
Citation: Khotyachuk, R.; Johannsen,

K. Analysis of the Numerical

Solutions of the Elder Problem Using

Big Data and Machine Learning. Big

Data Cogn. Comput. 2023, 7, 52.

https://doi.org/10.3390/

bdcc7010052

Academic Editors: Miltiadis D. Lytras

and Andreea Claudia Serban

Received: 27 December 2022

Revised: 28 February 2023

Accepted: 15 March 2023

Published: 20 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and 
cognitive computing

Article

Analysis of the Numerical Solutions of the Elder Problem Using
Big Data and Machine Learning
Roman Khotyachuk 1,* and Klaus Johannsen 2

1 Faculty of Mathematics and Natural Sciences, University of Bergen, 5020 Bergen, Norway
2 NORCE Norwegian Research Center AS, 5008 Bergen, Norway
* Correspondence: roman.khotyachuk@uib.no

Abstract: In this study, the numerical solutions to the Elder problem are analyzed using Big Data
technologies and data-driven approaches. The steady-state solutions to the Elder problem are
investigated with regard to Rayleigh numbers (Ra), grid sizes, perturbations, and other parameters
of the system studied. The complexity analysis is carried out for the datasets containing different
solutions to the Elder problem, and the time of the highest complexity of numerical solutions is
estimated. An approach to the identification of transient fingers and the visualization of large
ensembles of solutions is proposed. Predictive models are developed to forecast steady states based
on early-time observations. These models are classified into three possible types depending on
the features (predictors) used in a model. The numerical results of the prediction accuracy are
given, including the estimated confidence intervals for the accuracy, and the estimated time of
95% predictability. Different solutions, their averages, principal components, and other parameters
are visualized.

Keywords: scientific Big Data; Elder problem; numerical PDE; complexity analysis; machine learning

1. Introduction

Density-driven flows in porous media are frequently observed in natural and tech-
nical systems. They are caused by different densities of mixing fluids or changes in their
temperature, and sometimes by a combination of these two factors. Such fluid and thermal
processes have significant environmental and economic impacts.

The Elder problem is the example of density-driven flows induced by variations in
density. This type of flow appears in many practical cases, such as freshwater–saltwater
interactions, heat transfer, and carbon dioxide sequestration. John Elder provided an
original formulation of this problem for thermal convection flows [1,2]. Later, the equa-
tions mathematically identical to the Elder problem were used to describe other physical
processes. For example, Voss and Souza (1987) [3] reformulated them for the case of
saltwater–freshwater flows. In addition, there is a connection between the Elder problem
and the broader class of other problems that describe convection in porous media [4].

The numerical modeling of flows in porous media is used, in addition to its undoubt-
edly high theoretical value, to predict their behavior in a number of important practical
cases, such as risk assessment, water resource management, geothermal reservoir study,
and evaluating the safety of reservoirs for radioactive waste. Such modeling is challenging
because of the high variability in flow processes, the non-linearity of governing equations,
and the wide range of time and space domains where a problem is solved numerically.

In the present study, we analyze large sets (ensembles) of numerical solutions to the
Elder problem using Big Data technologies and machine learning (ML) techniques.

The paper is organized as follows. In Section 2, we describe the Elder problem itself,
the governing partial differential equations (PDEs) and their numerical models, scientific
questions, and some other related subtasks. In Section 3, we briefly describe the methods,

Big Data Cogn. Comput. 2023, 7, 52. https://doi.org/10.3390/bdcc7010052 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc7010052
https://doi.org/10.3390/bdcc7010052
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0002-2849-6525
https://orcid.org/0000-0002-0600-2715
https://doi.org/10.3390/bdcc7010052
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc7010052?type=check_update&version=1


Big Data Cogn. Comput. 2023, 7, 52 2 of 24

approaches, and software used in this work. In Section 4, we present and discuss our results,
including unperturbed and perturbed simulations, and the identification and visualization
of the properties of numerical solutions, complexity analysis, and predictive modeling of
the Elder problem.

2. Models and Scientific Questions
2.1. The Elder Problem

The governing equations for density-driven flows in porous media are derived from
the mass-conservation principles:{

∂(nρ)
∂t = ∇(ρν)

∂(nρω)
∂t +∇(ρων− ρDm∇ω) = 0

, (1)

where ω is the salt mass fraction, ρ is the density, n is the porosity, Dm is the molecular
diffusion coefficient, and ν is the average mass velocity. ν is given by Darcy’s law:

ν =
−K
µ

(∇ρ− ρg) , (2)

where K denotes permeability, µ denotes viscosity, and g denotes the gravity vector. Density
is obtained from the ideal mixing relation:

1
ρ
= (1− ω

ωmax
)

1
ρmin

+
ω

ωmax

1
ρmax

, (3)

where ωmax is the maximum salt mass fraction, ρmin is the minimum density, and ρmax is the
maximum density. In the present work, we use salt concentrations c in a non-dimensional
form, and it is rescaled to the range c = [0, 1].

The geometry and boundary conditions of the Elder problem are provided in Figure 1,
and physical parameters are provided in Table 1.

Figure 1. The Elder problem: domain, boundary conditions, and the l = 2 grid.

Table 1. Parameters of the Elder problem.

Name Symbol Value Unit

Porosity n 0.1 -

Molecular diffusion coefficient Dm 3.565× 10−6 m2·s−1

Viscosity µ 0.001 kg·m−1

Permeability K 4.845× 10−13 m2

Max. salt mass fraction ωmax 20% -

Min. density ρmin 1000.0 kg·m−3

Max. density ρmax 1200.0 kg·m−3

Gravity g 9.81 m·s−2



Big Data Cogn. Comput. 2023, 7, 52 3 of 24

The Rayleigh number is a measure of the strength of the non-linearity existing in
a system studied. It is widely used to characterize the regime of fluid flows. In the case of
the Elder problem, it is defined as follows:

Ra :=
K(ρmax − ρmin)gh

Dmµn
, (4)

where h = 150 m is the characteristic length of the problem (see Figure 1).
The Elder problem, as a dynamical system described by the system of Equation (1), is

known to have three stable steady-state solutions. They are obtained asymptotically when
t → ∞. If we visualize these solutions using contour plots at each time t, we can notice
some concentration fields with the shape of a human finger. The process typically starts
with more than two “fingers” at t = 1–2 years; small fingers are merged into larger ones,
and at t→ ∞, the process converges to a solution with one, two, or three fingers, depending
on physical parameters, initial conditions, etc. These solutions are called one-, two-, or
three-finger steady-state solutions. They are usually denoted S1, S2, or S3, respectively [5,6].
These three solutions are depicted in Figure 2. S1 and S2 solutions are also mentioned as
upwelling and downwelling solutions [2], respectively. The solutions at t = 0 are called
initial solutions, and the solutions in 0 < t < ∞ are called transient solutions.

Figure 2. Development in time of the Elder problem for 1-, 2-, and 3-finger solutions.

Fingering can be defined as the process of appearing, growing, and merging small
fingers into larger ones. It is highly dependent on the physical parameter of the studied
system, perturbations, etc. The one-, two-, and three-finger solutions may look quite similar
at an early time (Figure 2, see the solutions at t = 2 years). However, they start to change
very significantly over the next periods, and finally become S1, S2, or S3 solutions at t→ ∞.
In Section 4.3, we will describe our approach and the results in identifying transient fingers
and in estimating their positions and strength.

For the given initial conditions of the Elder problem, the correct steady-state solution is
very likely the S1 or S2 solution, although a proof does not exist. If the initial conditions of
the problem are slightly altered, the S1 solution could be the result instead of the expected
S2 solution and vice versa: the S2 instead of the expected S1 solution. If the setup of the
problem is significantly altered, the three-finger solution (S3) could also arise, but this is
a rare situation.

2.2. Existing Approaches to the Elder Problem

The numerical solutions of PDEs that describe the Elder problem have been investi-
gated by many researchers. As mentioned above, Elder originally reported such solutions
after his thermal convection experiments in porous media [7]. They have been studied by
other researchers (Voss and Souza 1987 [3]; Johannsen 2003 [5]; Simmons et al., 1999 [8];
Van Reeuwijk et al., 2009 [9]). They focused basically on obtaining numerical solutions to



Big Data Cogn. Comput. 2023, 7, 52 4 of 24

the Elder problem using different numerical solvers for Equations (1), and investigated the
numerical stability and sensitivity of the obtained solutions. There was some controversy
in the results reported by different researchers; that is, about which solution is the right
one. It was associated with the number of fingers in a steady state (S1, S2, or S3) and was
caused by different numerical methods applied to solve the PDEs, or different parameters
of the problem.

This discussion started with Elder’s results (1967) [1]. He provided a single-finger
solution for the case of Ra = 400 in dimensionless time t = 0.1, i.e., near steady state.
Then, Voss and Souza (1987) [3] reproduced Elder’s one-finger solution using the SUTRA
model [10]. This S1 solution was considered correct for the next eight years until Oldenberg
and Pruess (1995) [11] reported the S2 result. They claimed that the two-finger solution
is closer to the original solution provided by Elder (1967) [1]. This S2 result has been
reproduced using other models (Kolditz et al. 1998 [12]; Prasad and Simmons 2003 [13]),
so S2 has been considered to be the correct solution. However, Frolkovič and de Schepper
(2001) [6] again reported the S1 solution obtained from a finer grid than that used by
Oldenberg and Pruess (1995) [11]. Furthermore, Frolkovič and de Schepper (2001) [6]
reported a new S3 solution obtained using an approach based on adaptive grids. Diersch
and Kolditz (2002) [2] confirmed the S1 solution obtained by Frolkovič and de Schepper
(2001) [6], although this result was opposite to their S2 solution reported in 1998 [12].
Based on a bifurcation analysis with respect to the Rayleigh number (Ra), Johannsen
(2002 and 2003) [5,14] confirmed the existence of several possible steady-state solutions
to the Elder problem. He reported three stable solutions (S1, S2, and S3) and eight other
unstable solutions. This motivated other researchers to continue studying the Elder problem
using different approaches. Woods et al. (2003) [15] investigated numerical errors using
SUTRA [10] and indicated that the Elder problem is extremely sensitive to the methods
used to solve PDEs and their numerical errors. Thornea et al. (2004) [16] developed the
lattice Boltzmann model for the Elder problem. Van Reeuwijk et al. (2009) [9] investigated
the Elder problem using a pseudospectral method to avoid numerical errors associated
with spatial discretization, and confirmed the results reported by Johannsen (2003) [5] in his
bifurcation analysis. Musuuza et al. (2011) [17] investigated the perturbed solutions to the
Elder-like problem (for the domain different from the classical one), perturbing the inflow
region with sinusoidal functions of different wavelengths. Ataie-Ashtiani et al. (2014) [18]
explored the influence of different boundary conditions and again showed that there are
multiple solutions to the Elder problem.

Nowadays, the three stable solutions (S1, S2, and S3) are considered physically possible,
that is, not only numerical artifacts [19]. Different models with slightly different parameters,
numerical solvers, and spatial and temporal discretizations can arbitrarily yield one of
these steady-state solutions.

Among the newest advancements in the Elder problem, we can outline the following
studies. Yan et al. (2019) [20] applied the modified Elder problem to investigate the impact
of permeability inclusions on the migration of an unstable salt plume. Shafabakhsh et al.
(2019) [21] investigated the fractured Elder problem, that is, the influence of different
fracture networks on the Elder problem using the finite element method (FEM). Bahlali
et al. (2022) [22] developed an efficient numerical solver to simulate density-driven flows
based on a dynamic mesh optimization technique (DMO) with applications to the Elder
problem for several Rayleigh numbers.

2.3. Background for Our Study

As was suggested by Xie et al. (2012) [23], a paradigm shift is needed to analyze free
convection in porous media, and the stochastic rather than the deterministic framework
required. Primarily, the researchers of the Elder problem focused on analyzing a relatively
small number of numerical solutions to the examined problem (i.e., under the determin-
istic framework) without obtaining large ensembles of perturbed solutions and without
analyzing their complexity and other statistical properties. From the point of view of



Big Data Cogn. Comput. 2023, 7, 52 5 of 24

dynamical system analysis, they only analyzed a small fraction of the full phase space of
the Elder problem.

This study is an attempt to investigate and to understand a larger fraction of the full
phase space. We are sampling the phase space with a larger number of samples (10,000 or
even more perturbed solutions) with the aim of understanding the nonlinear dynamics
of the Elder problem using data-driven approaches for complex nonlinear dynamical
systems [24,25]. Figure 3 is a visualization of one of the variables (features) (12) used
for predictive modeling in Section 4. This plot gives a 1-dimensional projection of the
phase space of the Elder problem and allows us to consider the problem’s dynamics in
a simplified representation.

In Figure 3, we can observe multiple trajectories of perturbed solutions instead of
three stable trajectories. These trajectories are quite similar in early time but diverge in
a time of t = 6–14 years to three branches with S1, S2, or S3 solutions, respectively. Therefore,
the discussion about the right solution to the Elder problem (Section 2.2) can be considered
in terms of the behaviors of different perturbed solutions to Equation (1) in the phase space.

Figure 3. The behavior of the feature (12) in time for the ensemble of N = 10,000 solutions.

To perform such an analysis, the authors implemented a setup that allows obtaining
large ensembles of numerical solutions and then efficiently analyzing them with Big Data
technologies [26,27]. It is described in Section 3.2.

2.4. Numerical Solution

To solve the system of PDEs that describe the Elder problem, we use d3 f software [28]
based on the general-purpose PDE simulation software UG [29]. It uses a finite-volume
scheme for spatial discretization and the backward Euler method for discretization in time.
Square grids are used to perform numerical calculations. They are obtained from the coarse
grid, which contains four squares via uniform refinement [30].

N = nxny = (2l + 1)(2l+2 + 1), (5)

where nx and ny are the numbers of nodes along axes x and y, respectively.
Parameter l denotes the number of refinements of the initial grid (also called the grid

level). The number of nodes in a grid with level l is calculated using the Formula (5),
and the numerical values can be found in Table 2. The grid of level l = 2 is shown in
Figure 1, together with the boundary conditions.



Big Data Cogn. Comput. 2023, 7, 52 6 of 24

Table 2. Number of nodes at the grid level l.

l 1 2 3 4 5 6 7 8 9

nx 3 5 9 17 33 65 129 257 513

ny 9 17 33 65 129 257 513 1025 2049

N 27 85 297 1105 4257 16,705 66,177 263,425 1,051,137

2.5. Perturbations

Perturbations are the small variations in the variables of the system studied, which
arise naturally in real-world systems or which are intentionally introduced into the numeri-
cal model to investigate perturbed solutions and their behaviors. In the context of the Elder
problem, perturbations could mean some variations in the concentration in a transient
or an initial solution. Without perturbations, it is not possible to obtain both S1 and S2
solutions in the same output ensemble of solutions; i.e., all solutions would be S1 or S2,
as described above. In this work, we use two types of perturbations, as follows:

1. Perturbations that are applied to the initial conditions (weak perturbations);
2. Perturbations that are applied to the solutions in an early time t < 1 year

(strong perturbations).

In both cases, a small random number in the range [−α, α] is added to each concentra-
tion value in the grid as follows:

c̃(x, y, t) = c(x, y, t) + α

(
1− 2

r
rmax

)
, (6)

where c(x, y, t) is an original (unperturbed) concentration value, c̃(x, y, t) is a perturbed
concentration value, r ∈ [0, rmax] is an integer random number generated by the C function
rand() [31], and α is the scale of perturbation.

The value of the scale of perturbation α is selected experimentally with the aim of
obtaining approximately 50% S1 and 50% S2 in an output ensemble of solutions. Usually, it
is between 0.0001 and 0.01. In our setup, we used mainly the first type of perturbation.

2.6. The Steady-State Predicting Problem

Steady-state predictions are important for a number of theoretical and practical cases
when fingering is observed:

• Estimating the predictability of the Elder problem in early times;
• Solving problems in water resource management, for example, the salt lake prob-

lem [8];
• Studying the CO2 injections and sequestration processes [32].

Some researchers [5,9] investigated the steady states of the Elder problem and devel-
oped analytical or semi-analytical methods to calculate a steady state, given the physical
parameters of the system.

In this study, we use an approach based on machine learning. In machine learning,
the problem of predicting steady states can be formulated as a classification problem [33,34],
which is an example of supervised learning. Three-finger steady-state solutions (S3) are
assumed to be very rare outcomes (anomalies) at standard Ra = 400, and they should be
excluded from training/testing datasets. Thus, the problem becomes a binary (two-class)
classification problem with a set of possible outcomes {S1, S2}.

The performances of classification models can be measured using different perfor-
mance metrics. We use classification accuracy as our main performance metric, that is,
the percentage of correctly classified solutions. To estimate the uncertainty of the clas-
sification model, we use bootstrap techniques [35,36]. The bootstrap technique is based
on resampling an original dataset. This allows us to obtain a population of the model
performance metric(s) by sampling a dataset with replacements. Then, this population



Big Data Cogn. Comput. 2023, 7, 52 7 of 24

is used to estimate statistics and confidence intervals for classification accuracy or other
performance metrics.

2.7. Complexity Analysis

The complexity analysis of the numerical solutions of the Elder problem is important
for describing the properties of large ensembles of numerical solutions at different time
steps and for designing appropriate ML models for predicting steady states.

There are many different definitions of complexity for different study cases. Regarding
the complexity of numerical solutions from PDEs (i.e., the complexity of data), the following
measures can be used to estimate this kind of complexity.

• The number of degrees of freedom (DoF) in a dataset.
• Metrics based on the principal component analysis (PCA) of a dataset. The singular

value decomposition (SVD) is used as the computational technique for PCA.
• Metrics related to classification problems and algorithms [37,38].

In this study, we use complexity measures based on PCA/SVD [39] and the approx-
imation precision calculated for large ensembles of solutions. Specifically, the measure
is the number of principal components (PCs) needed to approximate a dataset with 95%
precision. PCA/SVD is an example of unsupervised learning [40] in ML, where unlabeled
data are not separated into training and testing datasets. An unsupervised algorithm uses
statistic-based methods to identify patterns in unlabeled data, and to correlate between raw
and unlabeled data.

3. Methods
3.1. Numerical Solvers for PDEs

The d3 f software, which was used to solve the governing PDEs, implements the finite
volume method (FVM, FV method) [30,41] for space discretization and the backward Euler
schema for time discretization. FVM is one of the most popular discretization techniques in
fluid dynamics. The basic idea of the FVM is to split the domain into a number of control
elements (volumes) where the variables are located at the center of the control volume.
The next step is to integrate the governing equations in each control volume. FVM has
several advantages that make it the preferred method compared to other methods, such
as the finite difference method (FDM) and the finite element method (FEM) [42]. These
advantages are as follows.

• It can be used both on structured (squares) and unstructured (triangles) grids for
complex geometries.

• It uses an integral formulation of conservation laws, which is the native form of
conservation laws.

For time integration, the backward Euler discretization schema is used due to its high
numerical stability [43].

3.2. Big Data Setup for Large-Scale Simulations

In achieving the goals of this study, the authors encountered some challenges related
to software engineering and machine learning in a Big Data environment:

• The implementation of a Big Data setup, allowing mass parallel runs of the legacy d3 f
solver for numerical PDEs;

• The implementation of the pipelines for collecting, post-processing, and storing large
amounts of data from numerical PDEs in the Big Data ecosystem;

• The implementation of machine learning pipelines for supervised (classification) and
unsupervised (dimensionality reduction) models for the studied problem.

Some solutions to these challenges are briefly described below.
A single run of the d3 f software does not require a special technical environment,

and it can be executed on a single workstation. However, we need to execute many runs
(thousands, dozens of thousands, or even more) with different parameters and obtain



Big Data Cogn. Comput. 2023, 7, 52 8 of 24

large ensembles of numerical solutions of the governing PDEs (1). These solutions require
large amounts of disk space (terabytes or even dozens of terabytes of raw data), CPU,
and memory resources, and they take a long time if the d3 f software is running sequentially
on a workstation. It is particularly critical in the case of higher grid levels l > 7, small time
steps ∆t, and large ensemble sizes N > 1000.

For these reasons, the d3 f software has been ported to a Spark cluster [27]. This allows
multiple simulations to run in parallel, saving simulation results to an HDFS (Hadoop file
system [44]) in the optimized row columnar (ORC) format with compression [45]. The run
time of the d3 f software in this configuration is dramatically reduced. For example, if the
grid level l = 5, the time step ∆t = 0.2 years, and the simulation time T = 50 years, one run
of the d3 f software takes approx. 5 min. To obtain an ensemble of N = 100,000 solutions,
we would need around 347 days if the d3 f software ran sequentially. This long time for
obtaining such a dataset was reduced to approx. 33 h when our Spark setup was used.

This allows us to generate and to analyze very large ensembles of numerical solu-
tions. Our typical run has the following parameters: l = 6, ∆t = 0.1 years, simulation
time Tmax = 50 years (plus some additional steps to obtain steady-state solutions using
a different solving schema), and ensemble size N = 10,000 solutions, with a perturbation of
the initial conditions. The output of such a run is about 2 Tb of raw data. We used Spark
libraries to preprocess our raw data and to solve ML tasks.

From a technical point of view, we implemented the system of parallel runs of legacy
d3 f software that produces comma-separated values (CSV) files with output results. All
these files are saved to a given directory in HDFS, together with a file of parameters of each
d3 f run. After completing all d3 f runs, a Spark job reads all of these files and transforms
the data into a Spark dataframe, performs some preprocessing steps, performs labeling
of the S1/S2/S3 solutions, calculates features, and finally, saves this data frame to HDFS
in ORC format with compression. Our data-processing pipeline is shown in Figure 4.
The configuration of our Hadoop/Spark cluster is provided in Table 3.

Figure 4. The data-processing pipeline.

Table 3. Hadoop cluster configuration.

Parameter Value

Number of nodes 10

CPU type ×86_64, the mix of Intel and AMD CPUs

Total cores available 208 (416 threads)

Total memory (RAM) available 1792 GB



Big Data Cogn. Comput. 2023, 7, 52 9 of 24

Table 3. Cont.

Parameter Value

RAM per node from 128 to 256 GB

HDFS storage available 192 TB

Cluster manager YARN

3.3. Machine Learning

As we already mentioned above, the problem of predicting the steady states of the
Elder problem is formulated as a binary (two-class) classification problem. In machine
learning, classification is considered an example of supervised learning. In the case of
supervised learning, the data are labeled and divided into the following subsets [35,46]:

(i) A train set with correctly defined labels to fit a model;
(ii) A validation dataset to estimate the model’s skill while tuning the model’s hyperpa-

rameters;
(iii) A test set to obtain the performance metrics of a trained model.

Finally, the trained model is used to make predictions on new data.
Let X = {Xj}, j = 1, . . . , P be a feature vector, and let Y = {1, 2} be a vector of possible

outcomes, i.e., S1 or S2 steady-state solutions. P denotes the number of features (predictors).
Each feature is a function of numerical solutions to the Elder problem:

Xj = f j(c(x, y, t)) (7)

where c(x, y, t)) = {ci(t)}, i = 1, . . . , N, N is large (see Table 2).
The goal is to predict a steady state with 95% accuracy as early as possible, based

on observations from the beginning and up to time t. Many different classification meth-
ods [33,34,47] can be used to predict steady states with an acceptable performance. In this
study, we use support vector machines (SVMs), random forest (RF), and gradient boosting
(GB) classifiers [33,47] implemented in the SciKit-learn package [48], and the Apache Spark
MLlib library [49]. This library was also used for PCA, dimensionality reduction, and the
complexity analysis of large ensembles of solutions.

The SciKit-learn package in Python [48] was used for preliminary investigations
and the design of ML models based on the features precalculated in Spark. Jupyter
notebooks [50] were used for interactive data exploration and visualization. All plots were
created using the Matplotlib package [51].

3.4. Feature Engineering

The ML algorithms themselves, the approaches to training, and the validation of
ML models are more or less standardized procedures. The important task for an ML
algorithm/method is to design a set of features (predictors) that are relevant to the studied
process and that can predict an outcome with a given degree of accuracy. This is more
critical for the classic ML algorithms used in this paper. For the deep learning models, it
is less important, as they are able, in a number of cases, to extract features when fitting
a training dataset. There are many approaches, techniques, and tools for feature design
or engineering [52]. Some of them can be used for designing predictive models of the
Elder problem.

We developed several predictive models for the Elder problem using the classification
methods mentioned above. These models are capable of predicting a steady state with
acceptable accuracy, and they can be divided into three types, as follows.

• Fully informed models (Type I);
• Partially informed models (Type II);
• Black-box models (Type III).



Big Data Cogn. Comput. 2023, 7, 52 10 of 24

Type I models are the models based on domain knowledge. This means that we are
designing features using all of the possible information about the system studied, including
unperturbed transient solutions and steady-state solutions.

Type II. In such models, we design features based on partial knowledge of the system.
In our case, we use the knowledge that the presence of fingers characterizes the studied
process. Those fingers can be measured using their positions and relative strength, as de-
scribed in Section 4.3. Thus, we obtain the initial set of features. We then apply one of the
feature selection techniques [52] to identify a subset of the most important features. For ex-
ample, it could be the feature importance based on the Gini impurity [53] implemented
in RF and GB classifiers [33], univariate statistical tests [54], or the coefficients of the SVM
classifier [47] with the linear kernel. The final model uses k features selected from the initial
set. For example, for the solution with grid level l = 6 containing 16,705 values at each
time t, we calculate the initial set with 257 features, as described in Section 4.3. Then, we
apply one of the feature selection techniques to the initial set and select k = 18 features
with the highest importance scores.

Type III models are the models designed using purely data-driven approaches. We do
not make any assumptions about the process and we do not use any a priori information
for designing features. For example, projections on the k first principal components (PCs)
of the original dataset can be used as features in such a classification model.

4. Results and Discussion

In this section, we present some results of our Big Data analysis of the Elder problem
based on the approaches and models described above.

4.1. Unperturbed Solutions

First, aiming to investigate the influences of the different levels l of the grid and
time steps ∆t on numerical solutions for the Elder problem, we performed simulations
with a wide range of Rayleigh numbers (Ra) from 0 to 475, with increasing grid levels
l = {6, 7, 8, 9} and different time steps, such as ∆t = {0.05, 0.1, 0.2} years, but without
any perturbations, that is, the scale of perturbation α = 0 in (6). For the grid with the finest
resolution l = 9 (it contains more than 106 points), we obtained the following steady-state
solutions (Table 4).

Table 4. Steady-state solutions obtained for different Ra on the grid l = 9.

Ra 0 25 50 75 100 125 150 175 200 225

Solution S1 S1 S1 S1 S2 S2 S2 S1 S2 S2

Ra 250 275 300 325 350 375 400 425 450 475

Solution S1 S3 S3 S2 S2 S2 S1 S1 S1 S1

We believe that these solutions (Table 4) are the true solutions to the Elder problem
for a given Ra, and this is our word for the discussion on the right solution to the Elder
problem (see Section 2.2). The problem is nonlinear and is highly sensitive to different
discretization schemes, time steps, numerical errors, etc. Any of these factors can play the
role of perturbations and can cause essential changes in the observed solution dynamics
and lead to a steady state that is different from the expected one. Therefore, we consider
this situation as a problem that contains uncertainty, and we introduce the conditional
probabilities P̂(Sk|Ra) of the S1/S2/S3 solution, given Ra. It is calculated as the ratio of
counts, as follows:

P̂(Sk|Ra) =
NSk|Ra

∑3
k=1 NSk|Ra

, (8)



Big Data Cogn. Comput. 2023, 7, 52 11 of 24

where NSk|Ra is the number of Sk solutions obtained for a given Ra, k = 1, 2, 3. Table 5
contains the summary of all our unperturbed simulations, with the estimated probabilities
(8) of an Sk solution for each given Ra.

Table 5. Conditional probabilities P̂(Sk|Ra) of Sk solutions, k = {1, 2, 3}.

Sk|Ra 0 25 50 75 100 125 150 175 200 225

S1 1.00 1.00 1.00 0.83 0.00 0.00 0.48 0.87 0.00 0.00

S2 0.00 0.00 0.00 0.17 1.00 1.00 0.52 0.00 1.00 1.00

S3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00

Sk|Ra 250 275 300 325 350 375 400 425 450 475

S1 0.70 0.00 0.00 0.13 0.00 0.00 0.52 0.71 0.86 0.65

S2 0.30 0.22 0.04 0.57 0.87 0.86 0.33 0.29 0.14 0.35

S3 0.00 0.78 0.96 0.30 0.13 0.14 0.14 0.00 0.00 0.00

4.2. Perturbed Solutions

In this and in the following sections, we consider the cases of perturbed simulations.
We have generated large ensembles of perturbed solutions for the standard value Ra = 400,
perturbing the initial conditions as described above. A typical dataset that is used in this
study consists of N = 10,000 solutions (4676 S1 solutions, 5322 S2 solutions, and two S3 solu-
tions) with the time step ∆t = 1 year. For the purpose of predictive modeling, S3 solutions
are excluded from the dataset as very rare outcomes. Thus, we have N = 9998 samples
that are available at each time t.

Inspecting large ensembles of perturbed solutions to the Elder problem, we observed
a number of quite unusual solutions. For example, there are significantly asymmetric
solutions (numerically and visually) at time t > 15 years; see Figure 5.

Figure 5. Asymmetric solutions at t > 15 years.

Furthermore, we have obtained steady-state solutions S3 at the standard value Ra = 400
of the Rayleigh number. They have a low probability, p ≈ 0.0002. That is, each of our
ensembles of solutions contains 1–3 three-finger steady-state solutions.

4.3. Identification of Transient Fingers, Their Positions, and Strengths

An important subtask in our study is to calculate the number of fingers in a tran-
sient solution of the Elder problem at time t. To achieve this goal, we developed the
following approach.

Step 1. Calculate the vertical norm (that is, along the y-axis), L2-norm, of the solution
for each point x.

Step 2. Divide the values of the L2 norm by the maximum possible value of the L2
norm to scale it to the range of [0, 1]:

f j =

√
∑

ny
i=1 c2

ij
√ny

, (9)

where cij = c(x, y), i = 1 . . . ny, j = 1 . . . nx.



Big Data Cogn. Comput. 2023, 7, 52 12 of 24

Step 3. Now, we have a curve (9) with peaks that reflect the position and relative
strength of each finger at time t. Then, we just need to find those peaks and calcu-
late the estimated number of fingers n̂ f . It was implemented using the SciPy function
find_peaks() [55]. Figure 6 shows four examples of such curves and peaks determined by
this algorithm.

Figure 6. Examples of the curve (9) and the peaks (the x markers in red) corresponding to the
solution fingers.

Using the abovementioned approach, we calculated the estimated number of fingers
for the S1 and S2 solutions at time t = 1, 2, . . . , 50 years. As shown in Figure 7, the estimated
number of fingers for two-finger solutions decreases faster than for one-finger solutions. It
becomes more or less stable at time t = 8–10 years. Probably, this is the time for when it is
possible to predict a steady state with acceptable accuracy. We will consider the problem of
predicting steady states in Section 4.6 of this paper.

Figure 7. Estimated number of fingers (median, min, max, and stddev) for 1- and 2-finger solutions.



Big Data Cogn. Comput. 2023, 7, 52 13 of 24

4.4. Interactive Visualization of Transient Solutions and Their Fingers

Based on the approach described in Section 4.3, we developed a tool for the interactive
visualization of the fingers (Figure 8). All finger parameters, including the curve (9), are
precalculated and saved in HDFS, together with the original solution vectors c(t).

This interactive visualization tool is shown in Figure 8, and works as described below:

• The positions and strengths of all one- and two-finger solutions in an ensemble at time
t are visualized on separate plots.

• The rectangular selector (in green in Figure 8) is used to specify the selection criteria.
• Spark executes queries for the solution datasets using given input parameters (that is,

the green rectangle in Figure 8), and returns the subset of selected solutions and their
curves (9).

Figure 8. Visualization of the fingers of 2-finger solutions for a given subset of positions and strengths
(the area inside the green rectangle). The x markers in blue indicate the peaks of the curve (9).

This visualization gives us important insights regarding the transient solutions. For ex-
ample, the points inside the green rectangle in Figure 8 (t = 10 years, relative strength in
the range [0.3, 0.4], x ∈ [250, 300] m) correspond to the minor fingers in the S2 solutions.
These minor fingers disappear at t ≥ 10 years.

Another important application of this approach is the possibility of the visual analysis
of the dynamical properties of transient solutions at different time steps (i.e., the distri-
bution of fingers in the large ensemble of solutions, considered as a process developing
in time). Such distributions for time, t = 3, 5, 7, 9 years, are shown in Figure 9. From this
visualization, we can observe a significant difference in the central part of the domain
(x = 280–320 m) for S1 solutions, starting from t = 9–10 years. This fact suggests that
the most important predictors (features) are likely concentrated in the central part of the
rectangular domain.



Big Data Cogn. Comput. 2023, 7, 52 14 of 24

Figure 9. Distributions of fingers in the ensemble of N = 10,000 solutions at t = 3, 5, 7, 9 years.

4.5. Complexity Analysis of Transient Solutions

In this section, we analyze the complexity of transient solutions. The high-level
description of our analysis is as follows. For each time, t = 1, 2, . . . , 50 years, we have the
following steps:

1. Create a subset of a dataset (DS1,2) that consists of both one-finger and two-finger
solutions at time t .

2. Calculate the SVD of the DS1,2 dataset.
3. Approximate DS1,2 with 95% precision and save the number of principal components

k needed for this approximation.
4. Calculate the average solution of the DS1,2.
5. Create a subset of a dataset DS1 consisting of only one-finger solutions at time t.
6. Repeat steps 3–4 for the DS1 dataset, using the set of PCs obtained at step 3.
7. Create a subset of a dataset DS2 consisting of only two-finger solutions at time t.
8. Repeat steps 3–4 for the DS2 dataset using the set of PCs obtained at step 3.

Using Spark MLlib, we performed the principal component analysis of the ensemble of
N = 10,000 solutions for 1 to 50 years and in the steady state. The results of this complexity
analysis are shown in Figure 10. The selected average solutions are presented in Figure 11.

The curves in Figure 10 demonstrate the complexity of transient solutions at different
time steps. As we can see from this graph, the complexity of transient solutions starts
from the value of 1 at t ≤ 1 year, and then rapidly increases and reaches a maximum
value of 27 at t = 6–7 years. After that, the complexity starts to decrease and equals to
2 in a steady state. The complexity of two-finger solutions decreases faster than those of
one-finger solutions, starting from t = 11 years. It is reasonable to think that the time of
highest complexity (t = 6–7 years) determines the limit of predictability, i.e., time T̂, when it
is possible to predict a steady state with acceptable accuracy. Furthermore, the time level
around t = 6 was indicated by Diersch and Kolditz [2] as being the most critical for the
evolution of the process.



Big Data Cogn. Comput. 2023, 7, 52 15 of 24

Figure 10. The number of principal components needed for the approximation with 95% precision.

Analyzing the set of average solutions, we noticed that one-finger solutions have a
clearly recognizable finger at the center of the domain (x = 300 m), when the time was
t ≥ 3 years (see Figure 11). From t ≥ 10 years, the average transient solution correspond-
ing to the S1 steady-state solution has three fingers. They merge into a single finger at
t > 10 years. We obtained some three-finger solutions (S3) in a steady state. They are rare
for standard Ra = 400, e.g., 1–3 S3 solutions in an ensemble of 10,000 solutions. We assume
those three fingers observed in the average transient solution are not merging into a single
finger in a steady state due to special initial conditions. Thus, we can observe three-finger
steady-state solutions (S3).

Figure 11. Average solutions at t = 3, 5, 10, 12 years.

The first k = 10 principal components at t = 10 years are presented in Figure 12 in
order to indicate some symmetric and antisymmetric patterns in these principal compo-



Big Data Cogn. Comput. 2023, 7, 52 16 of 24

nents. To explain these patterns, an additional investigation is needed. It will be based,
most likely, on even larger ensembles of perturbed solutions.

Figure 12. The first 10 principal components at t = 10 years.

4.6. Predictive Modeling for the Elder Problem

In this section, we present the results of predictive modeling of the Elder problem
regarding three types of models, as introduced in Section 3.4. Each of these three models
has been implemented with the same number of features X = { f j}, j = 1, . . . , P, P = 18 to
make the three models comparable with each other. Our ML training–testing pipeline is
shown in Figure 13 and includes the following steps:

• Data at time t are queried from HDFS and are transformed into a Pandas data frame.
• The dataset at time t is randomly divided into training (75%) and testing (25%) datasets.
• Each model is supposed to be a small internal pipeline (in orange in Figure 13) that

consists of a Scaler and a Classifier. Such a solution prevents data leakage in ML
models [56].

• The k-fold cross-validation schema with k = 5 folds is used to search for the best
parameters in the hyperparameter spaces. This means that a small internal pipeline
is fitted k times on the training datasets, and is evaluated k times on the validation
datasets. This block returns the best model and combinations of hyperparameters
found on the grid.

• The features of the training, validation, and testing datasets are scaled using the
Standard Scaler, which removes the mean and performs scaling to unit variance.

• In the case of the Type II model, there is a feature selection step selecting the 18 most
important features from the original feature set.

• Bootstrap is used to create resampled datasets from the test dataset.
• Finally, we calculate the prediction accuracy and estimate the uncertainty using the

resampled datasets for each of the models. Namely, we estimate the mean values and
95% confidence intervals for this accuracy.



Big Data Cogn. Comput. 2023, 7, 52 17 of 24

Figure 13. Machine learning pipeline.

On the step of hyperparameter tuning, the following combinations of hyperparameters
were used in our classification models. We selected for tuning the hyperparameters that
have the most significant influence on the performances of the classifiers.

∗ SMV hyperparameters:

{kernel = ‘RBF’, C, gamma},

where C is the regularization parameter, that is, the penalty for each misclassified data
point, and gamma is the kernel coefficient for the radial basis function (RBF) kernel;

∗ RF hyperparameters:

{n_estimators, max_depth, min_samples_split, min_samples_lea f },

where n_estimators is the number of estimators (trees) in the forest, max_depth is the
maximum depth of the tree, min_samples_split is the minimum number of samples
required to split an internal node, and min_samples_lea f is the minimum number of
samples at a leaf node;

∗ GB hyperparameters:

{n_estimators, max_depth, learning_rate, min_samples_split, min_samples_lea f },

where n_estimators is the number of boosting stages to perform, max_depth is the
maximum number of nodes in the tree, and learning_rate is the parameter controlling
the contribution of each model in the ensemble prediction. min_samples_split and
min_samples_lea f have the same meaning as the RF classifier.

Our Type I model has the following features:

• The projection of a current solution c(t) on the vector

ν1 = a1c(S1) + a2c(S2) . (10)

ν1 is a linear combination of steady-state solutions c(S1) and c(S2) satisfying the
conditions below: {

c(S1)ν1 = 1,
c(S2)ν1 = −1.

(11)

After inserting (10) into (11) and solving the system of two linear equations, we obtain
the coefficients a1 and a2. Originally, the ν1 vector was designed to automate the
labeling of steady-state solutions in large ensembles of solutions. Then, we calculated
the projections of all transient solutions on this vector and used them as a feature in
the Type I model.

f1(t) = c(t)ν1. (12)



Big Data Cogn. Comput. 2023, 7, 52 18 of 24

• The projection of a current solution c(t) on vector ν2 orthogonal to ν1 is defined
as follows:

f2(t) = c(t)ν2, (13)

where ν2 = b1c(S1) + b2c(S2) and ν1ν2 = 0.
• The estimated number of fingers (9) (see Section 4.3 for details):

f3(t) = n̂ f (t),

• Descriptive statistics (mean, standard deviation, and maximum) of a difference be-
tween a current perturbed solution c(t) and an unperturbed solution c∗(t):

f4(t) = mean(e(t)),
f5(t) = stddev(e(t)),
f6(t) = max(e(t))

where e(t) = c(t)− c∗(t).
• The features f j, j = 1 . . . 6 described above but taken with a time lag of 1 year:

f j(t) = f j−6(t− 1), j = 7 . . . 12

• Features f j, j = 1 . . . 6, taken with a time lag of 2 years, are described as follows:

f j(t) = f j−12(t− 2), j = 13 . . . 18

This Type I model can predict a steady state with 95% accuracy at t ≈ 10.2 years
with the SVM classifier with the RBF kernel (see Figure 14). The GB and RF classifiers
demonstrated a lower prediction accuracy for this model (see Table 6).

Figure 14. Accuracy of the Type I model: mean values and 95% confidence intervals.

Table 6. Estimated time T̂ of 95% predictability in years (mean values and 95% confidence intervals).

Model Type SVM Classifier GB Classifier RF Classifier

Type I 10.21 ∈ [9.73, 10.76] 11.09 ∈ [10.44, 13.09] 13.13 ∈ [12.17, 14.32]
Type II 9.62 ∈ [8.94, 11.05] 10.57 ∈ [9.75, 11.52] 12.75 ∈ [12.42, 13.23]
Type III 9.32 ∈ [8.94, 9.74] 10.30 ∈ [9.83, 11.11] 13.31 ∈ [12.71, 14.26]

The Type II model gives us 95% accuracy at t ≈ 9.6 years using 18 features selected
from the initial 257 features (see Figure 15). Working on the Type II models, we evaluated
the following measures of importance for feature selection:



Big Data Cogn. Comput. 2023, 7, 52 19 of 24

1. The Gini importance in the RF classifier [57].
2. The Gini importance in the GB classifier [58].
3. The F-values, based on the univariate statistical test (ANOVA) and used for univariate

feature selection [54].

Figure 15. Accuracy of the Type II model: mean values and 95% confidence intervals.

In Figure 16, the three types of feature importance at t = 9 years are plotted along
the x-axis, with scaling to the range [0, 1]. This visualization shows us again that the most
important features lie in the central part of the domain. The feature selection step in our ML
pipeline (see Figure 13) can be developed around any of these three approaches, as each of
them gave us quite similar results for the three classifiers mentioned. However, the best
accuracy was achieved through the features selected using the GB feature importance.
The accuracy of the Type II models is depicted in Figure 15, and the SVM is the best
classifier for this model type in our study.

The feature importance along the x-axis in Figure 16 can be interpreted as a statistical
measure of the number of fingers occurring in that horizontal region. The fingers are
the drivers of the dynamics. The more fingers that occur, the more likely that this region
has an important influence in the dynamics of the process, and therefore, the higher the
importance is.

In our Type III model, the projections on the first k principal components are used as
features in the classification model. The selection of the number k of PCs is based on the
complexity analysis of large ensembles of solutions (see Section 4.5). The 95% accuracy
level is reached at t ≈ 9.3 years using the model with the first k = 18 principal components
(Figure 17) as features. SVM with the RBF kernel is again the best classifier.

Overall, our predictive models can predict a steady state with 95% accuracy at
t = 9–11 years. PCA is an orthogonal transformation [39], which transforms input data into
a set of uncorrelated features. This property of PCA features can explain a slightly better
prediction accuracy that is achieved with the Type III model.



Big Data Cogn. Comput. 2023, 7, 52 20 of 24

Figure 16. Feature importance at t = 9 years for the Type II models (scaled to the range [0, 1]).

Figure 17. Accuracy of the Type III model: mean values and 95% confidence intervals.

Using a linear interpolation of the bootstrapped accuracy data, we estimated the time
T̂, when it is possible to predict a steady state with 95% accuracy for each model type and
each classifier (see Table 6).



Big Data Cogn. Comput. 2023, 7, 52 21 of 24

5. Conclusions

The presented results are focused on analyzing large ensembles of solutions to the
Elder problem. This is made possible with our setup based on Big Data tools and data
science approaches. We contributed to the discussion on the right solution(s) to the Elder
problem, and estimated the conditional probabilities of different steady-state solutions with
respect to the value of the Rayleigh number Ra.

We developed an approach to identify, visualize, and estimate the positions and
strengths of transient fingers. The PCA-based complexity analysis allows us to estimate the
complexities of transient solutions, estimate the time of the highest complexity, and rea-
sonably select the number of principal components for supervised ML models at different
time steps. We designed and evaluated three possible types of low-order predictive models
and their features, and then estimated the prediction accuracy and the time of the 95%
predictability of steady states of the Elder problem.

Considering the complexity and the estimated prediction accuracy simultaneously,
we can reasonably make the conclusions as follows.

1. A low-order model such as the 18-feature model in this study only has limited capa-
bilities for predicting the full dynamics of the studied system at any given time.

2. At the early time 0 < t < 5 years, the system is nearly unpredictable when using such
a low-dimensional (10–20 DoF) model. During this time, we observe quickly growing
fingers and the increasing complexity of solutions.

3. At the time 5 < t < 9 years, we observe the highest complexity of solutions and less
than 95% predictability.

4. Prediction at the 95% level of accuracy with the 18-feature models becomes possible
at the time t > 9 years, when the complexity is significantly decreased. The fingers
become more stable and start asymptotically moving to the fingers of a steady-state
solution.

5. It might be possible to predict the full dynamics of the Elder problem at time 5 < t < 9 years
using models of the order that are higher than 18 features (but that are still low-
dimensional models).

These results extend our knowledge of the Elder problem, especially about the prop-
erties of large ensembles of perturbed solutions. However, they raise new questions that
could be the subject of further studies in the following directions:

• Investigation of predictability at the transient period 5 < t < 9 years using models of
the higher order, as indicated above;

• More accurate characterizations of transient fingers and their parameters;
• Nonlinear dimensionality reduction for numerical solutions to the Elder problem;
• Complexity analysis based on other complexity measures/approaches;
• Investigation of Deep Learning models for the Elder problem.

Author Contributions: Methodology, supervision, and writing—review and editing, K.J.; software,
data, implementation, visualization, and writing—original draft preparation, R.K. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Research Council of Norway, grant number 259870.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data related to this study and findings are partially available from
the corresponding author upon reasonable request. The raw original datasets are very large, and there
are objective limitations on the size of the data provided.

Acknowledgments: The authors appreciate the technical support from the NORCE Norwegian
Research Center AS.

Conflicts of Interest: The authors declare no conflict of interest.



Big Data Cogn. Comput. 2023, 7, 52 22 of 24

Abbreviations
The following abbreviations are used in this paper:

PDE Partial differential equation;
FVM Finite volume method;
FDM Finite difference method;
FEM Finite element method;
Ra Rayleigh number;
SUTRA Saturated and/or unsaturated fluid flow, and solute/energy transport;
DMO Dynamic mesh optimization;
HDFS Hadoop file system;
ORC Optimized row columnar;
CSV Comma-separated values;
ML Machine learning;
PC Principal component;
PCA Principal components analysis;
SVD Singular value decomposition;
DoF Degrees of freedom;
SVM Support vector machines;
RBF Radial basis function;
RF Random forest;
GB Gradient boosting;
ANOVA Analysis of variation.

References
1. Elder, J.W. Transient convection in a porous medium. J. Fluid Mech. 1967, 27, 609–623. [CrossRef]
2. Diersch, J.G.; Kolditz, O. Variable-density flow and transport in porous media: Approaches and challenges. Adv. Water Resour.

2002, 25, 899–944. [CrossRef]
3. Voss, C.I.; Souza, W.R. Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-

saltwater transition zone. Water Resour. 1987, 26, 2097–2106. [CrossRef]
4. Nield, D.A.; Bejan, A. Convection in Porous Media, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-1-4614-5540-0.

[CrossRef]
5. Johannsen, K. On the validity of the Boussinesq approximation for the Elder problem. Comput. Geosci. 2003, 7, 169–182. [CrossRef]
6. Frolkovič, P.; De Schepper, H. Numerical modelling of convection dominated transport coupled with density driven flow in

porous media. Adv. Water Resour. 2001, 24, 63–72. [CrossRef]
7. Elder, J.; Simmons, C.T.; Diersch, H.-J.; Frolkovic, P.; Holzbecher, E.; Johannsen, K. The Elder Problem. Fluids 2017, 2, 11.

[CrossRef]
8. Simmons, C.T.; Narayan, K.A.; Wooding, R.A. On a test case for density-dependent groundwater flow and solute transport

models: The salt lake problem. Water Resour. Res. 1999, 35, 3607–3620. [CrossRef]
9. van Reeuwijk, M.; Mathias, S.A.; Simmons, C.T.; Ward, J.D. Insights from a pseudospectral approach to the Elder problem. Water

Resour. Res. 2009, 45, 1–13. [CrossRef]
10. SUTRA: A Model for 2D or 3D Saturated-Unsaturated, Variable-Density Ground-Water Flow with Solute or Energy Transport.

Available online: https://www.usgs.gov/software/sutra-model-2d-or-3d-saturated-unsaturated-variable-density-ground-
water-flow-solute-or (accessed on 23 December 2022).

11. Oldenburg, C.; Pruess, K. Dispersive transport dynamics in a strongly coupled groundwater–brine flow system. Water Resour.
Res. 1995, 31, 289–302. [CrossRef]

12. Kolditz, O.R.; Ratke, H.-J.; Diersch, W. Coupled groundwater flow and transport: 1. Verification of variable density flow and
transport models. Adv. Water Resour. 1998, 21, 7–46. [CrossRef]

13. Prasad, A.; Simmons, C.T. Unstable density-driven flow in heterogeneous porous media: A stochastic study of the Elder “short
heater” problem. Water Resour. Res. 2003, 39, 4-1–4-21. [CrossRef]

14. Johannsen, K. The Elder problem—bifurcations and steady state solutions. Dev. Water Sci. 2002, 47, 485–492. [CrossRef]
15. Woods, J.A.; Teubner, M.D.; Simmons, C.T.; Narayan, K. Numerical error in groundwater flow and solute transport simulation.

Water Resour. Res. 2003, 39, 1–13. [CrossRef]
16. Thornea, D.T.; Sukopa, M.C. Lattice Boltzmann model for the elder problem. Dev. Water Sci. 2004, 55 Pt 2, 1549–1557. [CrossRef]
17. Musuuza, J.L.; Radu, F.A.; Radu, F.A.; Attinger, S.; Attinger, S. The effect of dispersion on the stability of density-driven flows in

saturated homogeneous porous media. Adv. Water Resour. 2011, 34, 417–432. [CrossRef]
18. Ataie-Ashtiani, B.; Simmons, C.T.; Werner, A.D. Influence of Boundary Condition Types on Unstable Density-Dependent Flow.

Groundwater 2014, 52, 378–387. [CrossRef]

http://doi.org/10.1017/S0022112067000576
http://dx.doi.org/10.1016/S0309-1708(02)00063-5
http://dx.doi.org/10.1029/WR023i010p01851
http://dx.doi.org/10.1007/978-1-4614-5541-7
http://dx.doi.org/10.1023/A:1025515229807
http://dx.doi.org/10.1016/S0309-1708(00)00025-7
http://dx.doi.org/10.3390/fluids2010011
http://dx.doi.org/10.1029/1999WR900254
http://dx.doi.org/10.1029/2008WR007421
https://www.usgs.gov/software/sutra-model-2d-or-3d-saturated-unsaturated-variable-density-ground-water-flow-solute-or
https://www.usgs.gov/software/sutra-model-2d-or-3d-saturated-unsaturated-variable-density-ground-water-flow-solute-or
http://dx.doi.org/10.1029/94WR02272
http://dx.doi.org/10.1016/S0309-1708(96)00034-6
http://dx.doi.org/10.1029/2002WR001290
http://dx.doi.org/10.1016/S0167-5648(02)80099-5
http://dx.doi.org/10.1029/2001WR000586
http://dx.doi.org/10.1016/S0167-5648(04)80165-5
http://dx.doi.org/10.1016/j.advwatres.2010.11.008
http://dx.doi.org/10.1111/gwat.12067


Big Data Cogn. Comput. 2023, 7, 52 23 of 24

19. Simmons, C.T.; Elder, J.W. The Elder Problem. Groundwater 2017, 55, 926–930. [CrossRef]
20. Yan, M.; Lu, C.; Yang, J.; Xie, Y.; Luo, J. Impact of Low- or High-Permeability Inclusion on Free Convection in a Porous Medium.

Geofluids 2019, 2019, 8609682. [CrossRef]
21. Shafabakhsh, P.; Fahs, M.; Ataie-Ashtiani, B.; Simmons, C.T. Unstable Density-Driven Flow in Fractured Porous Media: The

Fractured Elder Problem. Fluids 2019, 4, 168. [CrossRef]
22. Bahlali, M.L.; Salinas, P.; Jackson, M.D. Efficient numerical simulation of density-driven flows: Application to the 2- and 3-D

Elder problem. Water Resour. Res. 2022, 58, e2022WR032307. [CrossRef]
23. Xie, Y.; Simmons, C.; Werner, A.; Diersch, J.G. Prediction and uncertainty of free convection phenomena in porous media Water

Resour. Res. 2012, 48, 1944–7973. [CrossRef]
24. Kutz, J.N. Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data; Oxford University Press: Oxford,

UK, 2013; ISBN 978-0-19-966034-6.
25. Brunton, S.; Kutz, J. N. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control; Oxford University

Press: Oxford, UK, 2022; ISBN 9781009089517. [CrossRef]
26. Apache Hadoop. Available online: https://hadoop.apache.org/ (accessed on 23 December 2022).
27. Apache Spark. Available online: https://spark.apache.org/ (accessed on 23 December 2022).
28. Fein, E. d3f—Ein Programmpaket zur Modellierung von Dichtegetriebenen Strömungen; GRS: Braunschweig, Germany, 1998.

ISBN 3-923875-97-5.
29. Bastian, P.; Birken, K.; Johannsen, K.; Lang, S.; Eckstein, K.; Neuss, N.; Rentz-Reichert, H.; Wieners, C. UG—A Flexible Software

Toolbox for Solving Partial Differential Equations. Comput. Vis. Sci. 1997, 1, 27–40. [CrossRef]
30. Ferziger, J.; Perić, M.; Street, R. Computational Methods for Fluid Dynamics, 4th ed.; Springer: Cham, Switzerland, 2020.

ISBN 978-3-319-99691-2.
31. ISO Random (The GNU C Library). Available online: https://www.gnu.org/software/libc/manual/html_node/ISO-Random.

html#index-rand (accessed on 23 December 2022).
32. Ajibola J.; Adam, A.; Ann Muggeridge, A. Gravity Driven Fingering and Mixing During CO2 Sequestration. In Proceedings of

the the SPE Asia Pacific Oil & Gas Conference and Exhibition, Perth, Australia, 25–27 October 2016. [CrossRef]
33. Aggarwal, C. (Ed.) Data Classification: Algorithms and Applications; Chapman & Hall/CRC: Boca Raton, FL, USA, 2014.

ISBN 1466586745.
34. Bishop, C. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006; ISBN 978-0-387-31073-2.
35. Kuhn, M.; Johnson, K. Applied Predictive Modeling, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 978-1461468486.
36. Di Ciccio, T.; Efron, B. Bootstrap confidence intervals. Stat. Sci. 1996, 11, 189–228. [CrossRef]
37. Ho, T.K.; Basu, M. Complexity measures of supervised classification problems. IEEE Trans. Pattern Anal. Mach. Intell. 2002,

24, 289–300. [CrossRef]
38. Baumgartner, R.; Somorjai, R. L. Data complexity assessment in undersampled classification of high-dimensional biomedical data.

Pattern Recognit. Lett. 2006, 27, 1383–1389. [CrossRef]
39. Eldén, L. Matrix Methods in Data Mining and Pattern Recognition; Society for Industrial & Applied Mathematics: Philadelphia, PA,

USA, 2007; ISBN 978-0-89871-626-9.
40. Dulhare, U.; Ahmad, K.; Bin Ahmad, K.A. (Eds.) Machine Learning and Big Data: Concepts, Algorithms, Tools and Applications.; John

Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; ISBN 9781119654742.
41. Pulliam, T.H.; Zingg, D.W. Fundamentals Algorithms in Computational Fluid Dynamics; Scientific Computation; Springer: Berlin,

Germany, 2014. [CrossRef]
42. Chakraverty, S.; Mahato, N.R.; Karunakar, P.; Rao, T.D. Advanced Numerical and Semi-Analytical Methods for Differential Equations;

John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019. [CrossRef]
43. Rapp, B. Microfluidics: Modeling, Mechanics and Mathematics; Elsevier Inc.: Amsterdam, The Netherlands, 2017. [CrossRef]
44. HDFS Architecture Guide. Available online: https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html (accessed on

23 December 2022).
45. Apache ORC—High-Performance Columnar Storage for Hadoop. Available online: https://orc.apache.org/ (accessed on

23 December 2022).
46. Brownlee, J. What Is the Difference Between Test and Validation Datasets? 2017. Available online: https://machinelearningmastery.

com/difference-test-validation-datasets/ (accessed on 23 December 2022).
47. Calvetti, D.; Somersalo, E. Mathematics of Data Science: A Computational Approach to Clustering and Classification; Society for

Industrial & Applied Mathematics: Philadelphia, PA, USA, 2020; ISBN 9781611976366.
48. Scikit-Learn—Machine Learning in Python. Available online: https://scikit-learn.org/ (accessed on 23 December 2022).
49. Apache Spark MLlib. Available online: https://spark.apache.org/mllib/ (accessed on 23 December 2022).
50. Project Jupyter. Available online: https://jupyter.org/ (accessed on 23 December 2022).
51. Matplotlib: Visualization with Python. Available online: https://matplotlib.org/ (accessed on 23 December 2022).
52. Duboue, P. The Art of Feature Engineering: Essentials for Machine Learning; Cambridge University Press: Cambridge, UK, 2020.

[CrossRef]
53. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer

Series in Statistics; Springer: Berlin/Heidelberg, Germany, 2009. [CrossRef]

http://dx.doi.org/10.1111/gwat.12593
http://dx.doi.org/10.1155/2019/8609682
http://dx.doi.org/10.3390/fluids4030168
http://dx.doi.org/10.1029/2022WR032307
http://dx.doi.org/10.1029/2011WR011346
http://dx.doi.org/10.1017/9781009089517
https://hadoop.apache.org/
https://spark.apache.org/
http://dx.doi.org/10.1007/s007910050003
https://www.gnu.org/software/libc/manual/html_node/ISO-Random.html#index-rand
https://www.gnu.org/software/libc/manual/html_node/ISO-Random.html#index-rand
http://dx.doi.org/10.2118/182317-MS
http://dx.doi.org/10.1214/ss/1032280214
http://dx.doi.org/10.1109/34.990132
http://dx.doi.org/10.1016/j.patrec.2006.01.006
http://dx.doi.org/10.1007/978-3-319-05053-9
http://dx.doi.org/10.1002/9781119423461
http://dx.doi.org/10.1016/C2012-0-02230-2
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://orc.apache.org/
https://machinelearningmastery.com/difference-test-validation-datasets/
https://machinelearningmastery.com/difference-test-validation-datasets/
https://scikit-learn.org/
https://spark.apache.org/mllib/
https://jupyter.org/
https://matplotlib.org/
http://dx.doi.org/10.1017/9781108671682
http://dx.doi.org/10.1007/978-0-387-84858-7


Big Data Cogn. Comput. 2023, 7, 52 24 of 24

54. Univariate Feature Selection—Scikit-Learn 1.2.0 Documentation. Available online: https://scikit-learn.org/stable/modules/
feature_selection.html#univariate-feature-selection (accessed on 23 December 2022).

55. Scipy.Signal.Find_PEAKS—SciPy v1.9.1 Manual. Available online: https://docs.scipy.org/doc/scipy/reference/generated/scipy.
signal.find_peaks.html (accessed on 23 December 2022).

56. Tingle, M. Preventing Data Leakage in Your Machine Learning Model. Available online: https://towardsdatascience.com/
preventing-data-leakage-in-your-machine-learning-model-9ae54b3cd1fb (accessed on 26 February 2023).

57. Random Forest Classifier—Scikit-Learn 1.2.0 Documentation. Available online: https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier.feature_importances_ (ac-
cessed on 23 December 2022).

58. Gradient Boosting Classifier—Scikit-Learn 1.2.0 Documentation. Available online: https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#sklearn.ensemble.GradientBoostingClassifier.feature_
importances_ (accessed on 23 December 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://scikit-learn.org/stable/modules/feature_selection.html#univariate-feature-selection
https://scikit-learn.org/stable/modules/feature_selection.html#univariate-feature-selection
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
https://towardsdatascience.com/preventing-data-leakage-in-your-machine-learning-model-9ae54b3cd1fb
https://towardsdatascience.com/preventing-data-leakage-in-your-machine-learning-model-9ae54b3cd1fb
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier.feature_importances_
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier.feature_importances_
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#sklearn.ensemble.GradientBoostingClassifier.feature_importances_
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#sklearn.ensemble.GradientBoostingClassifier.feature_importances_
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#sklearn.ensemble.GradientBoostingClassifier.feature_importances_

	Introduction
	Models and Scientific Questions
	The Elder Problem
	Existing Approaches to the Elder Problem
	Background for Our Study
	Numerical Solution
	Perturbations
	The Steady-State Predicting Problem
	Complexity Analysis

	Methods
	Numerical Solvers for PDEs
	Big Data Setup for Large-Scale Simulations
	Machine Learning
	Feature Engineering

	Results and Discussion
	Unperturbed Solutions
	Perturbed Solutions
	Identification of Transient Fingers, Their Positions, and Strengths
	Interactive Visualization of Transient Solutions and Their Fingers
	Complexity Analysis of Transient Solutions
	Predictive Modeling for the Elder Problem

	Conclusions
	References

