
University of Bergen
Department of Informatics

Combining Query Rewriting and
Knowledge Graph Embeddings for

Complex Query Answering

Author: Anders Imenes
Supervisors: Ana Ozaki, Ricardo Guimarães

May, 2023

Abstract

The field of complex query answering using Knowledge Graphs (KGs) has seen
substantial advancements in recent years, primarily through the utilization of Knowledge
Graph Embeddings (KGEs). However, these methodologies often stumble when faced
with intricate query structures that involve multiple entities and relationships. This
thesis primarily investigates the potential of integrating query rewriting techniques into
the KGE query answering process to improve performance in such situations. Guided
by a TBox, a schema that describes the concepts and relationships in the data from
Description Logics, query rewriting translates a query into a union of rewritten queries
that can potentially widen the prediction scope for KGEs. The thesis uses the PerfectRef
algorithm [14] for facilitating query rewriting, aiming to maximize the scope of query
response and enhance prediction capabilities.

Two distinct datasets were employed in the study: The Family Dataset, a subset
of Wikidata, and DBPedia15k, a subset of DBPedia. The effectiveness of the proposed
methodology was evaluated against these datasets using different KGE models, in our case
TransE, DistMult, BoxE, RotatE, and CompGCN. The results demonstrate a notable
improvement in complex query answering when query rewriting is used for both The
Family dataset and DBPedia15k. Furthermore, the amalgamation of query rewriting and
KGE predictions yielded a performance boost for The Family dataset. However, the same
was not observed for DBPedia15k, likely due to discrepancies and errors present within
DBPedia15k compared to the Full DBPedia KG used for validation in our framework.

This research suggests that query rewriting, as a pre-processing step for KGE
prediction, can enhance the performance of complex query answering, mainly when the
dataset is not fully entailed. This study provides important insights into the potential
and limitations of integrating query rewriting with KGEs. It may serve as a guidepost
for future research to improve the complex query answering when a TBox is available.

Acknowledgements

I am deeply grateful to my supervisors, Ana and Ricardo, who have provided their
expertise and guidance throughout this journey. Ana, who conceived the idea of
introducing query rewriting, has been an invaluable mentor in my exploration of Logic
and Knowledge Graphs. Ricardo has offered critical technical advice, guidance, and
insightful feedback, which has been instrumental in realising this project. Balancing
part-time studies with other commitments can be challenging. Therefore I appreciate
the University of Bergen’s administration’s assistance in making this possible during my
tenure in the military while writing this thesis. Finally, I appreciate my workplace, the 1st
Corvette Squadron of the Royal Norwegian Navy, particularly my nearest leaders, Magnus
and Torgrim. Their flexibility and support were pivotal in facilitating the completion of
this work.

Anders Imenes
24 May, 2023

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 2
1.3 Thesis Outline . 3

2 Background 4
2.1 DL-Lite Framework and Query Rewriting 4

2.1.1 Foundations of Description Logic and the DL-Lite Framework . . 5
2.1.2 Conjunctive Queries, Disjunctive queries, Unions of Conjunctive

Queries, and EPFO Queries . 8
2.1.3 Query Rewriting with PerfectRef 9

2.2 Knowledge Graphs . 15
2.2.1 Knowledge Graph (KG) Completion 16
2.2.2 KG Embeddings . 17
2.2.3 Performance indicators for Knowledge Graph Embeddings 28

2.3 Semantic Web Technologies: Resource Description Framework (RDF) and
The W3C Web Ontology Language (OWL) 30
2.3.1 Understanding ontologies . 30
2.3.2 Understanding RDF and RDF Schema (RDFS) 31
2.3.3 Exploring OWL . 34
2.3.4 Relationship between OWL and Description Logic (DL) 36

3 Combining Query Rewriting with Knowledge Graph Embeddings for
Complex Query Answering 39
3.1 Strategy: Why It Works . 39
3.2 Pipeline: How it works . 41

3.2.1 Our Implementation of PerfectRef 41
3.2.2 Query answering from a Knowledge Graph Embedding 49
3.2.3 Comprehensive Examples . 61

i

4 Results 70
4.1 Datasets . 70

4.1.1 DBPedia15k: Overview and Characteristics 71
4.1.2 The Family Dataset: A Wikidata5M Extract 74

4.2 Research questions . 77
4.2.1 Question 1: How can we integrate query rewriting with Knowledge

Graph Embeddings (KGEs) to enhance complex query answering? 77
4.2.2 Experiment introduction . 78
4.2.3 Question 2: How are the results affected by different KGEs? . . . 79
4.2.4 Question 3: How does our integrated query rewriting approach

compare to standard KG lookups? 93
4.2.5 Question 4: How do we interpret and compare our results fairly? 103

5 Related Work 106

6 Conclusion 110
6.1 Future Work . 112

List of Acronyms and Abbreviations 114

Bibliography 116

A Logic fundamentals 125
A.1 Logic . 125

A.1.1 Propositional Logic . 125
A.1.2 First Order Logic . 126

B PerfectRef implementation running time 129
B.1 Summation of all natural numbers . 129
B.2 Binomial coefficient . 130

B.2.1 Correlation between binomial coefficient and triangular numbers . 130
B.2.2 Summation over the first d triangular numbers 131

B.3 Running time PerfectRef . 132

C Embedding results 135

D Testcase results 143
D.1 Family Dataset . 143
D.2 DBPedia15k . 146

ii

E Experiment queries generation 149
E.1 DBPedia15k . 149
E.2 Family Dataset . 165

iii

List of Figures

2.1 Interplay between DL and First Order Logic (FOL). Illustration borrowed
from [59]. 5

2.2 The PerfectRef Algorithm. Pseudocode image from [14] 11
2.3 A simple KG. Illustration from [28] . 16
2.4 A very simple KGE illustration. Borrowed from Bratanic [12]. 17
2.5 Figure from [17]: (a) TransE, (b) TransH, (c) TransR, (d) TransD, (e)

TransA, (f) KG2E, (g) TransG . 20
2.6 TransE . 21
2.7 An illustration from the BoxE paper, presenting a sample BoxE model

for d = 2 [1]: Each entity ei ∈ N has an embedding ei and defines a
displacement on other entities, demonstrated with distinct colors. The
binary relation r ∈ R is encoded via the box embeddings r(1) and r(2).
This model generates the Knowledge Graph on r, as shown on the right. . 22

2.8 Tensor-Factorization-based methods [17] 24
2.9 Figure from [53]: Illustrations of TransE and RotatE with only one

dimension of embedding . 26
2.10 Figure and description borrowed from original CompGCN paper [54] :

“Overview of CompGCN. Given node and relation embeddings, CompGCN
performs a composition operation φ(.) over each edge in the neighbourhood
of a central node (e.g. Christopher Nolan above). The composed
embeddings are then convolved with specific filters WO and W I for original
and inverse relations, respectively. We omit self-loop in the diagram for
clarity. The message from all the neighbors is then aggregated to get an
updated embedding of the central node. Also, the relation embeddings are
transformed using a separate weight matrix. [54]” 27

2.11 The Semantic Web . 31
2.12 RDFS. Illustration from [13] . 33
2.13 The Transition from RDFS to OWL. Source: [51] 36
2.14 OWL DL descriptions. Illustration from [51] 37

iv

2.15 OWL Axioms and facts. Illustration from [51] 37

3.1 Our pipeline for integrating query rewriting with complex query answering
using knowledge graph embeddings . 42

3.2 The objects in our PerfectRef query parser 46
3.3 PerfectRef Implementation simplified overview 47
3.4 Queries using (p)rojection, (i)ntersection, and (u)nion 50
3.5 Variable hierarchy in a ‘pi’-query . 51
3.6 The four different lists used for validation of the correctness of predicted

entities . 56
3.7 A general example of a frequency count of 3 relations and 3 concepts. . . 59
3.8 Variable hierarchy for the rewritten query 63
3.9 Using the Application Programming Interface (API) to query for a parent.

It returns one entity. 69

4.1 Family Dataset with RotatE, showing impact of rewriting: Optimistic
Mean Reciprocal Rank (o-MRR) for List of entities from local KG with
initial query (L/I) and List of entities from local KG with rewritten queries
(L/R) . 94

4.2 Family Dataset with RotatE, showing impact of rewriting: o-MRR for
List of entities from online KG with initial query (O/I) and List of entities
from online KG with rewritten queries (O/R) 95

4.3 Family Dataset with RotatE, showing impact of predictions: o-MRR for
L/I and O/I . 95

4.4 Family Dataset with RotatE, showing impact of predictions: o-MRR for
L/R and O/R . 96

4.5 DBPedia15k Dataset with TransE, showing impact of rewriting: o-MRR
for L/I and L/R . 97

4.6 DBPedia15k Dataset with TransE, showing impact of rewriting: o-MRR
for O/I and O/R . 98

4.7 DBPedia15k Dataset with TransE, showing impact of predictions: o-
MRR for L/I and O/I . 98

4.8 DBPedia15k Dataset with TransE, showing impact of predictions: o-
MRR for L/R and O/R . 99

4.9 Family Dataset with RotatE, showing impact of predictions: o-MRR for
L/I and O/R . 102

4.10 DBPedia15k Dataset with TransE, showing impact of predictions: o-
MRR for L/I and O/R . 103

v

5.1 BoxEL Embedded Space. Illustration from [60]: The geometric interpretation
of logical statements in ABox (left) and TBox (right) expressed by DL
EL++ with BoxEL embeddings. 108

A.1 FOL atom . 127

vi

List of Tables

2.1 Mapping between FOL and DL-Lite . 6
2.2 The relationship of terms between KGs and Knowledge Bases (KBs) . . . 16
2.3 Orders of tensors . 23
2.4 The relation matrix Mr . 24
2.5 Key Meta Properties in RDF Schema (RDFS) 33
2.6 Relationship between terms in FOL, OWL and DL 38

3.1 The entity output of the query example: Q7565(?w) ∩ P40(?w,?y).
Results from GitHub. 65

3.3 The entity output of the query example: q(?w) :- P25(?x,?w) 67
3.4 Updated entity output of the query example: q(?w) :- Q7566(?w). 69

4.1 The most used properties in the family knowledge graph 72
4.2 Frequency count of concepts in the knowledge graph 73
4.3 TBox mapping in the Family Dataset . 75
4.4 The most used properties in Family Dataset 75
4.5 Best o-MRR and Hits@3 values on local rewriting validation (L/R) result

comparison of different models for each query structure on the family dataset. 81
4.6 Local Delta values (∆) (Rewritten scores vs initial scores) with comparison

of different models for each query structure on the family dataset. 82
4.7 Delta values (∆) for predictions (Online KG vs local KG) with comparison

of different models for each query structure on the family dataset. 83
4.8 Best o-MRR and Hits@3 values on Local KG with rewritings (L/R)

comparison of different models for each query structure on the DBPedia15k
dataset. 84

4.9 Local Delta values (∆) (Rewritten scores vs initial scores) with comparison
of different models for each query structure on the DBPedia15k dataset. 85

4.10 Delta values (∆) for predictions (Online KG vs local KG) with comparison
of different models for each query structure on the DBPedia15k dataset. 86

vii

4.11 Summary of results for different query structures for the dataset family
and model RotatE (dim: 192, epoch: 24). All query structures have a
count of 25 different queries. L/I: Local KG prediction using solely initial
query, L/R: Local KG prediction using rewritten queries, O/I: Online KG
prediction using solely initial query, O/R: Online KG prediction using
rewritten queries. 93

4.12 Family Dataset with RotatE: Delta values (∆) for rewriting. o-MRR and
Hits@3 for each query structure for Local and Online KGs 94

4.13 Family Dataset with RotatE: Delta values (∆) for KGE predictions. o-
MRR and Hits@3 for each query structure for Local and Online KGs . . 94

4.14 Summary of results for different query structures for the dataset DBPedia15k
and model TransE (dim: 192, epoch: 24). All query structures have a
count of 25 different queries. L/I: Local KG prediction using solely initial
query, L/R: Local KG prediction using rewritten queries, O/I: Online KG
prediction using solely initial query, O/R: Online KG prediction using
rewritten queries. 96

4.15 Dbpedia Dataset with TransE: Delta values (∆) for rewriting. o-MRR
and Hits@3 for each query structure for Local and Online KGs 97

4.16 DBPedia15k Dataset with TransE: Delta values (∆) for KGE predictions.
o-MRR and Hits@3 for each query structure for Local and Online KGs . 97

4.17 Delta values (∆) between Online KG prediction using rewritten queries
(O/R) and Local KG prediction using solely initial query (L/I) for the
dataset family and model RotatE (dim: 192, epoch: 24). Positive values
indicate that O/R outperformed L/I. 101

4.18 Delta values (∆) between Online KG prediction using rewritten queries
(O/R) and Local KG prediction using solely initial query (L/I) for the
dataset DBPedia15k and model TransE (dim: 192, epoch: 24). Positive
values indicate that O/R outperformed L/I. 102

4.20 Updated entity output of the query example: q(?w) :- Q7566(?w) 103

5.1 Table borrowed from [6]: “Test MRR results on complex query answering
across all query types. avgp is the average on EPFO queries; avgood is
the average on out-of-distribution (OOD) queries; avgn is the average on
queries with negation. Results on Hits@1 are in Appendix G.1. ” 107

A.1 Operators in Propositional Logic . 126
A.2 Quantification in First-order Logic . 127

viii

C.1 Hits@1 results . 136
C.2 Hits@3 results . 137
C.3 Hits@5 results . 138
C.4 Hits@10 results . 139
C.5 Mean Rank (MR) results. DBPEDIA15k Triples count = 32 174, Family

ontology triples count = 48692 . 140
C.6 o-MRR results . 141
C.7 AMRI results . 142

D.1 Summary of results for different query structures for the dataset family
and model BoxE (dim: 192, epoch: 24). All query structures have a
count of 25 different queries. L/I: Validation using entities from local KG
lookup on the initial query, L/R: Validation using entities from local KG
lookup on the rewritten queries, O/I: Validation using entities from online
KG lookup on the initial query, O/R: Validation using entities from online
KG lookup with the rewritten queries. 143

D.2 Summary of results for different query structures for the dataset family
and model CompGCN (dim: 192, epoch: 24). All query structures have
a count of 25 different queries. L/I: Validation using entities from local
KG lookup on the initial query, L/R: Validation using entities from local
KG lookup on the rewritten queries, O/I: Validation using entities from
online KG lookup on the initial query, O/R: Validation using entities from
online KG lookup with the rewritten queries. 144

D.3 Summary of results for different query structures for the dataset family
and model DistMult (dim: 192, epoch: 16). All query structures have a
count of 25 different queries. L/I: Validation using entities from local KG
lookup on the initial query, L/R: Validation using entities from local KG
lookup on the rewritten queries, O/I: Validation using entities from online
KG lookup on the initial query, O/R: Validation using entities from online
KG lookup with the rewritten queries. 144

D.4 Summary of results for different query structures for the dataset family
and model RotatE (dim: 192, epoch: 24). All query structures have a
count of 25 different queries. L/I: Validation using entities from local KG
lookup on the initial query, L/R: Validation using entities from local KG
lookup on the rewritten queries, O/I: Validation using entities from online
KG lookup on the initial query, O/R: Validation using entities from online
KG lookup with the rewritten queries. 145

ix

D.5 Summary of results for different query structures for the dataset family
and model TransE (dim: 192, epoch: 24). All query structures have a
count of 25 different queries. L/I: Validation using entities from local KG
lookup on the initial query, L/R: Validation using entities from local KG
lookup on the rewritten queries, O/I: Validation using entities from online
KG lookup on the initial query, O/R: Validation using entities from online
KG lookup with the rewritten queries. 145

D.6 Summary of results for different query structures for the dataset dbpedia15k
and model BoxE (dim: 192, epoch: 24). All query structures have a count
of 25 different queries. L/I: Validation using entities from local KG lookup
on the initial query, L/R: Validation using entities from local KG lookup
on the rewritten queries, O/I: Validation using entities from online KG
lookup on the initial query, O/R: Validation using entities from online KG
lookup with the rewritten queries. 146

D.7 Summary of results for different query structures for the dataset dbpedia15k
and model CompGCN (dim: 192, epoch: 24). All query structures have a
count of 25 different queries. L/I: Validation using entities from local KG
lookup on the initial query, L/R: Validation using entities from local KG
lookup on the rewritten queries, O/I: Validation using entities from online
KG lookup on the initial query, O/R: Validation using entities from online
KG lookup with the rewritten queries. 147

D.8 Summary of results for different query structures for the dataset dbpedia15k
and model DistMult (dim: 192, epoch: 24). All query structures have a
count of 25 different queries. L/I: Validation using entities from local KG
lookup on the initial query, L/R: Validation using entities from local KG
lookup on the rewritten queries, O/I: Validation using entities from online
KG lookup on the initial query, O/R: Validation using entities from online
KG lookup with the rewritten queries. 147

D.9 Summary of results for different query structures for the dataset dbpedia15k
and model RotatE (dim: 192, epoch: 24). All query structures have a
count of 25 different queries. L/I: Validation using entities from local KG
lookup on the initial query, L/R: Validation using entities from local KG
lookup on the rewritten queries, O/I: Validation using entities from online
KG lookup on the initial query, O/R: Validation using entities from online
KG lookup with the rewritten queries. 148

x

D.10 Summary of results for different query structures for the dataset dbpedia15k
and model TransE (dim: 192, epoch: 24). All query structures have a
count of 25 different queries. L/I: Validation using entities from local KG
lookup on the initial query, L/R: Validation using entities from local KG
lookup on the rewritten queries, O/I: Validation using entities from online
KG lookup on the initial query, O/R: Validation using entities from online
KG lookup with the rewritten queries. 148

xi

List of Listings

1 A simple RDF triple. 32
2 Example of RDFS triples . 34
3 The main method in the PerfectRef Python Library 45
4 Snippet from the implementation of PerfectRef where the atom checks if

is already processed . 48
5 Snippet from the implementation of PerfectRef where duplicates are

identified . 48

xii

Chapter 1

Introduction

1.1 Motivation

Knowledge Graphs (KGs) have garnered significant attention recently as powerful tools
for representing complex relationships among entities. They have been employed in
numerous applications, including search engines, recommendation systems, and natural
language understanding [24]. However, querying these graphs remains a significant
challenge, especially for complex queries involving multiple entities and relationships. To
address this challenge, this thesis explores if integrating query rewriting with Knowledge
Graph Embeddings (KGEs) could enhance the outcomes of complex query answering.

Query rewriting is used in ontology-based data access to translate complex queries
into simpler and reformulated queries that can be directly executed on the available
data. With this, we can ensure that the initial query maximizes the scope of the query
response. This translation, often facilitated by algorithms such as PerfectRef [14], is
primarily guided by a schema known as a TBox in the Description Logics parlance that
describes the various concepts and relationships in the data. In this work, we investigate
the impact of query rewriting on complex query answering tasks, leveraging a TBox to
guide the query rewriting process to maximize the prediction scope.

Knowledge Graph Embeddings, on the other hand, translate the nodes and relationships
of a KG into a vector space, allowing machine learning methods to predict unknown
facts, find entity similarities, and, importantly, in our context, answer complex queries.
Although KGEs have shown promising results in many of these tasks, their ability to

1

handle complex queries, particularly ones involving multiple entities and relationships,
is still limited [49, 48, 23, 4, 6]. By integrating query rewriting as a preprocessing step
for KGE predictions, we aim to push the boundaries of what can be achieved in complex
query answering.

Several fascinating studies have been conducted in directions similar to ours. For
instance, DeepProbLog by Manhaeve et al. [40] presents a method for distinguishing
between low-level perception and high-level reasoning, simultaneously extracting the
benefits from both aspects. Furthermore, promising research has been done in
representing TBoxes within the embedded space, which unveils exciting possibilities for
enhancing query answering methods [22, 32, 43, 60].

The central hypothesis of our research is that query rewriting, guided by a TBox,
can enhance the effectiveness of query answering amalgamated with KGEs in handling
complex query answering tasks. If successful, this could pave the way for more efficient
and accurate querying of KGs, thereby enhancing their utility in a wide range of
applications.

By the end of this research, we expect to understand the potential and limitations of
integrating query rewriting with KGEs. The insights gained from this study could guide
future research in this area, opening new avenues for enhancing the querying capabilities
of KGs.

1.2 Research Questions

This work is structured around four central research questions to understand and evaluate
the potential of this integration. We first examine how query rewriting can be integrated
with KGEs. We then explore how the selection of different models influences the results
of this integration. The third focus of our research is to compare the performance of
our proposed approach against a traditional KG lookup method. Lastly, we discuss
and interpret the results, providing insights into the strengths and potential areas for
improvement of this approach. Formally, the research questions are:

• How can we integrate query rewriting with KGE to enhance complex query
answering?

• How are the results affected by different KGEs?

2

• How does our integrated query rewriting approach compare to standard KG
lookups?

• How do we interpret and compare our results fairly?

The integration we are asking for in the first research question is covered in chapter 3,
while the remaining research questions will be adressed in chapter 4.

1.3 Thesis Outline

This thesis is separated into chapters presented in the following list.

• Chapter 2 introduces the fundamental concepts related to Description Logics, Query
Rewriting, Knowledge Graphs, Knowledge Graph Embeddings, and the Semantic
Web.

• Chapter 3 details the methodology adopted for integrating queries and embeddings,
comparing performance against traditional KG queries.

• Chapter 4 presents the results of our study, provides a comparative analysis of the
performance of different methods. Here, we answer the research questions.

• Chapter 5 briefly discusses some related works to complex query answering to our
work.

• Chapter 6 concludes the thesis and suggests directions for future research.
• The appendices contain more logic, running time calculation, embedding results,

the test results and query overview for our experiment.

3

Chapter 2

Background

In this chapter, we will explore the core concepts and technologies that underpin our
research. We commence by examining the DL-Lite framework and the concept of query
rewriting, laying a theoretical foundation for our methodological approach. Here, we will
discuss the basics of the DL-Lite framework, and how it facilitates conjunctive queries
and unions of conjunctive queries, leading us to the implementation of query rewriting
using PerfectRef [14].

Subsequently, we turn our attention to the field of knowledge graphs, detailing the
embedding methods that enable a more nuanced representation of complex data. We will
also elucidate the metrics used for evaluating these representations.

Finally, we explore the Semantic Web technologies RDF and OWL, foundational tools
for structuring and interpreting web data. This will involve an examination of RDF and
RDFS, and an exploration of OWL 2.

2.1 DL-Lite Framework and Query Rewriting

This section is devoted to a comprehensive exploration of the DL-Lite Framework,
a variety of query types, and the query reformulation algorithm PerfectRef [14].
These concepts form the bedrock of the discussions to follow; thus, gaining a robust
understanding of them is our primary objective. As we navigate through these topics, a
sound grasp of the fundamental terms of logic can significantly facilitate our journey.
For this purpose, an introductory exposition of logic and its principal terminologies
is presented in appendix A. While this appendix is designed to provide an enriched
understanding, those of us already well-versed in propositional logic and first-order logic
might find it sufficient to proceed directly with this section.

4

2.1.1 Foundations of Description Logic and the DL-Lite Framework

Description Logic (DL) are typically fragments of First Order Logic (FOL) that are
decidable. Though they possess greater expressive power than Propositional Logic, they
fall short in comparison to FOL, as shown in fig. 2.1. Despite this, DLs provides a logical
formalism for the semantic web and facilitate ontology management, as seen with OWL,
a topic we will delve into later. While we borrow the concept of quantifiers from FOL,
their application and interaction with variables differ significantly in DLs.

Figure 2.1: Interplay between DL and FOL. Illustration borrowed from [59].

Our focus narrows to a particular family of DLs, known as the DL-Lite framework.
This framework, introduced by Calvanese et al. in 2007, offers tractable reasoning and
lightweight query answering in Description Logic (DL) [14]. The authors highlight
the unavoidable trade-off within DLs between expressive power and computational
complexity. Despite many languages within DL being hampered by exponential time
reasoning, DL-Lite provides polynomial time solutions for manageable reasoning in
ontologies [14]. This computational efficiency becomes indispensable when working with
large ontologies, a common scenario in web repositories.

DL-Lite comprises several DLs, three of which are particularly relevant: DL-Litecore,
DL-LiteF , and DL-LiteR. The latter two extend the core language. However, in this
thesis, we restrict our focus to DL-LiteR, as DL-LiteF is used for specifying functionality,
a feature absent in our implementation. In the following sections, we will introduce
DL-Litecore and DL-LiteR. From this point forward, when we refer to the DL-Lite
framework, we specifically mean the DL-LiteR profile.

5

Signature

The fundamental elements of the DL-Lite framework include individuals, concepts, and
roles. These elements are used to articulate the domain of interest. For instance, atomic
concepts in DL-Lite equate to unary predicates in FOL, and atomic roles align with binary
predicates. Individuals and constants in DL-Lite correspond to constants in FOL. These
elemental components together form the signature of the DL-Lite framework. These also
correspond closely to FOL constructs, as illustrated in table 2.1 [14].

FOL DL-Lite
Constant Individual
Unary predicate Concepts
Binary predicate Role

Table 2.1: Mapping between FOL and DL-Lite

In DL-Lite, concepts generally begin with a capital letter, such as Father(x) or
Country(x). Contrarily, roles typically start with a lowercase letter, examples being
hasFather(x, y) or directedMovie(x, y). Lastly, individuals are usually denoted in
lowercase, like norway or inception. Another way to identify is the number of terms
in the predicate.

Syntax

DL-Lite syntax is covered by the following four axioms [14]:

B → A | ∃R R→ P | P−

C → B | ¬B E → R | ¬B

Here, A represents an atomic concept such as Father, and P indicates an atomic role
like isFatherOf. The inverse of this role is expressed as P−, for example, hasFather.
The notation B stands for a basic concept, which could be an atomic concept A, or ∃R,
where R is a basic role (either the atomic role P or its inverse property P−). Finally,
C represents a (general) concept, which is either a basic concept or its negation, and E

extends this definition to roles. This notation facilitates the progression from atomic to
basic to general concepts and roles.

6

A DL Knowledge Base (KB) comprises a TBox, T , and an ABox, A, forming a
KB, K = {T ,A}. The TBox delineates how the domain elements are related, formally
codifying the intentional knowledge required for reasoning. To draw a parallel, RDFS
in the Semantic Web context functions as the TBox, outlining how the data elements
interrelate. In DL-Lite, the TBox consists of inclusion assertions of the form B v C,
where C is a general concept, and B is a basic concept. The notation v signifies that B is
subsumed by C, implying every instance of B is also an instance of C. As a side note, the
term inclusion assertion is not much used in the community. The term concept inclusion
is more familiar. However, using the concept inclusion term, we must remember that we
can subsume B, not solely A.

The previous definitions are included in DL-Litecore. However, DL-LiteR also contains
role inclusion, that is, R v E. For instance, the role isaSiblingTo is subsumed by
isRelatedTo. That example shows what DL-LiteR adds to DL-Litecore.

The ABox, A, is what we think of as the dataset. It is a set of facts, or more formally,
the set of atomic concepts assertions and roles assertions. We denote the constants with
lowercase, yielding A(a) for concept assertions and P (a, b) for role assertions. An example
of a concept assertion is Father(bob) and role assertion isRelatedTo(alice,bob).

A KB in DL, K = {T ,A}, is the combination of the ABox and TBox. Note that the
term KB is utilized by several communities and is often contextualized with KGs, which
we will discuss later in this chapter.

Semantics

The semantics of DL-Lite define how its syntax maps onto real-world entities and
relations. In DLs, this usually involves a descriptive semantics approach where an
interpretation I is used. The interpretation I is a pair (∆I , .I), where ∆I is a non-
empty set representing the universe or the set of all possible things, and the function
.I provides a mapping that associates concepts, roles, and individual names to elements
within ∆I .

For DL-LiteR [14], the interpretation works as follows:

• A concept A is interpreted as a subset of ∆I , denoted as AI ⊆ ∆I . For instance,
the concept Father would map to the subset of all entities in the universe that are
fathers.

7

• A role P is interpreted as a subset of the Cartesian product ∆I ×∆I , denoted as
P I ⊆ ∆I ×∆I . For instance, the role isFatherOf would map to the set of all pairs
(x, y) where x is the father of y.

• An individual a is interpreted as a single element in ∆I , denoted as aI ∈ ∆I . For
instance, an individual john would map to a specific entity, John, in the universe.

Semantics lets us determine whether an assertion is true or false under a given
interpretation. For instance, a TBox concept inclusion B v C is true under an
interpretation I if and only if BI ⊆ CI . Similarly, an ABox membership assertion A(a)

is true under an interpretation I if and only if aI ∈ AI . By these means, the semantics
ground the abstract logic in the concrete entities and relations of the real world.

2.1.2 Conjunctive Queries, Disjunctive queries, Unions of Conjunctive
Queries, and EPFO Queries

In the context of DL-Lite, Conjunctive Query (CQ)s borrow their foundational premise
from Conjunctive Query (CQ)s within FOL, as detailed in appendix A. To reiterate in the
context of DL-Lite, a CQ within DL-Lite is characterized by the presence of conjunctions
(∩) and existential quantifiers (∃). The query can be divided into a head and a body,
separated by the symbols ‘:-’ (In FOL:←). The head of the query determines the variable
(or individual) being queried, while the body contains a set of either concepts or roles.
The variable in the head is defined as the distinguished variable and is the placeholder
for entities we want to output from the body of the query.

A Union (∪) of CQs is effectively a set of CQs, where the result is the union of the
responses from each CQs.

Disjunctive queries are queries with a union (∪). They can be rewritten (and
interpreted) to a union of conjunctive queries as well. It holds as long as one of the
conjunctive queries holds. For the conjunctive query, each atom in the query must hold.

Existential Positive First-order (EPFO) logical queries are a step further and
encapsulate queries involving conjunction (∩), disjunction (∪), and existential quantifiers
(∃) [49]. Importantly, any EPFO query can be transformed into a union of CQs.

Consider the EPFO query with conjunction and disjunction:

q(?w):- (ownsCompany(?x, ?w) ∪ worksAt(?y, ?w)) ∩WorkP lace(?w) (2.1)

8

This example can be rewritten into a set of CQs:

q(?w) : − ownsCompany(?x, ?w) ∩WorkP lace(?w) (2.2)

q(?w) : − worksAt(?y, ?w) ∩WorkP lace(?w) (2.3)

The final result is the union of CQ. The query answer is the union of the entities from
each CQ.

In DL-Lite, the previously mentioned query types must be understood within the
framework of a given KB. The atoms within the query must correspond to the concepts
and roles specified within the TBox of the KB. Only atomic concepts and atomic roles
can serve as atoms within a query. Consequently, we symbolize atoms in a CQ in DL-Lite
as:

A(x) or P (x1, x2)

For instance, if a KB contains the concept Father and the role isFatherOf, a potential
CQ is:

q(x) ← Father(x) ∩ isSiblingTo(x, y)

This query would return all individuals who are fathers and have a sibling.

2.1.3 Query Rewriting with PerfectRef

Introduction and motivation

In this section, we explore PerfectRef, a pioneering algorithm for query reformulation
within DLs. Devised by Calvanese et al. [14], PerfectRef rewrites a CQ solely leveraging
TBox information. In our work, we employ PerfectRef to expand the scope of our complex
query answering. However, this algorithm possesses broader applications than usage for
queries, which is beyond the scope of this thesis.

9

A KB can be queried directly for imminent query results. However, using a reasoner
like HermiT [21], we can entail new facts across the entire KB to enrich the query
results. This process, termed reasoning or “entailing new facts”, uncovers new triples
not explicitly stated in the ABox by utilizing connections within the TBox. However,
loading the entire KB into memory can be significantly resource intensive. In contrast,
PerfectRef offers an efficient alternative. It accepts a CQ as input, returning a union of
CQs as output if potential rewritings exist from the TBox. PerfectRef ensures we cover
all entailment implications without expanding the KB or loading it into memory. Instead,
we extend the search scope to achieve query answers akin to full pre-entailment over the
KB, greatly enhancing query answering efficiency.

PerfectRef is particularly beneficial for dynamic KBs, which frequently have additions
to the ABox and TBox. In the context of query answering, it circumvents the need for
a potentially demanding entailment process across the entire KB. Instead, it adeptly
extends the original CQ into a larger union of CQs to include the addition. Thus,
PerfectRef is a handy and robust tool for addressing query responses within evolving
KBs.

It is worth noting, however, that this PerfectRef expansion strategy primarily
contrasts with KB reasoning when it comes to query answering. There are valid reasons
for conducting entailment to uncover new facts in a KB, such as maintaining and updating
its completeness. As such, while PerfectRef provides an efficient alternative for query
answering explicitly, it does not replace the value of traditional entailment processes
within a KB.

Algorithm Overview

In broader terms, the PerfectRef algorithm (fig. 2.2) accepts two inputs, a TBox T and
a CQ, q. It does not allow EPFO or disjunctive queries as input. Upon execution, it
returns a union of conjunctive queries, denoted PR, induced by the information in the
TBox. Each iteration of the algorithm performs two tasks: firstly, it determines whether
an atom is rewritable with another based on the axioms in the TBox, and secondly, it
checks if any pairs of atoms in the query are reducible while retaining their resolution
(i.e. without changing the output scope of the CQ). New entailed queries add to PR,
and the algorithm concludes when no new reformulations exist.

The TBox consists of a set of inclusion assertions or axioms. However, not all inclusion
assertions are accepted by the algorithm. For this reason, we distinguish between Positive

10

Figure 2.2: The PerfectRef Algorithm. Pseudocode image from [14]

Inclusions (PIs) and Negative Inclusions (NIs) [14]. PIs refer to assertions where B1 v B2

or R1 v R2, while NIs refer to inclusion assertions where we have a negated side, i.e.,
B1 v ¬B2 or R1 v ¬R2. It is important to note that PerfectRef is created to manage
only PIs.

In addition to distinguished and non-distinguished variables, we introduce the term
shared variables, which are variables that appear at least twice in the body of the query.
Consequently, a bound variable is defined as a variable that is either distinguished,
shared or a constant. In contrast, an unbound variable is a non-distinguished, non-shared
variable. In the following algorithm breakdown, an unbound variable is represented by
the notation ‘_’.

Algorithm breakdown

The algorithm accepts a TBox, T , and a CQ, q, as its inputs and outputs a union of
CQs, PR, derived from the TBox. The algorithm involves two primary operations per
iteration: identifying if an atom is rewritable based on the TBox and evaluating if it can
reduce any pairs of atoms in the query without compromising its resolution (i.e. without
changing the output scope of the CQ).

The main loop of the algorithm initiates. Firstly, it creates a duplicate of PR, denoted
PR′. It uses the latter set by the end of the iteration to validate if any entailments or

11

reductions did occur during its iteration. If not, the algorithm will terminate. The
criterion of the loop is to continue iterating as long as PR and PR′ are different. Based
on its proof of termination [14], we know that it indeed terminates when these sets are
identical.

After initializing PR′, the algorithm begins its iteration over each CQ within PR.
In the first run of PerfectRef, this is simply the input query, q. Once it selects a query
from PR′, the algorithm invokes its first feature. This feature scans the query for atoms
that can be rewritten according to the TBox, as denoted by ‘(a)’ in fig. 2.2. During
this process, the algorithm iterates over every atom in the query, with the currently
inspected atom represented as g. Subsequently, an iteration over all PIs within the TBox
initiates. For each PI, denoted I, the algorithm assesses whether the current atom g can
be rewritable to the current PI I. This assessment returns boolean values, true or false,
based on the truth of one of the following conditions [14]. It is important to remember
that A(x) represents atomic concepts, while P and P− signify atomic roles.

• A PI I applies to an atom A(x) if I has A on its right-hand side;
• a PI I applies to an atom P (x1, x2) if x2 = _, and the right-hand side of I is ∃P ;
• a PI I applies to an atom P (x1, x2) if x1 = _, and the right-hand side of I is ∃P−;

or
• a PI I applies to an atom P (x1, x2) if I is a role inclusion, and the right-hand side

is either P or P−.

The purpose of these four states is to enable an early termination of the search for a
match, as continuing the search would require a more time and space-consuming process.
However, this step is not strictly necessary since these conditions will be more explicitly
checked in the next phase when a rewriting occurs. Nonetheless, this method benefits the
algorithms efficiency as it halts the process before it attempts to rewrite any mismatches.

Proceeding to the next phase within step (a), we are confident that the current atom g

and the PI I are applicable. Consequently, we require a method that accurately identifies
the states of the inclusion assertion and the atom and performs the correct rewrite. The
following method, gr(g, I), is extracted verbatim from definition 32 in the PerfectRef
paper [14].

The gr(g, I) method accepts an atom g and a PI I as inputs and then rewrites them
based on one of the following scenarios.

12

• If g = A(x) and I = A1 v A, then gr(g, I) = A1(x);
• if g = A(x) and I = ∃P v A, then gr(g, I) = P (x,_);
• if g = A(x) and I = ∃P− v A, then gr(g, I) = P (_, x);
• if g = P (x,_) and I = A v ∃P , then gr(g, I) = A(x);
• if g = P (x,_) and I = ∃P1 v ∃P , then gr(g, I) = P1(x,_);
• if g = P (x,_) and I = ∃P−

1 v ∃P , then gr(g, I) = P1(_, x);
• if g = P (_, x) and I = A v ∃P−, then gr(g, I) = A(x);
• if g = P (_, x) and I = ∃P1 v ∃P−, then gr(g, I) = P1(x,_);
• if g = P (_, x) and I = ∃P−

1 v ∃P−, then gr(g, I) = P1(_, x);
• if g = P (x1, x2) and I = P1 v P , then gr(g, I) = P1(x1, x2);
• if g = P (x1, x2) and I = P−

1 v P−, then gr(g, I) = P1(x1, x2);
• if g = P (x1, x2) and I = P1 v P−, then gr(g, I) = P1(x2, x1); or
• if g = P (x1, x2) and I = P−

1 v P , then gr(g, I) = P1(x2, x1).

In the subsequent line of PerfectRef, q[g/gr(g, I)] represents a new CQ where the
output atom from gr(g, I) replaces the original atom g. This new CQ appends to the
union of CQs, PR. It is important to note that it adds to the set PR, not PR′.

We proceed to the second and final prominent feature of PerfectRef, reduction. In
the following section of the algorithm, denoted ‘(b)’, we remain within the same iteration
of the current query q. It is important to note that potential additions from the previous
step, (a), will not be considered during this iteration, since we are considering queries
from PR′. At step (b), it identifies the set of all possible pairs of atoms in q. For example,
if the query contains two atoms, there will only be one pair; if it has three atoms, there
will be three combinations. This loop processes each pair, with each atom denoted as g1

and g2. The following method, unify, checks whether these atoms are unifiable. That is,
it checks if the atoms represent the same concepts or roles, regardless of their variables.
The occurrence of two identical atoms in a query may seem confusing since writing a
query with two identical atoms is uncommon. However, a previous iteration of q could
have created a duplicate atom through rewriting (step (a)), which will be addressed in
this step.

If the unification test returns True, PerfectRef activates its reduce method. This
method takes atoms g1 and g2 and the query as input. It returns the most general unifier
between the two atoms, replacing these two atoms in the query with a single instance of
that atom while maintaining resolution. If we consider two equal concepts with different

13

variables, if one is bound and the other is not, then the most general unifier is the bound
one.

Consider the concepts g1 = A(x) and g2 = A(y). If both variables x and y are bound,
no reduction occurs. If y is unbound, it reduces to A(x). If both are unbound, it reduces
to A(). If both are equal, g1 = A(x) and g2 = A(x), it reduces to one instance. The
same procedure applies to roles. For P (x1, x2) and P (x3, x4), the most general unifier is
selected between x1 and x3 for the first index, and x2 and x4 for the latter index. After
the reduction, we obtain a new CQ q where g1 and g2 have been reduced. Note that a
non-distinguished shared variable might have been reduced such that it only occurs once,
resulting in an unbound state. Consequently, the new query q undergoes the τ -method,
which updates whether variables are still shared, bound, or unbound after a reduction.
Finally, the new query q is added to the union of CQs, PR (to clarify: not to PR′).

Once the first query iteration completes, the current q within the set PR is designated
as processed, meaning the algorithm will not visit that query again. Since new rewritten
queries might have been introduced during steps (a) and (b), the sets PR and PR′ may
not align, prompting the algorithm to continue execution. This continuation begins by
reassigning PR′ to match the current state of PR. The algorithm, designed only to
process unprocessed queries, will not initiate the next iteration with the same q as the
previous one. Instead, it will select the first rewritten CQ from the preceding iteration,
assessing its potential for additional reformulations or reductions.

The execution of the algorithm persists as long as unprocessed queries exist within
the set PR′. The algorithm halts when it meets two conditions: (1) all queries within
PR′ have been processed, and (2) no new CQs has been added to PR on the last
iteration (hence not adding any new unprocessed rewritings). Thus, the termination
of the algorithm is governed by two interconnected criteria: the absence of unprocessed
queries in PR′, implying the lack of any new additions to the query set on the last
iteration, signified by the equality of PR and PR′. Consequently, when the final query
in PR′ has been processed, and no new queries are introduced, PR will align with PR′,
resulting in the termination of the algorithm. The algorithm concludes by outputting the
final union of CQs, PR.

14

2.2 Knowledge Graphs

This section provides an overview of KGs and explores the process of making predictions
using these structures.

The definition of Knowledge Graph (KG) is not unanimously agreed upon within the
KG community [25]. However, the fundamental components of a KG are well-established;
a KG is, in essence, a graph (a compilation of nodes and edges) that illustrates structured
knowledge [28]. This definition underscores the structural focus of a KG. Similarly,
Krötzsch and Weikum defines KGs as a network of entities, inclusive of their semantic
types, properties, and relationships [31]. An example of a KGs structure is illustrated in
fig. 2.3.

Some definitions of KGs imply familiarity with the concept of KBs from a domain that
will be introduced in a subsequent section of this chapter, the Semantic Web. However,
the distinction between a KB and a KG is somewhat nebulous, leading to occasional (and
incorrect) interchangeability of the terms [28]. This confusion is partly due to the frequent
use of KGs for reasoning within the Semantic Web framework [25]. A definition of KGs
that encapsulates this connection is: “In knowledge representation and reasoning, the KG
is a KB that employs a graph-structured data model or topology for data integration”
[58]. An alternative definition that does not presuppose familiarity with the Semantic
Web is: “We define a KG as a graph of data designed to accumulate and convey knowledge
of the real world, where nodes represent entities of interest and edges represent various
relations between these entities” [25]. For this thesis, we will adhere to the definition that
a KG is a graph-structured data model of a KB.

An RDF triple consists of the following terms:

subject property object .

In the context of KGs, where graph theory is employed, the terminology used for triples
is graph-related:

head relation tail

Given a KG, G = (N ,R, T), where N is a set of entities, R a set of edges, and T a list
of triples, a triple is typically abbreviated to (h, r, t) ∈ T , where h, t ∈ N and r ∈ R.
Furthermore, we highlight the relationships between terms shown in table 2.2.

15

KGs KBs
Entities or nodes Individuals
Relations or edges Roles / Property

(head, relation, tail) (subject, property, object)

Table 2.2: The relationship of terms between KGs and KBs

Figure 2.3: A simple KG. Illustration from [28]

2.2.1 KG Completion

In the field of knowledge representation and reasoning, the term completeness is a data
quality measure that refers to the amount of information present in a particular dataset
[62]. Most KGs are not complete, indicating that they are missing specific facts or
statements. The study area devoted to addressing these missing facts is known as KG
Completion. There are several methods to identify and fill in these missing facts. For
instance, if a KG includes an ontology or schema, it is possible to entail new facts by
employing a reasoner, such as HermiT [21]. This reasoning capability is underscored in
a definition of KGs, which states: “A KG acquires and integrates information into an
ontology and applies a reasoner to derive new knowledge” [20].

Open and Closed World Assumptions

Identifying and adding new facts raises a critical question: how can we ascertain the
truth of these facts? This question bifurcates the approach to KG completion into
two categories: the Open World Assumption (OWA) and the Closed-World Assumption
(CWA).

16

Assume we have an incomplete KG, G ′. Then, we complete G ′ by finding triples
T ′ = {(h, r, t) | h ∈ N , r ∈ R, t ∈ N , (h, r, t) /∈ T } over the incomplete G ′ [50].

Under the CWA, we assume that new T ′ facts are false unless explicitly declared in
the KG. In contrast, the OWA leaves the truth value of new facts undetermined, given
the lack of proof either validating or refuting these facts.

2.2.2 KG Embeddings

In Machine Learning (ML), we find several embedding strategies. We can build automatic
representation data, perform reasoning, and recognize patterns with embeddings. One
type of embedding method is Knowledge Graph Embedding (KGE). The objective of
KGEs is to acquire the depiction of a KG through the process of embedding the graph
with a Vector Space Model (VSM) into lower dimensions [9]. The vector representations
learned by the model can be used for various downstream tasks, such as link prediction,
entity classification, and relation extraction. With KGEs, we embed our KG to a VSM,
representing entities and relations as vectors in a subspace, shown in fig. 2.4.

h t

r h r
t

Figure 2.4: A very simple KGE illustration. Borrowed from Bratanic [12].

There are several methods to embed a KG, and all of them share the same design
goals; They want to capture information patterns regarding entities, relations, domains,
ranges, and hierarchies. It might not be the case that the same entity has the same
vector. It might vary depending on whether it serves as the head or tail in the triple.
Such variances often characterize more complex embedding approaches.

17

An abstract and general KGE pipeline

Building a KGE model is an intricate process that involves a series of steps akin to the
standard procedure of training a machine learning model. First and foremost, we require
a dataset encompassing training, validation, and test sets of triples. An additional step
in this context is the generation of corrupt or negative triples, utilized in the objective
functions as counterparts to correct triples.

Next, all vectors are initialized utilizing an appropriate method, for instance, Xavier
initialization [33]. Although the forward step varies based on the model, a common
strategy involves predicting the remaining part of the triple, given the other two
components. This prediction is then passed through a loss and scoring (or objective)
function, which aims to assign high scores to positive triples and low scores to negative
ones.

Subsequently, the backpropagation process is performed, during which the gradients in
the embedding are optimized using gradient descent as in traditional ML approaches. The
final step involves updating the vectors in light of the most recent gradient adjustments.
This iterative learning process continues across batches and epochs until a final KGE
model is achieved. Standard ML techniques, such as early stopping and regularization
parameters, are incorporated to mitigate the risk of overfitting.

Although KGE models vary in their structure and approach, making it challenging to
classify them into distinct categories, Dai et al. [17] proposes a division into three primary
methodologies:

• translation-based methods;
• tensor-factorization-based methods; and
• neural Network-based methods.

We will adopt this categorization for subsequent discussions of different models. This
thesis will investigate models from each category; namely, TransE [10], DistMult [61],
BoxE [1], RotatE [53], and CompGCN [54]. Before diving into these models, we will
outline the two loss functions utilized in our research.

Loss functions

We utilize two different loss functions in this work. The first is Margin Ranking Loss
(MRL) and the latter Self-adversarial negative sampling loss (NSSALoss).

18

Margin Ranking Loss The Margin Ranking Loss (MRL) function is a frequently used
loss function for embeddings and is employed by all models except BoxE in this thesis.
The MRL function is designed around the concept of a margin, which represents the
minimum distance between the embeddings of a positive triple (i.e., a triple that exists in
the KG) and a negative triple (i.e., a non-existent triple). The objective is to maximize
this margin while simultaneously minimizing the loss [3].

We define L as the MRL function, shown in eq. (2.4).

L(k, k̄) = max
(
0, γ + f(k̄)− f(k)

)
(2.4)

Here, f is a scoring function that computes a similarity score between embeddings, k
denotes positive triples (triples present in the KG), k̄ signifies negative triples (triples not
present in the KG), and γ is the margin. Depending on the specific embedding model in
use, the form of the scoring function, f , can vary. We will discuss each scoring function
for every model later.

During training, the models adjust the embeddings to minimize the sum of the
pairwise hinge loss for all pairs of positive and negative triples in the training data,
shown in eq. (2.5).

min
∑

L(k, k̄), (2.5)

In eq. (2.5), the sum is taken over all pairs of entities and relationships in the training
set, both positive and negative. This function is referred to as the objective function.

NSSALoss The Self-adversarial negative sampling loss (NSSALoss) has a new approach
for drawing negative samples [53]. The traditional negative sampling loss from Mikolov
et al. [41] yields

L = − log σ(γ − dr(h, t))−
n∑

i=1

1

k
log σ(dr(h

′
i, t

′
i)− γ),

where γ is a fixed margin, σ is the sigmoid function, (h′
i, r, t

′
i) is the i-th negative triple

and dr is the scoring function.

19

However, NSSALoss new approach does not uniformly produce negative samples
(determined by 1

k
in the formula) but distributes them by the current embedding model

[53]. It distributes by the fraction formula eq. (2.6).

p(h′
j, r, t

′
j | {(hi, ri, ti)}) =

expαfr(h
′
j, t

′
j)∑

i expαfr(h
′
i, t

′
i)
, (2.6)

In eq. (2.6), α is the temperature of sampling. The formula yields a probability, and
we substitute 1

k
with the probability and treat it as the weight of the negative sampling.

This yields the final NSSALoss formula shown in eq. (2.7).

L = − log σ(γ − dr(h, t))−
n∑

i=1

p(h′
i, r, t

′
i) log σ(dr(h

′
i, t

′
i)− γ). (2.7)

Translation-based methods

One of the categorizes for KGEs is the translation-based approach [17], which generates
vector representations for entities h ∈ N , t ∈ N , and relationships r ∈ R by enforcing
the vector for entity t to be in proximity to the sum of vectors for entities h and r [10].

Figure 2.5: Figure from [17]: (a) TransE, (b) TransH, (c) TransR, (d) TransD, (e)
TransA, (f) KG2E, (g) TransG

In the translation-based “family” of models, we find models like TransH [57], TransD
[26], and TransR [38]. For instance, the first-mentioned adds h and t using hyperplanes.
However, in this thesis, we will use the simplest model, TransE [10].

20

TransE TransE is a KG embedding model proposed in 2013 by Bordes et al. [10]. In
TransE, each entity and relation is represented as a k-dimensional vector, where k is the
dimensionality of the embedding space. The model defines the meaning of a relation as
the translation between the embeddings of the head and tail entities connected by the
relation. In other words, the embedding of the tail entity can be obtained by adding the
embedding of the head entity and the embedding of the relation.

Formally, given a triple (h, r, t) representing a relation r ∈ R between entities h ∈ N
and t ∈ N , the TransE model learns the embedded vector representations h, r, and t

such that:

h+ r ≈ t,

Figure 2.6: TransE

where ‘+’ denotes vector addition, and (h, r, and t) are the vector representations
of (h, r, t). We denote N as the set of entities, R as set of relations, S as a set of correct
triples from the KG. We denote S ′ as the set of corrupt triples shown in eq. (2.8).

S ′
(h,r,t) = {(h′, r, t) | h′ ∈ N} ∪ {(h, r, t′) | t′ ∈ N} (2.8)

The model’s objective is to minimize a MRL that penalizes the model for predicting
incorrect tails for a given head and relation and incorrect heads for a given tail and
relation. The loss function is specified for TransE as shown in eq. (2.9).

L =
∑

(h,r,t)∈S

∑
(h′,r,t′)∈S

max(0, [γ + d(h+ r, t)− d(h′ + r, t′)]) (2.9)

21

In eq. (2.9), ‘max’ denotes the positive part of x, γ > 0 is a margin hyperparameter,
and d is a distance (scoring) function (e.g., L1 or L2 distance) that measures the
dissimilarity between the embeddings of the head, relation, and tail, t and t′ are the
correct and incorrect tails, and h and h′ are the correct and incorrect heads.

In summary, TransE learns embeddings for entities and relations in a KG by modelling
relations as translations between entity embeddings in a low-dimensional vector space.
The model is trained to minimize a MRL that penalizes it for predicting incorrect tails
or heads.

BoxE BoxE, proposed by Abboud et al. in their 2020 paper, “BoxE: A Box Embedding
Model for Knowledge Base Completion” [1], is a unique model that is somewhat
challenging to categorize and is not explicitly discussed in the survey by Dai et al. [17].
Its creators classify BoxE as a “spatio-translational” model.

The distinctiveness of BoxE lies in its geometric representation of entities and
relations. Specifically, it depicts each entity and relation as a box-shaped hyperrectangle
in a d-dimensional Euclidean space [1]. A hyperrectangle signifies each entity, while each
edge is represented as a linear transformation that maps one hyperrectangle onto another,
as demonstrated in fig. 2.7.

Figure 2.7: An illustration from the BoxE paper, presenting a sample BoxE model for
d = 2 [1]: Each entity ei ∈ N has an embedding ei and defines a displacement on other
entities, demonstrated with distinct colors. The binary relation r ∈ R is encoded via the
box embeddings r(1) and r(2). This model generates the Knowledge Graph on r, as shown
on the right.

In BoxE, every entity ei ∈ N is associated with two vectors ei, bi ∈ R. The vector ei

signifies the base position of the entity, depicted as black points in fig. 2.7. The vector
bi, termed as the translational bump vector, is intended to displace the entity’s base
position in a triple, contingent on the other entities. This results in a dynamic entity
representation, formulated as shown in eq. (2.10).

22

ee1, ... , en
i = (ei − bi) +

∑
1≤j≤n

bj (2.10)

For a given triple, both the head and the tail are represented by a hyperrectangle, as
illustrated by r(1), r(2) in fig. 2.7. In the case of a valid triple (e1, r

(1), e4), it receives a
high rank because e

r(e1,e4)
1 = (e1+b4) is a point within the head box, r1, and e

r(e1,e4)
4 =

(e4 + b1) lies within the tail box, r2.

The scoring function in BoxE is defined as the sum of the L-x norms of the distances
across all entity and relation boxes [1], shown in eq. (2.11).

score(r(e1, . . . , en)) =
n∑

i=1

∣∣∣∣∣∣dist(er(e1,...,en)
i , r(i))

∣∣∣∣∣∣
x
. (2.11)

Our work uses the scoring function, eq. (2.11), with the NSSALoss as the objective
function.

Tensor-Factorization-based methods

Tensor-factorization-based methods are a family of ML techniques that use tensor
factorization to learn low-dimensional vector representations of entities and relations.
Moreover, these methods represent the KG as a three-dimensional tensor, where the
two dimensions correspond to the entities, and the third dimension corresponds to the
relations (illustrated in fig. 2.8, where we see the design of RESCAL [17]).

The goal of tensor-factorization-based methods is to decompose the tensor into
matrices (or vectors) representing the entity embeddings, the relation embeddings, and
the interaction between entities and relations, respectively.

We define three orders for tensors for tensor-factorization-based methods

Order 0 Scalar-like [0], [1], [0.5], ...
Order 1 Vector-like [1,0], [1,4,5], [4,3,-2,1], ...

Order 2 Matrix-like
[
1 4
−3 2

]
, ...

Table 2.3: Orders of tensors

23

Figure 2.8: Tensor-Factorization-based methods [17]

DistMult DistMult is a tensor-factorization-based embedding method proposed in
2014 by Yang et al. [61]. This model uses the approach from the RESCAL model [42],
but with some crucial distinctions seen in table 2.4. We denote set a A ∈ Rn×d containing
all entities, and we define the relation as a vector r ∈ Rd. In RESCAL, the relation is
of the second order, while it is restricted to the first order for DistMult, shown in table
2.4 (following the rules per table 2.3). The relation vector is then up-dimensioned by
making it a diagonal matrix. This simplifies the matrix multiplication in RESCAL to a
simple dot product multiplication in DistMult. It is computationally more efficient than
RESCAL due to its limitation to diagonal matrices; however, it is less expressive.

RESCAL DistMult
M r ∈ Rdxd M r = diag(r) | r ∈ Rd

Order 2 Order 1

Table 2.4: The relation matrix Mr

The scoring function of the model is obtained as shown in eq. (2.12).

24

fDistMult(h, r, t) = h>diag(r)t

fDistMult(h, r, t) =
[
h1 h2 . . . hd

]

r1 0 . . . 0

0 r2 . . . 0
...
0 0 . . . rd

t1

t2
...
td

fDistMult(h, r, t) =

d∑
i=1

hiriti

(2.12)

Noteworthy, the head and tail order does not matter in the dot product. The final
scoring function is shown in eq. (2.13).

fDistMult(h, r, t) =
d∑

i=1

hiriti =
d∑

i=1

tirihi. (2.13)

As eq. (2.13) indicates, DistMult loses the ability to express asymmetric relations,
since the order of multiplication does not matter. However, one advantage of DistMult
is that it is computationally efficient, as the dot product can be computed quickly and in
parallel. Another advantage is that the multiplicative interaction assumption allows the
model to capture complex relationships between entities and relations while keeping the
model relatively simple.

RotatE RotatE, proposed in 2019 by Sun et al. [53], is a unique model whose
categorization is subject to debate. A survey on KGs consider it a translation-distance
model [56], whereas the survey adopted for our definitions classifies it as a tensor
factorization-based model [17].

In the RotatE model, the head and tail entities h, t ∈ N are mapped onto the complex
plane for embeddings h, t ∈ Ck. Given a triple (h, r, t), the functional mapping driven by
each relation r ∈ R is defined as an element-wise rotation in the complex plane, from the
head entity h to the tail entity t [53]. This relationship can be mathematically expressed
as shown in eq. (2.14).

t = h ◦ r, where |ri| = 1. (2.14)

25

Figure 2.9: Figure from [53]: Illustrations of TransE and RotatE with only one dimension
of embedding

Here, ◦ denotes the element-wise product. Since r comprises several elements, each
element ri ∈ C. As the length of r is 1, we arrive at the complex formula eiφr,i .
This expression represents a counterclockwise rotation of ri, φr,i, in the complex plane,
implying that the entity embeddings in the complex vector space will solely influence the
rotation phase.

RotatE employs the following scoring function shown in eq. (2.15).

dr(h, t) = ||h ◦ r − t|| (2.15)

This work uses the scoring function eq. (2.15) in conjunction with the MRL objective
function.

Neural Network-based methods

CompGCN CompGCN (Composition-based Graph Convolutional Networks) is a
neural network-based method [17] that combines the power of graph convolutional
networks (GCNs) with the compositional structure of KGs. It was introduced in 2020
in the paper “Composition-based Multi-Relational Graph Convolutional Networks” by
Vashishth et al. [54].

We define a multi-relational graph G = (V ,R, E ,X), where V is the set of vertices,
E is a set of edges, R is a set of relations, and X ∈ R|V|×d0 represents d0-dimensional
input features of each node in the GCN [54] (note that nodes now describe the neural
network layers, and not the graph). Further, we denote the node representation in a single

26

Figure 2.10: Figure and description borrowed from original CompGCN paper [54] :
“Overview of CompGCN. Given node and relation embeddings, CompGCN performs a
composition operation φ(.) over each edge in the neighbourhood of a central node (e.g.
Christopher Nolan above). The composed embeddings are then convolved with specific
filters WO and W I for original and inverse relations, respectively. We omit self-loop
in the diagram for clarity. The message from all the neighbors is then aggregated to get
an updated embedding of the central node. Also, the relation embeddings are transformed
using a separate weight matrix. [54]”

GCN layer as H = f
(
ÂXW

)
, where Â = D̃

− 1
2 (A+I))D̃

− 1
2 is a normalized adjacency

matrix with added self-connections, and D̃ is D̃ii =
∑

j(A+I)ij. The function f denotes
some activation function, and W ∈ Rd0×d1 . Lastly, we define k as the number of layers
in the model, such that for each layer W k ∈ Rdk×dk+1 is the current layer’s parameters,
and the root is H0 = X . Then, we define each layer as

Hk+1 = f
(
ÂHkW k

r

)
. (2.16)

Equation (2.16) can be rewritten into a sum equation, which defines the model’s
scoring equation, shown in eq. (2.17).

hv = f

 ∑
(u,r)∈N (v)

W λ(r)φ(xu, zr)

 (2.17)

In eq. (2.17), N (v) refers to the set of immediate neighbours of node v for its outgoing
edges, and the function φ performs composition of neighbour node u with respect to r.
The purpose of φ is to remove over-parameterization [54].

27

In simpler terms, with CompGCN, entities and relations are represented as node
and edge embeddings in a graph as shown in fig. 2.10. The model applies a series of
graph convolutional layers to learn the embeddings of the nodes and edges. The final
embeddings are combined using a scoring function, and the model is trained to predict
the likelihood of a triple using MRL.

2.2.3 Performance indicators for Knowledge Graph Embeddings

Performance indicators are crucial in evaluating the effectiveness of KGE models.
However, assessing the learned embeddings’ quality can be challenging because the
embeddings cannot be directly observed. Therefore, performance indicators are necessary
to quantitatively measure the accuracy and generalization capability of the embedding
models. The performance indicators help compare different models and identify potential
limitations of the models.

We must consider two parameters before utilizing the performance indicators;
sidedness and types.

Sidedness Sidedness determines how we treat the triple-evaluation in the embedding:
Head - We only consider (?, r, t).
Tail - We only consider (h, r, ?).
Both - We consider both previous operations.

Types We have three types of interpretations,
Optimistic - the rank of a set of triples is the best rank among them.
Pessimistic - the rank of a set of triples is the worst rank among them.
Realistic - the average of the two previous.

Mean Rank MR measures the average rank of the correct object entity or relation
when performing link prediction [3]. For each test triple (h, r, t), the model computes a
score for all possible entities or relations and ranks them in descending order based on
the score. The rank of the correct entity or relation is then averaged across all test triples
to obtain the MR. A lower MR indicates better performance, meaning the correct entity
or relation was ranked higher on average.

28

Formally, MR is defined as shown in eq. (2.18).

MR =
1

|Q|

|Q|∑
i=1

rankQi(h, r, t) (2.18)

Mean Reciprocal Rank The Mean Reciprocal rank is similar to MR, except we limit
the result x, such that x ∈ [0, 1] [3]. We let the correct triple’s rank be the denominator
of the fraction. The MRR formula is shown in eq. (2.19).

MRR =
1

|Q|

|Q|∑
i=1

1

rankQi(h, r, t)
. (2.19)

A correctly top-ranked triple will obtain the score 1

1
= 1. A second-placed correct

triple will get a score 1

2
= 0.5. The final MRR is the average of all predicted triples.

We define the optimistic MRR as o-MRR. This is when we only consider the highest
scoring rank. We will use this metric in this thesis.

Adjusted Mean Rank Index The Adjusted Mean Rank Index (AMRI) measures the
mean rank over the expected mean rank [3]. The expectedness defines the noise-rank.
The Noise-rank is the mean rank if we treat every prediction randomly. Then, we define
this point as 0. The AMRI scales AMRI ∈ [−1, 1]. If the result is positive, it performs
better than noise and worse if negative. Formally, the expected Mean Rank is defined as

E(MR) =
1

2|Q|

|Q|∑
i=1

(|Si|+ 1),

where Si denotes the number of candidate fillers. This yields the final AMRI formula
shown in eq. (2.20).

AMRI = 1− MR− 1

E(MR− 1)
(2.20)

29

Hits@k Hits@k (reads: Hits at k) measures the frequency with which the correct triples
are ranked among the top-k scores generated by the model [3]. This metric is absolute,
meaning it does not consider the knowledge graph’s size. Consequently, it is unsuitable
for direct comparisons between datasets of different sizes. Nevertheless, k where k ∈
{1, 3, 5, 10} is often used as cut-off values. The final frequency is normalized, and we
obtain a fraction in which triple ranks in the top-k.

2.3 Semantic Web Technologies: RDF and OWL

2.3.1 Understanding ontologies

The term ontology holds a broad spectrum of meanings across different domains.
This thesis delves into the interpretation and usage of ontology within computational
ontologies. As per “The Handbook on Ontologies” by Staab and Studer [51], an
ontology is construed as “a specific type of information object or computational artefact”.
Consequently, an ontology is characterized as a model devised to structurally and formally
systemize a set of observations, defining entities and their interrelations. Studer offered
a widely accepted definition of ontologies in 1998: “An ontology is a formal, explicit
specification of a shared conceptualization” [52]. The term ‘conceptualization’ captures
an abstract, simplified representation of the world designed for a specific purpose [51].
This suggests that our conceptualization focuses solely on relevant aspects per our
perception of the world (phenomena). Studer incorporated the term shared into his
definition to mitigate discrepancies arising from individual perceptions. The final part
of his definition, referring to a formal and explicit specification, outlines how this shared
conceptualization should be interpreted to ensure a common understanding, accounting
for potential variations in users’ understanding of terms.

Given the comprehensive nature of ontologies, they serve many research purposes.
Towards the end of the 1990s, the employment of ontologies for the ‘Semantic Web’
gained prominence [8]. The intent was to foster a common lexicon [51] among web
agents, thereby facilitating a shared comprehension of information. An instance of an
ontology could be a workplace, where entities comprise people, projects, and items, and
relations serve to connect these entities.

Nevertheless, another interpretation of ‘ontology’ pertains to the specification of web
resources in the Semantic Web. Consequently, an ontology can be expressed using DLs.
What is known as the TBox in DLs aligns with our use of the term ‘ontology’ [51]. Indeed,
an ontology can correspond to DLs KB.

30

2.3.2 Understanding RDF and RDFS

Tim Berners-Lee [8] introduced the concept of the semantic web in the early stages of
the World Wide Web era. The primary objective of the semantic web was to facilitate
knowledge sharing and enable the analysis and application of this knowledge. The
information was expected to be human-readable while maintaining machine code to
comprehend and process it. This led to the development of semantic markups. In
1999, the World Wide Web Consortium (W3C) recommended the use of the Resource
Description Framework (RDF) as a standard for semantic markup. RDF is not a syntax
but a data model designed to structure information. The syntax was XML, as depicted
in the Semantic Web Stack in fig. 2.11. Today, this original combination is referred to
as RDF/XML, given the emergence of various markups for RDF, such as Turtle, N3,
Manchester Syntax, and others.

Figure 2.11: The Semantic Web

Annotation and meaning

An RDF triple, as defined by [30], takes the form of a subject, property, and object.

subject property object .

A collection of RDF triples is referred to as an RDF Graph. RDF could utilize XML
to represent these triples, resulting in what is known as RDF/XML. The objects in the

31

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>
2 @prefix ex: <http://example.org/>
3

4 ex:Dog rdf:type ex:Animal .

Listing 1: A simple RDF triple.

triple are typically Uniform Resource Identifiers (URIs), which identify resources on the
web [15]. These URIs are frequently abbreviated with prefixes. For instance, as seen in
listing 1, we declare that “a Dog is an Animal”.

In the realm of ontologies, we have RDF Schema (RDFS), which introduces meta-
properties to RDF to facilitate the representation of an ontology [51]. Some of the
most notable metaproperties include rdfs:Resource, rdf:type, rdf:subClassOf, rdfs:Class,
rdf:Property, rdfs:domain, and rdfs:range. These are interconnected via rdf:type and
rdfs:subClassOf, as depicted in fig. 2.12, derived from W3C [13]. It is evident from
fig. 2.12 that everything stems from rdfs:resource. The most prevalent meta-properties
are briefly described in table 2.5. Furthermore, the RDF and RDFS can be explained by

• Signature: The RDF signature consists of the non-logical symbols used to
denote entities, such as URIs and prefixes. For instance, in the RDF statement
ex:Dog rdf:type ex:Animal, ‘ex:Dog’, ‘rdf:type’, and ‘ex:Animal’ are part of the
signature, here ‘ex’ and ‘rdf’ are prefixes, while they also could use the complete
URI <http://www.w3.org/1999/02/22-rdf-syntax-ns>;

• Syntax: The syntax of RDF/XML inherits XML syntax. It dictates the structure
of well-formed triples, where a subject is linked to an object via a property. For
instance, the triple “ex:Dog rdf:type ex:Animal” follows the syntax of RDF, where
‘ex:Dog’ (subject) is linked to ‘ex:Animal’ (object) via ‘rdf:type’ (property); and

• Semantics: The semantics of RDF provide real-world grounding for the triples.
For instance, the triple “ex:Dog rdf:type ex:Animal” conveys the meaning that a
Dog is an instance of an Animal in the real world. The interpretation function maps
entities to the concepts they represent, creating a connection between the abstract
RDF representation and the real-world concepts.

32

Meta Property Description
rdfs:Resource The foundational element in RDFS; all entities stem from it.
rdf:type Designates an entity as an instance of a specific RDFS class or metaproperty.
rdfs:Class Denotes that certain objects from the ontology can be classified as classes.
rdfs:domain Restricts the subject of a triple to a specific class for a given property.
rdfs:range Restricts the object of a triple to a specific class for a given property.
rdfs:subClassOf Declares that the subject class is a subclass of the object class.
rdfs:subPropertyOf Declares that the subject property is a sub-property of the object property.

Table 2.5: Key Meta Properties in RDF Schema (RDFS)

Figure 2.12: RDFS. Illustration from [13]

Listing 2 shows RDFS triples. Here we declare ‘Dog’ and ‘Animal’ as rdfs:Class, and
‘hasPet’ as a pdf:property. We then use rdfs:subClassOf to say that a ‘Dog’ is a subclass
of ‘Animal’. Lastly, we state that if hasPet is used in a triple, the object of that triple
must be an ‘Animal’. The last statement is achieved with rdfs:range.

33

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
3 @prefix ex: <http://example.org/#>
4

5 ex:Dog rdf:type rdfs:Class .
6 ex:Animal rdf:type rdfs:Class .
7 ex:hasPet rdf:type rdf:Property .
8 ex:Dog rdfs:subClassOf ex:Animal .
9 ex:hasPet rdfs:range ex:Animal .

Listing 2: Example of RDFS triples

2.3.3 Exploring OWL

In the semantic stack, positioned above RDFS (refer to fig. 2.11), we find the OWL, an
evolution of the original OWL. OWL extends RDF and RDFS, preserving similar syntax
[51].

While the original version of OWL comprised three sublanguages: OWL Full, OWL
DL, and OWL Lite, OWL 2 adopted a different approach. It introduced profiles, namely
OWL 2 EL, OWL 2 QL, and OWL 2 RL, each designed to cater to specific use cases
and reasoning requirements.

Among these profiles, OWL 2 EL is tailored explicitly for applications necessitating
large ontologies, and it ensures polynomial-time reasoning complexity. The various
profiles of OWL 2 each support a specific set of features and restrictions to cater to
its target use cases. Generally, all OWL 2 profiles generally allow for the use of classes,
properties (both object and data properties), and individuals, offering a more expressive
vocabulary than RDF and RDFS. Our work primarily adopts OWL 2 QL, as it maps
nicely to queries and DL-Lite. It supports inclusion assertions using PerfectRef, which
is often required in our context. OWL 2 RL, by contrast, lack support for existential
quantifiers on the right-hand side of an axiom [55]. Henceforth, whenever we refer to the
acronym OWL, we are explicitly referencing W3C’s OWL 2 QL Profile from December
2012 [55]. Any reference to another profile of OWL 2 or a previous version of OWL will
be explicitly mentioned.

34

Our OWL profile, like other profiles, provides an enriched vocabulary, including the
following:

• Vocabulary Partitioning:

– owl:Class: An extension of rdfs:Class, in OWL it allows the definition of
disjoint and equivalent classes within a new class instance using owl:disjointWith
and owl:equivalentClass. Two predefined classes, owl:Thing and owl:Nothing,
are always present in OWL 2.

– owl:DataProperty: These properties pertain to datatype values.
– owl:ObjectProperty: These properties relate to objects, or instances of classes.

They can use rdfs:domain and rdfs:range, and may have inverse properties,
owl:inverseOf, which are also ObjectProperties. Furthermore, OWL allows
property restrictions via owl:Restriction.

• Property Separation: The sets of object properties and data properties must be
disjoint.

In OWL, ontology definitions consist of axioms and facts. An axiom provides a
statement that is considered to be true within the ontology. For instance, an OWL
axiom could be:

#Example of an \gls{owl} Axiom
ex:hasPet rdfs:range ex:Animal .

On the other hand, facts provide specific details about an individual, including the
classes the individual belongs to, and the properties and values associated with that
individual [45]. Here is an example of an OWL fact:

#Example of an \gls{owl} Fact
ex:theo rdf:type ex:Dog .

This fact indicates that ‘theo’ is an instance of the class ‘Dog’.

To illustrate the transition from RDFS to OWL, refer to fig. 2.13.

Overall, the introduction of OWL has further enhanced RDFS by offering more
expressive capabilities. Different profiles catering to various use cases and reasoning
requirements enable a more nuanced and powerful representation of ontologies. This, in
turn, facilitates the creation of complex and meaningful semantic relationships.

35

Figure 2.13: The Transition from RDFS to OWL. Source: [51]

2.3.4 Relationship between OWL and DL

The association between OWL variants and DLs, especially DL-Lite, constitutes a
cornerstone of semantics within the Semantic Web. Grasping this correlation is crucial
for performing entailment and deriving new statements or triples.

Within the DL context, the axioms set in OWL reflect the TBox, while the OWL’s
facts set aligns with the ABox in DL, which holds specific instances or facts about
individuals.

A pivotal part of this relationship is the mapping of DL concepts and roles to OWL
classes and properties. In DL, a concept parallels an OWL class, while a DL role
corresponds to an OWL property.

When mapping DL to OWL, a DL concept becomes an instance of rdf:type in
OWL. The triple’s object should be the concept (or class) to which the subject belongs.
For example, given a DL concept ‘Animal’ and ‘Dog’ as an instance of ‘Animal’, this
relationship can be depicted in OWL as the triple: ex:Dog rdf:type ex:Animal.

Roles in DL map naturally to properties in OWL. For instance, if there is a role
‘hasPet’ in DL, it can be represented as an OWL property. If ‘john’ has a pet ‘Dog’, this
relationship is expressed in OWL as: ex:john ex:hasPet ex:Dog.

For a more comprehensive look at the terminology mapping, refer to table 2.6. The
mapping of assertions and descriptions are further illustrated in fig. 2.14 and fig. 2.15.

The synergy between OWL and DL, particularly DL-Lite, is advantageous as it
integrates the expressivity of OWL with the reasoning capabilities of DL. DL-Lite is

36

37

Figure 2.14: OWL DL descriptions. Illustration from [51]

Figure 2.15: OWL Axioms and facts. Illustration from [51]

FOL DL OWL
Constant Individual/Constant Individual
Unary Predicate Concept Class
Binary Predicate Role Property

Concept and role assertions Axioms
Membership assertion Fact / instance of class
TBox Set of axioms
ABox Set of facts
Knowledge base = TBox + ABox Knowledge base = Ontology

Table 2.6: Relationship between terms in FOL, OWL and DL

especially suitable for this purpose, as it strikes an optimal balance between expressiveness
and computational efficiency, essential for large-scale KBs typical of the Semantic Web.
We can execute complex inferencing tasks more efficiently by employing the DL-Lite
framework along with OWL. This relationship between DL and OWL is essential for
addressing complex query answering. Together, they form the query rewriting foundation
we use to query the KGEs.

The following chapter will explore how various elements - logic, knowledge graph
embeddings, and semantic web aspects - interweave to form a comprehensive strategy for
complex query answering.

38

Chapter 3

Combining Query Rewriting with
Knowledge Graph Embeddings for
Complex Query Answering

This chapter delves into integrating query rewriting and knowledge graph embeddings,
exploring the potential of combining these two approaches to enhance complex query
answering tasks. We begin by outlining the strategy behind our approach and
explaining the rationale and benefits of combining query rewriting with knowledge graph
embeddings. Next, we provide a detailed description of our pipeline design, illustrating
the components and processes involved in the integration. By the end of this chapter,
we will have implicitly addressed our first research question, shedding light on how query
rewriting can be effectively integrated with knowledge graph embeddings to improve
complex query answering performance.

3.1 Strategy: Why It Works

The primary motivation for introducing query rewriting into complex query answering is
its ability to efficiently handle TBox information without resorting to computationally
expensive methods, such as full ontology entailment to achieve completeness. By
leveraging query rewriting, we can obtain the same query answers without having to
entail new statements in the ontology beforehand, leading to more efficient and scalable
solutions for query answering.

39

One of the critical benefits of query rewriting is that it enables us to handle concepts
in the KB effectively. In a standard KG, triples representing concepts are rare, as they
typically require the property to be rdf:type and the object to be a concept. However,
with a well-defined TBox containing domain and range constraints, we can easily query
for concepts, which are then rewritten into roles. Roles in DL-Lite have a straightforward
mapping to the relations in the set of triples the KGE is trained upon, making roles more
applicable to a conventional KG.

Query rewriting also complements KGEs by enhancing link prediction capabilities.
As we train KGEs models on a set of triples, they inherently excel at predicting missing
information in an incomplete KG. By combining query rewriting with KGEs, we can
ensure that we cover all possible answers by expanding our query over the TBox while
also benefiting from the link prediction capabilities of KGEs.

However, one limitation of our approach lies in the potential for too many rewritten
queries when dealing with extensive TBoxes. As the output of query rewriting can be
enormous for large ontologies, this may result in highly time-consuming predictions, as
each rewritten query must be parsed. Consequently, the current approach is better suited
for smaller TBoxes where the number of rewritten queries is ‘manageable’.

For instance, in the case of the ‘Human’ concept in WikiData, the concept could be
rewritten to thousands of other subclasses, leading to an overwhelming number of queries
to process. This limitation should be considered when applying our method to large-scale
knowledge graphs with complex and extensive TBoxes.

In summary, our approach efficiently handles TBox information through query
rewriting and combines it with the link prediction strengths of KGEs. Query rewriting
allows us to avoid expensive entailment processes to answer a query. It ensures that we
cover all possible answers while making the most of KGEs’ capacity to predict missing
information in the KG. By integrating query rewriting and KGEs, we create a powerful
and efficient solution for complex query answering tasks that address the challenges of
incomplete KGs and effectively handle concepts and roles within the TBox. However, it
is vital to keep in mind the limitations of our approach when dealing with large TBoxes,
as the number of rewritten queries may become a bottleneck for performance.

40

3.2 Pipeline: How it works

In this section, we will delve into the details of our proposed method, providing
a comprehensive explanation of how the different components of our pipeline work
together. We will discuss the implementation of PerfectRef, our query generator, and the
complex query answering pipeline, which collectively contribute to the effectiveness of our
approach. To illustrate the interconnectivity of these components, we will walk through
some example queries, demonstrating how the queries are processed and transformed at
each step of the pipeline. By the end of this section, we will gain a deeper understanding
of the inner workings of our method and how it successfully integrates query rewriting
with KGEs. As a visual aid, we have prepared an abstract schematic representation of
the entire pipeline, depicted in fig. 3.1.

3.2.1 Our Implementation of PerfectRef

As mentioned in section 2.1.3, PerfectRef is an algorithm designed for query reformulation.
In this thesis, we have implemented this algorithm in Python, making it an integral part
of our pipeline1. Before delving into the specifics of our implementation, its features, and
limitations, we will first provide an overview of its dependency library, owlready2 [35].

It is important to note that while discussing our Python implementation, we may
encounter terminological overlaps with previously defined terms. In object-oriented
programming, the terms Classes and objects are commonly used. To avoid confusion,
we will use the term Object when referring to classes in object-oriented programming. In
contrast, class will retain its RDFS definition and remain synonymous with concepts in
DLs.

owlready2

The Python library owlready2 was developed in 2017 by Lamy [34], following his paper
“Owlready: Ontology-oriented programming in Python with automatic classification and
high-level constructs for biomedical ontologies” [34]. Our PerfectRef implementation
relies on this library for three primary purposes:

1https://github.com/AImenes/perfectref

41

https://github.com/AImenes/perfectref

42

Query generator Manual query;
JSON file

Initial query

PerfectRef

Set of rewritten
queries

Model training with
PyKEEN

Full KG
(online API)

Complex query answering pipeline

Tok k entity answers validated
with 4 different lists of

correctness

ABox TBox

Local KG (ABox)

4 different lists of
entities; used for

validating the
correctness of the
predicted query

answers.

<- OR ->

Figure 3.1: Our pipeline for integrating query rewriting with complex query answering
using knowledge graph embeddings

1. Importing an OWL ontology;

2. Extracting axioms from the ontology; and

3. Utilizing its objects for the atoms in the axioms.

Importing an OWL ontology owlready2 is capable of importing ontologies in
RDF/XML, OWL/XML, or NTriples formats, and it automatically detects the format
during import [34]. If an ontology is written in different syntax, it can be serialized to a
compatible format using ontology software like Protégé2 or frameworks such as OWLAPI3

(Java) or RDFLib4 (Python). However, this would have to be a manual process.

Extracting axioms After importing an ontology, owlready2 allows access to all
concepts and roles (referred to as classes and properties in the owlready2 documentation
[36]). Iterating through these elements provides the following information:

For a specific atomic concept A, it yields

• a set of superclasses;
• a set of subclasses;
• a set of restrictions; and
• a set of equivalences.

The restriction pertinent to our study is known as the SOME-restriction [37]. This
restriction implies that an atomic concept A is subsumed by an atomic role P , denoted
as A v ∃P or A v ∃P−.

For a specific atomic role P (property), it yields

• a set of superproperties;
• a set of subproperties;
• a set of domains; and
• a set of ranges.

While the Owlready2 library produces a broader range of axioms beyond those
mentioned, we have chosen to mention those particularly pertinent to our use case.

2https://protege.stanford.edu/
3https://github.com/owlcs/owlapi
4https://github.com/RDFLib/rdflib

43

https://protege.stanford.edu/
https://github.com/owlcs/owlapi
https://github.com/RDFLib/rdflib

Objects PerfectRef utilizes several objects from owlready2, including ‘ThingClass’,
‘ObjectPropertyClass’, ‘Inverse’, and ‘Restriction’. While owlready2 contains other
objects, such as ‘EquivalentClass’ and ‘NotClass’, these objects are not implemented
in our implementation of PerfectRef.

Structure of PerfectRef

Before executing the PerfectRef algorithm, we must prepare and format the data required
for its operation. This preparation process consists of four steps.

1. Importing an ontology: In this step, we import the ontology used as a basis for
query rewriting.

2. Extracting iterable axioms (TBox): After importing the ontology, we extract a set
of iterable axioms (i.e., the TBox) from it. PerfectRef will use these axioms during the
query rewriting process.

3. Query parsing: In this step, we analyze the input query to identify its atoms and
determine the state of the variables (i.e., whether they are distinguished, shared, bound,
or unbound).

4. Synchronizing query with the ontology: Once the query has been parsed, it is
synchronized with the ontology by incorporating the relevant URIs into the parsed query.

Importing the ontology and extracting axioms First, we import the ontology
using owlready2’s owl parser, as shown in listing 3 on the second line. Next, we extract
the axioms from the ontology with the getaxioms method, which iterates over every class
and property in the OWL ontology. For a specific class (atomic concept) A, it extracts
the following axioms:

• a set of Superclasses Asuper. This yields axioms A v As, where As ∈ Asuper;
• a set of Subclasses Asub. This yields axioms As v A, where As ∈ Asub; and
• a set of restrictions. The SOME-restriction [37] on an atomic role P yields A v ∃P

or A v ∃P−.

For a specific property (atomic role) P ,

44

1 def get_entailed_queries(ontology, string):
2 onto = import_ontology(ontology)
3 t_box = get_axioms(onto, True)
4

5 q = parse_query(string)
6 q_head = q.head
7 q_body = q.body
8

9 # get IRI and namespace
10 get_iri_and_namespace(q,onto)
11

12 PR = perfectref(q_body, t_box)
13

14 #Exporting the results
15 print_query(PR, string, q_head)
16 return PR

Listing 3: The main method in the PerfectRef Python Library

• a set of Superproperties Psuper. This yields role inclusion axioms P v Ps, where
Ps ∈ Psuper;

• a set of Subproperties Psub. This yields role inclusion axioms Ps v P , where
Ps ∈ Psub;

• a set of domains Adomain. This yields axioms ∃P v Ad, where Ad ∈ Adomain; and
• a set of ranges Arange. This yields axioms ∃P− v Ar, where Ar ∈ Arange.

We define an object, ‘LogicalAxiom’, which has variables left-hand-side and right-
hand-side. These variables correspond to the two sides of the inclusion assertion B v C.
The axioms extracted, as mentioned earlier, are instances of this object. The method
then returns this set of axioms.

The Query Parser and URI mapping The query parser expects a string as input,
fulfilling the following rules:

• Each variable should start with the symbol ‘?’;
• The circumflex symbol should separate each atom in the query, ‘ˆ’; and
• The head and body of the query should be separated by ‘:-’.

45

We show some examples of parsable queries below.

q(?x) :- Student(?x)

q(?x) :- Student(?x) ∩ hasTutor(?x, ?y)

q(?x) :- Student(?x) ∩ hasTutor(?x, ?_) ∩ hasTutor(?x, ?_)

The parser will recurse down a chain of parsers until it reaches each variable in each
atom and, in the end, return a complete query where the state of each variable is identified.
The structure of objects in this method is shown in fig. 3.2.

Figure 3.2: The objects in our PerfectRef query parser

Synching atoms and URIs After the query has been parsed, obtaining the URIs is
initialized. This maps the written atoms to actual concepts and roles in the KB. If there
are several concepts or roles with the same predicate, it asks from which namespace we
refer. Now, we have the tools to run the actual algorithm.

The Core Logic of PerfectRef Implementation

The primary execution loop of our PerfectRef implementation strictly adheres to the
workflow drafted in section 2.1.3. This subsection clarifies the variations from the main

46

algorithmic loop as laid out in the pseudo-code. It is crucial to remember that the
algorithm identifies a query rewriting if an atom within the query is applicable to the
TBox, or if any group of atoms in the query is reducible, as depicted in fig. 3.3.

Set of axioms

Query string

Parsed query, q.

Is atom in q
rewritable?

Are any sets of atoms
in q reducible?

If yes, add to union of
conjunctive queries,

PR

PerfectRef

TBox

OWLReady2Query
Parser

Set of rewritten queries
(union of conjunctive queries)

Figure 3.3: PerfectRef Implementation simplified overview

Our implementation introduces several enhancements to optimize the algorithm’s
execution time. An example is including a check to determine if a CQ has been processed
previously. This check, illustrated in listing 4, prevents the algorithm from redundantly
re-evaluating the same CQ each time PerfectRef reiterates its execution.

Moreover, we have implemented a mechanism to ascertain whether a newly entailed
(in this context, reformulated) CQ already exists within PerfectRef, as shown in listing 5.
This mechanism effectively eliminates duplicates from the resulting union of CQs.

In section 2.1.3, we introduced the method τ , which updates the variables post-
execution of the reduce method. In our implementation, the τ function is incorporated
within the ‘reduce’ method, streamlining the process.

Finally, to further optimize the performance, we have integrated an optional
restriction that sets an upper limit on the number of rewritings.

47

48

1

2 [...]
3

4 #For every query in the list
5 for q in PR_prime:
6

7 #Check if the algorithm already processes the query
8 if not q.is_processed():
9

10 [...]
11

Listing 4: Snippet from the implementation of PerfectRef where the atom checks if is
already processed

1

2 [...]
3

4 #Construct the new query
5 new_q = new_query(q, g, PI)
6

7 #If the query is not already entailed from previous processes, nor it is None
8 if not (new_q in PR or new_q is None):
9

10 # Add a new query to PR
11 PR.append(new_q)
12

13 [...]
14

Listing 5: Snippet from the implementation of PerfectRef where duplicates are identified

For a comprehensive technical exploration of our PerfectRef implementation, please
refer to the GitHub repository5. The running time of our implementation is explained in
appendix B.

3.2.2 Query answering from a Knowledge Graph Embedding

Although PerfectRef can handle query reformulations, a pipeline for query answering is
still required. Therefore, we have developed a framework that can answer concepts and
roles based on a specific set of parameters that we will introduce in the following section.

Training embeddings; PyKEEN

PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python library for training and
evaluating KGE models, developed by Ali et al. [3]. It comprehensively implements
various embedding techniques and allows easy experimentation and model comparison.
PyKEEN includes a variety of pre-implemented embedding models, including all five
models we utilize in this work (TransE, DistMult, BoxE, RotatE, CompGCN). It also
includes a range of evaluation metrics, like MR, MRR, AMRI and Hits@k. PyKEEN is
built on top of the PyTorch deep learning framework [44] and is designed to be scalable
and efficient. It also includes tools for hyperparameter tuning, early stopping, and saving
and loading models.

Answering a CQ within Our Framework

To effectively handle and answer CQs within our framework, we have developed a
dedicated pipeline that classifies queries based on their structure and a variable hierarchy.

5https://github.com/AImenes/perfectref

49

https://github.com/AImenes/perfectref

Classification of Query Structures A query within this framework can be categorized
as a projection, intersection, union, or combination, namely a EPFO query. Recall that
PerfectRef only handles CQs. Therefore, this framework will reformulate disjunctive
queries to a union of CQs, which PerfectRef understand.

We specifically employ nine standardized query structures that have been defined in
related complex query answering literature [49, 48, 23, 4, 6].

These nine distinct query structures are graphically represented in fig. 3.4. Each
structure is denoted using a shorthand notation involving letters and a number. The
letters represent the type of operation — (p)rojection, (i)ntersection, or (u)nion — while
the number signifies the count of atoms in the query. For instance, ‘2p’ signifies a
projection query containing two atoms.

It should be noted that ‘1p’ is a distinct case. Although it technically denotes a
projection operation, it effectively involves just one atom and, thus, applies equally to
intersection and union operations. It implies a single-atom prediction.

1p 2p 3p

2i 3i pi

ip up 2u

Figure 3.4: Queries using (p)rojection, (i)ntersection, and (u)nion

For efficiency, we have established specific terms and practices within our framework.
We have restricted our attention to variables only, excluding constants. This stipulation
allows many predictions for different query structures to commence with the same
prediction. For example, consider the ‘2p’ and ‘3p’ queries:

2p : q(?w) : −hasFather(?x, ?y) ∩ hasMother(?y, ?w) (3.1)

3p : q(?w) : −hasFather(?x, ?y) ∩ hasFather(?y, ?z) ∩ hasSibling(?z, ?w) (3.2)

50

The first atom prediction for both queries would be identical in this scenario. We term
such instances as base cases. By our definition, a base case is either the first occurring
role in a query (meaning it should have an unbound variable), where either the head or
tail is the target, or it is a concept prediction.

Our pipeline initially identifies all base cases and carries out these predictions.
Subsequently, it performs projection, intersection, or union (disjunction) operations using
base case predictions. This approach substantially reduces time complexity by avoiding a
multitude of overlapping predictions. However, this method is not applicable if the query
contains constants.

In the following paragraphs, we elaborate on the detailed pipeline for handling
projection, intersection, and disjunction operations.

Determining the Variable Hierarchy The previous section introduced nine standard
query structures. However, it is essential to note that our framework is not confined to
these nine structures. It is possible to execute more complex structures, such as ‘9p’
or ‘pipi’, and so forth. However, for the sake of the thesis, we are only handling the
previously defined structures.

q(?w) :- hasFather(?x, ?y) ^ hasSibling(?y,?w) ^ hasMother(?z, ?w)

w

y

x

z

Figure 3.5: Variable hierarchy in a ‘pi’-query

Before launching any prediction pipelines or identifying base case predictions, our
system establishes the variables’ hierarchy within the query. This process enables the
identification of the base cases relevant to the current query.

If we represent the variables in a query as a tree—where the root node is the
distinguished variable and the leaves are the unbound variables, as the ‘pi’-query
illustrates in red in fig. 3.5—a base case is identified as any atom role containing an
unbound variable (colored red) or any concept that houses this variable.

51

Without an unbound variable within the query, the system iterates strictly based on
depth.

We construct a tree structure for each query for the variables and store the depth
alongside each variable. The distinguished variable at the root position is assigned a
depth of zero.

This method determines the order in which predictions will be made. This implies
the query does not need to be pre-ordered, as this hierarchy will identify the prediction
sequence. Taking the example in fig. 3.5, the system will first predict ‘hasFather’ with
the tail as the target and ‘hasMother’ with the tail as the target, as they contain a
leaf variable (unbound) and are classified as base cases. Subsequently, it will predict
the next atom with the ‘highest‘ depth (i.e. farthest from the distinguished variable; the
higher the number, the greater the depth). This logic ensures that our final prediction will
always be the concluding prediction, regardless of whether the last step is an intersection,
projection, or union.

This approach allows us to handle any query structure. We always identify the base
cases (leaves) and work our way up according to the depth until we reach the distinguished
variable. The specifics of how intersections, projections, and disjunctions will be processed
along this journey will be discussed in the following sections.

Base Case Prediction Pipeline We define a base case in our context as either:

1. a concept; or

2. a role featuring exactly one unbound variable.

We employ a global set of base cases, denoted as B. This set is saved to a pickle
file in Python, eliminating the need to recompute base case predictions each time the
framework is run. We use the variable hierarchy to identify the base case atoms in the
current query. If these predictions exist in B, the corresponding entity outputs and their
scores are retrieved from B. If they do not exist, we generate this base case prediction
and store the result in B. The base case prediction can either be a concept or a role:

52

Concepts A concept prediction is only feasible in our framework if the ABox also
includes the property ‘rdf:type’. Although having triples with ‘rdf:type’ in the ABox is
not typically the case, with query rewriting, our queries can include concepts: the queries
can be rewritten into a role prediction by leveraging domain and range axioms, and use
the role pipeline described in the subsequent paragraphs.

In the rare case of an ABox that includes the RDF Schema (usually, the TBox and
ABox are defined as distinct sets), our framework handles it as follows:

1. We first establish set X as a collection of instances associated with the desired
atomic concept A.

2. If X = ∅, no prediction is made for the desired concept, and we return empty.

3. Otherwise, we proceed to define:

Xhead = { (h, r, t) | (h, r, t) ∈ W | h ∈ X }

Xtail = { (h, r, t) | (h, r, t) ∈ W | t ∈ X }

4. For Heads,

4.1. We define Rhead = { r | (h, r, t) ∈ Xhead }.

4.2. We execute a top-k-link prediction using the embedding, with the tail as the
target. The ensuing set is denoted as P . That is, P = pred(Xhead, Rhead, _).

4.3. Leveraging the instances in P and relations Rhead, we perform a top-k-link
prediction to derive a set of heads H, i.e., H = pred(_ , Rhead, P).

5. For Tails,

5.1. We define Rtail = { r | (h, r, t) ∈ Xtail }.

5.2. We execute a top-k-link prediction using the embedding, with the head as the
target. The ensuing set is denoted as P . That is, P = pred(_ , Rtail, Xtail).

5.3. Leveraging the instances in P and relations Rtail, we perform a top-k-link
prediction to derive a set of tails T , i.e., H = pred(P,Rtail, _).

6. As a form of verification (or filter), we conduct a final triple-scoring prediction to
obtain scores on the already constructed triples. We denote Z = (H ∪ T). In
practice, we construct triples in the format (h, rdf:type, A) | h ∈ Z, predict
their score and sort them accordingly.

53

7. The resulting entities and their corresponding scores are stored in the base-case
python dictionary.

Roles A base case role prediction occurs when it contains an unbound variable or an
atom with a variable with the maximum depth value (i.e., farthest from the distinguished
variable).

1. We define the current role atom, r = P .

2. Using r, we construct the sets:

Xhead = { h | (h, r, t) ∈ W | r = P }

Xtail = { t | (h, r, t) ∈ W | r = P }

3. For roles ∃x | P (x,_),

3.1. We execute a top-k-link prediction H = pred(_ , r,Xtail).

3.2. The top-k entities and their scores are stored in the base case set, B.

4. For roles ∃x | P (_, x),

4.1. We execute a top-k-link prediction T = pred(Xhead, r, _).

4.2. The top-k entities and their scores are stored in the base case set, B.

5. For roles ∃x | (∃y(P (x, y))),

5.1. We perform both steps above, merging the results and scores.

5.2. The top-k entities and their scores are stored in the base case set, B.

It is noteworthy that a role base case can exist in two distinct states. It can either
have the head as the target or the tail. Each of these instances is a separate prediction,
meaning a base case prediction for a role could have multiple states in the global base
case set, B.

54

General Remarks In the global base case set, B, merely storing the prediction
results is insufficient. Technically, this set operates as a dictionary where the key is the
comprehensive parameter data for the current prediction. In other words, the model and
its parameters, the cut-off prediction value, and the target in the triple serve as the key,
whereas the base case prediction entities and their corresponding scores are the values of
that instance in the dictionary. This distinction is crucial because scoring varies across
different models, and scores are not directly comparable between models. The scores only
provide valid comparisons within predictions executed with identical configurations.

Projection Pipeline For each query, we construct a new Python dictionary. The keys
of this dictionary are the variables, and their associated values are the entities and their
scores. After predicting or extracting all the base cases in the current query from the base
case set, B, we map these results to their corresponding variable names in the dictionary.
As we traverse the atoms in the query, this dictionary allows us to identify when we are
performing a projection:

1. If the current atom is a role and both variables are bound, we execute a projection.
We consult the variable hierarchy to determine which variable is closest to the
distinguished variable, thereby establishing the target variable for this specific atom.

2. With this information, we can ascertain the input for the prediction. As all base
cases are covered, if we query the input variable in the dictionary, it should yield
a set of entities. We use this set of entities as the input for predicting the target
variable.

3. We store the top-k predicted entities in the dictionary, using the target variable as
the key. Once the newly predicted entities are identified, we update their scores by
applying a T-norm to the score of the input entity and the new prediction. This
operation involves multiplying the scores, as they always lie between 0 and 1 due
to applying the Sigmoid function for score calibration.

Note: If the current atom is a concept, it cannot be used for projections.

Intersection Pipeline When we encounter an atom with a target variable for which
entities already exist in the dictionary, we need to perform an intersection:

55

1. We first identify the entities associated with the variable and outputs of the current
atom prediction.

2. For entities that exist in both, we compute the T-norm between them, which
involves multiplying their scores in our framework.

3. The scores are calibrated using the Sigmoid function, ensuring they always lie
between 0 and 1. Entities not in the new prediction results and the dictionary
are discarded (as per definition, they do not intersect).

Disjunction Pipeline For disjunctions, the crucial steps occur prior to the prediction
pipeline, making a disjunctive query into a union of glsplcq:

1. Each disjunctive query, like ‘up’ and ‘2u’, can be rewritten into a union of CQs.
Therefore, we identify a query as a disjunction and then rewrite it as a union of
CQs involving only projections and intersections.

2. Finally, we merge the results from these CQs by computing the T-conorm between
the entities and their scores.

3. If we have overlapping entities output from the CQs, the T-conorm preserves the
one with the highest score, our chosen T-conorm.

Validation Procedure After prediction for all the atoms in a query is finished, we
reference our dictionary for the distinguished variable. The linked entities and their
corresponding scores provide the query response.

Four lists used for
validation of results

Local KG Lookup with
initial query (L / I)

Online (Full) KG
Lookup with initial

query (O / I)

Local KG with
rewritings and

predictions (L / R)

Online (Full) KG with
rewritings and

predictions (O / R)

Figure 3.6: The four different lists used for validation of the correctness of predicted
entities

Our processing pipeline consistently outputs predictions yielding the top k entity
answers. To assess the accuracy and validate the correctness of these predictions, we

56

rely on four distinct lists of entities achieved from standard KG for our respective query.
These lists are

• entity answers using our initial query to query the dataset our embeddings is trained
upon (L/I);

• entity answers using our union of rewritten queries to query the dataset our
embeddings is trained upon (L/R);

• entities obtained from a KG lookup to the full, online dataset, unfamiliar to the
embedding models, using the initial query (O/I); and

• entities sourced from a KG lookup to the full, online dataset, unfamiliar to the
embedding models, using the rewritten queries (O/R).

The four lists, depicted in fig. 3.6, allow us to verify if the predicted entities appear in
these lists. If so, the prediction is validated correctly for that entity. When mentioning
validation of the results using these lists, the term validation should not be confused with
the validation phase used for finding our preferred parameters for our KGE models.

In this work, we used the entirety of our datasets for model training; thus, we use
the online versions of our datasets to assess prediction accuracy. When we use our local
version for validation (L/I and L/R), we essentially compare our results against facts
known to the model during training. This intentional choice helps answer our research
question regarding how our approach fares against a standard KG lookup. A standard KG
lookup generates a list of entities, making it challenging to compare against a framework
incorporating query rewriting and KGE predictions. Hence, when evaluating results with
L/I, we establish a baseline score for a specific query response. In other words, we have
verified the correctness of the prediction against the entities achieved from a standard
KG lookup. To assess the impact of rewriting, we will contrast the scores obtained using
L/R for validation against the results evaluated using L/I.

Similarly, we can compare the online KG results by juxtaposing O/R with O/I to
perceive the influence of rewriting. When gauging the impact of KGE predictions, we
compare online KG validation against our local dataset validations, i.e., L/I against
O/I and L/R against O/R. As our embedding models do not see the online KG during
training, they are used to ascertain if any predicted entities are accurately predicted
without being recognized as correct by our local datasets. This is an alternate approach
to the more traditional approach in complex query answering training; training our model
on a subset of the test set. A vital advantage of this approach is the maximization of
dataset utilization during training.

57

The predicted entities are ranked according to their final score, adjusted through T-
norms and T-conorms throughout the pipeline. With a quantifiable baseline score, we
can technically compare O/R against L/I to ascertain any improvements. Similarly, we
can compare L/I to L/R and O/I to O/R to determine the effect of rewriting and L/I to
O/I and L/R to O/R to evaluate the impact of predictions.

The validation serves a CWA approach. If the online KGs do not acknowledge
an entity prediction, it will be validated as false. However, one could also treat the
results with an OWA approach, but then it would be more challenging to measure the
improvements by introducing query rewriting.

Final Analysis Each pipeline processes a single query. Therefore, if a query has three
rewritings, the entire procedure is executed four times - once for the original and three
times for the rewritings. Upon completing all rewriting predictions, their respective
output prediction data frames are consolidated (i.e. unified) into a single data frame. In
cases where several rewritings have predicted an entity, only the highest score (T-conorm)
is retained. Remember that for the written results data frame, we utilize lists L/R and
O/R for validation, while for the initial query results, we employ lists L/I and O/I.

Each query iteration records metrics for L/I, L/R, O/I, and O/R. Additionally, we
calculate the Hits@k and o-MRR for all four entity lists used for validation.

For queries that do not offer any possible rewritings, the rewritten validation lists will
equate to the list from the initial query. Conversely, when potential rewritings exist, these
lists may be more extensive, and the final consolidated list for validation can pinpoint
additional entities. This feature is the core goal of this work. The data from the initial
query is also found in the rewritten list of entities; thus, ideally, the rewritten entity list
used for validation should always be equal to or larger than the set from rewritings, and
it should ideally not contain any entities that the rewritten set does not encompass.

One of the principal strengths of this framework lies in PerfectRef’s capability to
simplify a query in accordance with the TBox. For instance, a ‘3i’ query could be reduced
to a ‘2i’ query if permitted by the TBox. The results would still contribute to the ‘3i’
score in such instances, as the initial query is a ‘3i’ structure. This ability to employ the
TBox to decomplexify a query arguably is one of the most significant advantages of the
framework.

58

The Query Generator

The query generator is the last essential component of our implementation. This
generator produces random queries to facilitate a fair framework assessment, making
cherry-picking queries impossible. However, generating these random queries is more
complex than it may appear due to the inherent structure and distribution of entities
and relations in the ABox. Most ontologies do not exhibit a uniform distribution of
entities and relations, leading to the strength of the vector representations of relationships
and entities varying in the embedded space. Furthermore, the ABox may not contain
corresponding data for specific queries, rendering them non-answerable. Our query
generator employs a frequency-based approach to be more fair towards the ABox.

The generator starts by conducting a frequency count across the ABox. These
frequencies serve as probability weights (a general example in fig. 3.7) in subsequent
query generation, ensuring the queries reflect the actual content of the ABox accurately.
In cases where the TBox contains additional roles and concepts not present in the ABox,
the generator assigns them a frequency count of one, such that they still can be randomly
picked upon generation. This designation guarantees their potential inclusion in the
generated queries while still giving preference to more frequently occurring entities and
relations in the ontology.

r1 r2 r3 c1 c2 c3

10

15

20

25

30

15

25

10

30

20

15

Fr
eq

ue
nc

y
C

ou
nt

Frequency Counts in the ABox

Figure 3.7: A general example of a frequency count of 3 relations and 3 concepts.

A key point to note with our generator is excluding RDFS meta properties from
the query generation process. The rationale for this is twofold. Firstly, using these
properties would require the query object to be a concept or another restricted rather

59

than an individual, complicating the query generation process. Secondly, these meta
properties often do not contribute meaningfully to the query, as they could be a meta
property for comments, aliases or other such properties.

The decision to develop our query generator stems from limitations we identified in
existing generators, such as the one used by Query2Box6. This generator is designed to
work with individuals, not concepts, and does not consider the TBox in query generation.
As a result, it falls short in scenarios where the TBox plays a crucial role. However, this
query generator will ensure it does not generate a query with no answers, which is a
favourable attribute that might be our query generators biggest weakness.

It is crucial to acknowledge that while our query generator addresses the limitations
mentioned earlier and offers the advantage of impartiality, it has drawbacks. The most
significant challenge arises from the random selection of atoms based on their weights,
which can lead to generating nonsensical, or degenerated, queries, particularly for longer
queries.

For example, consider the following query

q(?w):-Plant(?w) ∩ hasChild(?x, ?w).

This query could have been generated due to a purely random selection using our
weighted distribution. Although syntactically valid, it may not yield local and online KG
hits. This query is an example of a degenerated query that combines unrelated concepts
or roles, resulting in no corresponding data in the ABox. Unfortunately, our query
generator lacks a mechanism to identify and prevent the generation of such unanswerable
or degenerated queries, a feature found in the generator used by Query2Box. This
limitation was detected in the final stages of the thesis timeline, leaving no room for
the development of a viable solution.

Despite these limitations, our query generator serves as a valuable and unbiased tool
for generating a diverse range of queries that accurately reflect the content of the ABox.
It is designed to produce as many queries as the user desires for each predefined structure,
providing significant flexibility and adaptability in query generation. However, it is
essential to note that the performance of the query generator is highly dependent on

6https://github.com/snap-stanford/KGReasoning

60

https://github.com/snap-stanford/KGReasoning

the nature of the ontology it is applied. While it may perform efficiently with smaller
TBoxes, it might struggle with larger ones as the probability of degeneration increases.
Additionally, the structure of the ontology can also influence the performance, with more
‘clique-like’ ontologies likely reducing the generation of degenerated queries.

Therefore, it is fair to assume that the query generator’s performance will vary based
on the ontology used, and detailed performance analysis should consider this factor.
Nonetheless, the generator’s ability to produce a wide range of queries, coupled with its
unbiased approach, makes it a significant contribution to the work and will still assist in
answering our research questions unbiasedly.

3.2.3 Comprehensive Examples

To offer a holistic understanding of our implementation, we have chosen a subset of
WikiData that focuses explicitly on family relations. Further details regarding this
dataset will be explored in the forthcoming result chapter.

Our objective here is to highlight the dual advantages offered by the processes of
rewriting and knowledge graph embedding predictions.

The first example demonstrates a scenario where rewriting improves the result. In
contrast, the second instance illustrates how new facts can be discerned using KGE
models. Subsequently, we present an example where both techniques - rewriting and
prediction - work in unison to discover new entities.

Illustrating benefit of rewriting

We select an intersection query of two atoms for this demonstration, represented by the
structure ‘2i’. Test case extracted from GitHub7.

q(?w) :- Father(?w) ∩ hasChild(?w,?x)

We base our expectations for this run on an analysis of the ontology. We note
that the concept Father only exists in the TBox and not in the ABox, while the
property hasFather resides in the ABox. The TBox contains an ‘rdfs:range’ statement:

7https://github.com/AImenes/query-answering-and-embeddings/blob/main/testcases/001/
queries/family/k-1/every_structure/family-RotatE-dim192-epoch24-k100-2i-1.json

61

https://github.com/AImenes/query-answering-and-embeddings/blob/main/testcases/001/queries/family/k-1/every_structure/family-RotatE-dim192-epoch24-k100-2i-1.json
https://github.com/AImenes/query-answering-and-embeddings/blob/main/testcases/001/queries/family/k-1/every_structure/family-RotatE-dim192-epoch24-k100-2i-1.json

hasFather rdfs:range Father. We anticipate that the rewriting process will yield a
result considering this information.

This CQ could have been manually entered or generated using the query generator,
as shown in fig. 3.1. We initiate the experiment by inserting the query into a JSON file
encoded for WikiData, selecting the manual approach.

1 {
2 "2i": [
3 "q(?w) :- <https://www.wikidata.org/wiki/Q7565>(?w) ^

<https://www.wikidata.org/prop/P40>(?w,?y)"↪→

4]
5 }

Our framework then performs a query (KG lookup) towards our local dataset using the
initial query to obtain the list of entities that are valid responses (L/I). As anticipated,
it returns an empty set since Q7565 (Father concept) is absent in our local WikiData
subset ontology.

The next step involves rewriting using our PerfectRef implementation 8. As expected,
the rewriting process substitutes the Father concept with the hasFather role using the
‘rdfs:range’ axiom from the TBox. The rewriting results are as follows:

1 {
2 “original”:
3 "q(?w) :- Q7565(?w)^P40(?w,?x)",
4 “entailed”:
5 "q(?w) :- P22(?_,?w)^P40(?w,?x)"
6 }

Before proceeding, the query may seem redundant. If the first atom was Parent
instead of Father, it could have also been reduced by our TBox, eliminating the need for
the second atom. However, in the context of our TBox for this example, the redundancy
is not detectable due to insufficient description. This missed reduction highlights the
importance of a well-designed TBox.

8https://github.com/AImenes/PerfectRef

62

https://github.com/AImenes/PerfectRef

Following the rewriting step, each CQ in the union of CQs undergoes a KG lookup
(in this case, only one), generating a consolidated list of entities where the entities satisfy
at least one (union) of the rewritten CQs. Our framework produces a list of entities by
taking the intersection between the output of hasFather (where the tail is the target) and
hasChild (where the head is the target). This result forms the list of entities that will
be used for validating the rewritten queries (L/R). We now have L/I and L/R validation
lists.

We then transition to our complex query answering pipeline for predicting entities on
the queries using KGEs. For this example, we employ a trained RotatE model on this
ABox. The pipeline allows for ‘in-situ’ training if we lack a trained model.

In this example, the initial query returns an empty set as it lacks any candidates
to predict the concept since our example ontology does not contain any RDFS meta-
properties in the ABox, a common trait in most ontologies. However, we establish the
variable hierarchy with the rewritten query, illustrated in fig. 3.8.

w

_ y

Figure 3.8: Variable hierarchy for the rewritten query

Both atoms are defined as base cases because they contain an unbound variable. The
system predicts the ‘P22’ property with the tail as the target and then predicts ‘P22’
with the head as the target, storing both results in our base case dictionary. Since both
atoms have the same depth to the variable farthest from the distinguished variable, the
order in the query remains unchanged.

The pipeline activates, selecting ‘P22’ with the target tail and checking in the base
case dictionary for its existence. It does exist, and these entities are stored in a separate
dictionary mapped to the distinguished variable ‘?w’. The next atom is selected and
found in the base case dictionary. These entities are selected and stored in the dictionary
mapped to ?w. However, entities from the previous atom already exist here, triggering
the intersection pipeline. Both lists of entities are compared, and identical entities are

63

identified and stored. The T-norm (multiplication in this case) is performed on the
respective scores.

With all atoms traversed, we focus on the dictionary mapping variables to entities,
selecting the Python DataFrame for the distinguished variable. We validate these final
prediction entities with L/I and L/R. If the predicted entity is in the list, it returns true
for that validation column in the DataFrame. The L/I validation yields our baseline
score. Subsequently, we turn to the online KG version of WikiData. The framework
automatically generates a SPARQL query based on the initial query and the set of
rewritten queries. We receive two lists of entities from the online KG, which we can
use to validate novel predictions unknown to our local datasets and embedding models.
These lists are O/I and O/R, respectively. If the predicted entities exist in these lists, it
returns true for that entity in their validation columns. This process repeats for every
entity in the prediction, and we add a corresponding boolean column to the predicted
entities. In the end, each entity has been validated by the four lists. The validation with
L/I forms our baseline score, which we will compare with the other validation methods
later.

This process is repeated for every CQ in our union of CQs (i.e. the set of rewritten
queries). In this example, there is only one rewritten query. The final entity result for
this initial query is a data frame merged result for all rewritings, including the initial
query. The final entity prediction results are shown in table 3.1. Note that the Origin
column identifies from which query (initial or rewritten) the entity was derived. If an
entity has been the answer to several rewritings, it only stores the highest-scoring one.
The score column is the T-norm between the scores of each atom in this specific case.

Interestingly, the initial query also returns false on the online KG (O/I). This is
confirmed by querying the online API9 for ?x rdf:type wd:Q7565, which only returns
four entities across the entire WikiData KG, being

• wd:Q30639365;
• wd:Q117228538;
• wd:Q117711034; and
• wd:Q118267469.

Therefore, all the validation using O/I yields no hits.
9https://query.wikidata.org/

64

http://www.wikidata.org/entity/Q30639365
http://www.wikidata.org/entity/Q117228538
http://www.wikidata.org/entity/Q117711034
http://www.wikidata.org/entity/Q118267469
https://query.wikidata.org/

Entity Label Origin Score L/I L/R O/I O/R
Q22020049 q(?w) :- P22(?x,?w) ∩ P40(?w,?y) 0.3275 false true false true
Q280794 q(?w) :- P22(?x,?w) ∩ P40(?w,?y) 0.3268 false true false true
Q6680740 q(?w) :- P22(?x,?w) ∩ P40(?w,?y) 0.3161 false true false true
Q2426687 q(?w) :- P22(?x,?w) ∩ P40(?w,?y) 0.3128 false true false true
Q934662 q(?w) :- P22(?x,?w) ∩ P40(?w,?y) 0.3078 false true false true
Q637214 q(?w) :- P22(?x,?w) ∩ P40(?w,?y) 0.3078 false true false true
Q723703 q(?w) :- P22(?x,?w) ∩ P40(?w,?y) 0.3029 false true false true
Q4797766 q(?w) :- P22(?x,?w) ∩ P40(?w,?y) 0.2983 false true false true
Q1136276 q(?w) :- P22(?x,?w) ∩ P40(?w,?y) 0.2971 false true false true
Q3157533 q(?w) :- P22(?x,?w) ∩ P40(?w,?y) 0.2967 false true false true
Q2714574 q(?w) :- P22(?x,?w) ∩ P40(?w,?y) 0.2965 false true false true
Q721491 q(?w) :- P22(?x,?w) ∩ P40(?w,?y) 0.2954 false true false true
Q488312 q(?w) :- P22(?x,?w) ∩ P40(?w,?y) 0.2951 false true false true

Q12886175 q(?w) :- P22(?x,?w) ∩ P40(?w,?y) 0.2920 false true false true
Q827448 q(?w) :- P22(?x,?w) ∩ P40(?w,?y) 0.2873 false true false true

Q21062428 q(?w) :- P22(?x,?w) ∩ P40(?w,?y) 0.2861 false true false true
Q3434614 q(?w) :- P22(?x,?w) ∩ P40(?w,?y) 0.2860 false true false true
Q2381218 q(?w) :- P22(?x,?w) ∩ P40(?w,?y) 0.2859 false true false true

Table 3.1: The entity output of the query example: Q7565(?w) ∩ P40(?w,?y). Results
from GitHub.

Finally, we calculate Hits@k and the o-MRR using our four validation lists: L/I, L/R,
O/I, and O/R. For this demonstration, we will use Hits@3. As we have a hit in the first
position, the results are as follows:

1 {
2 "hits@3":
3 {
4 "local_kg_hit_rewriting": 1.0,
5 "online_kg_hit_rewriting": 1.0,
6 "local_kg_hit_original": 0.0,
7 "online_kg_hit_original": 0.0
8 },
9 "mrr":

10 {
11 "local_kg_hit_rewriting": 1.0,
12 "online_kg_hit_rewriting": 1.0,
13 "local_kg_hit_original": 0,
14 "online_kg_hit_original": 0

65

https://www.wikidata.org/wiki/Q22020049
https://www.wikidata.org/wiki/Q280794
https://www.wikidata.org/wiki/Q6680740
https://www.wikidata.org/wiki/Q2426687
https://www.wikidata.org/wiki/Q934662
https://www.wikidata.org/wiki/Q637214
https://www.wikidata.org/wiki/Q723703
https://www.wikidata.org/wiki/Q4797766
https://www.wikidata.org/wiki/Q1136276
https://www.wikidata.org/wiki/Q3157533
https://www.wikidata.org/wiki/Q2714574
https://www.wikidata.org/wiki/Q721491
https://www.wikidata.org/wiki/Q488312
https://www.wikidata.org/wiki/Q12886175
https://www.wikidata.org/wiki/Q827448
https://www.wikidata.org/wiki/Q21062428
https://www.wikidata.org/wiki/Q3434614
https://www.wikidata.org/wiki/Q2381218

15 }
16 }

Our hypothesis was correct: the framework could not answer the initial query could,
but with query rewriting, we obtained correct prediction results validated by L/R and
the list of entities from the online version of WikiData O/R using the rewritten queries.

It is important to note that our metrics are not typically calculated for a single query,
as we have done here. These metrics are averaged across every initial query in a test
case to achieve an o-MRR where the denominator is more significant than one. The
same argument applies to Hits@k. This approach ensures that our evaluation is robust,
considering the system’s performance on a range of queries rather than a single instance.

Illustrating benefit of KGE predictions

The previous example demonstrated how rewriting aids in discovering entities that satisfy
the initial query. In this section, we illustrate an instance where the KGE predicts entities
that may not be accurate based on the local KG lookup but are correct when validated
with the online KG. Recall that using the list of entities achieved from the online KG is
our method for verifying novel predictions by our embedding models.

To maintain simplicity, we have chosen a 1-predicate (‘1p’) query structure:
q(?w) :- hasMother(?x,?w)

This query is one of the 25 queries automatically generated by our query generator,
which we will further discuss in the following chapter. The mentioned results are a subset
extracted from these ‘1p’ queries.

1 {
2 "1p": [
3 ...
4 "q(?w) :- <https://www.wikidata.org/prop/P25>(?x,?w)",
5 ...
6]
7 }

66

In this scenario, the query has a singular rewriting to the concept Mother(?w)
(corresponding to WikiData id: Q7560). Notably, no entities in the ABox are bound to
this concept, implying that the rewriting step does not contribute to finding the answer.

The example undergoes the same pipeline process as the previous comprehensive
example. Summarized, we perform rewriting, do our four KG lookups to achieve our
list of entities used for validation, and match these against the prediction done by our
embedding models. If an entity is present in a list from the online KG (O/I and O/R)
and not in our local KG (L/I and L/R), then we have successfully pinpointed a correct
entity prediction which the model was previously unaware of being true. As illustrated
in table 3.3, we find four entities in the output list for this particular query. Complete
query prediction results for this query can be found in our GitHub repository10.

Entity Label Origin Score L/I L/R O/I O/R
Q1040807 q(?w) :- P25(?x,?w) 0.0058709825 false false true true
Q104772 q(?w) :- P25(?x,?w) 0.0058709825 false false true true

Q10315513 q(?w) :- P25(?x,?w) 0.0058709825 false false true true
Q1010767 q(?w) :- P25(?x,?w) 0.0058709825 false false true true

Table 3.3: The entity output of the query example: q(?w) :- P25(?x,?w)

Illustrating benefit of both

In this example, we examine a query where both prediction and rewriting are instrumental
in identifying new entity answers to a query. This example is drawn from one of the 25
queries that will be discussed in the forthcoming test results11.

The automatically generated query in question is denoted by

1 {
2 "1p": [
3 ...
4 "q(?w) :- <https://www.wikidata.org/wiki/Q7566>(?w)",
5 ...
6]
7 }

10https://github.com/AImenes/query-answering-and-embeddings/blob/main/testcases/001/
queries/family/k-25/every_structure/family-TransE-dim192-epoch24-k100-1p-7.json

11https://github.com/AImenes/query-answering-and-embeddings/blob/main/testcases/001/
queries/family/k-25/every_structure/family-TransE-dim192-epoch24-k100-1p-8.json

67

https://www.wikidata.org/wiki/Q1040807
https://www.wikidata.org/wiki/Q104772
https://www.wikidata.org/wiki/Q10315513
https://www.wikidata.org/wiki/Q1010767
https://github.com/AImenes/query-answering-and-embeddings/blob/main/testcases/001/queries/family/k-25/every_structure/family-TransE-dim192-epoch24-k100-1p-7.json
https://github.com/AImenes/query-answering-and-embeddings/blob/main/testcases/001/queries/family/k-25/every_structure/family-TransE-dim192-epoch24-k100-1p-7.json
https://github.com/AImenes/query-answering-and-embeddings/blob/main/testcases/001/queries/family/k-25/every_structure/family-TransE-dim192-epoch24-k100-1p-8.json
https://github.com/AImenes/query-answering-and-embeddings/blob/main/testcases/001/queries/family/k-25/every_structure/family-TransE-dim192-epoch24-k100-1p-8.json

which is mapped to Parent(?w).

Initially, PerfectRef rewrites this query into four distinct CQs:

1 {
2 "original":
3 "q(?w) :- Q7566(?w)",
4 "entailed":
5 "q(?w) :- Q7565(?w)",
6 "q(?w) :- Q7560(?w)",
7 "q(?w) :- P22(?_,?w)",
8 "q(?w) :- P25(?_,?w)",
9 }

Two rewritings pertain to Q7560 (Mother) and Q7565 (Father). These concepts do
not have any ‘rdf:type’ in our ABox, so their predictions will invariably return empty.
Nonetheless, utilizing the rdfs:range axioms in our TBox, we obtain rewriting to hasFather
(P22) and hasMother(P25).

Each of the rewritten queries is sequentially processed through the framework. For
the initial query, no entities are found in L/I. The online KG only identifies a single entity
of type ‘Parent’, as depicted in fig. 3.9, yielding a very short O/I list.

In the final two rewrites, denoted by ‘P22’ and ‘P25’, we obtain hits from both the
L/R and the O/R lists. Shown in table 3.4, 11 of those entities from the query prediction
are uniquely recognized solely by the online KG via the rewritten queries (O/R). This
recognization signifies the simultaneous utilization of prediction and rewriting, thus
exemplifying the advantages of our approach.

68

69

Figure 3.9: Using the API to query for a parent. It returns one entity.

Entity Label Origin Score L/I L/R O/I O/R
Q1012807 q(?w) :- P22(?_,?w) 0.0125520453 false false false true
Q101731 q(?w) :- P22(?_,?w) 0.0125520453 false false false true
Q1014890 q(?w) :- P22(?_,?w) 0.0125520453 false false false true
Q10066 q(?w) :- P22(?_,?w) 0.0125520453 false false false true
Q101137 q(?w) :- P22(?_,?w) 0.0125520453 false false false true
Q1000957 q(?w) :- P22(?_,?w) 0.0125520453 false false false true
Q100246 q(?w) :- P22(?_,?w) 0.0125520453 false false false true
Q1040807 q(?w) :- P25(?_,?w) 0.0058709825 false false false true
Q104772 q(?w) :- P25(?_,?w) 0.0058709825 false false false true
Q10305226 q(?w) :- P25(?_,?w) 0.0058709825 false false false true
Q10315513 q(?w) :- P25(?_,?w) 0.0058709825 false false false true

Table 3.4: Updated entity output of the query example: q(?w) :- Q7566(?w).

https://www.wikidata.org/wiki/Q1012807
https://www.wikidata.org/wiki/Q101731
https://www.wikidata.org/wiki/Q1014890
https://www.wikidata.org/wiki/Q10066
https://www.wikidata.org/wiki/Q101137
https://www.wikidata.org/wiki/Q1000957
https://www.wikidata.org/wiki/Q100246
https://www.wikidata.org/wiki/Q1040807
https://www.wikidata.org/wiki/Q104772
https://www.wikidata.org/wiki/Q10305226
https://www.wikidata.org/wiki/Q10315513

Chapter 4

Results

This chapter will present the experimental results and address the research questions
raised in the introduction chapter.

4.1 Datasets

This study employs two distinct datasets containing ontologies. During the selection
phase, our choices were constrained to datasets that explicitly included an ABox and a
TBox. Having a TBox is a crucial requirement to utilize the PerfectRef tool effectively.
We elected to incorporate an extract from DBPedia, named DBPedia15k, and an extract
focused on family relations from WikiData. Both ontologies fulfil the prerequisite of
containing clearly defined ABoxes and TBoxes, aligning with the structural requirements
of our study. However, despite satisfying the basic requirements, these two chosen sets
exhibit significant differences, which we will analyze and discuss in the following sections.
This comparative analysis aims to elucidate the specific characteristics of each dataset
and how these differences may influence the outcomes of our study.

For validation purposes in this study, we employ local and online KGs. The term
local refers to the DBPedia15k and the Family dataset. These are the specific datasets
on which our models have been trained. On the other hand, by ‘online KGs’, we refer
to the full-scale DBPedia1 and Wikidata2 resources, both of which are readily accessible
for SPARQL queries through their respective APIs. Notably, these online KGs are not
utilized for training the models. Instead, they serve a crucial role in the validation phase,
where they help determine the ability of our models to predict novel facts.

1{https://dbpedia.org/sparql
2https://query.wikidata.org/

70

https://dbpedia.org/sparql
https://query.wikidata.org/

4.1.1 DBPedia15k: Overview and Characteristics

The first dataset employed in this study is DBPedia15k, a subset of the expansive
DBPedia knowledge graph, extracted from the work “Injecting Background Knowledge
into Embedding Models for Predictive Tasks on Knowledge Graphs” [18] and its
accompanying Git repository3 [47]. The aforementioned is a slightly modified version
compared to the original DBPedia15k. The original DBPedia15k was introduced by Liu
et al. [39] and can be found on GitHub4. The changes in the modified version resemble
the addition of TBox information [18].

The full DBPedia KG assimilates data from Wikipedia into an impressive 27 million
triples. The online API is used for validation alongside DBPedia15k as our local KG.

DBPedia15k was curated as a manageable sample of the larger DBPedia, encompassing
12 800 entities, 1178 concepts and 278 roles, thereby resulting in a total of 180,000 triples.
Uniquely, this dataset’s TBox is separated into separate text files, providing ease of access
and organization. We manually converted these files into an OWL ontology for the Python
library owlready2 to parse.

Unique Features and Challenges

An intriguing feature of the DBPedia15k dataset is the inclusion of ‘rdf:type’ triples
within the ABox, which has implications for model training. The KGEs, in this case,
treats the meta-properties in the ABox like any other property, thereby blurring the lines
between standard properties and meta-properties in the embedded space. As a result,
the ‘rdf:type’ meta-property occurs in more than half of the triple set in the DBPedia15k
dataset, as seen in table 4.1.

The DBPedia15k ontology’s TBox comprises 1178 concepts and 279 roles, but their
distribution is not uniform. We observe that 110 out of 279 relations connect to fewer
than ten triples, while the remaining relations appear thousands of times (refer table 4.1).
This skewed distribution hampers the learning phase for the embedded vectors of many
relations in the ontology, reducing their significance during backpropagation and weight
optimization in model training.

3https://github.com/Keehl-Mihael/TransROWL-HRS
4https://github.com/mniepert/mmkb/tree/master/DB15K

71

https://github.com/Keehl-Mihael/TransROWL-HRS
https://github.com/mniepert/mmkb/tree/master/DB15K

Table 4.1: The most used properties in the family knowledge graph

IRI of properties Frequency count
http://www.w3.org/1999/02/22-rdf-syntax-ns#type 97,231
http://dbpedia.org/ontology/starring 7,122
http://dbpedia.org/ontology/birthPlace 6,117
http://dbpedia.org/ontology/genre 4,968
http://www.w3.org/2000/01/rdf-schema#seeAlso 4,321
http://dbpedia.org/ontology/country 2,890
http://dbpedia.org/ontology/occupation 2,805
http://dbpedia.org/ontology/associatedMusicalArtist 2,791
http://dbpedia.org/ontology/associatedBand 2,791
http://dbpedia.org/ontology/recordLabel 2,704
http://dbpedia.org/ontology/instrument 2,704
http://dbpedia.org/ontology/distributor 2,156
http://dbpedia.org/ontology/type 2,131
… …

Concerning concepts, only 29 out of the 1178 TBox concepts are in use (see table 4.2),
leaving 1149 concepts untrained in the selected prediction model. Interestingly, several
concepts share entities, suggesting that rewriting might have a limited impact on
this dataset. Moreover, it may rewrite into other concepts that lack an embedded
representation.

Limitations

Certain limitations regarding the DBPedia15k dataset should be noted, which contains
several logical inconsistencies. Examples include erroneous triples such as (Manchester
United, rdf:type, (Economist), and (DiscoveryChannel, rdf:type, Island). These inaccuracies
improperly categorize Manchester United FC as an economist and the Discovery Channel
as an island. Such instances are quite prevalent throughout the dataset. It is crucial to
underscore that these inconsistencies were not introduced in the modified version of the
DBPedia15k but existed within the original DBPedia15k itself. The root cause behind
these logical errors remains unclear, and we did not identify them until the analysis
of our results began. The study also utilized the online DBPedia API5 for validation
of predictions, which is the entire DBPedia version. This version is free from these
inconsistencies, as both the aforementioned erroneous examples return false through the
KG API. Therefore, the disparities between the DBPedia15k dataset and the extended
DBPedia version available online should be considered when evaluating our findings.

5https://dbpedia.org/sparql

72

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/ontology/starring
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/ontology/genre
http://www.w3.org/2000/01/rdf-schema#seeAlso
http://dbpedia.org/ontology/country
http://dbpedia.org/ontology/occupation
http://dbpedia.org/ontology/associatedMusicalArtist
http://dbpedia.org/ontology/associatedBand
http://dbpedia.org/ontology/recordLabel
http://dbpedia.org/ontology/instrument
http://dbpedia.org/ontology/distributor
http://dbpedia.org/ontology/type
http://dbpedia.org/resource/Manchester_United_F.C.
http://dbpedia.org/resource/Manchester_United_F.C.
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/resource/Economist
http://dbpedia.org/resource/Discovery_Channel
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://dbpedia.org/resource/Island
https://dbpedia.org/sparql

73

Table 4.2: Frequency count of concepts in the knowledge graph

IRI of concepts Frequency count
http://dbpedia.org/ontology/Island 15990
http://dbpedia.org/ontology/Place 7638
http://dbpedia.org/ontology/PopulatedPlace 7638
http://www.wikidata.org/entity/Q486972 7638
http://schema.org/Place 7638
http://dbpedia.org/ontology/Settlement 7638
http://dbpedia.org/ontology/Location 7638
NaturalPerson 2976
Agent 2976
http://xmlns.com/foaf/0.1/Person 2976
http://www.wikidata.org/entity/Q5 2976
http://www.wikidata.org/entity/Q215627 2976
http://dbpedia.org/ontology/Person 2976
http://schema.org/Person 2976
http://dbpedia.org/ontology/Agent 2976
http://dbpedia.org/ontology/Economist 2896
http://dbpedia.org/ontology/Governor 2472
http://dbpedia.org/ontology/Politician 1148
http://www.wikidata.org/entity/Q82955 1148
http://dbpedia.org/ontology/Species 1040
http://dbpedia.org/ontology/Planet 972
http://dbpedia.org/ontology/Architect 560
http://dbpedia.org/ontology/CelestialBody 458
http://dbpedia.org/ontology/Actor 246
http://dbpedia.org/ontology/Member_of_Congress 226
http://dbpedia.org/ontology/Astronaut 144
http://www.wikidata.org/entity/Q483501 122
http://dbpedia.org/ontology/Artist 122
http://dbpedia.org/ontology/Athlete 51

http://dbpedia.org/ontology/Island
http://dbpedia.org/ontology/Place
http://dbpedia.org/ontology/PopulatedPlace
http://www.wikidata.org/entity/Q486972
http://schema.org/Place
http://dbpedia.org/ontology/Settlement
http://dbpedia.org/ontology/Location
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#NaturalPerson
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#Agent
http://xmlns.com/foaf/0.1/Person
http://www.wikidata.org/entity/Q5
http://www.wikidata.org/entity/Q215627
http://dbpedia.org/ontology/Person
http://schema.org/Person
http://dbpedia.org/ontology/Agent
http://dbpedia.org/ontology/Economist
http://dbpedia.org/ontology/Governor
http://dbpedia.org/ontology/Politician
http://www.wikidata.org/entity/Q82955
http://dbpedia.org/ontology/Species
http://dbpedia.org/ontology/Planet
http://dbpedia.org/ontology/Architect
http://dbpedia.org/ontology/CelestialBody
http://dbpedia.org/ontology/Actor
http://dbpedia.org/ontology/Member_of_Congress
http://dbpedia.org/ontology/Astronaut
http://www.wikidata.org/entity/Q483501
http://dbpedia.org/ontology/Artist
http://dbpedia.org/ontology/Athlete

Advantages and Selection Rationale

Despite its flaws, DBPedia15k has particular strengths. It utilizes a wide TBox, enabling
the exploration of PerfectRef’s potential. Several queries are reducible and rewritable,
demonstrating the reality of large ontologies where numerous URIs represent the same
concept (synonyms). Moreover, its associated online API provides us access to the total
DBPedia KG, which we use to validate our predictions’ correctness in DBPedia15k.

The reason DBPedia15k was selected was its potential to train over TBoxes within
a reasonable time frame. However, its distribution weakness and triple statement errors
were undetected during selection. While considering these limitations when analyzing
the results is critical, exploring this dataset remains a valuable learning experience.

4.1.2 The Family Dataset: A Wikidata5M Extract

The second dataset utilized in this study referred to as “The Family Dataset”, was
introduced by Jøsang et al. in a research work on rule mining in KGs [27]. This dataset
represents a selection from the Wikidata5M KG, which initially comprises over 20 million
triples, 5 million entities, and 800 properties.

Unique Features and Challenges

In contrast to DBPedia15k, The Family Dataset does not include any RDFS or OWL
statements within its ABox. The distribution of triples, as demonstrated in table 4.4, is
more evenly spread across this dataset. The extraction contains approximately 183,000
triples across seven properties. All URIs in the Wikidata extract are codified, with the
corresponding mapping provided in table 4.3.

In addition to the local Family Dataset, this study also interfaces with the total
WikiData Online KG via their API6. While the Family Dataset is a valid subset of the
online KG, it does not include as many triples as the online KG, as will be illustrated in
the results section.

6https://query.wikidata.org/

74

https://query.wikidata.org/

75

Table 4.3: TBox mapping in the Family Dataset

IRI IDs Mapping
Concept https://www.wikidata.org/wiki/Q5 Human

https://www.wikidata.org/wiki/Q1196129 Spouse
https://www.wikidata.org/wiki/Q31184 Sibling
https://www.wikidata.org/wiki/Q10861465 Brother
https://www.wikidata.org/wiki/Q595094 Sister
https://www.wikidata.org/wiki/Q7566 Parent
https://www.wikidata.org/wiki/Q7560 Mother
https://www.wikidata.org/wiki/Q7565 Father
https://www.wikidata.org/wiki/Q7569 Child
https://www.wikidata.org/wiki/Q177232 Son
https://www.wikidata.org/wiki/Q308194 Daughter

Role https://www.wikidata.org/prop/P1038 relative
https://www.wikidata.org/prop/P26 spouse
https://www.wikidata.org/prop/P8810 hasParent
https://www.wikidata.org/prop/P22 hasFather
https://www.wikidata.org/prop/P25 hasMother
https://www.wikidata.org/prop/P40 hasChild
https://www.wikidata.org/prop/P3373 hasSibling

Table 4.4: The most used properties in Family Dataset

IRI of properties Frequency count
https://www.wikidata.org/prop/P3373 75654
https://www.wikidata.org/prop/P40 64983
https://www.wikidata.org/prop/P22 49973
https://www.wikidata.org/prop/P26 46561
https://www.wikidata.org/prop/P25 16408
https://www.wikidata.org/prop/P1038 4656

https://www.wikidata.org/wiki/Q5
https://www.wikidata.org/wiki/Q1196129
https://www.wikidata.org/wiki/Q31184
https://www.wikidata.org/wiki/Q10861465
https://www.wikidata.org/wiki/Q595094
https://www.wikidata.org/wiki/Q7566
https://www.wikidata.org/wiki/Q7560
https://www.wikidata.org/wiki/Q7565
https://www.wikidata.org/wiki/Q7569
https://www.wikidata.org/wiki/Q177232
https://www.wikidata.org/wiki/Q308194
https://www.wikidata.org/prop/P1038
https://www.wikidata.org/prop/P26
https://www.wikidata.org/prop/P8810
https://www.wikidata.org/prop/P22
https://www.wikidata.org/prop/P25
https://www.wikidata.org/prop/P40
https://www.wikidata.org/prop/P3373
https://www.wikidata.org/prop/P3373
https://www.wikidata.org/prop/P40
https://www.wikidata.org/prop/P22
https://www.wikidata.org/prop/P26
https://www.wikidata.org/prop/P25
https://www.wikidata.org/prop/P1038

Limitations

The Family Dataset includes only six properties related to family relations, encompassing
116,000 distinct entities. Approximately 90,000 of these entities appear in fewer than five
triples. In contrast, the entity “Chulalongkorn, King of Siam”, is featured in over 150
triples due to his 76 children and 68 wives.

Advantages and Selection Rationale

Each property in this dataset has been trained with thousands of entities. The dataset
maintains a high correlation between the local and online WikiData versions. The TBox
presented in table 4.3, a subset of the WikiData TBox, includes some family relations.
In contrast to DBPedia15k, this dataset is more ‘clique-like’, meaning that the random
queries generated have a much higher chance of validity.

We selected this dataset because of the convenience of handling family relations and
the strong assumption that this dataset could demonstrate the benefit of query rewriting.

76

https://www.wikidata.org/wiki/Q158861

4.2 Research questions

Until now, we have delineated the details of our framework and the datasets we utilized,
and now we present extensive testing results on the framework. We have examined
whether query rewriting enhances the process of answering complex queries and improves
results compared with a standard KG lookup. The conclusions drawn from these
investigations will be leveraged in this section to respond to the research questions raised
in the introduction chapter. We will present and succinctly interpret the results to answer
these research questions thoroughly.

4.2.1 Question 1: How can we integrate query rewriting with
KGEs to enhance complex query answering?

We provide a detailed answer to this research question by considering chapter 3 as a whole,
which thoroughly examines the methodologies for effectively combining query rewriting
and KGEs to enhance complex query answering. We depicted a schematic representation
of this approach in fig. 3.1. A summarization of the framework follows.

Our framework utilizes the DL-Lite algorithm, PerfectRef, that employs a TBox to
elaborate our initial query into a union of CQs, designated as PR. Subsequently, we
compile four lists of entities for validation purposes: the entities from the initial query
(L/I), those from all rewritten queries (L/R), the entities from the initial query fetched
from the online API (O/I), and finally, the entities from the rewritten queries fetched
from the online API (O/R).

We process each rewritten query from PR and the initial query through our complex
query answering pipeline. This process produces link predictions as potential answers
to the queries, and performs intersections and projections according to the query
structures. Our KGE models complete these predictions, trained on the Family dataset
and DBPedia15k for this research - both subsets of larger KGs. To validate the accuracy
of the predicted entity answers and calculate metrics, we validate our prediction results
with the previously mentioned four entity lists. An improved score with the rewritten
set suggests that the rewriting has enhanced the results. If the online list of entities
yields a better score than the local list, our model has correctly predicted novel facts. We
make this inference because the online versions contain the complete KG of WikiData
and DBPedia. The initial query (L/I) validation forms the baseline score. We use the

77

other three lists of entities to validate the predictions, and we can identify the impact
of rewriting and predictions by comparing its score to the baseline by tracking any
improvements or deteriorations in the scores. By having these four validation outcomes,
we can answer whether query rewriting with KGE predictions improves the results.

In this study, we have chosen a simple yet pragmatic approach to construct a complex
query pipeline. We aim to demonstrate the potential of merging query rewriting with
KGEs for complex query answering. To the best of our knowledge, no other research
has investigated this unique combination for complex query answering at the time of this
study’s publication.

4.2.2 Experiment introduction

This section outlines the experimental setup designed to address the remaining research
questions. The crux of this research lies in evaluating the efficacy of our novel
approach, blending query rewriting and knowledge graph embeddings (KGEs), compared
to a standard KG lookup. Our complex query answering framework and PerfectRef
implementation are available on GitHub7.

We begin by investigating the influence of various KGE models on the results,
pinpointing the most efficient model for each dataset. Following this, we tackle the
primary research question of this thesis: does our approach improve upon a standard
KG lookup? Subsequently, we deliberate on how to interpret the results objectively. A
hypothesis complements each research question, followed by a presentation of results and
a discussion.

Using our tailored query generator, we spawned 25 distinct EPFO queries for each
query structure, illustrated in fig. 3.4. We employed PerfectRef to rewrite each query,
capping the number of rewritten variants at 500 per query. This limit was necessitated
by the potential of some lengthier and broader queries in DBPedia to be restructured
into more than 10,000 distinct variations.

We processed each of the 25 queries through our pipeline and calculated Hits@3
and o-MRR metrics for each instance using our four entity lists. Their application in
similar research guided our choice of these metrics [49, 48, 23, 4, 6]. Specifically, we
selected Hits@3 due to its immunity to fluctuations in ontology size, providing a stable

7https://github.com/AImenes/

78

https://github.com/AImenes/

performance measure. On the other hand, including the o-MRR metric offers insights
into performance scenarios where hits fall outside the top three positions, even though
it may vary with the size of the ontology. We then computed the average for these
metrics across all 25 queries for each query structure. The evaluation utilized the top
configurations of all five models across both datasets, yielding ten results. We present a
comprehensive overview of these outcomes in appendix D. Detailed information regarding
specific entity outcomes for each query, along with their respective scores, can be accessed
on our GitHub repository8.

4.2.3 Question 2: How are the results affected by different
KGEs?

Following the training phase, we selected our five (BoxE, CompGCN, DistMult, RotatE,
and TransE) model configurations using the AMRI metric. This evaluation aimed to
discern the optimal configuration for each model across both datasets (refer to appendix C
for further details on training results). BoxE is trained with NSSALoss as the objective
function, while the four other models used the MRL objective function. We trained
nine distinct configurations for each model (comprising three varying epoch lengths and
three different embedding dimensions), culminating in 45 models for each dataset. We
then assessed these models on our validation set (not to be confused with the four lists
we use for query answering validation). Remember that we leverage the online versions
of the KGs to validate the accuracy of the final predictions, which only necessitated
partitioning these datasets into a training set and a validation set to select the optimal
configuration from the nine available options for each model. The configuration that
consistently excelled on the validation set for each model was one with 192 dimensions
and 24 epochs, with one exception: DistMult on the family dataset performed optimally
with 192 dimensions and 16 epochs.

With five models, we get ten pipeline iterations for this experiment (consisting of five
model configurations and two datasets), where we define one iteration as the evaluation
metrics averaged over 25 initial queries and their corresponding sets of rewritten queries
across all nine query structures.

In this research question, we strive to identify the model that best facilitates query
answering and examine the impact of diverse models on the results and the query

8https://github.com/AImenes/query-answering-and-embeddings

79

https://github.com/AImenes/query-answering-and-embeddings

structures. Our next research question will then conclusively determine whether our
approach successfully bolsters the efficacy compared to conventional KG lookups.

Concerning the influence of different KGE models, our hypothesis stipulates that no
single model will consistently outperform the others across all query structures. We
expect that unique designs of different models will interpret and react to patterns within
query structures differently. In particular, the TransE model, due to its simplicity and its
limitation in capturing symmetry [46], may not fare as well, especially when dealing with
the family dataset, which heavily features relational structures such as hasSpouse and
hasSibling. In addition to this, recall that DistMult cannot capture asymmetric relations
due to design, and might also suffer on the family dataset.

An extensive analysis of the results is accessible in appendix D. However, in this
section, we condense these results into three concise tables for each dataset. The first
table showcases the highest scores for rewritten values in general, providing insights into
which model offers the best general prediction for the dataset. The final two tables will
underscore the influence of rewriting and KGE link predictions, achieved by calculating
the differences in scores when a standard KG lookup serves as validation. Our intention
is twofold: to identify the best-performing model overall and to highlight those models
that gain the most from rewriting and prediction. We will utilize the best-performing
model overall in the next research question.

Experiment results

Family Dataset In the following tables, we commence with table 4.5, which underscores
the top-performing models for every query structure, independent of the extent of
improvement over initial queries. Subsequently, table 4.6 elucidates the enhancements
yielded by query rewriting across all models. Ultimately, table 4.7 presents the efficacy
of KGE predictions in novel facts that were unknown to the models.

DBPedia15k Dataset In the following tables, we commence with table 4.8, which
underscores the top-performing models for every query structure, independent of the
extent of improvement over initial queries. Subsequently, table 4.9 elucidates the
enhancements yielded by query rewriting across all models. Ultimately, table 4.10
presents the efficacy of KGE predictions in unearthing novel facts that were hitherto
unknown to the models.

80

81Table 4.5: Best o-MRR and Hits@3 values on local rewriting validation (L/R) result
comparison of different models for each query structure on the family dataset.

Structure BoxE CompGCN DistMult RotatE TransE

o-MRR Local KG Validation
1p 0.6800 0.6800 0.6800 0.6800 0.4757
2p 0.9617 0.3856 0.8100 0.9700 0.5590
3p 0.9333 0.2168 0.4971 1 0.4457
2i 0.3600 0.5600 0.3680 0.3200 0.5924
3i 0.0400 0.1600 0.2800 0.0400 0.4733
pi 0.4229 0.3119 0.3636 0.5200 0.7901
ip 0.2800 0.0508 0.3057 0.2400 0.3792
up 0.9000 0.3841 0.4902 0.8900 0.6181
2u 0.8000 0.8000 0.7800 0.8000 0.6391

Hits@3 Local KG Validation
1p 0.6800 0.6800 0.6800 0.6800 0.4267
2p 0.7733 0.3067 0.7200 0.9600 0.3733
3p 0.8133 0.1599 0.3867 0.9733 0.3467
2i 0.3467 0.4267 0.3600 0.3200 0.4533
3i 0.0400 0.1067 0.1333 0.0400 0.2533
pi 0.3600 0.2133 0.2667 0.5200 0.4533
ip 0.2266 0.0400 0.2000 0.2133 0.2267
up 0.8000 0.2533 0.3733 0.8267 0.3733
2u 0.8000 0.8000 0.7867 0.8000 0.6133

o-MRR Online KG Validation
1p 0.6800 0.6800 0.6800 0.6800 0.4106
2p 1 0.3919 0.7949 0.9500 0.5307
3p 0.8656 0.1672 0.6056 0.9700 0.5623
2i 0.3600 0.5600 0.4080 0.3200 0.5567
3i 0.0400 0.2000 0.3000 0.0400 0.4533
pi 0.3433 0.2319 0.4080 0.4600 0.6778
ip 0.3600 0.1209 0.3557 0.3000 0.4853
up 0.9000 0.3881 0.4769 0.8500 0.5540
2u 0.8000 0.7400 0.7800 0.8000 0.6223

Hits@3 Online KG Validation
1p 0.6800 0.6800 0.6800 0.6800 0.3733
2p 0.8000 0.2667 0.7067 0.9333 0.3467
3p 0.7867 0.0800 0.4667 0.9200 0.4133
2i 0.3467 0.4400 0.3867 0.3200 0.4267
3i 0.0400 0.1067 0.1333 0.0400 0.2400
pi 0.2933 0.1867 0.3067 0.4267 0.3867
ip 0.2933 0.0667 0.2133 0.2667 0.3467
up 0.7466 0.2133 0.3867 0.8000 0.4267
2u 0.8000 0.7467 0.7867 0.8000 0.6000

82Table 4.6: Local Delta values (∆) (Rewritten scores vs initial scores) with comparison of
different models for each query structure on the family dataset.

Structure BoxE CompGCN DistMult RotatE TransE

o-MRR ∆ Local KG Validation
1p 0.2400 0.2400 0.2400 0.2400 0.1450
2p 0.0985 0.0568 0.1019 0.0550 0.2164
3p 0.1548 0.1998 0.0576 0.1143 0.1282
2i 0.0800 0.1200 0.0800 0.0400 0.1257
3i 0.0400 0.0800 0.1200 0.0400 0.1733
pi 0.1096 0.1872 0.1229 0.1000 0.1788
ip 0 0 0 0.0200 0
up 0.0593 0.0301 0.0487 0.0369 0.1053
2u 0.2400 0.3126 0.2587 0.3097 0.1355

Hits@3 ∆ Local KG Validation
1p 0.2400 0.2400 0.2400 0.2400 0.1200
2p 0.1200 0.0667 0.0800 0.0667 0.1466
3p 0.1600 0.1599 0.0667 0.1200 0.1734
2i 0.0800 0.0934 0.0800 0.0400 0.1333
3i 0.0400 0.0534 0.1266 0.0400 0.0933
pi 0.1067 0.1066 0.1067 0.1067 0.1333
ip 0 0 0 0.0133 0
up 0.1067 0.0400 0.0266 0.0400 0.1067
2u 0.2667 0.3067 0.3067 0.3067 0.1600

o-MRR ∆ Online KG Validation
1p 0.2400 0.2400 0.2400 0.2400 0.0923
2p 0.0397 0.0031 0.0329 0.0200 0.0390
3p 0.0397 0.0040 0.0126 0.0320 0.0114
2i 0.0400 0.0800 0.0800 0 0.0500
3i 0.0400 0.1200 0.0600 0.0400 0.0933
pi -0.0024 0.0192 0.0333 0.0400 0.0182
ip 0.0400 0.0214 0.0057 0.0400 0.0142
up 0.2793 0.0801 0.1279 0.2320 0.1587
2u 0.2000 0.1400 0.1600 0.2000 0.0423

Hits@3 ∆ Online KG Validation
1p 0.2400 0.2400 0.2400 0.2400 0.0800
2p 0.0400 0 0.0400 0.0266 0.0400
3p 0.0134 0 0.0134 0.0400 0.0133
2i 0.0400 0.0667 0.0667 0 0.0400
3i 0.0400 0.0534 0.0400 0.0400 0.0533
pi 0 0.0134 0.0400 0.0134 0
ip 0.0267 0.0134 0 0.0400 -0.0133
up 0.2267 0.0533 0.1200 0.2533 0.1467
2u 0.2000 0.2534 0.2000 0.1867 0.0400

83Table 4.7: Delta values (∆) for predictions (Online KG vs local KG) with comparison of
different models for each query structure on the family dataset.

Structure BoxE CompGCN DistMult RotatE TransE

Hits@3 ∆ Original query
1p 0 0 0 0 -0.0134
2p 0.1067 0.0267 0.0267 0.0134 0.0800
3p 0.1200 0.0800 0.1333 0.0267 0.2267
2i 0.0400 0.0400 0.0400 0.0400 0.0667
3i 0 0 0.0866 0 0.0267
pi 0.0400 0.0666 0.1067 0 0.0667
ip 0.0400 0.0133 0.0133 0.0267 0.1333
up -0.1734 -0.0533 -0.0800 -0.2400 0.0133
2u 0.0667 0 0.1067 0.1200 0.1067

o-MRR ∆ Original query
1p 0 0 0 0 -0.0124
2p 0.0971 0.0600 0.0548 0.0150 0.1491
3p 0.0476 0.1462 0.1535 0.0523 0.2334
2i 0.0400 0.0400 0.0400 0.0400 0.0400
3i 0 0 0.0800 0 0.0600
pi 0.0324 0.0880 0.1340 0 0.0483
ip 0.0400 0.0487 0.0433 0.0400 0.0919
up -0.2200 -0.0460 -0.0925 -0.2351 -0.1175
2u 0.0400 0.1126 0.0987 0.1097 0.0764

Hits@3 ∆ Rewritten queries
1p 0 0 0 0 -0.0534
2p 0.0267 -0.0400 -0.0133 -0.0267 -0.0266
3p -0.0266 -0.0799 0.0800 -0.0533 0.0666
2i 0 0.0133 0.0267 0 -0.0266
3i 0 0 0 0 -0.0133
pi -0.0667 -0.0266 0.0400 -0.0933 -0.0666
ip 0.0667 0.0134 0.0133 0.0534 0.1200
up -0.0534 -0.0400 0.0134 -0.0267 0.0534
2u 0 -0.0533 0 0 -0.0133

o-MRR ∆ Rewritten queries
1p 0 0 0 0 -0.0651
2p 0.0384 0.0063 -0.0151 -0.0200 -0.0283
3p -0.0675 -0.0496 0.1085 -0.0300 0.1166
2i 0 0 0.0400 0 -0.0357
3i 0 0.0400 0.0200 0 -0.0200
pi -0.0796 -0.0800 0.0444 -0.0600 -0.1123
ip 0.0800 0.0701 0.0500 0.0600 0.1061
up 0 0.0040 -0.0133 -0.0400 -0.0641
2u 0 -0.0600 0 0 -0.0168

84Table 4.8: Best o-MRR and Hits@3 values on Local KG with rewritings (L/R) comparison
of different models for each query structure on the DBPedia15k dataset.

Structure BoxE CompGCN DistMult RotatE TransE

o-MRR Local KG Validation
1p 0.5342 0.6355 0.6457 0.5697 0.6854
2p 0.0536 0.0153 0.0555 0.0066 0.0295
3p 0.0040 0 0.0027 0 0.0041
2i 0.1120 0.2124 0.1536 0.1096 0.2283
3i 0.0400 0.1733 0.0800 0.0527 0.1800
pi 0 0.0033 0.0027 0 0
ip 0.0181 0.0032 0.0041 0.0055 0.0162
up 0.1198 0.0835 0.1469 0.1283 0.1357
2u 0.5636 0.6079 0.5988 0.5586 0.7630
Hits@3 Local KG Validation
1p 0.4267 0.4667 0.5867 0.3867 0.6000
2p 0.0133 0 0.0267 0 0
3p 0 0 0 0 0
2i 0.0800 0.1200 0.1200 0.0933 0.1733
3i 0.0267 0.0933 0.0400 0.0267 0.1600
pi 0 0 0 0 0
ip 0.0133 0 0 0 0
up 0.0400 0.0133 0.0800 0.0400 0.1067
2u 0.3867 0.4533 0.5333 0.3733 0.6933
o-MRR Online KG Validation
1p 0.2293 0.2124 0.1855 0.3382 0.2306
2p 0.1049 0.0186 0.0614 0.0116 0.0530
3p 0.0014 0.0009 0.0017 0 0.0408
2i 0.0024 0.0644 0.0021 0.0235 0.0571
3i 0.0008 0.0200 0 0 0
pi 0 0.0025 0.0013 0 0
ip 0.0133 0.0013 0.0010 0.0037 0.0057
up 0.0531 0.0366 0.0657 0.0864 0.0390
2u 0.2214 0.2591 0.2462 0.2889 0.4075
Hits@3 Online KG Validation
1p 0.1200 0.1200 0.0533 0.1200 0.2000
2p 0.0400 0 0.0267 0 0.0267
3p 0 0 0 0 0.0133
2i 0 0.0400 0 0.0133 0.0267
3i 0 0.0133 0 0 0
pi 0 0 0 0 0
ip 0.0133 0 0 0 0
up 0.0133 0.0133 0.0400 0.0267 0.0267
2u 0.1067 0.1333 0.1200 0.1067 0.3067

85Table 4.9: Local Delta values (∆) (Rewritten scores vs initial scores) with comparison of
different models for each query structure on the DBPedia15k dataset.

Structure BoxE CompGCN DistMult RotatE TransE

o-MRR ∆ Local KG Validation
1p 0.1433 0.1585 0.1430 0.0953 0.2163
2p 0 0 0 0 0
3p 0 0 0 0 0
2i 0.0896 0.0760 0.0208 0.0060 0.1200
3i 0.0200 0.1333 0.0400 0.0327 0.1600
pi 0 0 0 0 0
ip 0 0 0 0.055 0.0162
up 0 0 0. 0 0
2u 0.0800 0.0434 0.2666 0.0200 0.0933

Hits@3 ∆ Local KG Validation
1p 0.1200 0.1067 0.1334 0.0667 0.3467
2p 0 0 0 0 0
3p 0 0 0 0 0
2i 0 0.0400 0 0 0.0933
3i 0 0.0533 0 0 0.1340
pi 0 0 0 0 0
ip 0 0 0 0 0
up 0 0 0 0 0
2u 0.0667 0.0666 0.0666 0.0133 0.1066
o-MRR ∆ Online KG Validation
1p -0.0137 -0.1336 -0.2172 0.0643 -0.2361
2p 0 0 0 0 0
3p 0 0 0 0 0.0367
2i -0.0076 0.0350 -0.0049 -0.0143 0.0135
3i 0.0008 0.0200 0 0 0
pi 0 -0.0008 -0.0014 0 0
ip 0 -0.0019 -0.0031 0 -0.005
up 0.0157 0.0022 -0.0013 0.0010 0.0138
2u -0.0237 -0.1469 -0.1398 -0.0210 -0.1056

Hits@3 ∆ Online KG Validation
1p -0.0133 -0.0933 -0.1734 0.0133 -0.1600
2p 0 0 0 0 0.0267
3p 0 0 0 0 0.133
2i 0 0.0133 0 -0.0134 0.0133
3i 0 0.0133 0 0 0
pi 0 0 0 0 0
ip 0 0 0 0 0
up 0 -0.0134 0 0 0
2u 0.0134 -0.12 -0.1067 -0.0666 -0.1200

86Table 4.10: Delta values (∆) for predictions (Online KG vs local KG) with comparison
of different models for each query structure on the DBPedia15k dataset.

Structure BoxE CompGCN DistMult RotatE TransE

Hits@3 ∆ Original query
1p -0.1734 -0.1467 -0.2266 -0.2133 0.1067
2p 0.0267 0 0 0 0.0267
3p 0 0 0 0 0.0133
2i -0.0800 -0.0533 -0.1200 -0.0666 -0.0667
3i -0.0267 -0.0400 -0.0400 -0.0267 -0.0260
pi 0 0 0 0 0
ip 0 0 0 0 0
up -0.0267 0.0134 -0.0400 -0.0133 -0.0800
2u -0.2267 -0.1334 -0.2400 -0.1867 -0.1600

o-MRR ∆ Original query
1p -0.1479 -0.1300 -0.1000 -0.2005 -0.0024
2p 0.0513 0.0033 0.0059 0.0050 0.00267
3p -0.0026 0.0009 -0.0010 0 0.0367
2i -0.0924 -0.1070 -0.1258 -0.0658 -0.0647
3i -0.0200 -0.0400 -0.0400 -0.0200 -0.0200
pi 0 -0.0008 -0.0014 0 0
ip -0.0048 -0.0019 -0.0031 -0.0018 -0.0105
up -0.0824 -0.0491 -0.0799 -0.0429 -0.1105
2u -0.2385 -0.1585 -0.1862 -0.2287 -0.1566

Hits@3 ∆ Rewritten queries
1p -0.3067 -0.3467 -0.5334 -0.2667 -0.4000
2p 0.0267 0 0 0 0.0267
3p 0 0 0 0 0.0133
2i -0.0800 -0.0800 -0.1200 -0.0800 -0.1466
3i -0.0267 -0.0800 -0.0400 -0.0267 -0.1600
pi 0 0 0 0 0
ip 0 0 0 0 0
up -0.0267 0 -0.0400 -0.0133 -0.0800
2u -0.2800 -0.3200 -0.4133 -0.2800 -0.3866

o-MRR ∆ Rewritten queries
1p -0.3049 -0.4231 -0.4602 -0.2315 -0.4548
2p 0.0513 0.0033 0.0059 0.0050 0.0235
3p -0.0026 0.0033 -0.0010 0 0.0367
2i -0.1096 0.0009 -0.1515 -0.0861 -0.1712
3i -0.0392 -0.1533 -0.0800 -0.0527 -0.1800
pi 0 -0.0008 -0.0014 0 0
ip -0.0048 -0.0019 -0.0031 -0.0018 -0.0105
up -0.0667 0.0469 -0.0812 -0.0419 -0.0967
2u -0.3422 -0.3488 -0.3526 -0.2697 -0.3555

Experiment discussion

Best model for query answering We begin by examining table 4.5 for the Family
dataset. This table, in its upper two sections, presents the o-MRR and Hits@3 results
based on our prediction using a list of entities retrieved from a KG lookup across all
rewritten queries (L/R). In doing so, we can discern how well various models handle
general link prediction independently of the rewriting impact. To provide a comprehensive
picture, we have included the same metrics in the lower two sections of the table, but
here we use the list of entities retrieved from the online versions of the datasets.

To offer the most honest evaluation of the model, we primarily consider the validation
performed using the same dataset employed for training (local KG). A notable observation
is that for the ‘1p’ structure, all models except TransE achieve an o-MRR score of 0.68,
indicating that these models handle this query structure effectively. In KGE terminology,
a ‘1p’ query solely pertains to link prediction, and the ‘p’ for projection does not truly
reflect projection in this scenario. It applies equally (or minimally) to the intersection
and disjunction categories.

Considering pure projection query structures, ‘2p’ and ‘3p’, RotatE emerges as the
top performer, achieving an impressive o-MRR score of 1 for ‘3p’—meaning, with the
rewriting validation, the top-ranked entity is always present in that list, happening for
all 25 initial queries. BoxE also exhibits commendable scores for projection. Despite
their differing designs—RotatE performs prediction by considering rotations in the
complex plane, while BoxE is based on a translational approach augmented with Box
mechanics—both models demonstrate that one of the three categories introduced in the
background does not necessarily outperform the others for projection.

Intriguingly, TransE outperforms the other four models for intersection queries—by a
significant margin. With intersections, the entities outputted from each atom in the query
must intersect for validation. Therefore, TransE’s simplicity might cause it to predict
more similar entities than the other models, as it employs simpler vector embeddings.
Given that the cut-off value for this test case is set at 100 entities for each prediction,
TransE may have more valid outputs from its prediction. At the same time, the other
models might exhibit less intersection between the atoms due to their output entity sets
being more disjunct.

TransE also stands out in the combination of projection and intersection queries.
Despite its underperformance compared to the other models for projection, the combination

87

of the two query types still seems to favour TransE—the simplest translational-based
model.

BoxE comes out on top for disjunction, followed closely by RotatE, with nearly
identical results. In the ‘up’ structure, projection explains why BoxE and RotatE perform
well. As for ‘2u’, it essentially involves two ‘1p’ predictions, with the union of the results
obtained subsequently. This explains why the ‘2u’ results closely mirror ‘1p’ results
regarding relative differences and scaling—with TransE performing the worst.

DistMult does not perform best on any structure (except for a shared first on ’1p’).
This could be because DistMult struggles with asymmetric relationships due to its design.

Turning our attention to the DBPedia15k dataset, we focus on local validation for
this discussion, given its direct correlation with the training data. As shown in table 4.8,
the scores present a different narrative—several markedly low, indicating a probable
abundance of mispredicted entities.

However, the ‘1p’ structure—commonly called the standard link prediction in KGE
terminology—registers respectable scores. TransE achieves the highest score with an
o-MRR value of 0.6854.

Contrary to the Family dataset, projection scores are substantially lower for DBPedia15k.
The best score for ‘2p’ is recorded by DistMult, with a score of 0.0555, while TransE tops
‘3p’ with a modest 0.0041. All models struggle in this context.

When it comes to intersections, the results fare better. TransE is also better than the
other models for this dataset, registering a score of 0.2283 for ‘2i’ and 0.18 for ‘3i’.

Up until this point, TransE consistently emerges as the model of choice. However,
on closer scrutiny, we note that while CompGCN never surpasses TransE, it does trail
very closely. Upon encountering the ‘pi’ structure, CompGCN posts a result of 0.0033,
outpacing TransE’s zero scores. For ‘ip’, BoxE delivers the least dismal score of 0.0181,
followed closely by TransE. Discerning a pattern for the best-performing model in terms
of combined query structures (‘ip’ and ‘pi’) for DBPedia15k is challenging due to low
scores.

Finally, regarding disjunction, DistMult leads the pack for ‘up’ structure, with TransE
behind. For ‘2u’, much like the Family dataset, the results align closely with the ‘1p’
structure—TransE outperforms the others with a score of 0.7630.

88

In assessing these results, it is vital to bear in mind the inherent structures of the
datasets. Remember that our query generator cannot predict whether a generated query
has any possible answers. About the Family dataset, generating degenerate queries is
inherently challenging, given the high likelihood of a previously predicted individual
having another family connection (in other words, an additional atom in the query).
However, this is more complex with DBPedia15k, as this subset encompasses numerous
logical branches, such as ‘places’ and ‘people,’ and few plausible intersections and
projections exist between these branches.

Despite these challenges, the results for the ‘1p’ and ’2u’ structures remain commendably
strong across both datasets.

Improvements using query rewriting In the preceding section, our discussion
centred primarily on determining the optimal KGE model for our DBPedia15k and
Family datasets. Now, our focus will shift towards understanding which KGE models
accrue the most significant benefits from query rewriting in their prediction validations
- in other words, which models experience the most substantial improvements with the
implementation of query rewriting. We term these scores as delta scores (∆), representing
the difference in score between the rewritten and initial query validation cases.

For the Family dataset, our attention turns to table 4.6. At first glance, we notice
only positive values for the validation using our local dataset. A slightly negative value is
observed for the ‘pi’ structure when employing the online KG for validation. Given that
we include the initial query lookup in the set of rewritten queries, negative values in the
context of rewritings are anomalous. One reason may be that the API used to retrieve
these entities occasionally returned an HTTP 206 Partial Content code, signifying that
the complete list of answers exceeded the permitted payload size for the HTTP message.

A notable increase of 0.24 in the o-MRR score is evident for the local KG validation
in the ‘1p’ query structure. In line with the previous section, all models except TransE
display these delta scores. For ‘3p’, CompGCN benefits the most from rewritings, showing
a significant positive increase of 0.1998. TransE and CompGCN demonstrate the most
significant gains from query rewriting regarding o-MRR .

For DBPedia15k, as depicted in table 4.9, the results using our datasets for validation
dramatically improve with query rewriting. Once again, TransE reaps the highest rewards
from rewritings regarding the o-MRR score. The only notable exception is ‘2u’, where
DistMult sees an increase of 0.2666.

89

However, when evaluating the improvements achieved by rewriting in the context
of the online KG, the term ‘improvement’ rapidly loses its accuracy. Here, we mainly
witness declines. This unexpected observation likely stems from receiving fewer entities
from the APIs on the online KGs due to oversized requests.

Nevertheless, we observe a clear and significant improvement with rewritings compared
to initial KG lookup validation on our predictions for all models, but most significantly
for TransE and CompGCN on our local validation. This observation suggests that query
rewriting augments our results by expanding the list of entities used for validation. If
both local and online KGs were complete, then rewriting to multiple rewritten queries
would not introduce any new entities for validation. Hence, we have also identified that
these datasets are not complete.

Improvements using predictions In this latter part of our dual-pronged approach,
we focus on KGE predictions. When assessing the effectiveness of predictions in the
context of complex query answering, it is customary to structure the training set as a
subset of the validation set, which is, in turn, a subset of the test set. It is essential
to remember that, in our case, the models have been trained and validated on our
local datasets. We employ more complete online versions of DBPedia and WikiData
for validations on correctness for our predictions.

Under the assumption that the online versions of our KGs have a higher rate of
completeness than the local versions (which is the case for DBPedia and WikiData), we
can use the online KG validation as compared to the local one to ascertain whether an
entity predicted by the model to be an answer to a query is, indeed, a correct prediction,
provided it is part of the online KGs. However, as noted in the rewriting section, the
online KGs are also only partially complete, making it likely that we receive some entities
that, according to our interpretation of the domain, would yield a correct result without us
detecting it. These will not be identified as we have a CWA approach to our predictions.
Nonetheless, we would need an effective verification method beyond manually examining
each case, and that would not be a feasible approach.

We could add all the predicted entities not present in the KG lookup to the list
of answers to that query, assuming that the online KG is not entirely complete (OWA
approach). However, in this thesis, evaluating the actual rate of improvement from
introducing embeddings becomes problematic in such cases, as it would include false
positives. Therefore, we compare the initial query prediction with validation from the

90

local KG lookup and the online KG lookup for that respective query in the subsequent
validation.

In table 4.7 for the Family dataset, we see no improvements for ‘1p’ in terms of
the o-MRR for the initial query. However, for ‘2p’ and ‘3p’ queries, the KGE model
identifies entities present in the online KG, not in the local one, thereby achieving a
correct prediction. We see improvements for all query structures with the introduction
of embeddings, except for ‘up’. Here, we observe negative values, indicating differences in
the entity sets from local and online KGs, which, in an ideal scenario for our validation,
should ideally be subsets of the online KGs.

Turning our attention to DBPedia15k, we notice a shift, with the improvements noted
for the Family dataset now replaced by declines as shown in table 4.10. We see values
close to or equal to 0 for projection cases due to degenerated queries and missing answers.
Therefore, to begin with, the model scores for prediction are shallow. This information
leads us to conclude that we cannot ascertain any substantial benefit from KGEs for
DBPedia15k.

While we saw enhancements in the embedding results for the Family dataset, this was
not the case for DBPedia15k. Contrary to the previous section on rewriting results, here,
we are comparing results across two different validation origins. Therefore, negative
values are primarily due to dataset differences. Despite these differences, we see an
improvement and detection of new correctly labelled entities for the Family dataset, best
shown by TransE.

Concluding Remarks and Model Selection We have compared various models and
assessed their impact on the results. Contrary to our hypothesis, we found that TransE
was the model that most effectively leveraged rewriting and KGE predictions. However,
RotatE demonstrated superior results for the Family dataset for all projection-related
queries. The neural network model, CompGCN, emerged as a strong contender for most
structures in DBPedia15k, even surpassing TransE when considering online validation.

Interestingly, DistMult did not perform superior in any cases for the Family dataset,
except for a tie for first place in the ‘1p’ structures. One reason for this could be
the lack in design for asymmetric relations, which we find in the family dataset. In
the case of DBPedia15k, interpretation of the scores became more challenging due to
query degeneration. This fact became apparent as it performed well on the ‘1p’ and

91

‘2u’ structures, where the prediction involved just one atom (or two atoms where their
respective answers are unified).

We observed significant disparities in scores between the two datasets, primarily
attributed to query degeneration. Additionally, we noted negative values for our delta
scores. One unverified hypothesis suggests that in the case of rewritings, we may not
have received the complete list of answers from the online API. Our pipeline observations
substantiate this hypothesis where some API requests returned with HTTP code 206,
signifying partial content delivery. Regarding the impact of prediction, negative values
indicate discrepancies between our datasets and the online KGs used for validation.

For addressing the following research question, in fairness, we will carry forward
RotatE for its best overall performance from local evaluation, even though TransE had
the best improvements (i.e. delta scores) for the Family dataset. For DBPedia15k, we
will employ TransE, given its superior prediction performance and its achievement of the
best improvements (or least degradation) according to our delta tables.

92

4.2.4 Question 3: How does our integrated query rewriting
approach compare to standard KG lookups?

In this research question, we will use the two proposed models from the previous research
question to answer more explicitly whether our approach does improve on a standard
KG Lookup. We use RotatE for the family dataset and TransE for DBPedia15k. Before
running the test case, our hypothesis proposed that incorporating query rewriting should
improve the results across all nine query structures. Nevertheless, enhancements might
not be as significant in DBPedia15k due to the increased probability of degenerate queries.

Experiment results

We first present the family dataset results, thereafter the DBPedia15k.

Table 4.11: Summary of results for different query structures for the dataset family and
model RotatE (dim: 192, epoch: 24). All query structures have a count of 25 different
queries. L/I: Local KG prediction using solely initial query, L/R: Local KG prediction
using rewritten queries, O/I: Online KG prediction using solely initial query, O/R: Online
KG prediction using rewritten queries.

Hits@3 o-MRR
Query Structure L/I L/R O/I O/R L/I L/R O/I O/R

1p 0.4400 0.6800 0.4400 0.6800 0.4400 0.6800 0.4400 0.6800
2p 0.8933 0.9600 0.9067 0.9333 0.9150 0.9700 0.9300 0.9500
3p 0.8533 0.9733 0.8800 0.9200 0.8857 1 0.9380 0.9700
2i 0.2800 0.3200 0.3200 0.3200 0.2800 0.3200 0.3200 0.3200
3i 0 0.0400 0 0.0400 0 0.0400 0 0.0400
pi 0.4133 0.5200 0.4133 0.4267 0.4200 0.5200 0.4200 0.4600
ip 0.2000 0.2133 0.2267 0.2667 0.2200 0.2400 0.2600 0.3000
up 0.7867 0.8267 0.5467 0.8000 0.8531 0.8900 0.6180 0.8500
2u 0.4933 0.8000 0.6133 0.8000 0.4903 0.8000 0.6000 0.8000

93

94Structure ∆ Local o-MRR ∆ Online o-MRR ∆ Local Hits@3 ∆ Online Hits@3
1p 0.2400 0.2400 0.2400 0.2400
2p 0.0550 0.0200 0.0667 0.0267
3p 0.1143 0.0320 0.1200 0.0400
2i 0.0400 0 0.0400 0
3i 0.0400 0.0400 0.0400 0.0400
pi 0.1000 0.0400 0.1067 0.0133
ip 0.0200 0.0400 0.0133 0.0400
up 0.0369 0.2320 0.0400 0.2533
2u 0.3097 0.2000 0.3067 0.1867

Table 4.12: Family Dataset with RotatE: Delta values (∆) for rewriting. o-MRR and
Hits@3 for each query structure for Local and Online KGs

Structure ∆ Original o-MRR ∆ Rewritten o-MRR ∆ Original Hits@3 ∆ Rewritten Hits@3
1p 0 0 0 0
2p 0.0150 -0.02 0.0133 -0.0267
3p 0.0523 -0.03 0.0267 -0.0533
2i 0.04 0 0.04 0
3i 0 0 0 0
pi 0 -0.06 0 -0.0933
ip 0.04 0.06 0.0267 0.0533
up -0.2351 -0.04 -0.24 -0.0267
2u 0.1097 0 0.12 0

Table 4.13: Family Dataset with RotatE: Delta values (∆) for KGE predictions. o-MRR
and Hits@3 for each query structure for Local and Online KGs

1p 2p 3p 2i 3i pi ip up 2u

0

0.2

0.4

0.6

0.8

1

0.44

0.92
0.89

0.28

0

0.42

0.22

0.85

0.49

0.68

0.97
1

0.32

4 · 10−2

0.52

0.24

0.89

0.8

Query Structure

M
R

R

L/I
L/R

Figure 4.1: Family Dataset with RotatE, showing impact of rewriting: o-MRR for L/I
and L/R

95

1p 2p 3p 2i 3i pi ip up 2u

0

0.2

0.4

0.6

0.8

1

0.44

0.93 0.94

0.32

0

0.42

0.26

0.62
0.6

0.68

0.95
0.97

0.32

4 · 10−2

0.46

0.3

0.85

0.8

Query Structure

M
R

R

O/I
O/R

Figure 4.2: Family Dataset with RotatE, showing impact of rewriting: o-MRR for O/I
and O/R

1p 2p 3p 2i 3i pi ip up 2u

0

0.2

0.4

0.6

0.8

1

0.44

0.92
0.89

0.28

0

0.42

0.22

0.85

0.49

0.44

0.93 0.94

0.32

0

0.42

0.26

0.62
0.6

Query Structure

M
R

R

L/I
O/I

Figure 4.3: Family Dataset with RotatE, showing impact of predictions: o-MRR for
L/I and O/I

96

1p 2p 3p 2i 3i pi ip up 2u

0

0.2

0.4

0.6

0.8

1

0.68

0.97
1

0.32

4 · 10−2

0.52

0.24

0.89

0.8

0.68

0.95
0.97

0.32

4 · 10−2

0.46

0.3

0.85

0.8

Query Structure

M
R

R

L/R
O/R

Figure 4.4: Family Dataset with RotatE, showing impact of predictions: o-MRR for
L/R and O/R

Table 4.14: Summary of results for different query structures for the dataset
DBPedia15k and model TransE (dim: 192, epoch: 24). All query structures have
a count of 25 different queries. L/I: Local KG prediction using solely initial query, L/R:
Local KG prediction using rewritten queries, O/I: Online KG prediction using solely
initial query, O/R: Online KG prediction using rewritten queries.

Hits@3 o-MRR
Query Structure L/I L/R O/I O/R L/I L/R O/I O/R

1p 0.2533 0.6000 0.3600 0.2000 0.4691 0.6854 0.4667 0.2306
2p 0 0 0.0267 0.0267 0.0295 0.0295 0.0530 0.0530
3p 0 0 0.0133 0.0133 0.0041 0.0041 0.0408 0.0408
2i 0.0800 0.1733 0.0133 0.0267 0.1083 0.2283 0.0436 0.0571
3i 0.0260 0.1600 0 0 0.0200 0.1800 0 0
pi 0 0 0 0 0 0 0 0
ip 0 0 0 0 0.0162 0.0162 0.0057 0.0057
up 0.1067 0.1067 0.0267 0.0267 0.1357 0.1357 0.0252 0.0390
2u 0.5867 0.6933 0.4267 0.3067 0.6697 0.7630 0.5131 0.4075

97Structure ∆ Local o-MRR ∆ Online o-MRR ∆ Local Hits@3 ∆ Online Hits@3
1p 0.2163 -0.2361 0.3467 -0.1600
2p 0 0 0 0
3p 0 0 0 0
2i 0.1200 0.0135 0.0933 0.0134
3i 0.1600 0 0.1340 0
pi 0 0 0 0
ip 0 0 0 0
up 0 0.0138 0 0
2u 0.0933 -0.1056 0.1066 -0.1200

Table 4.15: Dbpedia Dataset with TransE: Delta values (∆) for rewriting. o-MRR and
Hits@3 for each query structure for Local and Online KGs

Structure ∆ Original o-MRR ∆ Rewritten o-MRR ∆ Original Hits@3 ∆ Rewritten Hits@3
1p -0.0024 -0.4548 0.1067 -0.4
2p 0.0235 0.0235 0.0267 0.0267
3p 0.0367 0.0367 0.0133 0.0133
2i -0.0647 -0.1712 -0.0667 -0.1466
3i -0.02 -0.18 -0.026 0
pi 0 0 0 0
ip -0.0105 -0.0105 0 0
up -0.1105 -0.0967 -0.08 -0.08
2u -0.1566 -0.3555 -0.16 -0.3866

Table 4.16: DBPedia15k Dataset with TransE: Delta values (∆) for KGE predictions.
o-MRR and Hits@3 for each query structure for Local and Online KGs

1p 2p 3p 2i 3i pi ip up 2u

0

0.2

0.4

0.6

0.8

Query Structure

M
R

R

L/I
L/R

Figure 4.5: DBPedia15k Dataset with TransE, showing impact of rewriting: o-MRR for
L/I and L/R

98

1p 2p 3p 2i 3i pi ip up 2u

0

0.1

0.2

0.3

0.4

0.5

Query Structure

M
R

R

O/I
O/R

Figure 4.6: DBPedia15k Dataset with TransE, showing impact of rewriting: o-MRR for
O/I and O/R

1p 2p 3p 2i 3i pi ip up 2u
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Query Structure

M
R

R

L/I
O/I

Figure 4.7: DBPedia15k Dataset with TransE, showing impact of predictions: o-MRR
for L/I and O/I

1p 2p 3p 2i 3i pi ip up 2u

0

0.2

0.4

0.6

0.8

Query Structure

M
R

R
L/R
O/R

Figure 4.8: DBPedia15k Dataset with TransE, showing impact of predictions: o-MRR
for L/R and O/R

Experiment discussion

The results for the family dataset, summarized in table 4.11, reveal intriguing patterns
about the effects of different query structures and validation techniques on the embedding
scores. These differences are vividly illustrated in the bar charts in figs. 4.1 to 4.4, while
we detail the changes in o-MRR and Hits@3 scores in tables 4.12 and 4.13.

The query structure ‘3i’ stands out with notably lower scores. A possible explanation
might be that queries in ‘3i’ can degenerate, for example, by inadvertently asking for cross-
gender relationships. Such queries are less problematic for projection queries, where each
query’s target is another’s input. While for intersection, we need to find entities that are
answers to all atoms in that particular query.

When we consider the effect of rewriting, we notice a general increase in both o-MRR
and Hits@3 scores across all query structures (table 4.12 and fig. 4.1). This observation
suggests that rewriting the queries enhances the validation process by expanding the
answer sets. We can see remarkable improvements for the ‘1p’ and ‘2u’ query structures,
where the scores rise by at least 50%. Notably, this beneficial effect of rewriting persists
even when we perform the validation using the online version of the dataset (fig. 4.1).

99

However, the benefits of making predictions are less pronounced and vary with the
query structure. For instance, fig. 4.3 shows a minor increase in scores for all query
structures except for ‘up’, where the scores decline significantly. The decline suggests
that the entities retrieved from the local dataset might only partially align with those
retrieved from the online KG. The differences are minimal when comparing the rewritten
sets using both local and online versions (table 4.11). This minimal difference indicates
a high level of similarity between the answer sets obtained through the two validation
methods, resulting in comparative evaluations of the predicted entities.

The results for the DBPedia15k dataset with TransE, our top choice model, are
depicted in table 4.14. We detail the changes in scores brought about by rewriting and
the use of KGEs in tables 4.15 and 4.16 and illustrated in figs. 4.5 to 4.8. To improve
readability, we omitted the numbers within the chart to prevent label overlaps.

Upon rewriting the queries, we see improvement when validating using the local
dataset, as depicted in fig. 4.5. Notably, the scores are low for every query structure
involving projection, which can be attributed to the generation of queries that exist in
different branches of our TBox hierarchy and hence share no common entity answers.
However, we still see an improvement compared to using the online KG for validation,
as illustrated in fig. 4.6. Except for ‘1p’ and ‘2u’, results across all query structures are
reasonably consistent. It is important to recall that ‘2u’ essentially comprises two ‘1p’
queries with unified results.

When considering KGE prediction, we observe a decline in performance when
comparing the results validated against the online KG to those validated against the
local KG. This decline is evident in table 4.16 and figs. 4.7 and 4.8. Here, both the initial
and rewritten query sets perform worse with the online KG validation. The worsening
suggests that the list of entities answering a particular query in the online KG differs
from that in the local KG, supporting our hypothesis of KG discrepancies. As stated in
the dataset introduction, our local version of DBPedia15k contains numerous erroneous
triples inconsistent with the online KG. Unfortunately, this undermines the credibility of
the results derived from this dataset.

Considering both rewriting and prediction aspects across both datasets, it is evident
that rewriting has a clear advantage. Rewriting adheres to the TBox and is logically
distinct from the embedding process, as it occurs before we infer the queries through
our pipeline. The query rewriting implementation was primarily the aspect we aimed
to explore in this work. We also note improvements in KGE predictions for all query

100

structures in the family dataset (except ‘up’ on the local KG), and for all structures in
DBPedia15k, except for the 1p and 2u structures that experienced a significant decline
(likely due to a partial validation list obtained from the API).

To answer the research question more specifically, we must remember that the
prediction is made using our KGE models trained on our local KGs, namely the Family
dataset and DBPedia15k. We generate the list of entities that answer our query using four
different strategies - L/I, L/R, O/I and O/R. Here, L/I is the list of entities obtained from
a standard KG lookup, i.e., directly querying the KG. Consequently, the L/I score forms
the baseline, and other validation methods should be interpreted relative to this baseline
score. Rewriting demonstrated an apparent increase for all local validation methods, and
in most cases, also with online validation. The advantages of KGE predictions could
have been more evident due to the reasons previously mentioned regarding discrepancies.
When we combine the aspects of query rewriting and KGE predictions, we arrive at the
O/R score, which validates the predictions with rewritings and the online KG, assisting
in discovering new accurately predicted entities. We present the final results for the best
performing models in tables 4.17 and 4.18 and figs. 4.9 and 4.10.

In the case of the Family dataset, integrating query rewriting with KGEs resulted in
an improvement over a standard KG lookup (table 4.17 and fig. 4.9). With DBPedia15k,
there was an increase for ‘2p’ and ‘3p’, but other query structures experienced worse
results; hence we cannot discern an overall improvement for this dataset using our
framework. Therefore, while we observed a significant improvement with query rewriting
across both datasets, we also saw that when considering the entire framework, the Family
dataset shined and DBPedia15k suffered.

Table 4.17: Delta values (∆) between Online KG prediction using rewritten queries (O/R)
and Local KG prediction using solely initial query (L/I) for the dataset family and model
RotatE (dim: 192, epoch: 24). Positive values indicate that O/R outperformed L/I.

Query Structure Hits@3 Delta (O/R - L/I) o-MRR Delta (O/R - L/I)

1p 0.2400 0.2400
2p 0.0400 0.0350
3p 0.0667 0.0843
2i 0.0400 0.0400
3i 0.0400 0.0400
pi 0.0134 0.0400
ip 0.0667 0.0800
up 0.0133 -0.0031
2u 0.3067 0.3097

101

102

1p 2p 3p 2i 3i pi ip up 2u

0

0.2

0.4

0.6

0.8

1

0.44

0.92
0.89

0.28

0

0.42

0.22

0.85

0.49

0.68

0.95
0.97

0.32

4 · 10−2

0.46

0.3

0.85

0.8

Query Structure

M
R

R

L/I
O/R

Figure 4.9: Family Dataset with RotatE, showing impact of predictions: o-MRR for
L/I and O/R

Table 4.18: Delta values (∆) between Online KG prediction using rewritten queries (O/R)
and Local KG prediction using solely initial query (L/I) for the dataset DBPedia15k and
model TransE (dim: 192, epoch: 24). Positive values indicate that O/R outperformed
L/I.

Query Structure Hits@3 Delta (O/R - L/I) o-MRR Delta (O/R - L/I)

1p -0.0533 -0.2385
2p 0.0267 0.0235
3p 0.0133 0.0367
2i -0.0533 -0.0512
3i -0.026 -0.02
pi 0 0
ip 0 -0.0105
up -0.08 -0.0967
2u -0.28 -0.2622

1p 2p 3p 2i 3i pi ip up 2u
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Query Structure

M
R

R
L/I
O/R

Figure 4.10: DBPedia15k Dataset with TransE, showing impact of predictions: o-MRR
for L/I and O/R

4.2.5 Question 4: How do we interpret and compare our results
fairly?

In this final research question, we delve into how to interpret and fairly compare our
results.

Every list of entities answering a specific query has an associated score. For example,
we extracted two entities for a specific query from the results. As shown in table 4.20,
there is a column for scores. However, these scores lack a mapping to the probability
or likelihood of accurate prediction. Remember that different models employ different
evaluation functions; hence the scores are calculated diversely. Additionally, we perform
T-norms for projection and intersection for queries with several atoms and T-conorms on
these score values when performing unification (disjunction).

Entity Label Origin Score L/I L/R O/I O/R
Q100246 q(?w) :- P22(?_,?w) 0.0125520453 false false false true
Q1040807 q(?w) :- P25(?_,?w) 0.0058709825 false false false true

Table 4.20: Updated entity output of the query example: q(?w) :- Q7566(?w)

103

https://www.wikidata.org/wiki/Q100246
https://www.wikidata.org/wiki/Q1040807

Although these scores do not map to the probability of their accuracy, we can compare
the scores within each model environment to determine the best prediction, irrespective of
the weight of that prediction. Consequently, we can calculate the top k entities from the
prediction pipeline for each model configuration, but we cannot compare their prediction
quality to our other models. Thus, to conduct this experiment, we had to make some
assumptions.

Our first assumption was that all prediction outputs from all models should be
considered equally likely to be correct, given that these models are often incomparable
in general. We then allow the evaluation calculation of o-MRR and Hits@3 to attest to
their quality ultimately. That said, for queries that contain multiple atoms, such as a ‘3p’
atom, we cannot determine the exact path a correct entity has taken to end up correctly
in our implementation. This indeterminacy is because we manage a set of entities when
performing link predictions and receive a set of entities as output. However, we have
a ‘still_valid’ boolean in our list of entity predictions, indicating that all intermediate
predictions leading to the final one have been valid compared to the validation list of
entities. Therefore, we could end up with correctly identified entities that have taken an
incorrect intermediate prediction in the query answering process.

We have chosen to employ MRR and Hits@3, motivated by their frequent use in
other complex query answering methodologies [49, 48, 23, 4, 6]. Nonetheless, it is
essential to recognize that our query answering pipeline differs significantly, making direct
comparisons to these complex query answering methods inappropriately. These methods
incorporate queries during the model’s training phase and utilize grounded queries for
each of the nine query structures. They also employ a query generator that assures the
generation of only those queries that yield answers. However, these approaches do not
accommodate queries from a TBox, an element that we have intentionally included in
our pipeline to underscore the influence of query rewriting.

We chose the o-MRR score to provide a meaningful evaluation measure when a
correctly identified entity does not rank within the top 3. Despite the utility of these
metrics, it is worth noting that they do not incorporate a comparison with expected
values, a distinctive characteristic embodied by the AMRI metric. This metric offers a
normalized measure over expected values, thereby illuminating the degree of performance
enhancement over and above what can be attributed to mere chance.

The main reason we have chosen not to use the AMRI metric in the evaluation of
the query answering process is to ensure the employment of metrics that are not only

104

intuitively comprehensible but also harmonize with the conventional understanding of
query answering and the metrics typically used in this realm of research. In this context,
o-MRR and Hits@3 serve this purpose well.

In conclusion, individual entity scores should not be compared across models, while we
can indeed compare the Hits@3 and o-MRR scores. Our queries are also not grounded,
which could yield correct entity results with intermediate false predictions while still
giving us a correct entity. Despite this, our scores function in a manner that allows us to
demonstrate the impact of query rewriting and KGE predictions.

105

Chapter 5

Related Work

Research in complex query answering using embeddings has advanced significantly over
the past few years. Hamilton et al. [23] introduced a technique for making efficient
predictions about conjunctive logical queries on incomplete knowledge graphs in 2018.
They successfully embedded graph nodes into a low-dimensional space and implemented
logical operations as learned geometric operations, an approach that is linear in time
complexity with the number of query variables.

Subsequently, Ren and Leskovec [48] introduced BetaE, a probabilistic embedding
framework capable of handling a complete set of first-order logic (FOL) operations:
conjunction, disjunction, and negation. BetaE could embed queries and entities as
distributions by using probabilistic distributions with bounded support, providing a
natural way to model uncertainty. Around the same time, Ren et al. [49] introduced
Query2box (Q2B), which utilized box embeddings to perform reasoning over knowledge
graphs in vector space. Query2Box handled EPFO queries and was particularly adept at
answering complex queries involving existential quantifiers and disjunctions.

When writing, Query Computation Tree Optimization (QTO) proposed by Bai et al.
[6] stands as the state-of-the-art method for complex query answering. QTO efficiently
finds the optimal solution for sizeable combinatorial search spaces by performing forward-
backwards propagation on the query computation tree, achieving superior performance
on complex query answering across multiple datasets. As a result, QTO achieves state-of-
the-art performance on complex query answering across three datasets, shown in table 5.1.

However, these methods focused primarily on complex query answering without a
TBox attached, making them different in approach and goal from the current work. While

106

107

Table 5.1: Table borrowed from [6]: “Test MRR results on complex query answering
across all query types. avgp is the average on EPFO queries; avgood is the average on
out-of-distribution (OOD) queries; avgn is the average on queries with negation. Results
on Hits@1 are in Appendix G.1. ”

they achieve remarkable results, these methods do not aim to improve query answering
using a TBox, which is the core objective of our study.

In parallel to advancements in complex query answering, research on ontology
representation has also made significant strides. The KG community have proposed
various approaches to embed ontological knowledge into a low-dimensional vector space,
from representing relations as regions within the vector space [22], embedding theories
in the Description Logic EL++ [32], to embedding ontologies articulated in the ALC
description logic into a real-valued vector space [43].

Most recently, Xiong et al. [60] represented TBoxes in an embedded space where
entities are points and concepts are boxes. Here, if an entity point resides within a concept
box, it is considered an instance of that concept. This approach has interesting properties,
such as the intersection of several concepts answering a conjunctive intersection query,
illustrated in fig. 5.1.

Figure 5.1: BoxEL Embedded Space. Illustration from [60]: The geometric interpretation
of logical statements in ABox (left) and TBox (right) expressed by DL EL++ with BoxEL
embeddings.

While the embedded representation of the TBox in the embedded space offers
fascinating potential and has certain parallels to our work, it is not an exact match.
The study on DeepProbLog by Manhaeve et al. [40] provides a compelling illustration of
how logical rules and neural network models can be used in tandem while maintaining a
distinct separation. They demonstrated how Problog rules could be entirely decoupled
from low-level perception, exemplified in their case by a convolutional neural network

108

model predicting on the MNIST dataset. Following this, they applied these logical rules
to execute numerical addition without meddling with the prediction labels, or in other
words, without affecting the neural network model’s learning of numbers.

The benefit of this approach is that the learned weights that comprise the CNN model
do not have to accommodate the logic within the model’s weights, enabling the model
to concentrate purely on predicting the numbers. If the model had to learn addition and
identify numbers simultaneously, the results would drastically deteriorate, as evidenced
by a substantial increase in the prediction outcome numbers [40]. To draw a parallel
with our case, the Problog rules in DeepProbLog would be abstractly equivalent to our
ontology, and their CNN model for predicting MNIST numbers would correlate with
our KGE models. However, unlike DeepProbLog, we do not incorporate our logic into
the training phase; DeepProbLog includes logic within its pipeline towards the scoring
function.

Nevertheless, intriguing intersections exist between complex query answering, TBox
representation in the embedded space, and the integration of logic into the learning
pipeline, demonstrating this field’s rich tapestry of possibilities.

109

Chapter 6

Conclusion

The principal aim of this thesis was to assess the potential of the PerfectRef algorithm
in enhancing the outcomes of complex query answering through query rewriting,
utilizing knowledge graph embeddings (KGE). Four pivotal research questions guided our
exploration. The first delved into the integration of query rewriting with knowledge graph
embeddings. The second question focused on the impact of different models on the results
achieved through this integration. The third examined the comparative performance of
this approach against a conventional KG lookup—finally, the fourth question reflected
on the interpretation and implications of our results.

Our initial focus was on integrating queries and embeddings for complex query
answering. Even with various methods for complex query answering, we need to consider
concepts from a TBox to our knowledge instead of solely utilizing the ABox. In our work,
we leveraged two distinct datasets: DBPedia15k, which incorporated the TBox in the set
of triples the model was trained on, and the Family dataset, which kept the TBox and
ABox separate. In the latter case, predicting concepts became challenging due to the
absence of a fair and unbiased method for selecting concept candidates. However, we
converted most concepts into roles (properties) with query rewriting, enabling effective
query answering. We showed how query rewriting was separate from the embeddings and
how to amalgamate query rewriting and complex query answering.

Our experiments employed five distinct models: TransE, DistMult, BoxE, RotatE,
and CompGCN. Utilizing the Hits@3 metric on the Family dataset revealed RotatE
as the top performer across all projection query structures (1p, 2p, 3p, pi, ip, up).
Unexpectedly, TransE outperformed the others on the intersection (2i, 3i) and the 2u

110

disjunction structure. In the case of DBPedia15k, TransE secured the highest scores
across all query structures, except for ’pi’, where CompGCN proved superior. TransE
was also the model for DBPedia15k that benefitted the most from rewriting. However,
no clear correlations emerged between model architectural designs and query structure
scores.

To answer the third question, we created four lists of entities to validate the correctness
of our predicted entities. The first list derived from a conventional KG Lookup, the second
from the rewritten queries set on the lookup to our dataset, the third from the initial query
to the full version of the ontology using their API, and the fourth from querying the online
KG version with the union of rewritten queries. We observed improved results for all query
structures in the Family dataset and DBPedia15k when validating our results using the
list of entities from the rewritten sets using our local datasets. However, DBPedia15k
decreased for ‘1p’ and ‘2u’ structures when using the full ontology API for validation,
potentially explained by the receipt of some HTTP Code 206, Partial Content from our
lookups.

For measuring the impact of KGE predictions, we leveraged the online KG to ascertain
whether we had identified any new facts not already known to our local datasets, thus
being able to correctly identify new facts unknown to our KGE model during training.
However, the improvements were not clear. For the Family dataset, we saw a slight
increase for all structures when evaluating the original query, while scores were equal
primarily when using the rewritten sets. This observation suggests a high similarity
between our local rewritten set and the online set for evaluation for the family dataset. For
DBPedia15k, results significantly decreased, likely due to discrepancies between our local
dataset and the online version and possible partial content delivery from API lookups.
Consequently, our results did not demonstrate the advantage of KGE predictions.

When we combined the outcomes of query rewriting and KGE predictions, improvements
(or equal results) were evident for every query structure in the Family dataset, while
DBPedia15k mainly showed decreases. Given the credibility issues with DBPedia15k,
we weighted the results from the Family dataset more, which allowed us to conclude
that integrating query rewriting and KGE embeddings improved the results. If we solely
consider query rewriting, it is clear that it improved our results for both datasets.

Our findings, while promising, highlight areas for improvement. The query generator
currently does not prevent the generation of illogical queries and queries without answers.
Also, a more reliable dataset than DBPedia15k would have benefitted the work by

111

fairly supplementing the family dataset. Despite these issues, our results from the
Family dataset indicate that query rewriting enhances complex query answering. This
enhancement is evident when datasets are incomplete - meaning it could entail new
facts from the TBox. We hope this study fosters further exploration of query rewriting
techniques in combination with KGEs. It also underscores the significance of considering
the TBox in query answering tasks, contributing to improved accuracy and effectiveness
of the query answering process.

6.1 Future Work

This thesis primarily examined the merits of query rewriting using a TBox to broaden
the horizons for complex query answering tasks. As a result, our primary pursuit was
not refining the query answering pipeline, leaving ample room for advancements and
exploration. Our research highlighted the considerable potential of query rewriting,
particularly in dealing with ontologies that lack full entailment (i.e., completeness).

In future studies, it would be intriguing to delve into the possibilities of integrating
our query rewriting approach with the advancements in knowledge graph embeddings
models that embody logic, as illustrated by BoxEL [60]. BoxEL offers a harmonized
representation of both the ABox and TBox of an ontology within an embedded space.
This approach could couple with existing complex query answering techniques such as
Query2Box [49] and QTO [6] Further, an exciting prospect would be to examine the
balance between integrating the TBox within the embedded space and keeping the
logic entirely separate from the embedding, the latter demonstrated by DeepProbLog
[40]. Assessing whether implementing TBoxes into the embedded space significantly
complicates the models, thereby impacting the embeddings’ general prediction abilities,
could provide valuable insights into the trade-off between maintaining a clear separation
between logic and embedding. We hypothesize that segregating the logic and TBox from
the embedded space permits using a KGE model trained on a conventional dataset for
prediction. At the same time, accommodating projection, intersection, and disjunction for
query structures outside of the embedded space may allow for more effective generalization
in query answering beyond predefined query structures.

As we build upon the foundation of this thesis, an exciting future endeavour could
be to expand TBox representations, incorporating the strengths of our query rewriting
methods. This approach could create a more robust and efficient knowledge graph-based

112

query answering system capable of managing a more comprehensive array of queries and
providing even more accurate results. Our contribution could be significantly enhanced
if we ground the queries, improve the complex query answering pipeline, and ensure
that the foundational training of our models is valid subsets of the comprehensive online
KGs utilized to evaluate novel facts. Nevertheless, query rewriting can be an essential
tool in complex query answering, potentially enhancing the results when a TBox for
the corresponding dataset is available. We hope this discovery yields value to the KG
community.

113

List of Acronyms and Abbreviations

AMRI Adjusted Mean Rank Index.
API Application Programming Interface.
CQ Conjunctive Query.
CWA Closed-World Assumption.
DL Description Logic.
EPFO Existential Positive First-order.
FOL First Order Logic.
KB Knowledge Base.
KG Knowledge Graph.
KGE Knowledge Graph Embedding.
L/I List of entities from local KG with initial query.
L/R List of entities from local KG with rewritten queries.
ML Machine Learning.
MR Mean Rank.
MRL Margin Ranking Loss.
NI Negative Inclusion.
NSSALoss Self-adversarial negative sampling loss.
O/I List of entities from online KG with initial query.
O/R List of entities from online KG with rewritten queries.
o-MRR Optimistic Mean Reciprocal Rank.
OWA Open World Assumption.
OWL The W3C Web Ontology Language.
PI Positive Inclusion.
PL Propositional Logic.
RDF Resource Description Framework.
RDFS RDF Schema.

114

URI Uniform Resource Identifier.
VSM Vector Space Model.

115

Bibliography

[1] Ralph Abboud, İsmail İlkan Ceylan, Thomas Lukasiewicz, and Tommaso Salvatori.
Boxe: A box embedding model for knowledge base completion. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.
URL: https://proceedings.neurips.cc/paper/2020/hash/

6dbbe6abe5f14af882ff977fc3f35501-Abstract.html.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995. ISBN 0-201-53771-0.
URL: http://webdam.inria.fr/Alice/.

[3] Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Sahand
Sharifzadeh, Volker Tresp, and Jens Lehmann. PyKEEN 1.0: A Python Library
for Training and Evaluating Knowledge Graph Embeddings. Journal of Machine
Learning Research, 22(82):1–6, 2021.
URL: http://jmlr.org/papers/v22/20-825.html.

[4] Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. Complex
query answering with neural link predictors. CoRR, abs/2011.03459, 2020.
URL: https://arxiv.org/abs/2011.03459.

[5] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003. ISBN 0-
521-78176-0.

[6] Yushi Bai, Xin Lv, Juanzi Li, and Lei Hou. Answering complex logical queries on
knowledge graphs via query computation tree optimization. CoRR, abs/2212.09567,

116

https://proceedings.neurips.cc/paper/2020/hash/6dbbe6abe5f14af882ff977fc3f35501-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6dbbe6abe5f14af882ff977fc3f35501-Abstract.html
http://webdam.inria.fr/Alice/
http://jmlr.org/papers/v22/20-825.html
https://arxiv.org/abs/2011.03459

2022. doi: 10.48550/arXiv.2212.09567.
URL: https://doi.org/10.48550/arXiv.2212.09567.

[7] Jørgen Bang-Jensen and Gregory Gutin. Basic Terminology, Notation and Results,
pages 1–34. Springer International Publishing, Cham, 2018. ISBN 978-3-319-71840-
8. doi: 10.1007/978-3-319-71840-8_1.
URL: https://doi.org/10.1007/978-3-319-71840-8_1.

[8] Tim Berners-Lee and Mark Fischetti. Weaving the web - the original design and
ultimate destiny of the World Wide Web by its inventor. HarperBusiness, 2000.
ISBN 978-0-06-251587-2.

[9] Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. Learning
structured embeddings of knowledge bases. In Wolfram Burgard and Dan Roth,
editors, Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2011, San Francisco, California, USA, August 7-11, 2011. AAAI Press, 2011.
URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3659.

[10] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and
Oksana Yakhnenko. Translating embeddings for modeling multi-relational data.
In Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q.
Weinberger, editors, Advances in Neural Information Processing Systems 26: 27th
Annual Conference on Neural Information Processing Systems 2013. Proceedings
of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, pages
2787–2795, 2013.
URL: https://proceedings.neurips.cc/paper/2013/hash/

1cecc7a77928ca8133fa24680a88d2f9-Abstract.html.

[11] Aaron R. Bradley and Zohar Manna. The calculus of computation - decision
procedures with applications to verification. Springer, 2007. doi: 10.1007/978-3-
540-74113-8.
URL: https://doi.org/10.1007/978-3-540-74113-8.

[12] Tomaz Bratanic. Knowledge graph completion with pykeen and neo4j, Dec 2021.
URL: https://towardsdatascience.com/knowledge-graph-completion-with-pykeen-and-

neo4j-6bca734edf43.

[13] Dan Brickley and R.V. Guha. Resource description framework (rdf) schema
specification 1.0. W3C note, W3C, September 2001.
URL: https://www.w3.org/2001/sw/RDFCore/Schema/20010913/.

117

https://doi.org/10.48550/arXiv.2212.09567
https://doi.org/10.1007/978-3-319-71840-8_1
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3659
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://doi.org/10.1007/978-3-540-74113-8
https://towardsdatascience.com/knowledge-graph-completion-with-pykeen-and-neo4j-6bca734edf43
https://towardsdatascience.com/knowledge-graph-completion-with-pykeen-and-neo4j-6bca734edf43
https://www.w3.org/2001/sw/RDFCore/Schema/20010913/

[14] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and
Riccardo Rosati. Tractable reasoning and efficient query answering in description
logics: The DL-Lite family. J. Autom. Reason., 39(3):385–429, 2007. doi: 10.1007/
s10817-007-9078-x.
URL: https://doi.org/10.1007/s10817-007-9078-x.

[15] Tony Coates, Dan Connolly, Diana Dack, Leslie Daigle, Ray Denenberg, Martin
Dürst, Paul Grosso, Sandro Hawke, Renato Iannella, Graham Klyne, Larry Masinter,
Michael Mealling, Mark Needleman, and Norman Walsh. URIs, URLs, and URNs:
Clarifications and recommendations 1.0. W3C note, W3C, September 2001.
URL: https://www.w3.org/TR/2001/NOTE-uri-clarification-20010921/.

[16] Lito Perez Cruz. Theoremus - A Student’s Guide to Mathematical Proofs. Springer,
2021. ISBN 978-3-030-68374-0. doi: 10.1007/978-3-030-68375-7.
URL: https://doi.org/10.1007/978-3-030-68375-7.

[17] Yuanfei Dai, Shiping Wang, Neal N. Xiong, and Wenzhong Guo. A survey on
knowledge graph embedding: Approaches, applications and benchmarks. Electronics,
9(5), 2020. ISSN 2079-9292. doi: 10.3390/electronics9050750.
URL: https://www.mdpi.com/2079-9292/9/5/750.

[18] Claudia d’Amato, Nicola Flavio Quatraro, and Nicola Fanizzi. Injecting background
knowledge into embedding models for predictive tasks on knowledge graphs. In
Ruben Verborgh, Katja Hose, Heiko Paulheim, Pierre-Antoine Champin, Maria
Maleshkova, Oscar Corcho, Petar Ristoski, and Mehwish Alam, editors, The
Semantic Web, pages 441–457, Cham, 2021. Springer International Publishing. ISBN
978-3-030-77385-4.

[19] C. J. Date. A Guide to the SQL Standard, Second Edition. Addison-Wesley, 1989.
ISBN 978-0-201-50209-1.

[20] Lisa Ehrlinger and Wolfram Wöß. Towards a definition of knowledge graphs. In
Michael Martin, Martí Cuquet, and Erwin Folmer, editors, Joint Proceedings of the
Posters and Demos Track of the 12th International Conference on Semantic Systems
- SEMANTiCS2016 and the 1st International Workshop on Semantic Change &
Evolving Semantics (SuCCESS’16) co-located with the 12th International Conference
on Semantic Systems (SEMANTiCS 2016), Leipzig, Germany, September 12-15,
2016, volume 1695 of CEUR Workshop Proceedings. CEUR-WS.org, 2016.
URL: http://ceur-ws.org/Vol-1695/paper4.pdf.

118

https://doi.org/10.1007/s10817-007-9078-x
https://www.w3.org/TR/2001/NOTE-uri-clarification-20010921/
https://doi.org/10.1007/978-3-030-68375-7
https://www.mdpi.com/2079-9292/9/5/750
http://ceur-ws.org/Vol-1695/paper4.pdf

[21] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe Wang. Hermit:
An owl 2 reasoner. J. Autom. Reason., 53(3):245–269, 2014.
URL: http://dblp.uni-trier.de/db/journals/jar/jar53.html#GlimmHMSW14.

[22] Víctor Gutiérrez-Basulto and Steven Schockaert. From knowledge graph embedding
to ontology embedding? an analysis of the compatibility between vector space
representations and rules. In Michael Thielscher, Francesca Toni, and Frank Wolter,
editors, Principles of Knowledge Representation and Reasoning: Proceedings of the
Sixteenth International Conference, KR 2018, Tempe, Arizona, 30 October - 2
November 2018, pages 379–388. AAAI Press, 2018.
URL: https://aaai.org/ocs/index.php/KR/KR18/paper/view/18013.

[23] William L. Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure
Leskovec. Embedding logical queries on knowledge graphs. In Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and
Roman Garnett, editors, Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, pages 2030–2041, 2018.
URL: https://proceedings.neurips.cc/paper/2018/hash/

ef50c335cca9f340bde656363ebd02fd-Abstract.html.

[24] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia D’amato, Gerard De
Melo, Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto
Navigli, Sebastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M.
Rashid, Anisa Rula, Lukas Schmelzeisen, Juan Sequeda, Steffen Staab, and Antoine
Zimmermann. Knowledge graphs. ACM Computing Surveys, 54(4):1–37, jul 2021.
doi: 10.1145/3447772.
URL: https://doi.org/10.1145%2F3447772.

[25] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia D’amato, Gerard De
Melo, Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto
Navigli, Sebastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M.
Rashid, Anisa Rula, Lukas Schmelzeisen, Juan Sequeda, Steffen Staab, and Antoine
Zimmermann. Knowledge graphs. ACM Comput. Surv., 54(4), jul 2021. ISSN 0360-
0300. doi: 10.1145/3447772.
URL: https://doi.org/10.1145/3447772.

[26] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. Knowledge graph
embedding via dynamic mapping matrix. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International

119

http://dblp.uni-trier.de/db/journals/jar/jar53.html#GlimmHMSW14
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18013
https://proceedings.neurips.cc/paper/2018/hash/ef50c335cca9f340bde656363ebd02fd-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/ef50c335cca9f340bde656363ebd02fd-Abstract.html
https://doi.org/10.1145%2F3447772
https://doi.org/10.1145/3447772

Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages
687–696, Beijing, China, July 2015. Association for Computational Linguistics. doi:
10.3115/v1/P15-1067.
URL: https://aclanthology.org/P15-1067.

[27] Johanna Jøsang, Ricardo Guimarães, and Ana Ozaki. On the effectiveness of
knowledge graph embeddings: a rule mining approach. CoRR, abs/2206.00983,
2022. doi: 10.48550/arXiv.2206.00983.
URL: https://doi.org/10.48550/arXiv.2206.00983.

[28] Mayank Kejriwal, Craig A. Knoblock, and Pedro Szekely. Knowledge Graphs:
Fundamentals, Techniques, and Applications. The MIT Press, Cambridge, MA,
2021.

[29] Hans Kleine Büning and Theodor Lettmann. Propositional logic - deduction
and algorithms, volume 48 of Cambridge tracts in theoretical computer science.
Cambridge University Press, 1999. ISBN 978-0-521-63017-7.

[30] Graham Klyne and Jeremy Carroll. Resource description framework (RDF):
Concepts and abstract syntax. W3C recommendation, W3C, February 2004.
https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

[31] Markus Krötzsch and Gerhard Weikum. Journal of web semantics. Journal of
Web Semantics, 37-38:53–54, 2016. ISSN 1570-8268. doi: https://doi.org/10.1016/
j.websem.2016.04.002.
URL: https://www.sciencedirect.com/science/article/pii/S1570826816300026.

[32] Maxat Kulmanov, Wang Liu-Wei, Yuan Yan, and Robert Hoehndorf. EL
embeddings: Geometric construction of models for the description logic EL ++.
CoRR, abs/1902.10499, 2019.
URL: http://arxiv.org/abs/1902.10499.

[33] Siddharth Krishna Kumar. On weight initialization in deep neural networks, 2017.

[34] Jean-Baptiste Lamy. Owlready: Ontology-oriented programming in python with
automatic classification and high-level constructs for biomedical ontologies. Artif.
Intell. Medicine, 80:11–28, 2017. doi: 10.1016/j.artmed.2017.07.002.
URL: https://doi.org/10.1016/j.artmed.2017.07.002.

[35] Jean-Baptiste Lamy. owlready2. https://bitbucket.org/jibalamy/owlready2/
src/master/, 2020.

120

https://aclanthology.org/P15-1067
https://doi.org/10.48550/arXiv.2206.00983
https://www.sciencedirect.com/science/article/pii/S1570826816300026
http://arxiv.org/abs/1902.10499
https://doi.org/10.1016/j.artmed.2017.07.002
https://bitbucket.org/jibalamy/owlready2/src/master/
https://bitbucket.org/jibalamy/owlready2/src/master/

[36] Jean-Baptiste Lamy. Managing ontologies, 2023.
URL: https://owlready2.readthedocs.io/en/latest/onto.html.

[37] Jean-Baptiste Lamy. Class constructs, restrictions and logical operators, 2023.
URL: https://owlready2.readthedocs.io/en/latest/restriction.html.

[38] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity
and relation embeddings for knowledge graph completion. In Blai Bonet and Sven
Koenig, editors, Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, January 25-30, 2015, Austin, Texas, USA, pages 2181–2187. AAAI
Press, 2015.
URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571.

[39] Ye Liu, Hui Li, Alberto García-Durán, Mathias Niepert, Daniel Oñoro-Rubio,
and David S. Rosenblum. MMKG: multi-modal knowledge graphs. CoRR,
abs/1903.05485, 2019.
URL: http://arxiv.org/abs/1903.05485.

[40] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and
Luc De Raedt. Deepproblog: Neural probabilistic logic programming. CoRR,
abs/1805.10872, 2018.
URL: http://arxiv.org/abs/1805.10872.

[41] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality. In
C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 26, page 3111–3119.
Curran Associates, Inc., 2013.
URL: https://proceedings.neurips.cc/paper/2013/file/

9aa42b31882ec039965f3c4923ce901b-Paper.pdf.

[42] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for
collective learning on multi-relational data. In Lise Getoor and Tobias Scheffer,
editors, Proceedings of the 28th International Conference on Machine Learning,
ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011, pages 809–816.
Omnipress, 2011.
URL: https://icml.cc/2011/papers/438_icmlpaper.pdf.

[43] Özgür Lütfü Özçep, Mena Leemhuis, and Diedrich Wolter. Cone semantics for
logics with negation. In Christian Bessiere, editor, Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages

121

https://owlready2.readthedocs.io/en/latest/onto.html
https://owlready2.readthedocs.io/en/latest/restriction.html
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571
http://arxiv.org/abs/1903.05485
http://arxiv.org/abs/1805.10872
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://icml.cc/2011/papers/438_icmlpaper.pdf

1820–1826. ijcai.org, 2020. doi: 10.24963/ijcai.2020/252.
URL: https://doi.org/10.24963/ijcai.2020/252.

[44] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.
URL: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-

performance-deep-learning-library.pdf.

[45] Peter Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL web ontology
language semantics and abstract syntax. W3C recommendation, W3C, February
2004. https://www.w3.org/TR/2004/REC-owl-semantics-20040210/.

[46] Aleksandar Pavlović and Emanuel Sallinger. Expressive: A spatio-functional
embedding for knowledge graph completion. In The Eleventh International
Conference on Learning Representations, 2023.
URL: https://openreview.net/forum?id=xkev3_np08z.

[47] Nicola Flavio Quatraro. Transrowl-hrs. https://github.com/Keehl-Mihael/
TransROWL-HRS, 2020.

[48] Hongyu Ren and Jure Leskovec. Beta embeddings for multi-hop logical reasoning in
knowledge graphs. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.
URL: https://proceedings.neurips.cc/paper/2020/hash/

e43739bba7cdb577e9e3e4e42447f5a5-Abstract.html.

[49] Hongyu Ren, Weihua Hu, and Jure Leskovec. Query2box: Reasoning over knowledge
graphs in vector space using box embeddings. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.
URL: https://openreview.net/forum?id=BJgr4kSFDS.

[50] Baoxu Shi and Tim Weninger. Open-world knowledge graph completion. In
Sheila A. McIlraith and Kilian Q. Weinberger, editors, Proceedings of the Thirty-

122

https://doi.org/10.24963/ijcai.2020/252
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://openreview.net/forum?id=xkev3_np08z
https://github.com/Keehl-Mihael/TransROWL-HRS
https://github.com/Keehl-Mihael/TransROWL-HRS
https://proceedings.neurips.cc/paper/2020/hash/e43739bba7cdb577e9e3e4e42447f5a5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e43739bba7cdb577e9e3e4e42447f5a5-Abstract.html
https://openreview.net/forum?id=BJgr4kSFDS

Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on
Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, pages 1957–1964. AAAI Press, 2018.
URL: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16055.

[51] Steffen Staab and Rudi Studer, editors. Handbook on Ontologies. International
Handbooks on Information Systems. Springer, 2004. ISBN 3-540-40834-7.

[52] Rudi Studer, V. Richard Benjamins, and Dieter Fensel. Knowledge engineering:
Principles and methods. Data Knowl. Eng., 25(1-2):161–197, 1998. doi: 10.1016/
S0169-023X(97)00056-6.
URL: https://doi.org/10.1016/S0169-023X(97)00056-6.

[53] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge
graph embedding by relational rotation in complex space. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019.
URL: https://openreview.net/forum?id=HkgEQnRqYQ.

[54] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha P. Talukdar.
Composition-based multi-relational graph convolutional networks. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
URL: https://openreview.net/forum?id=BylA_C4tPr.

[55] Evan Wallace and Christine Golbreich. OWL 2 web ontology language new features
and rationale (second edition). W3C recommendation, W3C, December 2012.
https://www.w3.org/TR/2012/REC-owl2-new-features-20121211/.

[56] Meihong Wang, Linling Qiu, and Xiaoli Wang. A survey on knowledge graph
embeddings for link prediction. Symmetry, 13(3), 2021. ISSN 2073-8994. doi:
10.3390/sym13030485.
URL: https://www.mdpi.com/2073-8994/13/3/485.

[57] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph
embedding by translating on hyperplanes. In Carla E. Brodley and Peter Stone,
editors, Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,
July 27 -31, 2014, Québec City, Québec, Canada, pages 1112–1119. AAAI Press,
2014.
URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531.

123

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16055
https://doi.org/10.1016/S0169-023X(97)00056-6
https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=BylA_C4tPr
https://www.mdpi.com/2073-8994/13/3/485
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531

[58] Wikipedia. Knowledge graph — Wikipedia, the free encyclopedia.
http://en.wikipedia.org/w/index.php?title=Knowledge%20graph&oldid=
1138959356, 2023. [Online; accessed 18-February-2023].

[59] Paul Witherell, Sundar Krishnamurty, Ian Grosse, and Jack Wileden. Improved
knowledge management through first-order logic in engineering design ontologies.
AI EDAM, 24:245–257, 05 2010. doi: 10.1017/S0890060409990096.

[60] Bo Xiong, Nico Potyka, Trung-Kien Tran, Mojtaba Nayyeri, and Steffen Staab.
Faithful embeddings for el++ knowledge bases. In Ulrike Sattler, Aidan Hogan,
C. Maria Keet, Valentina Presutti, João Paulo A. Almeida, Hideaki Takeda, Pierre
Monnin, Giuseppe Pirrò, and Claudia d’Amato, editors, The Semantic Web - ISWC
2022 - 21st International Semantic Web Conference, Virtual Event, October 23-27,
2022, Proceedings, volume 13489 of Lecture Notes in Computer Science, pages 22–38.
Springer, 2022. doi: 10.1007/978-3-031-19433-7_2.
URL: https://doi.org/10.1007/978-3-031-19433-7_2.

[61] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding
entities and relations for learning and inference in knowledge bases. In Yoshua Bengio
and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015.
URL: http://arxiv.org/abs/1412.6575.

[62] Amrapali Zaveri, Anisa Rula, Andrea Maurino, Ricardo Pietrobon, Jens Lehmann,
and Sören Auer. Quality assessment for linked data: A survey. Semantic Web, 7(1):
63–93, 2016. doi: 10.3233/SW-150175.
URL: https://doi.org/10.3233/SW-150175.

124

http://en.wikipedia.org/w/index.php?title=Knowledge%20graph&oldid=1138959356
http://en.wikipedia.org/w/index.php?title=Knowledge%20graph&oldid=1138959356
https://doi.org/10.1007/978-3-031-19433-7_2
http://arxiv.org/abs/1412.6575
https://doi.org/10.3233/SW-150175

Appendix A

Logic fundamentals

A.1 Logic

Logic is a ubiquitous term found in many different areas of knowledge - like philosophy,
mathematics, reasoning, and computing [5]. As a matter of fact, it is a field of knowledge
in itself. Logic immediately becomes relevant in artificial intelligence as the need for
knowledge representation is highly evident.

A.1.1 Propositional Logic

In the realm of Propositional Logic (PL), statements are referred to as propositional
formulas, and these encompass propositional variables known as atoms [29]. The values
that these atoms can take are restricted to boolean expressions, specifically true or false.
The convention for denoting atoms is to use capital letters such as A and B.

These atoms are linked together by a variety of logic connectives, as shown in
table A.1. The connectives include conjunction, disjunction, negation, implication, and
double implication (equivalency).

Each connective serves a specific function. For instance, the conjunction (AND)
connective ensures that the combined proposition is true only if both A and B are true.
In contrast, the disjunction (OR) connective makes the compound proposition true if
either A or B, or both, are true.

125

Name Symbol Connection Meaning
Negation (NOT) ¬ ¬A (¬A) is true if A is false.

Conjunction (AND) ∧ A ∧B
(A∧B) is true if both A and B are
true; otherwise, false.

Disjunction (OR) ∨ A ∨B
(A ∨ B) is true if either A or B is
true, or both true, otherwise false.

Exclusive OR (XOR) ⊕ A⊕B
(A ⊕ B) is true if either A or B is
true, otherwise false.

Implication =⇒ A =⇒ B if A occur, then B occurs.
Double implication ⇔ A⇔ B A occurs if and only if B occurs

Table A.1: Operators in Propositional Logic

To illustrate this with an example in the context of PL, consider the following
propositions:

A := The temperature outside varies by the time of year B := Norway is a country
(A.1)

Here, we have two distinct propositions, A and B. The truth value of these propositions
cannot be determined by the propositions themselves but depends on a given valuation
(interpretation). In a common interpretation of these propositions, where A is generally
accepted as true due to weather variations throughout the year, and B is accepted as
true since Norway is recognized as a country, both A and B would be considered true.
However, it is important to note that these truth values are context-dependent and not
inherent properties of the propositions.

A.1.2 First Order Logic

PL exhibits certain limitations in terms of its expressivity. As an example, consider the
logical progression of the following three statements:

1. All dogs like to walk

2. Dog(Theo)

3. LikesWalking(Theo)

126

In this progression, the first two statements logically lead to the third. However, such
an expression of interconnectedness is beyond the expressive power of PL.

First Order Logic (FOL) enhances this expressiveness by introducing predicates,
terms, and quantification [29]. Predicates in FOL are analogous to atoms in PL. The
term arity (also known as valence) refers to the number of arguments or operands that
a function or operation accepts, and in this context, it refers to the number of terms a
predicate contains. A predicate with an arity of 0 is an atom in PL as it doesn’t expect
any terms.

Terms in FOL can be constants, variables, or functions.

Figure A.1: FOL atom

In fig. A.1, the unary (one term) predicate Dog includes the variable x, forming an
atom. When a constant, such as Theo, substitutes the variable x, the atom is said to be
grounded [29]. In addition to n-ary predicates, an atom could be > (for top) or ⊥ (for
bottom). Literals are defined as atoms or their negated form.

FOL also introduces the universal and existential quantifiers, illustrated in Table A.2.
The universal quantifier ∀x means for all x, while the existential quantifier ∃x implies
there exists some x. For instance, to state in FOL that “all people are mortal”, it would
be formulated as ∀x.Man(x) → Mortal(x). Replacing the universal quantifier with the
existential, ∃x.Man(x) ∧ Mortal(x), changes the statement to “there exists a mortal
person”.

Name Symbol Connection Meaning
Universal
quantifier ∀ ∀x.P (x) For all x, P (x) holds.

Existential
quantifier ∃ ∃x.P (x)

There exists an x such that P (x)
holds.

Table A.2: Quantification in First-order Logic

A FOL formula integrates literals and quantifiers with the logical connectives inherited
from PL [11]. Following is a FOL formula for the sake of illustration,

127

∀x.P (f(x), x)→ (∃y.P (f(g(x, y)), g(x, y))) ∧Q(x, f(x)).

This formula reads: for all x, if P (f(x), x) holds, then there exists a y such that both
P (f(g(x, y)), g(x, y)) and Q(x, f(x)) hold.

Conjunctive Queries

A critical aspect of FOL emphasized in this thesis is the concept of CQs. The essence of
queries lies in their deep-rooted connection with logic. Every query essentially constitutes
two components we’ve already encountered – variables and FOL formulas.

To construct the context of a query, we begin by defining it within the framework of
FOL. This is done by selecting a variable of interest and linking it to a FOL formula.
This can be formally represented as

{ ~x | φ(~x) }.

Here, ~x denotes the variable under query and φ(~x) represents a FOL formula. The
arity of the query is dictated by the length of ~x.

The structure of a CQ is given by {~x | ∃~y.conj(~x, ~y)}, where conj(~x, ~y) is a conjunction
of atoms. Here, ~x and ~y are vectors of variables [14]. A further extension of this concept
leads to a union of conjunctive queries, which essentially entails a set of CQs yielding a
single collective response for the variables satisfying each CQ.

It is also common to use standard datalog notation [2] when working with CQs. Here,
the query {~x | ∃~y.conj(~x, ~y)} is translated as q(~x′) ← conj′(~x′ , ~y′). In this notation, the
term q(~x′) is referred to as the head of the query, and conj′(~x′ , ~y′) is known as the body
of the query.

A significant aspect to note here is the presence of distinguished variables, denoted
by ~x′ , in the head of the query [14]. These variables also appear in the body conj′(~x′ , ~y′),
influencing the variables responded to by the body (or FOL Formula). These variables
are analogous to the terms following the SELECT statement in SQL [19], meaning the
variables we want answered. The variables represented by ~y′ in conj′(~x′ , ~y′) are termed as
non-distinguished variables, as they only occur in the body of the query. In the context
of FOL formulas, these terms correspond to bound variables and free variables [16].

128

Appendix B

PerfectRef implementation running time

B.1 Summation of all natural numbers

The formula for the sum of all natural numbers from 1 to d is given by:

S(d) =
d(d+ 1)

2

Let’s prove this formula using mathematical induction.

Base Case: When d = 1, we have

S(1) =
1(1 + 1)

2
= 1,

which is the first natural number.

Induction: We assume that the formula is true for some k. That is, we assume

S(k) =
k(k + 1)

2
.

We need to prove that it holds for k + 1. That is, we need to show that

S(k + 1) =
(k + 1)((k + 1) + 1)

2
.

129

The left side S(k+1) can be written as S(k) + (k+1), based on the definition of the
summation. Substituting the induction hypothesis into this we get:

S(k + 1) =
k(k + 1)

2
+ (k + 1).

To simplify this, we can find a common denominator and combine terms:

S(k + 1) =
[k(k + 1) + 2(k + 1)]

2
=

(k + 1)(k + 2)

2
.

This completes the induction step and hence the formula

S(d) =
d(d+ 1)

2
(B.1)

is proved to hold for all d.

B.2 Binomial coefficient

B.2.1 Correlation between binomial coefficient and triangular
numbers

For the reduction in PerfectRef, we are going to test all combinations of pairs of atoms
in our query. The binomial coefficient d choose 2 (denoted as dC2) gives the sequence of
triangular numbers: 1, 3, 6, 10, 15, 21, 28,

Here’s why:

d choose 2 =
d!

[(d− 2)!2!]

As factorial is defined as the product of all positive integers up to a certain number,
we have:

130

d(d− 1)(d− 2)!

[(d− 2)!2]

The (d− 2)! terms cancel out, leaving us with:

d(d− 1)

2

which is the same as if we change the ordering and add 1 to d

d(d+ 1)

2

This formula is precisely the one used to generate the sequence of triangular numbers.
Therefore, the binomial coefficient d choose 2 equals the (d-1)th triangular number.

The dth triangular number is given by the formula

T (d) =
d(d+ 1)

2
(B.2)

B.2.2 Summation over the first d triangular numbers

If we want to sum the first d triangular numbers, we denote it as S(d). The formula for
S(d) is given by:

S(d) =
d(d+ 1)(d+ 2)

6

Let’s show this holds by induction.

Base Case: When d = 1, we have

S(d) =
1(1 + 1)(1 + 2)

6
= 1,

which is the first triangular number.

131

Induction: We assume that the formula is true for some k. That is, we assume

S(k) =
k(k + 1)(k + 2)

6
.

We need to prove that it holds for k + 1. That is, we need to show that

S(k + 1) =
(k + 1)(k + 2)(k + 3)

6

S(k + 1) = S(k) + T (k + 1) =
k(k + 1)(k + 2)

6
+

(k + 1)(k + 2)

2

Factoring (k + 1)(k + 2) from both terms we get:

S(k + 1) = (k + 1)(k + 2)[k/6 + 1/2] =
(k + 1)(k + 2)(k + 3)

6

This completes the induction step and so the formula

S(d) =
d(d+ 1)(d+ 2)

6
(B.3)

holds for all d.

B.3 Running time PerfectRef

Let d be the number of atoms in the current query. Let t be the number of axioms in T ,
where T is the TBox, and let n be the combined number of classes and properties in our
ontology. Let T be a function of

In our model, we assume a hypothetical scenario where every class and property may
be reformulated to each other, effectively creating a fully connected graph [7]. This means
every atom in the query q applies to every axiom in T .

For d = 0, we have the base case

T (0, t, n) = 0

132

For d = 1, we generate t more queries, while iterating through T . Thereafter, each
newly added conjunctive query (of t amount) will also run through T (consisting of t

axioms), making this operation use t2 iterations. This time, no new entailments occur.
Since it is already just one atom, there is no reduction, resulting in a total running time
of

T (1) = 1(t+ t2) + T (0, t, n)

When d = 2, we end up with 2t conjunctive queries, as they will run through T for
every atom. Furthermore, we will also account for possible reductions where the atoms
are equal; in the worst case, we will get n reductions, each running through T to check
for further reformulations, yielding nt. Adding the running time from d− 1, we arrive at

T (2) = 2(t+ t2) + nt+ T (1, t, n)

For d = 3, the process yields 3t conjunctive queries, as they each run through the T
for every atom. Similarly, reductions, where atoms are equal, are accounted for; in the
worst case, 3n possible reductions occur, each running through T . The number 3 is from
the number of pairs it is possible to reduce, following the formula

C(d, r) =
d!

r!(d− r)!

where d is the number of atoms and r = 2 in our case, since we want to test pairwise
combinations. Adding the running time from d − 1, the total is T (3) = 3(t + t2) +

C(3, 2)nt+ T (2, t, n).

In general, for d = k where k ∈ N, we get kt conjunctive queries and n(k − 1)

reductions in the worst case. After this, we add the running time from d− 1 until we our
base case d = 0.

T (0, t, n) = 0

T (1, t, n) = 1(t+ t2) + T (0, t, n)

T (2, t, n) = 2(t+ t2) + C(2, 2)nt+ T (1, t, n)

T (3, t, n) = 3(t+ t2) + C(3, 2)nt+ T (2, t, n)

. . .

T (k, t, n) = k(t+ t2) + C(k, 2)nt+ T (k − 1, t, n)

(B.4)

133

We see that k follow the natural number sequence, so we can remove the recursion
from the equation, and add eq. (B.1). We also see that the other fraction follow the
summation of triangular numbers, so we can substitute it with eq. (B.3).

We simplify to

T (k, t, n) =
k(k + 1)

2
(t+ t2) +

k(k + 1)(k + 2)

6
nt (B.5)

Considering the upper found, O, it is difficult to simplify due to several variables
which can vary in size, as seen in eq. (B.4). We have the upper bound for our running
time shown in eq. (B.6).

T (d, t, n) = O

(
d(d+ 1)

2
(t+ t2) +

d(d+ 1)(d+ 2)

6
nt

)
(B.6)

Thus, the running time of the PerfectRef implementation is O(d(d+1)
2

(t + t2) +
d(d+1)(d+2)

6
nt), where d is the number of atoms in the query, t is the number of axioms

in the TBox T , and n is the combined number of classes and properties in the ontology.
Hence, we see that the running time suffer the most from the length of the query.

134

Appendix C

Embedding results

135

136

Hits@1 DBPedia15k Familyontology

Epochs n n = 16 n = 20 n = 24 n = 16 n = 20 n = 24

TransE
dim = 64 0.0826 0.0731 0.0620 0 0 0
dim = 128 0.0148 0.0133 0.0125 0 0 0
dim = 192 0.0072 0.0082 0.0098 0 0 0
DistMult
dim = 64 0.0250 0.0266 0.0273 0.4272 0.4473 0.4488
dim = 128 0.0377 0.0392 0.0410 0.4875 0.4911 0.4900
dim = 192 0.0410 0.0412 0.0426 0.4620 0.4605 0.4566
BoxE
dim = 64 0.2084 0.2118 0.2129 0.3265 0.3710 0.4104
dim = 128 0.2149 0.2161 0.2208 0.4563 0.4848 0.4985
dim = 192 0.2187 0.2221 0.2245 0.4890 0.4950 0.4930
RotatE
dim = 64 0.1327 0.1588 0.1798 0.6563 0.6767 0.6886
dim = 128 0.1822 0.2017 0.2139 0.6633 0.6772 0.6821
dim = 192 0.2028 0.2203 0.2263 0.6968 0.7112 0.7181
CompGCN
dim = 64 0.1838 0.1844 0.1835 0.0646 0.0767 0.0873
dim = 128 0.1720 0.1735 0.1731 0.0938 0.1090 0.1224
dim = 192 0.1655 0.1680 0.1895 0.0973 0.1226 0.1297

Table C.1: Hits@1 results

137

Hits@3 DBPedia15k Familyontology

Epochs n n = 16 n = 20 n = 24 n = 16 n = 20 n = 24

TransE
dim = 64 0.2327 0.2349 0.2369 0.2285 0.2713 0.3067
dim = 128 0.2490 0.2499 0.2397 0.3765 0.4045 0.4266
dim = 192 0.2461 0.2454 0.2530 0.4321 0.4510 0.4637
DistMult
dim = 64 0.0464 0.0518 0.0526 0.8142 0.8722 0.8798
dim = 128 0.0692 0.0714 0.0728 0.8912 0.8898 0.8886
dim = 192 0.0747 0.0764 0.0799 0.8948 0.8944 0.8898
BoxE
dim = 64 0.3055 0.3083 0.3113 0.4609 0.5373 0.5924
dim = 128 0.3162 0.3167 0.3210 0.6414 0.6962 0.7140
dim = 192 0.3186 0.3234 0.3265 0.7285 0.7398 0.7420
RotatE
dim = 64 0.2155 0.2452 0.2744 0.8146 0.8438 0.8610
dim = 128 0.2695 0.2952 0.3132 0.8574 0.8759 0.8830
dim = 192 0.2978 0.3173 0.3264 0.8631 0.8789 0.8877
CompGCN
dim = 64 0.2722 0.2739 0.2734 0.1208 0.1418 0.1595
dim = 128 0.2713 0.2750 0.2762 0.1700 0.1973 0.2173
dim = 192 0.2614 0.2630 0.2880 0.1818 0.2202 0.2385

Table C.2: Hits@3 results

138

Hits@5 DBPedia15k Familyontology

Epochs n n = 16 n = 20 n = 24 n = 16 n = 20 n = 24

TransE
dim = 64 0.2752 0.2777 0.2801 0.3091 0.3588 0.4007
dim = 128 0.2900 0.2885 0.2853 0.4665 0.5033 0.5328
dim = 192 0.2903 0.2914 0.2969 0.5336 0.5620 0.5802
DistMult
dim = 64 0.0543 0.0607 0.0634 0.8544 0.9095 0.9198
dim = 128 0.0817 0.0851 0.0869 0.9293 0.9294 0.9289
dim = 192 0.0886 0.0914 0.0952 0.9347 0.9332 0.9315
BoxE
dim = 64 0.3275 0.3329 0.3337 0.5163 0.5995 0.6603
dim = 128 0.3378 0.3412 0.3441 0.7009 0.7634 0.7842
dim = 192 0.3415 0.3443 0.3507 0.8062 0.8211 0.8278
RotatE
dim = 64 0.2420 0.2717 0.2982 0.8352 0.8634 0.8784
dim = 128 0.2914 0.3153 0.3304 0.8770 0.8936 0.9019
dim = 192 0.3162 0.3329 0.3422 0.8809 0.8954 0.9038
CompGCN
dim = 64 0.2918 0.2953 0.2949 0.1488 0.1741 0.1915
dim = 128 0.2960 0.3008 0.3046 0.2012 0.2274 0.2489
dim = 192 0.2960 0.3056 0.3114 0.2126 0.2506 0.2698

Table C.3: Hits@5 results

139

Hits@10 DBPedia15k Familyontology

Epochs n n = 16 n = 20 n = 24 n = 16 n = 20 n = 24

TransE
dim = 64 0.3113 0.3167 0.3204 0.4040 0.4612 0.5069
dim = 128 0.3277 0.3286 0.3302 0.5538 0.5960 0.6289
dim = 192 0.3306 0.3352 0.3404 0.6227 0.6558 0.6797
DistMult
dim = 64 0.0652 0.0734 0.0786 0.8800 0.9282 0.9375
dim = 128 0.0992 0.1039 0.1080 0.9470 0.9485 0.9497
dim = 192 0.1086 0.1138 0.1185 0.9534 0.9523 0.9513
BoxE
dim = 64 0.3598 0.3636 0.3657 0.5809 0.6664 0.7258
dim = 128 0.3701 0.3740 0.3744 0.7535 0.8170 0.8404
dim = 192 0.3718 0.3774 0.3852 0.8642 0.8836 0.8929
RotatE
dim = 64 0.2712 0.3036 0.3251 0.8499 0.8757 0.8892
dim = 128 0.3186 0.3398 0.3536 0.8886 0.9026 0.9110
dim = 192 0.3411 0.3571 0.3692 0.8919 0.9049 0.9119
CompGCN
dim = 64 0.3160 0.3212 0.3227 0.1943 0.2214 0.2409
dim = 128 0.3225 0.3258 0.3325 0.2457 0.2727 0.2955
dim = 192 0.3260 0.3348 0.3381 0.2548 0.2930 0.3136

Table C.4: Hits@10 results

140

MR DBPedia15k Familyontology

Epochs n n = 16 n = 20 n = 24 n = 16 n = 20 n = 24

TransE
dim = 64 960.7 867.0 809.8 3367.4 3115.3 2954.3
dim = 128 876.3 812.4 772.5 3274.2 3024.0 2913.4
dim = 192 849.1 808.1 778.9 3084.8 2936.3 2715.4
DistMult
dim = 64 4859.0 4754.9 4537.3 1842.8 1553.3 1510.9
dim = 128 4318.9 4083.4 3748.0 1494.8 1468.2 1454.8
dim = 192 3971.2 3794.1 3713.8 1357.5 1322.4 1342.2
BoxE
dim = 64 452.5 434.8 425.7 4472.9 4267.2 4136.3
dim = 128 418.5 414.2 406.0 4139.2 3918.1 3847.1
dim = 192 408.8 400.7 396.0 3436.2 3364.6 3252.6
RotatE
dim = 64 1601.2 1440.3 1321.3 2622.0 2522.1 2480.4
dim = 128 1401.6 1259.9 1157.8 2468.6 2420.8 2376.3
dim = 192 1260.4 1143.0 1061.3 3223.7 3281.4 3233.2
CompGCN
dim = 64 930.4 866.7 831.9 3399.5 3088.9 2893.9
dim = 128 944.4 886.5 843.7 3084.1 2844.8 2667.8
dim = 192 984.9 914.1 856.3 3224.9 2967.5 2767.9

Table C.5: MR results. DBPEDIA15k Triples count = 32 174, Family ontology triples
count = 48692

141

o-MRR DBPedia15k Familyontology

Epochs n n = 16 n = 20 n = 24 n = 16 n = 20 n = 24

TransE
dim = 64 0.1696 0.1667 0.1623 0.1450 0.1669 0.1847
dim = 128 0.1424 0.1425 0.1395 0.2129 0.2278 0.2398
dim = 192 0.1385 0.1399 0.1442 0.2395 0.2503 0.2579
DistMult
dim = 64 0.0399 0.0439 0.0456 0.6227 0.6591 0.6636
dim = 128 0.0598 0.0623 0.0646 0.6878 0.6893 0.6884
dim = 192 0.0652 0.0670 0.0697 0.6773 0.6762 0.6727
BoxE
dim = 64 0.2688 0.2727 0.2747 0.4143 0.4744 0.5203
dim = 128 0.2776 0.2793 0.2837 0.5638 0.6047 0.6208
dim = 192 0.2808 0.2848 0.2884 0.6235 0.6327 0.6338
RotatE
dim = 64 0.1852 0.2132 0.2370 0.7379 0.7615 0.7752
dim = 128 0.2356 0.2573 0.2719 0.7607 0.7758 0.7820
dim = 192 0.2587 0.2771 0.2852 0.7805 0.7949 0.8024
CompGCN
dim = 64 0.2376 0.2395 0.2390 0.1107 0.1283 0.1430
dim = 128 0.2322 0.2349 0.2363 0.1495 0.1708 0.1881
dim = 192 0.2264 0.2303 0.2494 0.1564 0.1884 0.2014

Table C.6: o-MRR results

142

AMRI DBPedia15k Familyontology

Epochs n n = 16 n = 20 n = 24 n = 16 n = 20 n = 24

TransE
dim = 64 0.8327 0.8490 0.8590 0.9420 0.9463 0.9491
dim = 128 0.8474 0.8585 0.8655 0.9436 0.9479 0.9498
dim = 192 0.8521 0.8593 0.8644 0.9469 0.9494 0.9532
DistMult
dim = 64 0.1532 0.1713 0.2093 0.9682 0.9732 0.9740
dim = 128 0.2473 0.2884 0.3468 0.9742 0.9747 0.9749
dim = 192 0.3079 0.3388 0.3528 0.9766 0.9772 0.9769
BoxE
dim = 64 0.9212 0.9243 0.9259 0.9230 0.9265 0.9288
dim = 128 0.9272 0.9279 0.9293 0.9287 0.9325 0.9338
dim = 192 0.9289 0.9303 0.9311 0.9408 0.9421 0.9440
RotatE
dim = 64 0.7210 0.7491 0.7698 0.9548 0.9566 0.9573
dim = 128 0.7558 0.7805 0.7983 0.9575 0.9583 0.9591
dim = 192 0.7804 0.8009 0.8151 0.9445 0.9435 0.9443
CompGCN
dim = 64 0.8379 0.8491 0.8551 0.9415 0.9468 0.9502
dim = 128 0.8355 0.8456 0.8531 0.9469 0.9510 0.9540
dim = 192 0.8284 0.8408 0.8509 0.9445 0.9489 0.9523

Table C.7: AMRI results

Appendix D

Testcase results

D.1 Family Dataset

Table D.1: Summary of results for different query structures for the dataset family and
model BoxE (dim: 192, epoch: 24). All query structures have a count of 25 different
queries. L/I: Validation using entities from local KG lookup on the initial query, L/R:
Validation using entities from local KG lookup on the rewritten queries, O/I: Validation
using entities from online KG lookup on the initial query, O/R: Validation using entities
from online KG lookup with the rewritten queries.

Hits@3 o-MRR
Query Structure L/I L/R O/I O/R L/I L/R O/I O/R

1p 0.4400 0.6800 0.4400 0.6800 0.4400 0.6800 0.4400 0.6800
2p 0.6533 0.7733 0.7600 0.8000 0.8632 0.9617 0.9603 1.0000
3p 0.6533 0.8133 0.7733 0.7867 0.7785 0.9333 0.8261 0.8658
2i 0.2667 0.3467 0.3067 0.3467 0.2800 0.3600 0.3200 0.3600
3i 0 0.0400 0 0.0400 0 0.0400 0 0.0400
pi 0.2533 0.3600 0.2933 0.2933 0.3133 0.4229 0.3457 0.3433
ip 0.2266 0.2266 0.2666 0.2933 0.2800 0.2800 0.3200 0.3600
up 0.6933 0.8000 0.5199 0.7466 0.8407 0.9000 0.6207 0.9000
2u 0.5333 0.8000 0.6000 0.8000 0.5600 0.8000 0.6000 0.8000

143

144

Table D.2: Summary of results for different query structures for the dataset family and
model CompGCN (dim: 192, epoch: 24). All query structures have a count of 25
different queries. L/I: Validation using entities from local KG lookup on the initial
query, L/R: Validation using entities from local KG lookup on the rewritten queries, O/I:
Validation using entities from online KG lookup on the initial query, O/R: Validation
using entities from online KG lookup with the rewritten queries.

Hits@3 o-MRR
Query Structure L/I L/R O/I O/R L/I L/R O/I O/R

1p 0.4400 0.6800 0.4400 0.6800 0.4400 0.6800 0.4400 0.6800
2p 0.2400 0.3067 0.2667 0.2667 0.3288 0.3856 0.3888 0.3919
3p 0 0.1599 0.0800 0.0800 0.0170 0.2168 0.1632 0.1672
2i 0.3333 0.4267 0.3733 0.4400 0.4400 0.5600 0.4800 0.5600
3i 0.0533 0.1067 0.0533 0.1067 0.0800 0.1600 0.0800 0.2000
pi 0.1067 0.2133 0.1733 0.1867 0.1247 0.3119 0.2127 0.2319
ip 0.0400 0.0400 0.0533 0.0667 0.0508 0.0508 0.0995 0.1209
up 0.2133 0.2533 0.1600 0.2133 0.3540 0.3841 0.3080 0.3881
2u 0.4933 0.8000 0.4933 0.7467 0.4874 0.8000 0.6000 0.7400

Table D.3: Summary of results for different query structures for the dataset family and
model DistMult (dim: 192, epoch: 16). All query structures have a count of 25 different
queries. L/I: Validation using entities from local KG lookup on the initial query, L/R:
Validation using entities from local KG lookup on the rewritten queries, O/I: Validation
using entities from online KG lookup on the initial query, O/R: Validation using entities
from online KG lookup with the rewritten queries.

Hits@3 o-MRR
Query Structure L/I L/R O/I O/R L/I L/R O/I O/R

1p 0.4400 0.6800 0.4400 0.6800 0.4400 0.6800 0.4400 0.6800
2p 0.6400 0.7200 0.6667 0.7067 0.7081 0.8100 0.7629 0.7949
3p 0.3200 0.3867 0.4533 0.4667 0.4395 0.4971 0.5930 0.6056
2i 0.2800 0.3600 0.3200 0.3867 0.2880 0.3680 0.3280 0.4080
3i 0.0067 0.1333 0.0933 0.1333 0.1600 0.2800 0.2400 0.3000
pi 0.1600 0.2667 0.2667 0.3067 0.2407 0.3636 0.3747 0.4080
ip 0.2000 0.2000 0.2133 0.2133 0.3057 0.3057 0.3500 0.3557
up 0.3467 0.3733 0.2667 0.3867 0.4415 0.4902 0.3490 0.4769
2u 0.4800 0.7867 0.5867 0.7867 0.5213 0.7800 0.6200 0.7800

145

Table D.4: Summary of results for different query structures for the dataset family and
model RotatE (dim: 192, epoch: 24). All query structures have a count of 25 different
queries. L/I: Validation using entities from local KG lookup on the initial query, L/R:
Validation using entities from local KG lookup on the rewritten queries, O/I: Validation
using entities from online KG lookup on the initial query, O/R: Validation using entities
from online KG lookup with the rewritten queries.

Hits@3 o-MRR
Query Structure L/I L/R O/I O/R L/I L/R O/I O/R

1p 0.4400 0.6800 0.4400 0.6800 0.4400 0.6800 0.4400 0.6800
2p 0.8933 0.9600 0.9067 0.9333 0.9150 0.9700 0.9300 0.9500
3p 0.8533 0.9733 0.8800 0.9200 0.8857 1 0.9380 0.9700
2i 0.2800 0.3200 0.3200 0.3200 0.2800 0.3200 0.3200 0.3200
3i 0 0.0400 0 0.0400 0 0.0400 0 0.0400
pi 0.4133 0.5200 0.4133 0.4267 0.4200 0.5200 0.4200 0.4600
ip 0.2000 0.2133 0.2267 0.2667 0.2200 0.2400 0.2600 0.3000
up 0.7867 0.8267 0.5467 0.8000 0.8531 0.8900 0.6180 0.8500
2u 0.4933 0.8000 0.6133 0.8000 0.4903 0.8000 0.6000 0.8000

Table D.5: Summary of results for different query structures for the dataset family and
model TransE (dim: 192, epoch: 24). All query structures have a count of 25 different
queries. L/I: Validation using entities from local KG lookup on the initial query, L/R:
Validation using entities from local KG lookup on the rewritten queries, O/I: Validation
using entities from online KG lookup on the initial query, O/R: Validation using entities
from online KG lookup with the rewritten queries.

Hits@3 o-MRR
Query Structure L/I L/R O/I O/R L/I L/R O/I O/R

1p 0.3067 0.4267 0.2933 0.3733 0.3307 0.4757 0.3183 0.4106
2p 0.2267 0.3733 0.3067 0.3467 0.3426 0.5590 0.4917 0.5307
3p 0.1733 0.3467 0.4000 0.4133 0.3175 0.4457 0.5509 0.5623
2i 0.3200 0.4533 0.3867 0.4267 0.4667 0.5924 0.5067 0.5567
3i 0.1600 0.2533 0.1867 0.2400 0.3000 0.4733 0.3600 0.4533
pi 0.3200 0.4533 0.3867 0.3867 0.6113 0.7901 0.6596 0.6778
ip 0.2267 0.2267 0.3600 0.3467 0.3792 0.3792 0.4711 0.4853
up 0.2667 0.3733 0.2800 0.4267 0.5128 0.6181 0.3953 0.5540
2u 0.4533 0.6133 0.5600 0.6000 0.5036 0.6391 0.5800 0.6223

D.2 DBPedia15k

Table D.6: Summary of results for different query structures for the dataset dbpedia15k
and model BoxE (dim: 192, epoch: 24). All query structures have a count of 25 different
queries. L/I: Validation using entities from local KG lookup on the initial query, L/R:
Validation using entities from local KG lookup on the rewritten queries, O/I: Validation
using entities from online KG lookup on the initial query, O/R: Validation using entities
from online KG lookup with the rewritten queries.

Hits@3 Hits@3 o-MRR o-MRR
Query Structure L/I L/R O/I O/R L/I L/R O/I O/R

1p 0.3067 0.4267 0.1333 0.1200 0.3909 0.5342 0.2430 0.2293
2p 0.0133 0.0133 0.0400 0.0400 0.0536 0.0536 0.1049 0.1049
3p 0 0 0 0 0.0040 0.0040 0.0014 0.0014
2i 0.0800 0.0800 0 0 0.1024 0.1120 0.0100 0.0024
3i 0.0267 0.0267 0 0 0.0200 0.0400 0 0.0008
pi 0 0 0 0 0 0 0 0
ip 0.0133 0.0133 0.0133 0.0133 0.0181 0.0181 0.0133 0.0133
up 0.0400 0.0400 0.0133 0.0133 0.1198 0.1198 0.0374 0.0531
2u 0.3200 0.3867 0.0933 0.1067 0.4836 0.5636 0.2451 0.2214

146

147

Table D.7: Summary of results for different query structures for the dataset dbpedia15k
and model CompGCN (dim: 192, epoch: 24). All query structures have a count of
25 different queries. L/I: Validation using entities from local KG lookup on the initial
query, L/R: Validation using entities from local KG lookup on the rewritten queries, O/I:
Validation using entities from online KG lookup on the initial query, O/R: Validation
using entities from online KG lookup with the rewritten queries.

Hits@3 Hits@3 o-MRR o-MRR
Query Structure L/I L/R O/I O/R L/I L/R O/I O/R

1p 0.3600 0.4667 0.2133 0.1200 0.4770 0.6355 0.3460 0.2124
2p 0 0 0 0 0.0153 0.0153 0.0186 0.0186
3p 0 0 0 0 0 0 0.0009 0.0009
2i 0.0800 0.1200 0.0267 0.0400 0.1364 0.2124 0.0294 0.0644
3i 0.0400 0.0933 0 0.0133 0.0400 0.1733 0 0.0200
pi 0 0 0 0 0.0033 0.0033 0.0025 0.0025
ip 0 0 0 0 0.0032 0.0032 0.0013 0.0013
up 0.0133 0.0133 0.0267 0.0133 0.0835 0.0835 0.0344 0.0366
2u 0.3867 0.4533 0.2533 0.1333 0.5645 0.6079 0.4060 0.2591

Table D.8: Summary of results for different query structures for the dataset dbpedia15k
and model DistMult (dim: 192, epoch: 24). All query structures have a count of 25
different queries. L/I: Validation using entities from local KG lookup on the initial
query, L/R: Validation using entities from local KG lookup on the rewritten queries, O/I:
Validation using entities from online KG lookup on the initial query, O/R: Validation
using entities from online KG lookup with the rewritten queries.

Hits@3 Hits@3 o-MRR o-MRR
Query Structure L/I L/R O/I O/R L/I L/R O/I O/R

1p 0.4533 0.5867 0.2267 0.0533 0.5027 0.6457 0.4027 0.1855
2p 0.0267 0.0267 0.0267 0.0267 0.0555 0.0555 0.0614 0.0614
3p 0 0 0 0 0.0027 0.0027 0.0017 0.0017
2i 0.1200 0.1200 0 0 0.1328 0.1536 0.0070 0.0021
3i 0.0400 0.0400 0 0 0.0400 0.0800 0 0
pi 0 0 0 0 0.0027 0.0027 0.0013 0.0013
ip 0 0 0 0 0.0041 0.0041 0.0010 0.0010
up 0.0800 0.0800 0.0400 0.0400 0.1469 0.1469 0.0670 0.0657
2u 0.4667 0.5333 0.2267 0.1200 0.5722 0.5988 0.3860 0.2462

148

Table D.9: Summary of results for different query structures for the dataset dbpedia15k
and model RotatE (dim: 192, epoch: 24). All query structures have a count of 25 different
queries. L/I: Validation using entities from local KG lookup on the initial query, L/R:
Validation using entities from local KG lookup on the rewritten queries, O/I: Validation
using entities from online KG lookup on the initial query, O/R: Validation using entities
from online KG lookup with the rewritten queries.

Hits@3 Hits@3 o-MRR o-MRR
Query Structure L/I L/R O/I O/R L/I L/R O/I O/R

1p 0.3200 0.3867 0.1067 0.1200 0.4744 0.5697 0.2739 0.3382
2p 0 0 0 0 0.0066 0.0066 0.0116 0.0116
3p 0 0 0 0 0 0 0 0
2i 0.0933 0.0933 0.0267 0.0133 0.1036 0.1096 0.0378 0.0235
3i 0.0267 0.0267 0 0 0.02 0.0527 0 0
pi 0 0 0 0 0 0 0 0
ip 0 0 0 0 0.0055 0.0055 0.0037 0.0037
up 0.0400 0.0400 0.0267 0.0267 0.1283 0.1283 0.0854 0.0864
2u 0.3600 0.3733 0.1733 0.1067 0.5386 0.5586 0.3099 0.2889

Table D.10: Summary of results for different query structures for the dataset dbpedia15k
and model TransE (dim: 192, epoch: 24). All query structures have a count of 25
different queries. L/I: Validation using entities from local KG lookup on the initial
query, L/R: Validation using entities from local KG lookup on the rewritten queries, O/I:
Validation using entities from online KG lookup on the initial query, O/R: Validation
using entities from online KG lookup with the rewritten queries.

Hits@3 o-MRR
Query Structure L/I L/R O/I O/R L/I L/R O/I O/R

1p 0.2533 0.6000 0.3600 0.2000 0.4691 0.6854 0.4667 0.2306
2p 0 0 0.0267 0.0267 0.0295 0.0295 0.0530 0.0530
3p 0 0 0.0133 0.0133 0.0041 0.0041 0.0408 0.0408
2i 0.0800 0.1733 0.0133 0.0267 0.1083 0.2283 0.0436 0.0571
3i 0.0260 0.1600 0 0 0.0200 0.1800 0 0
pi 0 0 0 0 0 0 0 0
ip 0 0 0 0 0.0162 0.0162 0.0057 0.0057
up 0.1067 0.1067 0.0267 0.0267 0.1357 0.1357 0.0252 0.0390
2u 0.5867 0.6933 0.4267 0.3067 0.6697 0.7630 0.5131 0.4075

Appendix E

Experiment queries generation

E.1 DBPedia15k

• 1p:

– q(?w) :- http://dbpedia.org/ontology/birthPlace(?x,?w)

– q(?w):-http : //dbpedia.org/ontology/Settlement(?w)

– q(?w):-http : //dbpedia.org/ontology/Governor(?w)

– q(?w):-http : //dbpedia.org/ontology/starring(?x, ?w)

– q(?w):-http : //dbpedia.org/ontology/recordLabel(?w, ?x)

– q(?w):-http : //dbpedia.org/ontology/occupation(?w, ?x)

– q(?w):-http : //schema.org/P lace(?w)

– q(?w):-http : //xmlns.com/foaf/0.1/Person(?w)

– q(?w):-http : //www.ontologydesignpatterns.org/ont/dul/DUL.owl#Agent(?w)

– q(?w):-http : //dbpedia.org/ontology/writer(?w, ?x)

– q(?w):-http : //dbpedia.org/ontology/P lace(?w)

– q(?w):-http : //dbpedia.org/ontology/P lace(?w)

– q(?w):-http : //dbpedia.org/ontology/Person(?w)

– q(?w):-http : //dbpedia.org/ontology/Island(?w)

– q(?w):-http : //schema.org/P lace(?w)

– q(?w):-http : //dbpedia.org/ontology/country(?w, ?x)

– q(?w):-http : //dbpedia.org/ontology/Species(?w)

– q(?w):-http : //dbpedia.org/ontology/spokenIn(?w, ?x)

– q(?w):-http : //dbpedia.org/ontology/formerTeam(?x, ?w)

149

– q(?w):-http : //www.wikidata.org/entity/Q215627(?w)

– q(?w):-http : //dbpedia.org/ontology/Settlement(?w)

– q(?w):-http : //dbpedia.org/ontology/instrument(?x, ?w)

– q(?w):-http : //dbpedia.org/ontology/Island(?w)

– q(?w):-http : //dbpedia.org/ontology/genre(?w, ?x)

– q(?w):-http : //dbpedia.org/ontology/Location(?w)

• 2p:

– q(?w) :- <http://dbpedia.org/ontology/instrument>(?y, ?x) ∩
<http://dbpedia.org/ontology/director>(?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/birthP lace > (?x, ?y) ∩ < http :

//dbpedia.org/ontology/team > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/birthP lace > (?x, ?y) ∩ < http :

//dbpedia.org/ontology/starring > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/populationP lace > (?y, ?x) ∩ <

http : //dbpedia.org/ontology/influenced > (?y, ?w)

– q(?w):- < http : //dbpedia.org/ontology/starring > (?x, ?y) ∩ < http :

//dbpedia.org/ontology/deathP lace > (?y, ?w)

– q(?w):- < http : //dbpedia.org/ontology/formerBandMember >

(?y, ?x) ∩ < http : //dbpedia.org/ontology/literaryGenre > (?y, ?w)

– q(?w):- < http : //dbpedia.org/ontology/stateOfOrigin > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/recordLabel > (?y, ?w)

– q(?w):- < http : //dbpedia.org/ontology/influencedBy > (?y, ?x) ∩ <

http : //dbpedia.org/ontology/instrument > (?y, ?w)

– q(?w):- < http : //dbpedia.org/ontology/associatedBand > (?y, ?x) ∩ <

http : //dbpedia.org/ontology/deathCause > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/formerBandMember >

(?x, ?y) ∩ < http : //dbpedia.org/ontology/birthP lace > (?y, ?w)

– q(?w):- < http : //dbpedia.org/ontology/recordLabel > (?x, ?y) ∩ < http :

//dbpedia.org/ontology/occupation > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/birthP lace > (?y, ?x) ∩ < http :

//dbpedia.org/ontology/executiveProducer > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/stylisticOrigin > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/influencedBy > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/genre > (?x, ?y) ∩ < http :

//dbpedia.org/ontology/associatedMusicalArtist > (?y, ?w)

150

– q(?w):- < http : //dbpedia.org/ontology/recordLabel > (?y, ?x) ∩ < http :

//dbpedia.org/ontology/birthP lace > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/associatedBand > (?y, ?x) ∩ <

http : //dbpedia.org/ontology/starring > (?y, ?w)

– q(?w):- < http : //dbpedia.org/ontology/formerBandMember >

(?y, ?x) ∩ < http : //dbpedia.org/ontology/associatedMusicalArtist >

(?y, ?w)

– q(?w):- < http : //dbpedia.org/ontology/instrument > (?y, ?x) ∩ < http :

//dbpedia.org/ontology/stylisticOrigin > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/starring > (?x, ?y) ∩ < http :

//dbpedia.org/ontology/league > (?y, ?w)

– q(?w):- < http : //dbpedia.org/ontology/recordLabel > (?x, ?y) ∩ < http :

//dbpedia.org/ontology/associatedBand > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/starring > (?y, ?x) ∩ < http :

//dbpedia.org/ontology/genre > (?y, ?w)

– q(?w):- < http : //dbpedia.org/ontology/almaMater > (?y, ?x) ∩ < http :

//dbpedia.org/ontology/starring > (?y, ?w)

– q(?w):- < http : //dbpedia.org/ontology/genre > (?x, ?y) ∩ < http :

//dbpedia.org/ontology/starring > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/largestCity > (?x, ?y) ∩ < http :

//dbpedia.org/ontology/associatedBand > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/birthP lace > (?y, ?x) ∩ < http :

//dbpedia.org/ontology/timeZone > (?y, ?w)

• 3p:

– q(?w):- < http : //dbpedia.org/ontology/ethnicGroup > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/distributor > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/distributor > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/starring > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/recordLabel > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/starring > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/award > (?y, ?x) ∩ <

http : //dbpedia.org/ontology/distributingLabel > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/associatedBand > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/populationP lace > (?y, ?x) ∩ <

http : //dbpedia.org/ontology/genre > (?z, ?y) ∩ < http :

151

//dbpedia.org/ontology/starring > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/city > (?y, ?x) ∩ <

http : //dbpedia.org/ontology/instrument > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/starring > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/hometown > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/director > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/stylisticOrigin > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/genre > (?y, ?x) ∩ <

http : //dbpedia.org/ontology/recordLabel > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/residence > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/producer > (?y, ?x) ∩ <

http : //dbpedia.org/ontology/notableWork > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/countySeat > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/recordLabel > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/governmentType > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/recordLabel > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/deathP lace > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/mainInterest > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/country > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/affiliation > (?y, ?x) ∩ <

http : //dbpedia.org/ontology/editing > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/foundationP lace > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/restingP lace > (?y, ?x) ∩ <

http : //dbpedia.org/ontology/birthP lace > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/bandMember > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/director > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/restingP lace > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/team > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/instrument > (?y, ?x) ∩ <

http : //dbpedia.org/ontology/editing > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/stateOfOrigin > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/distributor > (?y, ?x) ∩ <

http : //dbpedia.org/ontology/campus > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/hometown > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/writer > (?y, ?x) ∩ <

http : //dbpedia.org/ontology/influencedBy > (?z, ?y) ∩ < http :

152

//dbpedia.org/ontology/genre > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/birthP lace > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/director > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/starring > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/birthP lace > (?y, ?x) ∩ <

http : //dbpedia.org/ontology/award > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/birthP lace > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/editing > (?y, ?x) ∩ <

http : //dbpedia.org/ontology/musicComposer > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/isPartOf > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/isPartOf > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/country > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/type > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/almaMater > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/instrument > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/type > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/editing > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/affiliation > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/team > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/affiliation > (?y, ?x) ∩ <

http : //dbpedia.org/ontology/producer > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/birthP lace > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/associatedBand > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/influencedBy > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/locationCountry > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/hometown > (?y, ?x) ∩ <

http : //dbpedia.org/ontology/type > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/country > (?z, ?w)

• 2i:

– q(?w):- < http : //dbpedia.org/ontology/occupation > (?w, ?x) ∩ < http :

//dbpedia.org/ontology/deathP lace > (?y, ?w)

– q(?w):- < http : //dbpedia.org/ontology/campus > (?x, ?w) ∩ < http :

//dbpedia.org/ontology/starring > (?y, ?w)

– q(?w):- < http : //dbpedia.org/ontology/genre > (?w, ?x) ∩ < http :

//dbpedia.org/ontology/ground > (?y, ?w)

153

– q(?w):- < http : //dbpedia.org/ontology/ethnicGroup > (?w, ?x) ∩ < http :

//www.w3.org/2002/07/owl#differentFrom > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/nationality > (?x, ?w) ∩ < http :

//dbpedia.org/ontology/starring > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/parentCompany > (?x, ?w) ∩ <

http : //dbpedia.org/ontology/spouse > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/writer > (?x, ?w) ∩ < http :

//dbpedia.org/ontology/leaderName > (?y, ?w)

– q(?w):- < http : //dbpedia.org/ontology/director > (?w, ?x) ∩ < http :

//dbpedia.org/ontology/isPartOf > (?y, ?w)

– q(?w):- < http : //dbpedia.org/ontology/starring > (?w, ?x) ∩ < http :

//dbpedia.org/ontology/musicComposer > (?y, ?w)

– q(?w):- < http : //dbpedia.org/ontology/Agent > (?w) ∩ < http :

//dbpedia.org/ontology/type > (?x, ?w)

– q(?w):- < http : //dbpedia.org/ontology/location > (?w, ?x) ∩ < http :

//dbpedia.org/ontology/genre > (?y, ?w)

– q(?w):- < http : //www.wikidata.org/entity/Q486972 > (?w) ∩ < http :

//dbpedia.org/ontology/P lace > (?w)

– q(?w):- < http : //dbpedia.org/ontology/Island > (?w) ∩ < http :

//dbpedia.org/ontology/birthP lace > (?x, ?w)

– q(?w):- < http : //dbpedia.org/ontology/stylisticOrigin > (?w, ?x) ∩ <

http : //dbpedia.org/ontology/country > (?y, ?w)

– q(?w):- < http : //dbpedia.org/ontology/language > (?w, ?x) ∩ < http :

//dbpedia.org/ontology/governmentType > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/Island > (?w) ∩ < http :

//dbpedia.org/ontology/Settlement > (?w)

– q(?w):- < http : //schema.org/Person > (?w) ∩ < http :

//dbpedia.org/ontology/Settlement > (?w)

– q(?w):- < http : //www.wikidata.org/entity/Q486972 > (?w) ∩ < http :

//dbpedia.org/ontology/musicComposer > (?x, ?w)

– q(?w):- < http : //dbpedia.org/ontology/PopulatedP lace > (?w) ∩ < http :

//dbpedia.org/ontology/Island > (?w)

– q(?w):- < http : //dbpedia.org/ontology/timeZone > (?w, ?x) ∩ < http :

//dbpedia.org/ontology/almaMater > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/PopulatedP lace > (?w) ∩ < http :

154

//dbpedia.org/ontology/distributor > (?w, ?x)

– q(?w):- < http : //dbpedia.org/ontology/associatedBand > (?w, ?x) ∩ <

http : //dbpedia.org/ontology/genre > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/place > (?x, ?w) ∩ < http :

//dbpedia.org/ontology/sisterCollege > (?y, ?w)

– q(?w):- < http : //dbpedia.org/ontology/cinematography > (?x, ?w) ∩ <

http : //dbpedia.org/ontology/musicFusionGenre > (?w, ?y)

– q(?w):- < http : //www.wikidata.org/entity/Q215627 > (?w) ∩ < http :

//dbpedia.org/ontology/Island > (?w)

• 3i:

– q(?w):- < http : //dbpedia.org/ontology/P lace > (?w) ∩ <

http : //dbpedia.org/ontology/birthP lace > (?y, ?w) ∩ < http :

//dbpedia.org/ontology/starring > (?x, ?w)

– q(?w):- < http : //dbpedia.org/ontology/anthem > (?z, ?w) ∩ <

http : //dbpedia.org/ontology/birthP lace > (?y, ?w) ∩ < http :

//dbpedia.org/ontology/recordLabel > (?x, ?w)

– q(?w):- < http : //dbpedia.org/ontology/occupation > (?w, ?z) ∩ <

http : //dbpedia.org/ontology/largestCity > (?w, ?y) ∩ < http :

//dbpedia.org/ontology/occupation > (?x, ?w)

– q(?w):- < http : //dbpedia.org/ontology/P lace > (?w) ∩ < http :

//dbpedia.org/ontology/executiveProducer > (?w, ?y) ∩ < http :

//dbpedia.org/ontology/musicComposer > (?x, ?w)

– q(?w):- < http : //dbpedia.org/ontology/instrument > (?w, ?z) ∩ <

http : //dbpedia.org/ontology/country > (?w, ?y) ∩ < http :

//dbpedia.org/ontology/city > (?w, ?x)

– q(?w):- < http : //dbpedia.org/ontology/Island > (?w) ∩ <

http : //dbpedia.org/ontology/Location > (?w) ∩ < http :

//dbpedia.org/ontology/P lace > (?w)

– q(?w):- < http : //dbpedia.org/ontology/Island > (?w) ∩ < http :

//schema.org/P lace > (?w) ∩ < http : //dbpedia.org/ontology/Person >

(?w)

– q(?w):- < http : //dbpedia.org/ontology/Person > (?w) ∩ <

http : //www.wikidata.org/entity/Q486972 > (?w) ∩ < http :

//dbpedia.org/ontology/associatedBand > (?w, ?x)

– q(?w):- < http : //xmlns.com/foaf/0.1/Person > (?w) ∩ < http :

155

//dbpedia.org/ontology/Location > (?w) ∩ < http : //schema.org/P lace >

(?w)

– q(?w):- < http : //xmlns.com/foaf/0.1/Person > (?w) ∩ <

http : //dbpedia.org/ontology/twinCountry > (?y, ?w) ∩ < http :

//dbpedia.org/ontology/hometown > (?x, ?w)

– q(?w):- < http : //dbpedia.org/ontology/award > (?z, ?w) ∩ <

http : //dbpedia.org/ontology/parentCompany > (?w, ?y) ∩ < http :

//dbpedia.org/ontology/affiliation > (?x, ?w)

– q(?w):- < http : //www.wikidata.org/entity/Q5 > (?w) ∩ <

http : //dbpedia.org/ontology/CelestialBody > (?w) ∩ < http :

//dbpedia.org/ontology/Island > (?w)

– q(?w):- < http : //dbpedia.org/ontology/Island > (?w) ∩ <

http : //dbpedia.org/ontology/SoccerClub > (?w) ∩ < http :

//dbpedia.org/ontology/Island > (?w)

– q(?w):- < http : //dbpedia.org/ontology/locationCity > (?w, ?z) ∩ <

http : //dbpedia.org/ontology/almaMater > (?w, ?y) ∩ < http :

//dbpedia.org/ontology/populationP lace > (?x, ?w)

– q(?w):- < http : //dbpedia.org/ontology/birthP lace > (?w, ?z) ∩ <

http : //dbpedia.org/ontology/hometown > (?w, ?y) ∩ < http :

//dbpedia.org/ontology/birthP lace > (?x, ?w)

– q(?w):- < http : //dbpedia.org/ontology/distributingLabel > (?z, ?w) ∩ <

http : //dbpedia.org/ontology/parentCompany > (?y, ?w) ∩ < http :

//dbpedia.org/ontology/distributor > (?x, ?w)

– q(?w):- < http : //dbpedia.org/ontology/PopulatedP lace > (?w) ∩ <

http : //dbpedia.org/ontology/P lace > (?w) ∩ < http :

//dbpedia.org/ontology/Governor > (?w)

– q(?w):- < http : //dbpedia.org/ontology/PopulatedP lace > (?w) ∩ <

http : //dbpedia.org/ontology/populationP lace > (?y, ?w) ∩ < http :

//dbpedia.org/ontology/languageFamily > (?w, ?x)

– q(?w):- < http : //www.wikidata.org/entity/Q486972 > (?w) ∩ <

http : //dbpedia.org/ontology/genre > (?w, ?y) ∩ < http :

//dbpedia.org/ontology/restingP lace > (?w, ?x)

– q(?w):- < http : //dbpedia.org/ontology/hometown > (?w, ?z) ∩ <

http : //dbpedia.org/ontology/birthP lace > (?w, ?y) ∩ < http :

//dbpedia.org/ontology/associatedMusicalArtist > (?w, ?x)

– q(?w):- < http : //dbpedia.org/ontology/owner > (?z, ?w) ∩ <

156

http : //dbpedia.org/ontology/league > (?y, ?w) ∩ < http :

//dbpedia.org/ontology/birthP lace > (?w, ?x)

– q(?w):- < http : //dbpedia.org/ontology/PopulatedP lace > (?w) ∩ <

http : //dbpedia.org/ontology/P lace > (?w) ∩ < http :

//dbpedia.org/ontology/starring > (?w, ?x)

– q(?w):- < http : //dbpedia.org/ontology/PopulatedP lace > (?w) ∩ <

http : //dbpedia.org/ontology/almaMater > (?w, ?y) ∩ < http :

//dbpedia.org/ontology/occupation > (?x, ?w)

– q(?w):- < http : //schema.org/Person > (?w) ∩ <

http : //dbpedia.org/ontology/Settlement > (?w) ∩ < http :

//schema.org/P lace > (?w)

– q(?w):- < http : //dbpedia.org/ontology/position > (?z, ?w) ∩ <

http : //dbpedia.org/ontology/associatedBand > (?y, ?w) ∩ < http :

//dbpedia.org/ontology/instrument > (?w, ?x)

• pi:

– q(?w):- < http : //dbpedia.org/ontology/genre > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/state > (?w, ?y) ∩ < http :

//dbpedia.org/ontology/instrument > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/company > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/sisterStation > (?w, ?y) ∩ < http :

//dbpedia.org/ontology/occupation > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/associatedMusicalArtist >

(?x, ?y) ∩ < http : //dbpedia.org/ontology/populationP lace > (?w, ?y) ∩ <

http : //dbpedia.org/ontology/populationP lace > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/location > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/writer > (?w, ?y) ∩ < http :

//dbpedia.org/ontology/associatedMusicalArtist > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/director > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/capital > (?w, ?y) ∩ < http :

//dbpedia.org/ontology/starring > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/cinematography > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/company > (?w, ?y) ∩ < http :

//dbpedia.org/ontology/knownFor > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/headquarter > (?x, ?y) ∩ < http :

//dbpedia.org/ontology/sourceConfluenceP lace > (?w, ?y) ∩ < http :

157

//dbpedia.org/ontology/director > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/genre > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/recordLabel > (?w, ?y) ∩ < http :

//dbpedia.org/ontology/starring > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/director > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/instrument > (?w, ?y) ∩ < http :

//dbpedia.org/ontology/stylisticOrigin > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/language > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/sisterStation > (?y, ?w) ∩ < http :

//dbpedia.org/ontology/recordLabel > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/successor > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/occupation > (?y, ?w) ∩ < http :

//dbpedia.org/ontology/birthP lace > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/timeZone > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/hometown > (?y, ?w) ∩ < http :

//dbpedia.org/ontology/locationCity > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/genre > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/nationality > (?y, ?w) ∩ < http :

//dbpedia.org/ontology/parentCompany > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/associatedBand > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/developer > (?y, ?w) ∩ < http :

//dbpedia.org/ontology/type > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/knownFor > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/ideology > (?y, ?w) ∩ < http :

//dbpedia.org/ontology/starring > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/type > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/hometown > (?w, ?y) ∩ < http :

//dbpedia.org/ontology/type > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/capital > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/cinematography > (?w, ?y) ∩ < http :

//dbpedia.org/ontology/producer > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/associatedBand > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/ground > (?y, ?w) ∩ < http :

//dbpedia.org/ontology/influencedBy > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/sisterCollege > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/formerBandMember > (?w, ?y) ∩ < http :

158

//dbpedia.org/ontology/associatedBand > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/occupation > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/birthP lace > (?w, ?y) ∩ < http :

//dbpedia.org/ontology/birthP lace > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/recordLabel > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/stylisticOrigin > (?w, ?y) ∩ < http :

//dbpedia.org/ontology/genre > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/associatedBand > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/associatedMusicalArtist > (?y, ?w) ∩ <

http : //dbpedia.org/ontology/deathP lace > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/leaderName > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/writer > (?y, ?w) ∩ < http :

//dbpedia.org/ontology/starring > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/cinematography > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/occupation > (?w, ?y) ∩ < http :

//dbpedia.org/ontology/battle > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/populationP lace > (?x, ?y) ∩ <

http : //dbpedia.org/ontology/subsequentWork > (?w, ?y) ∩ < http :

//dbpedia.org/ontology/leaderName > (?z, ?w)

• ip:

– q(?w):- < http : //schema.org/Person > (?x) ∩ <

http : //dbpedia.org/ontology/Agent > (?x) ∩ < http :

//dbpedia.org/ontology/location > (?w, ?x)

– q(?w):- < http : //dbpedia.org/ontology/commandStructure >

(?z, ?x) ∩ < http : //dbpedia.org/ontology/locationCountry > (?z, ?y) ∩ <

http : //dbpedia.org/ontology/cinematography > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/birthP lace > (?z, ?x) ∩ < http :

//dbpedia.org/ontology/associatedMusicalArtist > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/country > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/Island > (?x) ∩ <

http : //schema.org/Person > (?x) ∩ < http :

//dbpedia.org/ontology/associatedMusicalArtist > (?x, ?w)

– q(?w):- < http : //dbpedia.org/ontology/creator > (?z, ?x) ∩ <

http : //dbpedia.org/ontology/country > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/location > (?z, ?w)

159

– q(?w):- < http : //xmlns.com/foaf/0.1/Person > (?z) ∩ <

http : //dbpedia.org/ontology/associatedBand > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/musicComposer > (?z, ?w)

– q(?w):- < http : //www.wikidata.org/entity/Q47521 > (?z) ∩ < http :

//dbpedia.org/ontology/associatedMusicalArtist > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/starring > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/instrument > (?z, ?x) ∩ < http :

//dbpedia.org/ontology/associatedMusicalArtist > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/director > (?z, ?w)

– q(?w):- < http : //schema.org/Person > (?z) ∩ < http :

//dbpedia.org/ontology/starring > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/genre > (?w, ?z)

– q(?w):- < http : //www.wikidata.org/entity/Q5 > (?z) ∩ <

http : //dbpedia.org/ontology/genre > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/associatedBand > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/Architect > (?z) ∩ <

http : //dbpedia.org/ontology/influencedBy > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/education > (?z, ?w)

– q(?w):- < http : //www.wikidata.org/entity/Q486972 > (?z) ∩ <

http : //dbpedia.org/ontology/producer > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/musicComposer > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/timeZone > (?z, ?x) ∩ <

http : //dbpedia.org/ontology/state > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/commander > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/starring > (?z, ?x) ∩ <

http : //dbpedia.org/ontology/recordLabel > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/locationCountry > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/country > (?x, ?z) ∩ <

http : //dbpedia.org/ontology/writer > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/residence > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/Person > (?z) ∩ <

http : //dbpedia.org/ontology/distributor > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/distributor > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/location > (?x, ?z) ∩ <

http : //dbpedia.org/ontology/starring > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/mainInterest > (?z, ?w)

160

– q(?w):- < http : //dbpedia.org/ontology/recordLabel > (?x, ?z) ∩ <

http : //dbpedia.org/ontology/country > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/birthP lace > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/campus > (?z, ?x) ∩ <

http : //dbpedia.org/ontology/formerTeam > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/governmentType > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/starring > (?x, ?z) ∩ < http :

//dbpedia.org/ontology/associatedMusicalArtist > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/associatedMusicalArtist > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/writer > (?x, ?z) ∩ <

http : //dbpedia.org/ontology/region > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/influencedBy > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/industry > (?z, ?x) ∩ <

http : //dbpedia.org/ontology/musicComposer > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/starring > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/region > (?x, ?z) ∩ <

http : //dbpedia.org/ontology/distributor > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/foundationP lace > (?z, ?w)

– q(?w):- < http : //schema.org/P lace > (?x) ∩ <

http : //dbpedia.org/ontology/Person > (?x) ∩ < http :

//dbpedia.org/ontology/affiliation > (?x, ?w)

– q(?w):- < http : //www.wikidata.org/entity/Q486972 > (?z) ∩ <

http : //dbpedia.org/ontology/musicComposer > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/daylightSavingT imeZone > (?w, ?z)

• up:

– q(?w):- < http : //dbpedia.org/ontology/leaderParty > (?z, ?x)∪ <

http : //dbpedia.org/ontology/influencedBy > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/governmentType > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/Person > (?x)∪ <

http : //dbpedia.org/ontology/P lace > (?x) ∩ < http :

//dbpedia.org/ontology/successor > (?w, ?x)

– q(?w):- < http : //www.ontologydesignpatterns.org/ont/dul/DUL.owl#Agent >

(?x)∪ < http : //www.ontologydesignpatterns.org/ont/dul/DUL.owl#NaturalPerson >

(?x) ∩ < http : //dbpedia.org/ontology/state > (?w, ?x)

– q(?w):- < http : //dbpedia.org/ontology/affiliation > (?x, ?z)∪ <

161

http : //dbpedia.org/ontology/instrument > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/producer > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/stylisticOrigin > (?z, ?x)∪ <

http : //dbpedia.org/ontology/almaMater > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/stylisticOrigin > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/Settlement > (?z)∪ <

http : //dbpedia.org/ontology/stylisticOrigin > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/capital > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/keyPerson > (?x, ?z)∪ <

http : //dbpedia.org/ontology/occupation > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/affiliation > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/Island > (?z)∪ <

http : //dbpedia.org/ontology/deathP lace > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/type > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/party > (?z, ?x)∪ <

http : //dbpedia.org/ontology/genre > (?y, ?z) ∩ < http :

//www.w3.org/2002/07/owl#differentFrom > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/Species > (?z)∪ <

http : //dbpedia.org/ontology/producer > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/narrator > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/Island > (?x)∪ <

http : //dbpedia.org/ontology/Island > (?x) ∩ < http :

//dbpedia.org/ontology/deathP lace > (?w, ?x)

– q(?w):- < http : //dbpedia.org/ontology/starring > (?x, ?z)∪ <

http : //dbpedia.org/ontology/owner > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/country > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/Island > (?z)∪ <

http : //dbpedia.org/ontology/country > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/related > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/starring > (?z, ?x)∪ < http :

//dbpedia.org/ontology/musicFusionGenre > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/almaMater > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/countySeat > (?x, ?z)∪ <

http : //dbpedia.org/ontology/formerBandMember > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/athletics > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/Island > (?x)∪ <

162

http : //dbpedia.org/ontology/Island > (?x) ∩ < http :

//dbpedia.org/ontology/genre > (?x, ?w)

– q(?w):- < http : //dbpedia.org/ontology/P lace > (?z)∪ < http :

//dbpedia.org/ontology/locationCountry > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/instrument > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/genre > (?x, ?z)∪ <

http : //dbpedia.org/ontology/type > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/cinematography > (?w, ?z)

– q(?w):- < http : //www.ontologydesignpatterns.org/ont/dul/DUL.owl#Agent >

(?z)∪ < http : //dbpedia.org/ontology/spouse > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/genre > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/Settlement > (?z)∪ <

http : //dbpedia.org/ontology/starring > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/birthP lace > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/Island > (?x)∪ <

http : //www.wikidata.org/entity/Q486972 > (?x) ∩ < http :

//dbpedia.org/ontology/starring > (?w, ?x)

– q(?w):- < http : //dbpedia.org/ontology/starring > (?x, ?z)∪ <

http : //dbpedia.org/ontology/genre > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/countySeat > (?w, ?z)

– q(?w):- < http : //dbpedia.org/ontology/associatedMusicalArtist >

(?x, ?z)∪ < http : //dbpedia.org/ontology/associatedBand > (?z, ?y) ∩ <

http : //dbpedia.org/ontology/country > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/PopulatedP lace > (?z)∪ <

http : //dbpedia.org/ontology/hometown > (?y, ?z) ∩ < http :

//dbpedia.org/ontology/league > (?z, ?w)

– q(?w):- < http : //dbpedia.org/ontology/countySeat > (?z, ?x)∪ <

http : //dbpedia.org/ontology/populationP lace > (?z, ?y) ∩ < http :

//dbpedia.org/ontology/country > (?w, ?z)

• 2u:

– q(?w):- < http : //dbpedia.org/ontology/distributor > (?x, ?w)∪ < http :

//dbpedia.org/ontology/cinematography > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/birthP lace > (?x, ?w)∪ < http :

//dbpedia.org/ontology/birthP lace > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/timeZone > (?w, ?x)∪ < http :

163

//dbpedia.org/ontology/writer > (?w, ?y)

– q(?w):- < http : //www.ontologydesignpatterns.org/ont/dul/DUL.owl#Agent >

(?w)∪ < http : //dbpedia.org/ontology/starring > (?w, ?x)

– q(?w):- < http : //dbpedia.org/ontology/Island > (?w)∪ < http :

//dbpedia.org/ontology/P lanet > (?w)

– q(?w):- < http : //dbpedia.org/ontology/Economist > (?w)∪ < http :

//dbpedia.org/ontology/birthP lace > (?x, ?w)

– q(?w):- < http : //dbpedia.org/ontology/director > (?w, ?x)∪ < http :

//dbpedia.org/ontology/language > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/country > (?x, ?w)∪ < http :

//dbpedia.org/ontology/birthP lace > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/Location > (?w)∪ < http :

//dbpedia.org/ontology/birthP lace > (?x, ?w)

– q(?w):- < http : //dbpedia.org/ontology/P lace > (?w)∪ < http :

//dbpedia.org/ontology/campus > (?w, ?x)

– q(?w):- < http : //www.ontologydesignpatterns.org/ont/dul/DUL.owl#Agent >

(?w)∪ < http : //dbpedia.org/ontology/P lace > (?w)

– q(?w):- < http : //dbpedia.org/ontology/Location > (?w)∪ < http :

//dbpedia.org/ontology/P lace > (?w)

– q(?w):- < http : //dbpedia.org/ontology/timeZone > (?w, ?x)∪ < http :

//dbpedia.org/ontology/distributor > (?y, ?w)

– q(?w):- < http : //dbpedia.org/ontology/Location > (?w)∪ < http :

//dbpedia.org/ontology/Settlement > (?w)

– q(?w):- < http : //dbpedia.org/ontology/associatedMusicalArtist >

(?w, ?x)∪ < http : //dbpedia.org/ontology/genre > (?y, ?w)

– q(?w):- < http : //dbpedia.org/ontology/timeZone > (?w, ?x)∪ < http :

//dbpedia.org/ontology/almaMater > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/territory > (?w, ?x)∪ < http :

//dbpedia.org/ontology/occupation > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/genre > (?x, ?w)∪ < http :

//dbpedia.org/ontology/influencedBy > (?y, ?w)

– q(?w):- < http : //dbpedia.org/ontology/starring > (?w, ?x)∪ < http :

//dbpedia.org/ontology/instrument > (?y, ?w)

– q(?w):- < http : //dbpedia.org/ontology/isPartOf > (?w, ?x)∪ < http :

//dbpedia.org/ontology/recordLabel > (?y, ?w)

164

– q(?w):- < http : //dbpedia.org/ontology/basedOn > (?w, ?x)∪ < http :

//dbpedia.org/ontology/cinematography > (?y, ?w)

– q(?w):- < http : //dbpedia.org/ontology/Island > (?w)∪ < http :

//dbpedia.org/ontology/associatedMusicalArtist > (?w, ?x)

– q(?w):- < http : //dbpedia.org/ontology/campus > (?w, ?x)∪ < http :

//dbpedia.org/ontology/musicComposer > (?w, ?y)

– q(?w):- < http : //dbpedia.org/ontology/company > (?x, ?w)∪ < http :

//dbpedia.org/ontology/associatedBand > (?w, ?y)

– q(?w):- < http : //www.wikidata.org/entity/Q215627 > (?w)∪ < http :

//www.wikidata.org/entity/Q486972 > (?w)

E.2 Family Dataset

• 1p:

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?w, ?x)

– q(?w):- < https : //www.wikidata.org/wiki/Q10861465 > (?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q7569 > (?w)

– q(?w):- < https : //www.wikidata.org/prop/P26 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q177232 > (?w)

– q(?w):- < https : //www.wikidata.org/prop/P25 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q7566 > (?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q308194 > (?w)

– q(?w):- < https : //www.wikidata.org/prop/P26 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q177232 > (?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q10861465 > (?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q1196129 > (?w)

– q(?w):- < https : //www.wikidata.org/prop/P26 > (?w, ?x)

– q(?w):- < https : //www.wikidata.org/wiki/Q7566 > (?w)

– q(?w):- < https : //www.wikidata.org/prop/P26 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q31184 > (?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q7560 > (?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q595094 > (?w)

165

– q(?w):- < https : //www.wikidata.org/prop/P22 > (?w, ?x)

– q(?w):- < https : //www.wikidata.org/wiki/Q308194 > (?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q595094 > (?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?w, ?x)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?w, ?x)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?w)

• 2p:

– q(?w):- < https : //www.wikidata.org/prop/P22 > (?x, ?y) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?y)

– q(?w):- < https : //www.wikidata.org/prop/P26 > (?x, ?y) ∩ < https :

//www.wikidata.org/prop/P26 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?x, ?y) ∩ < https :

//www.wikidata.org/prop/P3373 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P26 > (?y, ?x) ∩ < https :

//www.wikidata.org/prop/P3373 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?y, ?x) ∩ < https :

//www.wikidata.org/prop/P26 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P25 > (?x, ?y) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?y)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?y) ∩ < https :

//www.wikidata.org/prop/P26 > (?w, ?y)

– q(?w):- < https : //www.wikidata.org/prop/P22 > (?y, ?x) ∩ < https :

//www.wikidata.org/prop/P3373 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?y) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?y)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?y, ?x) ∩ < https :

//www.wikidata.org/prop/P40 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?y) ∩ < https :

//www.wikidata.org/prop/P40 > (?w, ?y)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?y, ?x) ∩ < https :

//www.wikidata.org/prop/P40 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P22 > (?y, ?x) ∩ < https :

//www.wikidata.org/prop/P3373 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P26 > (?x, ?y) ∩ < https :

//www.wikidata.org/prop/P26 > (?y, ?w)

166

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?y, ?x) ∩ < https :

//www.wikidata.org/prop/P1038 > (?w, ?y)

– q(?w):- < https : //www.wikidata.org/prop/P25 > (?x, ?y) ∩ < https :

//www.wikidata.org/prop/P26 > (?w, ?y)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?y, ?x) ∩ < https :

//www.wikidata.org/prop/P22 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?y, ?x) ∩ < https :

//www.wikidata.org/prop/P22 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?y, ?x) ∩ < https :

//www.wikidata.org/prop/P40 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?x, ?y) ∩ < https :

//www.wikidata.org/prop/P3373 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P26 > (?x, ?y) ∩ < https :

//www.wikidata.org/prop/P40 > (?w, ?y)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?y, ?x) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?y)

– q(?w):- < https : //www.wikidata.org/prop/P22 > (?x, ?y) ∩ < https :

//www.wikidata.org/prop/P40 > (?w, ?y)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?y) ∩ < https :

//www.wikidata.org/prop/P22 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?y, ?x) ∩ < https :

//www.wikidata.org/prop/P22 > (?w, ?y)

• 3p:

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P22 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P40 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P25 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P26 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P40 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P22 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P40 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P40 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P40 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P22 > (?z, ?w)

167

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P22 > (?z, ?y) ∩ < https :

//www.wikidata.org/prop/P3373 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?y, ?x) ∩ <

https : //www.wikidata.org/prop/P3373 > (?z, ?y) ∩ < https :

//www.wikidata.org/prop/P26 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P22 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P40 > (?z, ?y) ∩ < https :

//www.wikidata.org/prop/P40 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P22 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P40 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P22 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P25 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P22 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P40 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P3373 > (?z, ?y) ∩ < https :

//www.wikidata.org/prop/P26 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P3373 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P26 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P40 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P40 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P22 > (?y, ?x) ∩ <

https : //www.wikidata.org/prop/P3373 > (?z, ?y) ∩ < https :

//www.wikidata.org/prop/P3373 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?y, ?x) ∩ <

https : //www.wikidata.org/prop/P40 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P1038 > (?y, ?x) ∩ <

https : //www.wikidata.org/prop/P22 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P40 > (?w, ?z)

168

– q(?w):- < https : //www.wikidata.org/prop/P22 > (?y, ?x) ∩ <

https : //www.wikidata.org/prop/P3373 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P22 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P40 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P3373 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P26 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P3373 > (?z, ?y) ∩ < https :

//www.wikidata.org/prop/P40 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?y, ?x) ∩ <

https : //www.wikidata.org/prop/P40 > (?z, ?y) ∩ < https :

//www.wikidata.org/prop/P3373 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P3373 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P25 > (?y, ?x) ∩ <

https : //www.wikidata.org/prop/P40 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P26 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P1038 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P40 > (?z, ?y) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P1038 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P3373 > (?z, ?y) ∩ < https :

//www.wikidata.org/prop/P3373 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P22 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P3373 > (?z, ?y) ∩ < https :

//www.wikidata.org/prop/P3373 > (?z, ?w)

• 2i:

– q(?w):- < https : //www.wikidata.org/wiki/Q7560 > (?w) ∩ < https :

//www.wikidata.org/prop/P40 > (?w, ?x)

– q(?w):- < https : //www.wikidata.org/wiki/Q10861465 > (?w) ∩ < https :

//www.wikidata.org/wiki/Q7566 > (?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q31184 > (?w) ∩ < https :

//www.wikidata.org/wiki/Q1196129 > (?w)

– q(?w):- < https : //www.wikidata.org/prop/P26 > (?x, ?w) ∩ < https :

169

//www.wikidata.org/prop/P3373 > (?w, ?y)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?w) ∩ < https :

//www.wikidata.org/prop/P26 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q5 > (?w) ∩ < https :

//www.wikidata.org/prop/P22 > (?w, ?x)

– q(?w):- < https : //www.wikidata.org/wiki/Q1196129 > (?w) ∩ < https :

//www.wikidata.org/wiki/Q595094 > (?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q308194 > (?w) ∩ < https :

//www.wikidata.org/prop/P26 > (?w, ?x)

– q(?w):- < https : //www.wikidata.org/wiki/Q7569 > (?w) ∩ < https :

//www.wikidata.org/wiki/Q308194 > (?w)

– q(?w):- < https : //www.wikidata.org/prop/P22 > (?x, ?w) ∩ < https :

//www.wikidata.org/prop/P26 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?w, ?x) ∩ < https :

//www.wikidata.org/prop/P3373 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?w, ?x) ∩ < https :

//www.wikidata.org/prop/P22 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?w) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?y)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?w, ?x) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?y)

– q(?w):- < https : //www.wikidata.org/prop/P26 > (?w, ?x) ∩ < https :

//www.wikidata.org/prop/P3373 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?w, ?x) ∩ < https :

//www.wikidata.org/prop/P22 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?x, ?w) ∩ < https :

//www.wikidata.org/prop/P40 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q595094 > (?w) ∩ < https :

//www.wikidata.org/wiki/Q1196129 > (?w)

– q(?w):- < https : //www.wikidata.org/prop/P22 > (?w, ?x) ∩ < https :

//www.wikidata.org/prop/P3373 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q595094 > (?w) ∩ < https :

//www.wikidata.org/prop/P26 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?w) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?y)

170

– q(?w):- < https : //www.wikidata.org/wiki/Q308194 > (?w) ∩ < https :

//www.wikidata.org/wiki/Q5 > (?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q177232 > (?w) ∩ < https :

//www.wikidata.org/prop/P26 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?w, ?x) ∩ < https :

//www.wikidata.org/prop/P3373 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q7566 > (?w) ∩ < https :

//www.wikidata.org/prop/P40 > (?x, ?w)

• 3i:

– q(?w):- < https : //www.wikidata.org/wiki/Q7566 > (?w) ∩ <

https : //www.wikidata.org/wiki/Q7566 > (?w) ∩ < https :

//www.wikidata.org/wiki/Q7560 > (?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?w, ?z) ∩ <

https : //www.wikidata.org/prop/P40 > (?y, ?w) ∩ < https :

//www.wikidata.org/prop/P1038 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q5 > (?w) ∩ <

https : //www.wikidata.org/prop/P40 > (?y, ?w) ∩ < https :

//www.wikidata.org/prop/P3373 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?z, ?w) ∩ <

https : //www.wikidata.org/prop/P3373 > (?w, ?y) ∩ < https :

//www.wikidata.org/prop/P40 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q308194 > (?w) ∩ <

https : //www.wikidata.org/prop/P40 > (?w, ?y) ∩ < https :

//www.wikidata.org/prop/P3373 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P26 > (?z, ?w) ∩ <

https : //www.wikidata.org/prop/P1038 > (?w, ?y) ∩ < https :

//www.wikidata.org/prop/P3373 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q7565 > (?w) ∩ <

https : //www.wikidata.org/prop/P22 > (?y, ?w) ∩ < https :

//www.wikidata.org/prop/P40 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q31184 > (?w) ∩ <

https : //www.wikidata.org/wiki/Q7566 > (?w) ∩ < https :

//www.wikidata.org/prop/P22 > (?w, ?x)

– q(?w):- < https : //www.wikidata.org/prop/P26 > (?w, ?z) ∩ <

https : //www.wikidata.org/prop/P22 > (?y, ?w) ∩ < https :

171

//www.wikidata.org/prop/P3373 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?w, ?z) ∩ <

https : //www.wikidata.org/prop/P26 > (?y, ?w) ∩ < https :

//www.wikidata.org/prop/P3373 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q308194 > (?w) ∩ <

https : //www.wikidata.org/prop/P3373 > (?y, ?w) ∩ < https :

//www.wikidata.org/prop/P22 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?z, ?w) ∩ <

https : //www.wikidata.org/prop/P3373 > (?y, ?w) ∩ < https :

//www.wikidata.org/prop/P3373 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q10861465 > (?w) ∩ <

https : //www.wikidata.org/prop/P3373 > (?w, ?y) ∩ < https :

//www.wikidata.org/prop/P40 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q595094 > (?w) ∩ <

https : //www.wikidata.org/wiki/Q7560 > (?w) ∩ < https :

//www.wikidata.org/wiki/Q5 > (?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q7560 > (?w) ∩ <

https : //www.wikidata.org/wiki/Q177232 > (?w) ∩ < https :

//www.wikidata.org/wiki/Q7560 > (?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?z, ?w) ∩ <

https : //www.wikidata.org/prop/P40 > (?y, ?w) ∩ < https :

//www.wikidata.org/prop/P40 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q308194 > (?w) ∩ <

https : //www.wikidata.org/wiki/Q31184 > (?w) ∩ < https :

//www.wikidata.org/wiki/Q10861465 > (?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?w, ?z) ∩ <

https : //www.wikidata.org/prop/P3373 > (?y, ?w) ∩ < https :

//www.wikidata.org/prop/P26 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?w, ?z) ∩ <

https : //www.wikidata.org/prop/P40 > (?w, ?y) ∩ < https :

//www.wikidata.org/prop/P26 > (?w, ?x)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?w, ?z) ∩ <

https : //www.wikidata.org/prop/P3373 > (?w, ?y) ∩ < https :

//www.wikidata.org/prop/P25 > (?w, ?x)

– q(?w):- < https : //www.wikidata.org/wiki/Q31184 > (?w) ∩ <

https : //www.wikidata.org/wiki/Q595094 > (?w) ∩ < https :

172

//www.wikidata.org/prop/P40 > (?w, ?x)

– q(?w):- < https : //www.wikidata.org/wiki/Q5 > (?w) ∩ <

https : //www.wikidata.org/prop/P22 > (?w, ?y) ∩ < https :

//www.wikidata.org/prop/P25 > (?w, ?x)

– q(?w):- < https : //www.wikidata.org/wiki/Q10861465 > (?w) ∩ <

https : //www.wikidata.org/wiki/Q308194 > (?w) ∩ < https :

//www.wikidata.org/wiki/Q10861465 > (?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q7560 > (?w) ∩ <

https : //www.wikidata.org/prop/P3373 > (?w, ?y) ∩ < https :

//www.wikidata.org/prop/P22 > (?w, ?x)

– q(?w):- < https : //www.wikidata.org/wiki/Q1196129 > (?w) ∩ <

https : //www.wikidata.org/wiki/Q177232 > (?w) ∩ < https :

//www.wikidata.org/wiki/Q7560 > (?w)

• pi:

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P3373 > (?w, ?y) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P40 > (?w, ?y) ∩ < https :

//www.wikidata.org/prop/P26 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P3373 > (?y, ?w) ∩ < https :

//www.wikidata.org/prop/P22 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P26 > (?y, ?w) ∩ < https :

//www.wikidata.org/prop/P3373 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P22 > (?y, ?w) ∩ < https :

//www.wikidata.org/prop/P26 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P26 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P3373 > (?w, ?y) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P25 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P3373 > (?w, ?y) ∩ < https :

//www.wikidata.org/prop/P40 > (?w, ?z)

173

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P40 > (?y, ?w) ∩ < https :

//www.wikidata.org/prop/P3373 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P1038 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P1038 > (?w, ?y) ∩ < https :

//www.wikidata.org/prop/P40 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P22 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P40 > (?y, ?w) ∩ < https :

//www.wikidata.org/prop/P40 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P26 > (?y, ?w) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P22 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P26 > (?w, ?y) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P40 > (?y, ?w) ∩ < https :

//www.wikidata.org/prop/P40 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P26 > (?y, ?w) ∩ < https :

//www.wikidata.org/prop/P26 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P22 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P40 > (?w, ?y) ∩ < https :

//www.wikidata.org/prop/P40 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P26 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P40 > (?y, ?w) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P26 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P3373 > (?w, ?y) ∩ < https :

//www.wikidata.org/prop/P22 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P40 > (?y, ?w) ∩ < https :

//www.wikidata.org/prop/P26 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P40 > (?w, ?y) ∩ < https :

//www.wikidata.org/prop/P40 > (?z, ?w)

174

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P22 > (?w, ?y) ∩ < https :

//www.wikidata.org/prop/P3373 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P22 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P26 > (?w, ?y) ∩ < https :

//www.wikidata.org/prop/P22 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P40 > (?w, ?y) ∩ < https :

//www.wikidata.org/prop/P40 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P3373 > (?w, ?y) ∩ < https :

//www.wikidata.org/prop/P25 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P40 > (?w, ?y) ∩ < https :

//www.wikidata.org/prop/P40 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?x, ?y) ∩ <

https : //www.wikidata.org/prop/P22 > (?y, ?w) ∩ < https :

//www.wikidata.org/prop/P40 > (?z, ?w)

• ip:

– q(?w):- < https : //www.wikidata.org/wiki/Q308194 > (?z) ∩ <

https : //www.wikidata.org/prop/P26 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P40 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?z, ?x) ∩ <

https : //www.wikidata.org/prop/P26 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P40 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/wiki/Q7560 > (?x) ∩ <

https : //www.wikidata.org/wiki/Q5 > (?x) ∩ < https :

//www.wikidata.org/prop/P22 > (?w, ?x)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?z, ?x) ∩ <

https : //www.wikidata.org/prop/P3373 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?z, ?x) ∩ <

https : //www.wikidata.org/prop/P22 > (?z, ?y) ∩ < https :

//www.wikidata.org/prop/P22 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?z, ?x) ∩ <

175

https : //www.wikidata.org/prop/P40 > (?z, ?y) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P26 > (?x, ?z) ∩ <

https : //www.wikidata.org/prop/P25 > (?z, ?y) ∩ < https :

//www.wikidata.org/prop/P22 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/wiki/Q5 > (?x) ∩ <

https : //www.wikidata.org/wiki/Q7566 > (?x) ∩ < https :

//www.wikidata.org/prop/P40 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?z, ?x) ∩ <

https : //www.wikidata.org/prop/P40 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P22 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q10861465 > (?x) ∩ <

https : //www.wikidata.org/wiki/Q7560 > (?x) ∩ < https :

//www.wikidata.org/prop/P22 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P26 > (?x, ?z) ∩ <

https : //www.wikidata.org/prop/P40 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P22 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P1038 > (?x, ?z) ∩ <

https : //www.wikidata.org/prop/P40 > (?z, ?y) ∩ < https :

//www.wikidata.org/prop/P3373 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q1196129 > (?x) ∩ <

https : //www.wikidata.org/wiki/Q1196129 > (?x) ∩ < https :

//www.wikidata.org/prop/P40 > (?w, ?x)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?z, ?x) ∩ <

https : //www.wikidata.org/prop/P25 > (?z, ?y) ∩ < https :

//www.wikidata.org/prop/P26 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P26 > (?z, ?x) ∩ <

https : //www.wikidata.org/prop/P22 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P22 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?z) ∩ <

https : //www.wikidata.org/prop/P3373 > (?z, ?y) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/wiki/Q595094 > (?x) ∩ <

https : //www.wikidata.org/wiki/Q7560 > (?x) ∩ < https :

//www.wikidata.org/prop/P25 > (?w, ?x)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?z) ∩ <

176

https : //www.wikidata.org/prop/P3373 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P40 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?z, ?x) ∩ <

https : //www.wikidata.org/prop/P25 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P3373 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?x, ?z) ∩ <

https : //www.wikidata.org/prop/P22 > (?z, ?y) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?x, ?z) ∩ <

https : //www.wikidata.org/prop/P3373 > (?z, ?y) ∩ < https :

//www.wikidata.org/prop/P22 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q7560 > (?z) ∩ <

https : //www.wikidata.org/prop/P22 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/wiki/Q7565 > (?x) ∩ <

https : //www.wikidata.org/wiki/Q7560 > (?x) ∩ < https :

//www.wikidata.org/prop/P40 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q177232 > (?z) ∩ <

https : //www.wikidata.org/prop/P40 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P22 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P26 > (?z, ?x) ∩ <

https : //www.wikidata.org/prop/P40 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?z)

• up:

– q(?w):- < https : //www.wikidata.org/wiki/Q308194 > (?x)∪ <

https : //www.wikidata.org/wiki/Q595094 > (?x) ∩ < https :

//www.wikidata.org/prop/P22 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q5 > (?x)∪ <

https : //www.wikidata.org/wiki/Q31184 > (?x) ∩ < https :

//www.wikidata.org/prop/P1038 > (?w, ?x)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?z)∪ <

https : //www.wikidata.org/prop/P40 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P40 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?z, ?x)∪ <

https : //www.wikidata.org/prop/P22 > (?z, ?y) ∩ < https :

177

//www.wikidata.org/prop/P3373 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q595094 > (?z)∪ <

https : //www.wikidata.org/prop/P3373 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P22 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/wiki/Q595094 > (?z)∪ <

https : //www.wikidata.org/prop/P40 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P40 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?x, ?z)∪ <

https : //www.wikidata.org/prop/P40 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P40 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/wiki/Q177232 > (?x)∪ <

https : //www.wikidata.org/wiki/Q1196129 > (?x) ∩ < https :

//www.wikidata.org/prop/P26 > (?w, ?x)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?z, ?x)∪ <

https : //www.wikidata.org/prop/P3373 > (?z, ?y) ∩ < https :

//www.wikidata.org/prop/P25 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/wiki/Q31184 > (?x)∪ <

https : //www.wikidata.org/wiki/Q7565 > (?x) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?x)

– q(?w):- < https : //www.wikidata.org/wiki/Q308194 > (?x)∪ <

https : //www.wikidata.org/wiki/Q7566 > (?x) ∩ < https :

//www.wikidata.org/prop/P3373 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q308194 > (?z)∪ <

https : //www.wikidata.org/prop/P22 > (?z, ?y) ∩ < https :

//www.wikidata.org/prop/P22 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/wiki/Q7566 > (?x)∪ <

https : //www.wikidata.org/wiki/Q10861465 > (?x) ∩ < https :

//www.wikidata.org/prop/P3373 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?x, ?z)∪ <

https : //www.wikidata.org/prop/P40 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P25 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P25 > (?z, ?x)∪ <

https : //www.wikidata.org/prop/P3373 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P22 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/wiki/Q31184 > (?x)∪ <

https : //www.wikidata.org/wiki/Q7560 > (?x) ∩ < https :

178

//www.wikidata.org/prop/P40 > (?w, ?x)

– q(?w):- < https : //www.wikidata.org/wiki/Q595094 > (?x)∪ <

https : //www.wikidata.org/wiki/Q10861465 > (?x) ∩ < https :

//www.wikidata.org/prop/P25 > (?w, ?x)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?z, ?x)∪ <

https : //www.wikidata.org/prop/P40 > (?z, ?y) ∩ < https :

//www.wikidata.org/prop/P3373 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P22 > (?x, ?z)∪ <

https : //www.wikidata.org/prop/P26 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/wiki/Q1196129 > (?z)∪ <

https : //www.wikidata.org/prop/P3373 > (?z, ?y) ∩ < https :

//www.wikidata.org/prop/P25 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P26 > (?z, ?x)∪ <

https : //www.wikidata.org/prop/P40 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P22 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?z, ?x)∪ <

https : //www.wikidata.org/prop/P3373 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P22 > (?w, ?z)

– q(?w):- < https : //www.wikidata.org/wiki/Q7565 > (?z)∪ <

https : //www.wikidata.org/prop/P22 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P3373 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q10861465 > (?z)∪ <

https : //www.wikidata.org/prop/P26 > (?y, ?z) ∩ < https :

//www.wikidata.org/prop/P40 > (?z, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q595094 > (?x)∪ <

https : //www.wikidata.org/wiki/Q7569 > (?x) ∩ < https :

//www.wikidata.org/prop/P3373 > (?w, ?x)

• 2u:

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?x, ?w)∪ < https :

//www.wikidata.org/prop/P3373 > (?w, ?y)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?w, ?x)∪ < https :

//www.wikidata.org/prop/P26 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?w, ?x)∪ < https :

//www.wikidata.org/prop/P40 > (?w, ?y)

179

– q(?w):- < https : //www.wikidata.org/wiki/Q177232 > (?w)∪ < https :

//www.wikidata.org/wiki/Q308194 > (?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q5 > (?w)∪ < https :

//www.wikidata.org/prop/P26 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q308194 > (?w)∪ < https :

//www.wikidata.org/wiki/Q177232 > (?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q10861465 > (?w)∪ < https :

//www.wikidata.org/wiki/Q308194 > (?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?w)∪ < https :

//www.wikidata.org/prop/P40 > (?w, ?y)

– q(?w):- < https : //www.wikidata.org/prop/P22 > (?x, ?w)∪ < https :

//www.wikidata.org/prop/P26 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P22 > (?w, ?x)∪ < https :

//www.wikidata.org/prop/P40 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q31184 > (?w)∪ < https :

//www.wikidata.org/wiki/Q177232 > (?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q7569 > (?w)∪ < https :

//www.wikidata.org/prop/P40 > (?w, ?x)

– q(?w):- < https : //www.wikidata.org/prop/P26 > (?x, ?w)∪ < https :

//www.wikidata.org/prop/P3373 > (?y, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q7569 > (?w)∪ < https :

//www.wikidata.org/wiki/Q7560 > (?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q7565 > (?w)∪ < https :

//www.wikidata.org/wiki/Q10861465 > (?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?x, ?w)∪ < https :

//www.wikidata.org/prop/P3373 > (?w, ?y)

– q(?w):- < https : //www.wikidata.org/wiki/Q177232 > (?w)∪ < https :

//www.wikidata.org/prop/P26 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q10861465 > (?w)∪ < https :

//www.wikidata.org/wiki/Q595094 > (?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q5 > (?w)∪ < https :

//www.wikidata.org/prop/P3373 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q5 > (?w)∪ < https :

//www.wikidata.org/wiki/Q177232 > (?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q1196129 > (?w)∪ < https :

180

//www.wikidata.org/prop/P40 > (?x, ?w)

– q(?w):- < https : //www.wikidata.org/prop/P3373 > (?w, ?x)∪ < https :

//www.wikidata.org/prop/P26 > (?w, ?y)

– q(?w):- < https : //www.wikidata.org/wiki/Q595094 > (?w)∪ < https :

//www.wikidata.org/wiki/Q7560 > (?w)

– q(?w):- < https : //www.wikidata.org/wiki/Q10861465 > (?w)∪ < https :

//www.wikidata.org/wiki/Q10861465 > (?w)

– q(?w):- < https : //www.wikidata.org/prop/P40 > (?w, ?x)∪ < https :

//www.wikidata.org/prop/P3373 > (?y, ?w)

1 2 3

1https://github.com/AImenes/query-answering-and-embeddings
2https://github.com/AImenes/PerfectRef
3https://github.com/AImenes/

181

https://github.com/AImenes/query-answering-and-embeddings
https://github.com/AImenes/PerfectRef
https://github.com/AImenes/

	Introduction
	Motivation
	Research Questions
	Thesis Outline

	Background
	DL-Lite Framework and Query Rewriting
	Foundations of Description Logic and the DL-Lite Framework
	Conjunctive Queries, Disjunctive queries, Unions of Conjunctive Queries, and EPFO Queries
	Query Rewriting with PerfectRef

	Knowledge Graphs
	kg Completion
	kg Embeddings
	Performance indicators for Knowledge Graph Embeddings

	Semantic Web Technologies: rdf and owl
	Understanding ontologies
	Understanding rdf and rdfs
	Exploring owl
	Relationship between owl and dl

	Combining Query Rewriting with Knowledge Graph Embeddings for Complex Query Answering
	Strategy: Why It Works
	Pipeline: How it works
	Our Implementation of PerfectRef
	Query answering from a Knowledge Graph Embedding
	Comprehensive Examples

	Results
	Datasets
	DBPedia15k: Overview and Characteristics
	The Family Dataset: A Wikidata5M Extract

	Research questions
	Question 1: How can we integrate query rewriting with kge to enhance complex query answering?
	Experiment introduction
	Question 2: How are the results affected by different kge?
	Question 3: How does our integrated query rewriting approach compare to standard kg lookups?
	Question 4: How do we interpret and compare our results fairly?

	Related Work
	Conclusion
	Future Work

	List of Acronyms and Abbreviations
	Bibliography
	Logic fundamentals
	Logic
	pl
	fol

	PerfectRef implementation running time
	Summation of all natural numbers
	Binomial coefficient
	Correlation between binomial coefficient and triangular numbers
	Summation over the first d triangular numbers

	Running time PerfectRef

	Embedding results
	Testcase results
	Family Dataset
	DBPedia15k

	Experiment queries generation
	DBPedia15k
	Family Dataset

