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Abstract

In Formal Concept Analysis, a base for a finite structure is a set of implications that
characterizes all valid implications of the structure. This notion has been adapted to the
context of Description Logic, where the base consists of a set of concept inclusions instead
of implications. In this setting, concept expressions can be arbitrarily large. Thus, it is not
clear whether a finite base exists and, if so, how large concept expressions may need to be.
We first revisit results in the literature for mining EL⊥ bases from finite interpretations.
Those mainly focus on finding a finite base or on fixing the role depth but potentially losing
some of the valid concept inclusions with higher role depth. We then present a new strategy
for mining EL⊥ bases which is adaptable in the sense that it can bound the role depth of
concepts depending on the local structure of the interpretation. Our strategy guarantees
to capture all EL⊥ concept inclusions holding in the interpretation, not only the ones up to
a fixed role depth. We also consider the case of confident EL⊥ bases, which requires that
some proportion of the domain of the interpretation satisfies the base, instead of the whole
domain. This case is useful to cope with noisy data.

1. Introduction

In artificial intelligence (AI), logic plays a key rôle in representing the knowledge of an
application domain in a structured and formally well-understood way. It allows us to
model the relevant notions of the application domain as classes of individuals sharing some
commonalities, describe individuals and their relationships to each other and to the classes.
This enables AI applications to reason about complex relational data, deduce new facts and
extract hidden relationships.

Among the logic-based knowledge representation formalisms, Description Logics (DLs)
(Baader, Horrocks, Lutz, & Sattler, 2017) is a well-established family of logics that is used for
representing conceptual knowledge and reasoning about such knowledge. DLs have proven
successful in various application domains such as natural language processing, configuration,
databases, and bio-medical ontologies, but their most notable success is due to the fact that
DLs provide the logical underpinning of OWL, the standard ontology language for the
semantic web (Horrocks, Patel-Schneider, & van Harmelen, 2003). As a consequence of this
standardization, tools that support knowledge engineers in building knowledge bases (KBs)
written in OWL and maintaining their quality gained more importance. Once the KB is
built, there are several mature tools that use DL reasoning for inferring new consequences
from the KB and for detecting inconsistencies in modelling. There are also tools that support
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the knowledge engineer in pinpointing the reasons for inconsistencies and help her to resolve
them or to remove unwanted consequences (Horridge, 2011; Peñaloza, 2009). These tools
adress the maintenance aspect of an existing knowledge base and not the aspect of building
a knowledge base from the scratch.

In real world applications, the amount of knowledge to be modelled can be large and
the knowledge engineer is not an expert in modelling with a logical language. This makes
the manual construction of knowledge bases with concept inclusions (CIs) formulated in a
DL a rather complex and time-consuming task. Given a data set one might be interested
in knowing which CIs hold in it, in particular, if there a finite representation for them and
how concise this representation can be. In the present work we study these questions in
light of Formal Concept Analysis (FCA) (Ganter & Wille, 1999) and DLs (Baader et al.,
2017). The goal is to extract CIs from a data set, which can be a collection of facts in a
database, a set of statements, or a knowledge graph.

Example 1. Consider the DBpedia knowledge graph (Lehmann, Isele, Jakob, Jentzsch,
Kontokostas, Mendes, Hellmann, Morsey, van Kleef, Auer, & Bizer, 2015), where one can
represent a city ‘a’, which is the capital of a region ‘b’, with the facts city(a), region(b),
partof(a, b), and capital(b, a). From this small data set, one can mine a CI expressing that
a capital is a city that is part of a region.

FCA is an application of lattice theory that provides techniques for discovering clusters
in a data set, building a hierarchy of these clusters and identifying dependencies in the
data set. In FCA, data is represented as a formal context, which is a table showing which
objects have which attributes. For analysing a given formal context, one can extract the
dependencies between sets of attributes, also called implications. The set of all implications
that hold in a formal context can be large. Therefore, a compact representation called a
base, that entails every valid implication of the data set, has been considered in the literature
(see Section 2). In the case of plain FCA, implications correspond to propositional formulae
and well-known algorithms exist for extracting such a base from the data set. However, if
we want to extract a base of CIs, which are formulated in a DL, the situation gets more
complicated. For some DLs, it may even happen that no such finite base exists. The
reason is simply existence of cyclic relationships expressible in DLs. With only one cyclic
relationship in the data set, we can potentially express infinitely many different CIs.

An approach to deal with cyclic relationships has been proposed by Baader and Distel
(2008). The authors propose to use the DL EL⊥gfp for capturing the semantics of cyclic

relationships. EL⊥gfp is the DL enriching EL⊥ with greatest fix-point semantics. The seman-

tics offered by EL⊥gfp elegantly solves the difficulty of mining CIs from cyclic relationships

in the data. However, this semantics comes with two drawbacks. First, EL⊥gfp concepts

may be more difficult to understand than simply EL⊥ concepts since EL⊥ is already widely
used and accepted as an ontology language. Second, there is no efficient implementation
of a reasoner for EL⊥gfp, even though the reasoning complexity is tractable (Baader, 2003),

like for EL⊥. In the same work the authors also present a way of transforming an EL⊥gfp
base into an EL base. However, it is far from being trivial to avoid the step of creating an
EL⊥gfp base in their approach. In a later work (Borchmann, Distel, & Kriegel, 2016), the

authors propose an approach for mining finite EL⊥ bases with a predefined and fixed role
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depth of concept expressions. As a consequence, the base is sound and complete only w.r.t.
CIs containing concepts with a bounded role depth. Their approach elegantly avoids the
complicated step of creating an EL⊥gfp base but has the drawback of being incomplete for

EL⊥ CIs with concept descriptions of arbitrary depth.

The present work aims to bring together the best sides of the two approaches: we propose
a way of directly computing a finite EL⊥ base without the intermediate step of computing an
EL⊥gfp base. Our approach is able to extract a base of cyclic relations of arbitrary role depth,
not only the ones up to a certain role depth. In particular, we present a new approach for
computing the role depth of concepts which is “adaptable” based on the objects considered
during the computation of the base. The number of CIs in our approach is in the worst case
double-exponential in the size of the finite interpretation given as input. We point out that
the number of CIs in the work by Baader and Distel (2008) is minimal and it is double-
exponential in the worst case, just as in our approach. However, in general, the number of
CIs in our work may not be minimal. This work extends our conference paper (Guimarães,
Ozaki, Persia, & Sertkaya, 2021) with full proofs of the results presented there and with a
section on compact representation of the product graph. In addition to these we extend our
results to the case of mining a base from noisy data as suggested in (Borchmann, 2014).
To this purpose, we show that our approach of adaptable role depth easily extends to CIs
with a certain confidence threshold. This is especially useful in applications where CIs are
satisfied by only a subset of the data due to noise, which is a common problem in datasets
for real world applications.

The paper is organised as follows: in the next section, we present a short overview of
previous work on extracting CIs in the context of DLs. In Section 3, we introduce the basic
definitions and notions of DLs and description graphs. In Section 4, we present the problem
of mining EL⊥ CIs and establish lower bounds for this problem. In Section 5, we present our
main result for mining EL⊥ bases with adaptable role depth. Our result uses a notion that
relates each vertex in a graph to a set of vertices, called maximum vertices from (MVF).
In Section 6, we show that the MVF of a vertex in a graph can be computed in linear time
in the size of the graph. In Section 7 we extend our results for mining confident bases with
adaptable role depth. Full proofs of our results can be found in Appendix A.

2. Related Work

The notion of an implication for expressing dependencies between properties of objects has
been considered in the literature in several different contexts. An implication X → Y has
the meaning that objects that have all attributes in X also have the attributes in Y . In
data mining such an implication, called a strong association rule, expresses that if the items
in the set X occur together in a transaction, then the items in Y are also likely to occur
in this transaction. An algorithmic approach for discovering association rules in large data
sets was first formulated in (Agrawal, Imielinski, & Swami, 1993). The Apriori algorithm
introduced there mines frequent item sets based on the parameter confidence. It is the ratio
of the number of objects possessing all attributes in X and in Y to the number of objects
that possess the attributes in X. An association rule X → Y with a confidence value of 1
is called a strong association rule, meaning that every object having attributes in X also
has attributes in Y .
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In FCA, data is represented in a formal context, where rows represent objects and
columns represent the attributes. An implication X → Y in a formal context has the same
meaning as a strong association rule in data mining. Both in data mining and in FCA,
the number of implications that hold in the dataset can be large. Hence one is interested
in finding a small base that generates the whole set of implications holding in the data,
which is called the implicational theory of the dataset. There may exist different bases
for the same implicational theory. A base is called a minimum base if no other base with
lower cardinality exists. In (Guigues & Duquenne, 1986), the authors described a minimum
base called the Duquenne-Guigues Base, or the stem base of a formal context. In (Ganter,
1984, 2010) Ganter introduced an algorithm for computing the stem base. An alternative
approach was presented in (Obiedkov & Duquenne, 2007). It is well-known that even such
a minimum base can have a large size, namely exponential in the size of the given formal
context (Kuznetsov, 2004a) (see also (Kautz, Kearns, & Selman, 1995) for the same result
formulated in a different setting).

Given this fact, it is clearly not possible to efficiently compute the implicational base
of a given dataset. The most well-known algorithm (Ganter, 1984), besides generating the
implications of the base, generates the so-called concept intents as well, which can be expo-
nentially more than the implications themselves. That is, the runtime of the algorithm is not
bounded by a polynomial in the size of the output, i.e., it is not output-polynomial (John-
son, Yannakakis, & Papadimitriou, 1988). Similarly, the time complexity of the algorithm
introduced by Obiedkov and Duquenne (2007) also depends on the number of concept in-
tents. In the light of our current knowledge, it is not clear whether the stem base can
efficiently be computed. Distel and Sertkaya (2009a, 2011) have shown that this problem
is at least as hard as enumerating the minimal transversals of a given hypergraph, which is
a long-standing open problem (Eiter & Gottlob, 1995). In a later work, it was shown that
deciding whether an implication belongs to the base of a formal context was also shown
to be harder than recognizing the minimal transversals of a hypergraph (Sertkaya, 2009b),
which was later shown to be intractable (Babin & Kuznetsov, 2013).

Nevertheless, using methods from FCA, especially the idea of computing a small base
of the axioms that hold in a DL interpretation has attracted attention in the DL commu-
nity. Baader (1995) has used FCA for an efficient computation of an extended subsumption
hierarchy of a set of DL concepts. More precisely, he used attribute exploration for com-
puting the subsumption hierarchy of all conjunctions of a set of DL concepts. Baader and
Molitor (2000) have used FCA for supporting bottom-up construction of DL knowledge
bases, where the knowledge engineer does not directly define the concepts of her applica-
tion domain, but she gives typical examples of a concept, and the system comes up with a
concept description for these examples. Rudolph (2004, 2006) has combined DLs and FCA
for acquiring complete relational knowledge about an application domain. In his approach,
which he calls relational exploration, he uses DLs for defining FCA attributes, and FCA for
refining DL knowledge bases. More precisely, DLs make use of the interactive knowledge
acquisition method of FCA, and FCA benefits from DLs in terms of expressing relational
knowledge. Baader, Ganter, Sertkaya, and Sattler (2007) used the FCA-based knowledge
acquisition technique attribute exploration for detecting missing CIs and assertions in a
DL knowledge base by asking questions to a domain expert. The questions asked by the
algorithm in this approach are basically the base computed from the assertions.
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As already mentioned, Baader and Distel (2008, 2009) proposed an FCA-based approach
for mining a base of all EL⊥gfp CIs holding in a given model. Their approach is based
on the notion of a model-based most-specific concept, which is the most-specific concept
description expressible in EL⊥gfp that contains a given set of objects in its extension. The
authors show that in this DL such a concept description exits for arbitrary finite models
and present a way of computing it. The fixpoint semantics of this DL can express cycles
and guarantees the existence of a finite base, however it has the drawback that the base
also contains cyclic concept descriptions, which are too hard to comprehend by domain
experts. To overcome this problem, Distel (2011) proposes to unravel the cyclic concept
descriptions until a certain role depth still guaranteeing the completeness of the resulting
base. The problem with this approach, however, is the large role depth, as we analyze
in the upcoming sections. In a later work, Borchmann and Distel (2011) implement this
approach and present the results of evaluating it on the DBpedia knowledge graph (Auer,
Bizer, Kobilarov, Lehmann, Cyganiak, & Ives, 2007; Lehmann et al., 2015). An approach
for analysing data in an RDF-triple store using FCA to identify clusters has been proposed
by Dau and Sertkaya (2011). In his dissertation, Borchmann (2014) considers noisy data
and shows how a base of confident EL⊥gfp concept inclusions can be extracted from a DL
interpretation by extending Distel’s work. Borchmann et al. (2016) address the problems
with the fixpoint semantics of EL⊥gfp. They propose an approach for mining EL⊥ bases with
a predefined and fixed role depth of concept expressions.

Monnin et al. compare, using FCA techniques, data present in DBpedia with the con-
straints of a given ontology to check if the data is compliant with it (Monnin, Lezoche,
Napoli, & Coulet, 2017). Kriegel (2019a, 2020a) among other contributions employs FCA
notions to build ontologies in DLs more expressive than EL⊥, building upon the frame-
work already established for EL⊥ (Borchmann et al., 2016) and EL⊥gfp (Distel, 2011). He

investigates the problem of learning axioms in a probabilistic variant of EL⊥ (Kriegel, 2017;
Kriegel, 2019b) and also from streams of interpretations (Kriegel, 2016, 2020b). Learnability
of CIs in lightweight DLs from a given set of interpretations has been studied by Klarman
and Britz (2015) and exact learnability of lightweight DL KBs in Angluin’s framework
via queries has been studied by Konev, Lutz, Ozaki, and Wolter (2017). In the context
of learning DLs, we also highlight works based on Inductive Logic Programming (Fanizzi,
d’Amato, & Esposito, 2008; Funk, Jung, Lutz, Pulcini, & Wolter, 2019; Iannone, Palmisano,
& Fanizzi, 2007; Lehmann, 2009, 2010; Lehmann & Hitzler, 2010; Lisi, 2011). For a sur-
vey on applying FCA methods in the DL community see the survey by Sertkaya (2010)
and for a more recent survey on learning DL knowledge bases from data, see the work
by Ozaki (2020).

3. Preliminaries

We introduce the syntax and semantics of EL⊥ and basic definitions related to description
graphs used in the paper.
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City Region ∃partof.⊤ Settlement

a × × ×
b × × ×
c × ×

Figure 1: (a) A dataset with 4 attributes and 3 objects. (b) The implications City →
∃partof.⊤ and City→ Settlement hold in the dataset but not City→ Region.

The Description Logic EL⊥

EL⊥ (Baader, Brandt, & Lutz, 2005) is a lightweight DL, which only allows for expressing
conjunctions and existential restrictions. Despite this rather low expressive power, slight
extensions of it have turned out to be highly successful in practical applications, especially
in the medical domain (Spackman, Campbell, & Côté, 1997).

We use two finite and disjoint sets, NC and NR, of concept and role names to define the
syntax and semantics of EL⊥. EL⊥ concept expressions are built according to the grammar
rule C,D ::= A | ⊤ | ⊥ | C ⊓ D | ∃r.C with A ∈ NC and r ∈ NR. We write ∃rn+1.C as
a shorthand for ∃r.(∃rn.C) where ∃r1.C := ∃r.C. An EL⊥ TBox is a finite set of concept
inclusions (CIs) C ⊑ D, where C,D are EL⊥ concept expressions. We may omit ‘EL⊥’
when we speak of concept expressions, CIs, and TBoxes, if this is clear from the context.
We may write C ≡ D (an equivalence) as a shorthand for when we have both C ⊑ D and
D ⊑ C. The signature of a concept expression, a CI, or a TBox is the set of concept and
role names occurring in it.

The semantics of EL⊥ is based on interpretations. An interpretation I is a pair (∆I , ·I)
where ∆I is a non-empty set, called the domain of I, and ·I is a function mapping each
A ∈ NC to a subset AI of ∆I and each r ∈ NR to a subset rI of ∆I ×∆I . The function ·I
extends to arbitrary EL⊥ concept expressions as usual:

(C ⊓D)I := CI ∩DI (⊤)I := ∆I (⊥)I := ∅
(∃r.C)I := {x ∈ ∆I | (x, y) ∈ rI and y ∈ CI}

An interpretation I satisfies a CI C ⊑ D, in symbols I |= C ⊑ D, iff CI ⊆ DI . It satisfies
a TBox T if it satisfies all CIs in T . A TBox T entails a CI C ⊑ D, written T |= C ⊑ D,
iff all interpretations satisfying T also satisfy C ⊑ D. We write ΣI for the set of concept
or role names X such that XI ̸= ∅. A finite interpretation is an interpretation with a finite
domain.

Description Graphs, Products, and Unravellings

We also use the notion of description graphs (Baader, 2003). The description graph G(I) =
(VI , EI , LI) of an interpretation I is defined as (e.g. Figure 4):

1. VI = ∆I ;

2. EI = {(x, r, y) | r ∈ NR and (x, y) ∈ rI};

3. LI(x) = {A ∈ NC | x ∈ AI}.
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City ⊓ ∃government.Party⊓
∃partof.(Region ⊓ ∃capital.⊤) City

Party

Region
govern.

partof capital

Figure 2: A concept expression and its description tree.

The description tree of an EL⊥ concept expression C over the signature Σ is the finite
directed tree G(C) = (VC , EC , LC) where VC is the set of nodes, EC ⊆ VC ×NR × VC is the
set of edges, and LC : V → 2NC is the labelling function. G(C) is defined inductively:

1. for C = ⊤, VC = {ρC} and LC(ρC) = ∅ where ρC is the root node of the tree;

2. for C = A ∈ NC, VC = {ρC} and LC(ρC) = A;

3. for C = D1 ⊓D2, G(C) is obtained by identifying the roots ρD1 , ρD2 as one root ρC
with LC(ρC) = LD1(ρD1) ∪ LD2(ρD2);

4. for C = ∃r.D, G(C) is built from G(D) by adding a new node (root) ρC to VD and an
edge (ρC , r, ρD) to ED.

The concept expression (unique up to logical equivalence) C(Gv) of a tree shaped graph
Gv = (V,E,L) rooted in v is

kl

i=1

Pi ⊓
ll

j=1

∃rj .C(Gwj ),

where L(v) = {Pi | 1 ≤ i ≤ k}, (v, rj , wj) ∈ E (and there are l such edges) and C(Gwj ) is
inductively defined, with Gwj being the subgraph of G rooted in wj (Figure 2).

A walk in a description graph G = (V,E, L) between two nodes u, v ∈ V is a word
w = v0r0v1r1 . . . rn−1vn where v0 = u, vn = v, vi ∈ V , ri ∈ NR and (vi, ri, vi+1) ∈ E for all
i ∈ {0, . . . , n−1}. The length of w in this case is n, in symbols, |w| = n. Walks with length
n = 0 are possible, it means that the walk has just one vertex (no edges). Vertices and
edges may occur multiple times in a walk. Let G = (V,E, L) be an EL⊥ description graph
with x ∈ V and d ∈ N. Denote by δ(w) the last vertex in the walk w. The unravelling of
G up to depth d is the description graph Gxd = (Vd, Ed, Ld) starting at node x defined as
follows:

1. Vd is the set of all directed walks in G that start at x and have length at most d;

2. Ed = {(w, r,wrv) | v ∈ V, r ∈ NR,w,wrv ∈ Vd};

3. Ld(w) = L(δ(w)).

A path is a walk where vertices do not repeat.
Let G1, . . . ,Gn be n description graphs such that Gi = (Vi, Ei, Li). Then the product of

G1, . . . ,Gn is the description graph (V,E, L) defined as:

1. V =×n
i=1 Vi;
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(i)

a

b

City

Region

1 2

(ii)

a a1b

City Region

1

(iii)

a a1b a1b2a

City Region City Region

a1b2a1b
1 2 1

Figure 3: Unravelling of the description graph of the interpretation I in (i). For readability,
partof has been replaced with symbol 1 and capital with symbol 2. (ii) depicts
G(I)a1 and (iii) depicts G(I)a3.

x1

x3

x5 x6City

Party, Liberal

Region
govern.

partof capital

x2

x4

x7City

Party,
Organization

Region

govern.

partof

capital

Figure 4: Description graph of the interpretation I = {{x1, · · · , x7}, ·I} where {x1, x2} =
CityI , {x3, x4} = PartyI , {(x1, x5), (x2, x7)} = partofI , etc.

2. E = {((v1, . . . , vn), r, (w1, . . . , wn)) | r ∈ NR, (vi, r, wi) ∈ Ei, for all 1 ≤ i ≤ n};

3. L(v1, . . . , vn) =
⋂n

i=1 Li(vi).

If each Gi is a tree with root vi then we denote by
∏n

i=1 Gi the tree rooted in (v1, . . . , vn)
contained in the product graph of G1, . . . ,Gn.

4. Mining EL⊥ Bases

The set of all EL⊥ CIs that are satisfied by an interpretation I is in general infinite because
whenever I |= C ⊑ D we also have that I |= ∃r.C ⊑ ∃r.D as well. Therefore one is
interested in a finite and small set of CIs that entails the whole set of valid CIs. For mining
such a set of CIs from a given interpretation we employ ideas from FCA and recall literature
results.

Definition 1. A TBox T is a base for a finite interpretation I and a DL language L, if
for every CI C ⊑ D, formulated within L and ΣI : I |= C ⊑ D iff T |= C ⊑ D.

We say that a DL has the finite base property (FBP) if, for all finite interpretations I,
there is a finite base with CIs formulated within the DL language and ΣI . Not all DLs
have the finite base property. Consider for instance the fragments EL⊥rhs (and EL⊥lhs) of EL⊥
that allows only concept names on the left-hand (right-hand) side but complex EL⊥ concept
expressions on the right-hand (left-hand) side of CIs.
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Proposition 1. EL⊥rhs and EL⊥lhs do not have the FBP.

Proof. (Sketch) No finite base EL⊥rhs exists for the interpretation in Figure 5 (i). For every
n ≥ 1, the EL⊥rhs base should entail the CI A ⊑ ∃rn.⊤. Similarly, no finite EL⊥lhs base exists
for the interpretation in Figure 5 (ii). For every n ≥ 1, the EL⊥lhs base should entail the CI
∃s.∃rn.B ⊑ A.

(i)

A

r

r

(ii)

A
B

r

s

r

s
r

Figure 5: Lack of the FBP for EL⊥rhs (i) and EL⊥lhs (ii).

The main difficulty in creating an EL⊥ base is knowing how to define the role depth of
concept expressions in the base. In a finite interpretation, an arbitrarily large role depth
means the presence of a cyclic structure in the interpretation. However, EL⊥ concept expres-
sions cannot express cycles. The difficulty can be overcomed by extending EL⊥ with greatest
fix-point semantics. It is known that the resulting DL, called EL⊥gfp, has the FBP (Baader

& Distel, 2008; Distel, 2011). The authors then show how to transform an EL⊥gfp base into

an EL⊥ base, thus, establishing that EL⊥ also enjoys the FBP.
In the following, we show that, although finite, the role depth of a base for EL⊥ and a

(finite) interpretation I can be exponential in the size of I.

Example 2. Consider I represented in the shaded area in Figure 6. For p1 = 2, p2 =
3, p3 = 5 and for all k ∈ N+, we have that xi ∈ (∃rk·pi−1.A)I , where 1 ≤ i ≤ 3. We know
that 30 = min(

⋂3
i=1{k · pi | k ∈ N+}) =

∏n
i=1 pi (which is the least common multiple). We

also know that for any n, p ∈ N+, n+ 1 is a multiple of p iff n is a multiple of p minus 1.
Therefore, the number

d = min(
3⋂

i=1

{k · pi − 1 | k ∈ N+}),

such that {x1, x2, x3} = BI = (∃rd.A)I , is
∏3

i=1 pi − 1 = 29. A base for I should have the
CI with role depth at least d because it has to entail the CI B ⊑ ∃rd.A.

Theorem 1. There is a finite interpretation I = (∆I , ·I) such that any EL⊥ base for I has
a concept expression with role depth exponential in the size of I.

Proof. (Sketch) We can generalise Example 2 to the case where we have an interpretation
J that for an arbitrary n > 1, and for every i ∈ {1, · · · , n} and k ∈ N+, there is an x ∈ ∆J

that satisfies x ∈ (∃rk·pi−1.A)J where pi is the i-th prime number. In this case, the minimal
role depth of concepts in any base for J must be d ≥

∏n
i=1 pi − 1 ≥ 2n.

In addition to the role depth of the concept expressions in the base, the size of the
base itself can also be exponential in the size of the data given as input, which is a well-
known result in classical FCA (Kuznetsov, 2004b). The DL setting is more challenging than
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x1

A

B

r r

x2

A

B

r

r

r
x3

A

B

r

r

r

r

r
x4

B

r

x5
A,B

r

Figure 6: Description graph of an interpretation I. Let X = {x1, x2, x3}. For all d < 29

we have x4 ∈ C
(∏

x∈X G(I)xd
)I

= (B ⊓ ∃rd.⊤)I . However, for all k ≥ 29,

x4 ̸∈ C
(∏

x∈X G(I)xk
)I

since x4 ̸∈ (∃r29.A)I .

classical FCA, and so, this lower bound also holds in the problem we consider. In Section 5,
we present our definition of an EL⊥ base for a finite interpretation I and highlight cases in
which the role depth is polynomial in the size of I.

5. Adaptable Role Depth

We present in this section our main result which is our strategy to construct EL⊥ bases
with adaptable role depth. To define an EL⊥ base, we use the notion of a model-based most
specific concept (MMSC) up to a certain role depth. The MMSC plays a key rôle in the
computation of a base from a given finite interpretation.

Definition 2. An EL⊥ concept expression C is a model-based most specific concept of
X ⊆ ∆I with role depth d ≥ 0 iff (1) X ⊆ CI , (2) C has role depth at most d, and (3) for
all EL⊥ concept expressions D with role depth at most d, if X ⊆ DI then ∅ |= C ⊑ D (that
is, any interpretation satisfies C ⊑ D).

For a given X ⊆ CI and a role depth d there may be multiple MMSCs (always at least
one (Borchmann et al., 2016)) but they are logically equivalent. So we write ‘the’ MMSC
of X with role depth d (in symbols mmsc (X, I, d)), meaning a representative of such class
of concepts. As a consequence of Definition 2, if X = ∅ then mmsc (X, I, d) ≡ ⊥ for any
interpretation I and d ∈ N.

Example 3. Consider the interpretation I in Figure 4 and let X = {x1, x2}. We have that

mmsc (X, I, 1) ≡ City ⊓ ∃government.Party ⊓ ∃partof.Region.

With an increasing k, the concept expression mmsc (X, I, k) can become more and more
specific. Indeed,

mmsc (X, I, 2) ≡ mmsc (X, I, 1) ⊓ ∃partof.(Region ⊓ ∃capital.⊤)

which is more specific than mmsc (X, I, 1). However, for any k ≥ 2, we have that

mmsc (X, I, 2) ≡ mmsc (X, I, k) .
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A straightforward (and inefficient) way of computing mmsc (X, I, d), for a fixed d, would
be conjoining every EL⊥ concept expression C (over NC ∪ NR) such that X ⊆ CI and the
depth of C is bounded by d. A more elegant method for computing MMSCs is based on the
product of description graphs and unravelling cyclic concept expressions up to a sufficient
role depth.

The MMSC can be written as the concept expression obtained from the product of
description graphs of an interpretation (Borchmann et al., 2016). Formally, if I = (∆I , ·I)
is a finite interpretation, X = {x1, . . . , xn} ⊆ ∆I and a d ≥ 0, then mmsc (X, I, d) ≡
C(
∏n

i=1 G(I)
xi
d ).

The interesting challenge is how to identify the smallest d that satisfies the property: if
x ∈ mmsc (X, I, d)I , then x ∈ mmsc (X, I, k)I for every k > d. In the following, we develop
a method for computing MMSCs with a role depth that is suitable for building an EL⊥ base
of the given interpretation. This method is based on the already mentioned MVF notion,
defined as follows.

Definition 3. Given a description graph G = (V,E) with u ∈ V , we define the maximum
vertices from (or MVF) u in G, denoted mvf(G, u), as:

max{vnum(w) | w is a walk in G starting at u}

where vnum(w) is the number of distinct vertices occurring in w. Additionally, we define
the function mmvf as follows:

mmvf(G) := max
u∈V

mvf(G, u).

In other words, MVF measures the maximum number of distinct vertices that a walk
with a fixed starting point can visit in the graph.

Example 4. Consider the interpretation I in Figure 4. Any walk in the description graph
of I starting at x1 will visit at most three distinct vertices (including x1). Although there
are four vertices reachable from x1, we have that mvf(G(I), x1) = 3. For the vertex x2, there
are walks of any finite length, but we visit at most three distinct vertices, namely, x2, x4, x7,
and mvf(G(I), x2) = 3.

For computing the MMSC up to a sufficient role depth based on MVF we use the
following notion of simulation.

Definition 4. Let G1 = (V1, E1, L1), G2 = (V2, E2, L2) be EL⊥ description graphs and
(v1, v2) ∈ V1 × V2. A relation Z ⊆ V1 × V2 is a simulation from (G1, v1) to (G2, v2), if
(1) (v1, v2) ∈ Z, (2) (w1, w2) ∈ Z implies L1(w1) ⊆ L2(w2), and (3) (w1, w2) ∈ Z and
(w1, r, w

′
1) ∈ E1 imply there is w′

2 ∈ V2 such that (w2, r, w
′
2) ∈ E2 and (w′

1, w
′
2) ∈ Z.

Simulations can be used to decide whether an individual from an interpretation domain
belongs to the extension of a given concept expression.

Lemma 1 ((Borchmann et al., 2016)). Let I be an interpretation, let C be an EL⊥ concept
expression, and let G(C) = (VC , EC , LC) be the EL⊥ description graph of C with root ρC .
For every x ∈ ∆I , there is a simulation from (G(C), ρC) to (G(I), x) iff x ∈ CI .
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Lemma 1 together with other previous results is used below to prove Lemma 2, which
is crucial for defining the adaptable role depth. It shows the upper bound on the required
role depth of the MMSC.

Lemma 2. Let I = (∆I , ·I) be a finite interpretation and take an arbitrary {x1, . . . , xn} ⊆
∆I , x′ ∈ ∆I , and k ∈ N. Let

d = mvf

(
n∏

i=1

G(I), (x1, . . . , xn)

)
·mvf(G(I), x′).

If x′ ∈ C
(∏n

i=1 G(I)
xi
d

)I
then x′ ∈ C

(∏n
i=1 G(I)

xi
k

)I
.

Proof. (Sketch) We show in Appendix B the following claim.

Claim 1. For all description graphs G = (V,E,L) and G′ = (V ′, E′, L′), all vertices v ∈ V
and v′ ∈ V ′, and

d = mvf(G, v) ·mvf(G′, v′)

if there is a simulation Zd : (Gvd , v) 7→ (G′, v′), then there is a simulation Zk : (Gvk , v) 7→ (G′v′)
for all k ∈ N.

If k ≤ d, one can restrict Zd to the vertices of Gvk , which would be a subgraph of Gvd .
Otherwise, the intuition behind this claim is that the pairs in Zd define a walk in G′ for each
walk in G that has length at most d− 1. And if a walk in G has length at least d− 1, then
there is a vertex w that this walk visits twice while the image of this walk in G′ also repeats
a vertex at the same time. This paired repetition can be used to find a matching vertex in
V ′ for each vertex of Gvk by recursively shortening the walk that this vertex corresponds to
if it has length d or larger.

Lemma 1 and x′ ∈ C
(∏n

i=1 G(I)
xi
d

)I
imply that there is a simulation Zd from

(
n∏

i=1

G(I)xi
d , (x1, . . . , xn))

to (G(I), x′). Then, by Claim 1 there is a simulation Zk : (
∏n

i=1 G(I)
xi
k , (x1, . . . , xn)) 7→

(G(I), x′) (we just need to take G =
∏n

i=1 G(I), G′ = G(I), v = (x1, . . . , xn) and v′ = x′).

Therefore, Lemma 1 implies that x′ ∈ C
(∏n

i=1 G(I)
xi
k

)I
.

Lemma 2 shows that even for vertices that are parts of cycles, there is a certain depth
of unravellings, which we call a fixpoint, that is guaranteed to be an upper bound.

Proposition 2 gives an intuition about how large the MVF of a vertex in a product graph
can be when compared to the MVF of the corresponding vertices in the product’s factors.

Proposition 2. Let {Gi | 1 ≤ i ≤ n} be n description graphs such that Gi = (Vi, Ei, Li).
Also let vi ∈ Vi. Then:

mvf

(
n∏

i=1

Gi, (v1, . . . , vn)

)
≤

n∏
i=1

mvf(Gi, vi).
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Proof. Let w be an arbitrary walk in
∏n

i=1 Gi, (vi)1≤i≤n that starts in (v1, . . . , vn) and let
(w1, . . . , wn) be a vertex in this walk. It follows from the definition of product that each
wi belongs to a walk in Gi that begins in vi. Therefore, there are only mvf(Gi, vi) options
for each wi. Hence, there are at most

∏n
i=1mvf(Gi, vi) possible options for (w1, . . . , wn). In

other words, vnum(w) ≤
∏n

i=1mvf(Gi, vi). Since w is arbitrary, we can conclude that

mvf

(
n∏

i=1

Gi, (v1, . . . , vn)

)
≤

n∏
i=1

mvf(Gi, vi).

Although the MVF of a product can be exponential in |∆I |, there are many cases in
which it is linear in |∆I |. Example 5 illustrates one such case.

Example 5. Consider the interpretation of Figure 4. The elements x1, x3, x4, x5 and x6
never reach cycles, therefore, each of them can only have walks up to a finite length. Take
X = {x1, x2}. Since every walk in G(I) starting from x1 has length at most 2, the longest

walk possible in
∏|{x1,x2}|

i=1 G(I) which starts at the node (x1, x2) is: (x1, x2), partof, (x5, x7),
capital, (x6, x2). Thus

mvf

|{x1,x2}|∏
i=1

G(I), (x1, x2)

 = 2.

Take X = {x1, x7}. Since x1 and x7 do not share labels in their outgoing edges

mvf

|{x1,x7}|∏
i=1

G(I), (x1, x7)

 = 1.

Observe that we do not need to index the description graph since all vertices correspond
to elements in the same interpretation (I). Moreover, we essentially index the product over
the vertices of G(I) that appear in the vertices of the product graph in each case.

The observations about the MVF in Example 5 are generalised in Lemma 3 which shows
a sufficient condition for polynomial (linear) role depth.

Lemma 3. Let I = (∆I , ·I) be a finite interpretation and X = {x1, . . . , xn} ⊆ ∆I . If for
some 1 ≤ i ≤ n it holds that every walk in G(I) starting at xi has length at most m for
some m ∈ N, then mvf (

∏n
i=1 G(I), (x1, . . . , xn)) ≤ mvf (G(I), xi).

Proof. (Sketch) As it happens in Example 5, it can be proven that whenever there is a
vertex xi for which every walk starting at it has length at most m, then m also bounds the
lengths of the walks starting at (x1, . . . xn) in

∏n
i=1 G(I).

Combining the bounds for the fixpoint and MVF given by Lemmas 2 and 3, we can
define a function that returns an upper approximation of the fixpoint, for any subset of the
domain of an interpretation, as follows.
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Definition 5. Let I = (∆I , ·I) be a finite interpretation and X = {x1, . . . , xn} ⊆ ∆I . The
function dI : P(∆I) 7→ N is defined as follows:

dI (X) =

{
d− 1 if Xlim ̸= ∅
d ·mmvf(G(I)) otherwise,

where d = mvf (
∏n

i=1 G(I), (x1, . . . , xn)) and

Xlim = {x ∈ X | ∃m ∈ N : every walk starting at x in G(I) has length ≤ m}.

Next, we prove that function dI is indeed an upper bound for the fixpoint of an MMSC.
The idea sustaining Lemma 4 is that if x ∈ X ⊆ ∆I and every walk in G(I) starting at x
has length at most m, then m can be used as a fixpoint depth for the MMSC of X in I.
Lemma 2 covers the cases where vertices are the starting point of walks of any length.

Lemma 4. Let I = (∆I , ·I) be a finite interpretation and X ⊆ ∆I . Then, for any k ∈ N,
it holds that:

mmsc (X, I, dI (X))I ⊆ mmsc (X, I, k)I .

Proof. (Sketch) Let X = {x1, . . . , xn} ⊆ ∆I . If k ≤ dI (X), the lemma holds trivially. For
k > dI (X) we divide the proof in two cases. First, if there is a xi ∈ X such that every walk
in G(I) starting at xi has length at mostm for somem ∈ N, then as stated in Lemma 3, every
walk in

∏n
i=1 G(I) starting at (x1, . . . , xn) has length at mostmvf (

∏n
i=1 G(I), (x1, . . . , xn))−

1. In other words, even when k > dI (X), we have:

n∏
i=1

G(I)xk =
n∏

i=1

G(I)xdI(X),

and so, we can apply Lemma 1 to conclude that: mmsc (X, I, dI (X))I ⊆ mmsc (X, I, k)I .
Otherwise, if Xlim ̸= ∅, the lemma is a direct consequence of Definition 5 and Lemma 2.

In this paper, we write mmsc (X, I) as a shorthand for mmsc (X, I, dI (X)). An impor-
tant consequence of Lemma 4 and the definition of MMSC is that, for any EL⊥ concept

expression C and finite interpretation I, it holds that CI = mmsc
(
CI , I

)I
.

Lemma 5. Let I = (∆I , ·I) be a finite interpretation. Then, for all EL⊥ concept expression

C it holds that: mmsc
(
CI , I

)I
= CI .

Proof. A direct consequence of Lemma 4.4 (vi) of (Borchmann et al., 2016) and Lemma 4.

We use this result below to define a finite set of concept expressions MI for building a
base of the CIs valid in I.

Definition 6. Let I = (∆I , ·I) be a finite interpretation. The set MI is the union of
{⊥} ∪ NC and

{∃r.mmsc (X, I) | r ∈ NR and X ⊆ ∆I , X ̸= ∅}

We also define ΛI = {
d
U | U ⊆MI}.
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Building the base mostly relies on the fact that, given a finite interpretation I, for any
EL⊥ concept expression C, there is a concept expression D ∈ ΛI such that CI = DI .

Theorem 2. Let I be a finite interpretation and let ΛI be defined as above. Then,

B(I) = {C ≡ mmsc
(
CI , I

)
| C ∈ ΛI} ∪ {C ⊑ D | C,D ∈ ΛI and I |= C ⊑ D}

is a finite EL⊥ base for I.

Proof. (Sketch) As ΛI is finite, so is B(I). The CIs are clearly sound and the soundness
of the equivalences is due to Lemma 5. For completeness, assume that I |= C ⊑ D. Using
an adaptation of Lemma 5.8 from (Distel, 2011) and Lemma 5 above, we can prove, by
induction on the structure of the concept expressions C and D, that there are concept
expressions E,F ∈ ΛI such that B(I) |= E ≡ mmsc

(
CI , I

)
, B(I) |= F ≡ mmsc

(
DI , I

)
,

B(I) |= C ≡ mmsc
(
CI , I

)
, and B(I) |= D ≡ mmsc

(
DI , I

)
. By construction, as E ⊑ F ∈

B(I), we can prove that whenever I |= C ⊑ D, so does B(I).

In Theorem 2, the number of CIs in B(I) is double-exponential in the size of I. That
is because ΛI is exponential in MI , which in turn is exponential in the size of I. So ΛI is
double-exponential in the size of I. Our base B(I) is the union of two sets of CIs polynomial
in the size of ΛI and, therefore, double-exponential in the size of I. The number of CIs
in the work by Borchmann et al. (2016) and Distel (2011), proven to be minimal, is also
double-exponential in the worst case. This is a consequence of the following facts: (1)
minimal bases can be exponential in the size of the formal context (Kuznetsov, 2004a) and
(2) the formal context in the mentioned works is exponential in the size of the interpretation
given as input. In general, our base may not be minimal and this is left as an open question.

Example 6. A base with adaptable role depth for the graph in Figure 4 can be

B(I) = {City ≡ ∃govern.Party ⊓ ∃partof.(Region ⊓ ∃capital.⊤),
City ⊑ ∃govern.Party ⊓ ∃partof.Region,

Region ≡ ∃capital.⊤,
Liberal ⊑ Party,

Organisation ⊑ Party}.

Recall the interpretation I in Figure 6. In order to compute a base for I, we should
compute an MMSC with role depth at least 29. An important benefit of our approach is
that the role depth of the other MMSCs, which are part of the mined CIs in the base may
be smaller. For instance, the role depth of mmsc ({x1}, I) is 10. Additionally, previous
works computed the depth of the concept expressions based on the number of reachable
vertices (Distel, 2011). Let reach(G, v) be the function that returns how many vertices in G
are reachable from v. This function gives an upper bound of the MVF for any vertex of any
description graph, that is, mvf(G, v) ≤ reach(G, v), since a vertex can only be visited in a
path from v if it is reachable from v. Theorem 3 shows that our approach in fact represents
an improvement in terms of depth.
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Theorem 3. Let I = (∆I , ·I) be a finite EL⊥ interpretation and X ⊆ ∆I . Let dI (X) be the
(adaptable) depth according to Definition 5 and dgfp(X, I) be the depth for the EL⊥gfp MMSC
of X w.r.t. I, according to Lemma 5.5 in (Distel, 2011). Then, dI (X) ≤ dgfp(X, I).

Furthermore, the difference between these two metrics can be quite large. For instance,
when a vertex is the root of a tree shaped subgraph, as Example 7 illustrates.

Example 7. Let G = (V,E,L) with V = {1, . . . , 2n − 1} for some n ∈ N and

E = {(i, r, 2i) | 1 ≤ i < 2n−1} ∪ {(i, r, 2i+ 1) | 1 ≤ i < 2n−1}.

That is, G is a binary tree rooted in 1. If we take v = 1, then reach(G, v) = |V | = 2n − 1,
while mvf(G, v) = n. In this case, the number of reachable vertices grows exponentially with
n, while the MVF grows only linearly.

Example 8 illustrates how the advantage of adaptable role depth over the depth from
the EL⊥gfp approach.

Example 8. Consider the interpretation I = (∆I , ·I) where

∆I = {x0, x1, x2, x3}
rI = {(x0, x0), (x1, x1), (x2, x2), (x3, x3), (x0, x1), (x0, x2), (x0, x3)}.

Figure 7 depicts the description graph of I.

x0

x1 x2 x3

r r r

r

r r r

Figure 7: Description graph of the interpretation I from Example 8

We will compare the depths for the MMSC of the {x0} using our approach and using
the EL⊥gfp approach (Distel, 2011).

First, we will compute the depth for this MMSC with adaptable role depth. As there are
walks of arbitrary length starting from x0 in G(I), we have from Definition 5 that

dI ({x0}) = mvf (G(I), x0) ·mmvf(G(I)) = 2 · 2 = 4.

Now, we will focus on the EL⊥gfp approach, but before we compute the depth we discuss

necessary notions that are particular to EL⊥gfp concepts.

The MMSC of {x0} in EL⊥gfp is a pair (A0, T0) where A0 is a fresh concept name and

T0 is a TBox composed of |∆I | equivalences whose left-hand sides are the fresh concept
names associated to A0 and to all vertices reachable from x0 in G(I) (see (Distel, 2011),
Definitions 2.16 and 2.23).
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More specifically, if Ai is a fresh concept name associated with xi, then T0 is as follows

T0 = {A0 ≡ ∃r.A0 ⊓ ∃r.A1 ⊓ ∃r.A2 ⊓ ∃r.A3,

A1 ≡ ∃r.A1,

A2 ≡ ∃r.A2,

A3 ≡ ∃r.A3}

In other words, T0 has |∆I |-many defined concepts, in symbols, |NC
def (T0)| = |∆I |. The

conversion from EL⊥gfp to EL⊥ unravels the MMSC of {x0} up to depth

dgfp({x0}, I) = |NC
def (TX)| · |∆I |+ 1 = 4 · 4 + 1 = 17.

Also, if we increase the number of successors of x0 that also only have themselves as
their own successors, dgfp({x0}, I) increases quadratically with |∆I | while our new depth
for the MMSC of {x0} stays the same.

In the next section, we show that one can compute the MVF of a vertex in a graph in
linear time in the size of the graph.

6. Computing the MVF

As discussed in Section 5, the MVF is the key to provide an upper bound for the fixpoint
for each MMSC. Moreover, Theorem 3 shows that it improves the existing bound. Still,
reach(G, v) can be computed in polynomial time, which could be a potential advantage of
using this metric over the MVF.

In this section, we present an algorithm to compute mvf(G, v) that takes linear time in
the size of G, but first we need to recall some fundamental concepts from Graph Theory,
one of them is the notion of strongly connected components (Definition 7).

Definition 7. Let G = (V,E,L) be a description graph. The strongly connected compo-
nents (SCCs) of G, in symbols SCC(G), are the partitions V1, . . . , Vn of V such that for all
1 ≤ i ≤ n: if u, v ∈ Vi then there is a path from u to v and a path from v to u in G.
Additionally, we define a function scc(G, v), which returns the SCC of G that contains v.

A compact way of representing a description graph G consists in regarding each SCC in
G as a single vertex. This compact graph is a directed acyclic graph (DAG), also called con-
densation of G (Harary, Norman, & Cartwright, 1965), and it is formalised in Definition 8.

Definition 8. Let G = (V,E, L) be a description graph. The condensation of G is the
directed acyclic graph G∗ = (V ∗, E∗) where

V ∗ = {scc(G, u) | u ∈ V } E∗ = {(scc(G, u), scc(G, v)) | (u, r, v) ∈ E, scc(G, u) ̸= scc(G, v)}.

Also, if w∗ is path in G∗, the weight of w∗, in symbols weight(w∗), is the sum of the sizes
of the SCCs that appear as vertices of w∗.

We use these notions to link the MVF (Definition 3) to the paths in the condensation
graph in Lemma 6.
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{x1}
{x3}
{x5} {x6} {x2, x7} {x4}

Figure 8: Condensation of the description graph in Figure 4. Every vertex is an SCC of the
original graph and the edges indicate accessibility between the SCCs. Also, the
condensation has no labels.

Lemma 6. Let G = (V,E,L) be a description graph, let G∗ = (V ∗, E∗) be the condensation
of G, and v ∈ V . Then:

mvf(G, v) =max {weight(w∗) | w∗ is a path in G∗ starting at scc(G, v)} .

Proof. (Sketch) First we prove that every path w∗ = V1, . . . , Vm in G∗ starting at scc(G, v)
induces a walk w in G starting at v with vnum(w) = weight(w∗). Then, we show that if
w∗ has maximal weight, then no walk in G starting at v can visit more than weight(w∗)
vertices.

By Lemma 6, we only need to compute the maximum weight of a path in G∗ that starts
at scc(G∗, v) to obtain the MVF of a vertex v in a description graph G. Algorithm 1 relies
on this result and proceeds as follows: first, it computes the SCCs of the description graph
and the condensation graph. Then, the algorithm transverses the condensation graph, using
an adaptation of depth-first search to determine the maximum path weight for the initial
SCC.

Example 9. The condensation showing the strongly connected components of the graph
in Figure 4 is depicted in Figure 8. The output of scc(G, x7) is the vertex {x2, x7} in the
condensed graph. The function maxWeight(G, scc(G, x7), wgt) outputs 2 because

maxWeight(G, scc(G, x4), wgt) = 1

(the size of the nodes in its scc). The output of maxWeight(G, scc(G, x1), wgt) is 4. This is
the sum of maxWeight with the vertices x3, x5, and x6, given as input, which are, respec-
tively, 1, 2, and 1.

Algorithm 1 assumes that the SCCs and condensation are computed correctly. Besides
keeping the computed values, the array wgt prevents recursive calls on SCCs that have
already been processed. According to Lemma 6, to prove that Algorithm 1 is correct we
just need to prove that the function maxWeight in fact returns the maximum weight of
a path in the condensation given a starting vertex (which corresponds to an SCC in the
original graph).

Lemma 7. Given G = (V,E,L) and v ∈ V as input, Algorithm 1 returns the maximum
weight of a path in the condensation of G starting at scc(G, v).
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Algorithm 1: Computing MVF via Lemma 6

Input: A description graph G = (V,E, L) and a vertex v ∈ V
Output: The MVF of v in G, i.e., mvf(G, v)

1 V ∗ ← SCC(G)
2 E∗ ← condense(G, V ∗)
3 G∗ ← (V ∗, E∗)
4 for V ′ ∈ V ∗ do
5 wgt[V ′]← null
6 return maxWeight(G∗, scc(G, v), wgt)
// Auxiliary function

7 Function maxWeight(G∗, V ′, wgt):
8 current← 0
9 for W ′ ∈ {U ′ ∈ V ∗ | (V ′, U ′) ∈ E∗} do

10 if wgt[W ′] = null then
11 current← max(current,maxWeight(G∗,W ′, wgt))
12 else
13 current← wgt[W ′]
14 wgt[V ′]← current+ |V ′|
15 return wgt[V ′]

Proof. (Sketch) Let G∗ = (V ∗, E∗) be the condensation of G. If scc(G, v) has no successor in
G∗, then the output of maxWeight is correct. If scc(G, v) has successors, then the maximum
weight of a path staring at scc(G, v) in G∗ is given by |scc(G, v)| plus the maximum value
computed among its successors. This equation holds because G∗ is a DAG.

Lemmas 6 and 7 imply that Algorithm 1 computes the MVF of v in G correctly. More-
over, the computation of SCCs can be done in time O(|V |+ |E|) (Tarjan, 1972), the conden-
sation in time O(|E|) (Martello & Toth, 1982) and the depth-first transversal via maxWeight
in time O(|V | + |E|). Hence, it is possible to compute the MVF of a vertex in a graph in
linear time in the size of the description graph even if it consists solely of cycles. Yet, given
an interpretation I = (∆I , ·I) the graph given as input to Algorithm 1 might be a product
graph with an exponential number of vertices in |∆I |. Also, Algorithm 1 can be modified to
compute the MVF for all vertices. The modified version calls the function maxWeight from
an unvisited SCC until all vertices are visited, avoiding re-calculating the MVF of vertices
along the way.

7. Confident Bases with Adaptable Role Depth

We investigate an extension of our framework to the case where the goal is to obtain a base
with GCIs that may only partially match the finite interpretation, as originally considered
by Borchmann (2013a, 2013b, 2014) for EL⊥gfp GCIs. The goal of such approach is to cope
with noisy data. We employ a confidence measure to decide whether a GCI should be a
consequence of the desired base. We adapt such notion of confidence to EL⊥ as follows.
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Definition 9 (Confidence of GCIs (Borchmann, 2014)). Let I = (∆I , ·I) be a finite inter-
pretation over NC and NR, and let C,D be EL⊥ concept expressions. Then the confidence
of a GCI C ⊑ D, in symbols confI(C ⊑ D), is defined as:

confI(C ⊑ D) :=

{
1 if CI = ∅
|(C⊓D)I |

|CI | otherwise.

Definition 10 (Confidence-Based Theory of Finite Interpretations (Borchmann, 2014)).
Let I be a finite interpretation over NC and NR, and let c ∈ [0, 1]. Then the confidence-
based theory of I, in symbols Thc(I), is defined as:

Thc(I) := {C ⊑ D | confI(C ⊑ D) ≥ c}

As Borchmann (2014) notes, Thc(I) is not closed by consequence, thus there can be
both CIs that are entailed by Thc(I) that have lower confidence, and there might also exist
bases for Thc(I) which contain axioms with confidence lower than c. A confident base B for
an interpretation I is a finite subset of Thc(I) such that B |= C ⊑ D iff Thc(I) |= C ⊑ D
for all EL⊥ concept inclusions. We can build a confident base for I as follows

Bc(I) :={mmsc (X, I) ⊑ mmsc (Y, I) | Y ⊆ X ⊆ ∆I ,

1 > confI(mmsc (X, I) ⊑ mmsc (Y, I)) ≥ c}.

Example 10. A base with confidence c = 0.4 for the graph in Figure 4 can be B(I) as in
Example 6 with the additional rules:

{Party ⊑ Liberal,

Party ⊑ Organisation,

City ⊑ ∃govern.Organisation,
City ⊑ ∃govern.Liberal,

Region ⊑ ∃capital.City}.

Next, we prove that replacing the MMSC defined in EL⊥ by our MMSC with adaptable
depth in the construction of a confident base still preserves the relation between set inclusion
and confidence of GCIs as Lemma 8 shows.

Lemma 8 (Lemma 5.2.12 in (Borchmann, 2014)). Let (∆I , ·I) be a finite interpretation,
and let Z ⊆ Y ⊆ X. Then

confI(mmsc (X, I) ⊑ mmsc (Z, I)) = confI(mmsc (X, I) ⊑ mmsc (Y, I))
· confI(mmsc (Y, I) ⊑ mmsc (Z, I)).

Proof. The proof is analogous to that of Lemma 5.2.12 in (Borchmann, 2014). We just
replace concept expressions in EL⊥gfp by concept expressions in EL⊥ and adopt the notion
of MMSC in our setting with adaptable role depth.

If mmsc (X, I)I = ∅, then as Z ⊆ Y ⊆ X we have that mmsc (Z, I)I ⊆ mmsc (Y, I)I ⊆
mmsc (X, I)I . Hence mmsc (Z, I)I = mmsc (Y, I)I = ∅ and both sides of the equation
become 1.
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When mmsc (X, I)I ̸= ∅ and mmsc (Y, I)I = ∅, both sides of the equation become 0, as
mmsc (Z, I)I = ∅.

Lastly, if both mmsc (X, I)I ̸= ∅ and mmsc (Y, I)I ̸= ∅ we have that:

confI(mmsc (X, I) ⊑ mmsc (Z, I)) =
|(mmsc (X, I) ⊓mmsc (Z, I))I |

|mmsc (X, I)I |
=

|(mmsc (X, I) ⊓mmsc (Y, I))I |
|mmsc (X, I)I |

· |(mmsc (X, I) ⊓mmsc (Z, I))I |
|(mmsc (X, I) ⊓mmsc (Y, I))I |

=

|(mmsc (X, I) ⊓mmsc (Y, I))I |
|mmsc (X, I)I |

· |(mmsc (Y, I) ⊓mmsc (Z, I))I |
|mmsc (Y, I)I |

=

confI(mmsc (X, I) ⊑ mmsc (Y, I)) · confI(mmsc (Y, I) ⊑ mmsc (Z, I)).

Before we discuss the implications of Lemma 8 when considering bases (and not only
individual GCIs), we need one additional result. Proposition 3 displays another property
of our MMSC that mirrors the MMSC notion in EL⊥gfp. First we prove the following propo-
sition.

Proposition 3. Let I = (∆I , ·I) be a finite interpretation, X,Y ⊆ ∆I and k ∈ N. Then,
it holds that: X ⊆ Y =⇒ I |= mmsc (X, I) ⊑ mmsc (Y, I).

Proof. According to Definition 2, we have thatX ⊆ mmsc (X, I, k)I and Y ⊆ mmsc (Y, I, k)I .
Thus, we have:

X ⊆ Y ⊆ mmsc (Y, I, k)I .
Since mmsc (Y, I, k)I has role depth k, we obtain from Definition 2 that:

∅ |= mmsc (X, I, k) ⊑ mmsc (Y, I, k) .
Then Lemma 4 implies that:

mmsc (X, I, dI (X))I ⊆ mmsc (X, I, dI (Y ))I ⊆ mmsc (Y, I, dI (Y ))I .

Finally, as a consequence of the results shown earlier, we can obtain a confident base
with adaptable role depth.

Theorem 4. Let I = (∆I , ·I) be a finite interpretation, and let c ∈ [0, 1]. Let B be a base
of I. Define

Lux(I, c) :={mmsc (X, I) ⊑ mmsc (Y, I) | mmsc (X, I) ⊑ mmsc (Y, I) ∈ Bc(I),
̸ ∃Z ⊆ ∆I : ∅ |= mmsc (Y, I) ⊑ mmsc (Z, I) ⊑ mmsc (X, I)}.

Then Lux(I, c) ∪ B is a finite confident base of Thc(I).
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Proof. The proof is analogous to that of Theorem 5.2.13 in (Borchmann, 2014). It is
sufficient to show that all CIs in Bc(I) are entailed by Lux(I, c). Let (mmsc (X, I) ⊑
mmsc (Y, I)) ∈ Bc(I).

Then Y ⊆ X ⊆ ∆I , and from Proposition 3 we get: I |= mmsc (Y, I) ⊑ mmsc (X, I).
Since ∆I is finite, there are sets Zn ⊆ · · · ⊆ Z0 = ∆I satisfying:

mmsc (Y, I) ≡I mmsc (Zn, I) ⊏I · · · ⊏I mmsc (Z0, I) ≡I mmsc (X, I)

such that there are no sets W ⊆ ∆I with:

mmsc (Zi, I) ⊏I mmsc (W, I) ⊏I mmsc (Zi−1, I) (1)

for any i ∈ {1, . . . , n}. Then, by Lemma 8 it is true that:

confI(mmsc (X, I) ⊑ mmsc (Y, I)) =
n−1∏
i=0

confI(mmsc (Zi, I) ⊑ mmsc (Zi+1, I)).

As the confidence of a CI is always an element of [0, 1], we obtain from this equality
that:

confI(mmsc (Zi, I) ⊑ mmsc (Zi+1, I)) ≥ confI(mmsc (X, I) ⊑ mmsc (Y, I)) ≥ c

and due to Equation 1 we obtain (mmsc (Zi, I) ⊑ mmsc (Zi+1, I)) ∈ Lux(I, c) for all
i ∈ {0, . . . , n− 1}.

Since {mmsc (Zi, I) ⊑ mmsc (Zi+1, I) | i ∈ {0, . . . , n−1}} |= mmsc (X, I) ⊑ mmsc (Y, I)
we obtain:

Lux(I, c) |= mmsc (X, I) ⊑ mmsc (Y, I)

8. Conclusion

We introduce a way of computing EL⊥ bases from finite interpretations that adapts the
role depth of concepts according to the structure of interpretations. Our definition relies
on a notion that relates vertices in a graph to sets of vertices, called MVF. The role depth
of expressions computed with our approach is guaranteed to not exceed the role depth of
expressions used to compute bases in the literature and, in some cases, it can give expressions
with an exponentially smaller role depth. We have also shown that the MVF computation
can be performed in polynomial time in the size of the underlying graph structure. In
addition, we considered the problem of mining CIs in the presence of noise in the dataset.
We applied the confidence measure from association rule mining to define confident bases.
That is, bases with CIs that do not need to hold completely in the dataset but on a large
proportion of the domain of elements. Our EL⊥ base, however, is not minimal. As future
work, we plan to build on previous results combining FCA and DLs to define a base with
minimal cardinality and implement our approach using knowledge graphs as datasets.
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Appendix A. Proofs for Section 4

We prove that ELrhs and ELlhs do not have the finite base property (Propositions 4 and 5).

Proposition 4. EL⊥rhs does not have the finite base property.

Proof. Consider the interpretation I = ({x1, x2}, ·I) where {(x1, x2), (x2, x2)} = rI , {x1} =
AI and every other concept and role name is mapped by ·I to ∅ (Figure 5 (i)). In I,
AI = {x1} and for all n ∈ N+, x1 ∈ (∃rn.⊤)I . Assume that B is a base for I and ELrhs.
As B is a (finite) TBox formulated in ELrhs with symbols from ΣI , it can only have CIs of
the form A ⊑ C. Since I |= A ⊑ ∃rn.⊤, for all n ∈ N+, it follows that B is infinite, which
is a contradiction.

Proposition 5. EL⊥lhs does not have the finite base property.

Proof. In this proof, assume that CIs are formulated in ELlhs. Consider the interpretation

I = ({x1, x2, x3, x4}, ·I)

with

rI = {(x2, x2), (x4, x4), (x3, x2)}
sI = {(x1, x2), (x3, x4)}
AI = {x1}
BI = {x2}

and every other concept and role name is mapped by ·I to ∅ (see Figure 5 (ii)).

By definition of I, for all n ∈ N+, we have that I |= ∃s.∃rn.B ⊑ A. So if B is a base for
ELlhs and I then B |= ∃s.∃rn.B ⊑ A for all n ∈ N+. Now, observe that there is no D such
that

1. ∅ |= ∃s.∃rn.B ⊑ D,

2. ∅ ⊭ D ⊑ ∃s.∃rn.B (where ⊭ means ‘does not entail’),

3. and I |= D ⊑ A.
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The reason for the above is because x3 ∈ DI for all D satisfying (1) and (2) but x3 ̸∈ AI .
Moreover, there is no k ∈ N+ such that I |= ∃rk.B ⊑ B or I |= ∃rk.B ⊑ A (because
x3 ̸∈ BI and x2, x3 ̸∈ AI but x2, x3 ∈ (∃rk.B)I). So, B can only entail ∃s.∃rn.B ⊑ A if
there is a CI in B with a concept equivalent to ∃s.∃rn.B. This concept needs to have role
depth n. Since B |= ∃s.∃rn.B ⊑ A for all n ∈ N+, there are CIs with role depth n for all
n ∈ N+. This means that B cannot be finite.

Next, we prove the result which shows that the depth of roles in a base has an exponential
lower bound.

Theorem 1. There is a finite interpretation I = (∆I , ·I) such that any EL⊥ base for I has
a concept expression with role depth exponential in the size of I.

Proof. For any n ≥ 1, we consider the interpretation I where for every i ∈ {1, · · · , n} and
k ≥ 1, there is xi ∈ ∆I that satisfies xi ∈ (∃rk·pi−1.A)I , xi ∈ BI , and xi ̸∈ (∃rl.A)I for
l ̸∈ {k · pi − 1 | k ≥ 1} where pi is the i-th prime number.

We know that min(
⋂n

i=1{k ·pi | k ≥ 1}) =
∏n

i=1 pi (which is the least common multiple).
We also know that for any n, p ∈ N+, n + 1 is a multiple of p iff n is a multiple of p
minus 1. Therefore, d = min(

⋂n
i=1{k · pi − 1 | k ≥ 1}), is the minimal number such that

BI = (∃rd.A)I . Since d =
∏n

i=1 pi − 1 ≥ 2n, the statement holds because a base for I
should entail the CI B ⊑ ∃rd.A. For this to happen, it should have a CI with role depth at
least d.

Appendix B. Proofs for Section 5

Now we will prove Claim 1, which is part of Lemma 2 that underlies our approach. Before
that, we need an additional result regarding simulations, which allows us to view them
as functions. The next lemma is a direct consequence of proposition A.7 by Borchmann
et al.(2016).

Lemma 9. Let Z : (G1, v1) 7→ (G2, v2) be a simulation where G1 = (V1, E1, L1) is a tree-
shaped EL⊥ description graph rooted in v1, and G2 = (V2, E2, L2) is an EL⊥ description
graph. Then, there exists a simulation Z ′ : (G1, v1) 7→ (G2, v2) such that for every v ∈ V1,
there is at most one w ∈ V2 such that (v, w) ∈ Z ′.

Proof. According to Proposition A.7 by Borchmann et al.(2016), since G1 is a tree-shaped
EL⊥ description graph, there existence of the simulation Z : (G1, v1) 7→ (G2, v2) implies that
there is an homomorphism φ from (G1, v1) to (G2, v2). Using this homomorphism, we can
simply take Z ′ = {(v, φ(v)) | v ∈ V1}.

Now we proceed to the claim’s actual proof.

Claim 1. For all description graphs G = (V,E,L) and G′ = (V ′, E′, L′), all vertices v ∈ V
and v′ ∈ V ′, and

d = mvf(G, v) ·mvf(G′, v′)

if there is a simulation Zd : (Gvd , v) 7→ (G′, v′), then there is a simulation Zk : (Gvk , v) 7→ (G′v′)
for all k ∈ N.
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Proof. Let G,G′, v and v′ as stated earlier and consider the unravellings

Gvd = (Vd, Ed, Ld) and Gvk = (Vk, Ek, Lk)

of G. Now, assume that there is a simulation Zd : (Gvd , v) 7→ (G′, v′). By Lemma 9, we can
assume w.l.o.g. that for each w ∈ Vd there exists at most one u ∈ V ′ such that (w, u) ∈ Zd.
Therefore, we can define a function z such that z(w) is the only vertex in V ′ such that
(w, z(w)) ∈ Zd.

If k ≤ d then, as Gvk is a subtree of Gvd (and thus, Vk ⊆ Vd), one can just take Zk =
{(w, z(w)) | w ∈ Vk} as simulation. We now argue about the case where k > d. Recall that
the function δ returns the vertex of a graph that occurs at end of a path. We show that in
any path of length d in Gvd , there are two vertices w1 and w2 such that δ(w1) = δ(w2) and
z(w1) = z(w2).

In what follows, we use the fact that unravellings are trees, and thus, for each vertex
in an unravelling, there is exactly one path starting from the root to it. So we can refer to
this path without ambiguity. Moreover, if w is a vertex in an unravelling with root v, then
the path distance of w is the length of the path from v to w.

Now, letw = w0r0 . . . rn−1wn be a vertex in Vd and letwi = w0r0 . . . ri−1wi for 0 ≤ i ≤ n
be the vertices in the path from v to w (w0 = v and wn = w). The path from v to w in
Gvd determines a walk w∗ in G starting at v as follows:

w∗ = δ(w0)r0 . . . rn−1δ(wn).

Due to the definition of mvf there can be at most mvf(G, v) distinct values of δ for all
vertices in the path from v to w, that is, |{δ(wi) | 0 ≤ i ≤ n}| ≤ mvf(G, v).

As Zd is a simulation, the path from v to w also determines a walk in G′ starting at v′:

w′ = z(w0)r0 . . . rn−1z(wn).

Again, due to the definition of mvf there can be at most mvf(G′, v′) distinct values of z for
all vertices in the path from v to w, that is, |{z(wi) | 0 ≤ i ≤ n}| ≤ mvf(G, v). Therefore,
there are at most mvf(G, v) · mvf(G′, v′) = d distinct pairs (δ(w′), z(w′)), where w′ is a
vertex in the path from v to w, i.e.,

|{(δ(wi), z(wi)) | 0 ≤ i ≤ n}| ≤ d.

If a vertex w has path distance d from v in Gvd , then there are d+1 vertices in the path from
v to w. As there are at most d distinct pairs (δ(w′), z(w′)), where w′ is a vertex in this
path, and d+1 vertices in the path from v to w, the pigeonhole principle implies that there
will be two vertices w1,w2 ∈ Vd in the path from v to w such that both z(w1) = z(w2)
and δ(w1) = δ(w2).

Let V ⊆ Vd be the set of all vertices such that there are no two distinct vertices w1

and w2 on the path from v to w with δ(w1) = δ(w2) and z(w1) = z(w2). Because of the
previous argument, V contains only vertices whose path distance from v is strictly less than
d.

Since Gvd is a description tree with root v, there is exactly one directed path from v to
any given vertex w ∈ Vd. Hence, if w ∈ V then every vertex w′ on the path from v to w in
Gvd is also in V . In other words, V spans a subtree of Gvd .
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Now, let us consider the set V
+

composed by the direct successors of the leaves of the
subtree determined by V , that is, V

+
= {w0r0 . . . rn−1wn ∈ Vd\V | w0r0 . . . rn−2wn−1 ∈ V }.

Since each vertex in V has path distance at most d − 1 from v, each vertex V
+

has path
distance at most d from v. Together with the fact that V spans a subtree of Gvd , for each

vertex w ∈ Vd with path distance d from v, there is exactly one vertex w′ ∈ V
+
in the path

from v to w (including the extremities).
As we assume k > d, we know that Gvd is a subtree of Gvk , hence V also spans a subtree

of Gvk . Therefore V ∪ V
+ ∈ Vk and for every vertex w ∈ Vk there is exactly one vertex w′

in V
+
in the path from v to w in Gvk . For each vertex w ∈ Vk, such w′ can be used to build

a simulation from Zd that includes w, as we will show next.
For each vertex w ∈ V ∪ V

+
, there is exactly one vertex w′ in V in the path from

v to w such that δ(w) = δ(w′) and z(w) = z(w′). Therefore, we can define a function

s : V ∪ V
+ 7→ V which retrieves such vertex for every w ∈ V ∪ V

+
.

Now, we can use this function s to find an alternative path in Vd for each vertex in Vk

when extending Zd to the vertices in Vk \ Vd. This notion is formalised by the function
f : Vk 7→ V defined next, where w = w0r0 . . . w|w|−1r|w|−1w|w|.

f(w) ={
s(w) if w ∈ V ∪ V

+

f(f(w0r0 . . . w|w|−1)r|w|−1w|w|) otherwise.

To clarify the rôle of f in this proof, consider a vertex w = w0r0 . . . rn−1wn ∈ Vk with n > d.
As before, let wi = w0r0 . . . ri−1wi for 0 ≤ i ≤ n be the vertices in the path from v to w.
Since the path distance from v to w is more than d, we know that there is one 1 ≤ m ≤ n
such that wm ∈ V

+
. We also know that there is one 0 ≤ j < m such that s(wm) = wj .

When applying f to w, we obtain the following:

f(w) = f(. . . f . . . f(f(wm)rmwm+1) . . . )rn−1wn).

Since wm ∈ V
+
, we have that f(wm) = wj , which is closer to v than wm. As a con-

sequence of s(wj) = wm and the definitions of unravelling and simulation, we know that
(δ(wj), rm, δ(wm+1)) ∈ E and (z(wj), rm, z(wm+1)) ∈ E′. Because the relation between

vertices in V
+

and their image via the function s holds in each step of the recursion, we
can add (w, z(f(w)) to Zd for every vertex in Vk creating a new simulation.

We use this observation to define the relation Zk as:

Zk = {(w, z(f(w)) | w ∈ Vk}.

Now we show that Zk is a simulation from (Gvk , v) to (G′, v′).

1. Since v ∈ V and Zd is a simulation satisfying the property of Lemma 9, (v, z(f(v))) =
(v, z(v)) = (v, v′).

2. Since Zd is a simulation and f(w) ∈ Vd:

Lk(w) = L(δ(w)) = L(δ(f(w)))

= Ld(f(w)) ⊆ L′(z(f(w))).
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3. Let w ∈ Vk and assume that (w, r,wry) ∈ Ek.

If wry ∈ V ∪ V
+
, then w ∈ V . Therefore, (w, r,wry) ∈ Ed. We also have:

(z(f(w)), r, z(f(wry))) = (z(s(w)), r, z(s(wry)))

= (z(w), r, z(wry)).

Moreover, (z(w), r, z(wry)) ∈ E′ because Zd is a simulation. Finally, by construction,
(wry, z(wry)) ∈ Zk.

Otherwise, if wry ̸∈ V ∪ V
+
, we have that f(wry) = f(f(w)ry). Since f(w) ∈

V , f(w)ry ∈ V ∪ V + and consequently f(f(w)ry) = s(f(w)ry). By the defini-
tion of s: z(s(f(w)ry)) = z(f(w)ry) = z(f(wry)). Since Zd is a simulation and
f(w) ∈ Vd, it holds that (z(f(w)), r, z(f(w)ry)) = (z(f(w)), r, z(f(wry))) ∈ E′.
Thus, (wry, z(f(w)ry)) = (wry, z(f(wry)) ∈ Zk which concludes the proof of (S3)
for Zk.

Therefore, Zk is a simulation from (Gvk , v) to (G′, v′), which proves the claim.

Lemma 3 refers to walks in a product graph. To simplify its proof we highlight a
relationship between walks in the product graph and walks in their factors via Proposition 6.

Proposition 6. Let G1, . . . ,Gn be n description graphs, with Gi = (Vi, Ei, Li) for 1 ≤ i ≤ n.
It holds that, for each walk w in

∏n
i=1 Gi starting at (v1, . . . , vn), there is a walk in Gi starting

at vi with the same length, for all 1 ≤ i ≤ n.

Proof. Let w be a walk in
∏n

i=1 Gi starting in (v1, . . . , vn) with length m as follows:

w = (w1,0, . . . , wn,0)r0 . . . rm−1(w1,m−1, . . . , wn,m)).

The walk wi = wi,0r0 . . . rm−1wi,m is a walk in Gi because wi,j ∈ Vi for 0 ≤ j < m and
(wi,j , rj , wi,j+1) ∈ E due to the definition of product. As wi,0 = vi, by construction of w, wi

starts at vi. Additionally, by construction, wi has length m, which concludes the proof.

We use Proposition 6 in Lemma 3 below.

Lemma 3. Let I = (∆I , ·I) be a finite interpretation and X = {x1, . . . , xn} ⊆ ∆I . If for
some 1 ≤ i ≤ n it holds that every walk in G(I) starting at xi has length at most m for
some m ∈ N, then mvf (

∏n
i=1 G(I), (x1, . . . , xn)) ≤ mvf (G(I), xi).

Proof. Let X = {x1, . . . , xn} ⊆ ∆I and let

Xlim = {x ∈ X | ∃m ∈ N : every walk

starting from x in G(I) has length ≤ m}.

Assume Xlim ̸= ∅ and let x′ ∈ Xlim be such that

mvf(G(I), x′) = min
x∈Xlim

mvf(G(I), x).
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Since x′ ∈ Xlim, every walk in G(I) starting at x′ has length bounded by mvf(G(I), x′)− 1.
Due to the definition of product of description graphs (recall how the edges are built), this
limitation extends to every walk in

∏n
i=1 G(I) starting at (x1, . . . , xn): they have length at

most minx∈Xlim
mvf(G(I), x)− 1. If there was a longer walk, there would be also a walk in

in G(I) starting at x′ with the same length due to Proposition 6.

In the following, we prove that our adaptable role depth yields an upper bound of the
actual fixpoint for an MMSC.

Lemma 4. Let I = (∆I , ·I) be a finite interpretation and X ⊆ ∆I . Then, for any k ∈ N,
it holds that:

mmsc (X, I, dI (X))I ⊆ mmsc (X, I, k)I .

Proof. Let X = {x1, . . . , xn} ⊆ ∆I and

Xlim = {x ∈ X | ∃m ∈ N : every walk

starting from x in G(I) has length ≤ m}.

If k ≤ dI (X) the lemma holds trivially. For k > dI (X) we divide the proof in two
cases. First, if Xlim ̸= ∅ then as stated in Lemma 3, every walk in

∏n
i=1 G(I) starting at

(x1, . . . , xn) has length at most mvf (
∏n

i=1 G(I), (x1, . . . , xn))− 1 = dI (X).
In other words, even when k > dI (X), we have:

∏n
i=1 G(I)xk =

∏n
i=1 G(I)xdI(X), and

therefore, we can apply Lemma 1 to conclude that:

mmsc (X, I, dI (X))I ⊆ mmsc (X, I, k)I .

Otherwise, if Xlim = ∅, we can use the fact that mmvf(G) ≥ mvf(G, x′) ∀x′ ∈ ∆I to
obtain:

dI (X) ≥ mvf

(
n∏

i=1

G(I), (x1, . . . , xn)

)
·mvf(G(I), x′).

Hence, if Xlim = ∅, the lemma is a direct consequence of Definition 5 and Lemma 2.

To prove that B(I) defined in Theorem 2 is a base, we first recall a result related to the
notion of MMSC.

Lemma 10. (Borchmann et al., 2016) Let I = (∆I , ·I) be a finite EL⊥ interpretation. For

all X ⊆ ∆I and k ∈ N, it holds that ∅ |= mmsc
(
mmsc (X, I, k)I , I, k

)
≡ mmsc (X, I, k) .

We will also need a property regarding the construction of concept expressions with
MMSCs.

Lemma 11 (Adaptation of Proposition A.1 from (Borchmann et al., 2016)). For all EL⊥
concept expressions C,D over NC ∪ NR and all r ∈ NR it holds that:

(mmsc
(
CI , I

)
⊓D)I = (C ⊓D)I ,

(∃r.(mmsc
(
CI , I

)
))I = (∃r.C)I .
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Then, we define for each concept expression C and interpretation I a specific concept
in ΛI which is called the lower approximation of C in I. We recall that, for X ⊆ ∆I , we
write mmsc (X, I) as a shorthand for mmsc (X, I, dI (X)).

Definition 11 (Lower Approximation (adapted from Definition 5.4 in (Distel, 2011))). Let
C be an EL⊥ concept expression and I = (∆I , ·I) a model. Also let NC ∪ NR be a finite
signature and EL⊥(NC,NR) the set of all EL⊥ concept expressions over NC∪NR. Then, there
are concept names U ⊆ NC and pairs Π ⊆ NR × EL⊥(NC,NR) such that:

C =
l

U ⊓
l

(r,E)∈Π

∃r.E

We define the lower approximation of C in I as:

approx(C, I) ={d
U ⊓

d
(r,E)∈Π ∃r.mmsc

(
EI , I

)
if C ̸= ⊥,

⊥ otherwise.

Concept expressions built according to Definition 11 are always elements of ΛI because
they are a conjunction of elements in MI (Definition 6). Next, with a straightforward, but
nevertheless important, adaptation of the Lemma 5.8 from (Distel, 2011) we prove that the
lower approximation of a concept and the concept itself have the same extension.

Lemma 12. Let C be an EL⊥ concept expression and I = (∆I , ·I) a model. It holds that

mmsc
(
CI , I

)I
= approx(C, I)I = CI .

Proof. If C = ⊥ then mmsc
(
CI , I

)I
= approx(C, I)I = ∅. Otherwise, there are concept

names U ⊆ NC and pairs Π ∈ NR × EL⊥(NC,NR) such that

C =
l

U ⊓
l

(r,E)∈Π

∃r.E

Using Lemma 11 we obtain:

CI = (
l

U ⊓
l

(r,E)∈Π

∃r.E)I

= (
l

U ⊓
l

(r,E)∈Π

∃r.mmsc
(
EI , I

)
)I

= (approx(C, I))I

Finally, we can apply Lemma 5 obtaining mmsc
(
CI , I

)I
= approx(C, I)I .

Using these results, we can conclude that for each MMSC there is a concept expression
in ΛI with the same extension in I. With this observation we can we can proceed to
Theorem 2’s proof.
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Theorem 2. Let I be a finite interpretation and let ΛI be defined as above. Then,

B(I) = {C ≡ mmsc
(
CI , I

)
| C ∈ ΛI} ∪ {C ⊑ D | C,D ∈ ΛI and I |= C ⊑ D}

is a finite EL⊥ base for I.

Proof. As ΛI is finite, so it is B(I). The concept inclusions are clearly sound and the
soundness of the equivalences is due to Lemma 5.

Let J = (∆J , ·J ) be an arbitrary interpretation such that J |= B(I). For completeness,
we prove that for any EL⊥ concept expression C, J |= C ≡ mmsc

(
CI , I

)
. We prove this

claim by induction of the structure of C.

Base case: If C = ⊥ or C = A where A ∈ NC, then C ∈ ΛI , by definition of ΛI . Then,
by definition of B(I), we have that C ≡ mmsc

(
CI , I

)
∈ B(I).

Step case (⊓): Suppose C = E ⊓ F and the claim holds for E and F . By the inductive
hypothesis, B(I) |= E ≡ mmsc

(
EI , I

)
and B(I) |= F ≡ mmsc

(
F I , I

)
. Hence, for all

interpretations J such that J |= B(I), we have that EJ = mmsc
(
EI , I

)J
and FJ =

mmsc
(
F I , I

)J
. By Lemma 12, there are E,F ∈ ΛI such that mmsc

(
EI , I

)I
= E

I
and

mmsc
(
F I , I

)I
= F

I
. Moreover, by Lemma 5, mmsc

(
EI , I

)I
= EI and mmsc

(
F I , I

)I
=

F I . Therefore (E ⊓ F )I = E
I ∩ F

I
= EI ∩ F I = (E ⊓ F )I .

As E ⊓ F ∈ ΛI (up to logical equivalence), E ⊓ F ≡ mmsc
(
(E ⊓ F )I , I

)
∈ B(I) (again

up to logical equivalence). Since J is a model of B(I), by Lemma 11:

(
E ⊓ F

)J
= mmsc

(
(E ⊓ F )I , I

)J
= mmsc

(
(E ⊓ F )I , I

)J
= mmsc

(
CI , I

)J
.

To prove that CJ = mmsc
(
CI , I

)J
, in the following, we write C as a shorthand for

E ⊓ F and show that C
J

= CJ . Since E ∈ ΛI , we have that B(I) |= E ≡ mmsc
(
E

I
, I
)
.

Moreover, as mmsc
(
EI , I

)I
= E

I
, we have that

B(I) |= E ≡ mmsc
(
mmsc

(
EI , I

)I
, I
)
.

By Lemma 10, it follows that

∅ |= mmsc
(
mmsc

(
EI , I

)I
, I
)
≡ mmsc

(
EI , I

)
.

Therefore, B(I) |= E ≡ mmsc
(
EI , I

)
and as B(I) |= E ≡ mmsc

(
EI , I

)
, then B(I) |= E ≡

E. Similarly we obtain B(I) |= F ≡ F and that B(I) |= C ≡ C. As J was an arbitrarily
chosen model of B(I), we conclude that B(I) |= C ≡ mmsc

(
CI , I

)
and B(I) |= C ≡ C.
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Step case (∃): In this case, C = ∃r.E for some r ∈ NR and EL⊥ concept expression E.
Let J be an interpretation such that J |= B(I). We know that:

x ∈ CJ ⇐⇒ x ∈ (∃r.E)J

⇐⇒ ∃y ∈ EJ : (x, y) ∈ rJ .

By our induction hypothesis, B(I) |= E ≡ mmsc
(
EI , I

)
, hence:

x ∈ CJ ⇐⇒ ∃y ∈ mmsc
(
EI , I

)J
: (x, y) ∈ rJ

⇐⇒ x ∈ (∃r.mmsc
(
EI , I

)
)J .

In short, we proved that CJ = (∃r.mmsc
(
EI , I

)
)J . Next, as ∃r.mmsc

(
EI , I

)
∈ MI ,

we know that

∃r.mmsc
(
EI , I

)
≡

mmsc
(
∃r.mmsc

(
EI , I

)I
, I
)
∈ B(I)

With Lemma 11 we obtain:

(∃r.mmsc
(
EI , I

)
)J = (mmsc

(
∃r.mmsc

(
EI , I

)I
, I
)
)J

= (mmsc
(
(∃r.E)I , I

)
)J

= (mmsc
(
CI , I

)
)J .

Thus, CJ = (mmsc
(
CI , I

)
)J . Since J was chosen arbitrarily, we can conclude that

B(I) |= C ≡ mmsc
(
CI , I

)
.

Now, we prove that if I |= C ⊑ D, then B(I) |= mmsc
(
CI , I

)
⊑ mmsc

(
DI , I

)
. Let J

be a model of B(I). We know from Lemmas 5 and 12 that there are U, V ⊆MI such that
CI = (

d
U)I andDI = (

d
V )I . From the definition of B(I), we obtainmmsc

(
(
d
U)I , I

)
⊑

mmsc
(
(
d
V )I , I

)
∈ B(I). Therefore:

J |= mmsc
(
(
l

U)I , I
)
⊑ mmsc

(
(
l

V )I , I
)

Replacing (
d
U)I with CI and (

d
V )I with DI yields:

J |= mmsc
(
CI , I

)
⊑ mmsc

(
DI , I

)
.

Therefore, using the fact that J |= C ≡ mmsc
(
CI , I

)
for every EL⊥ concept expression

C (proved earlier) we can conclude that J |= C ⊑ D.
Since all the required concept inclusions hold in an arbitrary model of B(I), whenever

they hold in I we have that B(I) is also complete for the EL⊥ CIs.

Theorem 3. Let I = (∆I , ·I) be a finite EL⊥ interpretation and X ⊆ ∆I . Let dI (X) be the
(adaptable) depth according to Definition 5 and dgfp(X, I) be the depth for the EL⊥gfp MMSC
of X w.r.t. I, according to Lemma 5.5 in (Distel, 2011). Then, dI (X) ≤ dgfp(X, I).
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Proof. Let us assume that the set X has n elements, denoted x1, . . . , xn. According to
Lemma 4.6 in (Distel, 2011), the MMSC of X w.r.t. I in EL⊥gfp is a concept expression
C = (AX , TX) where, according to Definition 2.23 in (Distel, 2011), AX is a fresh concept
name and TX is a set of equivalences (a TBox) where the left-hand side is a defined concept
name (see Definition 2.16 in (Distel, 2011)) and the right-hand side is a concept expression
built from the product graph

∏n
i=1 G(I). This TBox has one defined concept name for each

vertex in the product graph
∏n

i=1 G(I) that is reachable from (x1, . . . , xn). Therefore, TX
has reach(

∏n
i=1 G(I), (x1, . . . , xn)) defined terms. According to Lemma 5.5 and equation

5.27 (definition of the base B4) from (Distel, 2011), the MMSC of X w.r.t. I has to be
unravelled until depth |NC

def (TX)| ·∆I +1 when converting the base to EL⊥. Furthermore,
|NC

def (TX)| corresponds to the number of reachable vertices from (x1, . . . , xn) in
∏n

i=1 G(I).
As mentioned before, the MVF of a vertex in a graph cannot be higher than the number

of reachable vertices from the same vertex (mvf(G, v) ≤ reach(G, v)). Now, we consider
two cases according to Definition 5. If dI (X) = mvf(

∏n
i=1 G(I), (x1, . . . , xn)) then clearly

dI (X) ≤ dgfp(X, I). Otherwise, we have

mvf(
n∏

i=1

G(I), (x1, . . . , xn)) ≤ reach(
n∏

i=1

G(I), (x1, . . . , xn)) = NC
def (TX).

And since and mmvf(G(I)) ≤ ∆I , we have

mvf(
n∏

i=1

G(I), (x1, . . . , xn)) ·mmvf(G(I)) ≤ |NC
def (TX)| ·∆I + 1.

In other words, dI (X) ≤ dgfp(X, I).

Appendix C. Proofs for Section 6

In the following we present the proofs related to the computation of the MVF function. In
particular, we provide proofs for the relationship between the condensation graph and the
MVF function (Lemma 6), and the correctness of Algorithm 1 (Lemma 7).

Lemma 6. Let G = (V,E, L) be a description graph, let G∗ = (V ∗, E∗) be the condensation
of G, and v ∈ V . Then:

mvf(G, v) =max {weight(w∗) | w∗ is a path in G∗ starting at scc(G, v)} .

Proof. First we prove that every path w∗ = V1, . . . , Vm in G∗ starting at scc(G, v) induces
a walk in G starting at v with vnum(w) = weight(w∗). Let v1 = v. For each 1 ≤ i < m,
the induced walk must: visit vi, then pass through all vertices in Vi (repeating vertices
whenever needed), then visit a vertex ui ∈ Vi such that there is an edge (ui, r, vi+1) ∈ E
with vi+1 ∈ Vi+1 (this is possible due to the definitions of SCCs and condensation). When
the walk reaches a vertex um−1, it must visit vm and pass through every vertex in Vm before
stopping. Such walk visits every vertex in

⋃m
i=1 Vi, thus vnum(w) = weight(w∗).

Now let w be a walk in G starting at v which is induced (as explained earlier) by a path
w∗ in G∗ starting at scc(G, v) with maximum weight. Assume that there is a walk w in G
starting at v such that vnum(w) > vnum(w). Due to the definitions of SCC and condensation
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we know that there is a path w∗ in G∗ starting at scc(G, v) such that vnumw ≤ weight(w∗).
However, this would imply that: weight(w∗) = vnum(w) < vnumw ≤ weight(w∗), which is
a contradiction since we assume that w∗ has maximal weight. Therefore, no walk in G
starting at v can visit more vertices than weight(w∗).

Since we have shown that for every path w∗ in G∗ starting at scc(G, v), there is a walk
w in G starting at v, with vnum(w) = weight(w∗), we can conclude that the statement of
this lemma holds.

Lemma 7. Given G = (V,E, L) and v ∈ V as input, Algorithm 1 returns the maximum
weight of a path in the condensation of G starting at scc(G, v).

Proof. Let G∗ = (V ∗, E∗) be the condensation of G. IfW ′ ∈ V ∗ is unreachable from scc(G, v)
then wgt[V ′] will remain null as it will never be visited. Otherwise, W ′ will be visited in
some call of maxWeight. If it has no successors, the loop in Line 9 will not do anything, and
thus wgt[W ′] = |W ′| as expected. Instead, if scc(G, v) has successors, then the maximum
weight of a path starting at scc(G, v) in G∗ is given by |scc(G, v)| plus the maximum value
computed among its successors. This equation holds because G∗ is a DAG. Since, the loop
in Line 9 forces the maximum weights of the successors of W ′ to be calculated first, the
value returned in Line 15 is correct.

Appendix D. Compacting the Product Graph

The product graph employed in the calculation of the MMSC can have an exponential
number of vertices in the size of the domain, more specifically, for a finite interpretation
I = (∆I , ·I) the product graph can have up to |∆I ||∆I | vertices. However, some of these
vertices are indistinguishable when navigating the product graph, and thus, we could group
these vertices, producing an equivalent, but smaller graph. The idea is to group vertices
into classes of equivalence as defined next.

Definition 12. Let G = (V,E,L) be a description graph. We say that two vertices v, w ∈ V
are similar (written as v ≈ w) if:

1. L(v) = L(w).

2. (v, r, v′) ∈ E iff ∃w′ ∈ V such that w′ ≈ v′ and (w, r, w′) ∈ E.

The similarity relation between vertices induces a partitioning of V into equivalence
classes. Denote by [v] the equivalence class which contains the vertex v. The set of all
equivalence classes of vertices is [V ], that is, [V ] = {[v] | v ∈ V }.

Definition 13. Let G = (V,E,L) be a description graph.
The compact version of G, in symbols, [G] = ([V ], [E], [L]) is defined as follows:

• [V ] = {[v] | v ∈ V }.

• [E] = {([v], r, [w]) | (v, r, w) ∈ E}.

• [L]([v]) = L(v).
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The function L(v) is well defined because all vertices in the same class have the same
labels.

Lemma 13 shows that there will be always a simulation from the compact version of a
description graph to the original one.

Lemma 13. Let G = (V,E,L) be a description graph and [G] = ([V ], [E], [L]) its compact
version. Now, let the relation Zcp be defined as follows:

Zcp = {([w], w) | w ∈ V }.
For every v ∈ V , Zcp is a simulation from ([G], [v]) to (G, v).

Proof. Let G, [G], and Zcp be as in the lemma’s statement. Consider now a vertex v ∈ V .

1. By definition of Zcp, ([v], v) ∈ Zcp.

2. By the first condition in Definition 13, for all w ∈ V we have that:

[L]([w]) = L([w]) = L(w).

3. Let ([w], w) ∈ Zpc and assume that ([w], r, [x]) ∈ E. By Definition 13, ([w], r, [x]) ∈ E
implies that there are w′ ∈ [w] and x′ ∈ [x] such that (w′, r, x′) ∈ E. By the second
condition in Definition 12, since w′ ≈ w and (w′, r, x′) ∈ E there is some x′ ≈ y ∈ V
such that (w, r, y) ∈ E. Moreover, by construction of Zcp and Definition 13 we obtain
([x], y) ∈ E, as required.

Therefore, Zcp is a simulation from ([G], [v]) to (G, v) for any v ∈ V .

Lemma 14. Let G = (V,E,L) be a description graph and [G] = ([V ], [E], [L]) its compact
version. Now, let the relation Zpc be defined as follows:

Zpc = {(w, [w]) | w ∈ V }.
For every v ∈ V , Zpc is a simulation from (G, v) to ([G], [v]).

Proof. Let G, [G], and Zpc be as in the lemma’s statement. Consider now a vertex v ∈ V .

1. By definition of Zpc, (v, [v]) ∈ Zpc.

2. As stated in Definition 13, for all w ∈ V we have that:

[L]([w]) = L([w]) = L(w).

3. Let (w, [w]) ∈ Zpc and assume that (w, r, x) ∈ E. By Definition 13, we know that
([w], r, [x]) ∈ [E] and by construction of Zpc, we have (x, [x]) ∈ Zpc.

Therefore, Zpc is a simulation from (G, v) to ([G], [v]) for any v ∈ V .

Since our results depend on unravellings, we also need to consider simulations between
unravellings of two description graphs, as follows.

Lemma 15. Let G = (V,E,L) and G′ = (V ′, E′, L′) be description graphs, v ∈ V and
v′ ∈ V ′. If there is a simulation Z : (G, v) 7→ (G′, v′), then for all n ∈ N there is a

simulation Zn : (Gvn, v) 7→ (G′v
′

n , v
′).

Proof. The proof is by induction on n.
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Base: Assume n = 0. We will prove that the set Z0 = {(v, v̂) | (v, v̂) ∈ Z} is a simulation

from (Gv0 , v) to (G′v
′

0 , v
′):

1. (v, v′) ∈ Z0 since we assume (v, v′) ∈ Z.

2. L(v) ⊆ L(v̂) for all (v, v′) ∈ Z0 because Z is a simulation.

3. Gv0 does not have edges, hence the last condition is trivially satisfied.

Therefore, Z0 is a simulation from (Gv0 , v) to (G′v
′

0 , v
′).

Step: Assume that the lemma holds for all 0 ≤ i < n. Let

Zn = Zn−1 ∪ {(ŵrx, ŵ′ry) | (ŵ, ŵ′) ∈ Zn−1, (δ(ŵ), r, x) ∈ E, and (x, y) ∈ Z}.

We will prove that the set Zn as is a simulation from (Gvn, v) to (G′v
′

n , v
′):

1. By construction, Zn−1 ⊆ Zn. Since Zn−1 is a simulation from (Gvn−1, v) to (Gvn−1, v)
(by the induction hypothesis), we have that (v, v′) ∈ Zn.

2. Let (w,w′) ∈ Zn. If (w,w′) ∈ Zn−1, we get as a consequence of the induction
hypothesis that Ln(w) = Ln−1(w) ⊆ L′

n−1(w
′) = L′

n(w
′). Otherwise, since we assume

that Z is a simulation from (G, v) to (G′, v′), we get that Ln(δ(w)) = L(δ(w)) ⊆
L′(δ(w′)) = L′

n(w
′).

3. Let (w,w′) ∈ Zn and (w, s,wst) ∈ En. By the definition of unravelling we only
need to consider the cases in which w ∈ Vn−1. If (w, s,wst) ∈ En−1, we get as
a consequence of the induction hypothesis, that there is a w′′ ∈ V ′

n−1 ⊆ V ′
n such

that (wst,w′′) ∈ Zn−1 and (w′, s,w′′) ∈ E′
n−1 ⊆ E′

n. Otherwise, we know that
|w| = n− 1 and thus wst ∈ Vn \Vn−1. By construction, we get (w,w′) ∈ Zn−1. Since
(w, s,wst) ∈ En, there is an edge (δ(w), s, t) ∈ E. Also, since Z is a simulation and
(δ(w), δ(w′)) ∈ Z due to the constructions of Z0 and Zn, we get that there must be
some u ∈ V ′ such that (δ(w′), s, u) ∈ E′ and (t, u) ∈ Z. Therefore, (w′, s,wsu) ∈ E′

n,
and by definition of Zn, get that (wst,w′su) ∈ Zn.

Therefore, the lemma holds for all n ∈ N.

Finally, we prove that we can replace the product graph in Definition 5 with its compact
version, potentially having a lower depth while ensuring that Lemma 4 still holds.

Lemma 16. Let G = (V,E,L) and G′ = (V ′, E′, L′) be description graphs, v ∈ V , v′ ∈ V ′,
n ∈ N∗. Also, let

d′ = mvf([G], [v]) ·mvf(G′, v′).

If there is a simulation from Z ′
d : (Gvd′ , v) 7→ (G′, v′) then there is a simulation Zk :

(Gvk , v) 7→ (G′, v′) for all k ∈ N.
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Proof. Let us assume that there is a simulation Z ′
d : (Gvd′ , v) 7→ (G′, v′). From Lemma 13,

we know that there is a simulation from ([G], [v]) to (G, v). Hence, we get from Lemma 15

that there is a simulation from ([G][v]d′ , [v]) to (Gvd′ , v). Since the composition of simulations

is a simulation, we know that there is a simulation Zc
d′ : ([G]

[v]
d′ , [v]) 7→ (G′, v′).

The existence of such Zc
d′ together with Lemma 2 ensures that there is a simulation

Z ′
k : ([G][v]k , [v]) 7→ (G′, v′). Lemma 14 states that there is a simulation Zpc : (G, v) 7→

([G], [v]), and as a consequence of Lemma 15, we know that there is a simulation Z2 :

(Gvk , v) 7→ ([G][v]k , [v]). Then, we can take Zk = Z2 ◦ Z ′
k, which is a simulation from (Gvk , v)

to ([G][v]k , [v]).
Hence, if there is a simulation Z ′

d : (Gvd′ , v) 7→ (G′, v′), then there is a simulation Zk :
(Gvk , v) 7→ (G′, v′) for all k ∈ N.

The compact version of a description graph will have at most as many vertices as the
original one since there can be at most |V | equivalence classes. In our a case, since we use
product graphs whose factors are all the same graph, we can give an upper bound on the
number of vertices of its compact version. If G = (V,E,L) is a description graph,

∏n
i=1 G

can have up to |V |n vertices, but the compact version of this product can only have up to:
(|V |+n−1)!
n!(|V |−1)! . Before we prove this result, we will need the following lemma, which establishes

a sufficient condition for two vertices to belong to the same equivalent class in
∏n

i=1 G.

Lemma 17. Let G = (V,E,L) be a description graph, GP = (VP , EP , LP ) =
∏n

i=1 G, and
n ∈ N∗. Also, let v = (v1, . . . , vn) and w = (w1, . . . , wn) be vertices in VP . If v and w are
permutations of each other, that is, |{vi = x | 1 ≤ i ≤ n}| = |{wi = x | 1 ≤ i ≤ n}| for all
x ∈ V , then [v] = [w].

Proof. We will show that [v] = [w] by proving each required condition separately. We just
need to show that defining classes of equivalence via the notion of permutation satisfies the
same conditions specified before.

1. By the definition of product graph, we have that LP (v) =
⋂n

i=1 L(vi). Since, v and w
are permutations of each other

⋂n
i=1 L(vi) =

⋂n
i=1 L(wi). Hence LP (v) = LP (w).

2. Let (v, r, v′) ∈ EP . By the definition of product graph, we have that (v1, r, v
′
1) ∈ E for

all 1 ≤ i ≤ n. As v and w are permutations of each other, there is a bijective function
p : {1, . . . , n} → {1, . . . , n} such that wj = vp(j) for all 1 ≤ j ≤ n. Now, consider the
vertex w′ = (v′p(1), . . . , v

′
p(n)). We know that v′ and w′ are permutations of each other.

Moreover, we know that (wj , r, w
′
j) ∈ E for all 1 ≤ j ≤ n because (vp(j), r, v

′
p(j)) ∈ E

as a consequence of (v, r, v′) ∈ EP .

3. This case is analogous to item (2), and we can conclude that if (v′, r, v) ∈ E, then
there is a permutation w′ such that (w, r, w′) ∈ EP .

Hence, using permutation groups as classes, preserves the properties of equivalence
classes stated before. That is, we can conclude that [v] = [w] whenever v and w are
permutations of each other.

Lemma 18 shows how to obtain the value we claimed before.
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Lemma 18. Let G = (V,E,L) be a description graph, GP = (VP , EP , LP ) =
∏n

i=1 G and

n ∈ N∗. Then [GP ] has at most (|V |+n−1)!
n!(|V |−1)! vertices.

Proof. Let G, GP and n be as stated. Let (v1, . . . , vn) and w1, . . . , wn be vertices in VP .

Lemma 17 shows that we grouping vertices that are permutations of each other gives
an upper limit to the number of equivalence classes, and thus, of the number of vertices in
[GP ].

This means that if we count all possible combinations of n elements drawn from V with
repetition, we obtain an upper bound for the number of equivalence classes in [VP ]. The
number of combinations of |V | elements taken n at a time with repetition is given by the
following formula (Benjamin & Quinn, 2003)

(|V |+ n− 1)!

n!(|V | − 1)!
.

Hence, there can be at most this many vertices in [V ].

Finally, Lemma 19 proves that the compact version has at most the same quantity of
vertices as the original product graph.

Lemma 19. Let G = (V,E,L) be a description graph, n ∈ N∗, GP = (VP , EP , LP ) =
∏n

i=1 G
and [GP ] = (VC , EC , LC). Then [GP ] has at most as many vertices as GP .

Proof. First, let m,n ∈ N∗, f(m,n) = (m+n−1)!
n!(m−1)! and g(m,n) = mn. We will prove that

f(m,n) ≤ g(m,n).

We can write f(m,n+ 1) in terms of f(m,n) as:

f(m,n+ 1) =
m+ n

n+ 1
· f(m,n).

We can do the analogous for g(m,n):

g(m,n+ 1) = m · g(m,n).

When n = 1 we have:

f(m, 1) = m = g(m,n).

Therefore, to prove that f(m,n) ≤ g(m,n) for all m,n ∈ N∗ it is sufficient to show that
m+n
n+1 ≤ m for all m,n ∈ N∗, which we do next:

m+ n

n+ 1
≤ m

m+ n ≤ mn+m

m−m−mn+ n ≤ 0

−mn+ n ≤ 0

n(1−m) ≤ 0
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Since n ≤ 1, n(1 − m) ≤ 0 iff 1 − m ≤ 0, that is, m ≥ 1, which is already assumed.
Hence, we have shown that f(m,n) ≤ g(m,n) for m,n ∈ N∗.

If we replace m with |V |, g(m,n) is the number of vertices in GP while f(m,n) gives the
number of vertices in [GP ] according to Lemma 18. Hence, we proved that [GP ] will have at
most as many vertices as GP .
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