
Named Entity Recognition in
Speech-to-Text Transcripts

Peter Røysland Aarnes

Supervisors: Samia Touileb (UiB), Lubos Steskal (TV2)

Department of Information Science and Media Studies
University of Bergen

May 31, 2023

2

Peter Røysland Aarnes

Scientific environment

This study is carried out at the Department of Information Science and Media
Studies, University of Bergen. The work is supported by MediaFutures: Research
Centre for Responsible Media Technology & Innovation, and by TV2

ii

Acknowledgements

I would like to give a special thanks to my two supervisors, Samia Touileb and
Lubos Steskal. Thank you so much for your invaluable and thorough feedback
on my project. Your discussions and deliberations in the research field of natural
language processing have been especially inspiring and have played a large part
in unlocking my special interest in this field of research.

I also want to bring attention to the research community that publishing their
findings openly and making them easily accessible to the public. I believe your
research contribute to the collective knowledge and progress in various fields, and
allows for wider dissemination and promotes collaboration. Thank you.

Also a big thanks to family, friends and those whom I hold most dearly. You
have provided me with endless support, and I am truly fortunate to have you in
my life and am deeply grateful for your presence.

Peter Røysland Aarnes
Bergen, 24.05.23

iv

Abstract

Traditionally, named entity recognition (NER) research use properly capitalized
data for training and testing give little insight to how these models may perform
in scenarios where proper capitalization is not in place. In this thesis, I explore
the capabilities of five fine-tuning BERT based models for NER in all lowercase
text. Furthermore, I aim to measure the performance for classifying named entity
types correctly, as well as just simply detecting that a named entity is present, so
that capitalization errors may be corrected. The performance is assessed using all
lowercase data from the NorNE dataset, and the Norwegian Parliamentary Speech
Corpus. Findings suggest that the fine-tuned BERT models are highly capable of
detecting non-capitalized named entities, but do not perform as well as traditional
NER models that are trained and tested on properly capitalized text.

vi

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research question . 2
1.3 Thesis Outline . 2

2 Background 5
2.1 Natural language processing and sequence labeling 5
2.2 Evaluation methods and analysis for NER 6

2.2.1 Confusion matrix . 7
2.2.2 Accuracy, Precision, Recall and F1 7

2.3 Label encoding schemes . 9
2.4 English data . 9
2.5 Norwegian dataset – NorNE . 11
2.6 Traditional approaches to NER 11
2.7 Neural approaches . 12
2.8 Challenges in NER . 16

2.8.1 Out-of-vocabulary . 16
2.8.2 Named entity span . 16
2.8.3 Capitalization . 17

2.9 Loss, Optimizers and Regularization for Training 17
2.9.1 Feature Representation and Word Embeddings 18

2.10 Large Pre-Trained Language Models 20
2.10.1 BERT Pre-Training and Fine-Tuning 20
2.10.2 Language specific BERT models 21
2.10.3 Large Pre-trained Language Model Biases 22

3 Datasets 23
3.1 NorNE . 23
3.2 Norwegian Parliamentary Speech Corpus 24
3.3 Annotated NPSC sample . 26

4 Experimental Setup and Model Training 29
4.1 Hardware and software environment 29
4.2 Model Setup . 29

viii CONTENTS

4.3 Pre-processing of datasets . 30
4.4 Baseline models . 31

4.4.1 SpaCy Norwegian Pipeline 31
4.4.2 NCRF++ . 31

4.5 Main models . 32
4.5.1 NorBERT . 32
4.5.2 NorBERT2 . 33
4.5.3 mBERT . 33
4.5.4 NB-BERT . 33
4.5.5 Ner-Scandi . 34

4.6 BERT training . 34
4.7 Training metrics . 36

4.7.1 Validation Recall and Learning Rate 37
4.7.2 Training loss and validation loss 40

5 Evaluation Methods 45
5.1 Methods . 45

5.1.1 Named Entity Recognition 45
5.1.2 Strict Match . 46
5.1.3 Named Entity Binary Classification 46

5.2 Evaluating Dataset Results . 47
5.2.1 Evaluating NorNE . 47
5.2.2 Evaluating the annotated NPSC sample 47
5.2.3 Evaluating the NPSC . 48

6 Results and discussion 49
6.1 NorNE results . 49

6.1.1 NorNE Named Entity Recognition 50
6.1.2 NorNE Strict Match . 52
6.1.3 Binary Classification Evaluation 53
6.1.4 NorNE Results Analysis and Discussion 55

6.2 NPSC results . 57
6.2.1 Annotated NPSC sample dataset results 58
6.2.2 NPSC Sample Named Entity Recognition 60
6.2.3 NPSC Sample Strict Match 60
6.2.4 Binary Classification . 63
6.2.5 NPSC Results Analysis and Discussion 64

6.3 Comparing NorNE and NPSC results 66
6.4 Possible Limiting Factors for Model Performance 67
6.5 Results Summary . 69

CONTENTS ix

7 Conclusions and Future Work 71
7.1 Contributions . 71
7.2 Limitations . 72
7.3 Future Work . 72

A Extended Training Details 75

B Extended Results 95

Bibliography 107

x CONTENTS

List of Figures

2.1 The simplest form a Confusion Matrix can take 7

4.1 NorBERT’s recall rate for each training epoch. The colored lines
represent different training runs on a given seed. With patience
counter of 10, training is terminated if a model does not improve
on that seed after 10 epochs. 38

4.2 NorBERT’s learning rate for each training epoch. The colored
lines represent different training runs on a given seed. The model
had two attempts to improve its performance before its learning
rate was decreased. 38

4.3 Ner-Scandi’s recall rate for each training epoch. The colored
lines represent different training runs on a given seed. Given the
patience counter of 10, training is terminated if a model does not
improve on that seed after 10 epochs. 39

4.4 Ner-Scandis’s learning rate each training epoch. The colored lines
represent different training runs on a given seed. The model had
two attempts to improve its performance before its learning rate
was decreased. 40

4.5 NorBERT’s training dataset loss rate for each seed. Each colored
line represent a model seed. All seeds follow the same trend,
where the loss rate gets closer to zero for each training epoch.
For full numeric details, refer to Appendix A 41

4.6 Ner-Scandi’s training dataset loss rate for each seed. Each colored
line represent a model seed. All seeds follow the same trend,
where the loss rate gets closer to zero for each training epoch,
except for epoch number 4 for seed 8, where there is a slight
uptick in loss rate, before lowering the next epoch. For full
numeric details, refer to Appendix A. 42

4.7 NorBERT’s validation dataset loss rate for each seed. Each
colored line represent a model seed. Loss rate steadily increase
throughout the training. 43

4.8 Ner-Scandi’s validation dataset loss rate for each seed. Each
colored line represent a model seed. Loss rate steadily increase
throughout the training. 43

xii LIST OF FIGURES

6.1 Ner-Scandi Binary Classification results for the NorNE test dataset.
The 0 class denotes the Not Capital Letter class, that is non-entity
tokens. The 1 class denotes the Capital Letter class, that is named
entities. 56

6.2 Ner-Scandi confusion matrix results for the NorNE dataset. The
numbers are normalized averages that indicate percentage instead
of actual count. To see non-normalized version, refer to Appendix
B. 56

6.3 NB-BERT confusion matrix results for the NSPC sample dataset.
The numbers are normalized averages that indicate percentage
instead of actual count. To see non-normalized version, refer to
Appendix B. 64

6.4 Ner-Scandi Binary Classification results for the full NPSC dataset.
The 0 class denotes the Not Capital Letter class, that is, non-entity
tokens. The 1 class denotes the Capital Letter class, that is, named
entities. 65

A.1 Configuration file of the NCRF++ model 76

B.1 NorNE results for Ner-Scandi combined average confusion matrix
at token level classification . 104

B.2 NB-BERT confusion matrix token level classification NPSC sample105

List of Tables

2.1 How a sentence would be annotated with IO, IOB, IOB2, and
IOBES annotation schemes. 10

2.2 Micro-average F1 results from NER on NorNE Bokmål and
Nynorsk test dataset (Kutuzov et al., 2021) 15

3.1 NorNE named entity distribution across the train, development,
test splits and the average word span of a named entity. Avg.
span notes to the average number of tokens a named entity is is
composed of. 24

3.2 NorNE total word count, named entity count, and average sentence
length. 25

3.3 NPSC total word count, average sentence length, and total capitalized
words. 25

3.4 The annotated NPSC sample dataset’s named entity count, distribution
of type, and the average word span of a named entity. Avg.
span notes to the average number of tokens a named entity is is
composed of. 26

3.5 The annotated NPSC sample dataset’s total count of non-named
entities, named entities, combined count and average sentence
length. 26

3.6 Distribution of the named entity types, comparing the NorNE test
dataset and he annotated NPSC sample dataset. Prop. denotes
proportion. 27

6.1 NorNE results for all models. BERT models use the average
F1 across all seeds for a given model. No Boundary denotes
NER without named entity token span taken into account. Strict
Match denotes NER with named entity token span taken into the
evaluation. Binary classification denotes the task where only the
detection if an entity is present, without specific type associated.
*Ten sentences were dropped from SpaCy pipeline 50

6.2 Ner-Scandi NorNE test dataset results measured with precision,
recall and F1 for NER without considering token span of a named
entity. Support column denotes number of entries for each class. . 51

xiv LIST OF TABLES

6.3 Scandi-ner NorNE test dataset results measured with precision,
recall and F1 for NER with the strict evaluation criteria, where the
named entity token boundary has to be correct as well as predicted
label. Support column denotes number of entries for each class. . 53

6.4 NorNe Binary Classification precision, recall and F1 metrics for
all models. The 0 class denotes the Not Capital Letter class. The 1
class denotes the Capital Letter class. The Support column refers
to the number of entries for a given class. *10 sentences were
dropped from SpaCy pipeline because of difference prediction
sequence length and gold standard sequence length. 54

6.5 The annotated NPSC sample dataset results for all models. BERT
models use the average F1 across all seeds for a given model. No
Boundary denotes NER without named entity token span taken
into account. Strict Match denotes NER with named entity token
span taken into the evaluation. Binary Classification denotes the
task where only the detection if an entity is present, without
specific type associated. *3 sentences were dropped from SpaCy
pipeline because of difference prediction sequence length and
gold standard sequence length. 58

6.6 NB-BERT results for the NPSC sample dataset, measured with
precision, recall and F1 for NER without considering token span
of a named entity. Support column denotes number of entries for
each class. 59

6.7 NB-BERT results for the NPSC sample dataset measured with
precision, recall and F1 for NER with the strict evaluation criteria,
where the named entity token boundary has to be correct as well
as predicted label. Support column denotes number of entries for
each class. report . 61

6.8 NPSC NorNe Binary Classification precision, recall and F1
metrics for all models. The 0 class denotes the Not Capital
Letter class. The 1 class denotes the Capital Letter class. The
Support collumn refers to the number of entries for a given class.
*729 sentences were dropped from SpaCy pipeline because of
difference prediction sequence length and gold standard sequence
length. 62

LIST OF TABLES xv

6.9 Ner-Scandi result comparisons between the NorNE and the NPSC
dataset. The NPSC sample are results from NB-BERTS performance.
The micro averages are reported for the No Boundary and Strict
Match. Macro averages are reported for the Binary Classification.
No Boundary denotes NER without named entity token span
taken into account. Strict Match denotes NER with named
entity token span taken into the evaluation. Binary Classification
denotes the task where only the detection if an entity is present,
without specific type associated. 66

A.1 mBERT seed 1024 training metrics 77
A.2 mBERT seed 42 training metrics 77
A.3 mBERT seed 8 training metrics 78
A.4 mBERT seed 37 training metrics 79
A.5 mBERT seed 101 training metrics 80
A.6 NorBERT seed 101 training metrics 81
A.7 NorBERT seed 37 training metrics 82
A.8 NorBERT seed 42 training metrics 83
A.9 NorBERT seed 8 training metrics 84
A.10 NorBERT seed 1024 training metrics 85
A.11 NorBERT2 seed 42 training metrics 85
A.12 NorBERT2 seed 8 training metrics 86
A.13 NorBERT2 seed 101 training metrics 86
A.14 NorBERT2 seed 1024 training metrics 87
A.15 NorBERT2 seed 37 training metrics 88
A.16 NB-BERT seed 37 training metrics 89
A.17 NB-BERT seed 101 training metrics 89
A.18 NB-BERT seed 8 training metrics 90
A.19 NB-BERT seed 42 training metrics 91
A.20 NB-BERT seed 1024 training metrics 91
A.21 Scandi ner seed 1024 training metrics 92
A.22 Scandi ner seed 37 training metrics 92
A.23 Scandi ner seed 42 training metrics 93
A.24 Scandi ner seed 8 training metrics 93
A.25 Scandi ner seed 101 training metrics 94

B.1 mBERT NER results without token span evaluation for the
NorNE test dataset . 96

B.2 mBERT NER results without token span evaluation for the
annotated NPSC sample dataset 96

B.3 mBERT Strict Match evaluation for the NorNE test dataset 97
B.4 mBERT Strict Match evaluation for the NPSC sample 97

xvi LIST OF TABLES

B.5 NorBERT NER results without token span evaluation for the
NorNE test dataset . 98

B.6 NorBERT NER results without token span evaluation for the
annotated NPSC sample dataset 98

B.7 NorBERT Strict Match evaluation for the NorNE test dataset . . . 99
B.8 NorBERT Strict Match the annotated NPSC sample dataset 99
B.9 NorBERT2 NER results without token span evaluation for the

NorNE dataset . 100
B.10 NorBERT2 NER results without token span evaluation for the

annotated NPSC sample dataset 100
B.11 NorBERT2 strict match NorNE 101
B.12 NorBERT2 Strict Match for the annotated NPSC sample dataset . 101
B.13 NB-BERT NER results without token span evaluation for the

annotated NPSC sample dataset 102
B.14 NB-BERT Strict Match for the NorNE test dataset 102
B.15 Ner-Scandi NER results without token span evaluation for the

annotated NPSC sample dataset 103
B.16 Ner-Scandi Strict Match for the annotated NPSC sample dataset . 103

Chapter 1

Introduction

Named Entity Recogntion (NER) is an important in the research field of Natural
Language Processing (NLP). NER is used to efficiently identify and categorize
real-world entities such as people, organizations, locations and more within
text data. This process is foundational in automated information extraction
and retrieval systems, where NER applications can used to extract useful and
structured information, from unstructured text.

With the advent of Transformer based Large Language Models (Vaswani
et al., 2017), and the Bidirectional Encoder Representations from Transformers
(BERT) model (Devlin et al., 2019), the NLP reasearch community has witnessed
a paradigm shift in the state-of-the-art performance on a wide array of tasks,
including NER.

Most NER research tend to focus on identifying and categorizing named entity
types, rather simply detecting their presence. Proper capitalization of named
entities could be a dead giveaway that a named entity is present, however, in
real-world situations such as in the case of automated speech-to-text captions or
user-generated text content, capitalization mistakes are not uncommon.

This Master’s thesis takes a slightly diverged approach to NER research
compared to traditional methods. Instead of using text data with normal
capitalization, all the data we will use are lowercase. Furthermore, rather than
focusing exclusively on precise classification of a named entity types, we will
also focus on the detection of named entities regardless of type.

By researching the detection of named entities in texts with capitalization
mistakes, our aim is to enhance our understanding of the challenges associated
with NER in real-world situations where text data may contain capitalization
errors. These real-world scenarios are particularly relevant to automatic speech-
to-text transcripts, as this thesis is conducted in collaboration with TV2, Norway’s
second-largest broadcast producer. The proposed approach in this thesis aims
to enhance capitalization accuracy in TV2’s automatic speech-to-text captioning
systems. However, automated speech-to-text caption and transcription systems
are not only important for large media institutions to alleviate manual transcription
labour, but they also play a beneficiary role for smaller businesses and individual

2 Introduction

users creating transcripts and captions for audio and audio-visual media.

1.1 Problem Statement

TV2 applies speech-to-text technology to generate transcripts of TV programs.
As a point of interest, they are exploring approaches to ensure acceptable quality
of the automatically generated speech-to-text data. This project aims to explore
methods of how to ensure that all named entities in Norwegian texts are properly
capitalized, utilizing state-of-the-art neural network approaches for NER.

1.2 Research question

Aim: Create an effective method to detect named entities and categorize them
into their respective type, utilizing state-of-the-art neural network models when
text is lowercase.

The research questions are as follows:

(R1) To what extent can current neural models be used to identify non-
capitalized named entities?

(R2) Which current neural models achieves best NER results in all
lowercase texts?

1.3 Thesis Outline

This chapter included a brief statement about the task description and problem
statement. The remainder of the thesis will be divided into six chapters, excluding
the supplementary appendices.

Chapter 2 focus on providing background material necessary for the un-der-
stand-ing of our work. This includes fundamental knowledge of NER research,
such as evaluation methods, various artificial neural network model architectures,
and previous research which used neural network models to tackle NER tasks.

Chapter 3 provide detailed information about the datasets that is used in the
thesis’ experiments.

Chapter 4 provides a detailed description of the experimental setup and model
training techniques and preliminary results gathered from the validation dataset
during training. The chapter also includes additional details for every model
we utilize, and a thorough description of the experimental setup. Thorough
documentation is essential in making this study easy to replicate and validate.

Chapter 5 describes three different methods that will benchmark the models’
performance, named entity recognition without token span boundary, strict match
classification, and binary classification. These task will serve as the evaluation
methods used to assess the performance of our models.

1.3 Thesis Outline 3

Chapter 6 present the results gathered from the three different evaluation
methods, described in Chapter 5. The results from our models are compared
to one another and discussed, highlighting their strengths, weaknesses, and their
effectiveness.

Chapter 7 provides answers to our research question and conclusions for our
findings, in addition to the project’s limiting factors, and possible future work.

The thesis include additional details in its appendices. Apendix A provides
extensive detail regarding training metrics for each model. Apendix B provides
test results for additional models that did not get highlighted in the Chapter 6.

4 Introduction

Chapter 2

Background

2.1 Natural language processing and sequence labeling

Machine Learning (ML) relies on training data to recognize patterns and make
predictions or take actions based on what has been learned. Natural Language
Processing (NLP) focuses on language, as the name suggests. It involves creating
computer programs that can process and interpret human language, be it spoken
or written. In contemporary NLP applications, it is common to deploy machine
learning in its development. Moreover, in text-based NLP, vast amounts of text
data often serves as the foundation for the ML training process.

For task specific NLP applications, text corpora intended for training and
testing will often be split into three different datasets: One dataset for the actual
pattern training, one development dataset (may also be referred to as the validation
dataset) for optimization of training, and a test dataset to access an applications
ability to generalize to new, unseen data.

For example, text-based sentiment analysis classification, the ideal train-
ing corpus would include context-rich content that can effectively conveys
sentiments. A suitable dataset would be corpora that contain various reviews,
along with metadata for each review regarding its class of sentiment, such as
negative, neutral or positive. With this metadata, a machine learning application
could learn specific patterns associated with a given class, from which the
application would later make its sentiment predictions on test data.

In other cases, the objective may be sequence labeling tasks, such as part-of-
speech (POS) tagging. This task involves assigning a value to each token in a
sequence, representing its grammatical role, such as an adjective, noun, or verb,
among other descriptors. Token is a term that will be used throughout this thesis.
A token can be an instance of a character, such as punctuation, and a group of
characters, such as a word. Later on in the thesis, we will give descriptions of
datasets. For example, if a dataset is said to contain 1 000 tokens, that will be a
combined count of words and punctuation. In other instances of sequence labeling
tasks, the focus may solely to identify tokens that are proper noun and categorize

6 Background

them, a task known as Named Entity Recognition.
Named Entity Recognition (NER) involves classifying tokens with different

named entity types, such one or more tokens in sequence being classified as a
person, location, organization or non-named entity type, that is all tokens that
are not proper nouns (Jurafsky and Martin, 2022, p. 160). These aforementioned
classes are the most commonly used throughout NER research and ML model
testing, however, sometimes more granular types which provide more specificity
are also used. Among these are geopolitical entities such as nations and states,
monetary values, time and dates, and miscellaneous entities such as products,
events, and works of art.

In other instances, a NER task could revolve around having domain-specific
named entities (DSNE). In such instances one would need highly specific corpora,
tailored to the given task. For example in domain-specific NER within biology
and health, a model could be trained to predict names of proteins, genes, enzymes,
and illnesses in text (Smith et al., 2008).

NER is considered a subtask within information extraction, where the primary
goal is to extract valuable information from text. Identifying and tagging named
entities is a crucial component of this process. By deploying an accurate named
entity labeling classifiers, a information extractor’s performance can be improved
in identifying relationships between entities (Jurafsky and Martin, 2022, p. 165).
Take the following example: “Citing high fuel prices, United Airlines (ORG)
said Friday (TIME) it has increased fares by $6 (MONEY).” It is relatively easy
for humans to understand the sentence’s content: an organization x announced
on day y that the prices of something would increase by z amount. However, if
the sentence was part of a larger document, extracting this information would be
much more time-consuming for a person. In contrast, an information extraction
model could efficiently gather and structure the data, and store it for later use.

2.2 Evaluation methods and analysis for NER

To evaluate a sequence labeling classifier’s performance, its predictions have to be
compared against the human-defined label, often referred to as the gold standard
(Jurafsky and Martin, 2022, p. 68).

There are several ways to assess a NER model’s performance assessment
instead of just evaluating the predictive power for a single token at the time. For
example a person’s name could be composed of a first name, a middle name, and
a surname. Then the named entity would then span a boundary of three tokens.

In the following section, we will present some of the most common way to
analyse and assess performance for a NER system.

2.2 Evaluation methods and analysis for NER 7

A
ct

ua
l

va
lu

e

Prediction outcome

p n

p′ True
Positive

False
Negative

n′ False
Positive

True
Negative

Figure 2.1: The simplest form a Confusion Matrix can take

2.2.1 Confusion matrix
A model’s output can be compared to the the gold standard with the use of a
confusion matrix. Figure 2.1 presents the simplest form of a confusion matrix, a
binary classification confusion matrix. The matrix can be extended by as many
dimensions as there are classes to predict, where each cell always refers to one
possible outcome.

A prediction can be a True Positive, a True Negative, a False Negative, or
a False Positive of a given class we want to predict. A common example that
explains the differences between prediction types is classifying emails as “spam”
or “not spam”:

• True Positive (TP): The prediction is positive for a spam, and it’s correct.
The email is spam.

• True Negative (TN): The prediction is negative for spam, and it’s correct.
The email is not spam.

• False Positive (FP): The prediction is positive for spam, the prediction is
incorrect. The email is not spam.

• False Negative (FN): The prediction is negative for spam, but it is incorrect.
The email is spam.

2.2.2 Accuracy, Precision, Recall and F1
A common approach for assessing a classifier’s performance, including NER
classifiers, is to examine performance metrics, such as accuracy, precision,
recall and F-measures. Each class, or named entity type for NER systems, can
be assessed individually, and the performance overall can be measured. The
aforementioned metrics are calculated as follows:

8 Background

Accuracy =
T P+T N

T P+T N +FP+FN
(2.1)

Accuracy is calculated by the total sum true positives and true negatives, divided
by the total number of samples. For datasets with significantly class imbalance,
accuracy is often not the preferred measurement to determine a model’s overall
predictive power. For these kinds of datasets precision and recall would be
preferred (Jurafsky and Martin, 2022, p. 68).

Precision =
T P

T P+FP
(2.2)

Precision measures the percentage of all the predictions that were given to a
specific class and were actually that class. It measures how many true positives
there were out of all the positive predictions for a specific class.

Recall =
T P

T P+FN
(2.3)

Recall measures, out of all the occurrences of a given class, what percentage was
correctly identified by the model. It measures how many true positives there were
out of all the actual positives for a specific class.

F1 = 2 · Precision ·Recall
Precision+Recall

(2.4)

F1 is a metric that combines precision and recall metrics, where a perfect F1
score of 100 equates that every prediction is correct. The most common variation
of F1 weights recall and precision equally. However, for many classification tasks
there are often more than two classes to predict. We can examine the F1 for each
class, or the overall system performance using macro-average and micro-average
F1. The macro-average will compute the average of all classes F1, weighing
each class equally important (Jurafsky and Martin, 2022, p. 70). Micro-average
calculates its average by aggregating the contributions of all classes. In cases
where datasets have a significantly unbalanced number of samples for each class,
micro-average may preferred, depending on if we favor the importance of some
bigger classes. However, if all classes are equally important, macro-average is
often the preferred measurement.

Considering that named entities frequently span multiple tokens, assessing
boundary matches can also offer valuable insights into the model’s performance,

2.3 Label encoding schemes 9

using the same metrics as discussed in the last paragraph. The token span
boundary simply refers to how many tokens a named entity consists of. For
example the name “James Paul McCartney”spans three tokens of the person PER
type, therefore the token boundary is also three. Segura-Bedmar et al. (2013)
define four different evaluation methods in terms of token boundary and match of
named entity type:

• Strict match: Exact match for both named entity type and its token
boundary.

• Exact boundary: A named entity is identified. Type could be wrong, but
the boundary of the named entity is correct.

• Partial boundary: A named entity is identified, but the type might be
wrong and boundary is partially correct.

• Type match: Named entity type is correct, but the predicted tokens does
not match the named entity’s token boundary.

2.3 Label encoding schemes

There are several ways of annotating tokens as named entities in text. Table
2.1 presents four different annotations schemes1, IO, IOB, IOB2, and IOBES
respectively. In practise, the differences are how the of the token boundary
annotated a given named entity.

IO does only differentiate if a named entity is inside or outside a token span.
IOB, and IOB2 adds another layer of specificity, where the beginning of a named
entity will get “B-” for beginning label associated with it. IOB and IOB2 are
quite similar, however, IOB2 will differentiate between separate named entities
even when they are of the same type and appear consecutively in a sequence of
tokens (Jørgensen et al., 2020).

If a named entity spans across multiple tokens, IOBES will specify the last
word with an ending “E-” label and specify if there is a single named entity, with
the “S-” label (Jurafsky and Martin, 2022, p. 166).

2.4 English data

There are several NER annotated datasets in English, such as CoNLL-2003 (later
revised to CoNLL-2003++), WikiNeural and OntoNotes, to name a few popular
ones. The number of named entity types in a dataset may vary, where one dataset
may use more or fewer types than the other.

1The four annotations schemes are also commonly referred to as IO, BIO, BIO2, BIOES

10 Background

Words IO IOB IOB2 IOBES

Thai I-ORG B-ORG B-ORG B-ORG
Airways I-ORG I-ORG I-ORG I-ORG

International I-ORG I-ORG I-ORG E-ORG
flight O O O O

to O O O O
Bangkok I-ORG B-LOC B-LOC S-LOC

was O O O O
delayed O O O O

. O O O O

Table 2.1: How a sentence would be annotated with IO, IOB, IOB2, and IOBES annotation
schemes.

The CoNLL-2003 (Tjong Kim Sang and De Meulder, 2003a) use four
entity types: location (annotated as LOC), organization (ORG), person (PER),
and miscellaneous (MISC). MISC refers to any named entity that does not fit
into category of any other aforementioned named entity types. The dataset
consisting of about 300 000 tokens. The dataset is split in a typical 80/10/10
distribution, meaning that 80% of the data is for training, 10% is of the data is the
development dataset, and the remaining 10% is the test dataset (Tjong Kim Sang
and De Meulder, 2003b). In 2019 the dataset was revised by Wang et al. (2019)
where 5.38% mislabelled test sentences were corrected to form the CoNLL++
dataset.

One of the largest publicly available datasets is the WikiNeural dataset, which
is split into nine different language-specific sets, where each set has an average
token size of over 2 million. The sets are produced with a silver-standard,
meaning it is using an automatically annotated approach. The corpora are made
up of Wikipedia articles, and use the same four named entity types as the CoNLL-
2003 dataset (Tedeschi et al., 2021).

Compared to the previously mentioned datasets, the OntoNotes 5.0 operates
with 18 named entity types for greater named entity classification specificity.
Examples of these additional types includes names of human-made structures or
facilities (annotated as FAC), monetary values (MONEY), and names of laws, legal
codes, or regulations (LAW). The English version consists of roughly 1.5 million
tokens which are acquired from various genres of text such as news, broadcasts,
and conversational telephone speech (Pradhan et al., 2013).

2.5 Norwegian dataset – NorNE 11

2.5 Norwegian dataset – NorNE

In Norwegian there is one large publicly available named entity dataset, dubbed
NorNE (Jørgensen et al., 2020). It was developed in collaboration by Schibsted
Media Group, the Language Technology Group at the University of Oslo2, and
The Language Bank at the National Library of Norway3.

NorNE use 7-9 named entity types depending on the version one want to use.
Additionally, the dataset is split into both Norwegian Bokmål and Nynorsk. As
this dataset will be the thesis’ primary dataset for model training, more detail
about NorNE will be given in Chapter 3.

2.6 Traditional approaches to NER

Provided it is not the first word of a sentence, capitalization is a strong indicator
that a word is a named entity in English and many European languages. If a
language orthography, the conventional spelling system of a language, does not
use capitalisation, we have to be reliant on other cues, which is the case for several
South Asian script languages. In these instances, suffixes could be good indicators
of named entities, but some instances of names does not occur with any prefix
or suffix (Riaz, 2010). Moreover, for languages with or without capitalization,
lexical patterns and semantics are important indicators for named entity presence
(Li et al., 2022).

Throughout the evolution of NER research, there have been techniques to
used to detect and classify named entities. For example, rule-based approaches
which rely on hand-crafted rules. Contrary to supervised ML methods, rule-based
approaches do not need annotated data. The method would often utilize domain-
specific gazetteers, and lexical patterns for its predictions (Etzioni et al., 2005;
Sekine and Nobata, 2004). However, its not uncommon for a rule-based approach
to perform poorly in domains that it was specifically designed for, in turn making
it difficult for the these models to generalize across different datasets. (Goyal
et al., 2018). Even though rule-based NER techniques have fallen out of fashion
with the introduction of neural models and pre-trained large language models,
rule-based can still be quite effective. Particularly for languages that lack features
that would otherwise strongly indicate that a word is a named entity (Goyal et al.,
2018; Riaz, 2010).

In the early to mid-2000s, unsupervised learning approaches gained popularity
for similarity reasons as rule-based approaches. That is, both methods are not
reliant on labeled training data (Nadeau and Sekine, 2007). Named entities
would often be extracted out of unlabeled data by the utilization of distributional
statistics coupled with context similarity of a clustering approach. Furthermore,

2https://www.mn.uio.no/ifi/english/research/groups/ltg/
3https://www.nb.no/sprakbanken/en/sprakbanken/

https://www.mn.uio.no/ifi/english/research/groups/ltg/
https://www.nb.no/sprakbanken/en/sprakbanken/

12 Background

a association rule-based approach would detect association between items within
datasets (Goyal et al., 2018).

Supervised machine learning became more popular as more high-quality
training data became accessible, and is still relevant today. When training a
supervised ML sequence labeling model, a common technique is to label each
token according to its type. Supervised ML leverages labeled data to learn pattern
based features and patterns for a given label type, and to distinguish it from other
types. This is the goal when creating a model that can generalize, and classify
correctly even when the test data is not similar to the training data (Goyal et al.,
2018). Supervised machine learning can be effective, but it may have challenges,
particularly regarding the availability of training data. The process of labeling
large amounts of data can be labor-intensive and time-consuming, especially
when creating large high-quality datasets.

Before transitioning to neural network methods, two highly influential models
were used, the Hidden Markov Model (HMM) and Conditional Random Fields
(CRF).

HMM is a variation of the Markov chain model, which suggests that to predict
the future in a sequence, everything depends solely on the current state, with no
influence from any other states. The HMM works by considering both observed
events (such as a token in NLP) and hidden events (such as part-of-speech token
label or named entity token label). These events are the causative factors for the
probabilistic model (Jurafsky and Martin, 2022, p. 167-174).

CRFs are similar to HMM, however, while HMMs focus on maximizing the
joint probability during training, CRFs are based on maximizing the conditional
probability in the training dataset. Consequently, for sequence labeling tasks,
CRFs makes its predictions by examining the relationships between each word
and its surrounding context, relying on patterns learned from the training data
(Jurafsky and Martin, 2022, p. 174-179).

2.7 Neural approaches

Throughout recent years, neural architectures in various combinations have been
more commonly used to tackle NER tasks. The origins of artificial neural
networks lie in the McCulloch-Pitts Neuron, which is a simplistic model that
imitate the neural structure of the human brain (Jurafsky and Martin, 2022, p. 29).

Artificial neural networks architectures are typically described in terms of
three types of layers. The first part is the input layer, which brings the initial data
into the network for further processing. The input layer is connected to a hidden
layer, moreover, the hidden layer is connected to the output layer. Calculations
are made between the different layers as values are forward propagated in the
network, influenced by weights values, bias and the activation function used in
the different layers.

2.7 Neural approaches 13

The simplest form of the artificial neural network is the Feed forward neural
network (FFNN). This architecture is based on that all neural units from one layer
are connected to the next layer, resulting in a fully connected network.

Even with FFNN’s relatively simple architecture, compared to successive
neural network architectures, the FFNN can be quite effective at various NLP
tasks. A novel, but effective approach was presented by Collobert et al. (2011)
using a FFNN, used for various NLP tasks with results being close to state-of-
the-art at the time, including NER results. Owing to large unlabeled datasets,
the modeled relied on discovering useful features for their various tasks, and used
word-level log-likelihood, the sentence-level log-likelihood, and gazetteers. Their
model achieved an impressive F1 of 89.59 on the CoNLL-2003 English dataset.

However, there are other types of neural networks that are specifically
designed to handle sequential data, such as tokens in a sentence. Introducing
the Recurrent Neural Networks (RNNs), where unlike Feed-Forward Networks
(FFNNs), RNNs can capture dependencies and context within a sequence, rather
than treating each input as independent (Jurafsky and Martin, 2022, p. 186).
However, note is that not all information in a paragraph or an entire article carries
equal importance. In fact, information is often quite localized, which the standard
RNN struggles to capture. This has to do with how the network backpropogate to
adjust its weights. Backpropagation involves repeated multiplications determined
by the sequence’s length. Issues arise with long sequences, as the gradient tends to
approach zero during training when adjusting weights (Jurafsky and Martin, 2022,
p. 198). Long Short-Term Memory (LSTM) networks are designed to address this
long-term dependency issue caused by vanishing gradients. A key feature of the
LSTM architecture is its ability to retain useful information within a sequence
while discarding information that is no longer needed to maintain context, using
specialized neural units (Jurafsky and Martin, 2022, p. 199-200).

An improved iteration of the LSTM was later introduced, called the bidirectional
LSTM (Bi-LSTM). It works in the same way as a traditional LSTM, but there is
one key difference. Instead of processing sequential data only in the forward
direction, a Bi-LSTM will process a sequence in both the forward and the
backwards direction. This allows the output units to compute dependencies in
both the past and future, instead of just computing what is ahead in time. This
key difference improved performance in NER, as demonstrated by Huang et al.
(2015), they tested various LSTM and Bi-LSTM configurations on the CoNLL-
2003 English dataset. Their LSTM model resulted in a F1 score of 83.74,
whereas the Bi-LSTM model resulted in a F1 of 85.17. However, both of these
models perform significantly better with a CRF inference layer, as the LSTM-
CRF yielded a F1 of 88.36 and the Bi-LSTM-CRF a F1 of 90.10.

A network type not discussed thus far is the convolutional neural networks
(CNN). This network type has been particularly successful in deep learning
computer vision tasks, and NLP. A significant advantage of the CNN is that it

14 Background

is considerably less computationally heavy than many other types of networks
(Albawi et al., 2017; Goodfellow et al., 2016). This is, perhaps, a reason
why CNN has been often used in combination with other types of networks as
inference layer, or character and word level encoder.

Various Bi-LSTM and CNN models were tested by Chiu and Nichols (2016)
on the CoNLL-2003 and OntoNotes 5.0 datasets. The model combinations varied
in terms of the utilization word embeddings, character level embeddings, as well
as some feature engineering included. They concluded that the best model was
Bi-LISTM+CNN with embeddings and lexical features, resulting in a F1 score of
91.62 for the CoNLL-2003 English dataset, and 86.28 for the OntoNotes dataset.

Yang et al. (2018) had similar findings in terms of results on the CoNLL-2003
English dataset, in their paper “Design Challenges and Misconceptions in Neural
Sequence Labeling”. This comparative neural architecture study for sequence
labeling tasks, including NER as one model performance benchmark. The
architecture that exhibited the best results for NER was the CLSTM+WLSTM+
CRF and the CCNN+ WLSTM+CRF models4, utilizing GloVe embeddings,
which resulted in a F1 of 91.08 and 91.11 respectively.

The same year, Yang and Zhang (2018) published an easy customizable open-
source framework for sequence labeling. The framework could be configured
with different neural network types and encoders, whether that would be character,
word level, or both combined. The framework also include the option to add
custom embeddings or create its own from the input training data. With this
framework, dubbed NCRF++, the researchers were again able to get a F1 score
of 90-91, depending the framework configuration, on the CoNLL-2003 dataset.

Jørgensen et al. (2020) tested the NCRF++ framework on the NorNE dataset,
and found that combining training data for both Bokmål and Nynorsk would result
in the best performance. Tests on NorNE’s Bokmål test dataset resulted in a F1
of 88.03 and for Nynorsk a F1 of 83.48. Jørgensen et al. (2020) argues that
a joint model is a double win since it not only yields increased or comparable
performance compared to a model trained on only one language, but also means
that only one model would need to be maintained for Norwegian. Although the
performance was not as high as observed in Yang and Zhang (2018)’s tests on
the CoNLL-2003, the results which Jørgensen et al. (2020) observed are still
impressive considering they use about twice as many named entity label types.

NCRF++ is still a powerful framework for sequence labeling tasks, however,
transformer base architectures could be considered as current state-of-the-art
technique to use. In Devlin et al. (2019) paper where BERT was initially
introduced, NER was tested using a fine-tuned BERTBASE which resulted in an
impressive F1 of 92.4 and BERTLARGE with a F1 of 92.8, on the CoNLL-2003
dataset. Since BERT is highly relevant for this thesis, we will revisit BERT with

4The first “C” in the LSTM/CRF denotes character level encoding. Similarly, “W” denoting word
level encoding.

2.7 Neural approaches 15

additional details in Section 2.10.1.
Kutuzov et al. (2021) compared NER results from their configuration of the

NCRF++ framework, and a fine-tuned multilingual BERT (mBERT), NorBERT
and NB-BERT on the NorNE Bokmåk and Nynorsk test dataset. In Table 2.2 we
present Kutuzov’s findings. NCRF++ and NorBERT yields comparable results,
whereas mBERT performs the worst among the four tested models. However, the
F1 observed using NB-BERT for both the Bokmål and Nynorsk is significantly
higher than the other models tested, reaching a F1 of 90.2 for Bokmål and 88.6
for Nynorsk.

Bokmål Nynorsk

NCRF++ 83.5 85.3
mBERT 78.8 81.7
NorBERT 85.5 82.8
NB-BERT 90.2 88.6

Table 2.2: Micro-average F1 results from NER on NorNE Bokmål and Nynorsk test dataset
(Kutuzov et al., 2021)

It is important to note that the aforementioned studies are different from what
will be presented in this thesis, since their results stem from NER evaluation
where the models are subjected to test datasets with proper capitalization.
Bodapati et al. (2019) claims that NER models are sensitive to capitalization
changes. Their finding is that if a model was trained on standard capitalization, the
model’s performance suffered immensely if the model was tested on all lower case
texts. For example, their ELMo model’s performance went from a F1 of 92.0 on
the normal cased CoNLL-2003, down to 34.8 when the data was all lowercase. An
even sharper decline in performance was observed with their Lample et al. (2016)
inspired Bi-LSTM mode, which went from a F1 of 90.8 down to an abysmal F1
of 0.4.

Bodapati et al. (2019) also trained and tested models with all lowercase data.
The ELMo model’s performance resulted in a F1 of 89.1, compared to 92.0
in normal casing training and testing. Whereas the Bi-LSTM’s performance
resulted in a F1 of 85.7, compared to the aforementioned 90.8 with normal casing
conditions.

Bodapati’s study is the only one of the highlighted studies in this section that
tests models with text data with various text casing conditions. Their findings
indicate that models can still have great performance for all lowercase text, if the
model is trained on all lowercase data. The findings serves as a precursor to what
to expect for similar studies when using all lowercase data.

16 Background

2.8 Challenges in NER

For humans, identifying named entities may be a trivial task, however, for
computers, it is not. As discussed in previous sections, there are various ways
of automating named entity recognition, ranging from rule-based approaches and
simple neural networks to more complex pre-trained large language models. Yet
as we have examined in Section 2.7, an error rate is still expected to be about 1/10
for named entity. These results would indicate that named entity recognition is
not without its challenges. Word ambiguity, token span, and grammatical rules
are some of these challenges. In this section, we will discuss what challenges
NER models faces in further detail.

2.8.1 Out-of-vocabulary
Out-of-vocabulary (OOV) words, word-tokens that were not present in the
training data, but appear in test data, could be challenging for a NER model to
identify correctly.

While gazetteers, large knowledge bases of known named entities, can be
helpful when training data are limited, they cannot be relied upon solely to
identify named entities. This is because the open nature of names, resulting in that
new names are constantly being created, requiring knowledge bases to be updated
frequently. Also Although without the use of gazetteers, ambiguity may arise
whether a token or tokens are named entities. Especially for when names include
what would normally been nouns, verbs or adjectives. Take for example“Burning
Man” or “Apple”.

Brüggemann (2012) discuss, sentences like “Jobs said” and “Jobs are hard to
find” have vastly different meanings. One technique to infer whether a word is
a proper noun is to use text n-gram features to aggregate absence or presence of
given word(s) before and/or after the ambiguous word (Ganti et al., 2008). An
example of this could be “What is the probability that (said|Jobs) where “Jobs” is
a named entity.

2.8.2 Named entity span
Another challenge for NER is to correctly identify the boundary of multi-word
named entity. Sometimes named entities spanning multiple tokens, have single
tokens where each could be a named entity on its own, however, in combination
should only be one named entity. Take the example of the company “Sunnmøre
og Romsdal Fiskesalslag” (ORG). Should the tokens be split into Sunnmøre (LOC),
Romsdalen (LOC) and “Romsdalen Fiskesalslag” (ORG) or a conjunction of all
tokens?

Identifying multi-word entities can be challenging since it requires determin-
ing the word boundaries, which can be especially difficult for entities that were

2.9 Loss, Optimizers and Regularization for Training 17

not present in the training dataset.

2.8.3 Capitalization
During the training of a machine learning model, recognizing capitalization
patterns can be valuable for identifying named entities, however, depending solely
on capitalization for named entity recognition is insufficient. For one, proper
punctuation often indicate the beginning and the end of a sentence. This creates
an obvious capitalization pattern, however, not every first word in a sentence is a
named entity.

Secondly, not to rely solely on word capitalization for the recognition of
named entities, is that for many languages, the first word of every sentence utilize
capitalization (Riaz, 2010). Thirdly, for languages that utilize capitalization of
words, grammatical rules for how and when to use them differ. For example
German use capitalization for every noun, regardless if it is a proper noun or not
(Pauly and Nottbusch, 2020).

Lastly, text data can be affected by human errors, such as incorrect capital-
ization or simple typos, which may disrupt a model’s ability to recognize its
learned patterns. Although, NER systems may continue to improve their accuracy
over time, it remains uncertain whether these experimental results will translate
to equal performance in real-world, non-curated datasets such as media posts
or other user generated content. In NER research, rarely text riddled with
grammatical errors tested for a NER model’s performance, nevertheless. As for
capitalization, Bodapati et al. (2019) findings suggest that NER models are very
brittle to changes in capitalization if the model is not specifically trained for it.

2.9 Loss, Optimizers and Regularization for Training

In machine learning, the term “loss” refers to a value that represents how well
a model’s predictions match the true values. During training, it is important to
calculate the loss. For classification tasks, it is common to use the cross-entropy
loss function. The cross-entropy loss function measures the difference between
the predicted value and the gold standard, where its output is a value between 0
and 1. A lower loss value indicates that the model is closer to its prediction target,
which is what we ideally want to achieve during the training (Jurafsky and Martin,
2022, p. 90).

It is common for a model to go through several of training epochs, which
refers to a single iteration of training. After each epoch, weights gets adjusted
through backpropagation in an attempt to improve its predictions for the following
epoch. An optimizer algorithm is used to adjust weights in an attempt to minimize
the loss function. For example, an optimizer could adjust the learning rate at an
dynamic or static rate. High learning rates will cause large updates to a network’s

18 Background

weights, whereas smaller learning rates give rise to smaller updates to the weights.
A common problem when training mode is called, overfitting. It refers to

when some features seen in the training data gets problematically high weighted
assigned to it. This could result in that when a model observes a set of features
in the training data, it will overemphasize the importance of those features.
Overfitting often results in bad predictions when the model is tested on data that
was not seen in the training data.

Regularization helps to mitigate overfitting. Simply put, regularization
is a way of regulate the different weight’s importance. This can be done
by implementing various regularization measures, such as using methods that
introduce weight penalties of various sorts, such as L1 and L2 regularization.
However, these L1 and L2 regularization can be computationally heavy for larger
models compared to applying dropout (Srivastava et al., 2014).

Dropout is the technique when training a model, neural nits will temporarily
be disabled in the network, for both incoming and outgoing connections. This
helps to reduce overfitting by preventing certain nodes from relying too heavily
on others. Srivastava et al. (2014) suggest a dropout probability of 0.5, which
means there is a 50% chance a node will be disabled, is observed to be an optimal
dropout value for many types of neural network architectures.

2.9.1 Feature Representation and Word Embeddings
To enable a model to interpret data, we can represent a sequence of text, such
as words, characters, or a combination of both as numerical valued feature
representations. These numerical values are formed in a vector or tensor space
which forms word embeddings.

Word embeddings are highly relevant and often used in NLP tasks. Word
embeddings tackle the task of comparing word similarity (Jurafsky and Martin,
2022, p. 107-108), derived from the distributional hypothesis (Harris, 1954),
stating that words are similar if they appear in similar contexts. Take the following
examples

I took my dog to the veterinarian.
I took my cat to the veterinarian.

According to the distributional hypothesis, cat and dog are similar words as
they appear in similar contexts. Other words that are very much dissimilar, such
as “thought” or “uboat”. Hardly ever would it make sense to replace “thought”
with “uboat”, without making the sentence completely nonsensical.

Word embeddings are often pre-trained before it is used in NLP application,
having dense vector space representation in dimensions ranging from 50 up to
600. The training of these embeddings are acquired using unsupervised machine
learning on large amounts of data text data, where the distributional hypothesis

2.9 Loss, Optimizers and Regularization for Training 19

serves as a foundation. However, it is also possible to acquire word embeddings
from the NLP task specific training data, initializing embedding vectors to random
values and allowing the training algorithm to tune these values based on the
training data (Jurafsky and Martin, 2022, p. 107-108).

Word2Vec

A model learns one fixed embedding for each word in a dataset, making word2vec
a static embedding type. The word embedding method captures syntactic and
semantic regularities by training a binary classifier on predicting is word w1 likely
to appear near w2 (Jurafsky and Martin, 2022; Mikolov et al., 2013). Mikolov
et al. (2013) propose two architectures; The Continuous-Bag-of-Words (CBOW)
architecture seeks to predict w1 given the c context of surrounding words, while
the Skip-gram architecture attempts to predict the c context given w1.

fastText

An extension of the skip-gram method was proposed by Bojanowski et al. (2017)
in the fastText method. Rather than ignoring word morphology and assigning
unique vectors to each word, fastText considers sub-word information by utilizing
character n-grams. This approach results in morphologically similar words being
assigned similar vectors

GloVe

Global Vectors (GloVe) is a widely used vector embedding model. GloVe’s
approach is to capture the ratios of probabilities from both word-word global
statistics and local statistics of a corpus, by combining predictive methods such
as word2vec and Positive Pointwise Mutual Information (PPMI) models (Jurafsky
and Martin, 2022, p. 125).

ELMo

Peters et. al propose what they call deep contextualized word representations
model, named ELMo (Embeddings from Language Models). The ELMo architec-
ture tries to address previous word embedding architectures’ shortcomings, such
as complex characteristics of word use, and how word polysemy is problematic
for static models (Peters et al., 2018).

BERT

Transformer-based language models are considered the state-of-the-art word
embedding standard. One widely used model is the BERT (Bidirectional Encoder
Representations from Transformers) model, which was introduced by Devlin
et al. (2019). BERT further improves the understanding of the contextualized

20 Background

and polysemy of words by introducing attention mechanisms in its architecture
(Vaswani et al., 2017).

2.10 Large Pre-Trained Language Models

Large Pre-trained Language Models like various BERT models and the generation
of different Generative Pre-trained Transformers (GPTs) (Brown et al., 2020)
models can be used for a wide variety of NLP tasks. For BERT models, it is
common practice that the language model is trained on a large text corpus, to then
be fine-tuned to fit downstream NLP tasks such as NER in our case.

BERT models are neural networks-based, but they operate differently com-
pared to their predecessors like Bi-LSTM. The foundation of these models is
based on attention mechanisms, which were introduced in the seminal 2017
paper “Attention is all you need” (Vaswani et al., 2017), where researchers at
Google used the concept of attention mechanisms to propose the Transformer
architecture.

An attention-based mechanism allows a model to predict an output item based
on parts of the input that the model deems most relevant. This prediction is based
on the ability to compare the item to a collection of other items that reveals their
relevance in the given context. When a set of these comparisons is used to evaluate
the output for the current input, this process is called self-attention. Self-attention
is the key design feature of the transformer (Jurafsky and Martin, 2022, p. 212).

Transformer models are composed of multiple transformer blocks stacked on
top of each other. Each transformer block is a combination of a multi-head self-
attention mechanism and simple linear layers feed-forward networks. Models
such as the BERTBASE model types, which will be used in the experiments
described later in this thesis, make use of 12 transformer blocks (Devlin et al.,
2019).

2.10.1 BERT Pre-Training and Fine-Tuning
Bidirectional Encoder Representations from Transformers (BERT) uses a masked
language model (MLM) architecture when it is pre-trained. The pre-train of
a BERT model (the training that is involved before the model is used for
downstream NLP tasks) is split into to parts. The first task of pre-training
the BERT model involves randomly masking a certain percentage of tokens in
the training vocabulary and predicting the correct word based on its context.
This is achieved using a deep bidirectional transformer that analyzes the masked
item’s sequential context from both left-to-right and right-to-left directions. The
bidirectional nature of the transformer allows the model to take into account
both past and future context when making predictions. This is similar to the
bidirectional processing in a Bi-LSTM, where the hidden state at each time step

2.10 Large Pre-Trained Language Models 21

is a function of both past and future context (Devlin et al., 2019).
The second task involves predicting the next sentence, which is especially

important for tasks such as question answering systems, and natural language
inference that rely on understanding the relationships between sentences. These
pre-training steps enable the model to better comprehend contextual relationships
and improve its performance on language tasks (Devlin et al., 2019).

The pre-training of a BERT model involves unsupervised learning over a large
existing corpus of text. In the original BERT model proposed by Devlin et al.
(2019) in their seminal paper a corpus of 3.3 billion words was used with 75.8%
of the words extracted from the English Wikipedia and the remainder from the
BooksCorpus (Zhu et al., 2015).

To find relationships between words within a sentence, a typical BERT base
model uses 110 million5 parameters, meaning the model has 110 million tunable
weights. Thanks to the large numbers of parameters, the models are able to
capture relationships between different tokens, as well as rich, context-aware
representations. These parameters are includes layers and attention heads, which
enables the model the to form the hierarchical representation of a given input. The
number of layers determines the extent of the hierarchical representations, while
the attention heads is responsible for capturing various relationships between the
input tokens. Increasing the amount attention heads is associated with having a
model that is able to form more types of relationships simultaneously in an input.

A BERT model’s training parameters are highly customizable and can be
reconfigured as needed. Depending on their configuration, the larger BERT
models can often have multiple times the amount of weights in the base model,
and more attention heads, more layers, larger hidden layer sizes and larger sizes
of its vocabulary. After a model is pre-trained, it has to be fine-tuned to be able
to carry out task specific NLP challenges, such as sequence tagging. Fine-tuning
could involve feeding task-specific inputs into the pre-trained BERT and fine-
tuning its weights by adding a classification layer to the model. For NER fine-
tuning, one would input tokens and include annotations for each and every token
for the model to able to learn what to predict.

2.10.2 Language specific BERT models
Since the introduction of BERT and its open source framework, numerous
language specific BERT based models have emerged. Kutuzov et al. (2021)
introduced NorBERT, and in parallel efforts the AI Lab of the National Library of
Norway released NB-BERT (Kummervold et al., 2021).

Norway has two official standards for written Norwegian, Bokmål, and
Nynorsk. NorBERT was trained for both standards, with training data consiting

5More info specifications about various BERTs’ parameters: https://huggingface.co/
transformers/v3.3.1/pretrained_models.html

https://huggingface.co/transformers/v3.3.1/pretrained_models.html
https://huggingface.co/transformers/v3.3.1/pretrained_models.html

22 Background

of roughly 1.9 billion tokens. The majority of tokens was derived from news text,
sourced from the Norsk Aviskorpus, but text from the Norwegian Wikipedia was
also used.

Likewise NB-BERT (Kummervold et al., 2021), was trained on both Bokmål
and Nynorsk data, though with a much larger corpus, consisting of roughly 18
billion tokens. As well as Norwegian text data, the training data also consisted of
about 4% English text and 1% mix of Sami, Danish, Swedish, and a few traces
from other languages.

2.10.3 Large Pre-trained Language Model Biases
The large generative language models such as GPT-26 and GPT-37, use large
amounts of training data based on the “Common Crawl”8 dataset (Brown et al.,
2020; Radford et al., 2019).

The “Common Crawl” dataset is composed of content that has been scraped
from the internet over a period of more than ten years. The dataset is known to
have problematic content due to its aggregation of data from various publicly
available sources, including Twitter, Reddit, and private blogs. This content
includes hate speech, mentions of violent acts towards ethnic groups, sexually
explicit material, sexual violence, and other forms of hate speech (Luccioni and
Viviano, 2021).

Several biases have also been identified in Wikipedia (Hube, 2017), from
which many BERT models derive its training data from. Though Hube’s research
revolve around languages other than Norwegian, we can not conclude that these
biases are absent in the Norwegian Wikipedia data.

According to Bender et al. (2021), simply having more data does not
necessarily mean that the data is diverse or free from unintentional biases. Instead,
the concern is that large uncurated datasets containing dominant views may lead
to the marginalization of underrepresented populations. Training models on
trained on loosely filtered data could result in models with encoded stereotypical,
derogatory associations along gender, race, ethnicity, gender occupation, and
disability status (Bender et al., 2021; Touileb et al., 2022).

It is important to be aware of possible biases when working with Large
Language models, as it is possible that the pre-training can affect the performance
in unexpected ways in downstream tasks.

6https://huggingface.co/gpt2
7https://platform.openai.com/docs/models/gpt-3
8https://commoncrawl.org/

https://huggingface.co/gpt2
https://platform.openai.com/docs/models/gpt-3
https://commoncrawl.org/

Chapter 3

Datasets

3.1 NorNE

As previously stated in the Chapter 2, NorNE1 (Jørgensen et al., 2020) is the only
publicly available named entity dataset for Norwegian. The dataset consists of a
split between Norwegian Bokmål (nob) and Nynorsk (nno), whereas the Bokmål
version is just slightly larger. The text is gathered from various domains, mostly
news text, but also blogs, parliamentary proceedings and reports.

NorNE uses the IOB2 named entity annotations scheme which was added on
top of the existing Norwegian Dependency Treebank corpus Solberg et al. (2014).

NorNE follows a 80/10/10 distribution between training, validation, and test
datasets. The combined token count of both the Bokmål and Nynorsk splits adds
up to approximately 600 000. There are nine types of annotated entities which are
the following:

• PER: A persons name. Could be full name, partial or nicknames.

• ORG: Organizational names such as firms, institutions, political parties etc.

• GPE_LOC: Geo-political-entity location in a locative meaning. For example
“A person lives in Norway”

• GPE_ORG: Geo-political-entity location in a organizational meaning. For
example “Norway declined further discussions with Sweden”. Both Norway
and Sweden would be categorised as GPE_ORG.

• PROD: Named entities that are artificially produced. This is a broad category,
and may include abstract entities, such as speeches, TV-shows, laws, ideas
etc.

• LOC: Geographical places, buildings and facilities.

• EVT: Events or happenings. Can be festivals, cultural events, wars, etc.
1https://github.com/ltgoslo/norne

https://github.com/ltgoslo/norne

24 Datasets

Type Train Dev Test Total Proportion (%) Avg. span

PER 8320 1092 961 10373 36,52 1.58
ORG 5601 688 521 6810 23,97 1.38

GPE_LOC 4222 454 428 5104 17,97 1.08
PROD 1404 248 131 1783 6,28 2.01
LOC 1511 194 185 1890 6,65 1.30

GPE_ORG 756 121 61 938 3,30 1.09
DRV 969 129 78 1176 4,14 1.19
EVT 274 16 14 304 1,07 1.55
MISC 14 0 14 28 0,10 1.25

Table 3.1: NorNE named entity distribution across the train, development, test splits and the
average word span of a named entity. Avg. span notes to the average number of tokens a named
entity is is composed of.

• DRV: Words or phrases derived from a name, but not considered names
themselves. These terms usually include a full name and are capitalized,
yet they are not classified as proper nouns. “Examples (fictive) are
"Leeds-treneren" ("the Leeds coach") or "Bergen-mannen" ("the man from
Bergen").”

• MISC: Named entities that do no belong in the aforementioned categories.

As discussed in Section 2.1, regarding named entity label encoding schemes,
for IOB2 which will be used in this thesis, each entity type has a beginning and
inside tag modifier. For example, for the named entity type PER (person), the first
name would be annotated as B-PER and surname I-PER.

Table 3.1 displays the respective count for each entity type for each of the
different datasets, the total amount of entities of each type, and the average token
span of each named entity.

Furthermore, Table 3.2 refers to the total number of tokens, both non-named
entity tokens and named entity tokens, regardless of named entity span. Meaning
that if a named entity has for example a B-PER and I-PER, these would count as
two named entity tokens.

3.2 Norwegian Parliamentary Speech Corpus

Norwegian Parliamentary Speech Corpus2 (NPSC) is developed and distributed
by the Norwegian Language bank at the National Library of Norway. The
corpus made up of about 140 hours of recorded speech from the Norwegian

2https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-58/

https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-58/

3.2 Norwegian Parliamentary Speech Corpus 25

Train Dev Test Total

Non_NE_token 456 592 63 491 51 271 571 354

Named Entities 23 071 2942 2393 28 406

All tokens 479 663 66 433 53 664 599 760

Avg. sentence length 21.55 20.3 20.63 21.33

Table 3.2: NorNE total word count, named entity count, and average sentence length.

parliament (Stortinget), transcribed using Google Cloud Speech-to-Text (Solberg
and Ortiz, 2022). After the automated transcriptions, the output of the Google
Cloud Speech-to-Text was reviewed and corrected by transcribers who would
listen to the audio, and compare it to the Speech-to-Text output (Solberg and
Ortiz, 2022). The NPSC was predominantly developed to be an additional dataset
for Norwegian automatic speech recognition.

The NSPC has both of the Norwegian official written forms included, Bokmål
and Nynorsk. The most frequently used written form, Bokmål has a 87.2%
distribution, whilst Nynorsk make up 12.8% of the corpus.

The NSPC transcriptions come in different formats, including normalized
and non-normalized versions. In non-normalized transcriptions, numbers, dates,
and years are spelled out using letters, and abbreviations are avoided. On the
other hand, normalized transcriptions utilize common abbreviations and present
numbers, dates, and years using digits in a standardized format.

The non-normalized and normalized transcriptions can be further categorized
into sentence-segmented, word-level, and normalized sentence-segmented ma-
chine-translated versions. In the word-level transcriptions, additional metadata
is organized into distinct fields for each individual token.

In the experiments discussed later in this thesis, the normalized word-token
transcriptions will be utilized. This choice is made because it closely mirrors
the training and testing process employed for our BERT models on the NorNE
corpus. Sentences in this format consist of predefined token splits, eliminating
the need for a BERT-tokenizer or alternative tokenization methods to separate
tokens within non-tokenized sentences.

An additional advantage of using the word-tokenized version of NSPC is the
inclusion of metadata known as "special_status" for each token. This metadata
indicates the presence of non-word tokens within a sentence. Special statuses

Total word count Avg. sentence length Total capitalized words

1 056 038 18.02 41 247

Table 3.3: NPSC total word count, average sentence length, and total capitalized words.

26 Datasets

Type Total Proportion (%) Avg. span

PER 63 29.17 1.47
ORG 88 40.74 1.14

GPE_LOC 34 15.74 1.21
PROD 5 2.31 1.0
LOC 2 0.93 1.0

GPE_ORG 20 9.26 1.0
DRV 3 1.39 1.0
EVT 0 0 0
MISC 1 0.46 1.0

Table 3.4: The annotated NPSC sample dataset’s named entity count, distribution of type, and
the average word span of a named entity. Avg. span notes to the average number of tokens a
named entity is is composed of.

may denote hesitations, represented by tokens like "<eee>". In other instances,
tokens might have a special status for interruptions, where a speaker is interrupted
mid-word, resulting in a partially transcribed word.

These tokens with special statuses will be excluded in the thesis’ experiments,
as well as in the statistics in Table 3.3.

3.3 Annotated NPSC sample

Total Non_NE_token 5222

Total Named Entities 216

Combined total tokens 5438

Avg. sentence length 18.13

Table 3.5: The annotated NPSC sample dataset’s total count of non-named entities, named
entities, combined count and average sentence length.

Since the NPSC does not have any gold standard in terms of named entity
types, an effort was made to manually annotate some of the data to have NER
results for NorNE and the NPSC that could be compared to one another, using
the IOB2 tag scheme. Having annotated named entity data from the NPSC will
provide insight on whether the models are good at generalizing across multiple
datasets.

The dataset contains 300 pseudo randomly selected sentences, selected
byletting a random algorithm generate 300 unique numbers between zero and the
number of sentences contained in the combined sentence count of the full NPSC.

3.3 Annotated NPSC sample 27

Type NorNE prop. (%) NSPC prop. (%)

PER 39.40 29.17
ORG 22.05 40.74

GPE_LOC 18.11 15.74
PROD 5.54 2.31
LOC 7.83 0.93

GPE_ORG 2.58 9.26
DRV 3.30 1.39
EVT 0.59 0
MISC 0.59 0.46

Table 3.6: Distribution of the named entity types, comparing the NorNE test dataset and he
annotated NPSC sample dataset. Prop. denotes proportion.

These number would be the indices of which sentences that were selected from the
NPSC, thereafter manually annotated. If a sentence was hard to interpret, which
would occasionally happen stemming from the lack of context, a new random
number would be generated and subsequently a new sentence is picked.

This manually annotated NPSC sample dataset, is about 10% of the total
size compared to the NorNE test dataset. Due to a large variance in size, some
differences must be highlighted:

First, there is significant proportinal variance between class label count,
between the NPSC and NorNE. For example if we compare the named entity
type count in Table 3.6, we can see the greatest variance between the PER and ORG
proportion. Furthermore, for the sample dataset, the LOC class has six times less
entries in proportion to the rest of the classes, compared to NorNE, and the EVT
class does not appear at all in the annotated NPSC dataset.

Secondly, having such as small dataset, other data statistics that should be
highlighted is that, the most infrequent classes that appear in the annotated NPSC
sample has an average token span of only single token. Having a token span 1
does not necessarily mean that a prediction is would be easier, or harder for a
model. This would depending heavily on what kind of data a model was trained
on. Therefore, it is plausible that the NorNE test dataset results will be better
than the annotated NPSC, as the NorNE test dataset is more similar to the NorNE
training dataset than the NPSC.

28 Datasets

Chapter 4

Experimental Setup and Model Training

In this chapter, we present a comprehensive overview of the experimental setup,
including hardware and software environments, model specifications, model
hyperparameters, and performance metrics gathered during the training process.
To reiterate, our task is to train a models that will be able to identify, and predict
named entity types where all text data is lowercase. By providing a detailed
account of the models and frameworks deployment, we aim to facilitate the
reproducibility of our findings and to strengthen the validity of our results.

Section 4.1-4.6 of this chapter lists the details of the experimental setup
details, and describe the models that are used in our experiments.

Section 4.7 presents and discusses metrics that were gathered during the model
training process for the NorBERT and the Ner-Scandi models.

4.1 Hardware and software environment

The experiments were performed on Python 3.9.13 version, PyTorch 1.12.1+cu113,
on a Windows 11 desktop computer. The hardware specifications include a 5800X
AMD Ryzen CPU, 32GB RAM, a M.2 SSD, and a NVIDIA GeForce RTX 3090
GPU.

4.2 Model Setup

Our models were trained using supervised machine learning methods. The NorNE
dataset (Jørgensen et al., 2020) was used as the training material since the dataset
includes IOB2 annotations for every token. For supervised machine learning,
having annotated data is crucial for learning.

Two baseline models were chosen, the NCRF++ framework (Yang and Zhang,
2018), and SpaCy’s NER Norwegian Pipeline1. Because of SpaCy’s pipeline
implementation (using a pre-existing model), this model does not require further

1https://spacy.io/models/nb#nb_core_news_sm

https://spacy.io/models/nb#nb_core_news_sm

30 Experimental Setup and Model Training

training. On the otherhand, NCRF++ does need training to function as we intend
to use it.

Five different BERT models were chosen as our main models, NorBERT
(Kutuzov et al., 2021), NorBERT22, mBERT (Pires et al., 2019), NB-BERT
(Kummervold et al., 2021), and lastly nbailab-base-ner-scandi3, which we will
refer to as Ner-Scandi for the rest of this thesis. Ner-Scandi is a pre-existing
fine-tuned version of NB-BERT model specifically intended for NER.

These five BERT models were further fine-tuned for our task in lowercase
NER. Ner-Scandi is already fine-tuned for NER, but only for four different named
entity types. Consequently, Ner-Scandi required additional fine-tuning to be able
to capture more named entity types, but also fine-tuning for lowercase text data.

4.3 Pre-processing of datasets

For supervised machine learning, when training a model for NER, it is common
to use datasets that are designed for NER, which contain prerequisite properties
such as labels for each token. In our case, we want the models to be able to
identify named entities when a word is not properly capitalized, therefore we had
to do some light pre-processing. The pre-processing step involved converting all
words, including proper nouns, into lowercase in all of the datasets.

Unlike our training dataset, the Norwegian Parliamentary Speech Corpus
(NPSC) is not richly annotated with lexical features or named entity labels for
each token. Upon manual inspection of the NPSC, it was apparent that the
corpus does not capitalize the first word in a sentence unless it is a named entity.
Although the entire corpus has not been inspected, it is reasonable to assume that
the lowercase consistency holds true, unless there are transcription errors.

The decision was made to automatically annotate all tokens with either a 0 or
1, using a simple Python script. 0 denoting that a token does not have a capital
letter word associated with it, and 1 denoting that a token was capitalized. These
labels would serve as our gold standard when testing. After the gold standard was
acquired, the corpus was made lowercase which would serve as the models’ test
dataset.

Having all text lowercase is of course not a perfect scenario for predicting
named entities in text, since conventionally most written western language, every
sentence starts with a capitalized word. However, as mentioned the NPSC has
every first tokens in a sentence lowercase, unless it is a named entity.

An additional pre-processing step was done to the NPSC, removing certain
tokens. Since the NPSC has been developed for use in speech recognition, some
additional special tokens is included there. Tokens such as <ee>, <qq> and

2https://huggingface.co/ltg/norbert2
3Huggingface nbailab-base-ner-scandi: https://huggingface.co/saattrupdan/

nbailab-base-ner-scandi

https://huggingface.co/ltg/norbert2
https://huggingface.co/saattrupdan/nbailab-base-ner-scandi
https://huggingface.co/saattrupdan/nbailab-base-ner-scandi

4.4 Baseline models 31

similar, indicate different special statuses of the current position in a sentence.
These tokens indicate if a speaker was interrupted, had vocalic hesitations, or
whether a word as inaudible or overlapping with someone else speaking. As these
tokens do not serve any purpose for our experiments, to avoid the possibility that
the models would be confused by their presence, all of these special tokens were
removed before testing the models.

4.4 Baseline models

As previously stated, we make use of two baseline models, the NCRF++
framework and a SpaCy Norwegian pipeline. Under normal capitalization test
datasets, both models have been reported to perform pretty good, reaching a F1
of about 85 for SpaCy4 and about 88 for NCRF++ (Jørgensen et al., 2020).

4.4.1 SpaCy Norwegian Pipeline
We chose a CPU based SpaCy Norwegian pipeline for the initial benchmarks,
since it is easy to implement and test, and because SpaCy’s own reported results
for Norwegian NER are quite good. For the model we use, SpaCy reported a
precision of 85.0 and recall value of 84.0, using their largest and best performing
Norwegian model “nb_core_news_lg”.

The pipeline makes use of several pre-trained SpaCy active components for
its predictions: tok2vec5, morphologizer6, Dependency Parser 7, lemmatizer8,
Attribute Ruler9, Entity Recognizer 10.

Due to how the SpaCy tokenizer functions, words may occasionally be divided
into several tokens. This can cause discrepancies in sequence length between the
prediction output and the gold standard, hindering a one-to-one comparison. If
a predicted sequence differs in length from the gold standard, the sequences is
dropped from the evaluation.

4.4.2 NCRF++
The NCRF++ was chosen as the second baseline, as it is relatively easy to
setup. Compared to the SpaCy pipeline, it is, however, more time and resource
consuming, with additional configuration, code tinkering and training.

Some pre-processing of the datasets was also needed before initiating training
and testing, utilizing the NCRF++ framework. All data had to be converted into a

4SpaCy models and metrics: https://spacy.io/models/nb/#nb_core_news_sm-accuracy
5SpaCy Tok2Vec: https://spacy.io/api/tok2vec
6SpaCy Morphologizer: https://spacy.io/api/morphologizer
7SpaCy Dependency Parser: https://spacy.io/api/dependencyparser
8SpaCy Lemmatizer: https://spacy.io/api/lemmatizer
9SpaCy Attribute Ruler: https://spacy.io/api/attributeruler

10SpaCy Entity Recognizer: https://spacy.io/api/entityrecognizer

https://spacy.io/models/nb/#nb_core_news_sm-accuracy
https://spacy.io/api/tok2vec
https://spacy.io/api/morphologizer
https://spacy.io/api/dependencyparser
https://spacy.io/api/lemmatizer
https://spacy.io/api/attributeruler
https://spacy.io/api/entityrecognizer

32 Experimental Setup and Model Training

.bmes format, where every token and named entity label would be on a separate
line. To indicate the beginning of a new sentence, there would be a line of white
space.

Large word embedding dimensions may be better to capture nuances in
language, therefore the NCRF++ model was configured with a pre-trained
fastText Skipgram, Norwegian embedding11, with word embedding dimension
size of 600.

The NCRF++ model was configured as a 200 hidden dimension Bi-LSTM
word sequence layer, 50 dimension character feature CNN layer, with a CRF
inference layer. The model was trained for 50 epochs, and with a stochastic
gradient descent optimiser. For all hyperparameters details, see Appendix A.

4.5 Main models

As stated in Section 4.2, five different pre-trained BERT models were chosen for
the main experiments. Four of these models were trained on mostly Norwegian
text material.

All the models utilize 12 layers, 12 attention heads, 768 hidden size, 0.1
dropout probability for both attention heads and layers, and a position embeddings
size of 512 for its pre-training. The vocabulary size of each model differs. These
are listed in the respective model detail subsections below.

Utilizing multiple models offers a wider basis for comparison when analyzing
the results. Comparing the results against one another gives us an indication
of which model that could be best for real life non-curated datasets, and
automatically generated transcriptions.

Note that one of the models that are tested, the multilingual BERT (mBERT),
is not pre-trained primarily on Norwegian data. Nevertheless, it has its relevancy:
First, because its multilingual properties could potentially highlight pros and cons
of using a non-language specific BERT model. Secondly, because one of our other
primary models, NB-BERT is based on the same structure and inherits its initial
training weights from mBERT. Comparing these two models could highlight
some of the possible advantages of having a language specific pre-BERT, which
has certain properties derived from mBERT.

4.5.1 NorBERT
NorBERT was trained from scratch for Norwegian by the Language Technology
Group12 at the University of Oslo. The model’s vocabulary size is 30 000,
predominantly consisting of Norwegian words. About 90% of the training data

11Embedings ID 132http://vectors.nlpl.eu/repository/#
12https://www.mn.uio.no/ifi/english/research/groups/ltg/

http://vectors.nlpl.eu/repository/#
https://www.mn.uio.no/ifi/english/research/groups/ltg/

4.5 Main models 33

is composed of the Norsk Aviskorpus (NAK)13, a collection of both Bokmål and
Nynorsk news text. The rest of the dataset is text extracted from Bokmål and
Nynorsk Wikipedia articles. In total, NorBERT was trained on combined token
count of about 1900 million (Kutuzov et al., 2021).

For our fine-tuning and the experiments, the v1.1 (February 13, 2021)
NorBERT base model was used.

4.5.2 NorBERT2

NorBERT Base 2.0 (NorBERT2)14 is a continuation of NorBERT, with a
significantly larger corpus, and a larger vocabulary of 50 000. The total token
count is about 15 billion, composed by the C415 and the NCC16 corpus.
Futhermore, NorBERT2 use Whole Word Masking techniques during training,
meaning that all subwords corresponding to a word are all be masked at the same
time.

For our fine-tuning and experiments the Cased Norwegian BERT Base 2.0
(NorBERT2, February 7. 2022) was used.

4.5.3 mBERT

Multilingual-BERT, also known as mBERT17 is a pre-trained model that was
trained on 104 languages, where the training data was derived from Wikipedia
text data from the different languages used. The proportion of its vocabulary
from each language vary, and the total size of the vocabulary is 110 000.

While a fine-tuned mBERT is not necessarily the best performer in various
NLP tasks compared to language specific BERT models, mBERT can still
produce respectable results. As reported in Section 2.7, Kummervold et al. (2021)
achieved a F1 score of 78.8 in Bokmål, and 81.7 in Nynorsk, on the NorNE test
dataaset using a fine-tuned mBERT model.

For our fine-tuning and experiments the lastest version BERT Base Multilin-
gual Cased version was used (June 18, 2019).

4.5.4 NB-BERT
Trained by a Norwegian governmental entity, The National Library of Norway
(NLN), NB-BERT, has a total token count of 18,4 billion (Kummervold et al.,
2021).

13https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-no-sbr-4/
14https://huggingface.co/ltgoslo/norbert2
15https://www.tensorflow.org/datasets/catalog/c4
16https://huggingface.co/datasets/NbAiLab/NCC
17https://huggingface.co/bert-base-multilingual-cased

https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-no-sbr-4/
https://huggingface.co/ltgoslo/norbert2
https://www.tensorflow.org/datasets/catalog/c4
https://huggingface.co/datasets/NbAiLab/NCC
https://huggingface.co/bert-base-multilingual-cased

34 Experimental Setup and Model Training

NB-BERT differentiates itself from NorBERT and NorBERT2 largely by the
size of the training corpus, using the Colossal Norwegian Corpus18, and by the
large vocabulary size of 119,547 words. Nearly 12 billion of the 18.4 billion total
tokens are from books, from year 1814 up until 2020, which results in a rich
variety of Norwegian written grammatical and linguistic text structure throughout
this period.

Also, NB-BERT initiated model weights are derived from mBERT’s weights.
Kummervold et al. (2021) assumed that this increased NB-BERT’s performance
compared to starting with random initiated weights. Kummervold et al. (2021)
also theorize that because of initiated weights derived from mBERT, NB-BERT
might be better prepared when dealing with previously unseen words, and texts
that incorporate bits of different languages.

For our fine-tuning and the experiments the NB-BERT base 1.1 release (March
11, 2021) was used.

4.5.5 Ner-Scandi
The Ner-Scandi is a version of NB-BERTBASE, fine-tuned to do NER in Nor-
wegian (Bokmål and Nynorsk), Swedish, Danish, Icelandic, and Faroese. It is
fine-tuned to predict four named entity types, PER, LOC, ORG, and MISC, but for
our purpose, we fine-tune Ner-Scandi further so it include all the entity types that
NorNE19 contain.

The training coropora used for the pre-existing fine-tuned Ner-Scandi are
soured from multiple datasets. This includes NorNE (Jørgensen et al., 2020),
DaNE (Hvingelby et al., 2020), SUC20 3.0 and the Icelandic and Faroese parts of
the WikiANN21 dataset.

For our fine-tuning and the experiments we used the latest Ner-Scandi model,
released September 25. 2021.

4.6 BERT training

In this section we aim to document all relevant details that could potentially
impact our BERT models’ performance to ensure that the training can be
replicated and that our results can be reproduced.

The documentation includes the dataset used for training, fixed models seeds,
the activation function, loss function, regularization, optimiser, number of epochs
and scheduler. All of which could have a performance impact on the results when
training a given model.

18https://huggingface.co/datasets/NbAiLab/NCC
19NorNE entity types: ORG, LOC, GPE_LOC, GPE_ORG, PER, PROD, EVT, DRV, MISC
20https://spraakbanken.gu.se/en/resources/suc3
21https://huggingface.co/datasets/wikiann

https://huggingface.co/datasets/NbAiLab/NCC
https://spraakbanken.gu.se/en/resources/suc3
https://huggingface.co/datasets/wikiann

4.6 BERT training 35

Note that to have entirely reproducible results is difficult when working with
machine learning models. There are several factors that could have an impact,
most are related to that many experiment’s details are not properly documented
(Schelter et al., 2015). Even software library versions could have an impact on a
model’s performance (Beam et al., 2020; Li and Talwalkar, 2020).

Training datasets

For the model training the NorNE dataset was used. Both Nynorsk and Bokmål
training dataset splits were combined into one big training corpus. At the
beginning of each training epoch, the combined corpus got shuffled so there would
be a good mix of both Nynorsk and Bokmål for each training batch, instead of
large chunks of only one or the other language version.

Fixed seeds

We used five manually picked seeds for training, which results in five different
trained models for each of the five different BERT variants. The seeds 8, 37,
42, 101, 1024 were selected. The seeds were used to initialize deterministic
CUDA behaviour22 to ensure that the code would produce similar results even
across different graphics processing units (GPUs). For details how this was
implemented, the reader is referred to the project’s GitHub repository23.

Activation function and Pooling

In the experiments, a pooler was used to obtain an output from the BERT
model. A pooler technique involves that the last hidden layer state is a tensor,
which is made up of hidden states for each input token’s vector representation.
Subsequently, these vectors are inputs for a linear layer that classifies the input
tokens using a linear activation function.

Loss function

The Cross Entropy Loss function from the PyTorch library was used in all BERT
model for each training batch, the loss value was used to calculate the back-
propagation.

Optimiser

The gradient-based Adam algorithm was used as the model optimiser, with an
initial learning rate of 2e−5.

22Reproducibility for PyTorch: https://pytorch.org/docs/stable/notes/randomness.html
23https://github.com/sfimediafutures/MA_Peter-R-ysland-Aarnes

https://pytorch.org/docs/stable/notes/randomness.html
https://github.com/sfimediafutures/MA_Peter-R-ysland-Aarnes

36 Experimental Setup and Model Training

Number of epochs and patience

50 epochs was set as the maximum number of training iterations for a given
seed. To reduce time spent training a model, a patience counter of 10 was set. A
patience counter in this context is how many training epochs a model was allowed
to do without improving its recall value on the validation set, without the training
is terminated before the maximum number of epochs is reached. The assessment
of performance during training is measured by a model’s recall value.

In practise this could result in that a model stops training after 15 epochs if the
model did not improve after epoch number 5.

Scheduler

Instead of having a fixed learning rate throughout the training epochs, the learning
rate scheduler ReduceLROnPlateau (Reduce learning rate on plateau) on used in
combination with the Adam optimiser (Kingma and Ba, 2014). The benefit of
using a scheduler, is that if a model’s learning stagnates after iteratively training,
the learning rate can adjust dynamically. The ReduceLROnPlateau24 will reduce
its learning rate if the model does not decrease its development loss value in the
given epochs, compared to earlier epochs with the same learning rate.

Similar to the patience counter early training termination, the ReduceLR-
OnPlateau also uses a patience counter for when to reduce the learning rate. This
patience counter is set to 1. In practise this means that the models will have
two attempts at improving its loss rate before the learning rate will be reduced.
The new learning rate will be a product of current_learn_rate× f actor. After
some preliminary testing we decided to use the a factor of 0.93. This number
was chosen since the initial learning rate of 2e − 5 is already quite low, and
therefore having a factor of 0.93 would not shift the learning rate too much. This
could of course lead to little to no change in the subsequent epoch, however, in
combination of a low patience threshold and the small adjustments in learning
rate, the learning rate could drop quite fast.

Because we use a total of five different BERT models, and each model having
five seeds, we have a total of 25 trained models. The particular parameters
discussed here were chosen to maximize the training effectiveness, that is, balance
the amount of time spent with the training yield.

4.7 Training metrics

This section present metrics gathered during the training of two BERT models,
NorBERT and Ner-Scandi. These metrics include recall values from the validation

24Scheduler ReduceLROnPlateau: https://pytorch.org/docs/stable/generated/torch.
optim.lr_scheduler.ReduceLROnPlateau.html

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html

4.7 Training metrics 37

dataset, adaptive learning rate, training loss, and validation loss for each epoch
during training and for each of the different seeds used.

NorBERT and Ner-Scandi are highlighted in the following subsections, since
they vary significantly in the number of epochs they were permitted to train until
the patience counter of 10 stopped, resulting in a early terminating model training
on a particular seed.

Even though the number of epochs for each model and seeds vary greatly,
the two models’ metrics follow similar trends. These trends also apply for the
three remaining models. For a tabular view of all the model training metrics, see
Appendix A.

4.7.1 Validation Recall and Learning Rate
For the NorNE validation dataset, the total number of named entities 2 942
as shown in Table 3.2. However, total count of named entity tokens, not
concatenating the token span of a named entity, is 4 128.

In our training of the different BERT models, the validation recall rate is
defined as the number of correctly labeled named entity tokens (disregarding
token boundary) divided by the total number of labeled entities. Words with
the “O”, the non-named entity class, is excluded from the validation recall rate
calculation.

Using recall is beneficial in this scenario, where one of our aims is to detect
named entities regardless of class or token span. By focusing on recall, the
model’s performance is optimised towards detecting as many named entities as
possible, maximizing the number of correct named entity identifications without
emphasis on minimizing false positives or considering label type.

Focusing on F1 score and precision is less suitable in our experiments, as it
does not prioritize the detection of named entities. F1 score balances precision
and recall, while precision measures the accuracy of positive predictions. Using
precision could encourage overly conservative predictions, which may leading to
sub-optimal performance in entity detection. Therefore, recall aligns better with
the objective of detecting named entities regardless of class.

NorBERT

After the first epoch for all NorBERT model seeds, there are dramatic spikes in
the improved recall by 8-10% before the recall fluctuate in the remaining epochs,
as shown in Figure 4.1.

Figure 4.2 shows that the model would typically settle for a new learning rate
about every other epoch. As the learning rate value decreases in an approximate
linear fashion, the validation recall sometimes get a small increase, thus resetting
the patience counter.

38 Experimental Setup and Model Training

Figure 4.1: NorBERT’s recall rate for each training epoch. The colored lines represent different
training runs on a given seed. With patience counter of 10, training is terminated if a model does
not improve on that seed after 10 epochs.

Figure 4.2: NorBERT’s learning rate for each training epoch. The colored lines represent
different training runs on a given seed. The model had two attempts to improve its performance
before its learning rate was decreased.

4.7 Training metrics 39

On average NorBERT had the highest total number of training epochs during
training compared to the other BERT models, yet for each seed, the numbers
of epochs varied greatly. This was particularly evident when comparing seed 8,
which stopped at epoch 35, to seed 1024, which stopped at epoch 11. Despite
the significant differences in the number of training epochs, the highest validation
recall for both seeds was almost identical. For the exact recall values of each seed,
please refer to the Appendix A.

Figure 4.3: Ner-Scandi’s recall rate for each training epoch. The colored lines represent different
training runs on a given seed. Given the patience counter of 10, training is terminated if a model
does not improve on that seed after 10 epochs.

Ner-Scandi

Ner-Scandi does not only differ from NorBERT in the improved validation set
recall, but also in the average epochs spent on a given seed. NorBERT spent on
average 24.4 epochs training across the five seeds, whereas Ner-Scandi spent on
average 15.4.

It is possible that Ner-Scandi needed less time training to reach its optimal
performance since this model is a pre-exsisting fine-tuned NER model. However,
the Ner-Scandi is derived from NB-BERT, which spent 18.4 epochs training, only
3 epochs more than Ner-Scandi. This suggests that NB-BERT requires less fine-
tuning on average, at least for our experiments. It is inconclusive if this is the case
for other NLP tasks.

As early as after one training iteration, Ner-Scandi achieved high recall values.
For the remaining epochs before stopping, it would fluctuate about 2%, similar to

40 Experimental Setup and Model Training

Figure 4.4: Ner-Scandis’s learning rate each training epoch. The colored lines represent different
training runs on a given seed. The model had two attempts to improve its performance before its
learning rate was decreased.

the other models. The adaptive learning rate also decreases, very much like the
other models during training, though ending at a higher learning rate value than
most other models because of early training termination.

4.7.2 Training loss and validation loss
Ideally we would want the training dataset loss and the validation dataset loss to
be as close in value to each other as possible. In a combined figure, illustrating
training and validation loss rate, we would want to see the graphs converge.

As long as the training data stays the same for each epoch, typically the loss
rate decreases exponentially over the training duration as the model performance
increase. Similarly, we want the validation loss to decrease as well. If there are
large discrepancies between the training and validation loss, it could indicate that
the models have a hard time applying what they have learned from the training
data onto the validation dataset. If the validation loss goes far beyond the training
loss value, it would indicate that the modesl are overfitting to the training data
which will affect its ability to generalize across different datasets.

From figure 4.5-4.8 and from our validation recall data, we can discern how
well the training advanced.

In our use, if the graphs were combined, training and validation loss would
not converge, since the validation loss was typically a bit higher than the training

4.7 Training metrics 41

Figure 4.5: NorBERT’s training dataset loss rate for each seed. Each colored line represent a
model seed. All seeds follow the same trend, where the loss rate gets closer to zero for each
training epoch. For full numeric details, refer to Appendix A

loss. Frequently, after epoch 2-5, the validation loss would incrementally increase
by a small amount, yet, the validation dataset recall value would sometimes also
increase. The observations of validation loss increase, and validation set recall
increases may seem counterintuitive. This can, however, be partially understood
by how Cross Entropy Loss operates. In simple terms, the Cross Entropy Loss
measures the confidence of a prediction. The models may be “less confident” in
its prediction using the Cross Entropy Loss calculation, thereby increasing the
validation loss. The recall may increase even though model is less confident of
whether the prediction is correct.

Note that some of the labels are quite similar in how they appear in the text.
For example GPE_LOC and GPE_ORG get used almost interchangeably, and a simple
suffix may be the only clue to differentiate how a word was labeled. This could be
one of several causes to the models’ less than confident predictions, although this
cannot be concluded with certainly. To get a better understanding of why the loss
value increase, one would need to analyse and compare individual vectors values
throughout the training iterations, which is beyond the scope of this thesis.

42 Experimental Setup and Model Training

Figure 4.6: Ner-Scandi’s training dataset loss rate for each seed. Each colored line represent
a model seed. All seeds follow the same trend, where the loss rate gets closer to zero for each
training epoch, except for epoch number 4 for seed 8, where there is a slight uptick in loss rate,
before lowering the next epoch. For full numeric details, refer to Appendix A.

4.7 Training metrics 43

Figure 4.7: NorBERT’s validation dataset loss rate for each seed. Each colored line represent a
model seed. Loss rate steadily increase throughout the training.

Figure 4.8: Ner-Scandi’s validation dataset loss rate for each seed. Each colored line represent
a model seed. Loss rate steadily increase throughout the training.

44 Experimental Setup and Model Training

Chapter 5

Evaluation Methods

This chapter details the different evaluation tasks which serve as the methods to
assess a models performance. The first section provides the specific details about
the different methods, and what metrics they include. The second section specify
which evaluation methods that are used for a given dataset. In the next chapter
we present the results from our experiments, using the methods and datasets
described in this chapter.

5.1 Methods

The different models are subject to three specific methods of evaluations,
accompanied with precision, recall and F1 as metrics serving as quantitative
performance measurements. These methods are a “Named Entity Recognition”,
“Strict Match”, and “Named Entity Binary Classification ”. Detail about the
methods are given in the following subsections.

Additionally, confusion matrices are used for further analysis of named entity
misclassifications. Since the BERT model results consists of multiple seeds per
model, the results are presented as performance averages calculated for all seeds
with the inclusion of the standard deviation, instead of assessing one particular
seed’s performance.

The assessed performance for the models have three parts because of the
three datasets. First, an evaluation is done using the NorNE test dataset. The
NorNE test dataset is a combination of both the Bokmål and Nynorsk test dataset.
Secondly, an evaluation on of the IOB2 annotated NPSC sample dataset. Lastly,
an evaluation is done on the full NPSC.

5.1.1 Named Entity Recognition
The first method we describe is the named entity recognition evaluation without
token boundary considerations.

NER without token boundary considerations means that if a named entity has

46 Evaluation Methods

a beginning and a inside tagged token, these will count as two separate tokens
when calculating performance metrics. By definition, this would entail that for
example that the named entity “Steve Jobs” would be split into two. “Steve” B-
PER, and “Jobs” I-PER will be two separate instances of named entities and are
also two separate types.

The metric used for model performance comparisons is the F1 micro-average.
The reason for using a micro-average F1 is that NorNE having 18 different
named entity classes when beginning and inside tags are included, leading to
some classes being much more frequent than others. Micro-average will favor
the importance of bigger classes, contrary to the macro-average that weighs all
classes with equal importance, results that may be misleading. If all classes were
weighted as equally important, results in classes such as B-MISC, which only has
14 entries, (less than 0.5% of all named entity tokens test data) would have a great
impact on the F1.

After the different micro-averages for each model are presented, the best
model is highlighted in further detail, including an overview of precision, recall
and F1 for each class. Misclassifications analysis are presented and discussed as
well, utilizing a confusion matrix.

5.1.2 Strict Match
The second evaluation metric for model comparisons use the micro-average F1
scores for how a model performs NER with a strict match evaluation criteria. As
defined in Section 2.2.2, a strict match evaluation requires that the model predicts
the correct named entity type and its token boundary. In practice, this means that
a model needs to predict both B-PER and I-PER to have a correct prediction for
a PER (person) named entity, if a full name spans two tokens. For example, for
a correct prediction for the name “Steve Jobs”, a B-PER must be followed by an
I-PER prediction. If the name is only partially recognized, such as just having
B-PER without being followed by the I-PER, the prediction will be evaluated as
incorrect.

F1 micro-averages are used for the same reason here as for the named entity
recognition evaluation without the strict match criteria. That is, due to the
substantial imbalance in the number of instances for each class of named entity.

After assessing the best performing model is highlighted, with an overview of
precision, recall, and F1 with for all named entity classes.

5.1.3 Named Entity Binary Classification
The third evaluation metric for model comparisons includes precision, recall, and
F1 scores for all models at a binary classification level. This metric will assess
how effectively a model can determine whether a token is a named entity or not.
For this method, predicted named entity class and whether the named entity spans

5.2 Evaluating Dataset Results 47

multiple tokens are excluded for the evaluation. The focus is solely on recognizing
whether a token could be a potential named entity. The significance of this binary
classification metric is emphasised, as it acts as the primary evaluation measure
to identifying improperly capitalized named entities.

These binary classification predictions are derived from the models NER
prediction. If prediction outputs of a token is any named entity class, the
prediction is set to “1”, denoting a positive prediction for the named entity.
Likewise, if the prediction output is a non-named entity, the output is set to “0”.

Instead of using micro-average F1, the binary classification results are
reported as macro-averages. There are vast differences between the number of
non-named entities and those that are named entity tokens in the corpus. Since
our goal is to recognize improperly capitalized named entities, however, it is
equally important to consider false positives alongside true positives. If fine-tuned
models such as these are used to correct capitalization mistakes in a production
environment, it is important that they do not capitalize non-named entities.

In addition to the aforementioned metrics, further analysis is provided using a
confusion matrix for the model that achieves the highest macro-average F1 score.

5.2 Evaluating Dataset Results

The following subsections provide brief descriptions of what model evaluation
methods that are used on a given dataset. There is some variation in the methods
used for each dataset, stemming from the fact that the full NPSC does not have a
IOB2 gold standard.

5.2.1 Evaluating NorNE
For the NorNE dataset, the models are assessed using all model evaluation
methods described in the previous section. To reiterate, this will be the named
entity recognition, the strict match named entity recognition, and lastly the binary
classification.

5.2.2 Evaluating the annotated NPSC sample
As described in Chapter 3, a sample of 300 random sentences from the NPSC was
selected and annotated in the IOB2 format. This was done to gain insight into how
the different BERT models perform in named entity recognition on the NPSC.
Although the sample size is limited, encompassing only a fraction of the number
of sentences of the full NPSC, evaluating models on this sample is important since
it provide us with some understanding of how the models are able to generalize
across various datasets.

48 Evaluation Methods

The evaluation methods for the NPSC sample involves NER evaluating
without the token span boundary criteria, and the strict match NER classification.
For this sample dataset, binary classification are not highlighted in detail.

5.2.3 Evaluating the NPSC
For the full NPSC dataset, the models are only subjected to the named entity
binary classification evaluation. There is no official gold standard for the NPSC
to determine whether a word is a named entity or not, besides solely looking for
capitalized words. Back in Section 4.3 we gave details on how we annotated the
NPSC to create a gold standard intended for binary classification evaluation.

Chapter 6

Results and discussion

This chapter presents our main findings, and is divided into four sections. The
first section presents the results from the NorNE test dataset. The second presents
results from the annotated NPSC sample dataset and the full NPSC dataset. The
third section compares the model performance on the NorNE and NPSC. Each
of these sections are divided into subsections where we present and discuss the
outcomes of the different evaluation methods. In the fourth section we discuss
some possible factors that could limit the models’ performances.

The findings from named entity recognition without token boundary is
highlighted in more detail, compared to the strict match evaluation. We regard
NER without token boundaries as more important than strict match in our
experiments, primarily because the binary classification results are derived from
this NER evaluation. For the binary classification evaluation, token span and
boundary is not important the key aspect is recognizing that a token is any type
of named entity.

6.1 NorNE results

Table 6.1 presents an overview of all models’ F1 score metrics, corresponding to
the three respective subtasks: NER classification without token boundary, NER
with the strict match criteria, and the named entity binary classification.

Our baseline model, the trained NCRF++ performs the poorest among all
the evaluations. The SpaCy pipeline model performs significantly better than
the NCRF++ even though the SpaCy model was not fine-tuned to detect or
predict lowercase named entities. In contrast, all of the fine-tuned BERT models
outperform the baseline models in all model evaluations by a large margin.

For all the evaluation methods, the Ner-Scandi model achieved the greatest F1
scores. NB-BERT achieved comparable results to Ner-Scandi, most notably at
the binary classification evaluation. The standard deviation1 for these two models

1We will sometimes present the standard deviation for results in the text when it is notably high.
The standard deviation will be denoted as SD.

50 Results and discussion

Model No Boundary Strict Match Binary

SpaCy* 50.87 45.89 80.17

NCRF++ 42.33 32.20 73.66

mBERT 82.15 (±0.50) 79.97 (±0.41) 95.51 (±0.56)

NorBERT 83.12 (±1.10) 82.19 (±1.26) 96.32 (±0.10)

NorBERT2 85.45 (±0.23) 84.38 (±0.37) 95.32 (±0.08)

NB-BERT 87.00 (±0.30) 86.50 (±0.34) 97.06 (±0.09)

Ner-Scandi 87.0687.0687.06 (±0.56) 86.58 (±0.45)86.58 (±0.45)86.58 (±0.45) 97.07 (±0.1397.07 (±0.1397.07 (±0.13)

Table 6.1: NorNE results for all models. BERT models use the average F1 across all seeds
for a given model. No Boundary denotes NER without named entity token span taken into
account. Strict Match denotes NER with named entity token span taken into the evaluation.
Binary classification denotes the task where only the detection if an entity is present, without
specific type associated. *Ten sentences were dropped from SpaCy pipeline

indicate that the performance differences between them are insignificant.
The larger vocabulary language specific BERT models typically achieved

greater F1 metrics. The exception is for the binary classification evaluation,
where surprisingly, NorBERT2 produces worse results than the smaller model
NorBERT, and the larger, but non-language specific, multilingual model mBERT.

6.1.1 NorNE Named Entity Recognition
This subsection, highlight the precision, recall and F1 for specific class results
by Ner-Scandi, the model that performed the greatest for the NER without token
boundary and span evaluation. The discussion highlights some of the possible
strengths and weaknesses of the Ner-Scandi’s predictions.

Table 6.2 present the the combined average result across all Ner-Scandi model
seeds. These metrics include named entity classes performance prediction for
both labels with the “B-” (beginning) and “I-” (inside) IOB2 labels.

The model achieved an overall micro-average precision value of 86.35, and
with a slightly greater recall value of 87.79, resulting in a F1 of 87.06. Inspecting
6.2 in a descending order, we observe that the model performed best for tokens
that are the most abundant. Most notably, B-PER and I-PER have excellent
precision and recall values, both above 95%. Precision being particularly great,
suggesting that the model rarely produce predictions that are false positives. B-
GPE_LOC and I-GPE_LOC are also among the classes with the greatest scores,
where the F1 exceeds 91.

Subpar performance is observed for the B-MISC predictions, exibiting a
precision rate of 40.0, and I-MISC 20.0. The recall rate is considerably better,
reaching 80.0 and 60.0 respectively, however, the standard deviation is high (B-

6.1 NorNE results 51

NE Type Precision Recall F1 Support

B-PER 96.90 (±0.95) 95.11 (±0.68) 95.99 (±0.29) 961

I-PER 98.31 (±0.36) 95.37 (±0.79) 96.82 (±0.39) 510

B-ORG 82.26 (±0.65) 87.08 (±0.20) 84.60 (±0.42) 521

I-ORG 72.26 (±2.23) 92.05 (±1.53) 80.92 (±1.16) 248

B-GPE_LOC 93.46 (±0.57) 89.06 (±0.99) 91.20 (±0.37) 428

I-GPE_LOC 93.42 (±1.24) 90.49 (±2.41) 91.92 (±1.61) 79

B-LOC 78.92 (±3.28) 75.79 (±2.30) 77.28 (±1.99) 185

I-LOC 74.35 (±5.23) 86.39 (±2.92) 79.72 (±1.88) 85

B-PROD 60.61 (±3.33) 56.48 (±4.38) 58.31 (±2.65) 131

I-PROD 48.25 (±6.87) 63.32 (±4.58) 54.57 (±5.53) 126

B-DRV 79.49 (±2.69) 76.54 (±2.93) 77.90 (±1.27) 78

I-DRV 41.54 (±3.77) 45.42 (±8.55) 43.13 (±5.34) 13

B-GPE_ORG 64.26 (±1.91) 75.91 (±3.44) 69.51 (±0.89) 61

I-GPE_ORG 100.00 (±0.00) 71.12 (±14.91) 82.32 (±9.26) 7

B-EVT 68.57 (±14.00) 55.69 (±7.94) 60.89 (±8.13) 14

I-EVT 40.00 (±25.50) 25.90 (±18.22) 30.62 (±20.01) 4

B-MISC 40.00 (±25.79) 80.00 (±40.00) 51.73 (±29.77) 14

I-MISC 20.00 (±16.33) 60.00 (±48.99) 30.00 (±24.49) 3

Micro avg. 86.35 (±0.64) 87.79 (±0.49) 87.06 (±0.56) 3468

Table 6.2: Ner-Scandi NorNE test dataset results measured with precision, recall and F1 for NER
without considering token span of a named entity. Support column denotes number of entries for
each class.

52 Results and discussion

MISC: SD = 40.0, I-MISC: SD = 48.99), suggesting that the results vary greatly
across the different model seeds. The precision results suggest that the model
tends to predict more MISC classes than necessary, resulting in an increase in
false positives. The false positives indicate that the MISC classes is the hardest
to predict correctly for the Ner-Scandi model, as well as the class providing least
reliable performance due to the significant varying results across different seeds.
Similarly, the EVT classes also suffer from low precision and an even lower recall.
However, it is important to note that these classes are among the least frequent
classes in the test dataset compared to other classes. Consequently, the metrics
will change significantly based on whether a prediction is correct or incorrect.

By examining the NorNE dataset named entity distribution of the training data
in Table 3.1, it is evident that the MISC class is by far the least frequent class with
only 14 entries. The MISC class constitutes less than 0.5% of all named entities
in the NorNE dataset. Considering the scarcity of data for this class, it could be
that the model lacks sufficient training data to effectively learn and make accurate
predictions for this particular class.

Again, upon inspection of the NorNE data statistics in Table 3.1, it is evident
that the EVT class is more frequent in the training data than the MISC class. One
might expect the model to produce better predictions for the EVT classes due to the
larger amount of available training data. Nevertheless, the EVT classes, both B-
EVT and I-EVT, only exhibit slightly better predictions than the MISC classes. The
lower standard deviation is, however, lower which indicates better performance
consistency for the EVT classes, across the multiple seeds.

6.1.2 NorNE Strict Match

Table 6.3 provides an overview of how well Ner-Scandi perform for the strict
match evaluation, an evaluation where the token boundary applies. Logically,
if the model performed good for a class with both the B-tag and I-tag in the
previous evaluation, the model is expected to have similar performance for the
strict match evaluation.

Among all Ner-Scandi model’s seeds, the micro-average precision is 86.90,
and a micro-average recall rate of 86.26. The average F1 therefore results in a
score of 86.58.

As the results in Table 6.3 indicate, the classes that are more frequent generally
achieves higher values for both precision and recall, in line with the argument
above. Conversely, the less frequent classes are harder to predict, most notably the
MISC class and EVT, with a F1 score of 46.66 (SD = 25.07) and 57.12 (SD = 6.40)
respectively.

6.1 NorNE results 53

NE Type Precision Recall F1 Support

PER 96.75 (±0.86) 94.97 (±0.76) 95.85 (±0.26) 961

ORG 80.15 (±0.89) 84.84 (±0.48) 82.43 (±0.69) 521

GPE_LOC 93.32 (±0.67) 88.93 (±0.95) 91.06 (±0.40) 428

LOC 78.38 (±3.15) 75.26 (±1.85) 76.74 (±1.64) 185

PROD 56.95 (±2.49) 53.12 (±4.38) 54.81 (±2.37) 131

DRV 76.92 (±2.29) 74.08 (±2.96) 75.39 (±1.05) 78

GPE_ORG 64.26 (±1.91) 75.91 (±3.44) 69.51 (±0.89) 61

EVT 64.29 (±11.95) 52.25 (±6.51) 57.12 (±6.40) 14

MISC 35.71 (±21.19) 73.78 (±37.64) 46.66 (±25.07) 14

Micro avg. 86.90 (±0.55) 86.26 (±0.47) 86.58 (±0.45) 2393

Table 6.3: Scandi-ner NorNE test dataset results measured with precision, recall and F1 for NER
with the strict evaluation criteria, where the named entity token boundary has to be correct as
well as predicted label. Support column denotes number of entries for each class.

6.1.3 Binary Classification Evaluation

Table 6.4 presents precision, recall and F1 metrics for all seven models, in the
binary classification task using the NorNE dataset. All of the fine-tuned BERT
models exceed the performance in all metrics compared to the baseline models.

Overall, Ner-Scandi’s macro-average F1 of 97.07 is the greatest, whereas the
poorest is observed in mBERT’s results with a macro-average F1 at 95.51.

Baselines

Comparing the baseline models, both yield similar F1 macro-averages, NCRF++
with 78.3 and SpaCy with 80.17, for the binary classification. Both models
exhibit great precision and recall for the Not Capital Letter class, the class which
encapsulates all words that are not named entities.

For the Capital Letter class, the class that refers to tokens that are named
entities, and consequently should be capitalized, the baseline models exhibit a
poor recall metrics. SpaCy’s and NCRF++’s recall of 48.4 and 45.36, respectively,
indicating that these models would fail to detect capitalization errors more than
half the time. Precision however, is much greater than the recall, with at NCRF++
at 83.27 precision and SpaCy at 87.38. The recall for the baselines suggests that
there is a lot of false negatives for the Capital Letter class. However, the precision
suggest that at least when they predict a class to be of the Capital Letter class, the
majority of the time the prediction is a true positive.

54 Results and discussion

Model Class Precision Recall F1 Support

SpaCy* 0 96.62 99.53 98.05 51047
1 87.38 48.40 62.30 3446

Macro avg. 92.00 73.97 80.17 54493

NCRF++ 0 96.41 99.38 97.88 51271
1 83.27 45.36 58.73 3468

Macro avg. 89.84 72.37 78.30 54739

mBERT 0 99.57 (±0.08) 99.31 (±0.07) 99.44 (±0.01) 51271
1 89.78 (±1.10) 93.46 (±1.06) 91.57 (±0.19) 3468

Macro avg. 94.68 (±0.51) 96.38 (±0.49) 95.51 (±0.10) 54739

NorBERT 0 99.58 (±0.09) 99.49 (±0.07) 99.54 (±0.02) 51271
1 92.51 (±0.99) 93.73 (±1.18) 93.10 (±0.19) 3468

Macro avg. 96.04 (±0.45) 96.61 (±0.56) 96.32 (±0.10) 54739

NorBERT2 0 99.60 (±0.03) 99.51 (±0.02) 99.56 (±0.01) 51271
1 92.81 (±0.37) 94.00 (±0.44) 93.40 (±0.14) 3468

Macro avg. 96.21 (±0.17) 96.76 (±0.21) 96.48 (±0.08) 54739

NB-BERT 0 99.64 (±0.04) 99.62 (±0.05)99.62 (±0.05)99.62 (±0.05) 99.63 (±0.01) 51271
1 94.31 (±0.71)94.31 (±0.71)94.31 (±0.71) 94.70 (±0.58) 94.50 (±0.16) 3468

Macro avg. 96.98 (±0.34)96.98 (±0.34)96.98 (±0.34) 97.16 (±0.27) 97.06 (±0.09) 54739

Ner-Scandi 0 99.69 (±0.02)99.69 (±0.02)99.69 (±0.02) 99.58 (±0.02) 99.63 (±0.02)99.63 (±0.02)99.63 (±0.02) 51271
1 93.73 (±0.31) 95.30 (±0.24)95.30 (±0.24)95.30 (±0.24) 94.51 (±0.24)94.51 (±0.24)94.51 (±0.24) 3468

Macro avg. 96.71 (±0.16) 97.44 (±0.12)97.44 (±0.12)97.44 (±0.12) 97.07 (±0.13)97.07 (±0.13)97.07 (±0.13) 54739

Table 6.4: NorNe Binary Classification precision, recall and F1 metrics for all models. The
0 class denotes the Not Capital Letter class. The 1 class denotes the Capital Letter class.
The Support column refers to the number of entries for a given class. *10 sentences were
dropped from SpaCy pipeline because of difference prediction sequence length and gold standard
sequence length.

6.1 NorNE results 55

BERT Models’ Not Capital Letter Classification

For the Not Capital Letter classifications, the variance between the precision,
recall, and F1 scores of the BERT models are minimal. The difference between
the best precision (99.69, achieved by Ner-Scandi) and the worst (99.57, achieved
by mBERT) is only 0.12%. Furthermore, the best recall is at 99.62 (NB-BERT),
and worst recall at 99.31 (mBERT), a difference of 0.31%.

Having such excellent scores for precision and recall, results in high F1 scores
across all BERT models for the Not Capital Letter class. mBERT performed the
poorest, yet with a F1 at 99.44, and Ner-Scandi at 99.63 being the best, makes
the difference best/poorest them just 0.21%. All BERT models’ F1 scores for this
class is subject to an negligible variance between the different seeds, resulting in
a low standard deviation (highest SD = 0.02).

BERT Models’ Capital Letter Classification

For the Capital Letter classification, the variance between their precision, recall,
and F1 scores is significantly higher compared to the Not Capital Letter class.
NB-BERT 94.31 precision rate is the best, whereas mBERT 89.78 is the worst
among the BERT models.

Recall values also vary more for the different BERT models for this class,
compared to the Not Capital Letter class. The recall value difference between the
best performing and poorest performing model is 1.84%, Ner-Scandi achieving
the best (95.30) and mBERT once again perform the worst (93.46).

The resulting difference in F1 for this class comparing the best model against
the worst is 2.94%. Ner-Scandi performed the best (F1 94.51), and mBERT the
worst (91.57).

6.1.4 NorNE Results Analysis and Discussion

NER without Token Boundary and Strict Match

As presented in subsection 6.1.1, we see that less abundant classes more
frequently get misclassified, such as the MISC and EVT classes. This is the case
for the both the NER without token boundary and strict match evaluation.

By considering the results in Figure 6.2 corresponding to the Ner-Scandi
predictions, we see that there are instances where the model tries to predict a
B-MISC token and fails the classification. Instead the model often predicted the
token to be either B-PER or B-PROD.

It does make sense that the miscellaneous class would be hard to predict, not
only because it has very few instances of MISC in the training data. To reiterate,
the MISC class encapsulates all named entities that does not fit the other named
entity classifications.

56 Results and discussion

Figure 6.1: Ner-Scandi Binary Classification results for the NorNE test dataset. The 0 class
denotes the Not Capital Letter class, that is non-entity tokens. The 1 class denotes the Capital
Letter class, that is named entities.

Figure 6.2: Ner-Scandi confusion matrix results for the NorNE dataset. The numbers are
normalized averages that indicate percentage instead of actual count. To see non-normalized
version, refer to Appendix B.

6.2 NPSC results 57

For more frequent entries, such as the LOC labeled tokens, it would seem that
Ner-Scandi most frequently misclassify the tokens as either GPE_LOC, ORG, or
PER labeled tokens. It is perhaps not surprising that the model might mix up LOC
for GPE_LOC, as they are almost interchangeable. Likewise, GPE_LOC often gets
misclassified as LOC. That a model that could mix named locations and a persons
name also has some rationale, since many surnames are named after locations.
The opposite may also apply, as many places are named after people.

Notably, for the majority of classes, the model misclassifies named entities
as O (outside token), the non-named entity type class. This misclassification
is especially common among B-PROD, I-PROD, I-DRV, B-MISC and I-MISC.
Perhaps one of the reasons that PROD often gets misclassified as a non-named
entity is because products can be named after about anything. Be it nouns, verbs,
or concepts, it may make the PROD class indistinct in sentence when it is not
properly capitalized.

DRV and MISC are less frequent in the training dataset, compared to most other
classes. This may have resulted in worse performance for these classes, if the
models did not have sufficient data to properly capture patterns of associated with
them.

Binary Classification

For the binary classification the BERT models excel compared to the baseline
models for the NorNE test dataset. The biggest difference in performance for the
BERT models is the Capital Letter class precision.

The performance difference between NB-BERT and Ner-Scandi are marginal.
This makes sense since they are essentially the same model, the only difference
being that Ner-Scandi had its weights fine-tuned for NER in several Scandinavian
languages before being fine-tuned once again by us. We cannot conclude whether
the fact that Ner-Scandi was fine-tuned before undergoing additional fine-tuning
would provide the model with a performance advantage over NB-BERT, but it
could certainly be the case.

For the binary classification, Ner-Scandi has a combined misclassification rate
of 1.57%. By analysing the confusion matrix, we can calculate the false positive
rate and the false negative error rate. For the scenario where the model might
predict a token to be capitalized when it should not, the false positive rate is at
0.31%. For the opposite case, where the model may predict that a token should
not be capitalized, when in reality it should, the false negative error rate is 6.27%.

6.2 NPSC results

In the previous section we discussed the NorNE results. A similar section
structure will follow as we present the results for the NPSC. First, we examine
the NER results for the NPSC annotated sample dataset, focusing on both NER

58 Results and discussion

Model No Boundary Strict Match Binary Classification

SpaCy* 52.42 54.24 83.36

NCRF++ 35.69 33.07 75.42

mBERT 81.88 (±0.67) 80.27 (±0.87) 95.17 (±0.52)

NorBERT 81.71 (±1.74) 79.00 (±1.74) 96.19 (±0.49)

NorBERT2 80.77 (±0.81) 77.59 (±0.73) 96.52 (±0.19)

NB-BERT 84.4484.4484.44 (±0.55) 82.3082.3082.30 (±0.84) 96.6296.6296.62 (±0.22)

Ner-Scandi 83.72 (±1.00) 81.08 (±1.33) 96.26 (±0.37)

Table 6.5: The annotated NPSC sample dataset results for all models. BERT models use the
average F1 across all seeds for a given model. No Boundary denotes NER without named entity
token span taken into account. Strict Match denotes NER with named entity token span taken
into the evaluation. Binary Classification denotes the task where only the detection if an entity
is present, without specific type associated. *3 sentences were dropped from SpaCy pipeline
because of difference prediction sequence length and gold standard sequence length.

and NER with strict match criteria. Second, we analyse and discuss the binary
classification results for the full NPSC. Finally, we discuss the results from these
three evaluations and delve deeper into an analysis of their possible implications.

6.2.1 Annotated NPSC sample dataset results
This subsection begins by highlighting test results for the annotated NPSC
sample dataset. Table 6.5 presents an overview for all model’s F1 score metrics,
corresponding to the respective evaluation: the NER without boundary, strict
match classification, and binary classification.

As for the NorNE dataset, the NCRF++ model performs the poorest for all
F1 measures for the NPSC sample dataset. The SpaCy pipeline model performs
significantly better than the NCRF++, but is, nevertheless, still subpar compared
to the BERT models.

Contrary to the NorNE results, Ner-Scandi does not perform the best. Rather,
NB-BERT achieved the greatest F1 for all evaluations here.

If we compare the results table for the NPSC sample, Table 6.5, with the
NorNE classification results, Table 6.1, it is apparent that both the NER evaluation
without boundary and strict match evaluation, the F1 scores have decreased
significantly.

The most signficant decrease in performance is observed for NorBERT2. For
the NER without token span boundary, the decrease in F1 is 4.68, and the strict
match evaluation F1 decrease is 6.79. Interestingly, NorBERT performs better
than NorBERT2 on these two evaluations, which is not the case for the NorNE

6.2 NPSC results 59

NE Type Precision Recall F1 Support

B-PER 93.02 (±2.08) 93.05 (±2.43) 93.03 (±2.05) 43

I-PER 97.00 (±4.00) 100.00 (±0.00) 98.43 (±2.10) 20

B-ORG 89.35 (±3.22) 80.28 (±1.80) 84.51 (±0.95) 77

I-ORG 100.00 (±0.00) 65.17 (±9.80) 78.52 (±6.65) 11

B-GPE_LOC 88.57 (±2.67) 85.12 (±3.61) 86.73 (±1.65) 28

I-GPE_LOC 66.67 (±0.00) 92.00 (±9.80) 77.09 (±3.56) 6

B-LOC 100.00 (±0.00) 37.33 (±3.27) 54.29 (±3.50) 2

I-LOC 0 0 0 0

B-PROD 88.00 (±9.80) 54.76 (±7.45) 66.93 (±5.47) 5

I-PROD 0 0 0 0

B-DRV 33.33 (±0.00) 80.00 (±24.49) 46.00 (±4.90) 3

I-DRV 0 0 0 0

B-GPE_ORG 73.00 (±2.45) 89.18 (±4.16) 80.23 (±2.52) 20

I-GPE_ORG 0 0 0 0

B-EVT 0 0 0 0

I-EVT 0 0 0 0

B-MISC 0 0 0 1

I-MISC 0 0 0 0

Micro avg. 87.96 (±0.77) 81.20 (±0.60) 84.44 (±0.55) 216

Table 6.6: NB-BERT results for the NPSC sample dataset, measured with precision, recall and
F1 for NER without considering token span of a named entity. Support column denotes number
of entries for each class.

60 Results and discussion

results.
The model that shows the least variance in results between the NorNE dataset

and the NPSC sample dataset is mBERT. Additionally, mBERT outperforms
NorBERT and NorBERT2 in all evaluation tasks except for the binary classifi-
cation evaluation. Note that for the following subsections, we will not go into
more details about the binary classification for annotated NPSC sample dataset.
The binary classification discussions are saved for when the results for the whole
NPSC dataset is presented in Section 6.2.4.

6.2.2 NPSC Sample Named Entity Recognition
As mentioned in the previous section, NB-BERT performs the best when tested
on the annotated NPSC sample dataset. Table 6.6 presents the combined average
results across all model seeds, with precision, recall and F1 values. The model
achieves a micro-average precision score of 87.77, a recall score of 81.20, and F1
of 84.44. For this dataset it is important to stress that there are far less tokens in
total, resulting in less named entities to classify.

The B-PER and I-PER achieve the greatest F1 among the different named
entity classes. The I-PER class resulted in a perfect recall score of 100, including
an excellent precision of 97.00. The most frequent class, B-ORG exhibit a
satisfactory precision rate of 89.35, however, the recall is only 80.28. The I-ORG
class recall of 65.17 is subpar, although the precision is a perfect 100.

6.2.3 NPSC Sample Strict Match
Table 6.7 provides an overview of how well NB-BERT performed NER with the
strict match classification criteria, that is when named entity token boundary is
taken into account.

For all NB-BERT model seeds, the micro-average precision is 84.69 and the
recall rate is 80.05, resulting in a micro-average F1 of 82.30.

The performance observed for the PER class is good, with F1 of 92.11. As
we observed in the previous subsection, NB-BERT especially good at classifying
I-PER correctly, with F1 of 98.43, however, only reaching F1 of 93.03 for the
B-PER class. This suggests that the B-PER predictions are mostly to blame for the
PER strict match classification not getting a higher F1 than 92.11.

ORG, the most frequent class, has an average precision rate of 85.97, but
unfortunately suffers from a significantly lower average recall of 77.19, resulting
in an F1 of 81.29. GPE_LOC, and GPE_ORG are relatively frequent in the dataset,
resulting in F1 values of 83.23 and 80.23 respectively.

6.2 NPSC results 61

NE Type Precision Recall F1 Support

PER 92.09 (±2.37) 92.14 (±3.33) 92.11 (±2.73) 43

LOC 100.00 (±0.00) 37.33 (±3.27) 54.29 (±3.50) 2

ORG 85.97 (±4.14) 77.19 (±1.19) 81.29 (±1.69) 77

GPE_LOC 85.00 (±1.43) 81.73 (±3.77) 83.25 (±1.32) 28

GPE_ORG 73.00 (±2.45) 89.18 (±4.16) 80.23 (±2.52) 20

PROD 88.00 (±9.80) 54.76 (±7.45) 66.93 (±5.47) 5

EVT 0 0 0 0

DRV 33.33 (±0.00) 80.00 (±24.49) 46.00 (±4.90) 3

MISC 0 0 0 1

Micro avg. 84.69 (±1.15) 80.05 (±1.01) 82.30 (±0.84) 179

Table 6.7: NB-BERT results for the NPSC sample dataset measured with precision, recall and
F1 for NER with the strict evaluation criteria, where the named entity token boundary has to
be correct as well as predicted label. Support column denotes number of entries for each class.
report

62 Results and discussion

Model Class Precision Recall F1 Support

SpaCy* 0 99.76 98.28 99.02 1013745
1 57.27 90.77 70.23 25723

Macro avg. 78.51 94.52 84.62 1039468

NCRF++ 0 97.38 99.77 98.56 1014791
1 85.85 34.04 48.75 41247

Macro avg. 91.61 66.91 73.66 1056038

mBERT 0 99.41 (±0.06) 99.64 (±0.03) 99.52 (±0.02) 1014791
1 91.09 (±0.70) 86.18 (±1.19) 88.56 (±0.39 41247

Macro avg. 95.25 (±0.32) 92.91 (±0.58) 94.04 (±0.20) 1039468

NorBERT 0 99.41 (±0.11) 99.74 (±0.04) 99.58 (±0.04) 1014791
1 93.69 (±1.04) 86.64 (±1.97) 90.00 (±0.66) 41247

Macro avg. 96.55 (±0.47) 93.19 (±0.97) 94.79 (±0.35) 1039468

NorBERT2 0 99.39 (±0.05) 99.79 (±0.02) 99.59 (±0.02) 1014791
1 94.81 (±0.47) 86.42 (±0.89) 90.41 (±0.36) 41247

Macro avg. 97.10 (±0.22) 93.10 (±0.44) 95.00 (±0.19) 1039468

NB-BERT 0 99.35 (±0.04) 99.85 (±0.02)99.85 (±0.02)99.85 (±0.02) 99.59 (±0.02) 1014791
1 96.22 (±0.47)96.22 (±0.47)96.22 (±0.47) 85.66 (±0.78) 90.63 (±0.43) 41247

Macro avg. 97.78 (±0.23)97.78 (±0.23)97.78 (±0.23) 92.76 (±0.39) 95.11 (±0.23) 1039468

Ner-Scandi 0 99.42 (±0.05)99.42 (±0.05)99.42 (±0.05) 99.82 (±0.02) 99.62 (±0.02)99.62 (±0.02)99.62 (±0.02) 1014791
1 95.71 (±0.39) 87.03 (±0.97)87.03 (±0.97)87.03 (±0.97) 91.16 (±0.43)91.16 (±0.43)91.16 (±0.43) 41247

Macro avg. 97.56 (±0.18) 93.43 (±0.48)93.43 (±0.48)93.43 (±0.48) 95.39 (±0.23)95.39 (±0.23)95.39 (±0.23) 1039468

Table 6.8: NPSC NorNe Binary Classification precision, recall and F1 metrics for all models.
The 0 class denotes the Not Capital Letter class. The 1 class denotes the Capital Letter class.
The Support collumn refers to the number of entries for a given class. *729 sentences were
dropped from SpaCy pipeline because of difference prediction sequence length and gold standard
sequence length.

6.2 NPSC results 63

6.2.4 Binary Classification
Table 6.8 presents precision, recall and F1 for all seven models, for the binary
classification evaluation using the full NPSC dataset. For this evaluation once
again all of the fine-tuned BERT models exhibit far greater performance in all
metrics compared to the baseline models.

The greatest macro-average F1 scores of 95.39 is observed in the results from
Ner-Scandi. The worst macro-average F1 of 94.04 is observed in the results from
mBERT.

Baselines

Both the baseline models yield similar F1 macro-averages, NCRF++ with 73.66
and SpaCy with 84.62. As observed in the NorNE results, both models exhibited
excellent precision and recall for the Not Capital Letter class. This is also the case
for the NPSC results.

Similar to the results gathered from the NorNE dataset, NCRF++ exhibits poor
recall for the NPSC. For the Capital Letter class, NCRF++’s recall is only 34.04,
however, precision is much higher, averaging at 85.85.

For the SpaCy pipeline, we observe the opposite of what NCRF++ performs.
For the Capital Letter class the recall is 90.77, but, the precision is only
57.27. This indicates that SpaCy’s predictions produce more false positives than
NCRF++ for the Capital Letter class.

BERT Models’ Not Capital Letter Classification

For the Not Capital Letter class in BERT models’ performance, the variance
between the precision, recall, and F1 scores are minimal. Ner-Scandi precision
rate of 99.42, is the best, and NB-BERT’s precision rate of 99.35 is the worst,
among the BERT models.

Similar performance applies for the recall results among the BERT models.
NB-BERT achieved the highest recall rate (99.85), and mBERT the worst
(99.64). With great precision and recall for all BERT models, F1 scores are
correspondingly great. mBERT has the lowest F1 of 99.52, and Ner-Scandi the
highest with an F1 of 99.62.

BERT Models’ Capital Letter Classification

Similar trends as observed in the NorNE results, are again observed in the NPSC
results where the Capital Letter class metrics are significantly lower than its class
counterpart. NB-BERT’s 96.22 precision rate is the best, whereas mBERT’s 91.09
is the worst precision for the BERT models.

Ner-Scandi exhibits the greatest recall rate at 87.03, whereas NB-BERT
surprisingly performs the poorest of the BERT models with a recall rate of 85.66.

64 Results and discussion

Figure 6.3: NB-BERT confusion matrix results for the NSPC sample dataset. The numbers are
normalized averages that indicate percentage instead of actual count. To see non-normalized
version, refer to Appendix B.

Comparing mBERT, NorBERT and NorBERT2, it is surprising that NB-BERT
has the lowest recall since it has generally been performing better than these
models at the other evaluations. Nevertheless, NB-BERT’s 90.63 F1 score for
this class is still second best, the best being Ner-Scandi’s 91.16 F1.

6.2.5 NPSC Results Analysis and Discussion

NER without Token Boundary and Strict Match

Analysing the confusion matrix corresponding to NB-BERT’s predictions for
the annotated NPSC sample results (Figure 6.3), it is apparent that the model
misclassified the GPE classes quite often. For example incorrectly predicting B-
GPE_LOC as B-GPE_ORG.

There are other instances where the model classified a non-named entity class
O to be a named entity. For instance, 55% of the time these incorrect classifications
are predicted as B-ORG, and 19% of the time I-ORG

There are classes such as B-DRV, and B-MISC, that have greater misclassifi-
cation rates than any other, as observed in the confusion matrix of Figure 6.3.
However, the dataset contains only three instances of B-DRV and one instance of

6.2 NPSC results 65

B-PROD. As a result, any misclassification of these infrequent classes significantly
impact the results in the negative direction. More instances of these classes would
be preferable to infer any conclusive performance.

Binary classification

NB-BERT achieved the greatest average-macro precision of 97.78. The second
best, Ner-Scandi’s average-macro precision, is 97.56. For macro-average recall
and macro F1, Ner-Scandi outperformed all other models. Ner-Scandi produced
the highest F1 score (95.39), while mBERT the lowest (94.04). That makes
the greatest F1 difference between all BERT models only 1.35% for the binary
classification evaluation.

Analysing the confusion matrix we can calculate the total error rate, false
positive rate, and the false negative error rate. For the binary classification, Ner-
Scandi has a combined error rate of 1.57%.

The false positive rate, the scenario where the Ner-Scandi would predict a
token to be capitalized when it should not be classified as so, is on average 4.29%.
The scenario where the model may predict that a token should not be capitalized,
when in reality it should, yield the false negative error rate of 4.29%.

All the models, baselines included, have few issues with classifying the No
Capital Letter class. The Capital Letter class is significantly more difficult for the
models to predict correctly.

Figure 6.4: Ner-Scandi Binary Classification results for the full NPSC dataset. The 0 class
denotes the Not Capital Letter class, that is, non-entity tokens. The 1 class denotes the Capital
Letter class, that is, named entities.

66 Results and discussion

No BoundaryNo BoundaryNo Boundary Precision Recall F1 Support
NorNE 86.35 (±0.64) 87.79 (±0.49) 87.06 (±0.56) 3468

NPSC sample 87.96 (±0.77) 81.20 (±0.60) 84.44 (±0.55) 216

Strict MatchStrict MatchStrict Match
NorNE 86.90 (±0.55) 86.26 (±0.47) 86.58 (±0.45) 2393

NPSC sample 84.69 (±1.15) 80.05 (±1.01) 82.30 (±0.84) 179

Binary ClassificationBinary ClassificationBinary Classification
NorNE 96.71 (±0.16) 97.44 (±0.12) 97.07 (±0.13) 54739

NPSC 97.56 (±0.18) 93.43 (±0.48) 95.39 (±0.23) 1039468

Table 6.9: Ner-Scandi result comparisons between the NorNE and the NPSC dataset. The NPSC
sample are results from NB-BERTS performance. The micro averages are reported for the No
Boundary and Strict Match. Macro averages are reported for the Binary Classification. No
Boundary denotes NER without named entity token span taken into account. Strict Match denotes
NER with named entity token span taken into the evaluation. Binary Classification denotes the
task where only the detection if an entity is present, without specific type associated.

6.3 Comparing NorNE and NPSC results

Table 6.9 presents the results for for each evaluation according to its respective
dataset. For the annotated NPSC sample results, NB-BERT’s results are reported,
since this model performed the greatest for this dataset. For the NorNE test dataset
and the full NPSC, Ner-Scandi’s results are reported.

Comparing results for the NER evaluation without token boundary, NB-BERT
has about 1% higher precision for the annotated NPSC sample dataset results,
compared to Ner-Scandi’s NorNE results. For NER evaluation without token
boundary, F1 scores from tests on NorNE is about 2.6% higher than the results
from the annotated NPSC results. This indicates that our models have achieved
some capabilities of generalizing across different data. Though it is important to
note that the annotated NPSC has far less class diversity and class count than the
NorNE dataset. This may skew the results in favour of the annotated NPSC results
if one class is especially frequent and classified correctly. Therefore, while the
NB-BERT’s performance on the NPSC sample is promising, further evaluation
on a more diverse range of datasets is necessary to fully assess its ability to
generalize.

The previous statement also applies to the strict match evaluation, where
the NB-BERT model obtained significantly lower scores for the NPSC sample
compared to Ner-Scandi’s performance for the NorNE dataset. NorNE dataset
Strict Match classification resulted at a micro-average of 86.58, compared to
82.30 for the NPSC sample.

For the binary classification, the Ner-Scandi results show a slightly lower

6.4 Possible Limiting Factors for Model Performance 67

macro-average F1 for the NPSC (95.39), compared to its F1 for the NorNE dataset
(97.07). The differences in F1 is largely due to about 4% lower macro-average
recall from the NPSC. As discussed in Section 6.2.4, the Capital Letter class
suffered the lowest recall rate (87.03), whereas the Not Capital Letter predictions
are near perfect recall rate (99.82) and precision (99.42), as presented in Table
6.8.

Performance for the Not Capital Letter class is very similar in both evaluation
of the NorNE and NPSC datasets. However, for the Capital Letter class, the
models’ recall rate the are significantly higher for NorNE dataset test results, with
a macro-average of 95.30 (see Table 6.4), compared to the NPSC results of 87.03,
a difference of approximately 8%.

6.4 Possible Limiting Factors for Model Performance

There are several factors that contributed to limit the performance of the BERT
models for both the NorNE dataset and the NPSC. The following list discuss some
plausible limitations, and why the NorNE results were generally better than the
NPSC results.

1. Overfitting: When a model was trained on the NorNE dataset, the model
may have learned patterns that are specific to their training data. The
optimal selection of hyperparameters such as dropout and regularization
could help to alleviate overfitting issues. However, if the training data does
not represent data in the real world, the model will most likely have a hard
time generalizing on new data.

Even if the validation and test datasets come from the same source and
follow a similar data pattern, it is common to observe some variance in the
validation and the test dataset results. As Jørgensen et al. (2020) observed,
there was up to 7% F1 variance between the validation and test set in their
testing. Nevertheless, for our binary classification evaluation, it is curious
how the NPSC recall for the Capital Letter class is about 8% lower than the
NorNE test dataset. This could be a sign of overfitting.

A portion of NorNE contain parliamentary transcripts, but news text are
far more dominant (Jørgensen et al., 2020). Since the training data are
mostly news text, it may be the case that the models have learned pattern
to detect named entities in text articles. Perhaps the models perform better
at predicting named entities in written texts as opposed to transcript derived
from oral communication. Oral communication may differ in sentence
structure, additionally the transcribed speech in the NPSC dataset is formal
in nature, which further complicates the sentence structure. It can be argued
that the NPSC dataset may not accurately represent the way people in the

68 Results and discussion

general public communicate with one other. Perhaps in a different speech-
to-text transcribed dataset the models’ performance would differ from the
NPSC.

2. Label noise: The labeled data for either training or test data might be
incorrect. NorNE is professionally annotated and reviewed by multiple
annotators, which makes the dataset less prone to noisy data.

However, the NPSC sample data was annotated by the author of this thesis,
who is not a professional annotator. The annotations have not been reviewed
by other annotators either, so the sample dataset may contain incorrect
labels. The annotation process used a best practise approach, where if
there was any doubt if an annotation was correct, the NorNE dataset would
serve as reference work if the same word was present in NorNE in a
similar context. Even though such an approach was used, errors may occur.
If a label is incorrectly annotated, this could lead to misleading model
performance.

3. Quality of training data: Both the quality and quantity of data are crucial
factors when training a model that is intended to generalize across multiple
data sources. If a model lacks sufficient task-specific training material to
learn the patterns of the data, it is unlikely that it will give good predictions.

As mentioned, the NorNE dataset consists mostly of news texts. As a result,
our models may be susceptible to overfitting, which could be due to the
disproportionate distribution of content types within the dataset training
data, which may lead to poor generalization performance. Perhaps, if we
had more data similar in text structure of the NSPC dataset, or just more
diverse training data in general, the models would perform better.

4. Inadequate training method: There might be better ways to train a model to
detect named entities regardless of capitalization.

To reiterate, our models were trained on the NorNE dataset where every
token was forced lowercase. Perhaps a mix between capitalization and
lowercase would produce better results.

A related aspect is the number of named entity classes the model was trained
on. Instead of using NorNE-full, which entails using all 8 labels, perhaps,
NorNE-7 where geo-political labels (GPE) are conflated into a single type
would yield better results. An even further reduction in the number of
classes that the model trained on could perhaps have been better for the
binary classification.

5. Pre-trained language model type: Other pre-trained language model may
have produced better results when trained. this includes larger BERT

6.5 Results Summary 69

models, such as NB-BERTLARGE
2 and MegatronBERT3, which both have

twice the number of hidden layers, and a higher attention head count
compared to the models used in this thesis.

It is also possible that the generative pre-trained transformer (GPT) models
would produce similar or better results if the prompt requests were properly
fine-tuned and tested, compared to the specialized fine-tuned BERT approach.

6. Hyperparameter combination: A grid search for optimal hyperparameters
could be beneficial, but would require larger computing power and longer
project time than the restrictions of the current research allowed. A grid
search involves that one automates the search to find the best combination
of hyperparamters by trial and error. In practise, it could be that one has a set
of different optimiser types, a set of loss function type, schedulers, number
of epochs and so on. All these options within a set of hyperparameters are
tried with every combination of the other set of hyperparameters to find the
best tuning.

A downside of a grid search that cannot be understated, is the amount of
time a model would spend training just to find the optimal hyperparameters.
In practise, with every new option in a grid search the training time
could increase exponentially if we were to exhaustively search all possible
combinations in the different sets of parameters. Say we had 34 = 81
different combinations, and we added another hyperparameter with 3
possible values. This would lead to a total of 35 = 243 combinations.

Even if a training epoch lasts only about 3 minutes, which was the case
for our BERT training, having a model train for 50 epochs will results
in 150 minutes training for one combination of hyperparameters. Taking
those 150 minutes and multiplying them with 243 combinations, yields
an approximate calculation of how long the computer for our experiments
would run full power, non-stop just to get optimal hyperparameters: about
25 days.

6.5 Results Summary

For the evaluation results for the NorNE test dataset and the NPSC, we observed
that Ner-Scandi performed best among the models tested. NB-BERT achieves
similar results to Ner-Scandi, where the differences is hardly statistically sig-
nificant . From a technical standpoint, the similar performance of NB-BERT
and Ner-Scandi is not surprising, as they are essentially the same model. The
only difference is that Ner-Scandi was fine-tuned on additional Scandinavian data
before further fine-tuning. Notably though, NB-BERT is the best performer for

2https://huggingface.co/NbAiLab/nb-bert-large
3https://huggingface.co/docs/transformers/model_doc/megatron-bert

https://huggingface.co/NbAiLab/nb-bert-large
https://huggingface.co/docs/transformers/model_doc/megatron-bert

70 Results and discussion

the annotated NPSC sample dataset, but not by a large margin compared to the
second-best model, Ner-Scandi.

Comparing the results from the NorNE test dataset and the NPSC, the results
from NorNE are significantly better than the results from the NPSC. This may
indicate an overfitting issue, however, further testing on different datasets is
needed to draw this conclusion.

Ner-Scandi’s results on the NorNE dataset yield a micro-average of F1 of
87.06 for NER evaluation without token boundary, and a F1 micro-average of
86.58 for the strict match evaluation. Lastly, Ner-Scandi achieved a macro-
average of 97.07 when evaluating the binary classification performance.

For the IOB2 annotated NPSC sample dataset results, NB-BERT performed
the best, but not by a huge margin compared to the second best model, Ner-
Scandi. For NER evaluation without token boundary, NB-BERT’s micro-average
resulted in a F1 of 84.44, and 82.30 micro-average for the strict match evaluation.

For the full NPSC dataset binary classification task, Ner-Scandi achieved
highest macro-average, 95.39, only 0.28% higher than NB-BERT’s macro-
average.

Chapter 7

Conclusions and Future Work

To answer our first research question (R1) “To what extent can current neural
models be used to identify non-capitalized named entities?”, our findings strongly
indicate that BERT-models are highly capable of identifying non-capitalized
named entities. This includes both the traditional approach of NER, where named
entities given a specific named entity class, and the binary classification approach,
which involves detecting named entities without labeling them for a specific class.

For our second research question (R2) ”Which current neural models achieves
best NER results in all lowercase texts?”, we conclude that fine-tuned BERT
models outmatch our baselines models (SpaCy and NCRF++) by a significant
margin. Specifically, the Ner-Scandi and NB-BERT performed best in our testing.

7.1 Contributions

Our research focus is on NER in all lowercase text, an area of research that
is largely unexplored. In this regard, our hope is that this thesis may provide
valuable insight into how to improve the efficiency of NER applications for
text where named entities include capitalization errors. These models could
in turn be used for post processing of speech-to-text system to improve proper
capitalization.

We have provided a thorough description of the experimental setup, assessment
methods and evaluation metrics with the aim of making replication and validation
of this study easy for researchers interested to undertake similar research.

The research presented in this thesis has the potential to benefit various
industries, such as the mass media and the technology industry. The media
industry could deploy similar approaches to improve automatically generated
speech-to-text transcriptions for capitalization errors. Our findings include
suggestions of techniques for creating robust NER models that can detect named
entities even when they appear in lowercase in text, which may increase the
efficiency of downsteam tasks such as information extraction systems.

As an additional contribution to NER research, a small annotated dataset was

72 Conclusions and Future Work

created using sentences from the Norwegian Parliamentary Speech Corpus. This
dataset will be made publicly available and can be used to further improve NER
models for the Norwegian language.

7.2 Limitations

Section 6.4 covers some potential limiting factors that could have impacted
the performance of our models and possible approaches to addressee these
shortcomings. In this section, we will briefly mention some of the limitations
of this study.

This study only presents results from datasets that were forced to be lowercase.
However, in a real-world scenarios there may be a mix of capitalization errors
and properly capitalized words. It is important to keep this in mind because if our
models were tested on mixed capitalization, rather than just lowercase text, their
behavior would most likely differ from the reported results.

Another limiting factor of this study is the limited amount of annotated data,
besides the NorNE test set. To confidently conclude if the models have achieved
the ability to generalizing its performance across data, we would ideally want
more test datasets, with more annotated named entities than the annotated NPSC
sample dataset.

As discussed in Section 6.4, the annotated NPSC sample dataset, besides
from being limited in size, might contains mislabeled named entity types. It is
important to acknowledge these limitation and recommend reader to consider its
potential impact on the research outcome.

7.3 Future Work

While the findings of this study provide valuable insights on NER, there are
several opportunities for future research to build upon and expand the current
of understanding how to use transformer-based language models to tackle NER.
The following sections outline potential directions for further investigation.

Firstly, in regards to the limitations highlighted above, we encourage re-
searchers to explore new approaches to conduct similar studies, e.g. by exploring
alternative training methods, using different training data, and utilizing hyper-
parameter tuning.

Further research can also be conducted to see the efficiency of our approach
to NER and possible capitalization correction in industry setting. Specifically it
would be great to get insight into how these types of NER models would fit as a
component of a larger system perhaps as a one of multiple layers to detect and
correct capitalization errors.

We also encourage researchers to explore the use of larger and different types
of language models for similar tasks as the those explored in thesis thesis. A

7.3 Future Work 73

special area of interest would be to compare performance for the same tasks,
using powerful auto-regressive generative pre-trained transformer models, such
as ChatGPT1, GPT-42 or similar.

1https://chat.openai.com/chat
2https://openai.com/product/gpt-4

https://chat.openai.com/chat
https://openai.com/product/gpt-4

74 APPENDICES

Appendix A

Extended Training Details

This appendix provides specific hyperparameters for NCRF++, and detailed
training metrics for each BERT model and every seed, presented in tabular
form. The metrics include the epoch number, along with its corresponding
validation dataset recall rate, training loss, validation loss, and learning rate for
that particular epoch.

76 Extended Training Details

Figure A.1: Configuration file of the NCRF++ model

77

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.7914 68.5052 3.9147 2.00e-05
2 0.8234 22.3259 3.5576 2.00e-05
3 0.8239 13.9207 3.6928 2.00e-05
4 0.8350 9.2733 3.6146 2.00e-05
5 0.8539 6.8918 3.5897 2.00e-05
6 0.8401 5.3763 4.0479 1.86e-05
7 0.8433 3.9361 4.1711 1.86e-05
8 0.8440 3.2099 4.6394 1.73e-05
9 0.8389 2.9028 4.6286 1.73e-05

10 0.8530 2.0669 4.4494 1.61e-05
11 0.8375 1.8255 4.9256 1.61e-05
12 0.8442 1.5254 5.1655 1.50e-05
13 0.8387 1.4220 5.1197 1.50e-05
14 0.8479 1.4381 5.1185 1.39e-05

Table A.1: mBERT seed 1024 training metrics

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.8052 72.8943 3.8747 2.00e-05
2 0.8263 22.7135 3.4376 2.00e-05
3 0.8261 14.0016 3.4130 2.00e-05
4 0.8358 9.3994 3.6396 2.00e-05
5 0.8362 6.9198 3.9657 1.86e-05
6 0.8411 4.8009 4.3146 1.86e-05
7 0.8435 3.8334 4.3902 1.73e-05
8 0.8217 2.9609 4.8945 1.73e-05
9 0.8454 2.3790 4.6530 1.61e-05

10 0.8520 2.4006 4.2368 1.61e-05
11 0.8515 1.9010 4.5653 1.50e-05
12 0.8433 1.6242 5.0868 1.50e-05
13 0.8365 1.3760 5.3600 1.39e-05
14 0.8377 1.1662 5.1492 1.39e-05
15 0.8345 0.9457 5.4017 1.29e-05
16 0.8430 1.0117 5.1804 1.29e-05
17 0.8498 0.8583 5.5515 1.20e-05
18 0.8445 0.7061 5.5779 1.20e-05
19 0.8302 0.7815 5.9122 1.12e-05

Table A.2: mBERT seed 42 training metrics

78 Extended Training Details

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.7684 68.0075 4.2706 2.00e-05
2 0.8249 22.3122 3.5049 2.00e-05
3 0.8239 13.5103 3.6727 2.00e-05
4 0.8462 9.4838 3.5525 2.00e-05
5 0.8510 6.5424 3.9455 1.86e-05
6 0.8253 5.0036 4.5083 1.86e-05
7 0.8433 3.8627 4.2149 1.73e-05
8 0.8251 3.2255 4.7884 1.73e-05
9 0.8348 2.5549 4.7548 1.61e-05
10 0.8467 2.0466 4.9655 1.61e-05
11 0.8394 1.8670 4.6874 1.50e-05
12 0.8375 1.5565 5.2846 1.50e-05
13 0.8234 1.2027 5.8072 1.39e-05
14 0.8343 1.3031 5.8198 1.39e-05

Table A.3: mBERT seed 8 training metrics

79

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.7989 72.2627 3.9953 2.00e-05
2 0.7984 22.8389 3.5976 2.00e-05
3 0.8372 13.7829 3.3550 2.00e-05
4 0.8396 9.2690 3.6457 2.00e-05
5 0.8333 6.9039 3.9777 1.86e-05
6 0.8401 4.9983 4.0292 1.86e-05
7 0.8438 4.0289 4.2630 1.73e-05
8 0.8447 3.2377 4.5652 1.73e-05
9 0.8416 2.7318 4.8095 1.61e-05

10 0.8367 2.4836 4.9105 1.61e-05
11 0.8372 1.9560 5.0740 1.50e-05
12 0.8370 1.5267 5.0022 1.50e-05
13 0.8418 1.1764 5.3892 1.39e-05
14 0.8345 1.0659 5.3329 1.39e-05
15 0.8469 0.9984 5.5240 1.29e-05
16 0.8341 0.8448 5.9528 1.29e-05
17 0.8367 1.0515 5.7047 1.20e-05
18 0.8338 0.7948 5.8308 1.20e-05
19 0.8450 0.6735 5.7182 1.12e-05
20 0.8418 0.5532 5.8720 1.12e-05
21 0.8479 0.6422 6.0070 1.04e-05
22 0.8421 0.6116 5.6259 1.04e-05
23 0.8343 0.4988 5.8740 9.68e-06
24 0.8454 0.5097 5.9765 9.68e-06
25 0.8484 0.4689 6.1552 9.00e-06
26 0.8435 0.8369 6.2201 9.00e-06
27 0.8377 0.4423 6.2814 8.37e-06
28 0.8309 0.3489 6.5396 8.37e-06
29 0.8406 0.2836 6.2307 7.79e-06
30 0.8375 0.2672 6.4734 7.79e-06
31 0.8474 0.2943 6.2924 7.24e-06
32 0.8387 0.2428 6.5679 7.24e-06
33 0.8464 0.2464 6.4747 6.73e-06
34 0.8408 0.1814 6.4641 6.73e-06

Table A.4: mBERT seed 37 training metrics

80 Extended Training Details

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.7740 70.3983 4.2179 2.00e-05
2 0.8084 22.9184 3.6122 2.00e-05
3 0.8205 13.8833 3.5907 2.00e-05
4 0.8358 9.6895 3.5682 2.00e-05
5 0.8421 6.6674 4.0060 1.86e-05
6 0.8336 5.2350 4.1901 1.86e-05
7 0.8408 3.9585 4.4679 1.73e-05
8 0.8375 3.2135 4.5344 1.73e-05
9 0.8498 2.8077 4.4353 1.61e-05
10 0.8375 1.9541 4.8751 1.61e-05
11 0.8365 2.1582 4.9123 1.50e-05
12 0.8442 1.6182 4.9229 1.50e-05
13 0.8454 1.2320 5.1833 1.39e-05
14 0.8462 1.1042 5.3992 1.39e-05
15 0.8401 1.1980 5.4005 1.29e-05
16 0.8486 0.9297 5.2077 1.29e-05
17 0.8304 0.7452 5.7505 1.20e-05
18 0.8375 0.8193 6.1152 1.20e-05

Table A.5: mBERT seed 101 training metrics

81

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.7125 97.1865 5.1887 2.00e-05
2 0.8110 27.5390 3.8597 2.00e-05
3 0.8389 16.6439 3.2529 2.00e-05
4 0.8333 10.9792 3.4119 1.86e-05
5 0.8554 7.6425 3.3456 1.86e-05
6 0.8358 5.4948 3.6588 1.86e-05
7 0.8384 3.9299 3.7279 1.86e-05
8 0.8500 3.1927 3.7611 1.73e-05
9 0.8510 2.5959 3.8057 1.73e-05

10 0.8503 1.9686 4.1348 1.61e-05
11 0.8423 1.6832 4.4392 1.61e-05
12 0.8576 1.3368 4.2600 1.50e-05
13 0.8476 1.1130 4.6264 1.50e-05
14 0.8469 1.0656 4.6346 1.39e-05
15 0.8520 0.9986 4.4718 1.39e-05
16 0.8508 0.8883 4.4089 1.29e-05
17 0.8568 0.7255 4.7918 1.29e-05
18 0.8527 0.5299 5.1819 1.20e-05
19 0.8566 0.5347 4.8490 1.20e-05
20 0.8590 0.5068 4.9891 1.12e-05
21 0.8539 0.4271 5.0791 1.12e-05
22 0.8413 0.5532 5.3603 1.04e-05
23 0.8571 0.3779 5.0402 1.04e-05
24 0.8513 0.2764 5.2507 9.68e-06
25 0.8418 0.2740 5.6351 9.68e-06
26 0.8476 0.2740 5.6121 9.00e-06
27 0.8588 0.2990 5.4070 9.00e-06
28 0.8537 0.2783 5.5482 8.37e-06
29 0.8576 0.2628 5.4449 8.37e-06

Table A.6: NorBERT seed 101 training metrics

82 Extended Training Details

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.7406 92.6809 4.9456 2.00e-05
2 0.8089 27.4191 3.7120 2.00e-05
3 0.8256 15.6934 3.5074 2.00e-05
4 0.8178 10.2390 3.6628 1.86e-05
5 0.8384 6.9185 3.5390 1.86e-05
6 0.8430 5.0726 3.6656 1.73e-05
7 0.8467 3.5598 3.8283 1.73e-05
8 0.8442 2.6312 4.0496 1.61e-05
9 0.8413 2.2403 4.1726 1.61e-05
10 0.8396 1.9767 4.6201 1.50e-05
11 0.8413 1.5807 4.6397 1.50e-05
12 0.8452 1.6099 4.4286 1.39e-05
13 0.8471 1.2611 5.0316 1.39e-05
14 0.8459 1.1650 4.5043 1.29e-05
15 0.8462 1.0067 4.5983 1.29e-05
16 0.8440 0.6461 4.9729 1.20e-05
17 0.8614 0.6611 4.7159 1.20e-05
18 0.8532 0.5982 4.9827 1.12e-05
19 0.8496 0.5197 5.1715 1.12e-05
20 0.8464 0.5145 5.0018 1.04e-05
21 0.8515 0.3811 5.1245 1.04e-05
22 0.8479 0.4136 5.3384 9.68e-06
23 0.8377 0.4803 5.5377 9.68e-06
24 0.8491 0.3480 5.2279 9.00e-06
25 0.8517 0.3495 5.0548 9.00e-06
26 0.8399 0.3106 5.5673 8.37e-06

Table A.7: NorBERT seed 37 training metrics

83

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.7127 100.7491 5.2153 2.00e-05
2 0.8011 28.8864 3.6324 2.00e-05
3 0.8278 16.8526 3.4071 2.00e-05
4 0.8358 10.8933 3.4072 2.00e-05
5 0.8227 7.6063 3.5280 1.86e-05
6 0.8222 5.5975 3.9414 1.86e-05
7 0.8547 4.1314 3.7420 1.73e-05
8 0.8358 3.1115 4.0664 1.73e-05
9 0.8345 2.4497 4.3688 1.61e-05

10 0.8549 1.9965 3.9931 1.61e-05
11 0.8345 1.7865 4.5745 1.50e-05
12 0.8537 1.2779 4.4293 1.50e-05
13 0.8469 1.1582 4.7921 1.39e-05
14 0.8396 1.1292 5.0618 1.39e-05
15 0.8447 0.9246 4.7251 1.29e-05
16 0.8413 0.9059 4.5169 1.29e-05
17 0.8513 0.8402 4.8933 1.20e-05
18 0.8476 0.5657 4.9325 1.20e-05
19 0.8406 0.5977 5.1469 1.12e-05

Table A.8: NorBERT seed 42 training metrics

84 Extended Training Details

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.7306 92.5764 4.9081 2.00e-05
2 0.8115 26.7694 3.6770 2.00e-05
3 0.8154 15.7897 3.4303 2.00e-05
4 0.8224 10.2722 3.4626 2.00e-05
5 0.8222 6.8309 3.6136 2.00e-05
6 0.8430 5.1689 3.6690 1.86e-05
7 0.8249 4.0613 3.9235 1.86e-05
8 0.8450 3.0128 3.9144 1.73e-05
9 0.8525 2.4284 3.9068 1.73e-05
10 0.8464 1.9653 4.1265 1.61e-05
11 0.8445 1.9132 4.3648 1.61e-05
12 0.8408 1.3520 4.6774 1.50e-05
13 0.8493 0.9689 4.5865 1.50e-05
14 0.8539 1.0314 4.5684 1.39e-05
15 0.8423 0.9082 4.8960 1.39e-05
16 0.8505 0.6494 4.7209 1.29e-05
17 0.8450 0.5765 5.1580 1.29e-05
18 0.8341 0.4491 5.2917 1.20e-05
19 0.8411 0.5536 5.2807 1.20e-05
20 0.8343 0.5653 5.3686 1.12e-05
21 0.8256 0.4481 5.7361 1.12e-05
22 0.8469 0.3929 5.3151 1.04e-05
23 0.8394 0.3685 5.4390 1.04e-05
24 0.8551 0.3509 5.0535 9.68e-06
25 0.8527 0.3437 5.2040 9.68e-06
26 0.8486 0.3655 5.0941 9.00e-06
27 0.8593 0.2528 4.9960 9.00e-06
28 0.8469 0.2115 5.3336 8.37e-06
29 0.8505 0.2130 5.2463 8.37e-06
30 0.8549 0.2201 5.2072 7.79e-06
31 0.8394 0.2021 5.6657 7.79e-06
32 0.8442 0.2047 5.3811 7.24e-06
33 0.8440 0.1502 5.6674 7.24e-06
34 0.8459 0.1241 5.9175 6.73e-06
35 0.8539 0.1652 5.5680 6.73e-06
36 0.8554 0.1061 5.4760 6.26e-06

Table A.9: NorBERT seed 8 training metrics

85

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.7636 89.5387 4.8734 2.00e-05
2 0.8074 26.2759 3.6314 2.00e-05
3 0.8537 15.7820 3.2470 2.00e-05
4 0.8081 10.5570 3.7625 2.00e-05
5 0.8464 7.2826 3.3526 1.86e-05
6 0.8515 5.2202 3.3007 1.86e-05
7 0.8440 3.9002 3.7005 1.73e-05
8 0.8360 3.0315 3.8433 1.73e-05
9 0.8423 2.2982 4.1437 1.61e-05

10 0.8481 2.1501 4.2607 1.61e-05
11 0.8491 1.6538 4.2675 1.50e-05
12 0.8433 1.3722 4.4822 1.50e-05

Table A.10: NorBERT seed 1024 training metrics

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.8377 52.2142 2.8407 2.00e-05
2 0.8622 12.3361 2.4389 2.00e-05
3 0.8631 6.2733 2.7640 2.00e-05
4 0.8714 3.4814 2.9224 2.00e-05
5 0.8651 2.2019 3.4047 1.86e-05
6 0.8663 1.5534 3.4323 1.86e-05
7 0.8651 1.0808 3.7757 1.73e-05
8 0.8762 0.8991 3.6880 1.73e-05
9 0.8653 0.8292 3.8373 1.61e-05

10 0.8772 0.7939 3.7952 1.61e-05
11 0.8728 0.5443 3.8610 1.50e-05
12 0.8590 0.4789 4.1652 1.50e-05
13 0.8672 0.3228 4.3434 1.39e-05
14 0.8709 0.2740 4.4650 1.39e-05
15 0.8716 0.2703 4.3906 1.29e-05
16 0.8568 0.3783 4.5439 1.29e-05
17 0.8554 0.2802 5.0246 1.20e-05
18 0.8590 0.2335 4.9764 1.20e-05
19 0.8609 0.3832 4.5612 1.12e-05

Table A.11: NorBERT2 seed 42 training metrics

86 Extended Training Details

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.8520 52.2087 2.6768 2.00e-05
2 0.8721 12.8177 2.3641 2.00e-05
3 0.8711 6.2395 2.5484 2.00e-05
4 0.8656 3.7737 3.0555 2.00e-05
5 0.8675 2.3021 3.3562 1.86e-05
6 0.8697 1.4955 3.4261 1.86e-05
7 0.8668 1.0214 3.8558 1.73e-05
8 0.8699 0.9928 3.8122 1.73e-05
9 0.8643 0.7999 4.1243 1.61e-05
10 0.8716 0.6768 4.1476 1.61e-05
11 0.8847 0.5901 3.8993 1.50e-05
12 0.8735 0.4748 4.0456 1.50e-05
13 0.8682 0.3153 4.3943 1.39e-05
14 0.8789 0.3179 4.5130 1.39e-05
15 0.8779 0.5663 4.1369 1.29e-05
16 0.8622 0.3134 4.3180 1.29e-05
17 0.8648 0.2249 4.8040 1.20e-05
18 0.8806 0.2848 4.4037 1.20e-05
19 0.8665 0.3333 4.3716 1.12e-05
20 0.8641 0.2501 4.7525 1.12e-05

Table A.12: NorBERT2 seed 8 training metrics

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.8319 50.3822 2.9576 2.00e-05
2 0.8677 12.2517 2.4116 2.00e-05
3 0.8607 6.0945 2.7742 2.00e-05
4 0.8750 3.4882 2.8794 1.86e-05
5 0.8680 2.0177 3.3829 1.86e-05
6 0.8665 1.3927 3.7446 1.73e-05
7 0.8665 1.0645 4.0039 1.73e-05
8 0.8726 0.9379 3.7415 1.61e-05
9 0.8801 0.7072 3.8398 1.61e-05
10 0.8614 0.6811 4.4174 1.50e-05
11 0.8675 0.5919 4.1718 1.50e-05
12 0.8605 0.4542 4.3496 1.39e-05
13 0.8634 0.3844 4.6252 1.39e-05
14 0.8617 0.4277 4.6908 1.29e-05
15 0.8602 0.3118 4.7844 1.29e-05
16 0.8672 0.3079 4.8100 1.20e-05
17 0.8607 0.3554 4.7319 1.20e-05
18 0.8709 0.2512 4.5213 1.12e-05

Table A.13: NorBERT2 seed 101 training metrics

87

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.8447 52.6635 2.7712 2.00e-05
2 0.8542 12.3776 2.6412 2.00e-05
3 0.8781 6.3086 2.6085 1.86e-05
4 0.8639 3.4005 3.1123 1.86e-05
5 0.8801 1.9722 3.0757 1.73e-05
6 0.8631 1.6063 3.5565 1.73e-05
7 0.8566 1.1563 4.0525 1.61e-05
8 0.8738 0.8527 3.9074 1.61e-05
9 0.8806 0.8713 3.7743 1.50e-05

10 0.8757 0.5881 4.0760 1.50e-05
11 0.8624 0.7394 4.4666 1.39e-05
12 0.8697 0.5583 4.3511 1.39e-05
13 0.8530 0.4381 4.6990 1.29e-05
14 0.8772 0.4068 4.2894 1.29e-05
15 0.8721 0.2895 4.6798 1.20e-05
16 0.8689 0.3396 4.6886 1.20e-05
17 0.8883 0.2581 4.4104 1.12e-05
18 0.8786 0.2127 4.8362 1.12e-05
19 0.8706 0.3138 4.5362 1.04e-05
20 0.8656 0.2165 4.9504 1.04e-05
21 0.8714 0.1650 4.9988 9.68e-06
22 0.8719 0.1040 4.9943 9.68e-06
23 0.8689 0.0793 5.2409 9.00e-06
24 0.8760 0.1522 4.8077 9.00e-06
25 0.8723 0.1962 4.9911 8.37e-06
26 0.8752 0.2069 4.6940 8.37e-06

Table A.14: NorBERT2 seed 1024 training metrics

88 Extended Training Details

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.8493 50.0674 2.8220 2.00e-05
2 0.8670 12.4641 2.4962 2.00e-05
3 0.8612 6.1594 2.7439 2.00e-05
4 0.8714 3.6004 2.9489 1.86e-05
5 0.8636 2.2588 3.3997 1.86e-05
6 0.8602 1.3531 3.6782 1.73e-05
7 0.8622 1.2065 3.7929 1.73e-05
8 0.8471 0.7857 4.5201 1.61e-05
9 0.8740 0.7741 4.0984 1.61e-05
10 0.8561 0.7548 4.4241 1.50e-05
11 0.8653 0.4965 4.3692 1.50e-05
12 0.8663 0.4109 4.2945 1.39e-05
13 0.8515 0.4611 4.5490 1.39e-05
14 0.8709 0.4617 4.3248 1.29e-05
15 0.8823 0.5046 4.0945 1.29e-05
16 0.8670 0.4823 4.3887 1.20e-05
17 0.8769 0.2523 4.1500 1.20e-05
18 0.8687 0.1715 4.6427 1.12e-05
19 0.8704 0.2317 4.6500 1.12e-05
20 0.8832 0.1865 4.2543 1.04e-05
21 0.8765 0.1585 4.6759 1.04e-05
22 0.8798 0.1408 4.7155 9.68e-06
23 0.8740 0.1230 4.7775 9.68e-06
24 0.8714 0.1652 4.8895 9.00e-06
25 0.8622 0.2276 5.0816 9.00e-06
26 0.8675 0.1574 5.2099 8.37e-06
27 0.8689 0.1374 5.0820 8.37e-06
28 0.8697 0.1169 5.0177 7.79e-06
29 0.8784 0.1387 4.7382 7.79e-06

Table A.15: NorBERT2 seed 37 training metrics

89

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.8464 52.0772 2.6354 2.00e-05
2 0.8682 13.0837 2.3323 2.00e-05
3 0.8857 7.2475 2.3209 2.00e-05
4 0.8781 4.8451 2.6476 2.00e-05
5 0.8898 3.4069 2.6461 1.86e-05
6 0.8997 2.4228 2.6254 1.86e-05
7 0.8883 1.7802 3.0084 1.73e-05
8 0.8912 1.5040 3.0689 1.73e-05
9 0.8883 1.2387 3.2360 1.61e-05

10 0.8910 0.9481 3.0965 1.61e-05
11 0.8874 0.7708 3.4764 1.61e-05
12 0.8852 0.8753 3.3880 1.50e-05
13 0.8706 0.6192 3.9092 1.50e-05
14 0.8939 0.7180 3.4948 1.39e-05
15 0.8750 0.5822 3.9152 1.39e-05

Table A.16: NB-BERT seed 37 training metrics

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.8343 53.9982 2.7768 2.00e-05
2 0.8811 13.2062 2.2109 2.00e-05
3 0.8941 7.3976 2.1899 2.00e-05
4 0.8854 4.5101 2.5016 2.00e-05
5 0.8983 3.2253 2.6415 1.86e-05
6 0.8844 2.3198 2.7323 1.86e-05
7 0.8895 1.7363 3.1111 1.73e-05
8 0.8794 1.4158 3.3251 1.73e-05
9 0.8774 1.2233 3.5711 1.61e-05

10 0.8941 0.9818 3.3455 1.61e-05
11 0.8801 0.9547 3.4682 1.50e-05
12 0.8781 0.7722 3.8062 1.50e-05
13 0.8733 0.8162 3.6838 1.39e-05
14 0.8905 0.7012 3.2753 1.39e-05

Table A.17: NB-BERT seed 101 training metrics

90 Extended Training Details

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.8408 50.9818 2.7669 2.00e-05
2 0.8769 12.6998 2.2829 2.00e-05
3 0.8857 7.3607 2.3898 2.00e-05
4 0.8903 4.7718 2.4702 2.00e-05
5 0.8794 3.5760 2.7959 2.00e-05
6 0.8898 2.3370 2.9843 1.86e-05
7 0.8854 1.9192 2.9241 1.86e-05
8 0.8876 1.4987 3.2120 1.73e-05
9 0.8857 1.1741 3.2532 1.73e-05
10 0.8961 1.0172 3.3765 1.61e-05
11 0.8900 0.8381 3.5328 1.61e-05
12 0.8927 0.8658 3.3764 1.50e-05
13 0.8973 0.7424 3.3678 1.50e-05
14 0.8956 0.6069 3.4169 1.39e-05
15 0.9029 0.4315 3.5408 1.39e-05
16 0.8905 0.5421 3.6905 1.29e-05
17 0.8917 0.4682 3.6455 1.29e-05
18 0.8903 0.4652 3.8390 1.20e-05
19 0.8968 0.2920 3.7444 1.20e-05
20 0.8765 0.3375 4.0788 1.12e-05
21 0.8932 0.3406 4.0165 1.12e-05
22 0.8910 0.3301 4.0579 1.04e-05
23 0.8951 0.2519 4.0468 1.04e-05
24 0.8895 0.2588 4.2287 9.68e-06

Table A.18: NB-BERT seed 8 training metrics

91

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.8563 50.7012 2.5224 2.00e-05
2 0.8685 12.8018 2.3840 2.00e-05
3 0.8689 7.2362 2.5616 2.00e-05
4 0.8818 4.6250 2.4641 2.00e-05
5 0.8932 3.2888 2.5852 2.00e-05
6 0.8903 2.3128 2.6598 1.86e-05
7 0.8949 1.7152 2.9561 1.86e-05
8 0.8735 1.5033 3.5905 1.73e-05
9 0.8966 0.9791 3.1546 1.73e-05

10 0.8903 1.0002 3.2425 1.61e-05
11 0.8886 0.7639 3.3270 1.61e-05
12 0.9062 0.8803 2.9820 1.50e-05
13 0.8774 0.7128 3.7163 1.50e-05
14 0.8953 0.7542 3.3716 1.39e-05
15 0.8990 0.5989 3.3048 1.39e-05
16 0.8951 0.3917 3.4243 1.39e-05
17 0.9004 0.6041 3.4581 1.39e-05
18 0.8939 0.5382 3.3386 1.39e-05
19 0.8847 0.5838 3.7502 1.39e-05
20 0.8876 0.4865 3.6501 1.29e-05
21 0.8815 0.2173 4.1599 1.29e-05

Table A.19: NB-BERT seed 42 training metrics

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.8469 55.3110 2.8197 2.00e-05
2 0.8835 12.8683 2.3170 2.00e-05
3 0.8866 7.4436 2.2853 2.00e-05
4 0.8871 4.6853 2.6367 2.00e-05
5 0.8781 3.2783 2.9055 1.86e-05
6 0.8956 2.1381 2.7540 1.86e-05
7 0.8927 1.9683 2.8259 1.73e-05
8 0.8958 1.3189 3.1300 1.73e-05
9 0.8815 1.1802 3.4506 1.61e-05

10 0.8980 1.1192 3.2311 1.61e-05
11 0.8895 0.7781 3.2925 1.50e-05
12 0.8915 0.7062 3.4681 1.50e-05
13 0.8755 0.6731 3.8036 1.39e-05
14 0.8920 0.5437 3.4443 1.39e-05
15 0.8934 0.5271 3.4827 1.29e-05
16 0.8907 0.6766 3.5814 1.29e-05
17 0.8900 0.3999 3.7259 1.20e-05
18 0.8905 0.5627 3.4032 1.20e-05
19 0.8837 0.3589 3.9234 1.12e-05

Table A.20: NB-BERT seed 1024 training metrics

92 Extended Training Details

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.9031 38.1994 2.0490 2.00e-05
2 0.9033 8.8223 1.7134 2.00e-05
3 0.9227 5.3342 1.6697 2.00e-05
4 0.9193 3.4882 1.7666 1.86e-05
5 0.9055 2.4416 2.2019 1.86e-05
6 0.9118 1.8235 2.2214 1.73e-05
7 0.9230 1.4112 2.0177 1.73e-05
8 0.9251 1.3939 2.0775 1.61e-05
9 0.9125 1.1165 2.4483 1.61e-05
10 0.9210 0.9270 2.5080 1.50e-05
11 0.9201 0.7225 2.3101 1.50e-05
12 0.9152 0.6342 2.5197 1.39e-05
13 0.9169 0.7638 2.6066 1.39e-05
14 0.9159 0.6130 2.6678 1.29e-05
15 0.9220 0.4806 2.6560 1.29e-05
16 0.9113 0.4423 2.9390 1.20e-05
17 0.9089 0.5022 2.7538 1.20e-05

Table A.21: Scandi ner seed 1024 training metrics

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.9138 37.8601 1.8551 2.00e-05
2 0.9184 9.0088 1.6223 2.00e-05
3 0.9242 5.0619 1.5922 2.00e-05
4 0.9118 3.4869 1.9371 1.86e-05
5 0.9111 2.1817 2.0293 1.86e-05
6 0.9147 1.8632 2.2819 1.86e-05
7 0.9152 1.4704 2.3048 1.73e-05
8 0.9181 1.4931 2.3081 1.73e-05
9 0.9179 1.2779 2.4468 1.61e-05
10 0.9121 1.1221 2.4660 1.61e-05
11 0.9188 0.7967 2.4408 1.50e-05
12 0.9002 1.0178 2.6835 1.50e-05

Table A.22: Scandi ner seed 37 training metrics

93

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.9014 37.3559 2.0919 2.00e-05
2 0.9172 8.8492 1.7048 2.00e-05
3 0.9113 5.0458 1.7632 2.00e-05
4 0.9113 3.3763 1.9889 1.86e-05
5 0.9157 2.3441 2.1061 1.86e-05
6 0.9278 1.6974 2.0021 1.73e-05
7 0.9067 1.5295 2.4783 1.73e-05
8 0.9162 1.5023 2.3009 1.61e-05
9 0.9152 0.8927 2.6275 1.61e-05

10 0.8910 1.0230 2.8581 1.50e-05
11 0.9024 0.7763 2.9228 1.50e-05
12 0.9210 0.9232 2.5604 1.39e-05
13 0.9116 0.5362 2.6832 1.39e-05
14 0.9227 0.4502 2.5388 1.29e-05
15 0.9096 0.3985 2.7618 1.29e-05

Table A.23: Scandi ner seed 42 training metrics

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.9084 35.2245 1.7453 2.00e-05
2 0.9208 8.5002 1.6040 2.00e-05
3 0.9186 4.9390 1.8040 2.00e-05
4 0.9225 3.2814 1.8502 1.86e-05
5 0.9184 3.2168 1.9225 1.86e-05
6 0.9167 1.7283 2.2564 1.73e-05
7 0.9232 1.3425 2.1985 1.73e-05
8 0.9169 1.1804 2.2560 1.61e-05
9 0.9058 1.0327 2.5422 1.61e-05

10 0.9121 1.0039 2.4887 1.50e-05
11 0.9130 0.9773 2.5562 1.50e-05
12 0.9077 0.5967 2.7443 1.39e-05
13 0.9186 0.5914 2.4214 1.39e-05
14 0.9048 0.7891 2.8587 1.29e-05
15 0.9172 0.6206 2.6314 1.29e-05
16 0.9014 0.4510 2.8386 1.20e-05

Table A.24: Scandi ner seed 8 training metrics

94 Extended Training Details

Epoch Validation Recall Train Loss Validation Loss Learning Rate
1 0.9021 36.9761 1.8941 2.00e-05
2 0.9070 8.8546 1.7946 2.00e-05
3 0.9193 4.9838 1.8070 1.86e-05
4 0.9188 3.3755 1.8770 1.86e-05
5 0.9155 2.5897 1.9740 1.86e-05
6 0.9009 1.9625 2.2673 1.86e-05
7 0.9232 1.6097 2.1114 1.86e-05
8 0.9251 1.3243 2.0473 1.86e-05
9 0.9099 1.1051 2.4391 1.73e-05
10 0.9184 1.1741 2.3794 1.73e-05
11 0.9205 1.0012 2.3404 1.61e-05
12 0.9164 0.7091 2.5236 1.61e-05
13 0.9113 0.5281 2.7371 1.50e-05
14 0.9196 0.8359 2.4104 1.50e-05
15 0.9111 0.6241 2.6469 1.39e-05
16 0.9215 0.4901 2.5247 1.39e-05
17 0.9174 0.3575 2.6027 1.29e-05

Table A.25: Scandi ner seed 101 training metrics

Appendix B

Extended Results

Appendix B provides additional details regarding BERT model results that where
not highlighted in Chapter 6, Results and Discussion. Chapter 6 highlight the best
models, whereas this appendix provides supplementary material.

This includes:

• Tabular results for named entity recognition without considering token
boundary averaged over the five used seeds for the models that where
not included in Chapter 6. These include results for both NorNE and the
annotated NPSC sample dataset.

• Tabular results for named entity recognition with strict match criteria,
averaged over the five used seeds for the models that where not included in
Chapter 6. These include results for both NorNE and the annotated NPSC
sample dataset.

• Confusion matrix for Ner-Scandi’s NorNE dataset results that has not been
normalized.

• Confusion matrix for NB-BERT’s NPSC sample dataset results that has not
been normalized.

96 Extended Results

NE Type Precision Recall F1 Support

B-PER 88.70 (±1.95) 90.99 (±0.92) 89.81 (±0.86) 961
I-PER 97.84 (±0.54) 94.47 (±1.53) 96.12 (±0.65) 510

B-ORG 77.35 (±2.99) 78.35 (±1.93) 77.78 (±1.16) 521
I-ORG 72.26 (±1.97) 86.84 (±1.49) 78.86 (±1.41) 248

B-GPE_LOC 87.99 (±1.50) 88.54 (±1.21) 88.26 (±1.09) 428
I-GPE_LOC 93.67 (±1.79) 87.32 (±2.42) 90.36 (±1.65) 79

B-LOC 69.30 (±4.60) 66.92 (±2.67) 67.92 (±1.61) 185
I-LOC 56.94 (±7.54) 85.07 (±3.45) 67.89 (±5.70) 85

B-PROD 40.46 (±3.05) 52.66 (±8.05) 45.27 (±2.56) 131
I-PROD 50.63 (±3.38) 65.80 (±5.57) 57.02 (±2.54) 126

B-DRV 70.77 (±2.35) 72.70 (±6.55) 71.47 (±2.66) 78
I-DRV 43.08 (±3.77) 55.19 (±8.79) 47.93 (±3.23) 13

B-GPE_ORG 72.46 (±4.57) 67.38 (±4.82) 69.74 (±3.92) 61
I-GPE_ORG 94.29 (±11.43) 66.06 (±9.37) 77.11 (±8.73) 7

B-EVT 24.29 (±15.39) 27.04 (±17.62) 24.32 (±14.54) 14
I-EVT 10 (±12.25) 4.86 (±6.10) 6.49 (±8.05) 4

B-MISC 1.43 (±2.86) 1.54 (±3.08) 1.48 (±2.96) 14
I-MISC 0 (±0) 0 (±0) 0 (±0) 3

Micro avg. 80.54 (±1.03) 83.84 (±1.11) 82.15 (±0.50) 3468

Table B.1: mBERT NER results without token span evaluation for the NorNE test dataset

NE Type Precision Recall F1 Support

B-PER 79.53 (±3.42) 94.02 (±1.85) 86.11 (±1.85) 43
I-PER 91 (±2) 97.04 (±3.86) 93.84 (±1.10) 20

B-ORG 88.31 (±1.16) 80.61 (±1.70) 84.27 (±0.95) 77
I-ORG 78.18 (±4.45) 77.53 (±7.01) 77.56 (±3.30) 11

B-GPE_LOC 85 (±1.43) 82.96 (±4.90) 83.88 (±2.50) 28
I-GPE_LOC 66.67 (±0) 75.43 (±9.14) 70.49 (±4.48) 6

B-LOC 100 (±0) 33.71 (±3.64) 50.32 (±4.03) 2
I-LOC 0 0 0 0

B-PROD 80 (±0) 56.22 (±14.93) 64.95 (±9.95) 5
I-PROD 0 0 0 0

B-DRV 33.33 (±29.81) 60 (±48.99) 42 (±36) 3
I-DRV 0 0 0 0

B-GPE_ORG 71 (±10.20) 86.48 (±4.53) 77.67 (±7.41) 20
I-GPE_ORG 0 0 0 0

B-EVT 0 0 0 0
I-EVT 0 0 0 0

B-MISC 0 (±0) 0 (±0) 0 (±0) 1
I-MISC 0 0 0 0

Micro avg. 82.41 (±1.10) 81.38 (±1.26) 81.88 (±0.67) 216

Table B.2: mBERT NER results without token span evaluation for the annotated NPSC sample
dataset

97

NE Type Precision Recall F1 Support

PER 87.80 (±1.87) 90.07 (±0.99) 88.91 (±0.83) 961
LOC 68.11 (±4.52) 65.81 (±3.37) 66.77 (±2.07) 185
ORG 74.97 (±2.79) 75.94 (±1.81) 75.39 (±0.91) 521

GPE_LOC 87.80 (±1.49) 88.35 (±1.26) 88.07 (±1.11) 428
GPE_ORG 72.13 (±4.64) 67.05 (±4.53) 69.41 (±3.77) 61

PROD 38.32 (±2.87) 49.87 (±7.58) 42.87 (±2.26) 131
EVT 22.86 (±14.57) 24.82 (±14.26) 22.59 (±12.53) 14
DRV 70.51 (±2.15) 72.45 (±6.62) 71.21 (±2.64) 78
MISC 1.43 (±2.86) 1.54 (±3.08) 1.48 (±2.96) 14

micro avg 78.93 (±1.01) 81.06 (±1.25) 79.97 (±0.41) 2393

Table B.3: mBERT Strict Match evaluation for the NorNE test dataset

NE Type Precision Recall F1 Support

PER 78.60 (±4.00) 92.91 (±2.68) 85.10 (±2.78) 43
LOC 100.00 (±0.00) 33.71 (±3.64) 50.32 (±4.03) 2
ORG 86.75 (±1.51) 79.19 (±1.93) 82.78 (±1.37) 77

GPE_LOC 80.71 (±1.75) 78.85 (±5.74) 79.68 (±3.53) 28
GPE_ORG 71.00 (±10.20) 86.48 (±4.53) 77.67 (±7.41) 20

PROD 80.00 (±0.00) 56.22 (±14.93) 64.95 (±9.95) 5
EVT 0 0 0 0
DRV 33.33 (±29.81) 60.00 (±48.99) 42.00 (±36.00) 3
MISC 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 1

micro avg 80.67 (±1.15) 79.90 (±1.43) 80.27 (±0.87) 179

Table B.4: mBERT Strict Match evaluation for the NPSC sample

98 Extended Results

NE Type Precision Recall F1 Support

B-PER 94.48 (±1.03) 93.26 (±0.92) 93.86 (±0.53) 961
I-PER 97.18 (±0.56) 95.57 (±0.68) 96.36 (±0.19) 510

B-ORG 81.65 (±1.73) 79.54 (±3.77) 80.49 (±1.45) 521
I-ORG 71.21 (±3.31) 79.89 (±6.86) 74.97 (±1.93) 248

B-GPE_LOC 90.65 (±0.87) 86.06 (±2.43) 88.28 (±1.48) 428
I-GPE_LOC 94.94 (±1.79) 87.35 (±3.35) 90.94 (±1.83) 79

B-LOC 63.78 (±4.24) 67.39 (±3.50) 65.53 (±3.84) 185
I-LOC 56.94 (±8.63) 84.38 (±1.31) 67.59 (±6.22) 85

B-PROD 48.70 (±6.38) 50.03 (±6.02) 48.65 (±2.10) 131
I-PROD 38.41 (±2.68) 61.56 (±7.80) 46.90 (±1.55) 126

B-DRV 71.54 (±2.05) 64.44 (±3.98) 67.77 (±2.89) 78
I-DRV 49.23 (±16.57) 49.26 (±5.32) 47.21 (±9.04) 13

B-GPE_ORG 68.52 (±3.65) 63.21 (±3.69) 65.64 (±2.51) 61
I-GPE_ORG 74.29 (±38.76) 62.90 (±31.87) 67.95 (±34.75) 7

B-EVT 17.14 (±7.28) 31.57 (±8.49) 21.54 (±8.11) 14
I-EVT 20 (±29.15) 11.67 (±14.53) 14.23 (±18.67) 4

B-MISC 30 (±24.91) 50.64 (±41.42) 37.49 (±30.76) 14
I-MISC 0 (±0) 0 (±0) 0 (±0) 3

Micro avg. 82.58 (±0.58) 83.69 (±1.98) 83.12 (±1.10) 3468

Table B.5: NorBERT NER results without token span evaluation for the NorNE test dataset

NE Type Precision Recall F1 Support

B-PER 88.37 (±1.47) 91.60 (±5.22) 89.90 (±3.10) 43
I-PER 96 (±3.74) 100 (±0) 97.92 (±1.96) 20

B-ORG 86.75 (±1.51) 79.22 (±4.49) 82.74 (±2.54) 77
I-ORG 81.82 70.67 (±13.37) 75.16 (±7.67) 11

B-GPE_LOC 87.86 (±2.86) 84.91 (±2.22) 86.31 (±1.34) 28
I-GPE_LOC 66.67 (±0) 80 (±0) 72.73(±0) 6

B-LOC 90 (±20) 31.10 (±5.18) 45.87 (±7.81) 2
I-LOC 0 0 0 0

B-PROD 80 (±12.65) 46.89 (±4.06) 58.65 (±4.90) 5
I-PROD 0 0 0 0

B-DRV 66.67 (±21.08) 55.24 (±9.69) 58.10 (±9.79) 3
I-DRV 0 0 0 0

B-GPE_ORG 62 (±15.68) 86.86 (±9.98) 71.60 (±12.87) 20
I-GPE_ORG 0 0 0 0

B-EVT 0 0 0 0
I-EVT 0 0 0 0

B-MISC 0 (±0) 0 (±0) 0 (±0) 1
I-MISC 0 0 0 0

Micro avg. 84.17 (±2.08) 79.43 (±2.15) 81.71 (±1.74) 216.00 (±0.00)

Table B.6: NorBERT NER results without token span evaluation for the annotated NPSC sample
dataset

99

NE Type Precision Recall F1 Support

PER 94.05 (±0.99) 92.83 (±0.94) 93.43 (±0.51) 961
LOC 62.27 (±4.75) 65.77 (±3.95) 63.96 (±4.34) 185
ORG 79.58 (±1.79) 77.51 (±3.64) 78.45 (±1.44) 521

GPE_LOC 90.65 (±0.87) 86.06 (±2.43) 88.28 (±1.48) 428
GPE_ORG 66.89 (±3.50) 61.91 (±6.01) 64.19 (±4.48) 61

PROD 45.65 (±6.39) 46.79 (±5.19) 45.54 (±1.46) 131
EVT 17.14 (±7.28) 31.57 (±8.49) 21.54 (±8.11) 14
DRV 70.77 (±2.49) 63.74 (±4.02) 67.04 (±3.08) 78
MISC 25.71 (±21.48) 43.29 (±35.38) 32.10 (±26.43) 14

micro avg 82.88 (±0.71) 81.53 (±2.11) 82.19 (±1.26) 2393

Table B.7: NorBERT Strict Match evaluation for the NorNE test dataset

NE Type Precision Recall F1 Support

PER 86.98 (±2.37) 90.18 (±5.89) 88.50 (±3.88) 43
LOC 90.00 (±20.00) 31.10 (±5.18) 45.87 (±7.81) 2
ORG 83.90 (±1.56) 76.67 (±5.35) 80.05 (±3.44) 77

GPE_LOC 82.14 (±2.26) 79.40 (±2.16) 80.70 (±0.99) 28
GPE_ORG 60.00 (±17.03) 84.00 (±13.40) 69.24 (±14.84) 20

PROD 80.00 (±12.65) 46.89 (±4.06) 58.65 (±4.90) 5
EVT 0 0 0 0
DRV 66.67 (±21.08) 55.24 (±9.69) 58.10 (±9.79) 3
MISC 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 1

micro avg 80.89 (±2.19) 77.24 (±2.32) 79.00 (±1.74) 179

Table B.8: NorBERT Strict Match the annotated NPSC sample dataset

100 Extended Results

NE Type Precision Recall F1 Support

B-PER 93.09 (±1.25) 93.20 (±0.80) 93.14 (±0.64) 961
I-PER 97.37 (±0.70) 94.12 (±1.63) 95.71 (±0.73) 510

B-ORG 84.41 (±1.91) 81.56 (±1.57) 82.93 (±0.54) 521
I-ORG 73.87 (±3.33) 87.79 (±2.93) 80.12 (±1.01) 248

B-GPE_LOC 91.87 (±0.73) 89.50 (±0.97) 90.66 (±0.57) 428
I-GPE_LOC 93.92 (±1.68) 90.11 (±1.71) 91.95 (±0.32) 79

B-LOC 77.19 (±1.38) 73.11 (±1.29) 75.08 (±0.80) 185
I-LOC 74.12 (±6.78) 88.65 (±4.02) 80.44 (±3.01) 85

B-PROD 57.56 (±3.08) 59.14 (±4.85) 58.14 (±2.15) 131
I-PROD 36.83 (±3.84) 62.03 (±4.88) 46.10 (±3.67) 126

B-DRV 78.21 (±1.62) 71.09 (±3.54) 74.43 (±2.21) 78
I-DRV 60 (±7.54) 47.74 (±7.24) 52.86 (±6.57) 13

B-GPE_ORG 68.52 (±3.34) 79.55 (±3.84) 73.59 (±3.20) 61
I-GPE_ORG 100 (±0) 78.56 (±7.84) 87.77 (±4.91) 7

B-EVT 42.86 (±18.07) 48.02 (±15.02) 44.79 (±16.86) 14
I-EVT 30 (±29.15) 14.60 (±14.03) 19.58 (±18.83) 4

B-MISC 77.14 (±5.35) 84.90 (±5.45) 80.57 (±2.78) 14
I-MISC 0 (±0) 0 (±0) 0 (±0) 3

Micro avg. 84.91 (±0.47) 86 (±0.34) 85.45 (±0.23) 3468

Table B.9: NorBERT2 NER results without token span evaluation for the NorNE dataset

NE Type Precision Recall F1 Support

B-PER 84.65 (±3.15) 90.11 (±2.14) 87.27 (±2.31) 43
I-PER 100 (±0) 100 (±0) 100 (±0) 20

B-ORG 90.13 (±2.41) 78.47 (±2.66) 83.83 (±1.27) 77
I-ORG 85.45 (±7.27) 69.43 (±8.28) 76.03 (±4.14) 11

B-GPE_LOC 87.14 (±1.75) 77.11 (±6.15) 81.72 (±3.83) 28
I-GPE_LOC 66.67 92 (±9.80) 77.09 (±3.56) 6

B-LOC 100 (±0) 32.76 (±4.20) 49.21 (±4.68) 2
I-LOC 0 0 0 0

B-PROD 80 (±0) 59.52 (±6.39) 68.07 (±4.24) 5
I-PROD 0 0 0 0

B-DRV 13.33 (±16.33) 16.67 (±21.08) 14.67 (±18.09) 3
I-DRV 0 0 0 0

B-GPE_ORG 45 (±8.94) 83.01 (±7.13) 58.06 (±8.72) 20
I-GPE_ORG 0 0 0 0

B-EVT 0 0 0 0
I-EVT 0 0 0 0

B-MISC 0 (±0) 0 (±0) 0 (±0) 1
I-MISC 0 0 0 0

Micro avg. 82.87 (±1.78) 78.79 (±0.48) 80.77 (±0.81) 216.00 (±0.00)

Table B.10: NorBERT2 NER results without token span evaluation for the annotated NPSC
sample dataset

101

NE Type Precision Recall F1 Support

PER 92.55 (±0.92) 92.66 (±0.96) 92.60 (±0.45) 961
LOC 74.81 (±1.51) 70.86 (±1.75) 72.77 (±1.28) 185
ORG 82.19 (±1.98) 79.41 (±1.50) 80.74 (±0.67) 521

GPE_LOC 91.68 (±0.76) 89.31 (±0.90) 90.48 (±0.53) 428
GPE_ORG 68.52 (±3.34) 79.55 (±3.84) 73.59 (±3.20) 61

PROD 53.28 (±2.53) 54.85 (±5.43) 53.87 (±2.70) 131
EVT 37.14 (±13.85) 42.32 (±11.68) 39.10 (±13.06) 14
DRV 76.15 (±1.03) 69.27 (±4.14) 72.50 (±2.62) 78
MISC 61.43 (±3.50) 67.97 (±7.77) 64.33 (±4.58) 14

micro avg 84.96 (±0.69) 83.80 (±0.62) 84.38 (±0.37) 2393

Table B.11: NorBERT2 strict match NorNE

NE Type Precision Recall F1 Support

PER 84.65 (±3.15) 90.11 (±2.14) 87.27 (±2.31) 43
LOC 100.00 (±0.00) 32.76 (±4.20) 49.21 (±4.68) 2
ORG 86.49 (±1.76) 75.33 (±3.15) 80.47 (±1.65) 77

GPE_LOC 84.29 (±3.64) 74.52 (±5.83) 79.01 (±4.13) 28
GPE_ORG 45.00 (±8.94) 83.01 (±7.13) 58.06 (±8.72) 20

PROD 80.00 (±0.00) 59.52 (±6.39) 68.07 (±4.24) 5
EVT 0 0 0 0
DRV 13.33 (±16.33) 16.67 (±21.08) 14.67 (±18.09) 3
MISC 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 1

micro avg 79.33 (±1.69) 75.94 (±0.52) 77.59 (±0.73) 179

Table B.12: NorBERT2 Strict Match for the annotated NPSC sample dataset

102 Extended Results

NE Type Precision Recall F1 Support

B-PER 97.11 (±0.82) 94.77 (±0.75) 95.92 (±0.34) 961
I-PER 97.96 (±0.47) 95.69 (±1.09) 96.81 (±0.54) 510

B-ORG 83.57 (±1.42) 84.84 (±1.75) 84.17 (±0.49) 521
I-ORG 77.34 (±2.69) 87.36 (±2.68) 81.96 (±0.38) 248

B-GPE_LOC 92.38 (±1.70) 90.21 (±0.82) 91.27 (±0.46) 428
I-GPE_LOC 94.18 (±2.35) 89.90 (±1.50) 91.96 (±1.08) 79

B-LOC 78.27 (±2.35) 75.51 (±1.08) 76.84 (±1.19) 185
I-LOC 71.53 (±6.67) 89.46 (±4.23) 79.12 (±2.77) 85

B-PROD 58.93 (±3.87) 57.59 (±2.23) 58.14 (±1.64) 131
I-PROD 48.10 (±5.40) 61.29 (±5.01) 53.43 (±2.47) 126

B-DRV 77.69 (±3.94) 75.11 (±3.66) 76.23 (±1.66) 78
I-DRV 43.08 (±6.15) 49.48 (±11.19) 45.80 (±7.63) 13

B-GPE_ORG 76.07 (±3.82) 75.77 (±4.31) 75.83 (±3.06) 61
I-GPE_ORG 100.00 (±0.00) 70.32 (±18.01) 81.30 (±12.09) 7

B-EVT 62.86 (±9.48) 51.53 (±6.26) 56.00 (±4.29) 14
I-EVT 55.00 (±24.49) 39.19 (±22.65) 43.29 (±22.01) 4

B-MISC 47.14 (±21.95) 92.36 (±9.37) 58.29 (±20.91) 14
I-MISC 26.67 (±24.94) 53.33 (±45.22) 33.33 (±27.89) 3

Micro avg. 86.83 (±0.80) 87.19 (±0.45) 87.00 (±0.30) 3468

Table B.13: NB-BERT NER results without token span evaluation for the annotated NPSC sample
dataset

NE Type Precision Recall F1 Support

PER 96.88 (±0.85) 94.55 (±0.79) 95.69 (±0.41) 961
LOC 77.19 (±1.76) 74.49 (±1.27) 75.79 (±0.74) 185
ORG 81.46 (±1.31) 82.70 (±2.02) 82.05 (±0.85) 521

GPE_LOC 92.38 (±1.70) 90.21 (±0.82) 91.27 (±0.46) 428
GPE_ORG 76.07 (±3.82) 75.77 (±4.31) 75.83 (±3.06) 61

PROD 55.57 (±3.29) 54.34 (±2.34) 54.84 (±1.39) 131
EVT 62.86 (±9.48) 51.53 (±6.26) 56.00 (±4.29) 14
DRV 75.38 (±3.57) 72.89 (±3.61) 73.97 (±1.38) 78
MISC 40.00 (±21.95) 71.55 (±12.81) 48.63 (±22.65) 14

micro avg 87.17 (±0.75) 85.84 (±0.55) 86.50 (±0.34) 2393

Table B.14: NB-BERT Strict Match for the NorNE test dataset

103

NE Type Precision Recall F1 Support

B-PER 92.56 (±2.71) 93.46 (±2.17) 92.98 (±1.95) 43.00 (±0.00)
I-PER 100.00 (±0.00) 99.05 (±1.90) 99.51 (±0.98) 20.00 (±0.00)

B-ORG 88.31 (±1.84) 78.02 (±2.23) 82.83 (±1.87) 77.00 (±0.00)
I-ORG 98.18 (±3.64) 69.12 (±10.01) 80.54 (±5.91) 11.00 (±0.00)

B-GPE_LOC 88.57 (±1.43) 80.06 (±1.76) 84.07 (±0.64) 28.00 (±0.00)
I-GPE_LOC 66.67 (±0.00) 84.00 (±8.00) 74.18 (±2.91) 6.00 (±0.00)

B-LOC 100.00 (±0.00) 28.33 (±4.08) 44.00 (±4.90) 2.00 (±0.00)
I-LOC 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)

B-PROD 84.00 (±8.00) 60.29 (±12.89) 69.59 (±9.92) 5.00 (±0.00)
I-PROD 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)

B-DRV 33.33 (±0.00) 100.00 (±0.00) 50.00 (±0.00) 3.00 (±0.00)
I-DRV 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)

B-GPE_ORG 73.00 (±4.00) 92.92 (±5.37) 81.55 (±2.19) 20.00 (±0.00)
I-GPE_ORG 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)

B-EVT 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)
I-EVT 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)

B-MISC 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 1.00 (±0.00)
I-MISC 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)

Micro avg. 87.59 (±0.80) 80.18 (±1.34) 83.72 (±1.00) 216.00 (±0.00)

Table B.15: Ner-Scandi NER results without token span evaluation for the annotated NPSC
sample dataset

NE Type Precision Recall F1 Support

PER 92.56 (±2.71) 93.46 (±2.17) 92.98 (±1.95) 43
LOC 100.00 (±0.00) 28.33 (±4.08) 44.00 (±4.90) 2
ORG 84.94 (±1.76) 75.03 (±2.07) 79.67 (±1.75) 77

GPE_LOC 83.57 (±1.75) 75.56 (±2.58) 79.34 (±1.75) 28
GPE_ORG 73.00 (±4.00) 92.92 (±5.37) 81.55 (±2.19) 20

PROD 84.00 (±8.00) 60.29 (±12.89) 69.59 (±9.92) 5
EVT 0 0 0 0
DRV 33.33 (±0.00) 100.00 (±0.00) 50.00 (±0.00) 3
MISC 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 1

micro avg 84.02 (±1.25) 78.35 (±1.68) 81.08 (±1.33) 179

Table B.16: Ner-Scandi Strict Match for the annotated NPSC sample dataset

104 Extended Results

Figure B.1: NorNE results for Ner-Scandi combined average confusion matrix at token level
classification

105

Figure B.2: NB-BERT confusion matrix token level classification NPSC sample

106 Extended Results

Bibliography

Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding
of a convolutional neural network. In 2017 International Conference on
Engineering and Technology (ICET), pages 1–6, 2017. doi: 10.1109/
ICEngTechnol.2017.8308186. 2.7

Andrew L. Beam, Arjun K. Manrai, and Marzyeh Ghassemi. Challenges to the
Reproducibility of Machine Learning Models in Health Care. JAMA, 323(4):
305–306, 01 2020. doi: 10.1001/jama.2019.20866. URL https://doi.org/
10.1001/jama.2019.20866. 4.6

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret
Shmitchell. On the dangers of stochastic parrots: Can language models be too
big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency, FAccT ’21, page 610623, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450383097. doi: 10.1145/
3442188.3445922. URL https://doi.org/10.1145/3442188.3445922.
2.10.3

Sravan Bodapati, Hyokun Yun, and Yaser Al-Onaizan. Robustness to
capitalization errors in named entity recognition. In Proceedings of the 5th
Workshop on Noisy User-generated Text (W-NUT 2019), pages 237–242, Hong
Kong, China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-5531. URL https://aclanthology.org/D19-5531. 2.7,
2.8.3

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching
Word Vectors with Subword Information. Transactions of the Association for
Computational Linguistics, 5:135–146, 06 2017. doi: 10.1162/tacl_a_00051.
URL https://doi.org/10.1162/tacl_a_00051. 2.9.1

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,

https://doi.org/10.1001/jama.2019.20866
https://doi.org/10.1001/jama.2019.20866
https://doi.org/10.1145/3442188.3445922
https://aclanthology.org/D19-5531
https://doi.org/10.1162/tacl_a_00051

108 BIBLIOGRAPHY

Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-
shot learners. CoRR, abs/2005.14165, 2020. URL https://arxiv.org/abs/
2005.14165. 2.10, 2.10.3

Stefan Brüggemann. Collaboration and the Semantic Web: Social Networks,
Knowledge Networks, and Knowledge Resources: Social Networks, Knowledge
Networks, and Knowledge Resources. Advances in Human and Social
Aspects of Technology (2328-1316). Information Science Reference, 2012.
ISBN 9781466608955. URL https://books.google.no/books?id=
yqOeBQAAQBAJ. 2.8.1

Jason P.C. Chiu and Eric Nichols. Named Entity Recognition with Bidirectional
LSTM-CNNs. Transactions of the Association for Computational Linguistics,
4:357–370, 07 2016. doi: 10.1162/tacl_a_00104. URL https://doi.org/
10.1162/tacl_a_00104. 2.7

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from
scratch. Journal of Machine Learning Research, 12(null):24932537, nov 2011.
2.7

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805 [cs], May 2019. URL http://arxiv.org/abs/1810.
04805. 1, 2.7, 2.9.1, 2.10, 2.10.1

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked,
Stephen Soderland, Daniel S. Weld, and Alexander Yates. Unsupervised
named-entity extraction from the Web: An experimental study. Artificial
Intelligence, 165(1):91–134, 2005. doi: https://doi.org/10.1016/j.artint.2005.
03.001. URL https://www.sciencedirect.com/science/article/pii/
S0004370205000366. 2.6

Venkatesh Ganti, Arnd C. König, and Rares Vernica. Entity Categorization
over Large Document Collections. In Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD
’08, pages 274–282, New York, NY, USA, 2008. Association for Computing
Machinery. ISBN 978-1-60558-193-4. doi: 10.1145/1401890.1401927. URL
https://doi.org/10.1145/1401890.1401927. event-place: Las Vegas,
Nevada, USA. 2.8.1

Ian Goodfellow, Yoshua Bengio, and Aaaron Courville. Deep Learning.
Adaptive Computation and Machine Learning series. MIT Press, 2016.
ISBN 9780262035613. URL https://books.google.no/books?id=
Np9SDQAAQBAJ. 2.7

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://books.google.no/books?id=yqOeBQAAQBAJ
https://books.google.no/books?id=yqOeBQAAQBAJ
https://doi.org/10.1162/tacl_a_00104
https://doi.org/10.1162/tacl_a_00104
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://www.sciencedirect.com/science/article/pii/S0004370205000366
https://www.sciencedirect.com/science/article/pii/S0004370205000366
https://doi.org/10.1145/1401890.1401927
https://books.google.no/books?id=Np9SDQAAQBAJ
https://books.google.no/books?id=Np9SDQAAQBAJ

BIBLIOGRAPHY 109

Archana Goyal, Vishal Gupta, and Manish Kumar. Recent named entity
recognition and classification techniques: A systematic review. Computer
Science Review, 29:21–43, 2018. doi: https://doi.org/10.1016/j.cosrev.2018.
06.001. URL https://www.sciencedirect.com/science/article/pii/
S1574013717302782. 2.6

Zellig S. Harris. Distributional structure. <i>WORD</i>, 10(2-3):146–162,
1954. doi: 10.1080/00437956.1954.11659520. URL https://doi.org/10.
1080/00437956.1954.11659520. 2.9.1

Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional LSTM-CRF Models for
Sequence Tagging. arXiv e-prints, art. arXiv:1508.01991, August 2015. doi:
10.48550/arXiv.1508.01991. 2.7

Christoph Hube. Bias in wikipedia. In Proceedings of the 26th International
Conference on World Wide Web Companion, WWW ’17 Companion, page
717721, Republic and Canton of Geneva, CHE, 2017. International World Wide
Web Conferences Steering Committee. ISBN 9781450349147. doi: 10.1145/
3041021.3053375. URL https://doi.org/10.1145/3041021.3053375.
2.10.3

Rasmus Hvingelby, Amalie Brogaard Pauli, Maria Barrett, Christina Rosted,
Lasse Malm Lidegaard, and Anders Søgaard. DaNE: A named entity
resource for Danish. In Proceedings of the Twelfth Language Resources
and Evaluation Conference, pages 4597–4604, Marseille, France, May 2020.
European Language Resources Association. ISBN 979-10-95546-34-4. URL
https://aclanthology.org/2020.lrec-1.565. 4.5.5

Daniel Jurafsky and James H. Martin. Speech and language processing (3rd ed.
draft), 2022. URL https://web.stanford.edu/~jurafsky/slp3/. 2.1,
2.2, 2.2.2, 2.2.2, 2.3, 2.6, 2.7, 2.9, 2.9.1, 2.9.1, 2.9.1, 2.10

Fredrik Jørgensen, Tobias Aasmoe, Anne-Stine Ruud Husevåg, Lilja Øvrelid,
and Erik Velldal. NorNE: Annotating Named Entities for Norwegian. In
Proceedings of the 12th Language Resources and Evaluation Conference,
pages 4547–4556, Marseille, France, May 2020. European Language
Resources Association. ISBN 979-10-95546-34-4. URL https://
aclanthology.org/2020.lrec-1.559. 2.3, 2.5, 2.7, 3.1, 4.2, 4.4, 4.5.5, 1

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
International Conference on Learning Representations, 12 2014. 4.6

Per E Kummervold, Javier De la Rosa, Freddy Wetjen, and Svein Arne
Brygfjeld. Operationalizing a national digital library: The case for a
Norwegian transformer model. In Proceedings of the 23rd Nordic Conference
on Computational Linguistics (NoDaLiDa), pages 20–29, Reykjavik, Iceland

https://www.sciencedirect.com/science/article/pii/S1574013717302782
https://www.sciencedirect.com/science/article/pii/S1574013717302782
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1145/3041021.3053375
https://aclanthology.org/2020.lrec-1.565
https://web.stanford.edu/~jurafsky/slp3/
https://aclanthology.org/2020.lrec-1.559
https://aclanthology.org/2020.lrec-1.559

110 BIBLIOGRAPHY

(Online), May 31–2 June 2021. Linköping University Electronic Press,
Sweden. URL https://aclanthology.org/2021.nodalida-main.3.
2.10.2, 4.2, 4.5.3, 4.5.4

Andrey Kutuzov, Jeremy Barnes, Erik Velldal, Lilja Øvrelid, and Stephan Oepen.
Large-scale contextualised language modelling for Norwegian. In Proceedings
of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa),
pages 30–40, Reykjavik, Iceland (Online), May 31–2 June 2021. Linköping
University Electronic Press, Sweden. URL https://aclanthology.org/
2021.nodalida-main.4. (document), 2.7, 2.2, 2.10.2, 4.2, 4.5.1

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya
Kawakami, and Chris Dyer. Neural architectures for named entity recognition,
June 2016. URL https://aclanthology.org/N16-1030. 2.7

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. A survey on deep learning for
named entity recognition. IEEE Trans. on Knowl. and Data Eng., 34(1):5070,
jan 2022. doi: 10.1109/TKDE.2020.2981314. URL https://doi.org/10.
1109/TKDE.2020.2981314. 2.6

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural
architecture search. In Ryan P. Adams and Vibhav Gogate, editors, Proceedings
of The 35th Uncertainty in Artificial Intelligence Conference, volume 115 of
Proceedings of Machine Learning Research, pages 367–377. PMLR, 22–25 Jul
2020. URL https://proceedings.mlr.press/v115/li20c.html. 4.6

Alexandra Luccioni and Joseph Viviano. What’s in the box? an analysis
of undesirable content in the Common Crawl corpus. In Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 182–189, Online, August 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.acl-short.24. URL
https://aclanthology.org/2021.acl-short.24. 2.10.3

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in
continuous space word representations. In Proceedings of the 2013 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 746–751, Atlanta, Georgia,
June 2013. Association for Computational Linguistics. URL https://
aclanthology.org/N13-1090. 2.9.1

David Nadeau and Satoshi Sekine. A survey of named entity recognition and
classification. Lingvisticae Investigationes, 30, 08 2007. doi: 10.1075/li.30.1.
03nad. 2.6

https://aclanthology.org/2021.nodalida-main.3
https://aclanthology.org/2021.nodalida-main.4
https://aclanthology.org/2021.nodalida-main.4
https://aclanthology.org/N16-1030
https://doi.org/10.1109/TKDE.2020.2981314
https://doi.org/10.1109/TKDE.2020.2981314
https://proceedings.mlr.press/v115/li20c.html
https://aclanthology.org/2021.acl-short.24
https://aclanthology.org/N13-1090
https://aclanthology.org/N13-1090

BIBLIOGRAPHY 111

Dennis Pauly and Guido Nottbusch. The influence of the german capitalization
rules on reading. 15:1–15, 03 2020. doi: 10.3389/fcomm.2020.00015. 2.8.3

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word
representations. CoRR, abs/1802.05365, 2018. URL http://arxiv.org/
abs/1802.05365. 2.9.1

Telmo Pires, Eva Schlinger, and Dan Garrette. How multilingual is multilingual
BERT? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4996–5001, Florence, Italy, July 2019.
Association for Computational Linguistics. doi: 10.18653/v1/P19-1493. URL
https://aclanthology.org/P19-1493. 4.2

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Hwee Tou Ng, Anders
Björkelund, Olga Uryupina, Yuchen Zhang, and Zhi Zhong. Towards robust
linguistic analysis using OntoNotes. In Proceedings of the Seventeenth
Conference on Computational Natural Language Learning, pages 143–152,
Sofia, Bulgaria, August 2013. Association for Computational Linguistics. URL
https://aclanthology.org/W13-3516. 2.4

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. Language models are unsupervised multitask learners. OpenAI
blog, 1(8):9, 2019. 2.10.3

Kashif Riaz. Rule-based named entity recognition in urdu. In Proceedings of
the 2010 Named Entities Workshop, NEWS ’10, page 126135, USA, 2010.
Association for Computational Linguistics. ISBN 9781932432787. 2.6, 2.8.3

Sebastian Schelter, Felix Biessmann, Tim Januschowski, David Salinas,
Stephan Seufert, and Gyuri Szarvas. On challenges in machine
learning model management. IEEE Data Engineering Bulletin,
2015. URL https://www.amazon.science/publications/
on-challenges-in-machine-learning-model-management. 4.6

Isabel Segura-Bedmar, Paloma Martínez, and María Herrero-Zazo. SemEval-
2013 task 9 : Extraction of drug-drug interactions from biomedical texts
(DDIExtraction 2013). In Second Joint Conference on Lexical and
Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh
International Workshop on Semantic Evaluation (SemEval 2013), pages
341–350, Atlanta, Georgia, USA, June 2013. Association for Computational
Linguistics. URL https://aclanthology.org/S13-2056. 2.2.2

Satoshi Sekine and Chikashi Nobata. Definition, dictionaries and tagger for
extended named entity hierarchy. In Proceedings of the Fourth International
Conference on Language Resources and Evaluation (LREC’04), Lisbon,

http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1802.05365
https://aclanthology.org/P19-1493
https://aclanthology.org/W13-3516
https://www.amazon.science/publications/on-challenges-in-machine-learning-model-management
https://www.amazon.science/publications/on-challenges-in-machine-learning-model-management
https://aclanthology.org/S13-2056

112 BIBLIOGRAPHY

Portugal, May 2004. European Language Resources Association (ELRA). URL
http://www.lrec-conf.org/proceedings/lrec2004/pdf/65.pdf. 2.6

Larry Smith, Lorraine Tanabe, Rie Ando, Cheng-Ju Kuo, I-Fang Chung, Chun-
Nan Hsu, Yu-Shi Lin, Roman Klinger, Christoph Friedrich, Kuzman Ganchev,
Manabu Torii, Hongfang Liu, Barry Haddow, Craig Struble, Richard Povinelli,
Andreas Vlachos, William Baumgartner Jr, Lawrence Hunter, Bob Carpenter,
and W. Wilbur. Overview of biocreative ii gene mention recognition. Genome
biology, 9 Suppl 2:S2, 09 2008. doi: 10.1186/gb-2008-9-s2-s2. 2.1

Per Erik Solberg and Pablo Ortiz. The norwegian parliamentary speech corpus.
CoRR, abs/2201.10881, 2022. URL https://arxiv.org/abs/2201.10881.
3.2

Per Erik Solberg, Arne Skjærholt, Lilja Øvrelid, Kristin Hagen, and Janne Bondi
Johannessen. The Norwegian dependency treebank. In Proceedings of the Ninth
International Conference on Language Resources and Evaluation (LREC’14),
pages 789–795, Reykjavik, Iceland, May 2014. European Language Resources
Association (ELRA). URL http://www.lrec-conf.org/proceedings/
lrec2014/pdf/303_Paper.pdf. 3.1

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15(56):1929–1958, 2014.
URL http://jmlr.org/papers/v15/srivastava14a.html. 2.9

Simone Tedeschi, Valentino Maiorca, Niccolò Campolungo, Francesco Cecconi,
and Roberto Navigli. WikiNEuRal: Combined Neural and Knowledge-based
Silver Data Creation for Multilingual NER. In Findings of the Association
for Computational Linguistics: EMNLP 2021, pages 2521–2533, Punta
Cana, Dominican Republic, November 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.findings-emnlp.215. URL https://
aclanthology.org/2021.findings-emnlp.215. 2.4

Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003
shared task: Language-independent named entity recognition. In Proceedings
of the Seventh Conference on Natural Language Learning at HLT-NAACL
2003, pages 142–147, 2003a. URL https://aclanthology.org/W03-0419.
2.4

Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-
2003 Shared Task: Language-Independent Named Entity Recognition. In
Proceedings of the Seventh Conference on Natural Language Learning at HLT-
NAACL 2003, pages 142–147, 2003b. URL https://aclanthology.org/
W03-0419. 2.4

http://www.lrec-conf.org/proceedings/lrec2004/pdf/65.pdf
https://arxiv.org/abs/2201.10881
http://www.lrec-conf.org/proceedings/lrec2014/pdf/303_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/303_Paper.pdf
http://jmlr.org/papers/v15/srivastava14a.html
https://aclanthology.org/2021.findings-emnlp.215
https://aclanthology.org/2021.findings-emnlp.215
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419

BIBLIOGRAPHY 113

Samia Touileb, Lilja Øvrelid, and Erik Velldal. Occupational biases in norwegian
and multilingual language models. pages 200–211, 01 2022. doi: 10.18653/v1/
2022.gebnlp-1.21. 2.10.3

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. CoRR, abs/1706.03762, 2017. URL http://arxiv.org/abs/1706.
03762. 1, 2.9.1, 2.10

Zihan Wang, Jingbo Shang, Liyuan Liu, Lihao Lu, Jiacheng Liu, and Jiawei
Han. CrossWeigh: Training Named Entity Tagger from Imperfect Annotations.
Technical Report arXiv:1909.01441, arXiv, September 2019. URL http:
//arxiv.org/abs/1909.01441. arXiv:1909.01441 [cs] type: article. 2.4

Jie Yang and Yue Zhang. NCRF++: An Open-source Neural Sequence Labeling
Toolkit. Technical Report arXiv:1806.05626, arXiv, June 2018. URL http:
//arxiv.org/abs/1806.05626. arXiv:1806.05626 [cs] type: article. 2.7, 4.2

Jie Yang, Shuailong Liang, and Yue Zhang. Design challenges and
misconceptions in neural sequence labeling. In Proceedings of the 27th
International Conference on Computational Linguistics, pages 3879–3889,
Santa Fe, New Mexico, USA, August 2018. Association for Computational
Linguistics. URL https://aclanthology.org/C18-1327. 2.7

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards story-
like visual explanations by watching movies and reading books. In The IEEE
International Conference on Computer Vision (ICCV), December 2015. 2.10.1

http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1909.01441
http://arxiv.org/abs/1909.01441
http://arxiv.org/abs/1806.05626
http://arxiv.org/abs/1806.05626
https://aclanthology.org/C18-1327

	Introduction
	Problem Statement
	Research question
	Thesis Outline

	Background
	Natural language processing and sequence labeling
	Evaluation methods and analysis for NER
	Confusion matrix
	Accuracy, Precision, Recall and F1

	Label encoding schemes
	English data
	Norwegian dataset – NorNE
	Traditional approaches to NER
	Neural approaches
	Challenges in NER
	Out-of-vocabulary
	Named entity span
	Capitalization

	Loss, Optimizers and Regularization for Training
	Feature Representation and Word Embeddings

	Large Pre-Trained Language Models
	BERT Pre-Training and Fine-Tuning
	Language specific BERT models
	Large Pre-trained Language Model Biases

	Datasets
	NorNE
	Norwegian Parliamentary Speech Corpus
	Annotated NPSC sample

	Experimental Setup and Model Training
	Hardware and software environment
	Model Setup
	Pre-processing of datasets
	Baseline models
	SpaCy Norwegian Pipeline
	NCRF++

	Main models
	NorBERT
	NorBERT2
	mBERT
	NB-BERT
	Ner-Scandi

	BERT training
	Training metrics
	Validation Recall and Learning Rate
	Training loss and validation loss

	Evaluation Methods
	Methods
	Named Entity Recognition
	Strict Match
	Named Entity Binary Classification

	Evaluating Dataset Results
	Evaluating NorNE
	Evaluating the annotated NPSC sample
	Evaluating the NPSC

	Results and discussion
	NorNE results
	NorNE Named Entity Recognition
	NorNE Strict Match
	Binary Classification Evaluation
	NorNE Results Analysis and Discussion

	NPSC results
	Annotated NPSC sample dataset results
	NPSC Sample Named Entity Recognition
	NPSC Sample Strict Match
	Binary Classification
	NPSC Results Analysis and Discussion

	Comparing NorNE and NPSC results
	Possible Limiting Factors for Model Performance
	Results Summary

	Conclusions and Future Work
	Contributions
	Limitations
	Future Work

	Extended Training Details
	Extended Results
	Bibliography

