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Abstract

LSO, Logic of Sentential Operators, is defined by extending first-
order logic by sentential quantification and sentential operators. Its
semantics is defined by a digraph, with kernels reflecting consistent
valuations of all sentences and consistency of the language. It is pos-
sible, by using self-reference, to construct paradoxes and LSO need
not be consistent with arbitrary valuations for its operators. While
certain choices for operators allow existence of a kernel, not all do.

The syntactic equality operator, only true for syntactically iden-
tical sentences, raises the question, whether the language with it is
consistent. Analyzing structure and complexity of sentences shows
that certain subsets of sentences are consistent and that under some
assumption the whole language is consistent. Even without a con-
clusive answer to the question of consistency of LSO with syntactic
equality, consistency appears to hold and results provide a solid base
for a potential proof showing the whole claim.
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1 Introduction

1.1 Propositional and first-order logic

What makes the language of first-order logic, or FOL, more expressive than
classical propositional logic is the means of stating facts about objects by
quantification. As a proposition formulates a fact about only one specific
object, we can only express the relation of some of these facts regarding a
few selected objects.

We might express that If Mount Everest has not been climbed yet, it will
be climbed by someone or

¬everestClimbed → everestWillBeClimbed

Semantically, our sentence would be considered true, if our proposition
everestClimbed was true or if everestWillBeClimbed was true. So we may
decide ourselves, whether we believe the propositions to be true or not and
will with certainty know if our sentence about Mount Everest follows. But
we may also be interested in more mountains and state a similar fact about
Mount Blanc as well, but stating it for every mountain existing would be
very tedious, as we are limited to explicitly mentioning selected objects.

In FOL, however, quantification over variables enables us to make the
statement generic, talking about any set of objects we desire: For every
mountain holds, either it has been climbed by somebody, or it will be climbed
by somebody, or

∀m (isMountain(m) → (

∃h (isHuman(h) ∧ hasClimbed(h,m))∨
∃h (isHuman(h) ∧ willClimb(h,m))))

Of course, there need not be a connection between what we think that
isHuman(h) should mean and its semantics in a model for the sentence, or
between objects on earth and what the universe is that we quantify over. A
model making the sentence true would simply specify a set of objects and
how they are related to each other. So what we quantify over is some set of
objects.
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1.2 Logic of sentential operators

What if these objects were sentences? Not only could we talk about sen-
tences and their relations to each other but also about their truth value.
By extending FOL with quantification over sentences as well as sentential
operators, s-operators, we obtain the so-called Logic of sentential operators,
or LSO. In LSO we could therefore state things, such as Either there is no
mountains, or all sentences made about mountains are false, or

S = ¬∃m (isMountain(m)) ∨ ∀ϕ (M(ϕ) → ¬ϕ)

In this way, LSO contains both object language as well as its metalan-
guage. Drawing a parallel to axiomatic truth theories, where there is a meta-
language embedded into an object language, one might wonder if LSO is set
up the same way. Like classical truth theories, LSO is a classical language
with more expressive metalanguage on top of an object language.

[HL22] say on truth theories that “[. . . ] a truth predicate is defined for
a language, the so-called object language. This definition is carried out in a
metalanguage [. . . ] which is typically taken to include [. . . ] another strong
theory or expressively rich interpreted language”. A crucial difference is that
LSO’s semantics makes no use of a meta-hierarchy, i.e. a meta-metalanguage,
but instead remains on one meta-level.

1.3 Paradoxes

It is little surprising that with help of this metalanguage, we could now
create paradoxes. We could, for instance, try and evaluate sentence S; a
model making S true would be one where no object is a mountain. We
might want to, however, fix our valuation of the object language and focus
on the metalanguage.

In such case, our fixed valuation might propose the existence of mountains
and then S’s value might depend on whether or not all sentences in M are
false. We could argue that M = {S}, since S talks about mountains and
is our only sentence. So if S is true, all sentences about mountains are
false, especially S itself, while if S is false, there must be a sentence about
mountains that is true, which must be the only sentence in M , making S
true, thus creating a paradox. In short

S ⇒ ∀ϕ (M(ϕ) → ¬ϕ) ⇒ M(S) → ¬S ⇒ ¬S
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and

¬S ⇒ ¬∀ϕ (M(ϕ) → ¬ϕ) ⇒ ∃ϕ (M(ϕ) ∧ ϕ) ⇒ S

We can therefore not find a consistent valuation for S and might deduce
that sentential operator M might be the culprit. Indeed, the choice M = {S}
is the cause of the paradox here.

A way that paradoxes can be dealt with are multi-valued theories of truth,
for instance Kripke’s theory where “[. . . ] the truth predicate is only partially
defined, that is, it only applies to some of the sentences of the language [and]
a three-valued logic is employed, that is, a logic which operates with a third
value, undefined, in addition to the truth values true and false.” ([Bol17]).

LSO is distinct from such multi-valued logics in that it permits only
truth and falsehood and thus has a classical reasoning system. One might
thereafter wonder, how occurring paradoxes can be dealt with and if such
operators always prevent us from finding consistent valuations.

1.4 Task and outline

Any n-nary operator P expresses some relation of sentences to each other.
These properties or relations need not be connected to the truth- or falsehood
of those sentences, they might as well express some other arbitrary notion,
including syntax.

One operator of interest might be the notion of syntactic equality. Ex-
pressed with infix notation, the operator S

.
= T could be defined as true, iff

sentences S and T are syntactically identical, i.e. are the same sentence. This
operator reflects some of the expressive power of LSO, as it states facts about
the syntax of sentences. This work investigates consistency of the language
LSO, where the only s-operator is “

.
=”.

After this introductory part, in section 2, the syntax of LSO and its lan-
guage graph semantics is introduced and defined with additional comments
on sentential operators and consistency in general.

Equipped with the fundamental concepts and definitions of LSO, the
syntactic equality operator

.
= is defined in the main body of this work, sec-

tion 3. Firstly some smaller but helpful results about the operators behavior
are established; then it is investigated if LSO with syntactic equality can be
consistent, by first focusing on more primitive sentences and then widening
the scope on more complex sentences. The rather technical results guarantee
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consistency for a restricted set of sentences and establish a proof pattern that
could show consistency for the whole language, even though consistency of
the whole language is not proved in this work.

Section 4 reflects on what results have been found and how, what they
suggest, and what remains to be investigated.
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2 Basics of LSO

2.1 Syntax of LSO

In order to start talking about the Language of Sentential Operators, about
the valuation of sententially quantified sentences and operators over them,
we need to introduce some preliminary concepts, definitions and notation
and see some preliminary results.

Following [Wal], we define LSO extending classical first-order logic FOL
to FOL+ (similarly one could extend higher-order logic). Firstly, we define
FOL symbols and sentences. Assuming the reader to be familiar with FOL,
we move through the definitions quickly.

Definition 2.1 (Symbols of FOL).
The symbols of a language of FOL are a countable set of FOL-constants
C− = {c1, c2, . . .}, a set of FOL-variables V− = {v1, v2, . . .} and a countable
set of FOL-predicate symbols P− = {P−

1 , P−
2 , . . .}, each with its finite arity.

The lack of function symbols in the definition is deliberate as any n-
ary function can be expressed by a (n + 1)-ary predicate, the graph of the
function.

The super-script “−” helps us to distinguish between FOL-predicates and
-variables and sentential operators and -variables. Next, we define symbols
of the extended language FOL+ and sentences of of FOL+.

Definition 2.2 (Symbols of FOL+).
The symbols of a language of FOL+ consist of a set of FOL+-variables V =
{ϕ1, ϕ2, . . .} and a set of FOL+-operator symbols P = {P1, . . . Pn}, each with
its finite arity (possibly 0).

We call members of V s-variables or sentential variables and members of
P s-operators or sentential operators.

Definition 2.3 (Logical symbols and formulas of FOL+).
Logical symbols are “ (”, “ )”, “ ¬”, “ ∧” and “ ∀”.
The set of formulas F of a language of FOL+ is defined by

� P−
i (t1, . . . tn) ∈ F, if P−

i ∈ P−, has arity n and t1, . . . ti ∈ (V− ∪ C−)

� ϕi ∈ F, if ϕi ∈ V
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� Pi(F1, . . . Fn) ∈ F, if Pi ∈ P, has arity n and F1, . . . Fi ∈ F

� ¬F ∈ F, if F ∈ F

� (F1 ∧ F2) ∈ F, if F1, F2 ∈ F

� ∀vi (F ) ∈ F, if vi ∈ (V −) and F ∈ F

� ∀ϕi (F ) ∈ F, if ϕi ∈ (V ) and F ∈ F

We also define the following abbreviations:

� (F1 → F2) := ¬(F1 ∧ ¬F2)

� (F1 ∨ F2) := (¬F1 → F2)

� ∃vi (F ) := ¬∀vi ¬(F )

� ∃ϕi (F ) := ¬∀ϕi ¬(F )

Any FOL+ operator Pi could also be allowed to take regular FOL terms
t ∈ (V− ∪ C−) as arguments. This possibility is omitted here, as for all pur-
poses later on, the object language will be assumed to have a fixed valuation
already, hence making Pi behave like defined over only elements of F.

The notions of nominal occurrence and sentential occurrence are intuitive:
F occurs in nominal position, if it occurs as (a subformula of) an argument
of some operator P that is atomic in S, e.g. S = ∀ϕ X ∧ (ϕ ∨ P (F ∧ F ′)).
If an occurrence is not nominal then it is sentential. Typically, this F will
be some variable ϕ and there will be distinction made between ϕ being in
exclusively nominal, exclusively sentential or both positions.

Both object and sentential variables can have free occurrences, according
to standard rules.

Definition 2.4 (Free variables).
FOL-variable vi occurs freely in formula F , iff

� F = P−
i (t1, . . . tn) and vi is one of t1, . . . tn

� F = Pi(F1, . . . Fn) and vi is free in one of F1, . . . Fn

� F = ¬F ′ and vi is free in F ′
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� F = (F1 ∧ F2) and vi is free in F1 or F2

� F = ∀vj (F ′), vi ̸= vj and vi is free in F ′

� F = ∀ϕi (F ′) and vi is free in F ′

Analogously s-variable ϕi is free in formula F , iff

� F = ϕi

� F = Pi(F1, . . . Fn) and ϕi is free in one of F1, . . . Fn

� F = ¬F ′ and ϕi is free in F ′

� F = (F1 ∧ F2) and ϕi is free in F1 or F2

� F = ∀vi (F ′) and ϕi is free in F ′

� F = ∀ϕj (F ′), ϕi ̸= ϕj and ϕi is free in F ′

Definition 2.5 (Sentences of FOL+).
S is a FOL+-sentence, S ∈ S, iff S ∈ F and S has no free variables. We
define the set of atomic sentences A, by S ∈ A, iff S = P−

i (t1, . . . tn) and
each ti is no variable or S = Pi(S1, . . . Sn) and each Si is an atomic sentence.

We define FOL+
M as FOL+ extended by constant symbols for all elements

of some FOL interpretation domain M and SM and AM as (atomic) sen-
tences of FOL+

M .

Having repeated all necessary definitions of FOL and inserted some ex-
tending notions, it seems a good moment to pause and reflect on what we
are able to construct now.

We have ordinary variables of FOL, that we can quantify over and have
defined FOL-predicates over terms, which form the atoms of our formulas.
We have, however, new types of atoms: firstly, we have so-called s-variables,
that we can also quantify over, and we have s-operators, that take as argu-
ments arbitrary formulas.

It is important to note that even if we may have touched upon the defini-
tion of formulas, we deal, as our FOL+ is a Language of sentential operators,
solely with sentences and such have defined quantification over just sentences
as well as operators applied to just sentences.

7



Example 2.6.
Let S be an arbitrary FOL-sentence. With our extended language we can
apply s-operators to any sentences, such that P1 is an unary meta-operator,
for which either S ∈ P1 or S ̸∈ P1.

S ′ = (P1(S) → ¬S)

S ′ now says that, if indeed S ∈ P1, S ought to be false. Additionally,
we may express this notion about arbitrary sentences, by quantifying over
s-variables.

A = ∀ϕ1 (P1(ϕ1) → ¬ϕ1)

We might want to think of P1 as a meta-property that sentences can have,
for instance, that P1 contains all contradictions. Then we would want to
consider A as true, since any negated contradiction is a tautology. In that
sense, S ′ depends on both the meta-property P1 as well as the sentence S.

It might be worthwhile mentioning that if LSO reminds of quantified
modal logic, it is not it, even though it might be able to capture it, as it has
no possible worlds semantics, but semantics defined over a language graph
(as seen in the next section).

In the example, we touched vaguely upon semantics and valuation of
sentences, and mentioned a distinction between object-level and meta-level.

One quirk of this meta-level is that if a sentence, such as A, claims some
fact about all sentences, it also states it about itself.

How the semantics of FOL+ is defined and specifically how this circularity
is dealt with, is elaborated in the next section.
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2.2 Graph semantics for LSO

2.2.1 Language graphs

Having a sentence A, such as in Example 2.6, we notice how A quantifies
over all sentences. Not only are there too many sentences to manually check,
but in fact infinitely many. A language graph is therefore not only a conve-
nient way to visualize A and its relationship to other sentences, but in fact
how [Wal] defines semantics of FOL+, by kernels of language graphs.

The language graph of a language is a directed graph (and from this point
on graph shall refer to a digraph), with sentences as its vertices and edges
going from one sentence to some other sentences, whose falsehood make the
sentence true. More precisely, we define the language graph of LSO:

Definition 2.7 (Language graph of FOL+).
For some interpretation domain M , the language graph GM(FOL+) is a di-
rected graph with

� all sentences SM as vertices, where

� each atomic sentence S ∈ AM has an outgoing and incoming edge from
and to its negation ¬S and

� each non-atomic sentence S ̸∈ AM has outgoing edges to

– the sentence F , if S = ¬F
– the sentences ¬F1 and ¬F2, if S = F1 ∧ F2

– ¬F (x) for all x ∈ M , if S = ∀vi (F (vi))

– ¬F (S ′) for all S ′ ∈ S, if S = ∀ϕi (F (ϕi))

While the whole graph GM(FOL+) is certainly not visualizable, we might
want to look at the subgraph with A from Example 2.6 as root. From this
point speaking of GM refers to GM(FOL+), if not specified otherwise.

Example 2.8.
To draw the graph for A (Figure 1), we first unfold its definition.

A = ∀ϕ1 (P1(ϕ1) → ¬ϕ1) = ∀ϕ1 ¬(P1(ϕ1) ∧ ϕ1)

9



A

•

(P1(S1) ∧ S1) (P1(S2) ∧ S2) . . . (P1(A) ∧ A)

• •

P1(S1) S1

• •

P1(S2) S2

• •

P1(A) A

Figure 1: The subgraph for A.

There are some details hidden in the graph. Firstly, as all, infinitely many,
sentences are substituted into A, we chose to only display some selected ones
S1, S2 and A and abbreviate the rest with an edge to “. . .” and can deduce
that they would follow the same patterns as the explicit ones.

Moreover, of course A (as well as ¬A and ¬¬A, . . .) are also substituted.
In that, and all similar cases, cycles back to the root of the tree appear.

The leaves of the tree appear to be all atoms P1(ϕ1) as well as all sentences
ϕ1. These sentences are generally not atomic and are therefore just the roots
of their own subtrees, with some of them having cycles back to A.

While • represent some intermediate sentences (here negations of their
targets) and simplify visualization, there is also duplicate vertices, in this
case the vertex for A; as shown in [Wal], these auxiliary vertices do not alter
the semantics we intend the graph to have.

Having convenient means of looking at a sentence and its relation to other
sentences, we now define how truth and falsehood relate to that graph.

2.2.2 Kernels and solvability

For an arbitrary graph G = (V,E), E ⊆ V × V , and the notations E− =
{(y, x) | (x, y) ∈ E} and E(X) =

⋃
x∈X{y | (x, y) ∈ E}, we define kernels.

Definition 2.9 (Kernel).
K ⊆ V is a kernel of G = (V,E), iff V \K = E−(K). Then K ∈ ker(G).

So the kernel of a graph is an independent set of vertices, such that any
vertex that is not in the kernel has an edge to the kernel. As edges in our
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language graph represent negations, the kernel is, informally, a maximal set
not contradicting itself.

The definition of the kernel is, meanwhile, equivalent to an assignment
of truth-values to all sentences, that is consistent. Therefore a kernel K ∈
sol(GM), as of [NM44], a solution to the language graph GM , is also an
assignment v ∈ 2V , where S ∈ K v(S) = 1, meaning each sentence in the
kernel is considered true and S ′ ̸∈ K iff v(S ′) = 0, meaning everything
outside the kernel (negating some sentence in the kernel) is considered false.
Hence GM is solvable, if it has a kernel, a consistent truth-assignment to all
sentences.

Such does [Wal] define the solvability of the graph and shows that GM

without any operators is always solvable, and thus has a kernel. He continues
to suggest that the corresponding proof can be extended to also include
operators, given some restrictions on the operators interpretations, and thus
that GM remains solvable, even with operators.

This claim might appear surprising at first glance, as we have mentioned
paradoxes and circularity earlier but not yet addressed it and indeed do we
look more closely into it and comment on it in the next subsection.

Before, however, we revisit our sentence and subgraph from the previous
example and see if we can find a consistent valuation for it.

Example 2.10.
Our familiar sentence A = ∀ϕ1 (P1(ϕ1) → ¬ϕ1) seems a good example, as
its subgraph has cycles. If GM has a kernel v, A obtains a truth value, so let
us see what happens, if we assign A. (It might be helpful to keep the graph
from Example 2.8 close by and check the respective truth-assignments to the
vertices.)

� If v(A) = 1, all v(P1(S) ∧ S) = 0, so for each true S, S ̸∈ P1, so also
A ̸∈ P1. That is a crucial restriction and reflects, where the paradox
could occur. If A and P1(A) would be in the kernel, ¬A would be forced
into the kernel as well, making it not a kernel, as there is an edge
between the two kernel members A and ¬A, reflecting the occurring
inconsistency of valuating both as true.

� Conversely, if v(A) = 0, there is a sentence S, such that v(P1(S)∧S) =
1, so S ∈ P1 and v(S) = 1. Now if there would only be A ∈ P1 and
no other sentence, then A would have to be true, forcing A back into
the kernel, thus having A both in and outside the kernel, reflecting a
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paradox. Thus for the kernel that excludes A, A can not be the sole
sentence in P1.

We conclude that the danger of paradoxes is existent, for certain choices
regarding the operator P1, for instance that P1 = {A}. Thus we may want to
believe that there is always a kernel covering the graph and notice that “solv-
ing of the graph” includes fixing the proper interpretation of our operators.

2.2.3 Semantic equivalence

We certainly want to use the notion of semantic equivalence, alas, write S ⇔
S ′ if and only if S and S ′ are equivalently evaluated under any interpretation.
However, with semantics defined over graph kernels this notion needs to be
treated with extra care.

Definition 2.11 (Semantic equivalence
GM⇐=⇒).

We call S and S ′ semantically equivalent, S
GM⇐=⇒ S ′, iff for any kernel K of

GM , S ∈ K iff S ′ ∈ K.

We saw already that a kernel K is a truth-assignment v to all sentences,

hence v(S) = 1 iff S ∈ K iff S ′ ∈ K iff v(S ′) = 1. So S
GM⇐=⇒ S ′ guarantees

S and S ′ obtain the same truth value. Further,
GM⇐=⇒ always holds relative

to some fixed object language interpretation and its corresponding language

graph GM . Without providing proofs, we rely upon
GM⇐=⇒, which contains

� PL equivalence,

� FOL equivalence,

� that all tautologies/contradictions are equivalent, ⊤ GM⇐=⇒ ⊤/ ⊥ GM⇐=⇒
⊥.

Additionally to these cases, there might as well be other arguments, justifying

why some sentences always reside in the same kernels and thus S
GM⇐=⇒ S ′.

Going forward, we will, for readability, abbreviate
GM⇐=⇒ by ⇔.

12



Example 2.12.
Consider as an example the sentence ∀ϕ (ϕ∨(S∧S)). By propositional equiv-
alence and existence of false sentences, ∀ϕ (ϕ∨(S∧S)) ⇔ S. Taking some A
assumed to be false and drawing the corresponding subgraph (Figure 2) where
A is substituted for ϕ confirms that both vertices of the equivalence above
obtain the same truth value.

It can be verified easily (by changing A0 to A1 and ¬A1 to ¬A0 in the
graph) that the same holds for some A assumed true, hence for any arbitrary
sentence.

∀ϕ(ϕ ∨ (S ∧ S))1/0

¬A ∧ ¬(S ∧ S)0/1 A ∧ ¬(S ∧ S)0/0 . . .

A0 S ∧ S 1/0 ¬A1

¬S 0/1 A0

S 1/0

Figure 2: The subgraph for ∀ϕ (ϕ ∨ (S ∧ S)).

The superscripts •1/0 indicate possible valuation of its vertices. For in-
stance S1/0 and ¬S0/1 indicates that under the assignment v(S) = 1 we have
v(¬S) = 0 and vice versa.

What can be read from the graph is that for v(S) = 1 we have v(S∧S) = 1,
while v(S) = 0 and v(S∧S) = 0, making S equivalent to S∧S. Further, every
sentence is substituted for ϕ, due to the ∀ϕ quantifier and hence, whenever
some sentence A is substituted, so is ¬A. So if this A were valuated to 0,
v(A∧¬(S∧S)) = 0, while v(¬A∧¬(S∧S)) = v(¬S). It can be concluded that
all direct children of the root vertex are either equivalent to ⊥ or equivalent
to ¬S. Thus the root sentence is equivalent to S, i.e. always obtains the same
value that was assigned to S.
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2.2.4 Definitional extension for operators

[Wal] shows that a consistent language can be extended with definitional
extension of operators, while preserving solvability of the graph, as the ex-
tended language has essentially the same kernels as before. The extension
mechanism for a new (e.g. unary) operator P is the definition of a sentence
SP = ∀ϕ (P (ϕ) ↔ F (ϕ)), where F (ϕ) is an arbitrary formula in the language
without P and with only ϕ freely. It holds then that if the language without
operator P had a kernel, the language with P has essentially the same kernel
and that SP is in that kernel.

Definitional extension is thereby neat means of introduction of new oper-
ators that preserve consistency. However, so far we have only certainty that
FOL+ without operators is consistent and defining a new operator on that
basis does not promise too interesting results. Consider for instance the ex-
tension ST = ∀ (T (ϕ) ↔ ϕ). We know with certainty that the language with
operator T is consistent and a kernel will always contain T (X) if it contained
X, thus T reflecting truth of sentences; but we have not really gained any
expressivity with T (ϕ), if only introduced a more awkward way of saying ϕ.

Hence, at this point at least, definitional extension is a potentially in-
teresting mechanism, but give us only essentially trivial consistent operators
of little expressivity. We therefore move onward in search of new consis-
tent operators and bear in mind that, if we find such operators, we can use
definitional extensions to combine them as we wish into new operators.

2.2.5 Solvability and s-operators

Knowing that we can find consistent truth-values for sentences of FOL+

without operators and possibly for sentences with operators, even though
that might be trickier, according to Example 2.10, we can examine the impact
of operators further.

In [Wal] it was sketched how adding operators that behave like boolean
functions should retain solvability, as they, intuitively speaking, can not sys-
tematically confuse the boolean valuation we want to assign to a sentence.

Formally it was suggested that if an n-ary operator P satisfies one of the
following conditions, GM is solvable1:

1A previous version of [Wal] contained the cited conditions; after making the author
aware of the following counter-examples to his conditions, the work has been updated since
and the (faulty) conditions omitted from the most recent version of [Wal].
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1. for all sentences ϕi ∈ S: P (ϕ1, . . . ϕi, . . . ϕn) = P (ϕ1, . . .¬ϕi, . . . ϕn)

2. for all sentences ϕi ∈ S: P (ϕ1, . . . ϕi, . . . ϕn) = ¬P (ϕ1, . . .¬ϕi, . . . ϕn)

Unfortunately, however, it is possible to construct a counter-example to
these conditions, so an interpretation of operators that conform with the
conditions but still form a paradox.

Example 2.13.
Let X = ∀ϕ1 ((P1(ϕ1) ∧ P2(ϕ1)) → ¬ϕ1). Further, let

� X ∈ P1 and, if ϕ ∈ P1, then also ¬ϕ ∈ P1.
So P1 = {X,¬X,¬¬X,¬¬¬X, . . .} and therefore it is in accordance
with condition 1.

� Further, we define P2’s interpretation inductively.

– S ∈ P2, for any atomic sentence S ∈ A.

– (S ∧ S ′) ∈ P2 for any sentences S, S ′ ∈ S.

– ¬¬S ∈ P2 for any sentence S ∈ P2.

Less formally, P2 contains sentences that start with exactly an even
number of negations, thus is in accordance with condition 2.

Let, for simplicity, ∀ϕ1 (P3(ϕ1) ↔ P1(ϕ1)∧P2(ϕ1)), so that P3 is a definitional
extension of P1 and P2. Then, by unfolding definitions, X = ∀ϕ1 (P3(ϕ1) →
¬ϕ1) = ∀ϕ1 ¬(P3(ϕ1) ∧ ϕ1).

We note that for any sentence ϕ, P3(ϕ) ⇔ ϕ = ¬ . . .¬︸ ︷︷ ︸
2n

X, so P3 is true

for exactly X and all its double-negations.
To see the paradoxical situation we have created, consider the relevant

subgraph (Figure 3) we want to assign truth-values to.
The superscripts •1/•0 on vertices represent an already fixed

truth-assignment, while •? shows that the assignment is not yet clear. The
central observations here are

� for all sentences S that are not P3 = {X,¬¬X,¬¬¬¬X, . . .}, (P3(S)∧
S) obtain value 0, no matter the value of S itself. Only the values of
{X,¬¬X,¬¬¬¬X, . . .} seem to actually matter.
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X?•?

•?

(P3(X) ∧X)? (P3(¬¬X) ∧ ¬¬X)? . . . (P3(S) ∧ S)0

•? •0

X? P3(X)1

•? •0

¬¬X? P3(¬¬X)1

•1 •

P3(S)0 S

Figure 3: The subgraph for X has unbroken odd cycles.

� The value of all vertices (P3((¬¬)∗X) ∧ (¬¬)∗X) depend solely on the
value for ((¬¬)∗X).

� Each ((¬¬)∗X) is involved in an odd cycle with X.

The unbroken odd cycles prevent us from finding a consistent truth-
assignment. If there would be a consistent assignment v, with v(X) = 1,
then v(P3(X) ∧X) = 1 making v(X) = 0, hence contradicting itself.

If, conversely, v(X) = 0, then there must be some Y = ¬ . . .¬︸ ︷︷ ︸
2n

X, such

that v(Y ) = 1, which implies that v(X) = 1.
Concluding, in terms of the graph, we have odd-cycles involving X, that

are not broken, as all outgoing edges from the cycle are 0. In terms of
solvability that means that for this interpretations of operators P1 and P2 we
can not find a consistent truth-assignment, hence have constructed a paradox.
As the operators conform with the “boolean-function” requirement, but still
lead to a paradox, conditions 1 and 2 are not sufficient.

Consequently, the suggested conditions for operators are not closed under
the definitional extension by means of existing operators, as P3(ϕ) ↔ P1(ϕ)∧
P2(ϕ) violates the conditions, while both P1 and P2 fulfil them. Therefore
the conditions as proposed by [Wal], while already restrictive, can not be
sufficient for solving the language graph.
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This issue could be fixed by strengthening the conditions. A possible
alteration could be to keep the conditions, but require them to be fulfilled
for all operators as well as any operator defined by combinations of existing
operators, i.e.:

Definition 2.14 (Suggested conditions for consistent operators).
For every operator P , as well as every operator definable by definitional ex-
tension, one of the following conditions must hold:

1. for all sentences ϕi ∈ S: P (ϕ1, . . . ϕi, . . . ϕn) = P (ϕ1, . . .¬ϕi, . . . ϕn)

2. for all sentences ϕi ∈ S: P (ϕ1, . . . ϕi, . . . ϕn) = ¬P (ϕ1, . . .¬ϕi, . . . ϕn)

These strengthened conditions force a closure under definitional exten-
sion, however, the operators lose even more of their expressivity, limiting
their usefulness. It is trivial that a restriction like P = ∅ assigns a constant
value to all occuring operators and thus keeps the language consistent but
adds no expressivity to the language at all. Another possibility would be
to see if there are not completely different conditions that could be imposed
onto the operators and would guarantee solvability.

An interesting observation connected to the previous example is that
the two operators, even despite their intended “boolean functionality”, were
defined over syntactic properties of sentences. For instance, if a sentence
A ∈ P2, then ¬A ̸∈ P2. But on the other hand (¬A ∧ ¬A) ∈ P2, illustrating
the syntactic character of P2 or at least, its lacking closure under semantic
equivalence. Concluding, our meta-operators are causing trouble, especially,
when being syntactic, distinguishing sentences not by their boolean value,
but their syntactic structure.
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3 The operator “Syntactic equality”

3.1 Introducing syntactic equality

After we looked closer into the behaviour of arbitrary operators, their influ-
ence on solvability and saw some examples, we move forward and focus on
one specific operator. In Example 2.13, we already saw that operators can be
defined on a syntactic level, signifying some syntactic property of sentences,
for instance, if a sentence “starts with an even number of negations”.

Another, at first glance simpler, notion is syntactic equality, that is true
precisely when both its arguments are the same sentence, so the same string
of symbols.

Definition 3.1 (Syntactic equality
.
=).

The binary operator P1 with the fixed interpretation where for any two dis-
tinct sentences S, S ′ ∈ S, v(P1(S, S)) = 1 and v(P1(S, S

′)) = 0 is called
syntactic equality and is denoted by (S

.
= S ′) := P1(S, S

′).

For readability we abbreviate (S ̸ .= S ′) := ¬(S
.
= S ′).

One pitfall to avoid, when examining sentences with the
.
=-operator that

contain variables, is to mistake when the operator obtains its boolean value.
It is of course legitimate to have a sentence like ∃ϕ1 (ϕ1

.
= S). When just

looking at the literal ϕ1
.
= S, one might think that v(ϕ1

.
= S) = 0, since ϕ1

and S are clearly not the same string of symbols. ϕ1 is, however an open
formula and not a sentence.

So we do not evaluate ϕ1
.
= S yet, but rather when ϕ1 has been substituted

by a sentence (at the leaves of the subtree of the sentence). Thus we encounter
.
=-literals containing open formulas, that only gain a determined truth-value
once being substituted into fully.

To get more familiar with the operator and get a feel for what we can
express with it let us take a look at some exemplary sentences.

Example 3.2.
Simple examples include

� (S
.
= T ), which is a contradiction, while

� (S
.
= S) is a tautology.

� ∀ϕ1 ((ϕ1
.
= S) → ¬ϕ1) is saying that S is false, while
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� ∀ϕ1∃ϕ2 (ϕ1
.
= ϕ2) says that every sentence is syntactically equal to some

sentence

We can even express quite sophisticated things about the syntax of sen-
tences.

� isConjunction(ϕ1) ↔ ∃ϕ2∃ϕ3 (ϕ1
.
= (ϕ2 ∧ ϕ3))

� doubleNegated(ϕ1) ↔ ∃ϕ2 (ϕ1
.
= (¬¬ϕ2))

� propositionalAxiom1(ϕ1) ↔ ∃ϕ2∃ϕ3 (ϕ1
.
= (ϕ2 → (ϕ3 → ϕ2)))

In Definition 3.1, we defined that v(S
.
= S) = 1 and v(S

.
= S ′) = 0. One

might wonder about the value of (∀ϕ1(ϕ1)
.
= ∀ϕ2(ϕ2)), as it could be argued

that they are the same sentence after all, just with different bound variables.
In such cases we valuate v(∀ϕ1(ϕ1)

.
= ∀ϕ2(ϕ2)) = 1 as the sentences are

identical up to renaming of bound variables.
In Definition 2.11, we established semantic equivalence and one might be

tempted to also regard equivalent sentences as identical. Certainly

∀ϕ1(ϕ1) ⇔ ∀ϕ2(ϕ2)

But this equivalence also holds for syntactically different sentences, such as
(S ∧ S) ⇔ S. While (S ∧ S) is a conjunction S is perhaps not, thus they
are not syntactically identical (and no renaming can fix that) and we want
to therefore valuate v((S ∧ S)

.
= S) = 0.

Thus, the operator is closed under renaming of bound variables, and when
stating facts like “ϕ

.
= S is only true for exactly one sentence ϕ”, we bear

in mind that it is true for exactly one sentence ϕ up to renaming of bound
variables.

Without addressing how big the expressive power of a operator is, it is
safe to say that the syntactic equality operator exceeds very strict conditions
(such as

.
= being the empty set) that guarantee existence of a kernel of the

language graph, as the operator behaves certainly not like a boolean function.
Its expressive power is however still limited.

We recall Example 2.13, where we constructed sentence

X = ∀ϕ1 ((P1(ϕ1) ∧ P2(ϕ1)) → ¬ϕ1)

We then also fixed an interpretation of the operator P1, such that X ∈ P1.
So in some sense the operator P1 contained a sentence that contained P1 and
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thus P1 contained itself. This very vague notion could be seen as the operator
“talking about itself”. This can, however, not happen with our

.
=-operator

and is a limitation.
Let us say we wanted to construct a similar sentence for

.
= and write an

expression like Y = ∀ϕ1 ((ϕ1
.
= Y ) → ¬ϕ1). It might look, at first glance, like

we created a sentence Y that speaks about itself, but on further examination,
Y is not a sentence at all, as of course Y can not contain itself as a proper
substring.

These vague intuitions give a picture of how the
.
=-operator might differ

from arbitrary operators, and what can and can not be expressed with it. The
question that remains, of course, is whether or not this operator is consistent,
thus, with its fixed valuation always permits us to find a consistent boolean
valuation for all sentences, hence a kernel of the whole language graph.

3.2 Preliminary results

Before actually proving a first consistency result for the syntactic equality
operator, we need some preliminary work. After fixing some notation we
look closely at sentence-structure and interactions of the operator with other
literals.

Definition 3.3 (Notation).
We denote arbitrary LSO-sentences by Si or by Ti. For variables ϕ1, . . . ϕm we
denote formulas that may or may not contain none, some, or all of ϕ1, . . . ϕm

freely, but certainly no others, by Si(ϕ1, . . . ϕm), or Ti(ϕ1, . . . ϕm). We write
⊤/⊥ for any formula that is a tautology/contradiction.

We now have the two different notations of S and S(. . .), depending on
whether any variables occur freely in it.

Further we examine the structure of arbitrary sentences. A crucial detail
that becomes very handy, shown in [Wal], is that an arbitrary sentence is
semantically equivalent to a sentence in Prenex Disjunctive Normal Form,
or PDNF. While DNF guarantees a sentence is a disjunction of conjunctions
of literals, PDNF additionally requires all quantifiers to be at the beginning
of the sentence, thus the sentence having the general pattern of

S =

Æ

ϕ1 . . .

Æ

ϕn (C1(ϕ1, . . . ϕn) ∨ . . . Cc(ϕ1, . . . ϕn))

where

Æ

stands for any of the quantifiers ∀ or ∃ and each Ci is a con-
junction of literals, where a literal is a (possibly negated) atomic formula.
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As each sentence is equivalent to a sentence in PDNF, we assume, when
speaking of sentences, without loss of generality, the sentence to be in PDNF,
if not explicitly stated otherwise.

Definition 3.4 (PDNF, conjunctions, literals).
By D(ϕ1, . . . ϕn) we denote a disjunctive matrix, thus any PDNF sentence S
has the form S =

Æ

ϕ1 . . .

Æ

ϕn D(ϕ1, . . . ϕn). By Ci(ϕ1, . . . ϕn) we denote a
conjunction of literals, such that

D(ϕ1, . . . ϕn) = (C1(ϕ1, . . . ϕn) ∨ . . . Cc(ϕ1, . . . ϕn))

and further, each

Ci(ϕ1, . . . ϕn) = (L1(ϕ1, . . . ϕn) ∧ . . . Ll(ϕ1, . . . ϕn))

where a literal Li(ϕ1, . . . ϕn) is either

1. ϕk, for some 1 ≤ k ≤ n

2. ¬ϕk, for some 1 ≤ k ≤ n

3. (S1(ϕ1, . . . ϕn)
.
= S2(ϕ1, . . . ϕn))

4. (S1(ϕ1, . . . ϕn) ̸ .= S2(ϕ1, . . . ϕn))

5. a FOL atom, P−
1 (. . .), with no s-variables

6. a negated FOL atom, ¬P−
1 (. . .), with no s-variables

Within PDNF there might appear regular FOL atoms, going forward,
however, those will not be considered and we will rather focus on “pure”
FOL+, that is on sentences without any FOL atoms. The reason for this
is, with the distant goal of consistency of LSO, we want to fix valuation for
object language, so an interpretation with object domain M , and to show
that this still allows a consistent valuation of all sentences, all vertices in the
language graph GM . Under these circumstances, with object language not
being circular in the graph, their role is merely a constant contribution of
1/0 to sentences with metalanguage. Without more details or proof, we stay
aware that object language neither causes nor contributes to the potential
inconsistency of LSO and will largely be omitted.

It is now time to inspect occurrences of the syntactic equality opera-
tor more closely. The operator applied on two formulas with free variables
is either trivially satisfied, unsatisfiable or dictates what variables must be
identified with which subformulae.
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Lemma 3.5.
For any formulas S(ϕ1, . . . ϕn) and T (ϕ1, . . . ϕn), either

(S(ϕ1, . . . ϕn)
.
= T (ϕ1, . . . ϕn)) ⇔ ⊥/⊤

or

(S(ϕ1, . . . ϕn)
.
= T (ϕ1, . . . ϕn)) ⇔ (L1(ϕ1, . . . ϕn) ∧ . . . Ln(ϕ1, . . . ϕn))

where

Li(ϕ1, . . . ϕn) = (ϕi
.
= S(ϕ1, . . . ϕi−1, ϕi+1, . . . ϕn)).

Proof. If S(ϕ1, . . . ϕn) and T (ϕ1, . . . ϕn) are not unifiable under any renam-
ing of bound variables (say, by FOL-Martelli-Montanari algorithm, treating
quantifiers with variables, ∀ϕ,∃ϕ, as operator names), then

(S(ϕ1, . . . ϕn)
.
= T (ϕ1, . . . ϕn)) ⇔ ⊥

If they are unifiable, then the most general unifier provides for each ϕi a
formula S(ϕ1, . . . ϕi−1, ϕi+1, . . . ϕn) it needs to be identified with, while (ϕ

.
=

ϕ) ⇔ ⊤.

A special case of Lemma 3.5 is, when n = 1, thus both formulas contain
only up to one free variable. Then either

(S(ϕ1)
.
= T (ϕ1)) ⇔ ⊤/⊥

or
(S(ϕ1)

.
= T (ϕ1)) ⇔ (ϕ1

.
= S ′)

Example 3.6.
Let X, Y and Z denote some sentences.

� (X ∧ (ϕ1
.
= Y ))

.
= (ϕ2 ∧ (Z

.
= Y )) ⇔ ((ϕ1

.
= Z) ∧ (ϕ2

.
= X))

� (ϕ1 ∧ (X
.
= Y ))

.
= ((ϕ2 ∨ Z) ∧ (X

.
= Y )) ⇔ (ϕ1

.
= (ϕ2 ∨ Z))

� (ϕ1 ∧ (X ∨ ϕ2))
.
= ((ϕ1 ∨ Y ) ∧ Z) ⇔ ⊥

We may also inspect the conjunctions of a DNF and find that we may
always assume exactly one sentential occurrence of a given variable in each
conjunction.
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Lemma 3.7.
For any DNF-matrix D(ϕ1, . . . ϕn) and some variable ϕi, it holds that
D(ϕ1, . . . ϕn) ⇔ D′(ϕ1, . . . ϕn) where for each conjunct Ci(ϕ1, . . . ϕn) in
D′(ϕ1, . . . ϕn) it holds that

Ci(ϕ1, . . . ϕn) = (ϕi ∧R(ϕ1, . . . ϕn))

or
Ci(ϕ1, . . . ϕn) = (¬ϕi ∧R(ϕ1, . . . ϕn))

where R(ϕ1, . . . ϕn) is an arbitrary conjunction of literals with no sentential
occurrences of ϕi.

Proof. Assuming that duplicate occurrences of ϕi have been reduced already,
the conjunction must be of one of the following forms:

1. Ci(ϕ1, . . . ϕn) = (ϕi ∧R(ϕ1, . . . ϕn)) or
Ci(ϕ1, . . . ϕn) = (¬ϕi ∧ R(ϕ1, . . . ϕn)), in which case the claim holds
already.

2. Ci(ϕ1, . . . ϕn) = (ϕi ∧¬ϕi ∧R(ϕ1, . . . ϕn)). The conjunction is a contra-
diction and thus can be omitted in the equivalent DNF-matrix.

3. Ci(ϕ1, . . . ϕn) contains neither ϕi nor ¬ϕi sententially. By applying the
equivalence

Ci(ϕ1, . . . ϕn) ⇔ (ϕi ∧ Ci(ϕ1, . . . ϕn)) ∨ (¬ϕi ∧ Ci(ϕ1, . . . ϕn))

we replace the conjunction by two new conjunctions for an equivalent
DNF.

Thus we can always find an equivalent DNF where each conjunction con-
tains exactly one sentential occurrence of ϕi.

What might not be apparent at first glance is how the previous Lemma
did not assume syntactic equality or any specific sentential operators in the
sentence. It merely involved sentential variables and is therefore applicable
to any DNF, no matter which specific operators are being considered.

Before turning back to syntactic equalities, we prove another fact about
arbitrary sentences.
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Lemma 3.8.
Any sentence S = ∀ϕ1 . . . ∀ϕn D(ϕ1, . . . ϕn) is equivalent to a conjunction of
up to 2n sentences, S ⇔ S0 ∧ . . . S2n−1 where

Si = ∀ϕ1 . . . ∀ϕn (([¬]ϕ1 ∧ . . . [¬]ϕn) → Di(ϕ1, . . . ϕn))

with Di(ϕ1, . . . ϕn) having no variables in sentential positions and i being a
binary representation ib of length n, such that if ib’s (x− 1)th digit is 1, then
[¬]ϕx = ϕx, while if its (x − 1)th digit is 0, then [¬]ϕx = ¬ϕx, thus i coding
which sentential variables occur negated in Si.

Proof. The claim can be shown by propositional equivalences.

S = ∀ϕ1 . . . ∀ϕn D(ϕ1, . . . ϕn) (1)

⇔ ∀ϕ1 . . . ∀ϕn

[
(ϕ1 ∧D1(ϕ1, . . . ϕn)) ∨ (¬ϕ1 ∧D0(ϕ1, . . . ϕn))

]
⇔ ∀ϕ1 . . . ∀ϕn

[
(ϕ1 ∧ ϕ2 ∧D3(ϕ1, . . . ϕn))∨
(ϕ1 ∧ ¬ϕ2 ∧D2(ϕ1, . . . ϕn))∨
(¬ϕ1 ∧ ϕ2 ∧D1(ϕ1, . . . ϕn))∨
(¬ϕ1 ∧ ¬ϕ2 ∧D0(ϕ1, . . . ϕn))

]
⇔ . . .

⇔ ∀ϕ1 . . . ∀ϕn

[
(ϕ1 ∧ ϕ2 ∧ . . . ϕn ∧D2n−1(ϕ1, . . . ϕn))∨ (2)

(ϕ1 ∧ ϕ2 ∧ . . .¬ϕn ∧D2n−2(ϕ1, . . . ϕn))∨
. . .

(¬ϕ1 ∧ ¬ϕ2 ∧ . . .¬ϕn ∧D0(ϕ1, . . . ϕn))
]

⇔ ∀ϕ1 . . . ∀ϕn

[
(ϕ1 ∧ ϕ2 ∧ . . . ϕn) → D2n−1(ϕ1, . . . ϕn)

]
∧ (3)

∀ϕ1 . . . ∀ϕn

[
(ϕ1 ∧ ϕ2 ∧ . . .¬ϕn) → D2n−2(ϕ1, . . . ϕn)

]
∧

. . .

∀ϕ1 . . . ∀ϕn

[
(¬ϕ1 ∧ ¬ϕ2 ∧ . . .¬ϕn) → D0(ϕ1, . . . ϕn)

]
⇔ S2n−1 ∧ S2n−2 ∧ . . . S0 (4)

From (1) to (2) we get by repeated application of Lemma 3.7 and distribu-
tivity laws. (3) utilizes the idea that for any combination of sentences sub-
stituted for ϕ1, . . . ϕn, only exactly one of the conjunctions ([¬]ϕ1∧ . . . [¬]ϕn)
is true and all others false. For (4) it yields up to 2n new sentences, as
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each variable occuring both positively and negated doubles the number of
combinations of negated and non-negated variables.

The same equivalences can be utilized as shown, for some variable occur-
ing only positively, only negatively, or not at all, in which case the number
of combinations remains smaller than 2n.

The last fact we need at the moment, is that syntactic equality literals
can absorb each other in some cases.

Lemma 3.9.
For every conjunction C(ϕ1) of literals with at most one free variable ϕ1,
which occurs only in nominal positions, one of the following equivalences
holds.

1. C(ϕ1) ⇔ (ϕ1
.
= S1), or

2. C(ϕ1) ⇔ ((ϕ1 ̸
.
= T1) ∧ . . . ∧ (ϕ1 ̸

.
= Tm)), or

3. C(ϕ1) ⇔ ⊤/⊥.

Proof. By Lemma 3.5 we need only consider atoms of the form (ϕ1
.
= S), so

we consider

C(ϕ1) ⇔ ((ϕ1
.
= S1) ∧ . . . (ϕ1

.
= Ss) ∧ (ϕ1 ̸

.
= T1) ∧ . . . (ϕ1 ̸

.
= Tt))

We consider no literals that are equivalent to ⊤/⊥, as one ⊥-literal makes
the whole conjunction equivalent to ⊥, while literals equivalent to ⊤ can be
omitted (if they are the only literals, the whole conjunction is equivalent to
⊤).

� If s > 1, then C(ϕ1) ⇔ ⊥, as no sentence ϕ1 satisfies (ϕ1
.
= S1)∧ (ϕ1

.
=

S2) for S1 ̸= S2.

� If s = 0, then C(ϕ1) ⇔ ((ϕi ̸
.
= T1) ∧ . . . (ϕi ̸

.
= Ti)).

� If s = 1 and t = 0, then C(ϕ1) ⇔ (ϕi
.
= S1).

� If s = 1, t > 0 and S1 = Ti for some i, then C(ϕ1) ⇔ ⊥, no matter the
substituted sentence.

� If s = 1, t > 0 and S1 ̸= Ti for all i, then C(ϕ1) ⇔ (ϕ1
.
= S1), since the

conjunction is true exactly when S1 is substituted for ϕ1.
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3.3 Sentences with one quantifier

What we would like to gain at some point is the assurance that our fixed
interpretation of the syntactic equality operator allows a consistent boolean
valuation of all sentences. That is, however, quite a strong claim. We now
move in this direction, but prove a weaker claim for a smaller set of sentences.

We show that, when having fixed valuation of our underlying object lan-
guage, the truth of all sentences with just one quantifier, depends only on the
truth of some of its subsentences occurring nominally. By [¬]T we denote T
or ¬T .

Theorem 3.10.
For every valuation of object language and for any sentence A with exactly
one sentential quantifier, either A ⇔ ⊤/⊥ or there is some set of sentences,
T = {T1, . . . Tt}, occurring nominally in A, such that A ⇔ [¬]T1 ∧ . . . [¬]Tt

or A ⇔ [¬]T1 ∨ . . . [¬]Tt.

Proof. We consider A = ∀ϕ1 D(ϕ1). In case A = ∃ϕ1 D(ϕ1), we consider
instead ¬A (with its negation pushed inwards) to obtain the set T for ¬A,
hence for A as well. By Lemma 3.8, A is equivalent to a conjunction of
two sentences, A ⇔ A0 ∧ A1, where A0 = ∀ϕ1 (¬ϕ1 → D0(ϕ1)) and A1 =
∀ϕ1 (ϕ1 → D1(ϕ1)).

We keep track that in our equivalent sentences, both D0(ϕ1) and D1(ϕ1)
are still free from sentential ϕ1. We can now turn to the simplified sentence

A1 = ∀ϕ1 (ϕ1 → D1(ϕ1))

knowing that A0 can be treated the same way.
D1(ϕ1) being free from sentential occurrences of ϕi allows application of

Lemma 3.9, thus restricting the types of conjunctions that appear in the
DNF. A degenerate case is of course when D1(ϕ1) = D1, i.e. has no free
variables at all. Then, of course, D1 obtains a constant boolean value and
we are done. Otherwise,

D1(ϕ1) =
[
(ϕ1

.
= S1) ∨ . . .

(ϕ1
.
= Ss)∨

((ϕ1 ̸
.
= T 1

1 ) ∧ . . . (ϕ1 ̸
.
= T 1

n1)) ∨ . . .

((ϕ1 ̸
.
= T t

1) ∧ . . . (ϕ1 ̸
.
= T t

nt))
]
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Now, depending on which conjunctions are exactly in the DNF, different
interactions might happen. First of all, if

� t = 0, then D1(ϕ1) ⇔ (ϕ1
.
= S1) ∨ . . . (ϕ1

.
= Ss) and so A1 ⇔ ⊥, as

there are true sentences ϕ1 that are different from all S1, . . . Ss.

� If t > 0, we notice, that if for any two conjunctions ((ϕ1 ̸
.
= T i

1)∧. . . (ϕ1 ̸
.
=

T i
ni)) and ((ϕi ̸

.
= T j

1 )∧ . . . (ϕ1 ̸
.
= T j

nj)) there is no T y
x common to both of

them, then D1(ϕ1) ⇔ ⊤ as for any sentence ϕ1, one of the conjunctions
is true and so A1 ⇔ ∀ϕ1 (ϕ1 → D1(ϕ1)) ⇔ ∀ϕ1 (ϕ1 → ⊤) ⇔ ⊤.

� Otherwise, all conjunctions ((ϕ1 ̸ .= T i
1) ∧ . . . (ϕ1 ̸ .= T i

ni)) have some
common sentences T := {T1, . . . Tt}. Let then be S := {S1, . . . Ss} the
sentences from all conjunctions (ϕ1

.
= S1) ∨ . . . (ϕ1

.
= Ss). We know

that ((ϕi ̸
.
= T 1

1 )∧ . . . (ϕi ̸
.
= T 1

n1))∨ . . . ((ϕi ̸
.
= T t

1)∧ . . . (ϕi ̸
.
= T t

nt)) is false
for any Ti ∈ T but otherwise true.

Thus, if

– T ⊆ S, we know that for any Ti ∈ T the conjunction (ϕ1
.
= Ti) is

true and so A1 ⇔ ∀ϕ1 (ϕ1 → D1(ϕ1)) ⇔ ∀ϕ1 (ϕ1 → ⊤) ⇔ ⊤.

– Conversely, if (T \ S) ̸= ∅, then there are some sentences, for
which none of the conjunctions are true, and therefore D1(ϕ1) ⇔
(ϕ1 ̸

.
= T1) ∧ . . . (ϕ1 ̸

.
= Tt) for all Ti ∈ (T \ S).

For a quick recap, we have found that for the sentence A1 = ∀ϕ1 (ϕ1 →
D1(ϕ1)), the DNF-matrix D1(ϕ1) is equivalent to ⊤/⊥ in most cases, except
for when all conjunctions with only negative literals have some sentences
in common, that do not occur in any conjunction with positive literals, in
which case the DNF-matrix is true for all sentences except those in question.
Unfolding this idea now brings the proof to a close.

A1 = ∀ϕ1

[
ϕ1 → D1(ϕ1)

]
⇔ ∀ϕ1

[
ϕ1 → ((ϕ1 ̸

.
= T1) ∧ . . . (ϕ1 ̸

.
= Tt))

]
⇔ ∀ϕ1

[
(ϕ1 → (ϕ1 ̸

.
= T1)) ∧ . . . (ϕ1 → (ϕ1 ̸

.
= Tt))

]
⇔ ∀ϕ1

[
ϕ1 → (ϕ1 ̸

.
= T1)

]
∧ . . . ∀ϕ1

[
ϕ1 → (ϕ1 ̸

.
= Tt)

]
⇔ ∀ϕ1

[
(ϕ1

.
= T1) → ¬ϕ1

]
∧ . . . ∀ϕ1

[
(ϕ1

.
= Tt) → ¬ϕ1

]
⇔ ¬T1 ∧ . . .¬Tt
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The very last equivalence might come unexpected, as we seem to eliminate
the quantifier. It is justified, however, as ∀ϕ1 ((ϕ1

.
= Ti) → ¬ϕ1) is trivially

true for all sentences apart from Ti, and if Ti is substituted, then Ti needs to
be false as per the implication.

Thus, if A was not equivalent to ⊤/⊥ in the first place, we have found
a set of sentences T , that occurred only nominally in A, such that A ⇔
[¬]T1 ∧ . . . [¬]Tt (if A = ∃ϕ1 D(ϕ1), then A ⇔ [¬]T1 ∨ . . . [¬]Tt).

The proof made use of a technical detail that provides a very convenient
equivalence between formulas, which is often used in the remainder of this
work, both explicitly and implicitly.

We used the fact that ∀ϕ ((ϕ
.
= S) → ϕ) ⇔ S. Generalizing this instance,

we get that in formulas

(ϕ1
.
= S(ϕ2, . . . ϕn)) ∧D(ϕ1, ϕ2, . . . ϕn)

or
(ϕ1

.
= S(ϕ2, . . . ϕn)) → D(ϕ1, ϕ2, . . . ϕn)

we can always replace all occurrences of ϕ1 within D(ϕ1, ϕ2, . . . ϕn) by the
formula S(ϕ2, . . . ϕn) without changing its boolean value, to get

(ϕ1
.
= S(ϕ2, . . . ϕn)) ∧D(S(ϕ2, . . . ϕn), ϕ2, . . . ϕn)

or
(ϕ1

.
= S(ϕ2, . . . ϕn)) → D(S(ϕ2, . . . ϕn), ϕ2, . . . ϕn)

This accomplishes the elimination of all occurrences of ϕ1, except the one
in (ϕ1

.
= S(ϕ2, . . . ϕn)) and also puts the formula S(ϕ2, . . . ϕn) from formerly

only nominal position into a sentential position.
Before thinking about what this result entails, let us look at an example

and see how exactly the equivalences used in the proof come into play, and
how a sentence can be logically equivalent to nominal subsentence of itself.

Example 3.11.
Let us consider a non-trivial sentence.

A = ∀ϕ1 ((ϕ1
.
= S1) ∨ (ϕ1 ∧ (ϕ1

.
= S2))∨

(ϕ1 ∧ (ϕ1 ̸
.
= S1) ∧ (ϕ1 ̸

.
= S3)) ∨ (¬ϕ1 ∧ (ϕ1 ̸

.
= S5)))
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We can now, step by step, apply the different equivalences to get an in-
stance of the Theorem (labels on the side reference the used Lemma or defi-
nition).

A = ∀ϕ1

[
(ϕ1

.
= S1) ∨ (ϕ1 ∧ (ϕ1

.
= S2))∨ (3.4, 3.5)

(ϕ1 ∧ (ϕ1 ̸
.
= S1) ∧ (ϕ1 ̸

.
= S3)) ∨ (¬ϕ1 ∧ (ϕ1 ̸

.
= S4))

]
⇔ ∀ϕ1

[
(ϕ1 ∧ (ϕ1

.
= S1)) ∨ (¬ϕ1 ∧ (ϕ1

.
= S1)) ∨ (ϕ1 ∧ (ϕ1

.
= S2))∨

(ϕ1 ∧ (ϕ1 ̸
.
= S1) ∧ (ϕ1 ̸

.
= S3)) ∨ (¬ϕ1 ∧ (ϕ1 ̸

.
= S4))

]
⇔ ∀ϕ1

[
(ϕ1 ∧ ((ϕ1

.
= S1) ∨ (ϕ1

.
= S2) ∨ ((ϕ1 ̸

.
= S1) ∧ (ϕ1 ̸

.
= S3))))∨

(¬ϕ1 ∧ ((ϕ1 ̸
.
= S1) ∨ (ϕ1 ̸

.
= S4)))

]
⇔ ∀ϕ1

[
ϕ1 → ((ϕ1

.
= S1) ∨ (ϕ1

.
= S2) ∨ ((ϕ1 ̸

.
= S1) ∧ (ϕ1 ̸

.
= S3)))

]
∧ (3.8)

∀ϕ1

[
¬ϕ1 → ((ϕ1 ̸

.
= S1) ∨ (ϕ1 ̸

.
= S4))

]
⇔ ∀ϕ1

[
ϕ1 → (ϕ1 ̸

.
= S3)

]
∧ ∀ϕ1

[
¬ϕ1 → ⊤

]
(∗)

⇔ ∀ϕ1

[
(ϕ1

.
= S3) → ¬ϕ1

]
∧ ⊤

⇔ ¬S3

(∗) In the proof of Theorem 3.10 we argued how

� (ϕ1
.
= S2) ∨ ((ϕ1 ̸ .= S1) ∧ (ϕ1 ̸ .= S3)) ⇔ ((ϕ1 ̸ .= S1) ∧ (ϕ1 ̸ .= S3)), since

S2 is not equal to S1 or S3

� Also a non-negated and negated equality to S1 cancel each other out,
such that (ϕ1

.
= S1) ∨ ((ϕ1 ̸

.
= S1) ∧ (ϕ1 ̸

.
= S3)) ⇔ (ϕ1 ̸

.
= S3)

� Meanwhile (ϕ1 ̸
.
= S1)∨ (ϕ1 ̸

.
= S4) is vacuously true, as no sentence can

be equal to S1 and S4 at the same time.

The vague intuition mentioned before, that the operator
.
= is not able to

express facts about itself, seems to hold. If a sentence is equivalent to just
⊤/⊥, it is independent of any other sentences’ truth-assignment, including
itself, and is therefore not self-referential at all. And a sentence that is
equivalent to some of its nominal subsentences is at least not directly self-
referential; but as any sentence (other than A) might appear as a subsentence
of A, we can not quite be sure of what kinds of self-reference we might still
get. The claim we proved was restricted to sentences with one quantifier,
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and so a big part of the graph and a major part of the whole picture is still
missing.

Another, more abstract, observation is how the only troublesome inter-
action we seem to have at this level is between an occurrence of a variable ϕ
in both nominal and sentential position.
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3.4 Sentences with multiple quantifiers

3.4.1 Sentences with only nominal or only sentential occurrences
of variables

Our closing observation of the previous section was how the troublesome in-
teraction was between a ϕ occuring both sententially and nominally. Indeed,
it is possible to show that sentences with an arbitrary number of quantifiers
get a fixed boolean valuation, as long as all its quantified variables ϕ1 . . . ϕn

appear exclusively nominally, thus in form of S(ϕ1 . . . ϕn)
.
= S ′(ϕ1 . . . ϕn), or

exclusively sententially, in form of ϕi.

Theorem 3.12.
For every valuation of object language, each sentence

A =

Æ

ϕ1

Æ

ϕ2 . . .

Æ

ϕn D(ϕ1, . . . ϕn)

with every ϕi occuring only in nominal position of some operator P has a
fixed boolean value, A ⇔ ⊤/⊥.

Proof. We consider
Æ

ϕ1 = ∀ϕ1, but the same arguments can be employed
for

Æ

ϕ1 = ∃ϕ1.
By definition of semantics over the language graph GM , the vertex of A

has a double edge to all AS =

Æ

ϕ2 . . .

Æ

ϕn D(S, ϕ2, . . . ϕn) for every sentence
S. Each AS has of course also only nominal occurrences of variables, thus
A’s subgraph has no cycles and is a tree with all leaves being various atoms
of the form P (S1, . . . Sn), which has a fixed boolean value and no outgoing
edges (see Figure 4). Therefore A’s value is induced bottom up and fixed.

A

AS1 AS2 . . .

. . . . . .

P (S1, . . . Sn) P (S2, . . . Sn) P (S3, . . . Sn) P (S4, . . . Sn) . . .

Figure 4: The subgraph of A has no cycles.
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The converse case, all sentences with every ϕi occuring only in sentential
position, is merely a consequence of [Wal]’s proof that GM without operators
always has a solution. Every sentence with s-variables only in sentential
position has only atoms of the operator with fixed arguments, if at all, which
obtain a fixed value, based on the semantics of the operator. They contribute
just a constant 1/0 to its supersentence and thus sentences have a fixed value,
as per existence of a kernel of GM without the operator.

However, utilizing equivalences from this work, a different approach to
proving consistency of all sentences with every ϕi occuring only in sentential
position can be taken, and thus the proof of the following Theorem 3.14,
together with the new Lemma 3.13, confirming the already known result, is
different and more compact than [Wal]’s proof.

The central observation that is used in the next Lemma is that a sentence
of the form ∀ϕ . . . ((ϕ → D)∧ (¬ϕ → D′)) acts like a case distinction on ϕ’s
value. Coupled with the ∀-quantifier, ϕ is always substituted by S as well
as its negation ¬S and thus, provided ϕ does not occur in D and D′, jointly
inducing the same value, allowing distribution of other quantifiers (even if
existential) over the outermost conjuncts.

Lemma 3.13.
For any valuation of all sentences and any sentence

∀ϕ1 A(ϕ1) = ∀ϕ1

Æ

ϕ2 . . .

Æ

ϕn

[
(ϕ1 → D(ϕ2, . . . ϕn))∧(¬ϕ1 → D′(ϕ2, . . . ϕn))

]
with ϕ1 not occuring in D(ϕ2, . . . ϕn) and D(ϕ2, . . . ϕn),

∀ϕ1 A(ϕ1) ⇔

Æ

ϕ2 . . .

Æ

ϕn D(ϕ2, . . . ϕn) ∧

Æ

ϕ2 . . .

Æ

ϕn D′(ϕ2, . . . ϕn)

Proof. In the subgraph of ∀ϕ1 A(ϕ1) (see Figure 5), due to the ∀ϕ1 quantifier,
every sentence is being substituted for ϕ1. Thus, for an arbitrary S that is
substituted, so is ¬S, and we can draw the subgraph for specifically S and
¬S, knowing the same pattern reappears for any sentence and its negation.

For A(S) =

Æ

ϕ2 . . .

Æ

ϕn

[
(S → D(ϕ2, . . . ϕn)) ∧ (¬S → D′(ϕ2, . . . ϕn))

]
we then abbreviate the subtree, where every ϕi gets substituted by some
Ti by a triangle and focus on one arbitrary branch with the vertex

[
(S →

D(T2, . . . Tn)) ∧ (¬S → D′(T2, . . . Tn))
]

at its end. It can now be reasoned,
why value of the root is induced by
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Æ

ϕ2 . . .

Æ

ϕn D(ϕ2, . . . ϕn) and

Æ

ϕ2 . . .

Æ

ϕn D′(ϕ2, . . . ϕn) and independent
of S’s value (left and right subtree refers to the subtrees of A(S) and A(¬S),
respectively):

� In the left subtree, for each branch ending in (S → D(T2, . . . Tn)) ∧
(¬S → D′(T2, . . . Tn)) there is an identical branch in the right subtree
ending in (¬S → D(T2, . . . Tn)) ∧ (S → D′(T2, . . . Tn)).

� If S’s value was 1, the branch in the left subtree gets its values induced
solely by D(T2, . . . Tn), while the branch in the right subtree gets its
values induced solely by D′(T2, . . . Tn).

� The same applies to any other arbitrary branch in the subtree. A(S)’s
value depends solely on the values of all branches, which all get their
values induced by D(ϕ2, . . . ϕn), the converse holds for A(¬S) and
D′(ϕ2, . . . ϕn).

� Thus, in case S’s value was 1, A(S) ⇔

Æ

ϕ2 . . .

Æ

ϕn D(ϕ2, . . . ϕn) and
A(¬S) ⇔

Æ

ϕ2 . . .

Æ

ϕn D′(ϕ2, . . . ϕn).

� If S’s value was 0 the same situation arises, only with both subtrees
swapped, thus the left subtree getting its values induced by
D′(ϕ2, . . . ϕn) and the right subtree by D(ϕ2, . . . ϕn).

� It can be concluded that no matter S’s valuation, both subtrees jointly
induce the same value,

Æ

ϕ2 . . .

Æ

ϕn D(ϕ2, . . . ϕn) ∧

Æ

ϕ2 . . .

Æ

ϕn D′(ϕ2, . . . ϕn).

� S was chosen arbitrarily and so for all sentences, coupled together with
their negation, the same equivalence holds and overall,

∀ϕ1 A(ϕ1) ⇔

Æ

ϕ2 . . .

Æ

ϕn D(ϕ2, . . . ϕn) ∧

Æ

ϕ2 . . .

Æ

ϕn D′(ϕ2, . . . ϕn)

Theorem 3.14.
For every valuation of object language and, any sentence

A =

Æ

ϕ1

Æ

ϕ2 . . .

Æ

ϕn D(ϕ1, . . . ϕn)

with every ϕi occuring only in sentential position has a fixed boolean value,
A ⇔ ⊤/⊥.
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∀ϕ1 A(ϕ1)

• • . . .

A(S) A(¬S)

..
.

..
.

. . . . . .

(S → D(T2, . . . Tn))∧
(¬S → D′(T2, . . . Tn))

(¬S → D(T2, . . . Tn))∧
(S → D′(T2, . . . Tn))

S∧
¬D(T2, . . . Tn)

¬S∧
¬D′(T2, . . . Tn)

¬S∧
¬D(T2, . . . Tn)

S∧
¬D′(T2, . . . Tn)

D(T2, . . . Tn) D′(T2, . . . Tn) D(T2, . . . Tn) D′(T2, . . . Tn)

S• •

Figure 5: S’s value does not contribute to the valuation of the subgraph.

Proof. We consider only A = ∀ϕ1

Æ

ϕ2 . . .

Æ

ϕn D(ϕ1, . . . ϕn), while the proof
for

Æ

ϕ1 = ∃ϕ1 goes essentially the same way.
This proof relies on an induction on the number of quantifiers in A. The

base case, A = ∀ϕ1 D(ϕ1) (A = ∃ϕ1 D(ϕ1)) clearly has a fixed boolean value
as the only possible disjuncts in D(ϕ1) are

(1) (ϕ1)

(2) (¬ϕ1)

(3) (ϕ1 ∧ ¬ϕ1)

If among D’s disjuncts are both (1) and (2) (either (1) or (2) or both), then
A ⇔ ⊤, otherwise A ⇔ ⊥.
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For an induction hypothesis, we assume any A with (n− 1) quantifiers to
have a fixed boolean value.

It remains the induction step for A with n quantifiers.

A ⇔∀ϕ1

Æ

ϕ2 . . .

Æ

ϕn

[
(ϕ1 ∧ C1(ϕ2, . . . ϕn)) ∨ . . . (ϕ1 ∧ Cc(ϕ2, . . . ϕn))∨ (1)

(¬ϕ1 ∧ C ′
1(ϕ2, . . . ϕn)) ∨ . . . (¬ϕ1 ∧ C ′

c′(ϕ2, . . . ϕn))
]

⇔∀ϕ1

Æ

ϕ2, . . .

Æ

ϕn

[
(ϕ1 ∧ (C1(ϕ2, . . . ϕn) ∨ . . . Cc(ϕ2, . . . ϕn)))∨

(¬ϕ1 ∧ (C ′
1(ϕ2, . . . ϕn) ∨ . . . C ′

c′(ϕ2, . . . ϕn)))
]

⇔∀ϕ1

Æ

ϕ2 . . .

Æ

ϕn

[
(ϕ1 → (C1(ϕ2, . . . ϕn) ∨ . . . Cc(ϕ2, . . . ϕn)))∧

(¬ϕ1 → (C ′
1(ϕ2, . . . ϕn) ∨ . . . C ′

c′(ϕ2, . . . ϕn)))
]

⇔∀ϕ1

Æ

ϕ2 . . .

Æ

ϕn

[
(ϕ1 → D(ϕ2, . . . ϕn))∧ (2)

(¬ϕ1 → D′(ϕ2, . . . ϕn))
]

⇔

Æ

ϕ2 . . .

Æ

ϕn D(ϕ2, . . . ϕn)∧ (3)

Æ

ϕ2 . . .

Æ

ϕn D′(ϕ2, . . . ϕn)

By Lemma 3.7 we can assume exactly one sentential occurrence in each
disjunct of A’s PDNF and by assumption no other occurrences (1). To (2) we
get by trivial propositional laws. Lemma 3.13 allows to eliminate ϕ1 entirely
from the sentence (3).

Thus A is equivalent to some sentence with (n−1) quantifiers, completing
the induction step. So any A with only sentential variables has a fixed
boolean value.

This chapter and most of the proven results were of course concerning the
operator syntactic equality

.
=. However, the observation that only nominal

and sentential occurrences of variables together are problematic, is in fact
applicable to any operator. Indeed, the previous facts did not rely on the
fact the language contained the operator

.
=, thus hold for any (number of)

arbitrary operators.
We have now certainty that sentences with variables in only nominal

or only sentential position do not cause paradoxes; the question remains if
arbitrary sentences permit consistency as well.
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3.4.2 A possible induction

Turning our eye towards arbitrary sentences, one way of addressing the infi-
nite number of sentences with multiple quantifiers could be an induction on
the number of quantifiers occuring. If we could show that any sentence with
n quantifiers is semantically equivalent to one with (n − 1) quantifiers, we
would find for any sentence an equivalent sentence with 1 quantifier, which
would be the base case and which we have treated in section 3.3.

This approach is not sufficient, however. Theorem 3.10 shows for sen-
tences with one quantifier an equivalence to nominal subsentences which in
turn may have an arbitrary number of quantifiers again. Thus, when for an
induction hypothesis assuming the claim for sentences with (n − 1) quanti-
fiers, this hypothesis is hardly ever applicable when already in the base case
the number of quantifiers might increase.

Broadening the scope of what Theorem 3.10 actually guarantees gives a
potentially more promising induction. We could start adding up the total
number of quantifiers occuring in the sentence, both the “outer” quantifiers
that actually quantify the sentence and the “inner” quantifiers which occur
with some sentence in nominal position.

Definition 3.15 (Quantifier-total, inner and outer quantifiers).
For any formula F , the quantifier-total qt(F ) = t, iff F contains exactly t
quantifiers as symbols.

F =

Æ

ϕ1 . . .

Æ

ϕnD(ϕ1 . . . ϕn), being in PDNF, is said to have n outer
quantifiers, qo(F ) = n. The number of inner quantifiers of F is qi(F ) =
qt(F ) − qo(F ) = t− n.

With this new definition we get a new perspective on what Theorem 3.10
could accomplish, namely reducing the number of total quantifiers.

Lemma 3.16.
For any sentence A with one outer quantifier qo(A) = 1 there exists an
equivalent sentence A′ ⇔ A such that qt(A′) < qt(A).

Proof. Let A be an arbitrary sentence with qo(A) = 1 and qi(A) = i and so
qt(A) = i + 1. By Theorem 3.10, A ⇔ [¬]T1 ∧ . . . [¬]Tt (or A ⇔ ⊤/⊥), with
each Tn nominal in A. Thus qt([¬]T1 ∧ . . . [¬]Tt) ≤ qi(A) < qt(A).

A possible induction over the quantifier-total qt of sentences lies now at
hand. The base case with qt(A) = 0 is trivial.
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Base case 3.17.
For every valuation of object language, any sentence A with qt(A) = 0 obtains
a fixed value A ⇔ ⊤/⊥.

Proof. If qt(A) = 0 then qo(A) = 0. Thus A is a propositional matrix of
atomic sentences (X

.
= Y ). These obtain fixed values which fixes the value

of A.

The induction hypothesis assumes the claim for sentences with qt(A) =
n− 1 and is investigated in the rest of the work.

Induction hypothesis 3.18.
For an induction hypothesis we assume a fixed valuation of object language
and that for any sentence A with qt(A) ≤ (n − 1), A has a fixed value
A ⇔ ⊤/⊥.

Having established a base case, it remains to check if by assumption of
the induction hypothesis, the induction step can be accomplished. This is
possible for various special cases.

3.4.3 Induction step for sentences with one block of quantifiers

First of all, with help of the following Lemma 3.19, we can prove the induction
step for Σ1- and Π1-sentences.

Lemma 3.19.
For any disjunction of

.
=-atoms, each having bare ϕi on its left-hand side,

i.e.

D(ϕ1, . . . ϕi, . . . ϕn) = (ϕi
.
= S1(ϕ1, . . . ϕn)) ∨ . . . (ϕi,

.
= Ss(ϕ1, . . . ϕn))

there are assignments ϕi 7→ T and ϕi 7→ T ′ such that D(ϕ1, . . . T, . . . ϕn) ⇔
D(ϕ1, . . . T

′, . . . ϕn) ⇔ ⊥ and T ⇔ ⊤ and T ′ ⇔ ⊥.

Proof. Each Si(ϕ1 . . . ϕn) is either a conjunction, a negation, or starting with
a number m quantifiers, i.e.

� Si(ϕ1, . . . ϕn) = F ∧ F ′ or

� Si(ϕ1, . . . ϕn) = ¬F or

� Si(ϕ1, . . . ϕn) =

Æ

ϕx1 . . .

Æ

ϕxmF
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for some formulas F, F ′.
Thus any Sj(ϕ1, . . . ϕn) starts with either 0 or m quantifiers and choosing

for ϕi a sentence starting with more than the maximum of quantifiers m
suffices to falsify every instance of ϕi

.
= Sj(ϕ1, . . . ϕn).

Therefore if

T = ∀ϕ1 . . . ∀ϕm+1(ϕ1 ∨ ¬ϕ1 ∨ . . . ϕm+1 ∨ ¬ϕm+1) ⇔ ⊤

and
T ′ = ∀ϕ1 . . . ∀ϕm+1(ϕ1 ∧ ¬ϕ1 ∧ . . . ϕm+1 ∧ ¬ϕm+1) ⇔ ⊥

then D(ϕ1, . . . T, . . . ϕn) ⇔ D(ϕ1, . . . T
′, . . . ϕn) ⇔ ⊥.

Example 3.20.
Let us for an example of Lemma 3.19 take a disjunction D(ϕ1, ϕ2, ϕ3) with
ϕ1 alone in nominal position.

D(ϕ1, ϕ2, ϕ3) =(ϕ1
.
= (X ∧ (ϕ2 → ϕ3))) ∨ (ϕ1

.
= ∀ϕ1∀ϕ2(ϕ1 ∧ ϕ2))∨

(ϕ1
.
= ∃ϕ1(ϕ2 ∧ ϕ1)) ∨ (ϕ1

.
= ¬∀ϕ1(ϕ1 ∨ ϕ3))

The maximum number of quantifiers heading the sentences is 2, hence
sentences with 3 leading quantifiers for ϕ1 falsify all the equalities. Take
T = ∀ϕ1∀ϕ2∀ϕ3(ϕ1 ∨ ¬ϕ1 ∨ ϕ2 ∨ ¬ϕ2 ∨ ϕ3 ∨ ¬ϕ3) and
T ′ = ∀ϕ1∀ϕ2∀ϕ3(ϕ1 ∧ ¬ϕ1 ∧ ϕ2 ∧ ¬ϕ2 ∧ ϕ3 ∧ ¬ϕ3). Clearly T is a tautology
and T ′ is a contradiction.

D(S, ϕ2, ϕ3) =(T
.
= (X ∧ (ϕ2 → ϕ3))) ∨ (T

.
= ∀ϕ1∀ϕ2(ϕ1 ∧ ϕ2))∨

(T
.
= ∃ϕ1(ϕ2 ∧ ϕ1)) ∨ (T

.
= ¬∀ϕ1(ϕ1 ∨ ϕ3))

⇔⊥∨⊥ ∨⊥ ∨⊥
⇔⊥

It is easy to verify that T (as well as T ′) falsifies the disjunction, no
matter what sentences would be substituted for ϕ2 and ϕ3.

Next, we define the type of sentences that we want to prove the induction
step for, Σ1/Π1-sentences.

Definition 3.21 (PDNF hierarchy).
A formula F in PDNF is a
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� Σ1-formula, iff F = ∃ϕ1 . . . ∃ϕn P (ϕ1, . . . ϕn) and qo(P ) = 0,

� Π1-formula, iff F = ∀ϕ1 . . . ∀ϕn P (ϕ1, . . . ϕn) and qo(P ) = 0,

� Σi+1-formula, iff F = ∃ϕ1 . . . ∃ϕn P (ϕ1, . . . ϕn) and P is a Πi-formula,

� Πi+1-formula, iff F = ∀ϕ1 . . . ∀ϕn P (ϕ1, . . . ϕn) and P is a Σi-formula.

S is a Σi/Πi-sentence, iff S is a sentence and a Σi/Πi-formula.

Theorem 3.22 (Induction step for Σ1/Π1).
Under the assumption of the induction hypothesis (3.18), for any Σ1/Π1-
sentence A with qt(A) = n, A ⇔ ⊤/⊥.

Proof. We assume A to be Π1; if it is Σ1, then there is a Π1-sentence A′, such
that A ⇔ ¬A′ and finding a value for A′ yields a value for A.

By Lemma 3.8 we know that A ⇔ A0 ∧ . . . A2n−1 where

Ai = ∀ϕ1 . . . ∀ϕn (([¬]ϕ1 ∧ . . . [¬]ϕn) → Di(ϕ1, . . . ϕn))

with Di(ϕ1, . . . ϕn) having no variables in sentential positions. Finding
values for all Ai yields a fixed value for A, so we turn our attention to A0 and
make sure any other Ai follows alongside. We transform Di(ϕ1, . . . ϕn) into
an equivalent CNF D1(ϕ1, . . . ϕn)∧ . . . Dd(ϕ1, . . . ϕn) and apply distributivity
to get

A0 =∀ϕ1 . . . ∀ϕn

[
(¬ϕ1 ∧ . . .¬ϕn) → Di(ϕ1, . . . ϕn)

]
⇔∀ϕ1 . . . ∀ϕn

[
(¬ϕ1 ∧ . . .¬ϕn) → (D1(ϕ1, . . . ϕn) ∧ . . . Dd(ϕ1, . . . ϕn))

]
⇔∀ϕ1 . . . ∀ϕn

[
((¬ϕ1 ∧ . . .¬ϕn) → D1(ϕ1, . . . ϕn)) ∧ . . .

((¬ϕ1 ∧ . . .¬ϕn) → Dd(ϕ1, . . . ϕn))
]

⇔∀ϕ1 . . . ∀ϕn

[
((¬ϕ1 ∧ . . .¬ϕn) → D1(ϕ1, . . . ϕn))

]
∧ . . .

∀ϕ1 . . . ∀ϕn

[
((¬ϕ1 ∧ . . .¬ϕn) → Dd(ϕ1, . . . ϕn))

]
=A0

1 ∧ . . . A0
d

Having split A0 into simpler sentences A0
1, . . . A

0
d we again only focus on

one A0
i , knowing that a value for each A0

i yields a fixed value for A0. To make
sure we are still eligible to apply the induction hypothesis 3.18, a quick look
at the applied Lemma 3.8 as well as the applied distributivity laws suffices
to see that qi(A0

i ) ≤ qi(A0) ≤ qi(A) (while qo(A0
i ) = qo(A0) = qo(A) = n).
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A0
i =∀ϕ1 . . . ∀ϕn ((¬ϕ1 ∧ . . .¬ϕn) → Di(ϕ1, . . . ϕn))

⇔∀ϕ1 . . . ∀ϕn (ϕ1 ∨ . . . ϕn ∨ L1(ϕ1, . . . ϕn) ∨ . . . Ll(ϕ1, . . . ϕn))

As per Lemma 3.8, each L(ϕ1, . . . ϕn) represents a literal, but not a vari-
able. We can also assume that Lemma 3.5 had been applied in the beginning
and thus every L(ϕ1, . . . ϕn) = [¬](ϕi

.
= S(ϕ1, . . . ϕi−1, ϕi+1, . . . ϕn)). Seeing

that L can occur negated and non-negated gives a case distinction.

� If there is a negated literal
L(ϕ1, . . . ϕi, . . . ϕn) = (ϕi ̸ .= S(ϕ1, . . . ϕi−1, ϕi+1, . . . ϕn)), then we can
rearrange A0

i and then replace all instances of ϕi with the sentence it
is required to equal to:
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A0
i ⇔∀ϕ1 . . . ∀ϕi . . . ∀ϕn

[
ϕ1 ∨ . . . ϕi ∨ . . . ϕn∨

ϕi ̸
.
= S(ϕ1, . . . ϕi−1, ϕi+1, . . . ϕn)∨

L1(ϕ1, . . . ϕi, . . . ϕn) ∨ . . . Ll(ϕ1, . . . ϕi, . . . ϕn)
]

⇔∀ϕ1 . . . ∀ϕi . . . ∀ϕn

[
(ϕi

.
= S(ϕ1, . . . ϕi−1, ϕi+1, . . . ϕn)) → (1)

(ϕ1 ∨ . . . ϕi ∨ . . . ϕn∨
L1(ϕ1, . . . ϕi, . . . ϕn) ∨ . . . Ll(ϕ1, . . . ϕi, . . . ϕn))

]
⇔∀ϕ1 . . . ∀ϕi . . . ∀ϕn

[
(ϕi

.
= S(ϕ1, . . . ϕi−1, ϕi+1, . . . ϕn)) → (2)

(ϕ1 ∨ . . . ϕi−1 ∨ S(ϕ1, . . . ϕi−1, ϕi+1, . . . ϕn) ∨ ϕi+1 ∨ . . . ϕn∨
L1(ϕ1, . . . ϕi−1, S(ϕ1, . . . ϕi−1, ϕi+1, . . . ϕn), ϕi+1 . . . ϕn) ∨ . . .

Ll(ϕ1, . . . ϕi−1, S(ϕ1, . . . ϕi−1, ϕi+1, . . . ϕn), ϕi+1, . . . ϕn))
]

⇔∀ϕ1 . . . ∀ϕi−1∀ϕi+1 . . . ∀ϕn

[
(3)

∀ϕi(ϕi ̸
.
= S(ϕ1, . . . ϕi−1, ϕi+1, . . . ϕn))∨

(ϕ1 ∨ . . . ϕi−1 ∨ S(ϕ1, . . . ϕi−1, ϕi+1, . . . ϕn) ∨ ϕi+1 ∨ . . . ϕn∨
L1(ϕ1, . . . ϕi−1, S(ϕ1, . . . ϕi−1, ϕi+1, . . . ϕn), ϕi+1, . . . ϕn) ∨ . . .

Ll(ϕ1, . . . ϕi−1, S(ϕ1, . . . ϕi−1, ϕi+1, . . . ϕn), ϕi+1, . . . ϕn))
]

⇔∀ϕ1 . . . ∀ϕi−1∀ϕi+1 . . . ∀ϕn

[
⊥∨ (4)

(ϕ1 ∨ . . . ϕi−1 ∨ S(ϕ1, . . . ϕi−1, ϕi+1, . . . ϕn) ∨ ϕi+1 ∨ . . . ϕn∨
L1(ϕ1, . . . ϕi−1, S(ϕ1, . . . ϕi−1, ϕi+1, . . . ϕn), ϕi+1, . . . ϕn) ∨ . . .

Ll(ϕ1, . . . ϕi−1, S(ϕ1, . . . ϕi−1, ϕi+1, . . . ϕn), ϕi+1, . . . ϕn))
]

⇔∀ϕ1 . . . ∀ϕi−1∀ϕi+1 . . . ∀ϕn

[
(5)

ϕ1 ∨ . . . ∨ ϕi−1 ∨ S(ϕ1, . . . ϕi−1, ϕi+1, . . . ϕn) ∨ ϕi+1 ∨ . . . ϕn∨
L1(ϕ1, . . . ϕi−1, S(ϕ1, . . . ϕi−1, ϕi+1, . . . ϕn), ϕi+1, . . . ϕn) ∨ . . .

Ll(ϕ1, . . . ϕi−1, S(ϕ1, . . . ϕi−1, ϕi+1, . . . ϕn), ϕi+1, . . . ϕn)
]

=A′

To get (1), we transform the disjunction into an implication. We then
replace all ϕi in the consequent with the formula it is required to equal
(2). Pulling the quantifier ∀ϕi inside yields subsentence ∀ϕi(ϕi ̸ .=
S(ϕ1, . . . ϕi−1, ϕi+1, . . . ϕn)) (3); no matter what sentences are substi-
tuted for ϕ1 . . . ϕn, if we take
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ϕi = S(ϕ1, . . . ϕi−1, ϕi+1, . . . ϕn)

which is clearly a sentence, our subsentence is false (4) and can hence
be eliminated entirely (5).

We have thereby eliminated ∀ϕi from the sentence. By replacing the
sentential ϕi with the nominal S(ϕ1 . . . ϕn) some quantifiers may have
shifted from inner to outer, but the total number has been reduced by
one.

qi(A′) = qi(A0
i ) − x and qo(A′) = qo(A0

i ) − 1 + x and thus qt(A′) =
qi(A′) + qo(A′) = qi(A0

i )− x+ qo(A0
i )− 1 + x = qi(A0

i ) + qo(A0
i )− 1 =

qt(A0
i ) − 1 < qt(A0

i ).

We can therefore apply induction hypothesis 3.18 and A′ ⇔ ⊤/⊥.

� The other case is if there is no negated literal, thus all literals are
positive L(ϕ1, . . . ϕi, . . . ϕn) = (ϕi

.
= S(ϕ1, . . . ϕi−1, ϕi+1, . . . ϕn)). It is

then possible to find an assignment ϕ1 7→ T1, . . . ϕn 7→ Tn such that
A0

i ⇔ ⊥. To find this assignment, we choose any ϕi occurring bare
in the left-hand side of some

.
=-atoms, (ϕi

.
= S1(ϕ1, . . . ϕn)) ∨ . . . (ϕi

.
=

S1(ϕ1, . . . ϕn)). Lemma 3.19 allows us to find an assignment ϕi 7→
Ti, such that all these atoms are false and Ti itself is false as well.
Substituting this Ti for ϕi in A0

i yields a new sentence.

A′
i =∀ϕ1 . . . ∀ϕi . . . ∀ϕn

[
ϕ1 ∨ . . . ϕi . . . ϕn∨

(ϕi
.
= S1(ϕ1, . . . ϕn)) ∨ . . . (ϕi

.
= Ss(ϕ1, . . . ϕn))

∨D(ϕ1, . . . ϕi, . . . ϕn)
]

⇒∀ϕ1 . . . ∀ϕn

[
ϕ1 ∨ . . . Ti ∨ . . . ϕn∨

(Ti
.
= S1(ϕ1, . . . ϕn)) ∨ . . . (Ti

.
= S1(ϕ1, . . . ϕn))

∨D(ϕ1, . . . Ti, . . . ϕn)
]

⇒∀ϕ1 . . . ∀ϕn

[
ϕ1 ∨ . . .⊥ ∨ . . . ϕn∨

⊥ ∨ . . .⊥∨
D(ϕ1, . . . Ti, . . . ϕn)

]
⇒∀ϕ1 . . . ∀ϕn

[
ϕ1 ∨ . . . ϕn ∨D(ϕ1, . . . Ti, . . . ϕn)

]
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This process can be repeated until all bare variables and atoms have
been eliminated leaving the empty disjunction. We have thus found
an assignment for all ϕ1 . . . ϕn making the disjunction empty and so
witnesses for A0

i ⇔ ⊥.

3.4.4 Induction step for sentences with a variable only in senten-
tial position

Having proven the induction step for the special case of Σ1/Π1-sentences,
there are more special cases, for which the induction step can be shown: for
instance, sentences with a variable ϕi occuring only in sentential position.

Theorem 3.23.
Under the assumption of the induction hypothesis (3.18), for any sentence
A =

Æ

ϕ1 . . . ∀ϕi . . .

Æ

ϕn(D(ϕ1, . . . ϕi, . . . ϕn)) with ϕi occuring only in sen-
tential position, A ⇔ ⊤/⊥.

Proof.

A ⇔
Æ

ϕ1 . . . ∀ϕi . . .
Æ

ϕn

[
D(ϕ1, . . . ϕi, . . . ϕn)

]
⇔

Æ

ϕ1 . . . ∀ϕi . . .

Æ

ϕn

[
(ϕi ∧D1(ϕ1, . . . ϕn)) ∨ . . . (1)

(ϕi ∧Dd(ϕ1, . . . ϕn))∨
(¬ϕi ∧D′

1(ϕ1, . . . ϕn)) ∨ . . .

(¬ϕi ∧D′
d′(ϕ1, . . . ϕn))

]
⇔

Æ

ϕ1 . . . ∀ϕi . . .

Æ

ϕn

[
(ϕi → D(ϕ1, . . . ϕn))∧ (2)

(¬ϕi → D′(ϕ1, . . . ϕn))
]

⇔

Æ

ϕ1 . . .

Æ

ϕi−1

[
(

Æ

ϕi+1 . . .

Æ

ϕnD(ϕ1, . . . ϕn))∧ (3)

(

Æ

ϕi+1 . . .

Æ

ϕnD
′(ϕ1, . . . ϕn))

]
=A′

By Lemma 3.7, we can assume exactly one sentential occurrence of ϕi in
each PDNF-disjunct (1). With distributivity (2) and Lemma 3.13, ϕi can be
eliminated entirely from the sentence (3), yielding a new sentence A′.

So not only A′ ⇔ A but also qi(A′) = qi(A) and qo(A′) = qo(A) − 1 and
thus qt(A′) = qi(A′) + qo(A′) = qi(A) + qo(A) − 1 = qt(A) − 1 < qt(A).
Having found an equivalent A′ with less quantifiers allows application of the
induction hypothesis and therefore A ⇔ ⊤/⊥.
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3.4.5 Induction step for sentences with the innermost quantified
variable alone in nominal positions

For another special case of sentences, the induction step can be shown. If a
sentence with the innermost quantified variable ϕn

(

Æ

ϕn in

Æ

ϕ1

Æ

ϕ2 . . .

Æ

ϕn D(ϕ1, ϕ2, . . . ϕn)) has ϕn in nominal positions, but
always as a bare variable, thus all operators containing ϕn have the form
ϕn,

.
= ϕi, ϕn,

.
= S or ϕn

.
= S(ϕ1, . . . ϕn−1) (and never ϕi,

.
= S(ϕ1 . . . ϕn)), then

we can find a boolean value for the sentence.

Theorem 3.24.
Under the assumption of the induction hypothesis (3.18) for any sentence
A =

Æ

ϕ1 . . .

Æ

ϕn(D(ϕ1, . . . ϕn)), if all
.
=-atoms containing ϕn are of the form

ϕn
.
= S(ϕ1, . . . ϕn−1) (ϕn may still occur in sentential position), then A ⇔

⊤/⊥.

Proof. The proof relies on Lemma 3.19 and propositional equivalences. By
Lemma 3.7 we assume exactly one sentential occurrence of ϕn in every dis-
junct. Without loss of generality, we assume

Æ

ϕn = ∀ϕn (if

Æ

ϕn = ∃ϕn,
then there is A′ with A ⇔ ¬A′ with

Æ
ϕn = ∀ϕn in A′, while a fixed value of

A′ fixes A’s value).

A =

Æ

ϕ1 . . .

Æ

ϕn−1∀ϕn

[
D(ϕ1, . . . ϕn)

]
⇔

Æ

ϕ1 . . .

Æ

ϕn−1∀ϕn

[
(ϕn ∧ C1(ϕ1, . . . ϕn)) ∨ . . . (ϕn ∧ Cc(ϕ1, . . . ϕn))∨
(¬ϕn ∧ C ′

1(ϕ1, . . . ϕn)) ∨ . . . (¬ϕn ∧ C ′
c′(ϕ1, . . . ϕn))

]
⇔

Æ

ϕ1 . . .

Æ

ϕn−1∀ϕn

[
(ϕn ∧ (C1(ϕ1, . . . ϕn) ∨ . . . Cc(ϕ1, . . . ϕn)))∨
(¬ϕn ∧ (C ′

1(ϕ1, . . . ϕn) ∨ . . . C ′
c′(ϕ1, . . . ϕn)))

]
⇔

Æ

ϕ1 . . .

Æ

ϕn−1∀ϕn

[
(ϕn → (C1(ϕ1, . . . ϕn) ∨ . . . Cc(ϕ1, . . . ϕn)))∧
(¬ϕn → (C ′

1(ϕ1, . . . ϕn) ∨ . . . C ′
c′(ϕ1, . . . ϕn)))

]
⇔

Æ

ϕ1 . . .

Æ

ϕn−1

[
∀ϕn (ϕn → (C1(ϕ1, . . . ϕn) ∨ . . . Cc(ϕ1, . . . ϕn)))∧
∀ϕn (¬ϕn → (C ′

1(ϕ1, . . . ϕn) ∨ . . . C ′
c′(ϕ1, . . . ϕn)))

]
The equivalences are justified by trivial propositional laws and distribu-

tivity. The DNF C1(ϕ1, . . . ϕn) ∨ . . . Cc(ϕ1, . . . ϕn) is transformed into CNF
D1(ϕ1, . . . ϕn) ∧ . . . Dd(ϕ1, . . . ϕn) and the quantifier ∀ϕn distributed.
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A ⇔

Æ

ϕ1 . . .

Æ

ϕn−1

[
∀ϕn(ϕn → (C1(ϕ1, . . . ϕn) ∨ . . . Cc(ϕ1, . . . ϕn)))∧
∀ϕn(¬ϕn → (C ′

1(ϕ1, . . . ϕn) ∨ . . . C ′
c′(ϕ1, . . . ϕn)))

]
⇔

Æ

ϕ1 . . .

Æ

ϕn−1

[
∀ϕn(ϕn → (D1(ϕ1, . . . ϕn) ∧ . . . Dd(ϕ1, . . . ϕn)))∧
∀ϕn(¬ϕn → (D′

1(ϕ1, . . . ϕn) ∧ . . . D′
d′(ϕ1, . . . ϕn)))

]
⇔

Æ

ϕ1 . . .

Æ

ϕn−1

[
∀ϕn((ϕn → D1(ϕ1, . . . ϕn)) ∧ . . .

(ϕn → Dd(ϕ1, . . . ϕn)))∧
∀ϕn((¬ϕn → D′

1(ϕ1, . . . ϕn)) ∧ . . .

(¬ϕn → D′
d′(ϕ1, . . . ϕn)))

]
⇔

Æ

ϕ1 . . .

Æ

ϕn−1

[
∀ϕn(ϕn → D1(ϕ1, . . . ϕn)) ∧ . . .

∀ϕn(ϕn → Dd(ϕ1, . . . ϕn))∧
∀ϕn(¬ϕn → D′

1(ϕ1, . . . ϕn)) ∧ . . .

∀ϕn(¬ϕn → D′
d′(ϕ1, . . . ϕn))

]
Thus, for A to hold, no matter what has been substituted for ϕ1 to ϕn−1,

all subsentences ∀ϕn([¬]ϕn → Di(ϕ1, . . . ϕn)) have to hold.
Each Di(ϕ1, . . . ϕn) is a disjunction of literals L(ϕ1, . . . ϕn) which may

or may not contain ϕn (let D′(ϕ1, . . . ϕn−1) be the disjunction of all literals
without ϕn).

∀ϕn

[
¬ϕn → Di(ϕ1, . . . ϕn)

]
⇔ ∀ϕn

[
ϕn ∨Di(ϕ1, . . . ϕn)

]
⇔ ∀ϕn

[
ϕn ∨ L1(ϕ1, . . . ϕn) ∨ . . . Ll(ϕ1, . . . ϕn)

]
∨D′(ϕ1, . . . ϕn−1)

Considering all literals, by assumption, we know that they all are of the
form ϕn

.
= S(ϕ1, . . . ϕn−1) or ϕn ̸ .= S(ϕ1, . . . ϕn−1) or don’t contain ϕn.

� If one of the literals is negated, L(ϕ1, . . . ϕn) = (ϕn ̸ .= S(ϕ1, . . . ϕn−1)),
then
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∀ϕn

[
(ϕn ̸ .= S(ϕ1, . . . ϕn−1)) ∨ ϕn

∨ L2(ϕ1, . . . ϕn) ∨ . . . Ll(ϕ1, . . . ϕn)
]

⇔∀ϕn

[
(ϕn

.
= S(ϕ1, . . . ϕn−1)) → (ϕn∨ (1)

L2(ϕ1, . . . ϕn) ∨ . . . Ll(ϕ1, . . . ϕn))
]

⇔∀ϕn

[
(ϕn

.
= S(ϕ1, . . . ϕn−1)) → (S(ϕ1, . . . ϕn−1)∨ (2)

L2(ϕ1, . . . ϕn−1S(ϕ1, . . . ϕn−1)) ∨ . . .

Ll(ϕ1, . . . ϕn−1S(ϕ1, . . . ϕn−1)))
]

⇔∀ϕn

[
(ϕn ̸ .= S(ϕ1, . . . ϕn−1)) ∨ S(ϕ1, . . . ϕn−1)∨
L2(ϕ1, . . . ϕn−1S(ϕ1, . . . ϕn−1)) ∨ . . .

Ll(ϕ1, . . . ϕn−1S(ϕ1, . . . ϕn−1))
]

⇔∀ϕn

[
ϕn ̸ .= S(ϕ1, . . . ϕn−1)

]
∨ S(ϕ1, . . . ϕn−1)∨ (3)

L2(ϕ1, . . . ϕn−1S(ϕ1, . . . ϕn−1)) ∨ . . .

Ll(ϕ1, . . . ϕn−1S(ϕ1, . . . ϕn−1))

⇔ ⊥∨ S(ϕ1, . . . ϕn−1)∨ (4)

L2(ϕ1, . . . ϕn−1S(ϕ1, . . . ϕn−1)) ∨ . . .

Ll(ϕ1, . . . ϕn−1S(ϕ1, . . . ϕn−1))

⇔ S(ϕ1, . . . ϕn−1)∨ (5)

L2(ϕ1 . . . ϕn−1S(ϕ1, . . . ϕn−1)) ∨ . . .

Ll(ϕ1, . . . ϕn−1S(ϕ1, . . . ϕn−1))

We can transform the sentence into an implication (1), to then replace
all occurrences of ϕn in the consequent by S(ϕ1 . . . ϕn−1) (2). The
created subsentence ∀ϕn (ϕn ̸ .= S(ϕ1 . . . ϕn−1)) (3) is false (as some ϕn

will certainly satisfy the equality) (4) and thus ϕn can be eliminated
entirely (5).

Thus the whole subsentence has an equivalent sentence without ϕn.

� If none of the literals are negated, we can, by Lemma 3.19 find some
false sentence T for which, when substituted for ϕn, the whole subsen-
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tence is equivalent to ⊥, thus making the subsentence false.

∀ϕn(ϕn ∨ L1(ϕ1, . . . ϕn) ∨ . . . Ll(ϕ1, . . . ϕn))

⇒(T ∨ L1(ϕ1, . . . ϕn−1, T ) ∨ . . . Ll(ϕ1, . . . ϕn−1, T ))

⇒⊥

Analogously we can find some true sentence T ⇔ ⊤ in case we have
¬ϕn. Thus, the subsentence with no negated literals is simply false
and hence can be omitted (giving raise to a sentence equivalent to A
without the particular false subsentence).

The case distinction shows that we can construct A′ ⇔ A, where ϕn does
no longer occur in A′. Obviously then qt(A′) < qt(A) and we can apply the
induction hypothesis, thus A ⇔ ⊤/⊥.

3.4.6 Missing induction step

Having seen a variety of results and having drawn up a possible induction to
show consistency for LSO with syntactic equality, the question remains, how
close we have come to that goal. LSO sentences can of course be partitioned
by their syntactic structure:

� Object language sentences, which are assumed to have a boolean value.

� Sentences without sentential quantifiers, which trivially have a fixed
boolean value, being propositional matrices of S

.
= S ′ instances.

� Sentences with sentential quantifiers, can be further distinguished into

– Sentences with no quantified variable appearing in sentential po-
sitions, showed to have a fixed boolean value in Theorem 3.12.

– Sentences with no quantified variable appearing in nominal posi-
tions, showed to have a fixed boolean value in Theorem 3.14.

– Sentences with quantified variables in both sentential and nominal
position. For these sentences we drew up an induction scheme over
the total number of quantifiers occuring in the sentence. The base
case is handled in 3.17, and as an induction hypothesis 3.18 is as-
sumed (and actually only necessary for sentences non-conforming
with the aforementioned special cases).
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* The induction step was shown for Σ1/Π1-sentences in Theo-
rem 3.22.

* For sentences with some variable only occuring in sentential
positions in Theorem 3.23.

* For sentences with the innermost quantified variable only oc-
curing alone in a nominal position, in Theorem 3.24.

* It was, however not shown, that the induction step holds for
any arbitrary sentence, non-conforming with the explicit spe-
cial cases. Thus, the induction step being proven for some
special cases says nothing about consistency of these special
cases, as they relied on an unproven assumption. Hence, the
induction proof is incomplete and until completed, provides
merely an intuition, how consistency for the whole language
could be proven. Of course the induction proof not being
complete does not say that the language is inconsistent, but
just that inconsistency can not be ruled out with certainty.

Having seen all proven results and their limited applicability, let us, before
drawing a close to this work, consider a last example. We construct a sentence
that conforms with none of the contemplated special cases and might involve
self-reference for a potential paradoxical situation.

Example 3.25.

A = ∃ϕ1

[
∀ϕ2

([
(ϕ1

.
= S(ϕ2)) ∨ (ϕ2

.
= S ′(ϕ1))

]
→ ϕ2

)
↔ ¬ϕ1

]
A is not covered by any of the special cases as

� it is a Σ2-sentence,

� has both ϕ1 and ϕ2 in nominal and sentential positions, as well as

� both ϕ1 and ϕ2 not alone in one side of
.
=-atoms

Still, along the lines of previous proofs, some known equivalences are ap-
plicable. We let S(ϕ2) = (X ∧ ϕ2) and S ′(ϕ1) = (ϕ1 ∧ Y ) for sentences X
and Y .
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A =∃ϕ1

[
∀ϕ2

([
(ϕ1

.
= (X ∧ ϕ2)) ∨ (ϕ2

.
= (ϕ1 ∧ Y ))

]
→ ϕ2

)
↔ ¬ϕ1

]
⇔∃ϕ1

[
∀ϕ2

([
(ϕ1 ̸

.
= (X ∧ ϕ2)) ∧ (ϕ2 ̸

.
= (ϕ1 ∧ Y ))

]
∨ ϕ2

)
↔ ¬ϕ1

]
(1)

⇔∃ϕ1

[
∀ϕ2

([
(ϕ1 ̸

.
= (X ∧ ϕ2)) ∨ ϕ2

]
∧
[
(ϕ2 ̸

.
= (ϕ1 ∧ Y )) ∨ ϕ2

])
↔ ¬ϕ1

]
⇔∃ϕ1

[(
∀ϕ2

[
(ϕ1 ̸

.
= (X ∧ ϕ2)) ∨ ϕ2

]
∧ (2)

∀ϕ2

[
(ϕ2 ̸

.
= (ϕ1 ∧ Y )) ∨ ϕ2

])
↔ ¬ϕ1

]
⇔∃ϕ1

[(
∀ϕ2

[
(ϕ1

.
= (X ∧ ϕ2)) → ϕ2

]
∧

∀ϕ2

[
(ϕ2

.
= (ϕ1 ∧ Y )) → ϕ2

])
↔ ¬ϕ1

]
⇔∃ϕ1

[(
∀ϕ2

[
(ϕ1

.
= (X ∧ ϕ2)) → ϕ2

]
∧ (3)

∀ϕ2

[
(ϕ2

.
= (ϕ1 ∧ Y )) → (ϕ1 ∧ Y )

])
↔ ¬ϕ1

]
⇔∃ϕ1

[(
∀ϕ2

[
(ϕ1

.
= (X ∧ ϕ2)) → ϕ2

]
∧ (4)[

∀ϕ2(ϕ2 ̸
.
= (ϕ1 ∧ Y )) ∨ (ϕ1 ∧ Y )

])
↔ ¬ϕ1

]
⇔∃ϕ1

[(
∀ϕ2

[
(ϕ1

.
= (X ∧ ϕ2)) → ϕ2

]
∧
[
⊥ ∨ (ϕ1 ∧ Y )

])
↔ ¬ϕ1

]
(5)

⇔∃ϕ1

[(
∀ϕ2

[
(ϕ1

.
= (X ∧ ϕ2)) → ϕ2

]
∧ ϕ1 ∧ Y

)
↔ ¬ϕ1

]
(6)

Applied equivalences were de Morgan’s laws (1), distributivity (2), replac-
ing ∀ϕ2

[
(ϕ2

.
= (ϕ1∧Y )) → ϕ2

]
by ∀ϕ2

[
(ϕ2

.
= (ϕ1∧Y )) → (ϕ1∧Y )

]
(3), giving

raise to the false subsentence ∀ϕ2(ϕ2 ̸ .= (ϕ1 ∧ Y )) (4), by ϕ1 ∧ Y as witness
(5), hence being eliminated (6). From this point on, a case distinction will
reveal that A need not be self-referential, but rather has a fixed boolean value.

A proposes existence of some ϕ1 and

� if this ϕ1 = Z for some sentence Z ̸= (X ∧ . . .), we get

A ⇔∀ϕ2

[
(Z

.
= (X ∧ ϕ2)) → ϕ2

]
∧ (Z ∧ Y ) ↔ ¬Z

⇔∀ϕ2

[
(⊥) → ϕ2

]
∧ (Z ∧ Y ) ↔ ¬Z

⇔⊤∧ (Z ∧ Y ) ↔ ¬Z
⇔(Z ∧ Y ) ↔ ¬Z
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Hence, A’s value depends on its arbitrary nominal subsentence Y ; if
v(Y ) = 1 then v(A) = 0, while if v(Y ) = 0 we can find an appropriate
witness Z, making A true.

� On the contrary, if ϕ1 = X ∧ Z, for some sentence Z

A ⇔∀ϕ2

[
((X ∧ Z)

.
= (X ∧ ϕ2)) → ϕ2

]
∧ (X ∧ Z ∧ Y ) ↔ ¬(X ∧ Z)

⇔∀ϕ2

[
(Z

.
= ϕ2) → ϕ2

]
∧ (X ∧ Z ∧ Y ) ↔ ¬(X ∧ Z)

⇔∀ϕ2

[
(Z

.
= ϕ2) → Z

]
∧ (X ∧ Z ∧ Y ) ↔ ¬(X ∧ Z)

⇔
[
∀ϕ2 (Z ̸ .= ϕ2) ∨ Z

]
∧ (X ∧ Z ∧ Y ) ↔ ¬(X ∧ Z)

⇔
[
⊥ ∨ Z

]
∧ (X ∧ Z ∧ Y ) ↔ ¬(X ∧ Z)

⇔Z ∧ (X ∧ Z ∧ Y ) ↔ ¬(X ∧ Z)

⇔(X ∧ Z ∧ Y ) ↔ ¬(X ∧ Z)

Hence, A’s value again depends on the values for its nominal subsen-
tences X and Y . If v(X) = 0, then v(A) = 0, while if v(X) = 1 and
v(Y ) = 0, we can again find an appropriate witness for Z that gives
v(A) = 1.

Both cases together yield that A ⇔ ¬Y and A’s boolean value depends
only on its nominal subsentence Y , just like sentences with one quantifier,
as shown in Theorem 3.10.

While A is of course just an example of some rather short sentence, it
exceeds already the grounds covered by proofs in this work. Still, it obeyed the
familiar mechanics and is, again, equivalent to some nominal subsentence.

As explained more thoroughly before, this signals that self-reference should
perhaps not be expected with the syntactic equality operator and gives reason
for optimism towards consistency of LSO with

.
=.

50



4 Conclusion

4.1 Summarizing results

This work’s purpose is to investigate LSO, the language of sentential opera-
tors, and its consistency in regard to the operator

.
=, the syntactic equality

operator. Hence the most important introduced concepts were

� The syntax of LSO, defined by extending first-order logic, to FOL+,
FOL with quantification over sentences and operators on sentences.

� Language graphs, i.e. digraphs with sentences as vertices, were defined
and FOL+’s semantics was defined over kernels of this graph, corre-
sponding to a boolean assignment of its sentences.

� The notion of semantic equivalence, extending FOL equivalence, was
introduced.

� The operator syntactic equality,
.
= and its semantics was introduced.

On grounds of [Wal], originally introducing LSO, concepts from his work
were adopted, but also results used as the groundwork for further investiga-
tion. Namely, it was used that

� LSO, restricted to only sentential quantification but no operators and
LSO with sentential operators with trivial semantics have consistent
boolean valuation and further that

� definitional extensions can introduce new operators while keeping the
language consistent and that

� any sentence has an equivalent sentence in Prenex Disjunctive Normal
Form, PDNF, thus a sentence with all quantifiers in its beginning and
a disjunctive matrix as its body.

Then a variety of new results has been proven within this work, some of
smaller, more technical nature and some more general with wider implica-
tions. Few results were regarding LSO with arbitrary operators, while most
results were directly related to the very central syntactic equality operator,
amongst others:
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� That [Wal]’s proposed conditions for operators that preserve LSO’s
consistency are not sufficient, shown with a counter-example, also with
a suggestion on how they could be fixed, in section 2.2.5.

� That sentences with only one quantifier are semantically equivalent to
a conjunction of some of its nominal subsentences, section 3.3.

� That restricted subsets of LSO, such as all sentences with only nom-
inal or only sentential occurrences of sentential variables are in fact
consistent, in section 3.4.1.

� How consistency of LSO could be shown with an induction on the total
number of quantifiers in a sentence, section 3.4.2 and

� that a possible induction step holds for at least a number of special
forms of sentences (sections 3.4.3, 3.4.4 and 3.4.5), if not all.

4.2 Reflection

The desired result, unrestricted consistency of LSO with syntactic equality,
was not proven. Within this work some intuitions have been illustrated and
expressed that LSO appears to be consistent. The underlying idea being that
paradoxes come in form of self-reference of sentences that can not be resolved,
as they involve unbroken odd cycles in the language graph, all proven results
point towards this phenomenon not occuring.

With arbitrary operators, paradoxes can be constructed already with syn-
tactically primitive sentences (e.g. ∀ϕ(P (ϕ) → ¬ϕ)), while this work showed
that such sentences, along a variety of more complex sentences (e.g. sentences
with more quantifiers and nested expressions in nominal positions instead of
a bare s-variable), can be consistent, thus sowing doubt that paradoxes could
lurk among the sentences that have not yet been covered.

Undoubtedly, however, this work demonstrates that the fairly intuitive
notion of syntactic equality behaves in a non-trivial way, enables sophisti-
cated expressions and connects syntax and semantics in a potentially danger-
ous, but hopefully safe way. Many results, in their core, show how a sentence
within nominal position does influence the value of its super-sentence (e.g.
∀ϕ((ϕ

.
= S) → ϕ) ⇔ S), which is an interesting revelation in itself.

While this adds to a crucial understanding of how sentences with syntactic
equality behave, the rather technical propositional equivalences, that have
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been proven with it, paint an optimistic picture. This may not be the entire
picture, however, as it seemed to not suffice to prove consistency of LSO.

Hence it is unclear, whether another approach could be more promising,
as there has been little consideration towards the language graph of LSO
and possible meta-arguments that could augment the understanding of why
syntactic equality behaves consistent and how odd cycles might resolve in
the graph in this work. The incomplete induction that has been drawn out
in the last section focuses on the number of quantifier-symbols in sentences
to tame the vast number of arbitrary sentences, which is of course not the
only viable approach. An induction over the nesting-depth of the operator
in itself was another approach considered, but discarded.

Thus, it can be concluded from this work that there are a variety of differ-
ent approaches, both continuing directly results from this work, combining
results with a new idea, or focusing on a whole other way of arguing that
could potentially bring the proof to a close and show consistency.

4.3 A look ahead

Considering possible continuations of this work, it is clear that the major
result to add would be to show consistency of LSO with syntactic equality.
As emphasized in the previous subsection, there is no lack of options of
how this problem could be addressed and even a completely new angle of
viewing the problem might highly benefit from some of the technical results
established in this work.

Very much related and perhaps even crucial to tackle the former prob-
lem is missing understanding of what makes an arbitrary syntactic operator
consistent. Operators, having of course some arbitrary arity, can be unary
in their simplest form and one step towards understanding them could be
to define a non-trivial and provably consistent unary operator. If this can
indeed be accomplished, the natural next step would be to investigate if the
same holds for multiple operators in the language as well. Ultimately, it
seems very desireable to search for general conditions making an operator
consistent and ideally, theses conditions being as narrow as possible, being
both sufficient and necessary.

Thus one direction to go towards is to find and generalize conditions
making any n-ary operator consistent, from which consistency of syntactic
equality (being a binary operator) would follow. The other direction would
be to prove consistency of syntactic equality and try to infer and generalize
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such conditions from it.
In any case, syntactic equality serves as a convenient, already defined

and investigated example of an operator and any future result for operators
must of course be applicable to it as well, with this work already giving some
benchmark of what could be expected.

If, against all optimism expressed in this work, syntactic equality is proven
to be inconsistent, possible continuations of this work lose none of their rele-
vance, as some trivial operators are certain to be consistent and the question
arises of what properties of syntactic equality make it inconsistent and what
conditions could be imposed that distinguish syntactic equality from consis-
tent operators.
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