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Abstract

In this master’s thesis, the model-checking tool StraTegic Verifier has been extended to verify
upgrades in Smart Contracts. It has been shown how to model Smart Contracts as Concurrent
Game Models, enabling them to be verified by the model checker. By implementing Dictatorial
Dynamic Coalition Logic, upgrades of Smart Contracts can be expressed, and the models can be
changed before verification. The implementation of DDCL is a step in the direction of being able
to use formal verification when there are upgrades in Smart Contracts.
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1 Introduction

Cryptocurrency has had increasing popularity since Bitcoin was first introduced in 2008 to users
all over the world. Bitcoin’s blockchain was developed primarily to buy and sell bitcoin, to have
a trustless currency that was decentralised, anonymous and where governments could not interfere
[Antonopoulos, 2017, chapter 1]. Bitcoin as a network has limited abilities to evolve, and many
networks have been introduced in the later years. A network that contains all of Bitcoin’s features
and more is Ethereum. Ethereum was developed to be ”The Worlds Computer”. One of the bigger
new features Ethereum introduced was the ability to develop programs that can be executed on the
blockchain, so-called Smart Contracts. [Antonopoulos and Wood, 2018, chapter 1]

Cryptocurrency is open for all to buy and sell, and the code of Smart Contracts and networks
are open-source. A Smart Contract might not do what is written in the program’s requirements
because of bugs or other semantic weaknesses. The openness is essential for trustlessness, although
it also makes the source code’s weaknesses accessible to malicious users.

There are monetary values in all Smart Contracts. To execute a Smart Contract, one has to
pay transaction fees. Many Smart Contracts are programs that invest in crowdfunding. If ma-
licious users of the Smart Contract know how to read the source code of a Smart Contract and
exploits all the bugs they can find, the Smart Contract can be financially drained.
[Antonopoulos and Wood, 2018, chapter 9]

There are many famous hacks done by malicious users in cryptocurrency. One of the greatest
hacks is ”The DAO-attack”, which was executed on the Ethereum network. One of the members of
a crowdfunding organisation found a semantic hole in their Smart Contract and drained the fund for
invested money. The member would have drained the entire fund if other members had not started
draining the fund immediately once they found out what was going on so they could salvage parts
of the fund. The malicious member drained 1/3 of the fund, and an enormous amount of money
was lost. The solution became to split the main chain so the transactions done by the malicious
user were not included in the new main chain, which is why there are two Ethereum coins, ETH
and ETC. [Siegel, 2016]

A Smart Contract is immutable once deployed on the blockchain, and the particular version of
the contract cannot be altered, which is necessary to preserve trustlessness. However, there are
methods to change Smart Contracts by deploying new versions on the blockchain. While up-
grading a Smart Contract might be necessary for changes in business structure or fixing bugs,
it hurts the principle of trustlessness by requiring trust between the users and the developers.
[Antonopoulos and Wood, 2018, chapter 7]

There is a lot at stake if the source code of a Smart Contract contains bugs due to the enor-
mous amount of money invested and its immutable nature. As a result, it is important to test the
Smart Contract extremely detailed. Many different methods are used, one of them being model
checking [Almakhour et al., 2020, Tolmach et al., 2021].

While it is important to verify that a Smart Contract entails what it should before deployment,
it is also important to verify that upgrades change only what they should. There are numerous
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methods for verifying and testing Smart Contracts before deployment, although not as many for
verifying changes to a Smart Contract.

The focus of this thesis will be on model checking upgrades of a Smart Contract, checking that only
what is intended to be altered is, in fact, the only part of the Smart Contract that will be altered.
Granting and restricting agents’ dictatorial abilities will be the scope of this thesis.

The contribution is the extension of an explicit-state model checker called StraTegic Verifier (STV)
[Kurpiewski et al., 2019a] with logics for granting and restricting agents’ abilities. The extension
is not trivial as it essentially constructs new models to verify formulas containing upgrades. The
approach of the extension enables the addition of other temporal logics because the verification
itself includes valid Concurrent Game Models, although this is outside of the scope and will not
be implemented. The logic implemented will be Dictatorial Dynamic Coalition Logic, which can
reason about upgrades in Smart Contracts modelled as Concurrent Game Models.

The remainder of the thesis will be structured as follows:
In Section 2, all background will be introduced, including the basics of blockchain, the Ethereum
Network, Smart Contracts, formal verification and model checking. In addition, an example of a
Smart Contract will be presented.

In Section 3, the required theory will be presented, including Concurrent Game Models and Coali-
tion Logic. The example from the background section will be modelled as a Concurrent Game
Model and described by the logics presented. The extended version of Coalition Logic, Dictatorial
Dynamic Coalition Logic, will be elaborated, and how the example can be upgraded will be ex-
plored. Algorithms for model checking Dictatorial Dynamic Coalition Logic will be presented.

In Section 4, there will be a presentation of STV, the original version, before going into the imple-
mentation details of the extension in Section 5.

In Section 6, the resulting extension of STV is presented and elaborated before limitations and
possible further extensions are discussed in Section 7. At last, in Section 8, the conclusion and
future works will be elaborated.
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2 Background

Since the first block of Bitcoin was mined on the 3rd of January 2009, until the 22nd of April
2023, the market cap of all cryptocurrencies has increased from zero to 1.2 trillion American Dol-
lars [CoinGecko, 2023], approximately the same size as the market cap of Amazon, the fifth most
valuable company in the world [Marketcap, 2023].

While the investments in cryptocurrencies are increasing and new technologies are emerging, it
is more attractive for hackers to try to steal the investments, and several hackers have been success-
ful. In 2021 and 2022, there were stolen cryptocurrencies for a total of 7.1 billion American Dollars.
A severe part of the stolen monetary values is from hacks on DeFi Protocols, Decentralized Finance
Protocols. A DeFi Protocol can be used as a bridge between blockchains and contains considerable
amounts of cryptocurrencies, while bridging. An underlying Smart Contract, will be exploited by
hackers if there are any flaws in it. In 2022 there were 3.1 billion American Dollars stolen through
the exploitation of DeFi Protocols. [Team, 2023]

The list of exploitation of Smart Contracts is inexhaustible. Understanding the basics of blockchain,
cryptocurrency and Smart Contracts are required to grasp why this problem exists.

2.1 Blockchain and Cryptocurrency

In Satoshi Nakamoto’s whitepaper [Nakamoto, 2008] presenting Bitcoin and blockchain technology,
the main motivation was the ability to pay with digital currency without needing to trust a third
party to handle the transactions made. Since Bitcoin is decentralised and has no central authority
or a single point of control, it cannot easily be attacked or corrupted. This section is based on
[Antonopoulos, 2017, chapters 1, 9 and 10].

A blockchain is a secure decentralised database, while cryptocurrency is a digital asset. The assets
are bought with traditional currency or other cryptocurrencies, and the transactions of the bought
digital asset are stored on the blockchain. The acknowledgement of the blockchain is enough to
determine which person owns which asset. The person is not identified, although every person who
owns cryptocurrency has a unique address containing the assets.

As a decentralised database, blockchain can store transactions together in a secure manner. Being
decentralised entails a peer-to-peer network instead of a client-server network, indicating that there
is not a central point where all data is stored but several small points where sections are stored. The
blockchain is built of blocks, which are batches of stored data. The blocks are connected from the
latter to the former, including their parent’s and their own hash. A hash is a unique identification
of a block. A block can only have one parent, while a parent can have multiple children, which is
the case when forking. A fork is when the main chain has several options for where the next block
can be connected. If a fork appears, the longest chain will be the main chain, while everything
added to the other branch of the chain will not be recognised by the main chain. The longer the
chain is, the more secure is the chain. The latest blocks added to the chain can be altered for some
time, while the blocks underneath are permanent.

In each block in the blockchain of Bitcoin, there are stored, on average more than 1900 trans-
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actions. To identify a transaction, it contains a unique hash. An efficient way to prove that the
transaction is included in a block, that a transaction has found place and is documented, is by using
a binary hash tree, also called a Merkle tree which, in essence, contains cryptographic hashes.

Adding blocks to the blockchain is done by mining. The word mining in cryptocurrency refers
to using computer power to first gather all transactions needed to build a block. The transactions
are found in a transaction pool where all valid transactions are stored from they are initiated until
they get stated in a block. Then, they add the parent’s hash, followed by trying billions of hashes
to find the hash that is the result of the Proof-of-Work-algorithm, which will be the new block’s
unique hash.

To be able to mine bitcoins, one needs a ”mining rig”, which is hardware and electricity to be
able to run the scripts needed to mine bitcoin. While one ”mining rig” is trying to figure out the
hash, there are many others trying to figure out the hash for their own new block, which is all
competitors to be the next block in the main chain, the first one that gets the correct answer will
get their block added to the blockchain, and everyone else gets updated through the miner’s net-
work on which block is newly added and the competition starts over again mining for the next block.

If two miners find the correct hash at the same time, a fork will appear. When the other min-
ers are updated with the message that the next block is mined, they will get different information
on who won based on their distance in the mining network to the two winners. Due to the mis-
match in the information that the miners now have, the miners will start mining for a new block
with different parent hashes, some with one and some with the other. The winner of this second
competition will decide which block of the two in the fork will actually become part of the main
chain. The block that wins is the block with the matching hash to the parent hash of the newest
block. The other block will not be recognised as a block on the main chain, and the transactions
that are inside will be reallocated to the transaction pool.

The main incentive for mining blocks is to secure the blockchain. In addition, there are mone-
tary incentives due to the cost of power and hardware. If one is able to mine a block that is added
to the main chain, one receives all the transaction fees from the transactions within the mined
block, and by May 2020, one receives 6.25 bitcoin. The number of bitcoin mined in each block
will be cut in half every 4th year, and after 2140 no new bitcoin can be mined, and the monetary
incentive will solely be the transaction fees.

The miners are responsible for determining the validity of transactions and blocks added to the
blockchain. The rules of consensus are the foundation of the collaboration between all miners of
bitcoin. They are also responsible for maintaining one consistent blockchain across the Bitcoin net-
work. The decentralised consensus rules of Bitcoin are based on the intersection of four independent
processes, namely, every miner’s independent verification of transactions, every miner’s aggregation
of the validated transactions into new blocks, every miner’s verification of the new blocks and the
acknowledgement of the longest chain as the main chain.

Due to the decentralised consensus, it is not beneficiary to make up transactions that are not
in the transaction pool because every miner independently validates the transactions. If one miner
tries to put transactions that are not from the pool in the block they are mining, the whole block
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will be rejected by the peers, and all the computer power used and time spent will be wasted.

While most miners’ intention is to validate transactions and build blocks, there are some min-
ers that want to attack the blockchain by altering transaction history, trying to get back money
they have paid, so-called double-spending their money. To do so, they need to have so much of
the total computer power that they can alter the blocks and mine new ones faster than the others
can mine new blocks. This type of attack is a consensus attack and is called a 51% attack, but in
reality, one does not need 51% of the computer power.

2.2 The Ethereum Network and Smart Contracts

In 2015 the first block of Ethereum was mined. Ethereum is a blockchain with the possibility of
storing programs on the blockchain. While Ethereum has some of the same characteristics as Bit-
coin, being an open blockchain, Ethereum can be used to build applications with built-in economic
functions which Bitcoin can not. The programming language used by Ethereum is Turing Complete
which makes the Ethereum platform function as a general-purpose computer. This section is based
on [Antonopoulos and Wood, 2018, chapters 1 and 7]

Applications and programs built on Ethereum are called Smart Contracts. The Smart Contracts
are stored on the blockchain, and to execute the contract, one has to pay transaction fees. The
result of the Smart Contract will be stored on the blockchain as well. Once the Smart Contract
is deployed on the blockchain, one cannot change the code of the instance of the Smart Contract.
Hence, the Smart Contract is immutable once it is deployed on the blockchain.

In Smart Contracts, it is crucial to write code without bugs because if there is a bug in the contract
after it is deployed on the blockchain, there is no way to fix the version of the Smart Contract.
Thus, it is essential to check if the code is written with correct semantics.

There have been multiple attacks where vulnerabilities of Smart Contracts have been exploited.
The most known attack is ”the DAO” attack. DAO is an abbreviation for Decentralized Au-
tonomous Organization and is an organisation/ company without hierarchical management. ”The
DAO” is a reference to a specific DAO that was initiated by the German startup Slock.it on the
Ethereum blockchain. It was a crowd-funding platform where all members invested money, and
after 28 days, they could vote on how the fund should invest the money in different projects. The
platform was much more attractive than what the startup intended, and before being attacked, the
platform had raised close to 150 million dollars. There was more than one weakness in the Smart
Contract, but the one that was exploited by the attacker gave him the opportunity to withdraw
close to 60 million dollars, which was more than 1/3 of the fund. [Siegel, 2016]

The vulnerability exploited was two lines of code that were swapped around so that the balance
of the account was not checked before the user was finished with his withdrawal, and the attacker
could withdraw money as many times as he wanted to before finishing, and he could withdraw as
much as his initial balance every time he withdrew money in the same session. [Siegel, 2016]

Due to the enormous loss of 60 million dollars, the community around the Ethereum platform
decided to act to be able to nullify the transaction the attacker had done. A new main chain
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became the solution so that the fund got its money back, and the transaction was not included in
the new main chain [Atzei et al., 2017]. The fork resulted in two chains and two coins, ETC and
ETH.

Although a Smart Contract is immutable once it is deployed on a blockchain, there are archi-
tectural patterns that allow the developers to upgrade the Smart Contract, or parts of it, with
newer versions. The architecture structures include proxy patterns, contract migration, data sepa-
ration, strategy patterns and diamond patterns. In contract migration, one deploys a new version of
the Smart Contract on the blockchain and transfers all data and values. In data separation, proxy
patterns and diamond patterns, one divide the Smart Contract into two Smart Contracts. One
Smart Contract stores the data, and the other contains the business logic and the code that will
be executed. In data separation, the business logic Smart Contract is deployed and calls the Smart
Contract storing the data, while in proxy patterns and diamond patterns, it is the opposite; the
Smart Contract storing data is deployed to the blockchain, and the business logic Smart Contract
is called. [Pratap, 2022]

There have been numerous events where Smart Contracts have been exploited, and it has led
to substantial financial losses. To avoid future attacks, there has been research on how to check if
the Smart Contracts entail the same as their specifications. There are different methods to verify
Smart Contracts.

2.3 An Example of a Smart Contract

In [van der Meyden, 2018] the author inspects an example of atomic swaps. The example con-
structed involves two agents, Alice and Bob. They want to swap assets on a blockchain. Their
options when swapping is to trust each other to both swap at the same time, to hand over the
assets to a human third party and trust this third party to do the swap correctly or to hand it over
to a computer third party, a Smart Contract, and trust that the program works as intended. While
both trusting each other or trusting a human third party includes the risk of one of the parts acting
maliciously, the computer program code is open for inspection by both Alice and Bob. As long as
they believe the program will run as intended, it cannot have malicious intent. Although a Smart
Contract cannot have an intent on its own, it is crucial to inspect that it works as intended. To
ensure the program executes its code correctly, it can be formally verified using logics.

In the pseudocode of the atomic swap Smart Contract is shown in Figure 1, it is stated that
there are two agents, Alice and Bob, two assets, a and b, and two boolean variables, depositedA
and depositedB, which indicates that Alice has deposited her asset or Bob has deposited his asset.
The boolean variables are set to false in the initial state. Both Alice and Bob can deposit their
assets after initialisation.

If both Alice and Bob deposit their assets, the contract will go into the finalising state where
the assets get swapped and the boolean variables it set to false once again. If only Alice or only
Bob deposits their asset, they will be able to cancel their deposit so they get theirs back if the other
agent changes their mind and does not want to swap.
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Contract Escrow

{

depositedA, depositedB : Bool

initialise { depositedA := False ; depositedB := False }

depositA { if sender = Alice and value = a then depositedA := True }

depositB { if sender = Bob and value = b then depositedB:= True }

finalise { if depositedA and depositedB

then { depositedA := False; depositedB := False;

send(a, B); send(b, A) } }

cancelA { if depositedA then { depositedA := False; send(a,A) } }

cancelB { if depositedB then { depositedB := False; send(b,B) } }

}

Figure 1: Pseudocode of the Atomic Swap Smart Contract

The presented Smart Contract will be the basis of the examples given trough-out the thesis.

2.4 Testing and Verification of Smart Contracts

There are several methods and tools available, at the Ethereum Network website [Preston, 2023],
for testing and verifying Smart Contracts before deployment. There are available tools and libraries
for both automated and manual testing. Automated testing includes unit testing, integration test-
ing and property-based testing, which include static analysis and dynamic analysis. Manual testing
includes testing the Smart Contracts on a local blockchain or a testnet.

Verifying includes verification of source code and formal verification. Verification of source code
compares the source code of a Smart Contract and its compiled bytecode to verify the absence of
differences between what the source code states and how the code is actually executed. Formal
verification verifies if the source code really does what is intended.

In addition to testing and verification, one can get an independent code review such as an au-
dit from an auditing firm, or one can offer a bug bounty to the community, a financial reward for
finding bugs in the Smart Contract, and report it.

Formal verification is a recommended technique to improve the security of Smart Contracts
[Corwin, 2023]. While testing cannot exclude the possibility of bugs, formal verification can provide
a mathematical proof of correctness.
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2.4.1 Formal Verification of Smart Contracts

Formal verification is a method based on mathematical techniques for specification and verification
of systems. The techniques are often supported by computer-based tools and can help verify and
specify both systems of software and hardware. The formal analysis will take a computer-based
mathematical model of a system and specifications of the same system, as input, and will verify if
the model meets the specifications or not. The different techniques works best for verification in
specific fields. [Holzmann and Peled, 1995]

A survey of different methods to verify Smart Contracts is given in [Almakhour et al., 2020]. The
authors investigate two different aspects of verification, namely correctness of Smart Contracts and
security assurance of Smart Contracts. Within the aspect of verification of correctness there are
two approaches: formal verification and programming correctness. In this particular survey they
focus on the formal verification approach because it is more rigorous and reliable then verification
by programming correctness. The survey of formal verification includes theorem proving, model
checking, and runtime verification. In addition, the survey includes an overview of software used
to conduct the verification.

Theorem proving entails mathematically modeled systems and a set of properties needed to be
proven. The method derives new theorems and lemmas needed for the proof and thereby prove
the correctness of the system. This method can be applied to different types of system as long as
they can be modeled mathematically. The theorem prover can be either interactive, automated or
a hybrid. The limitations of theorem proving is that there are no fully automated theorem provers,
it is needed a lot of human investment to be able to prove theorems and there is needed a deep
understanding for this particular method to make it work.

Model checking is a method where one model a system into a finite-state model and check if
specifications made as properties in formal logic is satisfied or not. There are six different tools
surveyed where three of them is dynamic analysis and the remaining three is static analysis. Dy-
namic analysis indicates that the program has been executed and each state has been analysed
while executing. Static analysis indicates that the source code or byte code has been examined and
the program has not been executed.

Runtime verification performs the analyses based on execution of a system while extracting in-
formation from a running system and use it to detect how the system behave and decide if it
satisfies or violates the correctness properties stated. Runtime verification is not a widespread
method when verifying Smart Contracts.

The other aspect of verification covered in [Almakhour et al., 2020] is analysis of vulnerabilities,
including the following methods: symbolic execution, abstract interpretation and fuzzing. The
survey also includes some platforms used when executing this type of verification within the meth-
ods stated above. Analysis of vulnerabilities entails checking for specific known vulnerabilities and
can avoid mistakes, while it is ineffective to analyse complex Smart Contracts. When conduct-
ing this type of analysis some of the vulnerabilities could easily get ignored because the analysis is
non-exhaustive. Considering the above, analysis of vulnerabilities will not be the focus of this thesis.

The authors of [Almakhour et al., 2020] conclude, in general, that the state of the art methods
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and software can only verify simple Smart Contracts.

In [Tolmach et al., 2021] the authors provide an overview of formal models, specifications and ver-
ification tools of Smart Contracts that is presented in the literature. They divide the modeling
formalism into two categories, contract-level and program-level, based on the level of abstraction
and analysis performed. The contract-level approach is related to high-level behavior of Smart Con-
tracts and does not usually consider technical details, while program-level approaches are based on
doing analysis of the contract implementation, such as source code. They make another distinc-
tion between the two categories in formal specifications, where model-oriented specifications are in
regards to contract-leveled modeling and property-oriented specifications concern program-leveled
modeling.

The users, Smart Contracts and blockchain state is in focus when modeling at the contract-level.
The Smart Contracts are inspected on how they interact with the users and what happens in the
blockchain due to the interaction. The formal modeling applied is process algebras, state-transition
systems and set-based methods.

The model-oriented specifications are expressed in different types of logic. The logics used in
the literature are temporal logics, dynamic logic, deontic and defeasible logic and other logics. The
temporal logics which express properties of Smart Contracts over time includes Linear Temporal
Logic, Computation Tree Logic, Alternating Temporal Logic and Strategic Logics, where the two
latter is extensions of Computation Tree Logic.

The majority of contract-level models are verified using model checking applied on mainly finite-
state transition systems and given temporal logic specifications, the technique verify systems auto-
matically. While model checking only can be applied to finite-state systems, theorem proving can
verify infinite-state systems.

Program-level models focus on understanding the internal details when the Smart Contract ex-
ecutes. The models can be abstract syntax trees, bytecode, control flow graphs or program traces
and are analysed by abstract syntax tree-level analysis, control-flow automata and program logics.

The property-oriented specifications for program-level models are Hoare-style specifications, of-
ten used in a combination with program logics or are implemented in the actual source code of the
Smart Contract.

Symbolic execution, program verification, runtime verification and testing is mostly applied on
program-leveled models. Symbolic execution detects vulnerable patterns in bytecode that is de-
fined before execution and it it is difficult to pick up on vulnerabilities that is not predefined.
Program verification often uses Hoare-style specifications to verify. Runtime verification verifies
one execution trace at the time unlike the other techniques in this survey.

Correctness of Smart Contracts can prove if the system is correct, while security assurance is vul-
nerable because one have to state the vulnerabilities before checking, and one cannot be certain that
all are covered. Formal verification is more rigorous and reliable then verification by programming
correctness. The example from [van der Meyden, 2018] has a finite-transition system as a model,
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temporal logics as specification and uses model checking as verification technique. The authors
conclude that temporal logic is more suitable than Hoare-style specifications for the atomic swap
example. Based on [van der Meyden, 2018] conclusion, verification with contract-leveled models
and model-oriented specifications will be the right focus for this thesis. Because theorem proving
cannot be done automatically and needs human expertise, the focus will be on model checking.

Model checking is an established field that is researched thoroughly. The method is applied in
various fields and tools. There are open source tools available for altering and extension to new
logics. The formal verification method used in this thesis will be model checking as a result of the
research already done in the field, and since it is a rigorous and reliable method of testing Smart
Contracts.

2.4.2 Model Checking in General

Model checking is a method that analyses dynamic systems by using a computer. The systems
has to be modeled as state-transition systems. Model checking is widely used in industry to verify
software and hardware. The method uses logic for bug finding and it can check the whole system,
every possible state and which states it goes through after each other. [Clarke et al., 2018]

A model checker is often built on three insights, modeling, specification and algorithms. The
modeling has to be a finite state-transition graph which provides the formalism needed to describe
a finite-state system. The specification used is temporal logic which describe the correctness of
properties in the state-transition system, and provides a natural framework. Algorithms often pro-
vide counterexamples if the formula tested is false in the model and also determines if the formula
tested is true or false. [Clarke et al., 2018]

There are two main types of model checking, explicit-state model checking and symbolic model
checking. Symbolic model checking is the initial version where all states are checked for the specific
requirements. Explicit-state model checking only checks specific states where the specification can
be either proven right or wrong. Explicit-state model checking is less accurate although much faster.
[Merz, 2000]

2.4.3 Model Checking Smart Contracts

There are numerous model checking approaches made especially for verifying Smart Contracts.
In [Almakhour et al., 2020] they survey six approaches, part of their result is that VERISOL and
Model checker for Smart Contracts are both able to verify Smart Contracts, although due to the
running time of VERISOL the authors of the survey does conclude that it is unsuitable for verifying
complex Smart Contracts.

Other model checking tools can also check Smart Contracts, such as MCMAS. MCMAS is a model
checker for multi-agent systems, [Nam and Kil, 2022] has tested it and concluded that one can in
fact verify Smart Contracts with MCMAS. In addition to MCMAS, MCK is developed for model
checking knowledge [Gammie and Van Der Meyden, 2004] although, it is also used to verify Smart
Contracts in [van der Meyden, 2018].

All tools surveyed are intended to be used before deploying Smart Contracts to the blockchain
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so that errors are revealed before execution [Almakhour et al., 2020]. The tools does not open
for reasoning about changes after the Smart Contract is executed on the blockchain, which would
be needed for verification before a new instance of the Smart Contract would be deployed on the
blockchain.

Now, back to the example of Alice and Bob. If Alice or Bob were granted new abilities, there
would have to be deployed a new instance of the Smart Contract on the blockchain or parts of the
callable Smart Contracts would have to be changed.

In general, if one were to change the functionality of a Smart Contract, in the context that ei-
ther one of the parts get expanded authority to do something or it decreases their authority, the
Smart Contract would have to be upgraded. It is likely that a Smart Contract at some point will
go through changes as the business structure evolves with time.

An extension of the atomic swap example would be to research what would happen if the abil-
ities of Alice or Bob would be extended and they would be able to force an action without the
others agreement, or if the abilities of either Bob or Alice would be restricted. To be able to reason
about these changes in a Smart Contract, [Galimullin and Ågotnes, 2021] has suggested a logic
called Dictatorial Dynamic Coalition Logic. The Dictatorial Dynamic Coalition Logic is divided
into two different logics, one of them as the positive alternative for extending agents’ abilities and
one negative alternative for revoking the agents abilities.
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3 Models, Logics and New Algorithms

Model checking, as previously mentioned, consists of three main parts, models, specifications and
algorithms. The model checking problem is defined as below [Merz, 2000].

Definition 3.1 (The model checking problem). Given one finite model M with an initial state s
and one formula (a specification) φ, the model checking problem is the determination of whether
or not the formula holds in the model, (M, s) |= φ.

In this section it will get clear which type of model will be used, how that type of model is
defined and how our example is defined in such a model. Following the logics for specifications will
be defined and applied on our example of an atomic swap with Alice and Bob and specification-
examples will be given. The last part will be to look at the extended logic Dictatorial Dynamic
Coalition Logic and how the models change when they are updated and how the specifications will
be written and understood.

3.1 Concurrent Game Models

All formal definitions of Concurrent Game Models and Coalition Logic (not extended) are slightly
modified although borrowed from [Ågotnes et al., 2015].

Definition 3.2 (Concurrent Game Structure). A Concurrent Game Structure is a tuple S =
(Ag, St, Act, act, out) consisting of:

• a finite, non-empty set of agents Ag = {a, ..., k}; subsets of Ag are called coalitions;

• a non-empty set of states St;

• a non-empty set of actions Act;

• an action manager function act : Ag × St → P(Act) assigning to every agent a and a state
q a non-empty set of actions available for execution by a at the state q.
An action profile is a tuple of actions α = ⟨α1, ..., αk⟩ ∈ Actk. The action profile is executable
at the state q if αi ∈ act(i, q) for every i ∈ Ag. We denote by act(q) the subset of Πa∈Agact(a, q)
consisting of all action profiles executable at the state q.

• a transition function out that assigns a unique outcome state out(q, α) to every state q and
every action profile α which is executable at q.

The definition above indicates that there is at least one agent, there is at least one state and
there is at least one action. There is an action manager function called act, that outputs a set of
states which is available for every agent in every state. All these available actions are included in
an action profile. The input of the transition function out is the current state and the action profile
for the agents, and its output is an unique outcome state to every action profile and every current
state.

Definition 3.3 (Concurrent Game Model). A Concurrent Game Model (CGM) is a Concurrent
Game Structure with a labeling such as L : St→ P(PROP) of states with sets of atomic propositions
from a fixed set PROP. An atomic proposition is a statement which can be either true or false. The
labels describe which atomic propositions is true in which state.
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Intuitively, a CGM includes nodes which describes the states of the system through labels that
express if propositions are true or false. The arrows going from a node to another indicates which
abilities each agent has in that particular state and what will be the outcome-state as a result of the
actions done by the agents. There are similarities between a Concurrent Game Model and a Smart
Contract. The Smart Contract’s state is affected by the actions of the users, and a Concurrent
Game Model’s transitions are determined by what actions the agents choose. A CGM of the atomic
swap example, with Alice and Bob, is depicted in Figure 2.

Aa,Bb

s1

dA,Bb

s2

dA, dB

s3

Aa, dB

s4

Ab,Ba

s5

a1b0

a1b1

a0b1

a0b0

a0b1

a2b0

a2b1

a0b0

a3b3, a0b3, a3b0

a0b0
a1b0

a1b2

a0, b2

a0b0

a0b0

Actions:
i0: do nothing
i1: deposit i ’s asset
i2: cancel i ’s deposit
i3: finalise swap

Figure 2: The Initial CGM M
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The above CGM contains five states. The initial state s1 contains the propositions Aa and Bb. The
other propositions are not mentioned in state s1 meaning that they are not true in that particular
state. Proposition Aa is an abbreviation for Alice holding Alice’s initial asset and Bb is for Bob
holding his initial asset. In s1 both Alice and Bob have two abilities, they can both choose to
deposit their asset or choose to do nothing. Action a0 indicates that Alice is doing nothing, while
action a1 indicates that Alice deposits her asset. Equally for Bob action b0 indicates that Bob is
doing nothing, while action b1 indicates that Bob deposits his asset.

Which state will be the next is a result of what Alice and Bob choose to act out in state s1.
If both deposited their asset the next state will be state s3, the state where the propositions dA
and dB is true which entails that Alice has deposited her asset and Bob has deposited his asset,
respectively. When in state s3 Alice and Bob has two abilities each, the first action is to do nothing
a0, b0 and the second is to finalise the swap with actions a3 and b3. As long as one of them choose
to finalise, the system will transit to state s5 where the atomic swap is finished. The propositions
Ab and Ba indicates that Alice holds Bob’s initial asset and Bob holds Alice’s initial asset. The
only ability they have in state s5 is to do nothing, illustrated with actions a0 and b0.

Moving back to state s1, the initial state, there are two more states that can be the next state
beside s3. Which of these three states that will be the next state in the transition system depends
on the actions chosen by Alice and Bob in the initial state. If Alice choose to deposit her asset while
Bob choose to do nothing, resulting in actions a1 and b0, the next state will be state s2. In state
s2 the true propositions are dA and Bb and the propositions indicates that Alice has deposited her
asset, and that Bob holds his initial asset.

In state s2 Bob has the same abilities as he has in state s1, namely do nothing, action b0 and
deposit his asset with action b1. Alice on the other hand has one ability in state s2 that she does
not have in the initial state, s1. Alice can choose to do nothing with action a0 or she can cancel
her deposit with action a2. If Bob does nothing, action b0 and Alice does nothing, action a0 the
transition system will move in a self-loop to the same state, s2 as it was already in. If Bob does
nothing, action b0, and Alice cancels her deposit, action a2, the next state will be the initial state
s1. On the other hand, if Bob deposits his asset when the transition system is in state s2, and then
depending on Alices chosen action, there are two different outcomes. If Alice chooses action a0 do
nothing the system will transit to state s3. If Alice chooses action a2 cancel deposit, the system
will transit to state s4, the state where propositions Aa and dB is true, entailing that Alice got her
initial asset back and Bob has deposited his asset.

The third outcome of the choices made in the initial state, s1, is that Alice does nothing, ac-
tion a0 and that Bob deposits his asset, action b1, resulting in a transit from state s1 to state s4.
In state s4, the true propositions are Aa and dB which entails that Alice holds her initial asset
while Bob has deposited his asset. State s4 and s2 is similar although the roles are opposite. Bob
has two abilities he can act on in sate s4, he can do nothing, action b0 or he can cancel his deposit
b2, although the resulting next state also depends on what Alice choose to do. If Alice choose to
do nothing, action a0, and Bob chooses to do nothing, there will be a similar self-loop when the
transition happens, and the system will end up in the same state as it was already in, state s4.
If Alice does nothing, action a0 and Bob cancels his deposit, action b2, the next state will be the
initial state s1, and it will all start over. If Alice on the other hand deposit her asset when in state
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s4, with action a1 the next state will either be state s3 or s2. If Bob chooses to do nothing the
system will transit to state s3 where the propositions dA and dB are true. If Bob chooses to cancel
his deposit in state s4 while Alice chooses to deposit her asset, the system will transit to state s2,
a state where the propositions dA and Bb is true, entailing that Alice’s asset is deposited, and Bob
holds his initial asset.

To be able to interpret a CGM we need logic, for this we will use Coalition Logic. To verify
the model, formal specifications are needed, and to make the formal specifications it is essential to
mention some logic used for this particular purpose.

3.2 Coalition Logic

Coalition Logic is a multi-modal logic introduced by Marc Pauly that captures coalitional abilities
in strategic games [Pauly, 2002]. Coalitional abilities is the abilities that one or more agents have
when cooperating in a group, we call such a group a coalition. The following section will go through
the formal definitions of Coalition Logic before elaborating what the definitions entails intuitively.
Following will be to look at formulas that can be used as specifications in our atomic swap example
with Alice and Bob.

Definition 3.4 (Language of Coalition Logic). The formulas of Coalition Logic is defined recur-
sively as follows:

φ := p | ¬φ | φ ∨ ψ | ⟨⟨C⟩⟩φ,

where p ranges over PROP and is a proposition, and C ⊆ Ag and is a coalition of agents.

The formal interpretation of ⟨⟨C⟩⟩φ in a state s1 of a Concurrent Game Model M is:

(M, s1) |= ⟨⟨C⟩⟩φ iff out(s1, αC) ⊆ JφKM for some αC ∈ act(C, s1),
where JφKM := {s1 ∈ St|(M, s1) |= φ}.

The formula ⟨⟨C⟩⟩φ states that in the current state, the coalition C has the ability to guaran-
tee an outcome where φ is true.

When model checking, the program will verify if the formal specifications are true or false in
the model. The formal specifications are made by using logics and describes part of the model. The
model checker will tell if the formula is true or not. Below are some examples of formulas, in the
language of Coalition Logic, that describes parts of the model in Figure 2 from a given state. Alice
and Bob is denoted as a and b. All the formulas below are true in the CGM in Figure 2.

(M, s1) |= ⟨⟨a, b⟩⟩(dA ∧ dB) (1)

In Figure 2 of CGM M in state s1, if Alice and Bob cooperate in a coalition they can guarantee
that they will next be in a state where both of them have deposited their asset.

(M, s1) |= ⟨⟨a⟩⟩(dA ∧ (dB ∨Bb)) (2)
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In the model M , in state s1, Alice alone can guarantee that she deposit her asset, she cannot
guarantee that Bob will.

(M, s1) |= ⟨⟨b⟩⟩(dB ∧ (dA ∨Aa)) (3)

In the model M , in state s1, Bob can alone guarantee that that he deposit his asset, but cannot
guarantee that Alice will.

(M, s1) |= ⟨⟨a, b⟩⟩⟨⟨a⟩⟩(Ab ∧Ba) (4)

In the model M , in state s1, Alice and Bob can guarantee a state where it is true that Alice can
force a state where Alice holds Bob’s initial asset and Bob holds Alice’s initial asset.

(M, s1) ̸|= ⟨⟨a⟩⟩⟨⟨a, b⟩⟩(Ab ∧Ba) (5)

In the model M , in state s1, it is not the case that Alice can guarantee that in the next state Alice
and Bob can force a state where Alice and Bob has swapped their assets.

Coalition Logic can be used for verification of Smart Contracts, although there is no way to
capture upgrades. Hence, new logics have been introduced in the literature for granting and
revoking abilities, specifically dictatorial abilities. There are a few different approaches in this
particular field. Two of them extends Coalition Logic and one uses Concurrent Game Models
[Galimullin and Ågotnes, 2021] while the other uses action models [Galimullin and Ågotnes, 2023].
The focus in this thesis will be within the extension using Concurrent Game Models.

3.3 Extended Coalition Logic

In [Galimullin and Ågotnes, 2021] the authors provide extensions of Coalition Logic called Dicta-
torial Dynamic Coalition Logic (DDCL), both a positive version where dictatorial powers are being
granted and a negative version where dictatorial powers are being revoked. Dictatorial powers are
abilities of agents that can force a specific state to be true in the next step, no matter what other
agents does. All formal definitions in this section are borrowed from [Galimullin and Ågotnes, 2021].

Definition 3.5 (Language of Positive Dictatorial Dynamic Coaliton Logic). The language of pos-
itive DDCL is given by the following BNF:

φ ::= p | ¬φ | (φ ∧ φ) | ⟨⟨C⟩⟩φ | [+U ]φ

+U ::= (φ, a, φ)+ | (φ, a, φ)+,+U

[+U ]φ states in natural language that after a positive update +U , φ will be true.

+U is the following list/set

+U := {(ψ1, a1, φ1)
+, ..., (ψn, an, φn)

+}
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Each tuple (ψ, a, φ)+ in the set +U includes three elements, two formulas φ and ψ, and an agent
a. For each state where ψ is true, in the updated model, agent a will be granted a new action such
that regardless of what other agents choose to do, the target state will be a state where φ is true.

Because an agent with a dictatorial power can force specific states from the current state, two
agents cannot have dictatorial powers over the same state, the authors have addressed this issue
by only considering ”clash-free” updates and provides the following semantic interpretation of the
positive updates:

Let (M, s) = (Ag, St, Act, act, out, L) be a CGM, with s as initial state.

(M, s) |= [+U ]φ iff +U is executable in M implies (M+U , s) |= φ

where M+U = (Ag, St, Act+U , act+U , out+U ,L) is the updated model.

For a update to be executable in the CGM M , the following definition is provided:

+U is executable in M iff for all (φ, i, ψ)+, (χ, j, τ)+ ∈ +U : [[φ]]M ∩ [[χ]]M = ∅
whenever i ̸= j.

The definition of executable updates states that there cannot be two different agents with dic-
tatorial powers in the same state. The semantic interpretation of the positive updates states that
for a CGM M and a state s, after a positive upgrade [+U ], φ is true if the updates in the upgrade
is executable and in the updated model in state s, φ is true.

The CGM, in Figure 3, is an updated version of the earlier shown CGM M . Both Alice and Bob
have gotten dictatorial powers such that they can both force a state where both have deposited
from the state where only the other has deposited and not themselves. Since the dictatorial powers
they are granted are granted in different states for different agents the updates in the upgrade are
executable. The granting of dictatorial powers is written as follows:

+U = {((dA ∧Bb), b, (dA ∧ dB))+, ((Aa ∧ dB), a, (dA ∧ dB))+}

In the CGM the new actions are written as a∗ and b∗.
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i2: cancel i ’s deposit
i3: finalise swap

Figure 3: CGM M+U with a Positive Upgrade

When comparing the two versions of the model one can see that Alice has gotten forcing actions in
state s4 and can force an outcome to be state s3, while Bob has gotten forcing actions in state s2
and can force the next state to be state s3 based on the propositions in the states.

Before the positive upgrade, in state s2, Bob could not force a transition to a state where both
Alice and Bob had deposited their asset, as in formula 6, while after the positive upgrade it is the
case that Bob can force a state where both have deposited their asset when in a state where only
Alice has deposited her asset while Bob still holds his, as seen in formula 7.

(M, s2) ̸|= ⟨⟨b⟩⟩(dA ∧ dB) (6)

(M, s2) |= [+U ]⟨⟨b⟩⟩(dA ∧ dB) (7)

Prior to the upgrade Bob could cancel his deposit in any state where he had deposited his asset
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(a) M (b) M+U

Figure 4: Initial CGM M and Upgraded CGM M+U

and Alice had not, as shown in formula 8. After the upgrade the formula is not true as shown in
formula 9.

(M, s4) |= ⟨⟨b⟩⟩(Bb ∧ (Aa ∨ dA)) (8)

(M, s4) ̸|= [+U ]⟨⟨b⟩⟩(Bb ∧ (Aa ∨ dA)) (9)

Since both Alice and Bob got the same forcing action the formulae holds for Alice in her respective
states, as shown in formulae 10-13.

(M, s4) ̸|= ⟨⟨a⟩⟩(dA ∧ dB) (10)

(M, s4) |= [+U ]⟨⟨a⟩⟩(dA ∧ dB) (11)

(M, s2) |= ⟨⟨a⟩⟩(Aa ∧ (Bb ∨ dB)) (12)

(M, s2) ̸|= [+U ]⟨⟨a⟩⟩(Aa ∧ (Bb ∨ db)) (13)

In [Galimullin and Ågotnes, 2021] the authors both define the positive upgrade DDCL+ and a neg-
ative upgrade version DDCL-. The negative version revokes dictatorial powers from an agent and
will be looked into next. The formal definitions are borrowed from [Galimullin and Ågotnes, 2021].
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Definition 3.6 (Language of Negative Dictatorial Dynamic Coalition Logic). The language of the
negative DDCL is given by the following BNF:

φ ::= p | ¬φ | (φ ∧ φ) | ⟨⟨C⟩⟩φ | [−U ]φ

−U ::= (φ, a, φ)− | (φ, a, φ)−,−U

where p ∈ PROP, a ∈ Ag, C ⊆ Ag.

[−U ] should be read as ”after negative update −U , φ is true”. The list of negative updates −U is
treated as a set in the same way as in the positive updates. However, in the positive updates the
set contains tuples of actions that will be added to the model, while in the negative update set the
tuples included in the set are what will be preserved in the model and all dictatorial powers in the
model that is not in the negative update set will be removed.

The clauses in the negative update set is compared with the set of forcing actions, the notation
used for this type of set is f(agent, state) = {actionstate,nextstate}. E.g. in Figure 3 the forcing
action set of Alice in state s4 is f(a, s4) = {a∗s4,s3}, meaning that no matter what Bob chooses to
do, Alice can force state s3 from state s4 by choosing action a∗. For the forcing actions to be in
the negative updated model the updated forcing action set will include actions that fits with the
clauses in the −U set and that was in the original set of forcing actions.

As in the positive update the negative update has to be executable in the model.
[Galimullin and Ågotnes, 2021] call −U executable in M iff for all a ∈ Ag and s ∈ St at least one
of the following conditions is true:

• |fU−(i, s)| ≠ 0, or

• ∃αi ∈ act(i, s) : αi /∈ f(i, s)

Intuitively, the definition states that there has to be at least one action, either non-forcing, or a
forcing action that is allowed by the clauses in −U to be preserved so that the agent still have a
action to do in each state.

The update-operator [−U ] is defined as follows:
Let (M, s) = (Ag, St, Act, act, out, L) be a CGM, with an initial state s.

(M, s) |= [−U ]φ iff −U is executable in M implies (M−U , s) |= φ

where M−U = (Ag, St, Act−U , act−U , out−U ,L) is the updated model.

The definition of negative updates indicates that if in the model M in state s, the negative update
is such that φ is true, then if the negative update is executable, the updated model, will in state s
be such that φ is true.

Now, back to our example. Alice and Bob have now both dictatorial powers in the state where the
other has deposited while themselves has not, to a state where they both have deposited. There is
now decided that Alice should not be able to have this dictatorial power, and the negative upgrade
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that will now happen will revoke the powers from Alice. The revoking of dictatorial powers is
written as follows:

−U = {((dA ∧Bb), b, (dAdB))−, ((dA ∧ dB), a, (Ab ∧Ba))−,

((dA ∧ dB), b, (Ab ∧Ba))−, ((Ab ∧Ba), a, (Ab ∧Ba))−, ((Ab ∧Ba), b, (Ab ∧Ba))−}

While the positive upgrade states what is granted, the negative upgrades state what will be pre-
served. All transitions with non-forcing actions will be preserved and the stated transitions with
forcing-actions will be preserved. There are more forcing actions in M+U than the forcing actions
granted in that particular upgrade. The CGM in Figure 5 is the model M+U with marked forcing
actions for each agent.

Aa,Bb

s1

dA,Bb

s2

dA, dB

s3

Aa, dB

s4

Ab,Ba

s5

a1b0

a1b1

a0b1

a0b0

a0b1, a0b∗, a2b∗

a2b0

a2b1

a0b0

a3b3, a0b3, a3b0

a0b0
a1b0, a∗b0, a∗b1

a1b2

a0, b2

a0b0

a0b0

Actions:
i0: do nothing
i1: deposit i ’s asset
i2: cancel i ’s deposit
i3: finalise swap

Figure 5: CGM M+U with Marked Forcing Actions
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As seen in Figure 5 both Alice and Bob have forcing actions in state s3 and s5, Alice has forc-
ing actions in state s4 and Bob has forcing actions in state s2. The forcing actions which are
preserved by the negative upgrade are the forcing actions of Bob in state s2, s3 and s5, while for
Alice, the forcing actions which are preserved are in states s3 and s5. Because the forcing actions in
states s3 and s5 are in transitions where both agents has forcing actions, if not both agents would
have their forcing actions preserved the forcing action of the other would not have been preserved
either. The only forcing action which will actually be removed from the negative update is a∗ in
state s4, because it is not stated in the negative upgrade. Underneath in Figure 6 is the CGM for
M+U,−U .

Aa,Bb

s1

dA,Bb

s2

dA, dB

s3

Aa, dB

s4

Ab,Ba

s5

a1b0

a1b1

a0b1

a0b0

a0b1, a0b∗, a2b∗

a2b0

a2b1

a0b0

a3b3, a0b3, a3b0

a0b0
a1b0

a1b2

a0, b2

a0b0

a0b0

Actions:
i0: do nothing
i1: deposit i ’s asset
i2: cancel i ’s deposit
i3: finalise swap

Figure 6: CGM M+U,−U with Positive and Negative Upgrade

The executability conditions hold in the negative upgrade. There are at least one action per agent
in every state and all the combinations of actions the agents chooses has an outcome state, a tran-
sition.
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(a) M+U (b) M+U,−U

Figure 7: CGM M+U with Positive Upgrade and CGM M+U,−U with both Positive and Negative
Upgrade

Above in Figure 7 both M+U and M+U,−U is depicted. In formula 14 it is stated in M+U af-
ter a negative upgrade −U , it is not true that Alice can force a state where both have deposited
their asset from state s4. While in formula 15 it is stated that Bob can still, after a negative upgrade
−U to the model M+U , force a state where both have deposited their asset from state s2.

(M+U , s4) ̸|= [−U ]⟨⟨a⟩⟩(dA ∧ dB) (14)

(M+U , s2) |= [−U ]⟨⟨b⟩⟩(dA ∧ dB) (15)

In formula 16 it is stated that Alice is able to force a state where they have swapped assets, from
state s3, and in formula 17 the same is stated for Bob, both is true after the negative upgrade.

(M+U , s3) |= [−U ]⟨⟨a⟩⟩(Ab ∧Ba) (16)

(M+U , s3) |= [−U ]⟨⟨b⟩⟩(Ab ∧Ba) (17)

In the event that Bob has deposited and Alice still holds her asset, if Alice, after both the positive
and the negative upgrade, does deposit her asset while Bob cancels his deposit the system will end
up in state s2 where Alice has deposited her asset and Bob holds his. Now, Bob has dictatorial
powers, if Alice wants to cancel her deposit while Bob wants to deposit, the system will move to
state s4 where both Alice and Bob has deposited their asset. Although if Bob, while the system is
in state s2 has decided not to continue with the swap and does nothing Alice can still cancel her
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deposit, as long as Bob chooses to do nothing, and will get her asset back.

The model checking-tools already made do not check for changes in a Smart Contract as they
are immutable once deployed on the block chain. While it is immutable one can deploy new in-
stances of the same Smart Contracts at the chain when it needs to be changed. If a company
restricts or expands authority to different agents the Smart Contract needs to be changed, it is
reasonable to believe that this will happen for companies, considering companies evolve with time.

3.4 Algorithms for Extended Coalition Logic

In this section pseudocode algorithms for upgrading models will be presented and explained. Be-
cause the scope of this thesis is to extend an already existing model checker it is assumed that the
verification is handled by the original version and what is added is the algorithms for upgrading
the models.

Algorithm 1 Determining New Transitions
INPUT from_states, to_states, granted_agent

GLOBAL count

CALL agentID_dictionary

SET action_pairs as empty list

IF agentID of granted_agent is 0 THEN

FOR from_state in from_states

FOR to_state in to_states

FOR action in actions_for_other_agent_in_state

BUMP action_pairs WITH

[from_state, to_state, ["dictatorial action"+count, action]]

END FOR

INCREMENT count

END FOR

END FOR

ELSE IF agentID of granted_agent is 1 THEN

FOR from_state in from_states

FOR to_state in to_states

FOR action in actions_for_other_agent_in_state

BUMP action_pairs WITH

[from_state, to_state, [action, "dictatorial action"+count]]

END FOR

INCREMENT count

END FOR

END FOR

END IF

OUTPUT action_pairs

Algorithm 1 determines new transitions in positive upgrades. The method determines new transi-
tions for one update at the time. It is given the state IDs of both the from-states and the to-states
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in an update inside the upgrade, and the agent who are granted powers. There is a global count
used to differentiate the dictatorial actions throughout the verification problem. A method for
pairing the name of the agents with their agent IDs is called, and the list that will be returned by
the algorithm is set to an empty list.

In this algorithm it is assumed that there are only two agents in the model. The list returned
is containing lists with all information required for new transitions. In each element in the main
list, there is a list containing three elements, the first is the state ID of the from-state, the second is
the state ID of the to-state, while the third element is a list containing the action-pair to the par-
ticular transition. Depending on which agent is granted powers, the action-pairs contains different
setup, if it is the agent with agent ID 0, the dictatorial powers is the first element and the other
agents action is the second, while if the agent ID is 1, the order is opposite. Iterating through all
from-states, all to-states and all the actions in the particular from-state for the agent not granted
powers will generate all transitions needed for granting dictatorial powers.

Algorithm 2 describes the method for testing executability. The method raises an error if the
executability condition are not met, otherwise the method does nothing. The method has a dictio-
nary as input, including all agents with granted powers as keys and the from-state IDs in where the
dictatorial actions are granted. First the method checks if there are more than one agent granted
dictatorial powers, if not there cannot be any clashes and the executablitiy condition holds. If there
are more than one agent granted dictatorial powers in the upgrade the method all from-states, for
each from-state there is a counter incremented by one, and the state ID is added to a set. In the
end the length of the set is compared to the counter, if the two values are not equal it indicates
there is at least one state where more than one agent is granted dictatorial powers from and the
upgrade clashes, if this is the case the method raises an error.

Algorithm 2 Executability Condition Positive Upgrade
INPUT agent_from_states_dictionary

SET values AS empty set

SET value_count AS 0

IF more than one agent is granted powers THEN

FOR agents from_states

BUMP value_count WITH length of elements in from_states

FOR state in from_states

BUMP values with state

END FOR

END FOR

END IF

IF length of values is not equal to value_count THEN

RAISE ERROR

Determining the removal of transitions in negative upgrades is not as straight-forward determining
as new transitions in positive upgrades. In negative upgrades all transitions with forcing actions
has to be identified before the system can determine which of them will be preserved. In algorithm
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3 the method for determining transitions with forcing actions is described.

Algorithm 3 Determining Forcing Actions
INPUT dictionary_action

SET forcing_actions_agent1 AS empty list

SET forcing_actions_agent2 AS empty list

SET agent_count AS 0

WHILE agent_count < number of agents

FOR state in all states

SET non_forcing_actions AS empty set

SET action_list AS empty list

FOR curr_state, action_pairs IN dictionary_action

IF state.ID == curr_state THEN

SET action_set AS empty set

FOR action in action_pairs

ADD agents_action TO action_set

END FOR

ADD action_set TO action_list

END IF

END FOR

IF more than one set of actions in action_list THEN

ADD intersection of sets in action_list TO non_forcing_actions

END IF

FOR transition_states, action_pairs IN dictionary_action

IF state.ID == from_state THEN

FOR action in action_pairs

IF agent_action not in non_forcing_actions THEN

IF agent_count == 0 THEN

ADD transition_states, action_pair as list

TO forcing_actions_agent1

ELSE IF agent_count == 1 THEN

ADD transition_states, action_pair as list

TO forcing_actions_agent2

END IF

END IF

END FOR

END IF

END FOR

END FOR

END WHILE

OUTPUT forcing actions for agent1 and forcing actions for agent2

The method assumes two agents in the model. The method returns two lists, one with the tran-
sitions with forcing actions for agent 1 and one for agent 2. As input to the method there is a
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dictionary with tuples of predecessor’s and successor’s state ID and the action pairs for the tran-
sition is the values. For each agent all states in the model are iterated. The method checks if one
action for an agent, in one specific predecessor, has more then one successor or not, if it does not
it is a forcing actions, while if it does it is not a forcing action.

Algorithm 4 Executability Condition Negative Upgrade
INPUT remaining_transitions

INPUT state_action_dictionary, action_pair_counter

SET from_states AS empty list

FOR transition IN remaining transitions

BUMP from_states WITH from_state in transition

END FOR

FOR state IN all_states

IF state.ID NOT IN from_states

RAISE ERROR

END IF

END FOR

SET remaining_transitions_dictionary AS empty dictionary

SET state_count AS 0

SET test_count AS 0

WHILE state_count < number_of_states

FOR transition in remaining_transitions

IF transitions from_state == state_count

ADD key: state_count, value: action_pair

TO remaining_transitions_dictionary

END IF

END FOR

INCREMENT count

END WHILE

FOR key, value IN state_action_dictionary

FOR k, v IN remaining_transitions_dictionary

IF key == k:

BUMP test_count BY number of elements in

intersection between set of value and set of v

END IF

END FOR

END FOR

IF action_pair_counter > test_count

RAISE ERROR

END IF

The method for testing the negative upgrade’s executability conditions are described in the method
in algorithm 4. The method requires extensive input, including what the remaining transitions are,
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action profiles for each state and a number telling how many action pairs is in the new version of
the model. First the condition of one transition out from each state is tested, by iterating all states,
testing if all state IDs are in from-states retrieved from the input of remaining transitions. If there
is a state ID that is not included in the from-state an error is raised, otherwise the next condition
is tested. The method then checkes if all combinations of actions in the new version of the model
has a transition, if it does not the second condition does not hold and an error is raised, if there is
one transition for all combination of actions in all states the condition is met and the method does
not do anything.

The next section will present the model checking tool StraTegic Verifier, which will later be extended
with the algorithms presented.
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4 StraTegic Verifier - A Model Checking Tool

StraTegic Verifier (STV) is a model checking tool developed to verify strategic abilities in multi-
agent systems with imperfect information [Kurpiewski et al., 2019a]. The tool is experimental and
includes recently developed algorithms intended to deal with the complexity of imperfect informa-
tion. STV contain both a Command Line Interface (CLI) and a User Interface (UI) for visualisation
of some chosen models and scenarios. The tool is intended for logics such as Alternating-Time Tem-
poral Logic (ATL), containing temporal modalities as future (F) and global (G). While CL only
consider one step forward, ATL consider sequences going on forever, G all sequences and F one
sequence. The standard CL, without upgrades, is a fragment of ATL [Ågotnes et al., 2015].

The current section will include an introduction of the models, logics and algorithms implemented
in STV and a brief walk-through of input and output in the CLI of the tool.

4.1 Imperfect Information Concurrent Game Structure

The models used in STV is Concurrent Game Models with imperfect information
[Kurpiewski et al., 2019a]. A Concurrent Game Model with imperfect information includes all of
the structure of a Concurrent Game Model presented in the theory section. In addition it con-
tains a guard indicating which of the abilities an agent in a state can choose from given what she
knows, and a family of equivalence relations, for each agent, indicating which states are indistin-
guishable (the agent cannot see any difference) from where the agent currently is [Schobbens, 2004].

There are four variations of Concurrent Game Models, containing all combinations of imperfect
or perfect information and imperfect or perfect recall [Schobbens, 2004]. Perfect information and
perfect recall is the variation that is normally used for ATL, the memory is not taken into con-
sideration, while in the three other combinations the memory is taken into consideration in some
extent. STV includes two classes of Concurrent Game Models, one with perfect information and
imperfect recall and one with imperfect information and imperfect recall. The classes of models are
implemented with asynchronous semantics, meaning that the agents does not necessarily act at the
same time.

4.2 Model Classes in STV

There are implemented different classes for models, Local Model, Global Model, Simple Model,
ATLIr Model and ATLIR Model. The Local Models are the action profiles per agent and Global
Model is a collection of all instances of the Local Model class. When the instance of Global Model
is generated, it is generated an instance of the class Simple Model aswell with all needed instance
variables to be able to verify the formula in the model. In the class Simple Model there are methods
for generating instances of ATLIr Model and ATLIR Model. In the end it is in the classes ATLIr
Model and ATLIR Model there are methods for verification.

ATLIr Model is short for ATL model with perfect information and imperfect recall, while ATLIR
Model is short for ATL model with imperfect information and imperfect recall. Perfect information
indicates that the agents know all their actions and all the actions of the other agents, and what
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will be the result after the combination of their actions, while imperfect information indicates that
the agents does not know it all. Perfect recall indicates that an agent can remember the history of
where he has been up until the current state, while imperfect recall indicates that he does not have
any history prior to the current state. [Schobbens, 2004]

4.3 Logics Implemented

STV can parse ATL formulas with the Global-operator and the Future-operator and the com-
bination of the two. The tool cannot parse or verify formulas with the Next-operator or the
Until-operator. STV can also parse CTL formulas and Strategy Logic (SL) formulas. The tool
includes verification of ATL and of SL. It does not seem to have a verification method for CTL.
[Kurpiewski, 2022]

The parsing of formulas is somewhat recursive. When parsing, the parser expects a coalition
or a path quantifier, it varies in the different implemented logics, then a temporal operator followed
by an expression at the form (p = True). The expression can be nested, the left part can be it’s
own expression or the expression can be a negation of an expression and so on, and is recursive.
The expression cannot contain a coalition or temporal operator and the formula cannot be a single
expression without the coalition or temporal operator.

4.4 Algorithms

STV includes algorithms for verification of ATL-models with perfect information and imperfect
recall, and with imperfect information and imperfect recall. The tool executes explicit-state model
checking. There are two verification algorithms implemented for Alternating-time Temporal logic,
Approximate fixpoint verification and DominoDFS. In addition there is implemented one algorithm
for Strategy Logic with simple goals. [Kurpiewski et al., 2019a]

Approximate fixpoint verification is an algorithm with two fixpoints, one lower approximation
and one upper approximation. In the upper bound only perfect information is verified while in the
lower approximation also imperfect information is taken into account. If the upper approximation
is false the whole algorithm will return false, while if the lower approximation is true then the whole
algorithm will return true. [Jamroga et al., 2016]

DominoDFS is a dominance-based strategy depth-first search that is inspired by game theory.
The method finds the best winning strategy through checking all one-step strategies in the current
states and removing the strategies dominated by others. The main goal is to identify which partial
strategy controls the critical parts of the system’s execution. [Kurpiewski et al., 2019b]

4.5 CLI: Input and Output

In Figure 8, there are two options in the CLI when one first calls the main-file, either generate
specification or verify formula in model. If wanting to generate specification there are three options
which are all sai-models. After one of the alternatives is chosen one has to fill out how many AI
agents and maximum model quality, the output will be the path to where the specifications are
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saved.

Figure 8: Generating Specifications STV

If the user chooses to verify instead, as shown in Figure 9, there are two new options, synchronous
and asynchronous semantics in the model. If the user chooses asynchronous semantics she will be
asked to input a name of a generated specifications file and the output will be the upper approx-
imation and the lower approximation result, as-well as time used to generate and verify, and the
number of states and transitions. The Approximate fixpoint verification method is used. One can
also input other specifications if one wants to input a model that is not included in the generated
files.

Figure 9: Verification with Asynchronous Semantics in STV

As earlier mentioned the tool has a simple input language, in Figure 10 one can see an exam-
ple of a input file from which STV generates local and global models and determines whether or
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not the formula stated at the end holds or not in the given model. Do to the fact that the imple-
mentation is preliminary, the simple input language is not flexible [Kurpiewski et al., 2019a].

Agent Train[3]:

init: wait

shared in_aID: wait -> tunnel [aID_in=True]

shared out_aID: tunnel -> away [aID_out=True]

return: away -> wait [aID_return=True]

Agent Controller[1]:

init: green

shared in_Train1: green -> red

shared back_Train1: red -> green

shared in_Train2: green -> red

shared back_Train2: red -> green

shared in_Train3: green -> red

shared back_Train3: red -> green

% REDUCTION: [in_Train1, in_Train2, in_Train3]

% COALITION: [Controller1]

% LOGIC: CTL

% FORMULA: AF(Train1_in=True | Train2_in=True | Train3_in=True)

REDUCTION: [Train1_return]

COALITION: [Train1]

LOGIC: ATL

FORMULA: <<Train1>>F(Train1_return=True)

Figure 10: Example of Input File

When modeling a model in the simple input language of STV, first one have to state if the semantics
are synchronous or asynchronous, then one have to state the agents name and their initial state.
Following is the particular agent’s actions, one states the action-name first and then the predecessor
and the successor. If a proposition has a different value in the successor, than in the predecessor, it
is written in brackets behind the successor. If there are conditions for the action it goes in brackets
inside the arrow between the predecessor and the successor. When finished with the first agents
actions one can start with the next, if all agents have the same actions one can also write them in
the same section and put a bracket with the number of agents after the agent-name.

Below the agents and their actions, in the input-file, there are a few more lines specifying if there
should be any reduction, what logic is used in the formula and what the coalition is, additional key-
words are PRESISTENT indicating which propositions are global and INITIAL stating which values
the propositions initially contain. Finally, the formula is stated and the input-file is finished.

When choosing the synchronous semantics one gets three more choices, all are implemented as
classes and are not generated specification-files, as shown in Figure 11. If one chooses castles as
below one has to fill in number of workers for the three castles and how many lives. The output
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will be whether or not it is perfect information, time spent generating model, time spent verifying
the formula and the approximation result, a boolean value. The algorithm used when synchronous
semantics is Approximate fixpoint verification.

Figure 11: Verification with Synchronous Semantics in STV

The developers of STV has tested their tool and compared it to a state of the art tool MCMAS
and one experimental tool SMK, with promising results [Kurpiewski et al., 2019a].

This thesis will build upon STV utilising the ATL-model class for perfect information and im-
perfect recall, asynchronous semantics so it is possible to input other specifications for new models
and the upper bound of the Approximate fixpoint verification algorithm.
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5 Implementation Details

STV is built for a different purpose than the scope of this thesis. The scope does not include imper-
fect information. Thus the ATL-model class with perfect information and imperfect recall, called
ATLIr, is the best provided class to use. Because ATLIr includes coalitions and the ATL’s next-
operator in combination with a coalition expresses the same as the operator in Coalition Logic, it is
adequate to use the class ATLIr. Perfect information indicates that the agents have all information
about abilities, their own and others, and imperfect recall indicates that the agents can only recall
the current state and not the path they have had until the current state.

The intention of this thesis is to be able to verify newly made models that do not have already
generated specifications or classes made. The entry-point of verification through the asynchronous
semantics is the entry-point utilised. Although the scope of this thesis is synchronous semantics, it
will be explained how to deal with this mismatch. The upper bound of the Approximate fixpoint
verification algorithm will be the only bound used due to the fact that it takes into consideration
perfect information. In contrast, the lower bound considers imperfect information, which is outside
the scope of this thesis.

The extension of STV1 is located in certain parts of the program. It is mainly extended in the
Formula Parser and the classes Global Model, Simple Model and ATLIr Model. The initial gener-
ating of models is almost the same as in the original version, excluding the transitions containing
the asynchronous semantics, which is how the mismatch is dealt with. The main-file is altered to
be able to use the CLI for the extended logic. In Simple Model, the changes made are the actual
removal or adding of the transitions. In the ATLIr class, one new method is implemented to verify
the next-operator with a coalition with synchronous semantics, which is used for verification when
verifying the operator in Coalition Logic.

The remainder of this section is structured as follows: First, the implementation of the Coali-
tion Logic operator will be gone through in detail, and second, changes in the formula parser will
be elaborated. Third, the implemented formula data structure and an example with abstract syntax
trees will be provided and explained. At last, the new methods in the class Global Model regarding
the determination of the alteration of the model will be explained through the algorithms in source
code for both positive and negative upgrades, and the executability conditions will be explained.

5.1 Formula Parser

The model checker needs a model and a formula as input. The formula should be able to be any
formula included in the language of DDCL. In the original version of STV, the formulas are rigid.
There has to be first a coalition, second an ATL-operator, and the operators can be ”F”, ”G”,
”FG”, or ”GF”. The end of the formula can be any simple expression containing propositions,
boolean values and conjunction, disjunction and negation. The simple expression can be nested,
although it cannot include coalitions or ATL-operators. To be able to parse any formula included
in the language of DDCL, the coalition has to be able to be inside the simple expressions as well.
Because the scope of the thesis is CL and not ATL, there is no need for parsing of ATL-operators,

1The source code of the extension is available at: https://github.com/eirinmla/STV-master-extended
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although it can easily be implemented for further research.

The parser has gone through a considerable change to include recursive descent and being able
to parse upgrades. To illustrate what the formula parser can and cannot parse, syntax diagrams
for all parts of the formula will be provided and explained.

In the original version of the STV there were already implemented a few methods to parse parts of
the new formula. There are also some built-in functions that does not need to be parsed in explicit
methods since the methods are implemented in the programming language. The built-in functions
parses BooleanLiterals, IntegerLiterals and StringLiterals such as shown below:

True

False

Figure 12: BooleanLiteral

digit 0-9

Figure 13: IntegerLiteral

a-z and A-Z and 0-9

Figure 14: StringLiteral

As illustrated the BooleanLiterals can either be true or false, the IntegerLiterals can be minimum
one integer 0-9 although it can be more, and the StringLiteral can be a collection of capital and
non-capital letters in the English alphabet joined together with integers.

Further on, the already implemented features of the formula parser were Coalition, SimpleExpres-
sionOperator and SimpleExpression. The first two mentioned have not been altered. A Coalition
is comma-separated if more than one agent and one agent is a StringLiteral. The SimpleExpres-
sionOperator can respectively be; and, or, not, equal to, not equal to, greater than.

SimpleExpression is mainly divided in three parts, two of them are new SimpleExpressions and
the middle element is a SimpleExpressionOperator. There is one specific case where it can be
only a SimpleExpressionOperator and one SimpleExpression and the case occurs if the SimpleEx-
pressionOperator is a ! (not). Each SimpleExpression in the bigger SimpleExpression will then be
parsed and can once more be two SimpleExpressions and one SimpleExpressionOperator or one
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<< StringLiteral

,

>>

Figure 15: Coalition

&

|

!

=

!=

>

Figure 16: SimpleExpressionOperator

SimpleExpression and a SimpleExpressionOperator or it can be a BooleanLiteral, IntegerLiteral
or a Proposition which is a StringLiteral. In the extension the Simple Expression can also be an
UpgradeFormula, either as a full UpgradeFormula or as an UpgradeFormula without the Upgrades,
called a CoalitionExpression.

SimpleExpression SimpleExpressionOperator SimpleExpression

BooleanLiteral

IntegerLiteral

StringLiteral

UpgradeFormula

Figure 17: SimpleExpression

36



In the extension of STV, implementation of the ability to parse upgrades was required. The full
formula is called an UpgradeFormula, and in the UpgradeFormula is where the parsing starts. An
UpgradeFormula can contain two elements, there has to be a CoalitionExpression and prior to the
CoalitionExpression there can be an UpgradeList. The parser will look at the first sign of the whole
UpgradeFormula and will determine if there is in fact an UpgradeList or not, if there is, the next
section parsed will be the UpgradeList, else the method will start parsing the CoalitionExpression.

UpgradeList CoalitionExpression

Figure 18: UpgradeFormula

The CoalitionExpression can be divided into two parts, if both are present. There has to be a
SimpleExpression, prior to the SimpleExpression there can be a Coalition. The parser will look at
the first sign of the CoalitionExpression and determine whether or not there is a Coalition. If there
is a Coalition present it will be parsed as earlier explained, if there is not a Coalition present the
CoalitionExpression method will go straight to parsing the SimpleExpression as earlier explained.

Coalition SimpleExpression

Figure 19: CoalitionExpression

If there was an UpgradeList prior to the CoalitionExpression in the UpgradeFormula, the Up-
gradeList would be parsed first. When parsing an UpgradeList the parser finds ”{” and ”,” (or
”}”) and the part in-between will be an upgrade, there can be one or multiple Upgrades in an
UpgradeList. If there are multiple Upgrades they are divided by a comma. In each Upgrade in the
UpgradeList another method will be called to parse the Upgrades one by one.

{ Upgrade

,

}

Figure 20: UpgradeList

Parsing an Upgrade has the same structure as when parsing an UpgradeList, although the elements
that is parsed is not longer Upgrades but Updates. In one Upgrade there can be one or more
Updates. The method identifies the Updates and send them one by one to the next method for
parsing.
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[ Update

,

]

Figure 21: Upgrade

Every Update is, when parsed, divided into four different elements. The elements are a from-
state, the agent who is granted or revoked its powers, a to-state and the UpgradeType, negative or
positive. Both the from-state and to-state are elements that once again will be parsed from the top
level, in the same way as the whole formula was, and will be treated as an UpgradeFormula.

( UpgradeFormula , Agent , UpgradeFormula ) UpgradeType

Figure 22: Update

The agent is a StringLiteral while the UpgradeType is either positive or negative, denoted with a
+ or a −.

StringLiteral

Figure 23: Agent

+

-

Figure 24: UpgradeType

The recursion is implemented in that the parser starts over again in the lowest level of the formula
parser, the method of parsing the Update. When the formula is being parsed the parser calls the
provided classes and creates instances of the classes. In the next section the data structure of the
classes will be explained.

The implementation of the parser does not include anything specific for propositions. The proposi-
tions are merely treated as strings of text, and the truth value has to be stated as a boolean value
at the other side of an ”equal”-sign to be handled as a proposition.
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5.2 Extended Data Structure

In the extension of STV there has been implemented a comprehensive data structure to store all
the elements parsed. To visualise the data structure there will be provided class diagrams and an
example formula with complementary Abstract Syntax Trees.

Figure 25: Class Diagram of Classes for Formula
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To process the data of a DCL formula, there are nine classes implemented. The main class Upgrade-
Formula, consists of two instance variables, upgradeList and coalitionExpression. Both instance
variables are objects of other classes, respectively UpgradeList and CoalitionExpression. The class
UpgradeList contains one instance variable, upgrades. Upgrades is a list of objects of the class
Upgrade.

Upgrade’s instance variable updates is similar to the list of upgrades in UpgradeList, although
it is a list of objects of the class Update. Upgrade has a method to check if there is consistency of
the upgradeType, either all updates in an upgrade has to be positive or they have to be negative,
there cannot be an upgrade containing both upgrade types.

The class Update contains four instance variables, namely, from state, agent, to state and up-
gradeType. Both from state and to state is instances of UpgradeFormula. Agent is an instance of
the class Agent, upgradeType is an instance of the class UpgradeType.

The second instance variable of UpgradeFormula, coalitionExpression, is an instance of the class
CoalitionExpression. CoalitionExpression contains two instance variables, coalitionAgents and sim-
pleExpression. CoalitionsAgents is a list of agents and each agent is a string-value. SimpleExpres-
sion is an instance of the class SimpleExpression.

The class SimpleExpression contains three instance variables and one method. The instance vari-
ables are left, operator and right. The instance variables left and right are instances of the class
UpgradeFormula, while the instance variable operator is an instance of the class SimpleExpres-
sionOperator. The method evaluate(varValues) returns a boolean value after evaluating instance
variable left and instance variable right with instance variable operator.

The classes UpgradeType and SimpleExpressionOperator both inherit from another class called
EnumMeta. EnumMeta is a comprehensive class, and includes methods that fixes the instance
variable of UpgradeType and SimpleExpressionOperator as a constant value.
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5.2.1 Example with Abstract Syntax Trees

The example is the formula {[((p = False), a, (p = True))+]}⟨⟨a⟩⟩(p = False). It contains one
upgrade with one single positive update, from states where p is false, a will have the ability to force
a state where p is true. After the upgrade, for the model checker to output true, agent a has to
be able to force a state where p is false from the initial state in a model that is not provided, the
example focuses solitary on the data structure of the formula.

UpgradeFormula

UpgradeList

Upgrade

Update

from state

SimpleExpression

p=False

agent

a

to state

SimpleExpression

p=True

upgradeType

+

CoalitionExpression

CoalitionAgents

a

SimpleExpression

p=False

Figure 26: Abstract Syntax Tree of {[((p = False), a, (p = True))+]}⟨⟨a⟩⟩(p = False)

The formula in its totality will be an instance of the class UpgradeFormula, divided into two
instance variables, upgradeList and coalitionExpression. The instance variable of upgradeList will
be {[((p = False), a, (p = True))+]} and the instance variable of coalitionExpression will be
⟨⟨a⟩⟩(p = False).

Further, the data in the instance variable upgradeList will be divided into upgrades and will be
added to the list of upgrades of the class UpgradeList. In this particular case there is one sin-
gle upgrade, thus the instance variable upgrades will only have one element, [((p = False), a, (p =
True))+]. Each element in the instance variable upgrades will be a individual object in the Upgrade-
class.

The class Upgrade contains a list of updates as instance variable, each element in the list is its
own instance of the class Update. In this example there is one single update and only one instance
of the class Update. In Update there are, as mentioned, four instance variables. The agent is
a. Both instance variables from state and to state can be their own instance of UpgradeFormula,
CoalitionExpression or SimpleExpression, in this example they are both instances of SimpleExpres-
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sion. The upgradeType is UpgradeType.P.

The instance variable coalitionExpression of UpgradeFormula is an instance of the class Coali-
tionExpression. The two instance variables coalitionAgent and simpleExpression both is indicated
to have a concrete value in this example. coalitionAgent is a and simpleExpression where it is
divided into two properties, coalitionAgents and a SimpleExpression. In this example, coalitionA-
gent is a list with one element, ”a”, and the simpleExpression is p = False. The instance variable
simpleExpression is moved to its own abstract syntax tree underneath.

SimpleExpression

Left

”p”

Operator

SimpleExpressionOperator.EQ

Right

False

Figure 27: Abstract Syntax Tree 2: Simple Expression

As seen in the class diagrams the SimpleExpression class has three instance variables. The first, left,
is in this example a proposition and the value is p, the operator is SimpleExpressionOperator.EQ
and the instance variable right is a Boolean Literal False. All SimpleExpression-instances in Figure
26 is at the form of Figure 27, although the Boolean Literal varies from the different objects.

5.3 Implemented Methods in Global Model and Simple Model

In the initial version of STV the formula would be verified and that was the whole intention of the
formula stated in the input-file. In the extended version of STV, to be able to verify the formula
in the given model, as long as there exists an UpgradeList in the UpgradeFormula there has to be
generated at least one new version of the given model to be able to verify the formula.

The majority of implemented methods for generating the new versions of the model is located
in the Global Model. There are different methods for positive and negative upgrades, in addi-
tion the executability-conditions are different. Next, the key methods for upgrading models, both
positive and negative, will be provided and explained.

5.3.1 Methods for Positive Upgrades

To be able to grant actions through a positive upgrade, determining which new transitions should
be added and where is required. In addition it is necessary to check the executability-condition for
clashfreeness.

In the Global Model class there are already some initial instance variables set from the genera-
tion of the inputted model. The states are given, propositions are given and the initial transitions
are generated. When granting dictatorial powers, what is needed for verifying a new version of
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the model is adding transitions that reflects the new dictatorial powers. A dictatorial power is, as
mentioned, an action that an agent can use to get to a specific state no matter what others does.

To be able to add a transition in STV, the predecessor and successor is needed and which ac-
tions the agents choose, to transit with that specific transition is required. From the data structure
of the formula the program is able to retrieve information of which agent is granted powers and what
conditions has to be true in the to states and from states. If to state or from state is a SimpleEx-
pression a already implemented method will be called to find all states there the SimpleExpression
is true, and will return a list of the IDs of the states, a integer value. If the condition in the to state
or the from state is more complex, the condition will be verified as its own formula and the resulting
states ID of where the condition holds will be returned as a set of integer values.

The method implemented for determining the new transitions is depicted below in Figure 28. As
input the method has the list if from states and the list of to states, both are lists of the state
identification value, the last input is the name of the agent granted powers. Further on there is a
global count and a dictionary of agents ID and agents names provided. The method returns a list
of transitions.

Figure 28: Determining New Transitions

The method iterates all from states, to states and actions the other agent has and generate a list of
one from state, one to state and the list of one action-pair which is added to the list of transitions.
This approach generates all possible combinations of the given from states, to states and all actions
the other agent has in the particular from state such that the result of adding all the new transitions
gives the granted agent new dictatorial powers. The global counter is included so the new actions
have different names for the CGM to be a valid model.

The executability-condition in the positive upgrades can be checked after what new transitions
has to be added to the model. To recap, for a positive upgrade to be clashfree there can not be two
agents granted dictatorial powers from the same state in one upgrade. The method implemented
has a dictionary as input with agents as keys and a list of state IDs as value, being the states where
the agent is getting granted dictatorial powers in.
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Figure 29: Test of Clashfreeness

The test is depicted in Figure 29 above. There is one variable called values initiated to an empty
set, and a value count initiated to 0. If there are more than one key in the dictionary, meaning
there are more than one agent granted dictatorial powers, the number of state IDs is added to the
value count and all state IDs in the values in the dictionary is added to the set, values. Because
values is a set, there are no duplicates. If the length of values is not equal to the value count there
has to be an overlap between the agents in which states they are granted dictatorial powers from
and the test raises an exception and the verification-session ends in an error-message.

If the executability-condition holds, the new transitions will be added to the model and the Simple-
Expression of the formula will be verified. The new transitions are added in the class Simple Model
before creating a class instance of the ATLIr Model, the method is depicted in Figure 30 below.

Figure 30: Updating the Model
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5.3.2 Methods for Negative Upgrades

When an agent is revoked it’s dictatorial powers, the given from states and to states tells in which
states the dictatorial powers will be preserved, and the methods have to remove all dictatorial
powers which are not explicitly stated in the updates in the upgrade. For the tool to be able to
remove the correct transitions, a method to identify all dictatorial powers is required.

A forcing action or dictatorial power is an action where the outcome will be the same no mat-
ter what others do. In the method for determining which transitions contains forcing actions in
the different states, the return value is two lists, one for each of the two agents. The lists that are
returned has lists inside where the index of the list is the same number as the ID of the state in
which the forcing actions are in fact forcing actions. The information needed for this method is
gathered from a method in the Simple Model Class which retrieves a dictionary of transitions. All
transitions in the model is in this dictionary, the key is a tuple of the predecessor and successor
while the value is the actions the agents act on to make the transit happen.

Figure 31: Determining Forcing Actions

The approach used for determining forcing actions is to look at one agent and one predecessor at
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the time and check whether or not the particular action of the agent has more than one successor.
If the agents action only have one successor it is a forcing action, because no matter what the
other agent chooses to do the successor will be the same. If the agents action has two or more
successors the successors have to be checked in the list same props to check if they contain the
same propositions , if they do, the transition will be added, if it does not, the action is not a forcing
action and will not be added to the list.

All transitions with forcing actions in the model are now identified, the next step is to check
which of the same transitions are in the update in the negative upgrade and will be preserved. In
the method depicted below in Figure 32, it is determined which transitions with forcing actions are
the same as the transitions stated in the update and will be preserved. The method first initialises
an empty list that will be returned with preserved transitions and an empty set which will be
returned with the maybe preserved transitions. It retrieves information from the method above,
gathering the forcing actions for each agent. Further it collects the state IDs of the states that hold
the conditions in the from state and to state of the update, at last it retrieves the identification
number of the agent who is revoked its powers.

Figure 32: Finding Preserved Transitions in an Update

It is possible that both agents have an forcing action from the same predecessor to the same suc-
cessor, typically if there is only one outgoing transition from a state. If this is the case and only
one of the agents has been stated to preserve their forcing action the transition will be removed.
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Depending on which agent is revoked its powers, the method determines whether or not the agents
forcing actions should be preserved by comparing the transitions in their forcing action list to the
combination of predecessors and successors of the from states and to states of the update. If the
transition can be found in the update it is checked whether or not the same transition is in the
counterparts forcing actions, if it is, the transition is added to the set of ”maybe preserved tran-
sitions”, if it is not in the counterparts forcing actions it is added to the list of preserved transitions.

At the upgrade-level all of the preserved transitions from the updates are gathered, and the tran-
sitions in the maybe-list are determined. As earlier mentioned there can be joint forcing actions,
if both agents are stated in the upgrade to preserve their forcing action in the same transition the
transition will be preserved, while if only one agent is stated in the upgrade to keep its forcing
action the transition with the joint forcing action will not be preserved. The method depicted un-
derneath, in Figure 33 compares the maybe-transitions for the agents and if it is included in both
agents maybe-list it is added to the preserved transitions-list, if it is only included in one agents
maybe-list it is not added to the preserved transitions-list.

Figure 33: Determining Preservation of Joint Forcing Actions

The tool has now gathered all information about the transitions with forcing action, it has identified
them all and determined which ones will be preserved. In addition to the preserved transitions with
forcing actions, all transitions with non-forcing actions will also be preserved, and the change that
will actually be done to the model is removing transitions. It is necessary to gather information of
all the transitions that will be preserved, forcing and non-forcing, and all transitions in total so the
tool can find the transitions that will be removed.
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Figure 34: Finding Transitions to Remove

When determining which transitions to remove the information needed is all transitions in the model
and the transitions the upgrade preserves, with both forcing and non-forcing actions. The method
depicted above, in Figure 34 finds the transitions that will be removed by finding transitions that
are not included in preserved transitions. The method also finds the remaining transitions and
returns a list of both transitions to remove and remaining transitions.

Figure 35: Updating the Instance of Simple Model with the Negative Upgrade
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The list of removed transitions is given the a method in the class Simple Model and all transitions
inside the list will be removed from the instance of the Simple Model. There is generated an in-
stance of the class ATLIr Model and the instance is returned to the methods in the Global Model
class. The method for updating the instance of the Simple Model class and generating an ATLIr
Model is depicted above, in Figure 35.

The instance of the class Simple Model is updated before the executability-check. The main ex-
ecutability condition for negative upgrades is for the CGM to be valid after an upgrade. There
are two aspects tested in the method, there has to be at least one out-going transitions from each
state in the model and all combinations of the agents actions in a state has to lead somewhere.
Underneath, in Figure 36, the executability conditions are checked.

Figure 36: Test of Clashfreeness for Negative Upgrade

The executability-check happens after the models are updated due to the fact that there can be a
smaller set of actions for one or more agents after the updgrade then before, which indicates that
if the check was prior to the updating the check might require combinations of more actions in
transitions then the actions that are actually preserved.
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If the updated version of the model passes the check of executability the formula after the up-
grade will be verified and results will appear in the tools CLI. If the updated version does not
pass the program will terminate and print out an error-message telling which of the two conditions
failed.

5.4 Coalition Logic Operator For Verification

As earlier mentioned the operator in Coalition Logic is a fragment of ATL and the method for
verification is the same. In the original version of STV there is no implementation of the frag-
ment, thus it had to be implemented. The developers of STV have implemented verification of the
”F”-operator in ATL and has already implemented all needed methods to gather the information
required, the ”F”-operator is the basis for the new Coalition Logic operator implemented.

Figure 37: Coalition Logic Operator Verification Method

In the theory-section, the semantic interpretation of the Coalition Logic operator was explained
as, there is a next state where a coalition can choose to go no matter what anyone else does. To
verify that this operator hold there are information needed. It is crucial to know who is included
in the coalition and which states does entail what comes after the operator. The algorithm for
verifying the CL operator will return a set of states where it holds that the coalition can move to
such a state where the right of the formula holds no matter what others do. When verifying the
method sets the strategy instance of the ATLIr-model, entailing that when the method has return
the states of where the formula holds the strategy for each state, the action that has to be chosen
for the formula to hold, is stored.

The variable is winning states is a list of Boolean values for each state, where the index of the
list is the same as the state ID, if true, the right side of the formula holds in that state, if false, the
formula does not hold in that particular state. The variable pre image is a set of states which are
predecessors to the states in winning states. The current ATLIr-model’s instance of strategy is set
to a list of as many None as there are states in the model.

Now, the verifying starts, for each predecessor and each of the coalitions actions, combined in
a Cartesian product, goes through a method for determining if the agents, can force a winning
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state from a predecessor, if yes, the method returns true and the actions are added to the index of
strategy which is the same as the state ID, while if it is false it continues to the next actions.

As mentioned the verification method returns a set of states where the coalition can force a state
where the right side of the formula holds. The Boolean value printed as the real result of the model
checking-problem is a check if the initial state, which always has the state ID 0, is in the resulting
states.
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6 StraTegic Verifier - Extended Edition

The extension of STV2 is intended to verify upgrades in Smart Contracts. With a few limitations
it can indeed verify some formulas from the language of DDCL at Smart Contracts when they are
modelled as Concurrent Game Models. The limitations are that there can only be to agents in
the model and that the formula cannot contain an empty coalition, the third limitation is that the
formula verified has to start with either an upgrade or a coalition. In this section we will present
the new version of STV and go through the models and formulas from our example and show how
new versions are generated and verified using the CLI.

Aa,Bb

s1

dA,Bb

s2

dA, dB

s3

Aa, dB

s4

Ab,Ba

s5

a1b0

a1b1

a0b1

a0b0

a0b1

a2b0

a2b1

a0b0

a3b3, a0b3, a3b0

a0b0
a1b0

a1b2

a0, b2

a0b0

a0b0

Actions:
i0: do nothing
i1: deposit i ’s asset
i2: cancel i ’s deposit
i3: finalise swap

Figure 38: Initial CGM M

2The extension is available at: https://github.com/eirinmla/STV-master-extended
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To recap, the initial CGM M has five states, the first s1, Alice and Bob holds their initial assets,
they can both either do nothing or deposit their asset. Depending on what Alice and Bob choose to
do, the system will transit to one of the three next states which are s2, s4, or s3. It is only possible
to finalise the atomic swap when both assets are deposited, in state s3. If only one of them deposits
and the other does not, the one who has deposited can cancel their deposit. Figure 39 illustrates
the simple input language of STV and states a version, able to be parsed, of the CGM M in Figure
38.

SEMANTICS: synchronous

Agent a:

init: state1

nact: state1 -> state1

nact: state2 -> state2

act: state1 -> state2 [dA=True, Aa=False]

fin: state2 -[dA == True and dB == True]> state4 [Ba=True, Ab=True, dA=False, dB=False]

cancel: state2 -[dA == True and Bb == True]> state1 [Aa=True, dA=False]

nact: state4 -> state4

Agent b:

init: state1

nact: state1 -> state1

nact: state2 -> state2

act: state1 -> state2 [Bb=False, dB=True]

fin: state2 -[dA == True and dA == True]> state4 [Ba=True, Ab=True, dA=False, dB=False]

cancelb: state2 -[dB == True and Aa == True]> state1 [Bb=True, dB=False]

nact: state4 -> state4

PERSISTENT: [Aa, Bb, Ba, Ab, dA, dB]

INITIAL: [Aa=True, Bb=True, Ba=False, Ab=False, dA=False, dB=False]

LOGIC: UCL

FORMULA: <<a>>(dA = True)

Figure 39: Input File of the Atomic Swap Example

In the input-file it is stated that the initial state is state1 and the initial values of the proposi-
tions are such that Aa and Bb are true, while the rest of the propositions are false, which is the
same as in the CGM M ’s state s1. The actions are renamed in the input-file, i0 is renamed as
”nact”, i1 as ”act”, i2 as ”cancel” and i3 as ”fin”. When the model is generated the agent’s name is
added to the action name, e.g. ”nact” will become ”nact a” for agent a and ”nact b” for agent b.
The tool will give the states identification numbers, in all models the initial state has the number
0, in this particular model the rest of the states in the CGM M are in this order: s2 is 1, s4 is 2, s3
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is 3 and s5 is local states 4-6. In addition the agents has their own identification numbers, Alice’s
number is 0 and Bob’s number is 1, in this particular model.

The CLI is altered to be able to access the extension. The command to start the extension of
the program is stated underneath, where the xxx should be changed to the filename of the file with
the model and the formula that one wants to verify.

python3 main.py verify ucl --filename xxx

After the command is given the program generates all needed versions of the model and verifies
the formula, if the formula holds in the model’s initial state the program outputs true, while if the
formula does not hold it outputs false. The program does not output a counter-example if false.
Since all the output is merely a boolean value, in the extended edition it also returns which states
are predecessors end successors in the different updates and which transitions are added or removed,
depending on type of upgrade, so it is possible to double-check whether the new implementations
work or not. In addition it outputs what the result for all evaluations it carries out, as well as the
time spent on the verification of the complete formula.

Now, a review of the result of verification of the formulas. The first formula is the same as in
the input-file illustrated in Figure 39, namely;

FORMULA: <<a>>(dA = True)

The formula indicates that Alice can force a state where it is true that her asset is deposited.
Because the initial state is declared in the input-file it is not necessary to write it in the formula.

As seen in Figure 38 the output should be true, as long as Alice choose the action a1, in the
initial state s1, no matter what Bob does the system will transit to a state where dA is true, either
state s2 or state s3. The output of the extension looks as below, in Figure 40.

Figure 40: Output for Coalition Formula

As seen in the output the system needed 0.002 seconds to generate the initial model, generating
7 local states and 41 local transitions. The system can process the entirety of this simple model
at once, the coalition is a and the agent ID in the generated model is 0. There are two states
where dA is true, state 1 and 3. The verification finds possible strategies for all states in the model,
as seen in the result, in this particular verification problem there are only strategies from three
states, meaning that the formula in its entirety is true in those particular states, this is reflected
in the Temporary result from coalition expression which outputs the set of three states as
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the result. Because state 0 is in the results the main result is true, the formula holds in the model.
The time the system spent on verification was approximately 0.00036 seconds.

To be able to verify a formula in the model M+U , shown in Figure 41, the formula will get more
complex. The model in the input-file will still be the same, while the positive upgrade will be added
in front of the formula. As remembered the positive upgrade contained the following updates:

+U = {((dA ∧Bb), b, (dA ∧ dB))+, ((Aa ∧ dB), a, (dA ∧ dB))+}

Bob is granted a dictatorial power from any state where Alice has deposited her asset and Bob holds
his, to any state where both Alice and Bob have deposited their asset. Alice is granted dictatorial
powers from any state where Alice holds her initial asset while Bob has deposited his asset, to all
states where both Alice and Bob have deposited their asset.

Aa,Bb

s1

dA,Bb

s2

dA, dB

s3

Aa, dB

s4

Ab,Ba

s5

a1b0

a1b1

a0b1

a0b0

a0b1, a0b∗, a2b∗

a2b0

a2b1

a0b0

a3b3, a0b3, a3b0

a0b0
a1b0, a∗ b0, a∗ b1

a1b2

a0, b2

a0b0

a0b0

Actions:
i0: do nothing
i1: deposit i ’s asset
i2: cancel i ’s deposit
i3: finalise swap

Figure 41: CGM M+U with Positive Upgrade
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The system will generate the model above from a formula including the positive upgrade mentioned.
The formula will look such as below in the input language. Instead of an implication, the formula
is more generalised then in the theory-section. The formula states that after a positive upgrade
Alice and Bob as a coalition can force a state where, from that state, Bob as a coalition can force
a state where both Alice and Bob have deposited their assets.

FORMULA: {[(((dA = True) & (Bb = True)), b, ((dA = True) & (dB = True)))+,

(((Aa = True) & (dB = True)), a, ((dA = True) & (dB = True))+]}

<<a, b>><<b>>((dA = True) & (dB = True))

The result of the formula above and the earlier stated model, given in the simple input language is
as shown in Figure 42.

Figure 42: Output for Coalition Formula with Positive Upgrade

First the tool generates the initial model, with 7 local states and 41 local transitions, in 0.002
seconds. Further the system finds predecessors and successors for the updates in the upgrade and
generates new transitions. The formula verified contain two coalitions, first a coalition of both
agents, Alice and Bob, then a coalition of only Bob. First the coalition of only Bob and the rest
of the formula is verified, the temporary results are state 1 (s2), which is the only state where Bob
can force a state where both Alice and Bob has deposited their assets. Then it is verified if the
coalition of both Alice and Bob can force state 1 (s2), they have possible strategies from the first
three states and the result is states 0, 1 and 2, (s1, s2 and s4). Because state 0 is included in the
result the system outputs a main result being true. The tool spends 0.0049 seconds on the changes
in the model and the verification.
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As well as positive upgrades, the extension of STV can verify negative upgrades. The next result
will include both the previous positive upgrade and the negative upgrade from the theory-section,
shown below.

−U = {((dA ∧Bb), b, (dA ∧ dB))−, ((dA ∧ dB), a, (Ab ∧Ba))−,

((dA ∧ dB), b, (Ab ∧Ba))−, ((Ab ∧Ba), a, (Ab ∧Ba))−, ((Ab ∧Ba), b, (Ab ∧Ba))−}
The negative upgrade includes all transitions with forcing actions that will be preserved. The only
forcing actions that will be removed as a result of this negative upgrade is Alice’s forcing action
to force a state where both Alice and Bob has deposited their asset from any state only Bob has
deposited his asset while Alice still holds her initial asset. The final version of the model including
both the positive and negative upgrade is shown in Figure 43.

Aa,Bb

s1

dA,Bb
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a2b0

a2b1

a0b0

a3b3, a0b3, a3b0

a0b0
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a1b2

a0, b2

a0b0

a0b0

Actions:
i0: do nothing
i1: deposit i ’s asset
i2: cancel i ’s deposit
i3: finalise swap

Figure 43: CGM M+U,−U with Positive Upgrade and Negative Upgrade
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(M+U , s4) ̸|= [−U ]⟨⟨a⟩⟩(dA ∧ dB) (18)

(M+U , s2) |= [−U ]⟨⟨b⟩⟩(dA ∧ dB) (19)

The formulas that will be verified are formulas 20 and 21. The formulas will be verified in a more
generalised way then the formulas from the theory-section, formulas 18 and 19, the formulas will
be written with two coalitions, they will not entail the same as formulas 18 and 19, although in this
specific model, the result will be the same.

M ̸|= [+U ][−U ]⟨⟨a, b⟩⟩⟨⟨a⟩⟩(dA ∧ dB) (20)

M |= [+U ][−U ]⟨⟨a, b⟩⟩⟨⟨b⟩⟩(dA ∧ dB) (21)

In the simple input language formula 20 is written as below.

FORMULA: {[(((dA = True) & (Bb = True)), b, ((dA = True) & (dB = True)))+,

(((Aa = True) & (dB = True)), a, ((dA = True) & (dB = True)))+],

[(((dA = True) & (Bb = True)), b, ((dA = True) & (dB = True)))-,

(((dA = True) & (dB = True)), a, ((Ab = True) & (Ba = True)))-,

(((dA = True) & (dB = True)), b, ((Ab = True) & (Ba = True)))-,

(((Ab = True) & (Ba = True)), a, ((Ab = True) & (Ba = True)))-,

(((Ab = True) & (Ba = True)), b, ((Ab = True) & (Ba = True)))-]}

<<a,b>><<a>>((dA = True) & (dB = True))

After the formula and the rest of the input-file is given the tool will output the results. The results
for this particular formula and the earlier provided model is shown in Figure 44.

Once again STV spends 0.002 seconds at generating the initial model containing 7 local states
and 41 local transitions. One by one update inside the respective upgrades, the predecessors and
successors are determined and new transitions are granted in the positive upgrade. In the negative
upgrade the removed transitions are determined and removed. As seen the new transitions are the
same as in the previous results, and the only removed transitions is Alice’s dictatorial powers from
state 2 (s4) to state 3 (s3).
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Figure 44: Output for Coalition Formula with Positive and Negative Upgrade Verifying Alice’s
Abilities

Now, the final version of the model is generated and the verification begins, there are two coalitions
one with both Alice and Bob and one with only Bob. First the one with only Bob is verified, the
state that Bob should be able to force is state 3 (s3). The strategies for Bob states that Bob cannot
force state 3 from any states. Due to the fact that Bob cannot force state 3 the coalition with Bob
and Alice cannot force a state where Bob can force state 3 and the whole formula turns out to be
false as stated in the results. The time spent, to alter the model twice and verify the formula, was
approximately 0.009 seconds.

Formula 21 contains the same positive and negative upgrades as formula 20. The interesting part
is that it illustrates that it is only Alice who has been revoked her new dictatorial powers, and not
Bob. Underneath is the formula in the simple input language of STV.

FORMULA: {[(((dA = True) & (Bb = True)), b, ((dA = True) & (dB = True)))+,

(((Aa = True) & (dB = True)), a, ((dA = True) & (dB = True)))+],

[(((dA = True) & (Bb = True)), b, ((dA = True) & (dB = True)))-,

(((dA = True) & (dB = True)), a, ((Ab = True) & (Ba = True)))-,

(((dA = True) & (dB = True)), b, ((Ab = True) & (Ba = True)))-,
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(((Ab = True) & (Ba = True)), a, ((Ab = True) & (Ba = True)))-,

(((Ab = True) & (Ba = True)), b, ((Ab = True) & (Ba = True)))-]}

<<a,b>><<b>>((dA = True) & (dB = True))

As seen in the result underneath, in Figure 45 the results are similar to the results in Figure 44
until both upgrades have been processed, while the verification differ. There are two coalitions, one
with both Bob and Alice and one with only Bob. The coalition with only Bob is verified first, the
state where both Alice and Bob has deposited their asset is state 3 (s3). Bob can, as seen from
the results, force state 3 from one state, state 1 (s2). Then verifying that the coalition of both
Alice and Bob can force a state where Bob can force state 3, meaning that Alice and Bob can force
state 1, results in three states from where Alice and Bob can force state 1. The states are 0, 1 and
2, because 0 is included the main result is true. The time spent on alteration of the model and
verification of the formula is 0.0085 seconds.

Figure 45: Output for Coalition Formula with Positive and Negative Upgrade Verifying Bob’s
Abilities
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The extension of the tool can verify simple expressions with coalitions, expressions with coalitions
and positive upgrades and expressions with coalitions and negative upgrades. In the formula ver-
ified there can be multiple upgrades and there can be multiple updates within an upgrade. All
combinations has been illustrated above. In addition the tool can verify formulas with coalitions or
formulas with upgrades and coalitions within an upgrade’s update’s from-state or to-state.

6.1 Time Spent on Execution

As seen, the extended version of STV includes features to verify changes in Concurrent Game Mod-
els. Formulas of different complexity spends time accordingly. Testing average time of formulas
with various complexity has been carried out to get a grasp of execution time. The formulas tested
includes various upgrades, shown and elaborated below.

[+U¹] = {[(((Aa = True) & (dB = True)), a, ((dA = True) & (dB = True)))+]}

[+U²] = {[(((dA = True) & (Bb = True)), b, ((dA = True) & (dB = True)))+]}

[[+U³]] = {[({[(((Aa = True) & (dB = True)), a,

((dA = True) & (dB = True)))+]}<<a>>(dA = True),

a, ((dA = True) & (dB = True)))+]}

[-U] = {[(((dA = True) & (dB = True)), b, ((Ab = True) & (Ba = True)))-,

(((dA = True) & (dB = True)), b, ((dA = True) & (dB = True)))-,

(((dA = True) & (dB = True)), a, ((dA = True) & (dB = True)))-,

(((Ab = True) & (Ba = True)), a, ((Ab = True) & (Ba = True)))-,

(((Ab = True) & (Ba = True)), b, ((Ab = True) & (Ba = True)))-]}

Figure 46: Upgrades for Testing Time Spent

The first upgrade is granting Alice powers from a state where she holds her initial asset while Bob
has deposited his, to a state where both have deposited their asset. The second upgrade is granting
Bob powers from a state where he holds his initial asset while Alice has deposited hers, to a state
where both have deposited their asset.

The third upgrade is a nested upgrade. The upgrade contains one positive update, inside the
update, the from-state is a whole new formula with an upgrade and a formula to verify. The main
upgrade states that Alice should be granted powers in all state where the formula with upgrade in
the from-state is true, to all states where both Alice and Bob have deposited their assets. Before
being able to upgrading the main model a new temporary model has to be generated, updated
and verified before moving back to the initial model’s updating. The inner upgrade grants Alice
dictatorial powers from a state where Alice holds her initial asset and Bob has deposited his, to
a state where both have deposited their asset, then the formula inside the from-state has to be
verified. From which states in the temporary model, after the upgrading has altered the model,
can Alice force a state where both Alice and Bob have deposited. The only state this is true is the
state where Alice was just granted her dictatorial powers from, which is the state where Alice holds
her initial asset and Bob has deposited his, this is the from-state in the main upgrade.

The fourth upgrade contains negative updates, because it is the preserved abilities that has to
be stated in negative upgrades, all other transitions with forcing actions are added to the upgrade
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then the forcing actions that will be removed. In this upgrade the transitions with forcing actions
that will be preserved are any transition from a state where both Alice and Bob have deposited
their asset to any state where the propositions are the same. Any state where the swap is finalised,
Alice holds Bob’s initial asset and vice versa, to any state where the propositions are the same. And
Bob has forcing transitions in any state where both have deposited to a state where Alice holds
Bob’s initial asset and Bob holds Alice’s. All other transitions with forcing actions will be removed
from the model.

The table below represents the time it takes from STV has received the command to getting a
full result for various formulas. The formulas are run 20 times each and the average is represented
in milliseconds. The timing is done in process time indication that only efficient time spent by the
CPU for this particular system is taken into consideration.

Time of Verification
# Complexity of Formula Process Time MS

1. <<a>>(dA = True) 3.527
2. <<a,b>><<a>>(dA = True) 3.954
3. [+U¹]<<a>>(dA = True) 6.330
4. [+U¹, +U²]<<a>><<b>>((dA = True) & (dB = True)) 7.967
5. [+U¹][+U²]<<a>><<b>>((dA = True) & (dB = True)) 8.243
6. [-U]<<a>>(dA = True) 10.584
7. [+U¹,+U²][-U]<<a,b>><<b>>((dA = True) & (dB = True)) 12.886
8. [[+U³]]<<a>>(dA = True) 11.339

Table 1: Time of Verification of Formulas with Various Complexity

In Table 1 there are eight formulas with various complexity, starting from the least complex for-
mulas to the most complex. Formula 1 is the smallest formula that the extended version of STV
can verify, inside the time of 3.527ms, the tool has generated a model, found states where dA is
true and verified if Alice can force at least one of those states. Compared to formula 2, the only
difference between them is that formula 1 contains one coalition, while formula 2 contains two coali-
tions, indicating that the only different time-wise is that in addition to find the states from where
Alice can reach a state where dA is true, verification of if Alice and Bob can reach those states is
added. As one can see there is minimal difference in time between formula 1 and 2 meaning that
the verification itself, does not take much time.

Formula 3 contains one upgrade with one positive update, while the rest of the formula is the
same as in formula 1. The additional execution time spent on determining new transitions and
adding them is 2.803ms.

In formula 5 there is written [+U¹, +U²] indicating that the update in upgrade [+U¹] is merged
with the update in upgrade [+U²], including the two updates in the same upgrade adds complexity
since it is then necessary to test the executability condition, while if they are tested as two separate
upgrades this is not needed since the second upgrade overwrites the first.

Formula 4 and 5 are somewhat similar, although formula four contains two positive updates in-
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side one upgrade, while formula 5 contains two upgrades with one positive update in each. The
rest of the formulas are the same. The table indicates that two updates in the same upgrade is
executed in less time than two upgrades with one update in each, despite the fact that in the first
the executability condition has to be checked.

Formula 6, with it’s negative upgrade, cost more time than the other formulas up until now.
Because the negative upgrade has to contain all transitions with forcing actions that one wants to
preserve, it is often more updates inside one negative upgrade than in one positive. Comparing
formula 3 and 6 there is one positive upgrade in the first and one negative upgrade in the second,
while the rest of the formulas are the same. Inside the positive upgrade there is one update, while
in the negative upgrade there are five updates. In addition to determining more from-and to-states,
it is also necessary to find transitions with forcing actions when negative upgrade and because there
is more then one update in the upgrade the executability conditions have to be checked, thus it
seems reasonable that formula 6 spends more execution time than formula 3.

Formula 7 contains both a positive and a negative upgrade, both containing several updates. The
formula also includes two coalitions and a simple expression with conjunction. When comparing
the formula to the other formulas with similarities like formula 4 and 6, it seems like the negative
upgrade spends the lion share of the execution time.

Formula 8 includes a nested positive upgrade. There is needed two generations of models to be
able to verify the formula. The formula is interesting in comparison to formula 3. The upgrade
[[+U³]] really adds the same transitions as [+U¹], in the model tested, although, the calculation of
[[+U³]] includes several additional steps, making it much more complex. The rest of the formula
of formula 8 and 3 is the same, and one can see that the execution time of formula 8 is almost the
double of the execution time of formula 3.

The table does not include any surprises. The run-time increases gradually with the complexity of
the formula. Next will be a discussions of the assumptions and other limitations.
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7 Discussion

The main focus of this thesis has been implementing the ability to generate new versions of mod-
els with both revoked and granted dictatorial powers. The approach has been to actually add or
remove transitions from the model before verification, in that way the verification algorithms are
still the same, although there is much pre-work.

As presented in the results there is a few assumptions made to be able to verify formulas. There has
to be two agents, there cannot be an empty coalition and the formula has to start with a coalition
or an upgrade. The assumptions gives extensive limitations to the tool.

The limitation of agents restricts the extensiveness of Smart Contracts that can be verified by
the tool. Smart Contracts can vary in size and only being able to verify models of Smart Contracts
with two agents is a severe limitation. The assumption of being two agents is required throughout
most of the implementation of the extension, although improving the code to be more dynamic
would fix this limitation. While it is a severe limitation when verifying most Smart Contracts, it is
not limiting the conclusion of this thesis, if the logic can be implemented for two agents there is no
reason for it to not be possible to be implemented for more agents, although the execution time will
be even higher than it is with two agents, because the methods for determining new transitions,
forcing actions and removed transitions would be much more extensive. A positive aspect of the
limitation is that it prevents state explosion, which will be the case when increasing the number of
agents, due to the local states generated for each agent.

The restriction of the formula, by the need of a coalition in the start, is restraining the expres-
sivity of the language of DDCL. The tool cannot verify the whole language of DDCL. All of the
language can be parsed, although it is not possible to generate a model without a coalition or an
upgrade. Because the main focus of this thesis has been on parsing formulas and changing and
verifying models, the generation of the initial model has not been prioritised.

The last assumption made is that there cannot be an empty coalition in the formula verified.
Verification with empty coalitions might have been implemented in the original version of STV,
although it is not stated anywhere and the sufficient testing to be certain that it is correctly imple-
mented has not been prioritised.

In addition to the three assumptions, there are other limitations. There is no dual to the Coalition
Logic operator, the tool does only verify from the initial state and not globally, the tool does not
provide a counter-example, the algorithms could be more efficient and the formulas in the input-file
could be easier to read and write for the user.

The fact that there is no dual to the operator in ⟨⟨C⟩⟩φ indicates that there is no way to ex-
press that all next steps for the coalition will be states where φ is true. Although the dual to ⟨⟨C⟩⟩φ
can be rewritten as ¬⟨⟨C⟩⟩¬φ this is not possible in the tool, because the formula given has to start
with a coalition or an upgrade and cannot start with a negation. There are two alternative ways
to fix the limitation, the actual dual can be implemented [[C]] with its own verification algorithm
and new additions to the parser stating which of the two versions of the operator the coalition is
given in. The second alternative is to fix the generation of the model as earlier mentioned, it has
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not been prioritised and the extension of the problem is unknown.

The boolean value that is the end result states whether or not the formula verified holds from
the initial state and not from all states with the same propositions as the initial state. Although
the strategies are checked for all states, it is only the initial state that determines whether or not
the verification problem holds. Extending the model checker to be able to have an implication
as the input formula, with an antecedent as all the states that should be the predecessor to the
successor where the consequent should be true, would make the model checker global, if then the
algorithm for verification would also test that it was true for all the states where the antecedent is
true. To be able to extend the model checker to be global, the problem with the initial generation
of the model would have to be fixed.

The tool did originally not include counter-examples when the formula does not hold in the model.
Including counter-examples would be of great help for the user to be able to locate the semantic
weaknesses or bugs in the Smart Contracts. Although the model checker can state if there are
weaknesses when verifying formulas in models, it does not show where it does not hold, if it does
not. Implementing counter-examples would be of interest to help the user, although it has not been
prioritised in this thesis.

The focus has not been at optimisation of the code implemented. Because the tool originally
is experimental it is not necessarily optimised to begin with. The optimisation has not been priori-
tised because the focus in the thesis has been to find out if the extended logic could be implemented,
and not how well it would preform in execution time. A model checker without optimisation is still
much faster then verifying the model and formula by hand.

The formulas contains many parenthesis in different variations and all propositions has to be stated
with their truth-value, which makes the formula difficult to read and write. If the proposition was
its own object with values as either true or false, based on if it had a negation in front or not when
parsed, the input formula would be much easier to read for the user. One might be able to reduce
the amount of parenthesis if the simple expression would be simplified, which would make it easier
to write the formulas for the user.

Possible exciting extensions going further would be to expand the tool to include ATL, non-
dictatorial powers and asynchronous semantics.

Expanding the tool to include upgrades with ATL would enable all the expressivity that ATL
entails, verifying not only one step forward as CL does, but also full sequences. Because the ap-
proach chosen in this thesis has been to change the model before verifying the rest of the formula,
the verification happens on a regular Concurrent Game Model, making it fully possible to verify
with ATL as well as CL.

It is reasonable to believe that not all changes in a Smart Contract is granting and revoking
dictatorial powers, it would be interesting to find out how the logic would act out granting and re-
voking non-dictatorial powers as well. It would be expected that it is easier to grant non-dictatorial
powers than revoking them, because of the representation of the upgrades. If one would have to
include all actions that will be preserved both dictatorial and non-dictatorial for all agents to be
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able to remove some actions, the upgrade would contain an extreme amount of updates. While
when granting non-dictatorial powers it would be quit easy to add a transition from all to-states to
all from-states without needing to add them for all the different combinations of the other agents
to make them dictatorial.

While the scope of this thesis has been synchronous semantics, it would be reasonable to believe
that asynchronous semantics is more realistic when it comes to execution of Smart Contracts at the
blockchain. This is because the network might not receive the transactions from the agents at the
same time.
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8 Conclusions and Future Work

It is possible to deploy new versions of Smart Contracts or parts of Smart Contracts on the
blockchain even though the initial instance of the Smart Contract is immutable. In formal ver-
ification the main focus has been on verifying Smart Contracts before the first deployment and
not while comparing two versions of a Smart Contract. In the thesis, we implement a model-
checker that allows verification of upgrades of Smart Contracts. In particular, we extend the
existing tool, STV, so that it can handle specifications expressed in a recently introduced logic
[Galimullin and Ågotnes, 2021]. The logic, Dictatorial Dynamic Coalition Logic, is an extension of
Coalition Logic and enables reasoning about upgrades.

The implementation is able to verify upgrades in Smart Contract in some extent. The approach
generates new models for each upgrade and verification is located in the new version of the model.
Because the approach focuses on changing the models it can easily be extended to other temporal
logics that can be verified in Concurrent Game Models. The limitations of the implementation is
that there can only be two agents in the model, there are restrictions on how the formula can be
formulated and the model checking tool verifies only from the initial state and not globally.

In the future it would be interesting to implement the upgrades to ATL as well as CL, giving
the model checking problem a lot more expressivity. Another interesting aspect would be to look
into granting and revoking actions that are not dictatorial, it seems likely that not all new actions
one can do in a Smart Contract is of the dictatorial sort. In addition looking into asynchronous
semantics would be interesting since it is more realistic when working with Smart Contracts and
blockchain.
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Granting and revoking dictatorial powers. In International Workshop on Logic, Rationality and
Interaction, pages 88–101. Springer.
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