreid and Pellicciotti,
2020).

The presence of supraglacial debris influences a glacier’s
response to changing climatic conditions (Anderson and
Anderson, 2016; Kraaijenbrink et al., 2017) and induces
contrasting behavioural patterns depending on its thickness,
which can vary from millimetres to metres (Sakai and Fujita,
2017). Several studies show the upward expansion of debris cover
(Quincey and Glasser, 2009; Jiang et al., 2018; Mölg et al., 2019;
Tielidze et al., 2020), with further expansion expected in the coming
decades in the context of a warming climate (Herreid and
Pellicciotti, 2020).

With the projected rates of increase in supraglacial debris cover,
quantifying its extent and thickness is crucial for glacio-hydrologic
models, as ignoring the presence of debris cover results in the
overestimation of glacial retreat rates (Ragettli et al., 2016), mass
loss (Rounce et al., 2018), and the underestimation of glacial water
resource longevity (Herreid and Pellicciotti, 2020). However,
existing global supraglacial debris databases (Scherler et al., 2018;
Herreid and Pellicciotti, 2020) relied on heterogenous glacier
inventories, namely, the Randolph Glacier Inventory (RGI v6)
which only represents the glacier extents for the decade 2000.
Furthermore, these inventories present inconsistencies and the
inclusion of non-glacierised terrain, requiring extensive manual
editing in order to be used in glacier studies (Racoviteanu et al.,
2021).

In recent decades, given advances in satellite imagery, clean ice
can be mapped over large scales using semi-automated spectral band
ratio methods (Paul et al., 2013; Burns and Nolin, 2014). While these
methods are relatively robust and cost-effective tools for large-scale,
repeat mapping and monitoring (Racoviteanu et al., 2009; Paul et al.,
2013), they fail when applied to supraglacial debris because
supraglacial debris has a similar spectral signature to the
surrounding terrain (Paul et al., 2004; Bolch et al., 2007;
Racoviteanu and Williams, 2012; Alifu et al., 2015). Therefore,
previous debris-covered glacier mapping studies have either
depended on manual delineation, a time-consuming, subjective
and labour-intensive procedure (Narama et al., 2010; Nagai et al.,
2013; Paul et al., 2013; Nuimura et al., 2015; Mölg et al., 2018), or
developed semi-automated approaches using varying combinations
of satellite and geomorphometric datasets with varying degrees of
success (Paul et al., 2004; Bolch et al., 2007; Bhambri et al., 2011;
Racoviteanu and Williams, 2012; Lippl et al., 2018).

Novel approaches have emerged since 2010 to automate the
mapping of supraglacial debris, namely, shallow architecture
machine learning algorithms such as Support Vector Machine
(Huang et al., 2014; Yousef et al., 2020; Shukla et al., 2022),
Maximum Likelihood Classifier (Shukla et al., 2010), Artificial
Neural Networks (Karimi et al., 2012), and Random Forest

Classifier (Zhang et al., 2019; Alifu et al., 2020; Khan et al., 2020;
Lu et al., 2020). The application of Convolutional Neural Networks
(CNNs), a member of the deep learning classifier family within
machine learning, to delineate supraglacial debris extents has been
successfully experimented with in a few studies (Nijhawan et al.,
2018; Xie et al., 2020; Lu et al., 2021; Xie et al., 2021; Tian et al., 2022;
Xie et al., 2022). The ability of CNNs to operate independently of
analyst thresholds gives them great potential to automate the
classification of supraglacial debris. Furthermore, this fully
automated nature may allow analysts to exploit a wealth of
declassified imagery from the 1960s–1980s (Dashora et al., 2007)
to automate and streamline baseline glacier inventory creation, a
task which has proven difficult to complete using previous analyst-
derived thresholding approaches.

However, while the studies cited above demonstrated that CNNs
could yield high classification accuracies (>~88%), they were also
subject to misclassifications related to the presence of waterbodies,
shadows, and landforms with high degrees of similarity (e.g., Xie
et al., 2020). Therefore, these automated approaches need further
testing, refinement and application.

Object-based image analysis (OBIA) techniques have previously
been employed to map debris-covered glaciers (Rastner et al., 2014;
Robson et al., 2015; Kraaijenbrink et al., 2016; Robson et al., 2016;
Mitkari et al., 2022) and provide a means of improving the accuracy
of current CNN classification approaches through the generation of
image-objects and their associated spatial, textural, and contextual
information (Hölbling et al., 2016), which can be utilised to reduce
misclassifications. Therefore, a hybrid mapping approach that
integrates a CNN and OBIA into a single classification workflow
holds high potential to delineate debris-covered glacier extents with
high accuracy in an objective, systematic, and consistent manner.

In this study, we present and evaluate an integrated CNN-OBIA
approach for debris-covered glacier classification at regional scales
using freely and globally available (2018–2019) Sentinel-2
multispectral, Landsat-8 thermal, Sentinel-1 coherence, and
geomorphometric datasets. We test our approach over three
domains in High Mountain Asia—the Khumbu, Manaslu, and
the Hunza—which display varying topographies, debris-covered
tongue surface morphologies and glacier flow dynamics.
Furthermore, we adapt the CNN-OBIA approach and apply it to
stereo Corona KH-4B satellite imagery in the Manaslu region of
Nepal to assess the potential of the approach to derive debris-
covered glacier outlines from the 1970s. We validate the accuracy of
the approach over both contemporary and historical imagery by
comparing the derived outlines against a manually delineated glacier
inventory. We aim to demonstrate the benefits of integrating CNNs
and OBIA, evaluate the robustness and transferability of the
approach between domains, and assess its applicability to derive
multi-temporal glacier datasets in a more automated manner.

2 Background

2.1 Convolutional neural networks (CNN)

Deep learning classifiers are a subset of the machine learning
classifier family (Zhu et al., 2017). CNNs constitute one of the fastest
developing deep learning classifiers in remote sensing (Ma et al.,
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2019; Liu, 2021). CNNs are supervised, pixel-based classifiers
inspired by visual neuroscience (LeCun et al., 2015). They have
become a popular tool for land-cover classification tasks due to their
ability to extract the high-level features of imagery (Nixon and
Aguado, 2020), which shallow architecture machine learning
classifiers are incapable of (LeCun et al., 2015; Maggiori et al.,
2017). CNNs use high-level features to automatically learn the
most representative and discriminatory features of land-cover
classes in a manner analogous to how humans interpret imagery
(Nixon and Aguado, 2020). This process has the additional
advantage of being entirely independent of analyst subjectivity.
As such, CNNs have grown in popularity within the cryosphere
mapping discipline. A variety of CNN architectures have been
employed to map marine-terminating glaciers and calving
margins (Baumhoer et al., 2019; Marochov et al., 2021), clean ice
glaciers (Yan et al., 2019; Roberts-Pierel et al., 2022; Sood et al., 2022;
Selbesoğlu et al., 2023), avalanches and snow cover (Nijhawan et al.,
2019; Bianchi et al., 2021), and supraglacial lakes (Yuan et al., 2020).
They have even proven capable of successfully mapping landforms,
such as rock glaciers, that have limited the success of previous
automated methods (Robson et al., 2020). Therefore, CNNs hold the
potential to efficiently produce reliable glacier outlines across
heterogenous glacierised catchments.

Typical CNN architectures consist of an input layer, an output
layer, and numerous hidden layers composed of non-linear neurons.
The input layer consists of labelled training samples of fixed size and
depth dimensions sampled from satellite imagery for each user-defined
land-cover class. The hidden layers consist of convolutional and
pooling layers. Convolutional layers perform feature extraction by
convolving an array of weights contained inside a kernel over the
layer’s input (Romero et al., 2016). The weights perform discrete
convolutions that reduce the spatial dimensions of the input which
generalises the features within (LeCun et al., 2015) and creates feature
maps containing the extracted high-level features (Zhao andDu, 2016).
The network automatically learns the optimal weights for extracting
the most discriminatory and representative high-level features using a
backpropagation algorithm (LeCun et al., 2015; Romero et al., 2016).
Pooling layers are usually added after convolutional layers (Nogueira
et al., 2017), and perform large-scale spatial downsampling by
aggregating the neighbouring pixel values of feature maps through
either maximum or average pooling operations (LeCun et al., 2015;
Romero et al., 2016; Nogueira et al., 2017; Zhang et al., 2019). The final
classification output is computed by a fully connected layer (Maggiori
et al., 2017) which outputs a probability heatmap, where each pixel
value shows the probability that the pixel belongs to a given land-cover
class, e.g., supraglacial debris.

FIGURE 1
Overview of the study domains (A); Hunza, Karakoram (B); Manaslu, Central Himalayas (C); and the Khumbu, Central Himalayas (D). Background data
for (A) is a world hillshade model accessed through ArcGIS Online. Sentinel-2 false colour composite (Near-infrared, Red, Blue) displayed in (B–D).
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2.1.1 Transfer learning
Training CNNs in new regions is a time-consuming process that

requires significant computational resources and is dependent on
high-quality glacier inventories. Transfer learning offers a means to
significantly reduce computing time and enhance network
performance in regions where data is scarce (Kunze et al., 2017)
by pretraining network weights in one region and transferring them
to out-of-sample regions. Transfer learning allows the streamlining
of large-scale glacier inventory creation. The transfer of a pre-
trained CNN to in-sample imagery, i.e., imagery included in the
training dataset, for debris-covered glacier classification was
successfully performed by Xie et al. (2020); however, the
application of transfer learning to out-of-sample imagery,
i.e., imagery outside the training dataset, still needs testing.

2.2 Object-based image analysis (OBIA)

In recent years, OBIA has offered a new, knowledge-driven image
classification approach (Blaschke et al., 2014) and is increasingly used
for land-cover mapping (Liu et al., 2021). The fundamental concept of
OBIA is image segmentation, i.e., the grouping of pixels according to
their spectral and spatial properties into non-overlapping,
homogeneous pixel regions, or image-objects (Benz et al., 2004).
Instead of pixels, image-objects become the spatial unit for analysis.
Conducting analysis at the object-level instead of the pixel-level has
multiple benefits that often result in higher classification accuracies
(Rastner et al., 2014). For example, single-pixel misclassifications, a so-
called “salt-and-pepper effect,” are negated since the influence of
individual pixel values has reduced relevance when grouped inside
an image-object (Robson et al., 2015; Robson et al., 2016). The major
advantage of working at the object-level is that image-objects contain
spatial, textural and contextual information in addition to spectral
information (Hölbling et al., 2016). By utilising this information, it is
possible to remove some of the misclassified objects, thus reducing the
necessity for manual post-processing (Robson et al., 2020). While
OBIA is often applied by itself for image classification, integrating
OBIA following CNN classification has rarely been tested, and is one of
the novelties of this study.

3 Study area

Our study area is HighMountain Asia (~26°–36° latitude, ~72°–89°

longitude) (Figure 1), which is characterised by steep, rugged terrain,
and a variety of climates and glacier meltwater patterns (Bolch et al.,
2012). Approximately 14%–19% of its total glacierised area is covered
by debris (Herreid and Pelliciotti, 2020). We apply and test our CNN-
OBIA approach in three distinct domains across High Mountain Asia:
1) the Khumbu domain (Central Himalayas); 2) the Manaslu domain
(Central Himalayas); and 3) the Hunza domain (Karakoram), each
described below.

3.1 The Khumbu domain

The Khumbu domain (1,039 km2) is located in the Arun River
and the Dudh Koshi basins to the north and south of the Nepal-

China border, respectively. Glaciers in the southern part of this
region are located at the northern limit of the summer monsoon,
which provides 74% (~359 mm) of the annual precipitation
(~485 mm a−1) between June and September (Sherpa et al., 2017).
Therefore, the glaciers on the southern side are summer-
accumulation-type, simultaneously experiencing maximum
accumulation and ablation during the summer (Benn and Owen,
2002; Thayyen and Gergan, 2010). Glaciers on the northern slope
(on the Tibetan plateau) are located under a semi-arid, continental
climate as the orographic divide reduces the influence of the summer
monsoon (Yang et al., 2006). The Tingri weather station north of the
orographic divide recorded a considerably lower annual average
precipitation of 296.4 mm a−1 (Yang et al., 2006). Sustained periods
of negative mass balance budgets as a result of warming climates and
weaker monsoons in the region (Bolch et al., 2011; Thakuri et al.,
2014) have reduced glacier surface velocities, leading to the
stagnation of debris-covered tongues and downwasting (Quincey
et al., 2009; Rowan et al., 2021).

3.2 The Manaslu domain

The Manaslu domain (2,361 km2) is situated ~230 km west
of Mount Everest (Robson et al., 2018) in the Central Nepal
Himalayas. Similarly to Khumbu, glaciers in this region are
summer-accumulation-type. Climate data for the Manaslu
region are limited, but the Larke Samdo weather station
(3,650 m a.s.l.) recorded a mean annual precipitation of
~1,000 mm a−1 (Robson et al., 2018). Many of the lower parts
of the debris-covered tongues in this region are stagnant
(Robson et al., 2018; Racoviteanu et al., 2022a). The glaciers
in the region are characterised by steep debris-covered
tributaries that can be situated on slope gradients upwards of
30° and dense vegetation cover on their termini (Robson et al.,
2015; Racoviteanu et al., 2022a).

3.3 The Hunza domain

The Hunza domain (4,033 km2) is located in the Gilgit-Baltistan
territory of Pakistan. Glaciers in this region are winter-
accumulation-type, with the westerly and south-westerly
atmospheric circulations being the dominant sources of
precipitation (Bookhagen and Burbank, 2010). The Batura
Muztagh mountains impose orographic climatic controls over the
region (Azam et al., 2018). Glaciers south of the divide are of
maritime type, receiving mean annual precipitation of
1,500–1,800 mm a−1. In contrast, glaciers north of the orographic
divide are of continental type, receiving an estimated 600 mm a−1 of
mean annual precipitation (Winiger et al., 2005). Increased winter
accumulation and cooler mean temperatures south of the
orographic divide resulted in glacial mass gain between 1976 and
2012 in the region (Rankl et al., 2014). Glaciers in this region are
highly dynamic (Hewitt, 2005; Rankl et al., 2014), exhibiting high
surface velocities (Dehecq et al., 2019) and exhibiting stable,
advancing, and surge-type behaviours, similar to the behaviours
observed in the eastern regions of the Karakoram (Hewitt, 2005;
Bolch et al., 2012; Brun et al., 2017).
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4 Methodology

4.1 Datasets and pre-processing

4.1.1 Satellite imagery
The satellite imagery used in this study is listed in Table 1.

Sentinel-2, launched in 2015, provides thirteen multispectral bands

in the visible to shortwave infrared regions of the electromagnetic
spectrum with spatial resolutions ranging from 10 to 60 m (Drusch
et al., 2012). We used ten Sentinel-2 bands in the visible to the
shortwave infrared region of the electromagnetic spectrum–blue,
green, red, vegetation red edge, near-infrared (NIR), and shortwave
infrared (SWIR)–for the years 2018 (Hunza domain) and 2019
(Manaslu and Khumbu domains) (Table 1). We panchromatically

TABLE 1 Datasets used in this study.

Acquisition date Sensor Scene ID Spatial res. (m) Purpose

Khumbu domain

24.11.2018 Sentinel-2 S2B_MSIL1C_20181124T045119_N0207_R076_T45RVM_20181124T074116 10 (20 NIR, SWIR) Glacier velocity

24.11.2018 Sentinel-2 S2B_MSIL1C_20181124T045119_N0207_R076_T45RVL_20181124T074116 10 (20 NIR, SWIR) Glacier velocity

19.11.2019 Sentinel-2 S2B_MSIL1C_20191119T045059_N0208_R076_T45RVM_20191119T074938 10 (20 NIR, SWIR) Classification, glacier velocity

19.11.2019 Sentinel-2 S2B_MSIL1C_20191119T045059_N0208_R076_T45RVL_20191119T074938 10 (20 NIR, SWIR) Classification, glacier velocity

11.11.2019 Sentinel-1 S1B_IW_SLC_1SDV_20191111T001045_20191111T001115_018872_02397B_9B80 5 × 20 Coherence generation

23.11.2019 Sentinel-1 S1B_IW_SLC_1SDV_20191123T001045_20191123T001115_019047_023F1D_DD61 5 × 20 Coherence generation

17.11.2019 Sentinel-1 S1A_IW_SLC__1SDV_20191117T001103_20191117T001131_029943_036ACE_F556 5 × 20 Coherence generation

29.11.2019 Sentinel-1 S1A_IW_SLC__1SDV_20191129T001102_20191129T001130_030118_0370E0_B973 5 × 20 Coherence generation

12.11.2019 Landsat-8 LC08_L1TP_140041_20191112_20191115_01_T1 30 (15 Pan, 100 TIR) Classification

05.2016 AW3D30 ALPSMLC30_N027E086 30 Elevation, GMD generation

05.2016 AW3D30 ALPSMLC30_N028E086 30 Elevation, GMD generation

Manaslu domain

12.11.2018 Sentinel-2 S2B_MSIL1C_20181127T050129_N0207_R119_T45RTM_20181127T073455 10 (20 NIR, SWIR) Glacier velocity

17.11.2019 Sentinel-2 S2A_MSIL1C_20191117T050101_N0208_R119_T45RTM_20191117T083926 10 (20 NIR, SWIR) Classification, glacier velocity

10.11.2019 Sentinel-1 S1A_IW_SLC__1SDV_20191110T001935_20191110T002002_029841_036735_2185 5 × 20 Coherence generation

22.11.2019 Sentinel-1 S1A_IW_SLC__1SDV_20191122T001935_20191122T002002_030016_036D40_1E08 5 × 20 Coherence generation

25.10.2019 Landsat-8 LC08_L1TP_142040_20191025_20191030_01_T1 30 (15 Pan, 100 TIR) Classification

05.2016 AW3D30 ALPSMLC30_N028E084 30 Elevation, GMD generation

19.11.1970 Corona
KH-4B

DS1112-1007DF180 1.8 DEM generation,
classification

19.11.1970 Corona
KH-4B

DS1112-1007DA184 1.8 DEM generation,
classification

19.11.1970 Corona
KH-4B

DS1112-1007DA185 1.8 DEM generation,
classification

Hunza domain

04.08.2018 Sentinel-2 S2B_MSIL1C_20180804T054639_N0206_R048_T43SDA_20180804T094228 10 (20 NIR, SWIR) Classification, glacier velocity

09.08.2019 Sentinel-2 S2B_MSIL1C_20190809T054649_N0208_R048_T43SDA_20190809T083121 10 (20 NIR, SWIR) Glacier velocity

05.08.2018 Sentinel-1 S1A_IW_SLC__1SDV_20180805T010635_20180805T010702_023104_028253_D2CB 5 × 20 Coherence generation

17.08.2018 Sentinel-1 S1A_IW_SLC__1SDV_20180817T010636_20180817T010703_023279_0287FF_59B3 5 × 20 Coherence generation

04.08.2018 Landsat-8 LC08_L1TP_149035_20180804_20180815_02_T1 30 (15 Pan, 100 TIR) Classification

11.08.2018 Landsat-8 LC08_L1TP_150034_20180811_20180815_02_T1 30 (15 Pan, 100 TIR) Classification

11.08.2018 Landsat-8 LC08_L1TP_150035_20180811_20180815_02_T1 30 (15 Pan, 100 TIR) Classification

05.2016 AW3D30 ALPSMLC30_N036E074 30 Elevation, GMD generation

Acronyms: NIR, Near-infrared; SWIR, Shortwave infrared; Pan, Panchromatic; TIRS, Thermal infrared; GMD, Geomorphometric Dataset.
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sharpened the imagery within PCI Geomatica CATALYST using a
multi-resolution analysis fusion (González-Audícana et al., 2005).
We used the Sentinel-2 bands to derive three indices: the Normalised
Difference Vegetation Index (NDVI); the Normalised Difference
Water Index (NDWI); and the Normalised Difference Snow Index
(NDSI) (Figure 2).

In addition, a second Sentinel-2 image acquired approximately
1 year apart (November 2018, August 2019) was used to derive a
surface velocity dataset for each domain based on normalised cross-
correlation (NCC) using the IMCORR Feature Tracking module
within SAGA GIS 2.3.2. The surface velocity datasets were used in
conjunction with Worldview-2 imagery accessed through ArcGIS
Online to create the validation data for each study region.

We also obtained two Sentinel-1 single look complex (SLC) images
in interferometric wide (IW) swath mode for the Hunza (2018),
Khumbu and Manaslu (2019). Images were separated by a temporal
baseline of 12 days and were co-registered using cross-correlation with
the INSCOREG algorithm within PCI Geomatica CATALYST. The
resulting image stack was used to generate a coherence raster which was
converted to true ground range and orthorectified using the ALOS
World 3D (AW3D30) DEM (Tadono et al., 2014) described in
Section 4.1.2.

The Landsat-8 Thermal Infrared Sensor (TIRS), launched in
2013, provides two thermal infrared bands. We used the thermal
infrared band TM10, with wavelengths of 10.60–11.19 µm (Roy
et al., 2014) and a spatial resolution of 100 m, from approximately
the same period as the Sentinel acquisitions (2018–2019).

All images described above were selected at the end of the
ablation season (October-November in the Central Himalayas and
July-August in the Karakoram) to ensure minimal cloud and
transient snow cover.

4.1.2 Geomorphometric data
Elevation data used for the recent period was based on the

AW3D30 DEM (30 m), produced using ALOS high-resolution
stereo imagery acquired between 2006 and 2011, with an accuracy
(root mean squared error, RMSE) of 6.84 m over High Mountain Asia
(Liu et al., 2019). Although other DEMs were available, some of higher
resolution, such as the HMA DEM (Shean, 2017), the AW3D30 has
consistent coverage, with the lowest RMSE of the open access 30 m
DEMs over High Mountain Asia and does not contain large data voids
like the HMADEM (Liu et al., 2019). We used the AW3D30 dataset to
extract elevation and five geomorphometric datasets (slope angle,
profile curvature, planform curvature, aspect, and shaded relief),
which were subsequently used as layers in the classification
procedure. The justification for eachDEMderivative is given in Table 2.

All satellite and geomorphometric datasets were projected to UTM
(zone 45 N for the Khumbu and Manaslu domains and UTM zone
43 N for the Hunza domain). For all datasets, pixel values were
normalised between 0 and 1 and converted to 32-bit floating rasters
using the SCALE algorithm within PCI Geomatica CATALYST. The
Landsat-8, Sentinel-1 and AW3D30 datasets were bilinearly resampled
to 10 m to match the spatial resolution of the Sentinel-2 imagery.

4.1.3 Corona datasets
To test our approach on panchromatic images from the 1970s, we

used two Corona KH-4B images covering the Ponkar and Hinang sub-
regions of the Manaslu domain. The Corona KH-4B satellite was

developed as part of the US Keyhole (KH) space reconnaissance
programme, which acquired ~800,000 high-resolution (1.8–7.5 m)
panchromatic images of Earth’s surface between 1960 and 1972
(Dashora et al., 2007). The Corona scenes were made available as
fully processed orthomosaics at 2 m spatial resolution along with
corresponding DEMs, extracted from these scenes using ERDAS
Imagine, at 10 m spatial resolution (see Robson et al., 2018;
Racoviteanu et al., 2022a). For details of the Corona imagery
processing, the reader is directed to these papers. Elevation, slope
angle, profile curvature, planform curvature, shaded relief and aspect
geomorphometric datasets for the 1970s decade were generated from
the 1970 Corona DEMs (10 m). The Corona imagery and
geomorphometric datasets were normalised and converted to 32-bit
floating rasters using the SCALE algorithm within PCI Geomatica
CATALYST. The geomorphometric datasets were bilinearly resampled
to 2 m to match the spatial resolution of the Corona images.

4.2 Reference vector data generation

For Sentinel and Corona imagery, we targeted the classification
of seven predominant land-cover classes present in the imagery:
supraglacial debris, clean ice, snow cover, lakes, vegetation, shadows,
and non-glacial material. In order to train the CNN to recognise
each of these classes, we generated a reference vector dataset for each
class. The reference vector dataset was then used to automatically
generate the training dataset. To avoid the laborious and time-
consuming process of manually selecting sample locations to
generate a high-quality training dataset, we used an automated
reference vector data generation method adapted from Alifu
et al. (2020) for application to multi-class output CNNs.

As a first step, we generated reference polygons for each land-cover
class. For clean ice and supraglacial debris reference polygons, we relied
on the freely available GAMDAMglacier inventory constructed based on
Landsat ETM+ imagery and Google Earth imagery (Sakai, 2018). Since
the polygons were provided over the entire glacier surface, we divided
clean ice from supraglacial debris using a standardNIR/SWIR band ratio
(Sentinel bands 7/9), with a threshold of 2.5. We randomly selected 30%
of the debris cover polygons for reference vector generation using the
random number generation routine in ArcGIS Pro 2.8.1 (n = 5 for
Khumbu, n = 7 for Manaslu, n = 26 for Hunza). We used a slope
threshold map of > 45° to separate snow from clean ice based on criteria
used in other studies (e.g., Robson et al., 2015; Racoviteanu et al., 2021).
For the lake polygons, we used the HMAv.1 lake dataset which was
generated by thresholding the NDWI (Shugar et al., 2020). Vegetation
polygons were generated using the NDVI derived from bands 4 and
8 with a threshold > 0.3. Shadow reference polygons were generated
using the lowest 5% reflectance values in the blue Sentinel-2multispectral
band. The remainder of the unclassified area within the domain was
assigned as non-glacial material.

Internal buffers were applied inside the reference polygons generated
for each land-cover class so that the resulting reference vector points
were not located near the boundary of land-cover classes. The buffer size
(15–100 m)was selected according to the area coverage of the land-cover
classes and the spectral similarity between neighbouring land-cover
classes (Figure 3). Following this, we created reference vector points
within the buffered reference polygons for each land-cover class to
generate the reference vector dataset.
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FIGURE 2
Flow chart outlining the methodology followed in this study. The method is divided into four sections: (A) dataset pre-processing; (B) reference
vector dataset generation; (C) convolutional neural network classification; and (D) object-based image analysis refinement. Acronyms used: NIR, Near-
infrared; SWIR, Shortwave infrared; Curv, Curvature; TM10, Thematic Mapper band 10; GMDs, Geomorphometric datasets; Conv, Convolutional; MRS,
Multi-resolution segmentation; S, Shape; C, Compactness; NDWI, Normalised Difference Water Index; NDVI, Normalised Difference Vegetation
Index; NDSI, Normalised Difference Snow Index; SGD, Supraglacial debris.

Frontiers in Remote Sensing frontiersin.org07

Thomas et al. 10.3389/frsen.2023.1161530

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1161530


Due to the difficulty of automating the generation of the 1970s
reference vector dataset from panchromatic imagery, we manually
adjusted the outlines based on the 2019 outlines in reference to the
1970 imagery to account for changes between 1970 and 2019. The
resulting supraglacial debris polygons were split into training (40%) and
validation (60%) data.

4.3 CNN inputs

Weused all the available datasets as inputs for the CNN. The inputs
consisted of ten Sentinel-2 bands (blue, green, red, vegetation red edge
I-IV, NIR, SWIR I-II), Landsat-8 TM10, Sentinel-1 coherence, and six
AW3D30 geomorphometric datasets. We used coherence to aid the
identification of areas that have undergone glaciermotion, deformation,

or changing surface conditions. We employed TM10 to aid the
differentiation between supraglacial and paraglacial debris based on
land surface temperature differences. In addition, we included NDSI,
NDWI and NDVI as inputs to help further differentiate between land-
cover classes. The Corona classification used seven inputs: the
panchromatic Corona image and the six geomorphometric datasets
derived from the Corona DEM.

4.4 CNN-OBIA implementation

The CNN-OBIA approach was implemented in Trimble’s
eCognition Developer 10.2 software using the open-source
TensorFlow library, allowing for a seamless CNN and OBIA
classification workflow.

TABLE 2 Geomorphometric datasets used to train the CNN and justification for use.

Geomorphometric
datasets

Description Justification

Elevation Height above sea level
Climatic and topographic factors control the minimum and maximum elevational positions of

debris-covered tongues

Slope
Measure of degrees from the

horizontal plane
Debris-covered tongues typically exhibit shallow surface gradients. Demarcates the transition

zones between the glacial and paraglacial environment

Profile Curvature Measure of vertical slope variation
Highlights convex supraglacial, glacial and periglacial features at glacial lateral and frontal

margins

Planform curvature Measure of horizontal slope variation Highlights concave supraglacial features and valley basins in the glacial forefield

Shaded Relief Hypothetical illumination surface Reflects the unique hummocky texture of debris-covered tongue surfaces

Aspect Surface angle to North Reflects the unique hummocky texture of debris-covered tongue surfaces

FIGURE 3
Automated generation of vector points illustration for CNN classification. (A)Outlines were created for each land-cover class in the study domains.
(B) An internal buffer was applied to the outlines to reduce the influence of potentially problematic land-cover boundaries and increase training dataset
quality. (C) Reference vector points were randomly generated within internal buffers.
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4.4.1 Training datasets
To generate the training dataset from the reference vector

dataset, as a first step, a 10 m buffer was created around each
reference vector point created for each land-cover class
presented in Section 4.2. The buffered vector points were
then used to mark the locations for labelled training samples
to be generated from for each land-cover class. We used land-
cover prevalence and spectral signatures to determine the
number of labelled training samples for each land-cover class,
following Robson et al. (2020) (Table 3). The training dataset
was composed of 69,500 samples (all classes cumulated) for each
domain. For the Corona implementation, we also used a 10 ×
10 m pixel buffer and generated 7,000 labelled training samples
for each land-cover class, creating an accumulative training
dataset of 49,000 samples.

4.4.2 CNN architecture
Following fine-tuning and cross-validation assessment

(Supplementary Table S1; Supplementary Figures S1–S4 in the
Supplement), a CNN with a five hidden layer architecture was
selected (Figure 4). The best performing CNN had labelled
training samples with dimensions of 36 × 36 × 21 and a
hidden layer architecture of 3 × 3 × 50, 3 × 3 × 30, 3 × 3 ×
20, 3 × 3 × 20, 3 × 3 × 15 with 3 × 3 convolutional kernels
throughout and max pooling following the second and fifth
layers. Max pooling employed 2 × 2 filters with a vertical and
horizontal stride of 2. The classification was performed by a
single fully connected layer with seven neurons. The minibatch
size was set to 32, with a training step value of 5,000. The learning
rate was set to 0.0001. The Corona imagery was classified using
the same CNN architecture employed for the Sentinel-2
classification. The CNN trains in ~5 min on a computer with
64 GB RAM, an Intel Core i7 processor, and an NVIDIA Quadro
RTX 4000 graphics card.

The CNN outputs a probability heatmap for each land-cover
class in the training dataset. The outputted probability heatmaps
were smoothed with a 7 × 7 Gaussian filter to reduce blurred
boundary effects. We only employed the supraglacial debris
heatmap for the subsequent debris-covered glacier OBIA
classification, the other land-cover classes were classified
according to fixed satellite datasets thresholds.

4.5 OBIA classification

In order to simplify the ruleset and ensure approach
transferability among the three domains, we minimised the
reliance of the OBIA ruleset on thresholds such as coherence,
elevation and surface temperature that could differ between the
supraglacial environments in the domains. Clean ice is mapped as a
by-product of the OBIA supraglacial debris mapping procedure for
both the Sentinel and Corona datasets. Although clean ice is not the
focus of our paper, assessing the accuracy of the clean ice
classification allows for our approach to be compared with
previous approaches and for the overall inventory-creating
potential of the approach to be assessed.

A four-level image segmentation was performed using themulti-
resolution segmentation (MRS) algorithm (Table 4). MRS applies a
mutual best-fitting approach to merge pixels into homogeneous
image-objects (Baatz and Schape, 2000). MRS requires three
parameters to be selected: scale, shape, and compactness.
Segmentation quality heavily depends on the initial selection of
these parameters (Rastner et al., 2014; Robson et al., 2015).

Land-cover classes were classified according to fixed probability
heatmap, spectral, geomorphometric, coherence and contextual
thresholds (Figure 2). The resulting clean ice and supraglacial
debris outlines were smoothed using pixel-based object resizing
with an 11 × 11 surface tension window and a relative area threshold
of < 50% for both growing and shrinking operations and were then
exported as shapefiles.

The OBIA refinement for the Corona imagery was conducted in
a similar manner as for the Sentinel data with the same segmentation
scale parameter values as those used for the Sentinel classification.
Shape and compactness were adjusted to account for the lack of pixel
value variability. In the absence of multispectral bands, higher
weightings were given to slope and curvature datasets. Land-
cover classes were classified according to fixed probability
heatmap, slope and contextual thresholds given in Table 5.
Finally, image-objects were smoothed with pixel-based object
resizing using 11 × 11 surface tension windows. Shrinking and
growth occurred if supraglacial debris pixels occupied < 50% of the
window.

4.6 Out-of-sample transfer learning
methodology

As a separate experiment, we assessed the suitability of transfer
learning on out-of-sample imagery. For this, we used the same
network set-up as the one employed for the Sentinel-2 classification.
We trained a CNN with training samples produced in one of the
domains and transferred and applied it to the other two domains,
iteratively. This process was performed for each domain. For
example, the Khumbu CNN was trained using satellite and
geomorphometric datasets from this domain, and the network
was then transferred and applied to the satellite and
geomorphometric datasets in the Hunza and Manaslu domains,
which had not been used in the training dataset. Following the CNN
classification, we performed the OBIA classification as described in
Section 4.5.

TABLE 3 The number of labelled training samples generated for each land-
cover class.

Land-cover class Number of training samples

Supraglacial debris 20,000

Non-glacial material 20,000

Vegetation 10,000

Lakes 7,500

Clean ice glacier 5,000

Snow cover 5,000

Shadows 2,000
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4.7 Accuracy assessment

To assess the accuracy of the approach, we created a manually
delineated glacier inventory derived from high-resolution
2016 Worldview-2 imagery, Sentinel-2 imagery, and Sentinel-1
coherence data. We only found minor changes in supraglacial
debris extents between the Worldview-2 and the Sentinel-2
acquisition dates (2016-2019); these were insignificant at the
10 m resolution scale of the Sentinel-2 imagery. We used a
surface velocity raster to separate the active ice from stagnant
glacier tongues in the manual inventory. Ice flowing at
velocities <2.5 m/a−1 was assumed to be stagnant following
Scherler et al. (2011) and Shukla and Garg (2020). We used
the remaining 70% of the debris-covered glacier polygons that
were not employed to generate the reference vector dataset to
assess the accuracy of the approach. For the Corona classification,
manually delineated debris-covered glacier outlines were made
available from Racoviteanu et al. (2022a) to assess the accuracy of
the approach.

Accuracy was assessed using three metrics: 1) a discrepancy
estimation based on mapped glacier extent; 2) Intersection Over
Union (IOU); and 3) a Precision-Recall plot. Discrepancy denotes
the area deviation between automated and manually derived glacier
outlines by measuring the percentage of over- and underestimation
and has been used in previous studies to assess approach accuracy

(e.g., Bolch et al., 2007; Bhambri et al., 2011; Bhardwaj et al., 2014;
Alifu et al., 2020).

IOU measures the similarity between ground truth and the
predicted occurrence of an object or entity in imagery and is a
commonly used accuracy metric in computer vision object detection
tasks. Detection is typically accepted as valid providing the IOU
between the classification and ground truth bounding boxes exceeds
a value of 0.7 (Jörgensen et al., 2019). The metric is calculated as
(Eq. 1):

IOU � Area of Intersection

Area ofUnion
(1)

Precision-recall plots calculate the number of correctly and
incorrectly assigned instances (Davis and Goadrich, 2006) for
which there are four categories: 1) true positives (TP), the
number of correctly identified positive instances; 2) false positives
(FP), negative instances incorrectly assigned positive; 3) false
negatives (FN), positive instances incorrectly assigned negative;
and 4) true negatives (TN), the number of correctly identified
negative instances.

True positive, false positive, and false negative instances were
used to calculate Recall (R) and Precision (P). Recall measures the
approach’s detection rate, determining how much of the actual
debris-covered area was correctly identified (omission error).

FIGURE 4
The CNN architecture employed in the current study. A five-layer CNN with a 36 × 36 × 21 input.

TABLE 4 Multi-resolution segmentation parameters for each image-object level.

Image-object
level

Scale Shape Compactness Layer weightings Classification

1 10 0.2 0.1
(× 4) Slope, (× 3) NIR, SWIR I, SWIR II, Profile Curvature, Planform
Curvature, (× 2) NDWI, (× 1) Blue, Green. Red, Red Edge I, Red Edge II,

Red Edge III, Red Edge IV

Lakes, Snow, Vegetation, Non-
glacial Material

2 55 0.2 0.8
(× 3) Slope, (× 2) NIR, SWIR I, SWIR II, Profile Curvature, Planform
Curvature, (× 1) Blue, Green. Red, Red Edge I, Red Edge II, Red Edge III,

Red Edge IV
Clean Ice

3 95 0.6 0.3
(× 3) Slope, (× 2) NIR, Profile Curvature, Planform Curvature, (× 1) Blue,
Green. Red, Red Edge I, Red Edge II, Red Edge III, Red Edge IV, SWIR I,

SWIR II
Input to 4

4 225 0.6 0.2
(× 3) Slope, (× 2) NIR, Profile Curvature, Planform Curvature, (× 1) Blue,
Green. Red, Red Edge I, Red Edge II, Red Edge III, Red Edge IV, SWIR I,

SWIR II
Supraglacial Debris
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Precision measures the ability of the approach to identify non-
debris-covered glacier area correctly (commission error) (Davis and
Goadrich, 2006). Precision and Recall were used to calculate the
F-score (F1). F-score is a harmonic average of Recall and Precision
and reports the accuracy of the approach (Goutte and Gaussier,
2005). The three measures were calculated from Eqs 2–4.

P � TP

TP + FP
(2)

R � TP

TP + FN
(3)

F1 � 2 ×
P × R

P + R
(4)

5 Results

5.1 Sentinel classification

5.1.1 OBIA clean ice classification
Clean ice was mapped with high accuracy in all domains, with

F-scores exceeding 93% and IOU scores exceeding 89% when
compared to the manual inventory (Table 6). Clean ice extent
was underestimated by 3.2% in the Khumbu domain (177.8 out
of 183.7 km2) and 2.3% in the Manaslu domain (136.6 of 139.7 km2)
and was overestimated by 0.9% in the Hunza domain (583.1 out of
578.1 km2). Clean ice sections comprised 63.7% (Khumbu domain),
68.5% (Manaslu domain) and 69.9% (Hunza domain) of the total
debris-covered glacier area and were situated on slopes with mean

gradients of 17.1° in the Khumbu domain, 32.5° in the Manaslu
domain, and 28.8° in the Hunza domain.

5.1.2 CNN-OBIA supraglacial debris classification
Using CNN-OBIA, we mapped 135 out of 160 debris-covered

tongues featured in the manual glacier inventory across the three
domains, with high accuracy, though slightly lower than clean ice
sections (F1 ≥ 89.2%) (Table 6). Supraglacial debris was
overestimated by 5.6% in the Khumbu domain (79.4 out of
75.2 km2) (Figure 5), whereas it was underestimated by 1.4% in
the Manaslu domain (62.5 out of 63.4 km2) (Figure 6) and 1.5% in
the Hunza domain (251.4 out of 255.3 km2) (Figure 7). The IOU
scores for each of the three domains (Khumbu 86.8%, Manaslu
80.1%, Hunza 88.8%) show a good agreement between CNN-OBIA
and the validation data.

Respective mean recall and precision accuracies of 91.6% and
92.2% indicate that commission and omission errors were relatively
common; however, the difference between recall and precision
accuracy scores varied between domains. The highest
classification accuracy was achieved in the Hunza domain (F1 =
93.7%), followed by the Khumbu domain (F1 = 92.7%). CNN-OBIA
achieved a lower accuracy for the supraglacial debris in the Manaslu
domain (F1 = 89.2%). Over the total debris-covered glacier surface
area (i.e., clean ice and supraglacial debris combined), CNN-OBIA
achieved accuracies up to 93.8%.

Glacier tongues featuring supraglacial debris had mean slope
gradients of 11°, 12.4° and 16.2° in the Khumbu, Hunza, and
Manaslu domains, respectively. However, the maximum slope
gradients of debris-covered tongues in each domain varied

TABLE 5 Corona multi-resolution segmentation parameters and classification criteria for each image-object level.

Image-object
level

Scale Shape Compactness Weightings Classification Thresholds

1 10 0.1 0.1
(× 1) Slope, Profile curvature, Planform curvature,

Panchromatic image

Vegetation Vegetation Heatmap: ≥0.1

Snow cover
Snow cover Heatmap: ≥0.4

Slope: ≥45°

Non-glacial
material

Non-glacial material
Heatmap: ≥0.3

Shadows Shadow Heatmap: ≥0.1

2 55 0.8 0.5
(× 2) Slope, (× 1) Profile curvature, Planform

curvature, Panchromatic image
Clean ice

Clean ice Heatmap: ≥0.3

Supraglacial debris
Heatmap: ≤0.3

Slope: <45°

3 95 0.6 0.3
(× 3) Slope, (× 2) Profile curvature, Planform

curvature, (× 1) Panchromatic image
- -

4 225 0.6 0.2
(× 4) Profile curvature, (× 3) Slope, (× 2) Planform

curvature, (× 1) Panchromatic image
Supraglacial debris

Supraglacial debris
Heatmap: ≥0.55

Grow if: Similar Slope: ≤8°

Remove if: Distance to clean
ice: ≥0.3 km

Remove if: Area: ≤0.1 km2
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TABLE 6 Debris-covered glacier statistics and classification results from the Sentinel-2, Corona, and Transfer Learning classifications. Clean ice classification in Sentinel-2 image performed using OBIA only.

Debris-covered glacier statistics Classification results

Classification Domain Area
(km2)

Area
(%)

Mean
slope (°)

Slope
range (°)

Mean
coherence

Coherence
range

Discrepancy
(%)

IOU
(%)

Recall
(%)

Precision
(%)

F-score
(%)

Glacier section

Sentinel-2 Khumbu Clean ice 137.1 63.7 17.1 10.8–28.1 0.20 0.16–0.31 −3.2 89.3 94.5 91.7 93.1

Supraglacial debris 79.4 36.3 11 8.1–15.3 0.35 0.20–0.46 +5.6 86.8 93.1 92.2 93.1

Entire debris-covered
glacier surface

216.5 - 14.6 9.5–23.0 0.27 0.22–0.38 −2.3 88.1 93.8 92.0 92.9

Sentinel-2 Manaslu Clean ice 136.6 68.5 32.5 18.1–42.8 0.21 0.09–0.27 −2.3 90.8 95.6 92.9 94.2

Supraglacial debris 62.5 31.4 16.2 8.2–32.8 0.31 0.19–0.42 −1.4 80.1 88.0 90.4 89.2

Entire debris-covered
glacier surface

199.5 - 29.0 14.2–39.5 0.24 0.16–0.39 −1.8 85.4 91.9 91.4 91.6

Sentinel-2 Hunza Clean ice 583.1 69.9 28.8 3.3–41.6 0.15 0.05–0.23 +0.9 90.6 94.1 93.3 93.7

Supraglacial debris 251.4 30.1 12.4 5.3–17.9 0.21 0.18–0.30 −1.5 88.8 93.6 93.9 93.7

Entire debris-covered
glacier surface

834.4 - 25.4 5.1–37.0 0.18 0.15–0.28 +0.5 90.3 93.9 93.6 93.8

Corona Hinang Clean ice 87.8 77.9 25.6 18.4–35.5 - - −8.7 76.2 77.9 84.5 81.0

Supraglacial debris 24.9 22.1 10.3 7.9–15.5 - - −8.0 86.0 86.3 90.7 88.4

Entire debris-covered
glacier surface

112.7 - 23.8 17.4–34.3 - - −8.5 81.1 82.0 87.6 84.7

Corona Ponkar Clean ice 75.4 71.7 24.7 8.1–45.5 - - −14.8 79.4 79.7 88.3 83.7

Supraglacial debris 29.8 28.3 12.7 11.1–16.0 - - −16.8 74.0 75.0 89.1 81.5

Entire debris-covered
glacier surface

105.2 - 24.5 10.2–39.6 - - −15.4 76.7 77.4 88.7 82.6

CNN

Transfer Learning Khumbu Manaslu CNN 91.2 - 11.3 6.7–15.7 0.35 0.20–0.45 +21.2 76.6 95.3 79.5 86.7

Hunza CNN 58.2 - 10.5 6.4–14.8 0.28 0.20–0.35 −22.6 64.3 69.3 90.4 78.3

In-sample CNN 79.4 - 11 8.1–15.3 0.35 0.20–0.46 +5.6 86.8 93.1 92.2 93.1

Transfer Learning Manaslu Khumbu CNN 45.9 - 13.4 6.0–26.0 0.24 0.18–0.35 −27.6 60.7 66.2 91.7 76.9

Hunza CNN 42.5 - 13.4 5.9–28.6 0.23 0.18–0.29 −33.0 53.2 58.1 87.6 69.9
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greatly. For example, in the Khumbu and Hunza domains,
supraglacial debris was situated on maximum slope gradients
of 15.3° and 17.9°, compared to the supraglacial debris in the
Manaslu domain that could be found on maximum slopes of
32.8°. This resulted in the steepest sections of the debris-covered
area, which were primarily located at the clean ice-supraglacial
debris transition zone, occasionally being omitted from the
classification. Coherence also varied between the domains. The
mean coherence observed in the Hunza domain (x�= 0.21) was
significantly less than the mean coherence in both the Manaslu
(x�= 0.31) and Khumbu (x�= 0.35) domains.

5.2 Corona classification

The extent of clean ice was underestimated in both images
(Figure 8). Underestimation percentages ranged from 8.7% to
14.8%. In total, 87.8 out of 96.2 km2 of clean ice was mapped in
the Hinang area and 75.4 out of 88.5 km2 in the Ponkar area of the
Corona image. The IOU accuracies of 76.2% (Hinang) and 79.4%
(Ponkar) indicate satisfactory agreement between CNN-OBIA
outlines and the validation dataset. Clean ice was mapped in the
two images with F-score accuracies of 81.0% in the Hinang area and
83.7% in the Ponkar area. Precision and recall accuracies indicate
that omission errors were more common than commission errors.
Clean ice sections had a mean slope gradient of 25.6° in the Hinang
area and 24.7° in the Ponkar area image.

CNN-OBIA identified 14 of 18 debris-covered tongues featured in
the validation data across the two Corona images. Supraglacial debris
extent was underestimated by 8.0% in the Hinang area (24.9 out of
27.1 km2) and by 16.8% in the Ponkar image (29.8 out of 35.8 km2). The
measured IOU accuracy scores were 86.0% (Hinang) and 74.0%
(Ponkar), indicating satisfactory network performance (Table 6).

The overall performance of CNN-OBIA to classify supraglacial
debris was high, with reported F-scores in the Hinang and Ponkar
areas of 88.4% and 81.5%, respectively. The precision and recall
scores indicate that omission errors were more common than
commission errors. CNN-OBIA achieved F-score accuracies of
84.7% (Hinang) and 82.6% (Ponkar) over the entire debris-
covered glacier surface area (clean ice and supraglacial debris).
Debris-covered tongues had mean slope gradients of 10.3° and
12.7° in the Hinang and Ponkar images, respectively.

5.3 Out-of-sample transfer learning for
debris-covered glacier delineation

The results of the transfer learning approach are presented in
Table 6 and highlight that transfer learning was more successful in
some directions than others. Transfer learning proved challenging to
apply in the Khumbu and Manaslu domains, producing F-scores
between 69.9% and 86.7% and IOU scores between 53.2% and
76.6%. Conversely, transferred networks could classify out-of-
sample Hunza imagery with F-score accuracies comparable to the
network trained using in-sample imagery in the Hunza domain
(91.2% and 91.5% versus 93.7%). The results of the transfer learning
experiment show that omission errors are far more common than
commission errors when classifying out-of-sample imagery.TA
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In the Khumbu domain, supraglacial debris extent was
overestimated by 21.2% by the Manaslu CNN (91.2 out of 75.2 km2)
but underestimated by 22.6% (58.2 out of 75.2 km2) by theHunzaCNN.
Debris-covered tongues mapped by the transfer CNNs had mean slope
gradients of 11.3° (Manaslu CNN) and 10.5° (Hunza CNN) and mean
coherence values of 0.35 and 0.28. The highest mean coherence value of
a debris-covered tongue mapped by the Hunza CNNwas 0.32, whereas
the highest mapped by the Manaslu CNN was 0.45.

In the Manaslu domain, supraglacial debris extent was
underestimated by both the Khumbu and Hunza CNNs by 27.6%
(45.9 out of 63.4 km2) and 33.0% (42.5 out of 63.4 km2), respectively.
Debris-covered tongues mapped by the Khumbu CNN had a mean
slope gradient of 13.4° and mean coherence values of 0.24. Similarly,
those mapped by the Hunza CNN had a mean slope gradient of 13.4°

and a mean coherence value of 0.23. The note-worthy difference
between the debris-covered tongues mapped by the Khumbu CNN
and Hunza CNN is the maximum coherence value mapped by both
CNNs; 0.35 and 0.27, respectively.

In the Hunza domain, supraglacial debris extent was overestimated
by 5.6% by the Khumbu CNN (241.1 out of 255.3 km2) and by 0.3% by
the Manaslu CNN (256.0 out of 255.3 km2). The mean slope gradient
andmean coherence value of the debris-covered tonguesmapped by the
Khumbu CNN were 11.9° and 0.22, respectively. In comparison, the
mean slope gradient and coherence values of those mapped by the
Manaslu CNN were 12.7° and 0.24, respectively.

6 Discussion

6.1 Integration of CNNs and OBIA to classify
debris-covered glaciers

The CNN-OBIA classification approach developed in the
current study demonstrates high-accuracy performances in three
distinct domains. CNN-OBIA produced F-scores up to 93.7% for
supraglacial debris across the three domains, indicating that the
combination of deep learning andOBIA is a robust and accurate tool
for delineating the extent of supraglacial debris cover in complex
glacial environments. CNN-OBIA operates with minimal analyst
input, has the ability to generate debris-covered glacier outlines
relatively quickly (~13 min), and is equally applicable across our
three study areas with varying climates, topographies and
supraglacial environments. Additionally, employing OBIA to map
clean ice in the same workflow as debris-covered glaciers illustrates
the capacity of the CNN-OBIA approach to create complete glacier
inventories with high accuracies (F1 = 93.8%).

Integrating CNN and OBIA into one classification approach
addresses some of the shortcomings of CNN classifications. For
example, spatial downsampling provides CNNs with a powerful
generalisation ability, which allows CNNs to perform well when
classifying land-cover classes with large amounts of intra-class
variation such as supraglacial debris cover. However,

FIGURE 5
Comparison of automated CNN-OBIA outlines with the manual inventory in the Khumbu domain. A(1) In most cases, CNN-OBIA could detect the
boundary between active and stagnant ice. A(2) The CNNwas prone tomisclassifying landforms with similar properties to supraglacial debris, such as the
ice-cored moraine to the west of the Imja Tsho proglacial lake. Using OBIA thresholds, these types of misclassifications could be removed from the final
glacier outlines. Sentinel-2 false colour composite (Near-infrared, Red, Blue) is displayed. Sentinel-1 coherence imagery displayed in A(1). CNN
derived supraglacial debris probability heatmap displayed in A(2).
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downsampling results in the loss of the specific arrangement of
features (Zhao et al., 2017), making it difficult for CNNs to predict
the exact boundary between land-cover classes (Jin et al., 2019). This
results in blurred land-cover borders, for example, between the
debris-covered glacier and the lateral moraines. This would have
resulted in an 11% overestimation of the total debris-covered area in
the Khumbu domain if the CNN output was the sole basis for the
classification. Utilising OBIA to refine the CNN output allows the
glacier boundary positions to be repositioned inside the glacial
margin, significantly improving the accuracy of the approach.

Furthermore, CNNs are prone to misclassifying land-cover classes
due to label noise or the sharing of similar properties to supraglacial
debris. Employing OBIA thresholding allows these misclassifications to
be removed through masking or utilising contextual information in the
classification. Since OBIA is capable of classifying land-cover classes
based on empirically thresholding low-level features, commonly
commissioned land-cover classes such as waterbodies and vegetation
can be masked out from further analysis, preventing the inclusion of
CNN misclassifications in the final delineated debris-covered glacier
area. This function may be especially advantageous when working with
multi-class output CNNs, label noise in the training dataset, or
unbalanced training datasets (Fernández et al., 2018).

EmployingOBIA contextual-based rules such as distance from clean
ice, combined with shape rules such as minimum area coverage also
allows misclassifications caused by the similarity between landforms,
such as mass movement deposits and ice-cored moraines, to be rectified
(Figure 5). However, it should be noted that if the misclassified area

features high probability values and extends out from the supraglacial
debris area delineated by the CNN (see Section 6.2; Figure 7), it is not
possible to omit these commission errors without additional, potentially
excessive OBIA thresholds. These additional thresholds would likely
significantly reduce the transferability of an integrated CNN and OBIA
approach between regions.

To further demonstrate the benefit of integrating two classification
methods into one seamless classification approach, we produced a
precision-recall plot on supraglacial debris outlines in the Khumbu
domain delineated without OBIA, where the probability heatmap
threshold was ≥ 0.65. The PRC plot showed that recall accuracy
increased by 0.9% and precision accuracy increased by 4.2% when
OBIA was conducted following CNN classification, resulting in an F-
score accuracy of 2.6%. As indicated by this increase in F-score accuracy,
employing OBIA following a CNN classification allows debris-covered
glacier extents to be mapped with higher accuracy than those delineated
solely relying on the CNN classification. Therefore, OBIA could prove to
be a beneficial addition to CNN image classification workflows for all
other glacial, and indeed, non-glacial land-cover mapping tasks.

6.2 Sentinel-2 classification commission and
omission errors

Commission errors appear as extensions of glacier outlines
beyond the glacial margin into the landforms in the adjacent
terrain, rather than misclassified landforms away from the glacial

FIGURE 6
Comparison of CNN-OBIA outlines with the manual inventory in the Manaslu study region. Omission errors were common over steep, debris-
covered tributary channels and steep slope gradient regions of the debris-covered glaciers (A1, A2). Sentinel-2 false colour composite (Near-infrared,
Red, Blue) is displayed. Sentinel-1 coherence imagery displayed in A(1). CNN derived supraglacial debris probability heatmap displayed in A(2).
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margins. For example, while in most cases, CNN-OBIA was capable
of mapping the boundary between active and stagnant ice, the
extension of CNN-OBIA outlines into stagnant ice occurred
where the stagnant side of the active-stagnant boundary
presented supraglacial lakes (Figure 5A2). Commission errors
were also commonly caused by the presence of proglacial river
channels in both narrow, steep channels and expansive, shallow
gradient glacial forefields (Figure 7A1). Additionally, CNN-OBIA
was prone to including shallow slope gradient lateral moraines in the
demarcated glacier area, such as those in theManaslu domain. These
commission errors can likely be attributed to the sharing of similar
coherence, geomorphometric, and spectral properties to supraglacial
debris. This would reduce the amount of inter-class variation,
potentially creating class overlap in feature space. Class overlap
confounds the CNN’s ability to differentiate between the debris-
covered tongue and the adjacent landforms with similar properties,
resulting in their inclusion in the glacier outlines.

On the other hand, omission errors were cases of missing entire
glaciers that were in the manual inventory. Upon visual analysis, these
small glaciers were typically < 0.5 km2 in size or located on steep slopes
with gradients > 24°. Steep gradient debris-covered glacier termini and
topography in the domains were sources of omission errors; for
example, CNN-OBIA underestimated the position of debris-covered
glacier termini with slope gradients > 24° in the Hunza domain and
steep debris-covered tributaries in the Manaslu domain (Figure 6A1).
The CNN could not classify these debris-covered regions due to a lack
of intra-class variation within the supraglacial debris samples. These

regions were likely not included in the labelled training samples because
the reference dataset creation method prevents labelled samples from
being extracted from areas near potentially problematic land-cover
boundaries. Thus, the CNN was not trained to recognise supraglacial
debris on steep slopes and termini as part of debris-covered tongues,
leading to their exclusion from the glacier outlines. Omission errors
were also caused by shadows on the margins of debris-covered tongue
surfaces; however, this omission accounted for only 0.15% of the total
debris-covered area across the three study regions (0.61 out of
393.9 km2).

6.3 Classifying debris-covered glaciers in
historical imagery

We successfully adapted and applied our CNN to declassified
Corona imagery, yielding F-score accuracies up to 87.4% for the
supraglacial debris though this is still subject to further
improvements.

Supraglacial debris coverage was underestimated in both Corona
images (Figure 8), with misclassifications typically occurring
between the glacier boundaries and the lateral moraines. In
addition, outlines occasionally extended into the adjacent
paraglacial material, especially if the paraglacial material
exhibited similar geomorphometric properties to the debris-
covered surface. Furthermore, debris-covered glaciers exhibiting
low panchromatic band values across their entire surface were

FIGURE 7
Comparison of CNN-OBIA outlines with themanual inventory in the Hunza study region. Notable discrepancies in area between the automated and
manual inventory were caused by proglacial river channels such as those located at the terminus of the Kukuar glacier (A1, A2). Sentinel-2 false colour
composite (Near-infrared, Red, Blue) is displayed. Sentinel-1 coherence imagery displayed in A(1). CNN derived supraglacial debris probability heatmap
displayed in A(2).
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omitted by the CNN-OBIA classification. However, CNN-OBIA
outlines were not sensitive to supraglacial debris lithology changes
on the debris-covered tongue surfaces in the Hinang and Ponkar
areas, which produce alternating sections of high and low
panchromatic values.

In the absence of multispectral data, the Corona-based
classification relied heavily on the panchromatic band, causing
paraglacial landforms that exhibit high panchromatic values and
geomorphometric properties similar to supraglacial debris or clean
ice, such as river channels, frozen lakes, and debris flows, to be
frequent sources of commission error. Clean ice and supraglacial
debris were also frequently misclassified as one another.
Furthermore, we found that the surface of the debris-covered
tongues reflected in the high-resolution geomorphometric
datasets shared similar textures with the lateral moraines, leading
to the inclusion of lateral moraines in the delineated supraglacial
debris extent and adding an average of 8.5% to the total delineated
debris-covered area across the two Corona images. These
misclassification examples can likely be explained by class
overlap in feature space as there are fewer CNN inputs to
provide the necessary discriminatory high-level features.

The smaller number of inputs for theCorona classificationmay have
also caused a degree of network overfitting (Webb, 2011; Cogswell et al.,
2016; Baduma and Locascio, 2017). The CNN employed to classify the
Corona imagery had the same architecture used in the Sentinel-2
classification. The removal of inputs can significantly affect network
performance. The Corona classification was performed with
seven inputs instead of the twenty-one inputs it was optimised for;
therefore, the CNN architecture may have been too complex for the
mapping task, leading to overfitting and subsequent misclassifications.
The performance of a CNN fine-tuned to handle the smaller number of
input data would most likely exceed the performance of the CNN
architecture employed in this study.

6.4 Influence of out-of-sample training data
on CNN performance

In terms of misclassification, transfer learning CNNs failed to
map lithological changes on the debris-covered tongues caused by
rockfall deposits (Figure 9). The Hunza CNN was also incapable of
mapping large regions in the lower reaches of the debris-covered

FIGURE 8
CNN-OBIA clean ice and supraglacial debris outlines delineated from Corona imagery over Ponkar (A1) and Hinang (B1). Corona panchromatic
imagery displayed in A(1) and B(1). CNN derived supraglacial debris probability heatmap displayed in A(2) and B(2). CNN derived clean ice probability
heatmap displayed in A(3) and B(3).
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tongues with high coherence values in the Khumbu and Manaslu
regions. Debris-covered tongues in all three domains situated on
slopes with gradients > 22° were frequently omitted from the transfer
learning outlines. Shaded regions of the glaciers were also omitted.
Commission errors were less common, as indicated by the high
precision accuracies. However, the Manaslu CNN outlines
frequently extended beyond the glacial margin onto lateral
moraines and into the paraglacial environment, resulting in the
lowest precision accuracies among the three CNNs. The commission
of lateral moraines was the primary reason for the low precision
accuracy in the Khumbu region, resulting in an additional 17.3%
(15.4 km2) of supraglacial debris area coverage.

The results of the transfer learning experiment illustrate that
transfer learning applied to out-of-sample imagery was not as
successful as CNNs trained on in-sample imagery in their
respective regions. These results indicate that high-level features
derived from a training dataset in one training region may not fully
represent the debris-covered surface properties in another region.
Therefore, training data from the region to be mapped is an essential
prerequisite on regional scales. This reflects that the surfaces of
debris-covered tongues are influenced by varying climate forcing,
dynamics, topographies, lithologies and surface processes resulting
in spatial variation across High Mountain Asia.

For example, debris-covered tongues in the Hunza domain
exhibit low coherence values across their surfaces (x� = 0.21),
whereas those in the Khumbu domain exhibit substantially
higher values (x� = 0.35), which could partially relate to greater
surface velocities and more active glacier flow in the Hunza domain
(Dehecq et al., 2019). Therefore, the distribution of the Hunza
training samples across feature space was insufficient for the
Hunza CNN to fit the coherence properties it had learnt to the
Khumbu domain. This is evident in the probability heatmap
outputted by the Hunza CNN, where low probability values are
correlated with debris-covered regions with high coherence values.

Another example of the correlation between low probability
heatmap values and region-specific surface characteristics is the
rockfall deposits on the surfaces of the debris-covered tongues in the
Manaslu region (Figure 9). The rockfall deposits have a different
spectral signature to the debris transported by other processes to the
surface, reflecting less light in each multispectral band. Since these
rockfall deposits are not present in the Hunza and Khumbu
domains, their respective CNNs were not trained with the sample
heterogeneity required to recognise rockfall deposits as features of
the debris-covered environment causing rockfall deposits to not be
mapped by the transfer CNNs.

However, transfer learning worked better when applied to the
Hunza domain using a CNNs trained in the Khumbu and Manaslu
domains. This highlights the importance of intra-class variation in
training datasets and suggests it is beneficial to generate samples in
regions with diverse debris-covered surface characteristics, or to
accumulate training samples from multiple regions, to provide the
intra-class variance required to avoid significant omission errors in
out-of-sample imagery.

The results of the transfer learning experiment highlight the
complexity of applying out-of-sample transfer learning approaches
to create large-scale glacier inventories across High Mountain Asia.
Future studies should continue to test the applicability of out-of-
sample transfer learning for debris-covered glacier mapping since

the method holds the potential to significantly reduce the amount of
time required to produce accurate glacier outlines in data-scarce
regions.

6.5 Comparison with previous
debris-covered glacier methods

Our CNN-OBIA approach achieved F-score accuracies between
89.2% and 93.7% in three separate regions ranging from 1,039 km2 to
4,033 km2 in size. Thus, the domains are considerably larger than those
used in the majority of previous debris-covered glacier mapping studies.
Our CNN-OBIA approach also produced outlines with similar
accuracies compared to those achieved over single glaciers (e.g.,
Karimi et al., 2012; Shukla and Ali, 2016; Lippl et al., 2018),
indicating that our CNN-OBIA approach is a highly robust and
accurate, and capable of operating over large, glaciated regions.

One of the major strengths of our CNN-OBIA approach
compared to other methods is that, unlike other methods, it does
not rely on fixed thresholds that vary from glacier to glacier or region

FIGURE 9
A visual comparison of Sentinel-2 multispectral imagery (A) and
the CNN supraglacial debris probability heatmap (B) produced by the
Hunza CNN over the Kechakyu glacier, Manaslu. Note how the
location of low probability values in the heatmap corresponds to
the location of lithological changes on the debris-covered surface in
the Sentinel-2 image. The relationship between probability heatmap
values and reflectance in Sentinel-2 near-infrared band is shown in
(C). Sentinel-2 false colour composite (Near-infrared, Red, Blue) is
displayed in (A). CNN derived supraglacial debris probability heatmap
displayed in (B).
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to region to classify supraglacial debris, for example, slope gradient
(e.g., Paul et al., 2004; Ghosh et al., 2014; Lippl et al., 2018), surface
temperature (e.g., Bhambri et al., 2011; Rastner et al., 2014; Robson
et al., 2016), and band ratio values (e.g., Racoviteanu and Williams,
2012; Alifu et al., 2015; Shukla and Ali, 2016). The minimal reliance
of CNN-OBIA on fixed thresholds allows it to be applied across
multiple regions without modifications and makes it superior to
many existing approaches for mapping supraglacial debris cover.

The CNN employed in our approach has a relatively simple
structure, i.e., it does not include features such as encoding and
decoding stages (e.g., Xie et al., 2020; Xie et al., 2021) or
attention mechanisms (e.g., Tian et al., 2022) within its
architecture. Therefore, this simple CNN structure might not
be fully suited to the complexities of large-scale glacier mapping
applications. Networks such as DeepLabV3+ have proven to be
very capable of handling these complexities (Xie et al., 2021);
however, integrating OBIA following CNN classification
allowed our approach to perform similarly to the
DeepLabV3+ network utilised by Xie et al. (2021), with high
F-score accuracies (93.7%, 92.7, 89.2% versus 92.6%) in complex
high-mountain glacial environments despite the simplicity of
our CNN structure. OBIA was particularly useful for removing
misclassifications related to lakes and similar landforms that
previous studies struggled with (Xie et al., 2020; Tian et al.,
2022).

However, CNN-OBIA was prone to common debris-covered
glacier mapping pitfalls experienced by previous approaches, such as
omitting steep (≥25°) glacial tributaries (e.g., Robson et al., 2015)
from the delineated debris-covered area. Previously mentioned
proglacial river channels were also frequently commissioned,
similarly to previous approaches (e.g., Robson et al., 2015; Alifu
et al., 2020; Xie et al., 2020). However, CNN-OBIA allowed the
mapping of debris-covered tongues with distinct lithological
changes, often mapped as separate entities (e.g., Robson et al.,
2015) to be classified as single glacier units, such as the Himal
Chuli and Kechakya glaciers in the Manaslu region. This is an
improvement compared to previous approaches.

7 Summary and further work

We developed a simple, transferable CNN–OBIA approach that
was able to classify supraglacial debris with F-score accuracies up to
93.7% across the three domains based on freely available
multispectral, geomorphometric, thermal, and coherence datasets.
Despite encountering common debris-covered glacier mapping
omission errors mentioned above, the integration of OBIA
following CNN classification into one seamless approach allowed
most errors to be rectified during the primary classification process,
reducing the amount of analyst input required to improve
classification accuracies.

CNN-OBIA also showed promise for mapping debris-
covered glaciers in historical Corona satellite imagery,
producing F-score accuracies up to 84.7% over the entire
debris-covered glacier surface. We believe the approach holds
the potential to streamline the creation of historical glacier
inventories across the wider HMA region. To the best of the
authors’ knowledge, our study is the first to automatically map

debris-covered glaciers in Corona imagery and to further test its
ability for multitemporal inventory creation. The approach also
holds the potential to automate the detection of other
geomorphological entities such as landslides, lava flows,
permafrost, and quaternary landforms in historical
panchromatic imagery. However, due to the limited area
covered by the Corona data, further work is needed to assess
the suitability of the approach to classify debris-covered glaciers
in historical datasets. We suggest that the inclusion of other
Corona-derived datasets, such as texture, will help improve the
ability of the CNN to distinguish different landforms from
panchromatic imagery, and this can be explored in a
subsequent study.

With respect to transfer learning applied to out-of-sample
imagery, we found that it was heavily dependent on the
distribution of debris-covered surface characteristics across
sample space and the amount of intra-class variation present
in the training dataset. Our experiments showed that the extreme
variations of high mountain glacial environments and debris-
covered glacier surface characteristics pose significant challenges
for the application of transfer learning to out-of-sample imagery
for streamlining regional glacier inventory creation. Further work
is needed to improve the application of out-of-sample transfer
learning to debris-covered glacier mapping. This includes
generating extensive training datasets with samples gathered
from diverse geographical regions, which capture the
complexities of debris-covered tongue surface characteristics.
This also illustrates the necessity for future studies to continue
to establish the optimal network architecture and parameters,
training dataset qualities, and a consensus on the best remote
sensing datasets to employ for mapping.

Furthermore, to greatly enhance our ability to produce highly
accurate debris-covered and clean ice glacier outlines over large
spatial scales, we suggest the addition of OBIA following the
classification of more complex network architectures, such as
DeepLabV3+. These integrated CNN and OBIA classification
approaches can be used for more complex land-cover
classification tasks in both contemporary and historical satellite
imagery, not just for debris-covered glacier mapping.

Lastly, based on the ability of the network used in this study to
distinguish between active and stagnant ice, we suggest the inclusion
of interferometric coherence imagery as an input to all future
networks to address the limitations encountered by previous deep
learning methods (e.g., Lu et al., 2021).
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Publicly available datasets were analyzed in this study. This data
can be found here: AW3D30 was obtained from the JAXA Earth
Observation Research Center (EORC) (http://www.eorc.jaxa.jp/
ALOS/en/aw3d30/index.htm). Landsat and Sentinel-2 imagery was
obtained from USGS Global Visualisation Viewer (GloVis) (https://
glovis.usgs.gov/). Sentinel-1 imagery was obtained from the ASF Data
Search Vertex (https://search.asf.alaska.edu/). The GAMDAM glacier
inventory is available from PANGAEA (https://doi.pangaea.de/10.
1594/PANGAEA.891423). The Himalayan glacial lake inventory
is available from NSIDC (https://nsidc.org/data/hma_gli/versions/1).
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Worldview-2 imagery was accessed through ArcGIS Online
(https://services.arcgisonline.com/ArcGIS/rest/services/World_
Imagery/MapServer).
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