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Abstract
We consider estimation of absolute permeability from inverted seismic data. Large amounts of simultaneous data, such
as inverted seismic data, enhance the negative effects of Monte Carlo errors in ensemble-based Data Assimilation (DA).
Multilevel (ML) models consist of a selection of models with different fidelities. Multilevel Data Assimilation (MLDA)
attempts to obtain a better statistical accuracy with a small sacrifice of the numerical accuracy. Spatial grid coarsening is
one way of generating an ML model. It has been shown that coarsening the spatial grid results in a problem with weaker
nonlinearity, and hence, in a less challenging problem than the problem on the original fine grid. Accordingly, formulating a
sequential MLDA algorithm which uses the coarser models in the first steps of the DA, followed by the finer models, helps
to find an approximation to the solution of the inverse problem at the first steps and gradually converge to the solution. We
present two variants of a sequential MLDA algorithm and compare their performance with both conventional DA algorithms
and a simultaneous (i.e., using all the models on the different grids simultaneously) MLDA algorithm using numerical
experiments. Both posterior parameters and posterior model forecasts are compared qualitatively and quantitatively. The
results from numerical experiments suggest that all MLDA algorithms generally perform better than the conventional DA
algorithms. In estimation of the posterior parameter fields, the simultaneous MLDA algorithm and one of the variants of
sequential MLDA (SMLES-H) perform similarly and slightly better than the other variant (SMLES-S). While in estimation
of the posterior model forecasts, SMLES-S clearly performs better than both the simultaneous MLDA algorithm and
SMLES-H.

Keywords Sequential data assimilation · Multilevel methods · Ensemble-based history-matching · Seismic data

1 Introduction

Sound decision making in petroleum reservoir management
depends on reliable production forecasts from reservoir
models, including accurate estimates of uncertainty in
the forecasts. The reliability is increased by utilization
of available data for calibration of the models–through
the process known as history-matching. Ensemble-based
Data Assimilation (DA) methods, using statistically correct
formulations, have become popular for automated reservoir
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history-matching [1–7]. We consider estimation of absolute
permeability from inverted seismic data.

Ensemble-based methods have limited degree of free-
dom, which in conjunction with massive amounts of data,
e.g. time-lapse seismic data, can result in over-fitting. There
have been several efforts to balance the degrees of free-
dom of the problem and the information content in the data,
including use of localization [8], reduction of data using
machine learning techniques [9, 10], reduction in data size
using the correlation between the data and wells’ cumu-
lative production [11], sparse representation of data using
a wavelet transform [12], assimilation of only the satura-
tion front or transformation of the data into position of
fluid fronts [13–15], combination of coarsening the data and
coarse model simulations [16], and projection of data into
ensemble subspace in combination with local analysis [17].

Monte Carlo approximations play a crucial role in
ensemble-based DA. Due to computational-cost limitations,
the ensemble size is limited to roughly one hundred. Using
straightforward ensemble-based DA, the degrees of freedom
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of the problem would equal the ensemble size, and such
an approach would result in significant Monte Carlo errors.
The negative effects of Monte Carlo errors are enlarged in
the presence of large amounts of simultaneous data, such
as inverted seismic data, resulting in underestimation of
variance, and in more severe cases ensemble collapse.

The most widely used treatment for Monte Carlo
errors is distance-based localization [18]. The basic
assumption underlying distance-based localization is that
true correlations between a parameter and a datum decrease
when the distance between their respective locations
increases, and disappears if the distance exceeds a critical
distance. This assumption may not always hold for
subsurface problems. Different localization functions and
their utilization in DA can be found in [19–21]. A proper
choice of localization function, and the critical distance in
particular, depends on parameter and data types as well
as on other problem settings. This reduces the robustness
of distance-based localization, also for problems where
its basic assumption does hold. Papers using ensemble-
based methods for assimilation of seismic data [22–
24], typically use localization methodologies developed
originally for meteorological science which were later
adapted to petroleum problems with production data.

Simply increasing the ensemble size will reduce Monte-
Carlo errors, but it will also increase the computational
cost. Utilization of a lower-cost and lower-fidelity model
renders the possibility of increasing the ensemble size
without increasing the total computational cost. Use of
a lower-fidelity reservoir model will, however, introduce
modeling errors in addition to those already present in
conventional-fidelity simulation results. The underlying
assumption when applying lower-fidelity models in DA
is therefore that the gain in reducing Monte Carlo errors
is larger than the loss in numerical simulation accuracy.
DA using various types of lower-fidelity models has been
applied to several inverse problems, e.g., within petroleum
reservoir modeling [25–27] and atmospheric science [28].
Note that since lower-fidelity simulations are applied to the
forecast step and localization is applied to the analysis step,
the two techniques can be combined, if desired.

Lower-fidelity models can have high numerical errors.
Additionally, choosing an optimal level of fidelity for these
models is not straightforward. Multilevel (ML) simulations
utilize a selection of models, which form hierarchies
of both computational accuracy and computational costs
(ML model). Multilevel Data Assimilation (MLDA) [29–
37] utilizes an ML model in the forecast step of the
DA. The levels of the multilevel model have different
numerical accuracies. The MLDA, allocating some of the
computational power to the models with lower fidelity, tries
to achieve a low total error by keeping a balance between
the numerical errors and statistical errors.

Some conventional DA methods (i.e., single-level
ensemble-based DA methods) , like the ensemble smoother
(ES) [38], the ES with multiple DA (ESMDA) [2], and
the iterative ES (IES) [1], assimilate data simultaneously,
i.e. assimilate all data over a certain period at once, while
other conventional methods, like the ensemble Kalman filter
(EnKF) [39] and the EnKF with multiple DA (EnKFMDA)
[40], assimilate data sequentially. In the MLDA domain, a
Simultaneous MLDA (SiMLDA) algorithm was developed
for assimilation of inverted seismic data [33]. Numerical
experiments show that this algorithm, the Multilevel Hybrid
Ensemble Smoother (MLHES) whose formulation uses a
hybrid Kalman gain based on several levels, outperforms
its conventional DA counterparts with which it was com-
pared [33, 37, 41]. However, strong nonlinearity can affect
its performance negatively. Hence, another SiMLDA algo-
rithm, the iterative version of MLHES (IMLHES) [37],
was designed to handle this problem. Numerical experi-
ments show that use of iterations improves performance of
MLHES [37], but IMLHES is not without limitations. It is
not obvious how to optimally formulate convergence criteria
for the different levels of IMLHES. This could cause failed
iterations and additional computational cost.

There are indications that utilization of sequential
MLDA (SeMLDA) algorithms can benefit from certain
properties of the problem of estimation of permeability
from inverted seismic data. Firstly, analytical [42] and
numerical [43] results show that sequential DA is expected
to outperform simultaneous DA for weakly nonlinear
problems. Secondly, for a class of problems (including the
problem considered here) where the model forecast can be
seen as a spatially integrated response to a spatially varying
parameter field, there exists a correlation between small-
scale oscillations in the parameter domain and the degree of
nonlinearity of the mapping from parameter field to model
forecast, see, e.g., [44, 45]. This correlation is such that
coarsening the simulation grid and upscaling the associated
parameters will generally result in weaker nonlinearity in
the coarser forward models compared to the finer ones.
Taking advantage of this, we consider several resolutions
of inverted seismic data, and develop a SeMLDA scheme
which first assimilates the coarsest resolution of the data
corresponding to the coarsest forward model, followed by
the data in higher resolution corresponding to more non-
linear models. This construction corresponds to the optimal
ordering of data as suggested by [42, 43]. Note that, here,
the term ‘sequential’ pertains to a sequence of data with
different resolutions, not data at different times.

In this work, we will introduce two variants of a SeMLDA
algorithm and assess their performance in comparison with
a conventional sequential DA algorithm, a conventional
simultaneous DA algorithm, and a SiMLDA algorithm. This
will be done with the help of numerical experiments.
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The rest of this paper is organized as follows. Since
the SeMLDA methods developed in this paper are partially
inspired by the ESMDA, the ESMDA will be briefly
presented in Section 2. Section 3 describes MLDA in
general, and introduces two variants of a novel SeMLDA
algorithm. Section 4 explains the test models used for
numerical investigation. In Section 5 we describe the
numerical investigations, which are followed by their results
in Section 6. Finally, in Section 7 we summarize and
conclude the paper.

2 Ensemble smoother withmultiple data
assimilation

The forward models used in the parameter estimation process
are often nonlinear. In the case of assimilation of inverted
seismic data, the nonlinearity comes from both fluid flow
equations and rock physics modeling. This nonlinearity
has motivated the development of several DA algorithms,
including ESMDA [2]. This algorithm assimilates the same
data Na times while inflating the data-error covariance
matrix. By doing so, several small assimilation steps are
taken instead of one big assimilation step. This helps to
better account for the nonlinearity of the problem.

At step i of ESMDA, an ensemble of Ne realizations
{zpri

i,j }Ne

j=1 from the prior parameter vector Z
pri
i is considered.

The ESMDA update consists of three steps.
Firstly, running the forward simulator for every realiza-

tion, z
pri
i,j , 1 ≤ j ≤ Ne, we have

yi,j = M
(
z

pri
i,j

)
, (1)

where yi,j is a realization from the model forecasts random
vector at assimilation step i, Yi .

Secondly, the original observation data-error model,
D ∼ N (E(D),C(D)), is slightly manipulated such that
the random observation data vector at step i is given
as D̂i ∼ N (E(D), αiC(D)). The data-error covariance
matrix is inflated using the scalar value αi so that multiple
assimilations of the same data does not violate Bayes’
rule. Hence, the updated parameter vector of an arbitrary
ensemble member is given by

z
pos
i,j = z

pri
i,j + Ki

(
d̂i,j − yi,j

)
, (2)

where d̂i,j is a realization of D̂i , and the Kalman gain, Ki ,
is given as

Ki = C
(
Z

pri
i , Yi

)
(C(Yi) + αiC(D))−1 . (3)

The terms C(Yi) and C
(
Z

pri
i , Yi

)
denote the the covariance

of Yi and cross-covariance between Z
pri
i and Yi , respec-

tively.

Finally, while i < Na , the prior ensemble at step i + 1 is
set equal to the posterior ensemble at step i;

z
pri
i+1,j

:= z
pos
i,j , (4)

for 1 ≤ j ≤ Ne.
In general, the likelihood can be written as a product

of inflated likelihoods. This process, known as tempering,
fulfills Bayes theorem exactly. ESMDA is a special case of
tempering. If the forward model, M, is a linear model and
the distributions of the prior parameters and the data errors
are Gaussian, there exists a condition (denoted the MDA
condition) for αi which ensures that the ESMDA samples
correctly from the posterior distribution. This condition is
given as

Na∑
i=1

1

αi

= 1 . (5)

It is, however, unclear how important (5) is for problems
where normality or linearity does not hold.

3Multilevel data assimilation

In MLDA the forecast step is performed using a set of
models which have different costs and fidelities. Here,
we define ML := M, and {Ml}L−1

l=1 where Ml is
an approximation to ML with increasing accuracy and
computational cost as l increases. We will denote {Ml}Ll=1
an ML model.

3.1 Multilevel model

Members of an ML model form hierarchies of both accuracy
and computational cost. One can think of several schemes
to devise the hierarchy including, but not limited to,
coarsening the spatial grid of the forward model, increasing
the length of the forward model time steps, and relaxing
the convergence criteria in the iterative linear solvers. All of
these methods reduce the computational cost of the models
and increase their numerical error. Coarsening the spatial
grid and performing simulations on such grids is chosen for
the current work (Note, however, that the parameters that we
estimate are kept in the fine grid, meaning that upscaling the
parameters is considered as part of the ML forward models).

Fossum and Mannseth [32] proposed a robust technique
for grid coarsening, which was also used in [33, 37, 41].
In each coarsening step, neighboring cells of the grid at the
previous step are merged into a coarser cell unless they are
to be kept fine deliberately. A representation of the grid
coarsening process for an 8 × 8 example grid can be found
in Fig. 1. The figure illustrates that coarsening has occurred
in a uniform manner across both directions, except for the

267Computational Geosciences (2023) 27:265–287



Fig. 1 Grid coarsening
proposed by [32] performed on
an 8 × 8 grid (a) Finest level
(b,c) Coarser levels

vicinity of two opposite corners, where the grid cells are
kept in fine scale to boost the local numerical accuracy
around the two wells, producer (P) and injector (I). The aim
is that the grid coarsening should not change the physics of
the problem too much.

3.2 Transformation of model forecasts

The discrepancy in coarseness of the ML grids results in
the spatially distributed model forecasts to be in different
resolutions for different levels. Therefore, in order to be able
to compute the ML sample statistics of model forecasts,
a robust transformation scheme should be devised for
converting a model forecast from the resolution at one level
to another.

In the problem at hand, transformation of the model
forecast requires either upscaling or downscaling. A
standard volume-weighted arithmetic averaging technique
is used for upscaling. Since the grids of the ML model used
here have a nested structure, downscaled model forecasts

are simply put equal to the corresponding coarse grid values.
Accordingly, both upscaling and downscaling are linear
transformations of model forecasts. Hence, we define a set
of linear transformations, {Uc

f : Rζf �→ R
ζc |1 ≤ c, f ≤ L},

where ζf and ζc denote the dimension of model forecast
vector at arbitrary levels f and c, respectively, and Uc

f

transforms the model forecast vector from level f to level c.

3.3 Upscaling of observation data

As part of the DA process, the mismatch between the model
forecasts and observation data needs to be calculated. Here,
it is assumed that inverted seismic data is given in the
resolution of the finest simulation grid, level L. Therefore,
for each of the levels, either the observation data should
be upscaled to the resolution of the model forecasts or
the model forecasts should be downscaled to the resolution
of the observation data. We take the former approach.
Since the observation data is in the resolution of the finest
model, using the same transformation functions as those

Fig. 2 The schematic of two MLDA algorithms compared with ESMDA
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designed for the model forecasts on the fine observation
data will result in upscaling of observation data into the
required resolution. Hence, the transformed random vector
of observation data at level l is given as

Dl = Ul
LD . (6)

3.4 Sequential multilevel data assimilation

The idea of sequential assimilation of spatially distributed
data resonates well with the nature of the ML model
used. Since coarsening the model is expected to result in
weaker nonlinearity [44, 45], utilization of coarse models
in the first steps of the DA followed by more non-linear
fine models in the next steps can help to gradually zoom
in on the solution of the inverse problem. Therefore, in
SeMLDA the observation data are upscaled into several
levels corresponding to the levels of the ML model.
Afterwards, the data are assimilated sequentially starting
from the coarsest resolution followed by the finer ones.

3.4.1 Sequential multilevel ensemble smoother

In this section we discuss two versions of the Sequential
Multilevel Ensemble Smoother (SMLES). This algorithm
draws on the ESMDA algorithm [2], MLHES algorithm
[33], and constraints associated with assimilation of linearly
dependent data [46].

Initially, based on the available computational resources,
the number of simulations performed on each level should
be decided. Since the simulations are cheaper on the coarser
levels, a higher number of simulations will be performed

on those levels. Considering this, a decision is made on
the resource allocation. Based on the resource allocation, a
sample of N1 ensemble members is generated based on the
prior information. Afterwards, at step l the model pertaining
to level l is used to assimilate the data transformed to match
the resolution of the model forecasts at that level. Running
the forward simulator for every realization, z

pri
l,j , 1 ≤ j ≤

Nl , from the prior parameters random vector at level l, Z
pri
l ,

we have

yl,j = Ml

(
z

pri
l,j

)
, (7)

where yl,j is a realization from the model forecasts random
vector at step l, Yl .

In the analysis step, realizations from the random obser-
vation data vector at level l, D̃l ∼ N (Ul

LE(D), C(D̃l))

are generated as {d̃l,j }Nl

j=1. The form of C(D̃l) will be dis-
cussed in Section 3.4.2. The updated parameter vector of an
arbitrary ensemble member is, then, given by

z
pos
l,j = z

pri
l,j + K∗

l

(
d̃l,j − yl,j

)
. (8)

Here, K∗
l is defined generically with * being a wildcard

notation, and we introduce two flavors of the algorithm.
The straightforward flavor (SMLES-S) utilizes the data

error and model at level l for formulation of the Kalman
gain at step l. Accordingly, the Kalman gain is given as

KS
l = C

(
Z

pri
l , Yl

) (
C(Yl) + C(D̃l)

)−1
, (9)

where C(Yl) and C
(
Z

pri
l , Yl

)
denote the covariance of Yl

and cross-covariance between Z
pri
l and Yl , respectively.

Fig. 3 Step l of SMLES-S and
SMLES-H
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Finally, while l < L, the prior for step l + 1 is obtained
from the posterior at level l as

z
pri
l+1,j

:= z
pos
l,j , (10)

for 1 ≤ j ≤ Nl+1.
In SMLES-S only the realizations which have been

simulated by all the models are considered for the final
statistics. With a subtle manipulation of the data-error
covariance in Eq. 9 for the realizations at level l which are
not simulated by Ml+1, the resulting posterior realizations
in the linear-Gaussian case would sample correctly from the
posterior distribution up to the data at level l. The condition
that should hold at any level l is explained in Section 3.4.2.

Figure 2 represents the schematic of SMLES-S in
comparison with ESMDA and MLHES algorithms. As can
be seen from the figure, the ensemble size of SMLES-S
shrinks as the level increases due to limited computational
resources. Accordingly, at level L the ensemble size
becomes small and it may end up in the situation that
MLDA wants to avoid at the first place. A possible treatment
would be utilization of localization in the finer levels, but
that would reduce the robustness of the algorithm. Another
alternative is to allow for transfer of information between
different levels by utilization of ML statistics. By doing
so, a hybrid version of the SMLES algorithm is formulated
similar to MLHES and IMLHES. The hybrid Kalman gain
can be formulated as

KH
l = CH

l (Z, Y )
(

CH
l (Yl) + C(D̃l)

)−1
, (11)

where CH
l (Yl) and CH

l (Z, Y ) denote the ML covariance of
Yl and the ML covariance between Z and Y , respectively.
The ML statistics will be discussed in Section 3.4.3.

The SMLES-H algorithm takes advantage of both
conditioning all the realizations to the data up to the last
level on which they are simulated and the ML statistics.
A depiction of the difference between SMLES-S and
SMLES-H is presented in Fig. 3. Pseudo-codes of SMLES-
S and SMLES-H are presented in Appendices A and B,
respectively.

3.4.2 Partially multiple data assimilation condition

For the convenience of the reader, we present the main result
from [46] (omitting the derivation). Similar to formulating a
condition for assimilating a set of data multiple times such
that the updated ensemble will sample correctly from the
posterior in the linear-Gaussian case, there exists a condition
which should hold if the data are linearly dependent,

known as the Partially Multiple Data Assimilation (PMDA)
condition [46].

In the problem at hand, the data at any coarser level, Dc,
is a linear transformation of the data at any finer level, Df ,
such that for any {c, l, f }, 1 ≤ c < l < f ≤ L, we have

Uc
f = Uc

l Ul
f . (12)

Hence, we can define the PMDA condition for the data up
to any arbitrary level L, 1 ≤ L ≤ L.

Consider the data-error covariance matrix at level l < L
to be given as

C(D̃l) = AlU
l
LC(D)Ul

L

T
Al

T , (13)

where Al is an inflation matrix. Assuming the prior
distribution is Gaussian, the forward model ML is linear,
and for any coarser level c we have

Mc = Uc
LML , (14)

the straightforward formulation of the SMLES algorithm,
given in Section 3.4.1, samples correctly from the posterior
distribution of the parameter random vector up to the data at
level L if the following condition holds,

L∑
l=1

Ul
L

T
C(D̃l)

−1Ul
L =

(
UL

L C(D)UL
L

T
)−1

. (15)

3.4.3 Multilevel statistics

Assuming we have approximations of the model forecasts,
Y , being a function of the unknown parameter vector,
Z, on several levels, a scheme for approximation of ML
statistics for Y is required. As for MLDA, the mean and the
covariance of model forecast are of foremost interest.

Assuming the model with the highest fidelity, ML,
to be exact, and {Ml}L−1

l=1 to be approximations to ML with
a decreasing numerical error, [29] proposed a formulation for
ML statistics. In this formulation, inspired by Bayesian
Model Averaging, the statistics are computed based on reli-
ability weights wl for each of the levels l. This formulation
is, by definition, a biased scheme for computation of ML
moments; however, it will be a useful technique for prob-
lems in which variance error dominates bias, which is often
the case for petroleum reservoir problems [29]. Using this
formulation and transformations of the forecast, [33] pro-
posed a formulation of ML statistics for spatially distributed

Table 1 Shared properties of
the reservoir models Fine cell dimensions: 30 × 30 × 30 (m3) Porosity: 0.2

Initial Oil saturation: 0.85 Initial Pressure: 200 bar

270 Computational Geosciences (2023) 27:265–287



model forecasts. According to this scheme, the ML mean of
the model forecast at level l is given as

EH
l (Y ) =

L∑
k=1

wkU
l
k E(Yk) , (16)

L∑
k=1

wk = 1 , (17)

where E(Yk) denotes sample mean of the model forecast at
level k. At step l the model forecasts pertaining to levels
finer than l are not available, since the proposed algorithm
is sequential. Hence, with a small change in the above-
mentioned formulation, the formulation used in this work
will be based on levels 1 ≤ k ≤ l,

EH
l (Y ) =

l∑
k=1

wkU
l
k E(Yk) , (18)

l∑
k=1

wk = 1 . (19)

Using the law of total variance, the ML approximation of
covariance of the model forecast at level l is formulated as

CH
l (Y ) =

l∑
k=1

wk

{
C

(
Ul

kYk

)
+

(
E

(
Ul

kYk

)
− EH

l (Y )
)

(
E

(
Ul

kYk

)
− EH

l (Y )
)T

}
. (20)

In addition, the parameter-forecast cross-covariance can be
written as

CH
l (Z, Y ) =

l∑
k=1

wk

{
C

(
Zk, U

l
kYk

)
+

(
E(Zk)− EH (Z)

)

(
E

(
Ul

kYk

)
− EH

l (Y )
)T

}
, (21)

where EH (Z) is the ML formulation of the parameter-vector
mean. This statistic is formulated using the same weights as
in forecasts ML statistics, but since the parameters are in the
same resolution for all levels, no transformation is needed
for formulating it,

EH (Z) =
l∑

k=1

wk E(Zk) . (22)

4 Test models

Three different reservoir models are set up for numerical
investigations. These reservoir models have some shared
properties. They are two-dimensional with Cartesian grids.
For all of them, compressible two-phase flow (oil and

water), no-flow boundary conditions, and standard equa-
tions for capillary pressure and relative permeability, are
considered. All the wells in these reservoir models are con-
trolled by their bottom-hole pressure; the injectors at 300
bar, and the producers at 110 bar. A description of the other
shared general properties of the reservoir models is given
in Table 1. Unique features of the reservoir models are
explained separately in Sections 4.1 - 4.3.

The forward models consist of two segments. A reservoir
flow model is used to predict the state variables, i.e. the
pressure and saturation of the reservoir fluids, in time, and a
petro-elastic model is utilized for computing the elastic rock
properties from parameters and predicted state variables.

The flow segment of the forward model is derived by
substitution of Darcy’s law into the mass conservation
equation for each of the fluid phases, resulting in [47]

∇.

[
kro

νoBo

k(∇po − ρog∇z)

]
= ∂

∂t

(
φSo

Bo

)
+ qo , (23)

∇.

[
krw

νwBw

k(∇pw − ρwg∇z)

]
= ∂

∂t

(
φSw

Bw

)
+ qw , (24)

where

So + Sw = 1 , (25)

pcow = po − pw . (26)

In these equations, k denotes absolute permeability, and
kr∗ denotes the relative permeability of the corresponding
phase, while ∗ is a wildcard notation. kr∗ is a function
of saturation of that phase, S∗. The pressure of a phase
is denoted by p∗, and the capillary pressure, pcow, is a
function of Sw. Furthermore, g denotes the gravitational
constant; ν∗, B∗, and ρ∗ are the viscosity, the formation
volume factor, and density of their corresponding phases;
and q∗ denotes the sink or source term of its corresponding
continuity equation.

The flow segment of the forward models is performed
using Eclipse-100 [48]. Coarsening the grid is done by using
the Eclipse keyword COARSEN, which merges groups
of pre-defined neighboring cells to form a coarser grid.
The upscaling of permeabilities is performed using pore-
volume weighted arithmetic averaging, and transmissibili-
ties between two neighboring coarse cells in each direction
are calculated based on harmonic averaging in that direction
and summing it in other directions [48].

As for the petro-elastic segment of the forward model, an
in-house model based on standard rock-physics equations
[49], [50, Report 1] was used.

4.1 Reservoir model I

This model has a 50 × 50 grid, and two wells, one
producer (P) at center east and one injector (I) at center
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Table 2 A summary of
resource allocation for different
runs in experiment I

Level 1 Level 2 Level 3 Level 4

G1 = 157 G2 = 259 G3 = 685 G4 = 2500

N1 N2 N3 N4

ESMDA-REF − − − 10000

SMLES-S 951 880 710 412

SMLES-H 1512 1134 756 378

ESMDA-LOC − − − 100

IES-REF − − − 10000

IMLHES 459 438 216 30

IES-LOC − − − 100

west. This model is designed to evaluate the performances
of the different algorithms in parameter estimation of
an oil reservoir with relatively long-range correlation in
permeability field.

4.2 Reservoir model II

This model has a 64×64 grid and five-spot well pattern, four
injectors at the corners and a producer at the center of the
field. This model is designed to assess the performances of
the different algorithms in history-matching of a field with
relatively short-range correlation length.

4.3 Reservoir model III

This model has a 70 × 70 grid and two wells, an injection
well in southwest corner and a production well in the
northeast corner. This model has two permeability zones,
one with a long-range correlation length and one with a
short-range correlation length, and there exist a smooth
transition from one zone to another.

5 Numerical investigation

Three numerical experiments are conducted, one for each of
the three reservoir models discussed in Section 4.

The unknown parameter field in all the experiments is
the logarithmic permeability field, which has a different
distribution in each of the experiments.

The observation data are two sets of time-lapse bulk-
impedance data based on a baseline (day zero of production)
and two vintages, which are different for each experiment
and will be described separately. These observation data
are generated using the results of simulation of a random
draw from the prior parameter distribution. As inverted
seismic data typically are spatially correlated, we use a
non-diagonal covariance matrix for the data error, based
on isotropic spherical variograms with mean 0. The ranges
of the variograms are different for different experiments
so that the robustness of the algorithms towards variogram
range is assessed. The marginal standard deviation of each
observation value is given as

σ = r max{|δ|, η} , (27)

where r = 0.1, δ is the value of observation data at a certain
location, and η is a threshold introduced to avoid too much
certainty in observation data whose absolute values are very
small. This threshold is defined as the 1st smallest percentile
of the absolute value of the observation data.

In order for comparison of SMLES with standard
ESMDA, three algorithms are run; SMLES-S, SMLES-H,
and ESMDA with localization (ESMDA-LOC). The gold
standard for this comparison is the DA results obtained

Table 3 A summary of
resource allocation for different
runs in experiment II

Level 1 Level 2 Level 3 Level 4

G1 = 265 G2 = 433 G3 = 1147 G4 = 4096

N1 N2 N3 N4

ESMDA-REF − − − 10000

SMLES-S 1673 1380 1343 415

SMLES-H 1496 1122 748 374

ESMDA-LOC − − − 100

IES-REF − − − 10000

IMLHES 644 498 111 40

IES-LOC − − − 100
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from vanilla ESMDA with an exceedingly large ensemble
(ESMDA-REF). (Obviously, such an ensemble size would
be computationally infeasible for a real application.)

In addition, in order for comparison of performance of
SMLES with the iterative DA algorithms, the following
algorithms are run: Iterative Ensemble Smoother (IES)
[1] with localization (IES-LOC) and IMLHES. The gold
standard for this comparison is the DA results obtained from
vanilla IES with an exceedingly large ensemble (IES-REF).

What we want to estimate is the posterior distribution
of the parameters and the model forecasts. The correct
estimates would be given by Markov Chain Monte Carlo
with an exceedingly large chain length. However, the focus
of this work is comparing the novel MLDA algorithms
with algorithms of the same class which are widely used
in reservoir history matching, i.e. ensemble-based DA
algorithms. Hence, ESMDA and IES with exceedingly large
ensemble sizes are selected to remove the Monte Carlo
errors and serve as the gold standards for comparison.

In order for these comparisons to be fair, there exists the
“equal computational power” constraint. As the dominant
cost of the DA process is pertaining to simulations of
forward models, where iterative linear solvers dominate the
computational costs for large problems, the computational
cost relating to simulation of each ensemble member, using
forward model Ml , is assumed to be proportional to G

γ

l ,
where Gl is the number of the active grid cells in the forward
model at level l, with γ ∈ [1.25, 1.5], [51]. Here, we take
γ = 1.35. Accordingly, the computational power associated
with each algorithm run can be written as

� =
L∑

l=1

nlG
1.35
l . (28)

where nl is the total number of simulations using Ml . Using
Eq. 28, the computational cost of the algorithm runs are set
to be equal.

The iterative algorithms do not always have a fixed com-
putational cost and many iterations are performed to satisfy
the convergence criteria without considerable improvements
in the objective function. Therefore more computational
power (approximately twice the computational power of
the other algorithms) was observed for these algorithms
(IMLHES and IES-LOC).

Setting a fixed computational cost, there exists L − 1
degrees of freedom for specification of the {Nl}Ll=1 in the
ML algorithms. No optimization was performed for this
specification, the only aim pursued was to keep the size
of sub-ensembles ascending with decreasing model cost.
Several other similar settings that were tried resulted in
similar DA outcomes.

The convergence criterion for the iterative algorithms
was that improvements in the relative data mismatch should
be smaller than 0.0001.

The localization scheme in ESMDA-LOC was based on
covariance structure given in [52], spherical variogram, and
the DA was performed using subspace inversion method
proposed by [53]. As for IES-LOC, the localization scheme
was based on covariance structure given in [52] and
spherical variogram.

For the SMLES-H and IMLHES, there is a possibility to
improve the results by tuning the weights in calculation of
ML statistics for specific cases, but here we use the simplest
choice–{wl = 1

L | 1 ≤ l ≤ L}.
Both ESMDA-LOC and ESMDA-REF are run with 6

steps, with αi = 6, 1 ≤ i ≤ 6, in all the steps. Runs
with higher number of steps were conducted but no major
improvement in the DA results was observed.

As for SMLES-S, the inflation matrices are set as Al =
L ∗ Iζl

for 1 ≤ l < L, where Iζl
is the identity

matrix of size ζl . For L = L, Eq. 15 is solved to
calculate AL. Unlike satisfying the MDA condition, which
is computationally trivial, satisfying the PMDA condition is
computationally very expensive for real field problems and
becomes practically unfeasible. This is due to the presence
of the costly inversions in Eq. 15. However, since the
PMDA condition only secures correct sampling for linear-
Gaussian problems, approximately satisfying this condition
may suffice for the real field cases.

Regarding SMLES-H, the ensemble at level l is divided
into two sub-ensembles; (I) the realizations which are
simulated using Ml+1 after the analysis step, {zpri

l,j | 1 ≤
j ≤ Nl+1}, and (II) those that are not, {zpri

l,j | Nl+1 <

j ≤ Nl}. For Sub-ensemble (I) the inflation matrix is set
as Al = L ∗ Iζl

. For Sub-ensemble (II), Eq. 15 is solved
for L = l, so that AL is calculated. This is done to assure

Table 4 A summary of resource allocation for different runs in
experiment III

Level 1 Level 2 Level 3

G1 = 390 G2 = 1261 G3 = 4900

N1 N2 N3

ESMDA-REF − − 10000

SMLES-S 949 925 420

SMLES-H 1266 844 422

ESMDA-LOC − − 100

IES-REF − − 10000

IMLHES 768 246 32

IES-LOC − − 100
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Fig. 4 Randomly selected
realizations from prior
distribution of the logarithmic
permeability field of Reservoir
model I

that the PMDA condition is satisfied up to the last level that
each realization is simulated. In order to avoid additional
computations, the ML statistics are calculated based on the
posterior parameters and their corresponding linear update
for the model forecasts.

5.1 Experiment I

This experiment is conducted on Reservoir Model I. The
ML algorithms have four levels, corresponding to 157, 259,
685, and 2500 grid cells, respectively. A summary of the
resource allocation for the different runs carried out in this
experiment can be found in Table 2. All the numbers in
the table are per assimilation step or iteration, except for
SMLES-S and SMLES-H. For these two algorithms the total
number of simulations performed at each of the levels are
reported. This also holds for Tables 3 and 4 pertaining to
Experiment II and Experiment III, respectively.

The observation data for this experiment are generated
based on seismic vintages at 2500 and 5000 days after
production starts. The range of the variogram used for
data-error covariance in this experiment is 15 grid cells.

The prior unknown logarithmic permeability field is
based on an exponential variogram with mean and variance
constant at 5 and 1, anisotropy angle and anisotropy ratio
of 80 degrees and 0.7, and range 20 grid cells. Randomly

selected realizations from this logarithmic permeability
field can be found in Fig. 4.

5.2 Experiment II

This experiment is conducted on Reservoir Model II. The
ML algorithms have four levels, corresponding to 265, 433,
1147, and 4096 grid cells, respectively. A summary of the
resource allocation for the different runs carried out in this
experiment can be found in Table 3.

The observation data for this experiment are generated
based on seismic vintages at 4000 and 8000 days after
production starts. The range of the variogram used for
data-error covariance in this experiment is 10 grid cells.

The prior unknown logarithmic permeability field is
based on a spherical variogram with mean and variance
constant at 5 and 1, the anisotropy angle and anisotropy ratio
of −30 degrees and 0.7, and range 10 grid cells. Randomly
selected realizations from this logarithmic permeability
field can be found in Fig. 5.

5.3 Experiment III

This experiment is conducted on Reservoir Model III. The
ML algorithms have three levels, corresponding to 390,
1261, and 4900 grid cells, respectively. A summary of the

Fig. 5 Randomly selected
realizations from prior
distribution of the logarithmic
permeability field of Reservoir
model II
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resource allocation for the different runs carried out in this
experiment can be found in Table 4.

The observation data for this experiment are generated
based on seismic vintages at 4000 and 8000 days after
production starts. The range of the variogram used for
data-error covariance in this experiment is 5 grid cells.

The unknown logarithmic permeability field is based
on two different variograms in two zones of the field,
one encompassing the northeastern part of the field and
one encompassing the southwestern part of the field with
a smooth transition between them. The details about the
variograms based on which the distribution of the unknown
parameters are defined can be found in Table 5. Randomly
selected realizations from this logarithmic permeability
field can be found in Fig. 6.

6 Numerical results

The results from the numerical experiments are assessed
both qualitatively and quantitatively, using the posterior
parameters and forecasts.

As for qualitative analysis, firstly, mean and variance
of the posterior parameter fields obtained by different

Table 5 The two variograms of Reservoir Model III

Variance Mean Range Ratio Angle Type

Variogram 1 1 5 30 0.7 −30 cubic

Variogram 2 1 5 10 0.4 −70 cubic

algorithms are compared to the reference cases. Addition-
ally, since the model forecasts are in different resolutions
for different levels of the ML algorithms, comparison of
the posterior model forecasts as such is not a possibil-
ity. Instead, we run fine-scale simulations of the posterior
ensemble for all algorithms and then plot the mean and
variance of the model forecasts for all the algorithms and
compare them. The model forecasts of the second vintage
are presented for all the experiments.

As for SMLES-H and IMLHES, the simplest formulation
is chosen for computation of posterior statistics (E(Zpos),
Var(Zpos), E(Ypos), and Var(Ypos)). All posterior ensemble
members at different levels are united into one ensemble and
the empirical mean and variance are calculated.

The conventional DA algorithms (ESMDA-LOC and
IES-LOC) were tested with several ranges for localization
(critical distances), and the best results are presented for
each of the experiments.

The quantitative analysis is performed using a measure
suggested by [54] for comparison of DA results obtained by
different schemes with a reference case. Consider ν to be
a vector of interest for quantitative analysis, e.g. parameter
estimate vector or model forecast vector. The following two
metrics are computed for each of the algorithm runs [54],

εMean = || (Mean(ν∗) − Mean(νpri)
) − (

Mean(νpos) − Mean(νpri)
) ||2

|| (Mean(νpos) − Mean(νpri)
) ||2 , (29)

εVar = ||Var(ν∗) − Var(νpos)||2
||Var(νpos)||2 , (30)

where Mean and Var represent the empirical mean and
variance for different cases; superscripts pri and pos denote
the prior and the reference posterior, respectively; the
subscript ∗ is a wildcard notation for the algorithm of
interest; and the distance is measured in 2-norm. Here,
the reference posterior is calculated based on the results
obtained by ESMDA-REF for all the experiments.

When estimation of ν is concerned, the εMean metric has
the property that it will be close to 0 for the algorithms
that perform similar to the reference and will be close to
1 for the algorithms whose estimate of ν are similar to
the prior estimate. Similarly, the εVar metric calculates the

difference between the variance obtained by the algorithm
of interest and the reference variance normalized by the
norm of the reference variance, meaning that smaller values
are preferred.

We will compute these two metrics for both the posterior
parameter estimates and the second vintage of the posterior
model forecasts.

6.1 Results of experiment I

Visual analysis of the mean permeability fields in Fig. 7
shows that the SMLES-S and SMLES-H results are more
similar to the ESMDA-REF result than the ESMDA-LOC
result is. It also shows that IMLHES performs more similar
to IES-REF than IES-LOC does. There does not seem
to be any considerable advantage in performance of a
specific ML algorithm when the mean permeability fields
obtained by the ML algorithms are compared with the IES-
REF result. However, due to convergence issues mentioned
above, the SiMLDA algorithm used more computational
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Fig. 6 Randomly selected
realizations from prior
distribution of the logarithmic
permeability field of Reservoir
model III

resources than SeMLDA algorithms. This holds for all the
experiments.

Checking the variance fields in Fig. 8 confirms that both
SMLES-S and SMLES-H perform better than ESMDA-
LOC. It further confirms that IMLHES performs more
similar to IES-REF than IES-LOC does. However, in
this figure it is evident that SMLES-S underestimates the
uncertainty in the posterior parameters while SMLES-H and
IMLHES overestimate it. No indication of superiority of
either SMLES-H or IMLHES over each other is noticeable
in the variance fields, and both perform slightly better than
SMLES-S. It is worth noting that, changing the color scale
of the plot of the variance field for SMLES-S (denoted
by SMLES-S∗ in the figure), shows that, in spite of
underestimation of uncertainty, the structure of variance
field is predicted accurately by this algorithm.

Superiority of performance of ML algorithms over the
performance of the conventional DA algorithms is further

confirmed by checking the statistics of the model forecasts
in Figs. 9 and 10. There is no clear indication of advantage
of either SMLES-H or IMLHES over each other. However,
SMLES-S performs better than both of them particularly in
estimating the variance field of the model forecasts.

Quantitative measures given in Tables 6 and 7 also con-
firm that the ML algorithms generally perform more simi-
lar to ESMDA-REF than the conventional DA algorithms.
Among the ML algorithms, SMLES-H performs slightly
better in estimation of both the mean posterior parameters
and the mean model forecasts, while IMLHES performs
slightly better in estimation of the variance of the poste-
rior parameter field, and SMLES-S performs significantly
better in estimation of the variance of the posterior model
forecasts.

The ESMDA-LOC and IES-LOC results presented here
are based on the localization range of 40 grid cells (1200
meters).

Fig. 7 Experiment I–Mean
posterior logarithmic
permeability field

276 Computational Geosciences (2023) 27:265–287



Fig. 8 Experiment I–Variance
of posterior logarithmic
permeability field. The only
difference between SMLES-S
and SMLES-S∗ is in their scales

6.2 Results of experiment II

Visual analysis of the mean permeability fields in Fig. 11
shows that the SMLES-S and SMLES-H results are more
similar to the ESMDA-REF result than the ESMDA-LOC
result is. It also shows that IMLHES performs more similar
to IES-REF than IES-LOC does. There does not seem to
be any considerable advantage in performance of a specific
ML algorithm when the mean permeability fields obtained
by ML algorithms are compared with the IES-REF result.

Checking the variance fields in Fig. 12 confirms that both
SMLES-S and SMLES-H perform better than ESMDA-
LOC. It further confirms that IMLHES performs more
similar to IES-REF than IES-LOC does. However, in
this figure it is evident that SMLES-S underestimates the
uncertainty in the posterior parameters while SMLES-H and
IMLHES overestimate it. No indication of superiority of
either SMLES-H or IMLHES over each other is noticeable
in the variance fields, and both perform slightly better than
SMLES-S. As for Experiment I, changing the color scale
of the plot of the variance field for SMLES-S (denoted
by SMLES-S∗ in the figure), shows that, in spite of
underestimation of uncertainty, the structure of variance
field is predicted accurately by this algorithm.

Superiority of performance of the ML algorithms over
the performance of the conventional DA algorithms is
further confirmed by checking the statistics of the model
forecasts in Figs. 13 and 14. There is no clear indication

of advantage of either SMLES-H or IMLHES over each
other. However, SMLES-S performs better than both of
them particularly in estimating the variance field of the
model forecasts.

Quantitative measures given in Tables 6 and 7 also con-
firm that the ML algorithms generally perform more similar
to ESMDA-REF than the conventional DA algorithms. All
the MLDA algorithms perform reasonably similar in esti-
mation of the mean of posterior parameters, while IMLHES
and SMLES-H perform slightly better in estimation of the
variance of the posterior parameter field. As for estimation
of the statistics of the posterior model forecasts, SMLES-
S performs best, and its superiority is most evident in
estimation of the variance of the posterior model forecasts.

The ESMDA-LOC and IES-LOC results presented here
are based on the localization range of 60 grid cells (1800
meters).

6.3 Results of experiment III

Visual analysis of the mean permeability fields in Fig. 15
shows that the SMLES-S and SMLES-H results are more
similar to the ESMDA-REF result than the ESMDA-LOC
result is. It also shows that IMLHES performs more similar
to IES-REF than IES-LOC does. There does not seem to
be any considerable advantage in performance of a specific
ML algorithm when the mean permeability fields obtained
by ML algorithms are compared with the IES-REF result.
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Fig. 9 Experiment I–Mean of
posterior time-lapse bulk
impedance field ( m

s
kg

m3 ) in
comparison with observation
data in the second vintage

Checking the variance fields in Fig. 16 confirms that both
SMLES-S and SMLES-H perform better than ESMDA-
LOC. It further confirms that IMLHES performs more
similar to IES-REF than IES-LOC does. However, in
this figure it is evident that SMLES-S underestimates the
uncertainty in the posterior parameters while SMLES-H and
IMLHES overestimate it. No indication of superiority of
either SMLES-H or IMLHES over each other is noticeable
in the variance fields, and both perform slightly better
than SMLES-S. As for Experiments I and II, changing the
color scale of the plot of the variance field for SMLES-S
(denoted by SMLES-S∗ in the figure), shows that, in spite
of underestimation of uncertainty, the structure of variance
field is predicted accurately by this algorithm.

Superiority of performance of the ML algorithms over
the performance of the conventional DA algorithms is
further confirmed by checking the statistics of the model
forecasts in Figs. 17 and 18. There is no clear indication
of advantage of either SMLES-H or IMLHES over each
other. However, SMLES-S performs better than both of
them particularly in estimating the variance field of the
model forecasts.

Quantitative measures given in Tables 6 and 7 also con-
firm that the ML algorithms generally perform more similar
to ESMDA-REF than the conventional DA algorithms. All
the MLDA algorithms perform reasonably similar in esti-
mation of the mean of posterior parameters, while IMLHES

and SMLES-H perform slightly better in estimation of the
variance of the posterior parameter field. As for estimation
of the statistics of the posterior model forecasts, SMLES-S
performs best, and its superiority is most evident in estimation
of the variance of the posterior model forecasts. SMLES-H
performs slightly better than IMLHES in this regard.

The ESMDA-LOC and IES-LOC results presented here
are based on the localization range of 60 grid cells (1800
meters).

7 Summary and conclusions

In this work, two variants of a novel sequential MLDA
algorithm, SMLES-S and SMLES-H, were introduced. In
addition, performances of these algorithms were assessed
in comparison with two conventional DA algorithms
and a simultaneous MLDA algorithm. In doing so, three
experiments were performed on three reservoir models.
The three experiments were designed such that the
performance of the algorithms were evaluated in different
settings for the prior parameter fields (different variogram
types; different anisotropies; and various correlation lengths
including long-range correlation, short-range correlation,
and mixture of long-range and short-range correlations)
and different ranges for the variograms used for the
data-error covariance. Each of the experiments consisted
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Fig. 10 Experiment I–Variance
of posterior time-lapse bulk

impedance field

((
m
s

kg

m3

)2
)

, in

the second vintage. Note that the
color bars have very different
scales

of seven algorithm runs: SMLES-S, SMLES-H, ESMDA
with localization (ESMDA-LOC), vanilla ESMDA with an
exceedingly large ensemble (ESMDA-REF), an iterative
MLDA algorithm (IMLHES), iterative ensemble smoother
with localization (IES-LOC), and vanilla iterative ensemble
smoother with an exceedingly large ensemble (IES-REF).
Results of the experiments were assessed both qualitatively
and quantitatively.

In order for qualitative evaluation of the numerical
results, firstly, the mean and the variance of posterior
parameter fields were generated and assessed visually. The
relative performances of the different methods were similar
for all three experiments. The assessments showed that
both SMLES-S and SMLES-H performed more similar to
ESMDA-REF than ESMDA-LOC did in estimation of the

posterior parameter mean field. Regarding estimation of
the variance fields, SMLES-H overestimated the variance
while SMLES-S underestimated it. The superiority of
performance of both SeMLDA algorithms over ESMDA-
LOC was evident, also for the variance fields. Among
the iterative algorithms, IMLHES performed more similar
to IES-REF than IES-LOC did. There was no indication
of superior performance of either SMLES-H or IMLHES
over each other in any of the experiment when their
performances were compared to IES-REF results. However,
IMLHES used more computational resources than either
of the SeMLDA algorithms. Both IMLHES and SMLES-H
performed slightly better than SMLES-S.

Additionally, fine-scale simulations were run for all the
posterior ensembles obtained by the different algorithms in

Table 6 Summary of
quantitative analysis of the
experiments for posterior
parameter estimates

Experiment I Experiment II Experiment III

εMean εVar εMean εVar εMean εVar

ESMDA-REF 0.00 0.00 0.00 0.00 0.00 0.00

SMLES-S 0.76 0.79 0.76 0.70 0.55 0.51

SMLES-H 0.51 0.67 0.87 0.39 0.54 0.21

ESMDA-LOC 1.34 9.09 1.21 0.65 1.07 0.95

IES-REF 0.26 0.09 0.34 0.11 0.22 0.08

IMLHES 0.60 0.58 0.80 0.36 0.61 0.20

IES-LOC 1.05 2.00 0.97 0.63 1.08 0.64
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Table 7 Summary of
quantitative analysis of the
experiments for posterior
model forecasts

Experiment I Experiment II Experiment III

εMean εVar εMean εVar εMean εVar

ESMDA-REF 0.00 0.00 0.00 0.00 0.00 0.00

SMLES-S 0.16 0.58 0.076 0.46 0.037 0.30

SMLES-H 0.12 8.23 0.13 4.28 0.07 14.23

ESMDA-LOC 1.26 84.48 0.16 4.11 0.075 4.73

IES-REF 0.09 0.21 0.029 0.47 0.011 0.39

IMLHES 0.16 11.28 0.12 5.80 0.19 19.88

IES-LOC 1.27 316.33 0.21 13.12 0.31 97.79

all the experiments. Plots of the mean and the variance of
model forecasts from the different algorithms were com-
pared to each other. Visual analysis of these plots showed
that in all the experiments the ML algorithms performed bet-
ter than their conventional DA counterparts. Among the ML
algorithms, SMLES-S consistently performed better than
both SMLES-H and IMLHES in estimation of the variance
of the posterior model forecasts. Either of the other two
MLDA algorithms did not have a clear advantage over each
other.

Two metrics were adopted for quantitative comparison
of the DA results obtained by different algorithms for
estimation of both mean and variance of the posterior
parameters and model forecasts. The metrics indicated that
the ML algorithms generally performed better than the
conventional DA algorithms in estimation of both mean and

variance of the posterior parameters. They also indicated
that SMLES-H and IMLHES performed slightly better than
SMLES-S in estimation of the variance of the posterior
parameters, and that all the MLDA algorithms performed
better than IES-LOC in estimation of mean and variance
of the posterior model forecasts. SMLES-S also performed
consistently superior to ESMDA-LOC in estimation of
mean and variance of the posterior model forecasts, while
this was not observed for IMLHES and SMLES-H. Among
the ML algorithms, SMLES-S clearly performed best when
it came to estimation of the variance of the model forecasts.
The other two algorithms did not consistently perform better
than one another.

There were significant differences between the results
from the MLDA algorithms and the results from the conven-
tional DA algorithms in all the experiments. Simultaneous

Fig. 11 Experiment II–Mean
posterior logarithmic
permeability field
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Fig. 12 Experiment II–Variance
of posterior logarithmic
permeability field. The only
difference between SMLES-S
and SMLES-S∗ is in their scales

assimilation of large amounts of data into ensembles of
small size partly explains the under-performance of the con-
ventional algorithms. In the case of inverted seismic data
we noticed true long-range correlations between the data

and parameters. Regularization of the Kalman gain using
distance-based localization, which disregards these true cor-
relations and distorts the update formula, is another cause
for the significant difference between the results.

Fig. 13 Experiment II–Mean of
posterior time-lapse bulk
impedance field ( m

s
kg

m3 ) in
comparison with observation
data in the second vintage
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Fig. 14 Experiment II–Variance
of posterior time-lapse bulk

impedance field

((
m
s

kg
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)2
)

, in

the second vintage. Note that the
color bars have very different
scales

Fig. 15 Experiment III–Mean
posterior logarithmic
permeability field
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Fig. 16 Experiment III–
Variance of posterior logarithmic
permeability field. The only
difference between SMLES-S
and SMLES-S∗ is in their scales

Fig. 17 Experiment III–Mean of
posterior time-lapse bulk

impedance field
(

m
s

kg

m3

)
in

comparison with observation
data in the second vintage
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Fig. 18 Experiment
III–Variance of posterior
time-lapse bulk impedance field((

m
s

kg

m3

)2
)

, in the second

vintage. Note that the color bars
have very different scales

Even though the results obtained from the experiments
did not show any clear indication of superiority of SeMLDA
over SiMLDA, they suggest that similar quality of DA
results can be obtained by SeMLDA using a fixed and
smaller computational power compared to SiMLDA.

There were several issues in this work that can be further
investigated. As satisfying the PMDA condition is not a
possibility in real field cases, devising robust techniques for
approximately satisfying this condition can be studied. In
order for optimization of both SeMLDA algorithms several
of their characteristics can be further researched, e.g. the
optimal extent of coarsening the grid, the number of levels
and allocation of resources between them, the weights for
different levels in the ML statistics, and the formulation
of posterior statistics, to name a few. Additionally,
generalizations of SMLES algorithms can also be studied,
e.g. by assimilating the data more than once in some of the
levels using more inflated data-error covariance matrices.
Finally, as realistic reservoir cases are more complex than
the fields investigated in this work, extensive coarsening of
the grid may result in large numerical error and model bias.
This limitation, and increase in the dimensionality of the
parameters, may call for combination of localization and the
proposed MLDA algorithms.

Appendix A: Algorithm. Sequential
multilevel ensemble
smoother–straightforward formulation

Algorithm 1 SMLES–straighforward formulation.
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Appendix B: Algorithm. Sequential
multilevel ensemble smoother–hybrid
formulation

Algorithm 2 SMLES–hybrid formulation.
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