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Preface 

This synthesis and collection of scientific papers are submitted for the degree of 

philosophiae doctor (PhD) in oceanography at the Institute of Marine Research and 

the Geophysical institute at the University of Bergen. This PhD was funded by the 

Nansen Legacy project, a 6-year research project (2018−2023) which gathers the 

Norwegian research community in a joint effort to study the changes in the Arctic. 

The thesis was also partly funded by Fishcom by a three-month extension period. 

  

The thesis consists of an introductory part and three scientific papers. Chapter 1 

gives the motivation and scientific background of the work, where the first part sets 

this thesis into scientific context, discussing ecosystem modelling and future climate 

changes. The raised objectives and motivation behind the study are listed at the end 

of chapter 1. Chapter 2 gives a brief introduction to the models used, as well as the 

area that was studied. An introduction to the papers is given in chapter 3: stating 

the papers objective; a short summary of each study and briefly stating how this 

thesis contributes to closing current research gaps. Lastly, future research priorities 

are discussed in chapter 4. The three papers constituting this thesis are included in 

chapter 5, and are listed below in progressive order: 

 

Articles:            

1. Nilsen, I., Hansen, C., Kaplan, I., Holmes, E., Langangen, Ø., 2022. Exploring 
the role of Northeast Atlantic cod in the Barents Sea food web using a multi-
model approach. Fish and Fisheries 1–16. https://doi.org/10.1111/faf.12671 

2. Nilsen I., Fransner F., Olsen A., Tjiputra J., Hordoir R., Hansen C., 2023. Trivial 
gain of downscaling in future projections of higher trophic levels in the 
Nordic and Barents Seas, In review at Fisheries Oceanography 

3. Nilsen I., Kaplan, I., Hansen C., A shifting chessboard: projections of prawn, 
capelin, mesopelagic fish, zooplankton, and their Nordic and Barents Seas 
food web under climate change, Manuscript ready for submission 
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Abstract 

With the imminent threat of climate change, there is an urgent need to understand 

how warmer temperatures will affect marine ecosystems. Models provide the best 

tools to study the future, but although great efforts have been made to understand 

the impacts of warming temperatures, there is still large uncertainties related to the 

model projections. The uncertainties can arise from structural uncertainty of the 

ecosystem model, uncertainties regarding climate projections, or uncertainties 

related to how species will respond to future climate changes. In this thesis, we 

therefore apply ecosystem models of varying complexity, climate models of varying 

resolution and climate projections under various emission scenarios to understand 

and quantify uncertainty. By assessing the uncertainty, we highlight consistent 

results that suggest higher confidence, and areas where differences in the results 

suggest that more research is needed. The results from this thesis are divided into 

three research papers.  

The first paper deals with structural uncertainty regarding model complexity, as we 

explore the role of Northeast Atlantic cod (Gadus Morhua) in the Barents Sea food 

web by using a multi-model approach. We apply two ecosystem models of different 

complexity; the minimalistic Gompertz model and the highly complex Atlantis 

model, to study how capelin and polar cod respond to changing levels of cod. We 

highlight consistent results across the models and identify diverging results due to 

differences in spatial structure and number of foodweb components, and conclude 

that for fishery management purposes, the two models can complement each other. 

The second paper deals with uncertainty regarding the resolution of climate 

projections used to force ecosystem models, where we apply physics (temperature, 

salinity, volume transport and sea ice) from a regional model (Nemo-NAA10km) and 

its driving global climate model (NorESM2) to the Nordic and Barents Seas Atlantis 

ecosystem model (NoBa). We found that few higher trophic level (TL>3) species 
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were affected by using forcing from a global versus a regional model, and there was 

a general agreement in future biomass trends and distribution patterns. Yet, our 

results showed how a slight difference in temperature can have dramatic 

consequences for specific species and demonstrate that species projection 

uncertainty could arise from poor representation of the physical forcing, as well as 

due to uncertainty in the ecosystem model parameterization. 

In the third and final paper, we deal with the uncertainty regarding ecosystem 

responses to future climate changes. We apply physics from three different climate 

projections (SPP1-2.6, SSP2-4.5 and SSP5-8.5) to study the impact of rising 

temperatures in the Nordic and Barents Seas using NoBa. To account for uncertainty 

in the response of phytoplankton and zooplankton to future climate change, we 

included variation in phyto- and zooplankton growth levels. We identify potential 

winners and losers in a warming climate and focus on the underlying mechanisms 

that drives the changes in the model, including spatial differences, thermal 

tolerance, and species interactions. 

Through our work we have demonstrated the value of using ecosystem models of 

varying complexity, climate models of varying resolution and climate projections 

under various emission scenarios to quantify uncertainty regarding model 

projections. By investigating uncertainty along these three axes, we learn more 

about the models and the mechanisms that drives the changes and provide valuable 

insight for management and future ecosystem studies. 
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Sammendrag (Norwegian) 

Med klimaendringer som en overhengende trussel, er det et stort og økende behov 

for å forstå hvordan varmere temperaturer vil påvirke marine økosystemer. 

Modeller er et av de viktigste verktøyene for å studere hvordan utviklingen vil bli, 

men selv om stor innsats har blitt lagt ned for å forstå konsekvenser av varmere 

temperaturer, er det fortsatt stor usikkerhet knyttet til modell-projeksjonene. 

Usikkerheten kan skyldes strukturell usikkerhet i økosystemmodellene, usikkerhet 

knyttet til klimaprognoser eller usikkerhet knyttet til hvordan ulike arter vil reagere 

på fremtidige klimaendringer. I denne oppgaven bruker vi derfor 

økosystemmodeller med varierende kompleksitet, klimamodeller med varierende 

oppløsning og ulike klimascenarier for å belyse denne usikkerheten. På den måten 

kan vi rapportere resultater som samsvarer med høyere pålitelighet, og påpeke 

forskjeller i resultatene som tilsier at det vil være behov for mer forskning. 

Resultatene fra denne avhandlingen er delt inn i tre forskningsartikler.  

Den første artikkelen omhandler strukturell usikkerhet knyttet til 

modellkompleksitet. Ved å benytte to modeller av ulik kompleksitet (den 

minimalistiske Gompertz-modellen og den svært komplekse Atlantis-modellen) 

gransker vi rollen til nordøstatlantisk torsk (Gadus Morhua) i Barentshavet ved å 

studere hvordan lodde og polartorsk reagerer på endrede nivåer av torsk.  Vi 

synliggjør samsvarende resultater på tvers av modellene og identifiserer 

divergerende resultater som oppstår på grunn av forskjeller i romlig struktur og 

antall økosystem-komponenter. Konklusjonene våre er at fiskeriforvaltningen kan 

dra nytte av å bruke flere modeller, og at de to modellene utfyller hverandre. 

Den andre artikkelen omhandler usikkerhet rundt oppløsningen av klimamodellene, 

og i hvilken grad høy oppløsning av fysikken er nødvendig for å studere effekter i 

økosystemmodeller. Her bruker vi fysikk (temperatur, saltholdighet, volumtransport 

og havis) fra en regional modell (Nemo-NAA10km) og dens drivende globale 
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klimamodell (NorESM2) i en Atlantis modell (NoBa) for de Nordiske hav og 

Barentshavet. Resultatene viste at få arter på høyere trofisk nivå (TL>3) ble påvirket 

av å bruke fysikk fra en global versus en regional modell, og at det var en generell 

enighet om fremtidige biomassetrender og distribusjonsmønstre. Likevel så vi 

hvordan selv små temperaturforskjeller kan ha dramatiske konsekvenser for enkelte 

arter, og hvordan slike forskjeller kan oppstå både med utgangspunkt i usikkerhet 

rundt fysikken, samt usikkerheter i hvordan modellen representerer artenes 

temperaturtoleranse. 

I det tredje og siste artikkelen studerer vi usikkerheten knyttet til påvirkning av 

fremtidige klimaendringer på økosystemet i de Nordiske hav og i Barentshavet. Ved 

å anvende av tre ulike klimascenarier (SPP1-2.6, SSP2-4.5 og SSP5-8.5) studerer vi 

hvordan økende temperaturer vil påvirke artene i NoBa-modellen.  For å ta høyde 

for usikkerhet i fremtidige nivåer av plante- og dyreplankton, inkluderte vi variasjon 

i disse gruppene. Fokus i studien ligger på de underliggende mekanismene som 

driver endringene i modellen, og vi identifiserer potensielle vinnere og tapere i et 

varmere klima. 

I denne avhandlingen fremhever vi verdien av å bruke økosystemmodeller av 

varierende kompleksitet, klimamodeller med varierende oppløsning og ulike 

utslippsscenarier for å håndtere usikkerhet i modellene våre.  Ved å undersøke 

usikkerhet langs disse tre aksene lærer vi mer om modellene og mekanismene som 

driver endringene, samt gir verdifull innsikt for forvaltning og fremtidige 

økosystemstudier. 
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1. Background and motivation 
 
 

1.1 Background 
 
The United Nations Sustainable Development Goals (SDGs) addresses in SDG2 zero 

hunger, in SDG13 climate changes and in SDG14 conserving and sustainable use of 

life below water, as three of the 17 most important issues in the world (United 

Nations, 2015). The oceans provide essential ecosystem services that allow our 

planet to function in a healthy way, as well as jobs for over 3 billion people, and 20 

% of the animal protein consumed worldwide (FAO, 2022). The oceans play a key 

role in climate regulation, especially by mitigating the effects of increasing levels of 

carbon dioxide in the atmosphere and rising global temperatures (Reid et al., 2009). 

With a rapidly growing human population, likely approaching 10 billion by 2060 

(United Nations, 2022), and global fisheries and aquaculture production at an all-

time high, there is no doubt that the ocean will play an increasingly important role 

in providing food and jobs in the future (FAO, 2022).  

Growing human pressures, including climate change, have profound and diverse 

consequences for marine ecosystems (United Nations, 2015). Effects of climate 

change on marine ecosystems involve rising temperatures, changes in primary 

production, ocean acidification, sea ice retreat and changes in species distributions 

and abundance (Bryndum-Buchholz et al., 2019). Furthermore, climate change can 

interact with other stressors such as overfishing (Fu et al., 2018; Griffith et al., 2012), 

which can threaten the ecosystems (Tittensor et al., 2019) and influence the societal 

benefits derived from the ocean (Boyce et al., 2020). An overall reduction in global 

yields has occurred over the past 80 years (Free et al., 2019), and understanding the 

risks of climate change for marine ecosystems and the benefits of mitigating these 

changes is therefore highly important. 
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Global warming is causing large-scale impacts in sub-Arctic and Arctic Ocean regions, 

with temperatures rising quickly and sea ice receding (Comiso, 2011; Smedsrud et 

al., 2013). The Nordic and Barents Seas are recognized as one of the fastest warming 

places on Earth (Isaksen et al., 2022), where warmer temperatures are already 

altering the ecosystem by displacing southern, boreal species further north, while 

arctic species are retreating and declining (Fossheim et al., 2015; Frainer et al., 2017; 

Kjesbu et al., 2021, 2014). This area also stands out as particularly interesting 

(Paasche et al., 2015) for contrasting responses in the living resources, representing 

annual landings of several million tonnes (FAO, 2020), which extend over 

considerable areas with different manifestations of warming impacts (Drinkwater, 

2005; Gullestad et al., 2020; Payne et al., 2021; Peck and Pinnegar, 2018; Simpson 

et al., 2011). With the increasing number of marine environmental stressors  

(Henson et al., 2017), there is therefore an urgent need to understand how these 

ecosystems will respond to these changes (Fagundes et al., 2020) 

Climate change affects ecosystems directly through changes in ocean physics, as 

well as indirectly by altering regional productivity (Moloney et al., 2011).  Although 

great efforts have been made to estimate climate effects on productivity, there is 

still high uncertainty regarding how lower trophic levels might respond in high 

latitude ecosystems. The reduction of sea ice will increase light availability which is 

expected to have a positive effect on primary production. Yet, primary production 

also depends on nutrient availability, and increasing temperatures and decreasing 

salinity due to melting ice might lead to increased vertical stability, which limits 

nutrients supply to the photic sone (Farmer et al., 2021). However, increasing winds 

due to more extreme weather or regions becoming ice-free might lead to more 

mixing and increase the nutrient levels at the surface (Hordoir et al., 2022; Qu and 

Liu, 2020). Yet, too much turbulence and storms could affect primary production 

negatively by transporting phytoplankton below their critical depth at which there 

is enough light to grow (Wolfe et al., 2016) or by reducing light availability through 
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sediment resuspension (Stockwell et al., 2020). Ice algae species that are sensitive 

to light and depend on ice are also expected to decrease in diversity as the sea ice 

is reduced (Hop et al., 2020), and the effect on total primary production is thereby 

highly uncertain. Regional studies in Arctic regions and high-latitude systems have 

demonstrated how difficult it is to capture future responses in primary production. 

Some models project increased production due to more light (Steinacher et al., 

2010), while others project a decreasing trend due to higher stratification 

(Steinacher et al., 2010) and some show no changes at all (Skogen et al., 2018). 

Model ensemble studies have also found less consistent trends at lower trophic 

levels compared to higher trophic levels at a global scale, which highlights the 

uncertainty regarding lower trophic level responses to climate changes (Lotze et al., 

2019; Tittensor et al., 2021).  

Both global and regional studies of climate change have indicated amplified effects 

on higher trophic level species (Kirby and Beaugrand, 2009; Lotze et al., 2019). Great 

efforts have been made to understand the effects of future climate changes on 

higher trophic level species, ranging from qualitative, expert assessments (Hare et 

al., 2016; Kjesbu et al., 2021) to more quantitative model-based studies (Fulton, 

2011; Hansen et al., 2019b; Skogen et al., 2018; Tittensor et al., 2018), as well studies 

which combines expert assessment and model efforts (Sandø et al., 2022). Still, the 

uncertainty regarding responses to climate changes remain high (Heneghan et al., 

2021; Lotze et al., 2019). One of the most prominent effects are the displacement 

of species further north (Fossheim et al., 2015; Frainer et al., 2017; Kjesbu et al., 

2021, 2014).  Changes in distribution are constrained by species-specific habitat 

availability, ocean circulation patterns and bathymetry (Gullestad et al., 2020) as 

well as physiological features like metabolic processes restricted to tolerable 

thermal windows (Cheung et al., 2013; Payne et al., 2021; Pörtner and Peck, 2010). 

Although there is some agreement on how temperature impacts physiological 

processes in general (Kooijman, 2009), there is less agreement on how these 
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impacts vary across functional groups, body sizes, and different processes such as 

growth and metabolism (van Denderen et al., 2020). The temperature range for a 

given species typically extends over a temperature interval with optimal conditions 

in the middle of the temperature range and decreasing tolerance towards upper and 

lower limits for survival. However, realized growth also depends on ecological 

factors and evolutionary adaptation that might be equally or more important (van 

Denderen et al., 2020).  

To deal with the threat of substantial changes in marine ecosystems from climate 

change, a number of quantitative approaches to describe marine ecosystems for 

management purposes have emerged (Collie et al., 2016). Most quantitative 

approaches involve ecosystem models to organize and quantify our understanding 

of ecological processes and project likely consequences of regulations on 

populations and communities in the context of a changing ecosystem (Dickey-Collas 

et al., 2014). Ecosystem models are used to systematically arrange and utilize 

information from observations. Thereby, we can draw conclusions and gain 

mechanistic understanding that would be difficult to achieve without the model 

(Skogen et al., 2020). In addition to understanding the current state of an ecosystem, 

models are commonly used to study the sensitivity and variability of species in so-

called what-if scenarios. Ecosystem model can therefore both be used to 

understand the current state, project the future, and inform about the past (Hyder 

et al., 2015). 

Selecting the appropriate level of detail for a model (Levins, 1966) is often 

considered as one of the most difficult aspects of the modelling process (Brooks and 

Tobias, 1996; Law, 1991). To maintain a manageable model, one approach is to 

simplify the description of each component. Yet, overly simple models may not be 

able to represent important aspects of ecosystem dynamics and can thus have large 

model bias. On the other hand, more complex models require increased 
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understanding of species and environmental interactions to specify the dynamics in 

greater detail. The uncertainty in these models shifts from model bias to parameter 

uncertainty, due to the higher number of parameters and amount of data needed 

to estimate them (Collie et al., 2016). While the need for realism pushes model 

choice towards complexity, the need for empirically based parameters of the system 

limits complexity, and balancing the desire to represent many components of an 

ecosystem with the limitations of available data and the modelling objective is 

therefore challenging (Geary et al., 2020). The uncertainty that is introduced by 

assuming a certain model structure over any other is often referred to as model 

uncertainty or structural uncertainty (Geary et al., 2020; Hill et al., 2007). 

Various strategies for dealing with this model uncertainty have previously been 

proposed (Collie et al., 2016; Fulton, 2010; Geary et al., 2020; Ianelli et al., 2016; 

Knutti, 2010; Spence et al., 2018). One way is to use a set of distinct, plausible 

models that permit multimodel inference and can be treated as an ensemble. Using 

multiple models for projections through model intercomparison projects (so called 

MIPs) can quantify variability between models, drive model development, assess 

within- and among-model uncertainty, and provide ensemble projections of future 

change under specified scenarios (Tittensor et al., 2018). Model ensembles are 

commonly used for analysis in fields such as weather forecasting (Tracton and 

Kalnay, 1993; Zhou and Du, 2010) and long-term climate prediction (Semenov and 

Stratonovitch, 2010; Tebaldi and Knutti, 2007), and have been applied to study 

ecological impacts due to fishing (Spence et al., 2018), species eradications and 

invasions (Baker et al., 2017) and climate change (Lotze et al., 2019; Reum et al., 

2021; Tittensor et al., 2021). The most prominent MIP is the Coupled Model 

Intercomparison Project (CMIP) (IPCC, 2022), which is currently in its sixth phase of 

Earth system model simulation experiments, forming an crucial contribution to the 

sixth IPCC Assessment Report (IPCC AR6).  
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The Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP) is 

another example, which was established to explore uncertainty and provide more 

robust assessments of climate impacts on marine ecosystems through the analysis 

of multi-model ensembles (Tittensor et al., 2018). Fish-MIP has explored effects of 

climate changes at global (Lotze et al., 2019; Tittensor et al., 2021) and regional 

(Bryndum-Buchholz et al., 2020b, 2020a, 2019) scales over the coming century and 

their potential socioeconomic consequences (Boyce et al., 2020). However, Lotze et 

al. (2019) found that the spread of changes in biomass under the high emission 

scenario was larger than change between the median biomass of the  low emission 

and high emission scenarios. This means that structural uncertainty across global 

marine models is greater than climate scenario uncertainty, which is problematic for 

the goal of using these models to provide assessments of climate impacts on marine 

ecosystems and the societal services they provide. 

To study potential responses in ecosystem function and structure to climate change, 

output from climate models is often used as forcing for ecosystem models (Lotze et 

al., 2019; Tittensor et al., 2021). In the same way as weather forecasts, climate 

models simulate average weather conditions over a given period, and the models 

can make predictions about the atmosphere, the oceans, ice, evaporation and the 

carbon cycle. The models are based on the laws of physics and an understanding of 

solar radiation, the motions of the Earth, and the properties of the atmosphere, 

oceans and land. Over the past few years, the IPCC has through the CMIP project 

used an ensemble of global climate models to develop five narratives to describe 

alternative pathways for future society (IPCC, 2022).  The Shared Socioeconomic 

Pathways (SSPs) contain a range of baseline scenarios spanning between 1.9 and 8.5 

W/m2 of radiative forcing by 2100 (Riahi et al., 2017) and play an important role in 

facilitating integrated research across multiple climate modeling communities 

(O’Neill et al., 2016).  
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Further, regional downscaling of the global models may be applied. Here, a high-

resolution regional ocean circulation model is initiated from, and/or nested into, a 

global climate model (Skogen et al., 2018). This is done to translate coarse global 

information into finer scale resolution in order to simulate  regional processes more 

accurately and obtain climate information on scales that are relevant to society 

(Ekström et al., 2015). Regional models also have the advantage of better-calibrated 

parameterizations targeted for the study regions (Hordoir et al., 2022). Previous 

studies have explored the impact of downscaling and found that higher-resolution 

physical forcing produces results closer to observations and provides a better 

representation of ocean dynamics and variability (Busecke et al., 2019; Kirtman et 

al., 2012; Langehaug et al., 2019; Melsom et al., 2009; Sandø et al., 2014; Skogen et 

al., 2018). However, the process of downscaling physical forcing is both time 

consuming and labor demanding (Chassignet et al., 2020), which can delay or limit 

the physical forcing available for ecosystem modelers (Sandø et al., 2014). Some 

ecosystem models also have resolution grids coarser than those of high-resolution 

downscaled products (Hansen et al., 2016; Lindstrøm et al., 2009; Pedersen et al., 

2021; Planque et al., 2022, 2014; Stige et al., 2019), which suggests that a rigorous 

test of the value of downscaled physics for these ecosystem models is warranted.  

The need to evaluate the effects of climate changes on ocean ecosystems is crucial 

and using ecosystem models in combination with physics from climate models can 

help us organize and quantify our understanding of how climate changes affect 

ecological processes. However, as previous efforts have shown, there is still a great 

amount of uncertainty regarding future modelling projections. This uncertainty can 

arise from model uncertainty related to the level of complexity of the ecosystem 

model, uncertainty regarding future climate projection or uncertainties regarding 

species responses to temperature change. Explicitly considering different forms of 

uncertainty is therefore a primary concern. 
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1.2 Motivation and objectives 

The motivation behind this study is to address the uncertainty regarding future 

ecosystem responses by applying multiple ecosystem models, physical models, and 

climate scenarios to study ecosystem responses.  By quantifying this uncertainty, we 

can highlight consistent results that suggest higher confidence, and areas where 

differences in the results suggest that more research is needed.  

 The objective behind this thesis was threefold: 

1.  Study the structural uncertainty in model predictions by applying ecosystem 

models of different complexity. 

2. Study the uncertainty regarding the resolution of climate projections by 

applying physical forcing of various resolution. 

3. Study the effects of future climate change in the Nordic and Barents seas and 

explore temperature dependence in ecosystem components. 

By addressing these objectives, we build upon an extensive amount of previously 

conducted research. Although incorporation of multi-model approaches for 

ecosystem studies is increasingly utilized (Spence et al., 2018; Tittensor et al., 2018), 

there have been few studies specifically investigating the effect of model structure 

on the behavior of marine ecosystem models (Fulton et al., 2003). Kaplan et al. 

(2019) represent an example of such a study, where the role of Pacific sardine in the 

California Current food web was investigated by using three ecosystem models of 

varying complexity. Studies of the impact of increased model resolution on the 

physics (Busecke et al., 2019; Kirtman et al., 2012; Langehaug et al., 2019; Melsom 

et al., 2009; Sandø et al., 2014; Skogen et al., 2018) and how this affects timing of 

spring bloom and net primary production (Hansen and Samuelsen, 2009; Skogen et 

al., 2018) have also previously been conducted. Yet, few studies have focused on the 

effects on higher trophic levels, and how the benefit of downscaling translates to a 
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coarse resolution ecosystem model.  This is highly important to understand to what 

degree climate from global models can be used to project effects of climate changes 

for these types of studies. 

Assessing climate risk is now shifting from qualitative, expert judgment  (Hare et al., 

2016), to  quantitative predictions of climate impacts on particular species (Kjesbu 

et al., 2021; Sandø et al., 2022). Using ecosystem models to study the effects of 

future climate change in the Nordic and Barents seas have been done (Hansen et al., 

2019b), but mainly by using single climate scenarios. In our study we address the 

uncertainty regarding the species responses to temperature change by considering 

various climate scenarios and alternate responses in lower trophic levels. By 

comparing the responses under the various climate scenarios, we identify potential 

winners and losers in in a warmer future and explore the species’ vulnerability to 

changes in lower trophic levels. 

Although climate change has many different manifestations (e.g. ocean acidification, 

thermohaline circulation alteration, stratification, oxygen  (Doney et al., 2012)) we 

mainly focus on the effects of temperature changes in our study, but we also 

account for effects of decreasing sea ice cover, light availability and various 

responses in lower trophic levels. An important advantage of simulated data is their 

potential to disentangle which driving mechanisms lead to the simulated response, 

and thereby advance our understanding of the natural system (Skogen et al., 2020). 

Understanding the underlying mechanisms of ecosystem changes is key to improve 

scientific advice and develop to forecasts to inform fishery management (Karp et al., 

2019). In this thesis we therefore focus on the mechanisms that drives the changes 

when analyzing the results. 
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2. Ecosystem models and study area 

In this chapter we give a brief introduction to the ecosystem models that were 

applied in thesis, as well as a description of the Nordic and Barents Seas 

 

2.1 NoBa Atlantis 

The Atlantis modelling framework (Audzijonyte et al., 2019; Fulton et al., 2011) is 

one of the most complex marine end-to-end ecosystems models in the world 

(Plagányi, 2007), and is designed to cover the entire ecosystem and integrate all 

relevant economic and social aspects (Fulton et al., 2011). The model was originally 

developed at the Commonwealth Scientific and Industrial Research Organization 

(CSIRO) in Australia by Dr. Elizabeth A. Fulton and her team and have been applied 

to several places around the world, mostly in Australian, U.S, and European waters 

(Weijerman et al., 2016), and models for other areas are under development (CSIRO, 

2022). The Atlantis model used for this thesis is the Nordic and Barents Seas Atlantis 

model (hereafter NoBa) developed by Hansen et al. (2016).  

The NoBa model includes all trophic levels from phytoplankton to marine mammals, 

represented by 53 species and functional groups (Figure 1). Most species are 

modelled as individual species or aggregated into functional groups with species of 

similar life history and ecological characteristics. The species are connected through 

a diet matrix where the proportion of prey in the predator´s diet is defined. The 

availability of prey also depends on spatial and temporal overlap, as well as the gape 

size limit which relates to the size of the prey compared to the mouth of the 

predator. Most vertebrate species are age-structured while invertebrates are 

gathered into biomass pools. The biomass of vertebrates is also divided into 

numbers-at-age and weights-per-individual. This separation enables detection of 
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changes driven by population dynamics (numbers) or growth and consumption 

(weights).  

 

 
 
Figure 1. Conceptual figure of the NoBa Atlantis model showing species and functional groups connected 
through the diet matrix, an overview of the polygons in the model domain as well as impacts from 
fisheries and physical forcing including temperature, salinity, currents, and ice.  Modified from Nilsen et 
al. (2022) 

 
The model combines oceanography, population dynamics, spatial distributions, 

nutrient cycling, fisheries, and species interactions in a spatially explicit domain. The 

total area of 4 million km2 is divided into 60 polygons with up to 7 depth layers 

depending on total water column depth (Hansen et al., 2016). The species can move 

between polygons and layers either actively through swimming (e.g., fish, whales) 

or passively transported by currents (e.g., plankton, egg, larvae, nutrients). While 

planktonic species drift along with currents, the majority of the vertebrate species 

swim actively and have forced migration to ensure seasonal movement patterns 

throughout the year (Audzijonyte et al., 2017). 
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NoBa is forced bottom-up by daily inputs of mean temperature, salinity and sea-ice 

in each polygon and depth level, as well as currents through net transport of water 

(m3 s-1) between the polygons. The physical forcing from  Regional Ocean Circulation 

models (Hordoir et al., 2019; Shchepetkin and McWilliams, 2005) covering the 

Northeast Atlantic are normally used.  

The temperature affects the species growth and consumption equations 

(Audzijonyte et al., 2017), but an additional temperature sensitivity option, here 

referred to as “thermal niche”, can also be applied. The thermal niche restricts the 

species to spawn or reside in polygons within their tolerated temperature range, 

and the temperature ranges set in NoBa were based on literature (Hansen et al., 

2016). The presence of sea ice affects the primary production by limiting the 

availability of light, and a species-specific sensitivity to ice can also be included 

where species are either positively or negatively affected by ice. 

NoBa Atlantis includes a harvest sub-model that allows for multiple fishing fleets 

with their own set of features like gear selectivity, target species and management 

structures. In this thesis, historical fishing levels were applied for the hindcast period 

(year 1980-2020) using  catch assessments and total stock biomass data (ICES, 2021, 

2020). After this, the fishing mortality for the last year (year 2020) was applied each 

year for the rest of the simulation. The fishing mortality was applied to the adult 

stock and was evenly distributed across the model domain.  

The Atlantis modelling framework has been rated as one of the best “what if” 

scenario models in the world (Plagányi, 2007), and the NoBa model has been 

thoroughly tested to ensure that the model behaves reasonably (Hansen et al., 

2019a). Previous studies have also used Atlantis models to evaluate impacts of 

fishing strategies (Hansen et al., 2019b; Nilsen et al., 2020), ocean acidification (Fay 

et al., 2017; Kaplan et al., 2010; Olsen et al., 2018), potential oil spills (Olsen et al., 

2019), spatial management (Kaplan et al., 2012) as well as climate changes (Bossier 
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et al., 2018; Fulton, 2011; Ortega-Cisneros et al., 2018). More detail about the model 

set-up can be found in Hansen et al. (2016), and information about how the model 

was used in our studies can be found in each paper. 
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2.2 Gompertz 

In the first paper we compared the NoBa Atlantis model to a Gompertz model. 

Gompertz models are widely applied in biology, and have been used to describe 

animal growth and multispecies dynamics as well as bacteria growth and cancer  

(Hampton et al., 2013; Ives et al., 2003; Laird, 1964; Langangen et al., 2014; Stige et 

al., 2018; Vaghi et al., 2020; Winsor, 1932; Zwietering et al., 1990). For this study, a 

state-space version of the Gompertz model was used and analyzed. This model was 

originally developed by Stige et al. (2019) to study the direct and indirect effects of 

sea ice cover on the major zooplankton groups and planktivorous fish in the Barents 

Sea, and will hereafter be referred to just as “Gompertz”. 

Gompertz is a relatively minimalistic ecosystem model that focus on five species or 

species groups: capelin, polar cod, krill, amphipods, and copepods (Figure 2). These 

five species are modelled dynamically. The effects of the two key predators; cod and 

herring, as well as impacts from fishery and ice cover are included as covariates.  

 

 

 

Figure 2. Conceptual figure of the 
Gompertz model including the 
dynamically modelled species 
(black), and other key abiotic or 
biotic variables (grey). Thickness 
and color of arrows represent 
estimated effect of positive (blue) 
or negative (red) interaction, while 
line type indicates significance. 
Modified from Nilsen et al. (2022) 
and Stige et al. (2019) 
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Climate is represented through a time series of annual winter sea ice concentration, 

while fishing is given as a fraction of biomass removed. Fishing is applied to capelin 

as it is the only dynamic species that was significantly harvested historically during 

the period with available data (1980-2015). 

The model is fitted in a Bayesian state-space framework, where the species and 

processes are described by a set of state variables and equations referred to as the 

“process model”. The process model consists of five equations, one for each of the 

dynamically modelled species. The compact form representing log-scaled biomass 

is given in equation 1. The process model describes how the biomass (X) at time (t) 

of a species depends on productivity (a), density dependence (b) and biotic and 

abiotic effects from the other species (c). In addition, process error (𝛿) was included, 

which account for environmental factors not included in the model. With the 

Bayesian state-space approach, the process model is linked to data by an 

observation model, which estimates the strength of the interactions between the 

species while accounting for uncertainties about biological processes and 

observation noise. 

 

The general compact form: 

𝑥! = 				𝑎				 + 							𝑏𝑥"#$ 								+ 										𝑐	𝑧"#$ 										+ 												𝛿𝑇                     (1) 

 

More information regarding how the model was set up can be found in Stige et al. 

(2019), and details of how it was used in our study can be found in Paper I, chapter 

5.1, Nilsen et al. (2022). 
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2.3 The Nordic and Barents seas 

Throughout history the seas surrounding Norway have provided an abundant supply 

of fish as a nutritious and high-quality source of food. Even though it is a small 

country in terms of people, Norway has one of the longest coastlines in the world 

and is managing ocean areas of 2,3 mill km2.  

Figure 3. Map of the bathymetry and surface circulation of the Nordic and Barents Seas. The Atlantic 
currents are included in red, the Arctic or Polar Waters are in blue and the Coastal Waters are in green. 
The map of the currents is based on previous published figures (Lien et al., 2016; Oziel et al., 2020) 

The Nordic Seas consists of the Norwegian, Greenland and Iceland seas, which 

covers an area of 2.5 million km2 in the most northern part of the Atlantic Ocean. 

The eastern part is characterized by a relatively warm surface water of Atlantic 

origin, whereas the deep water masses below 750m are of Arctic origin, with 

temperatures below 0°C (Blindheim and Østerhus, 2005). In the western part, the 

waters are of Arctic origin and generally cold. The Nordic Sea is divided into several 

separate basins of 2000-4000 meters depth, with maximum depth of 4020 m.  



 20 

The Barents Sea is a subarctic shelf sea of approximately 1.4 million km2 located 

north of Norway and Russia. It is separated from the Nordic Seas by the continental 

slope between Norway and Svalbard. Despite being the deepest of the Arctic Shelf 

Seas, it has a relatively shallow average depth of 230 m, although deeper channels 

and basins of 500 m exist (Sakshaug et al., 2009). The Barents Sea is seasonally 

covered by sea-ice (ranging from maximal ice cover in March and the lowest sea ice 

cover in September (Onarheim et al., 2018), although annual sea ice cover has 

decreased since the 1980s (Onarheim and Årthun, 2017).  

 

Oceanography 

The circulation in the Nordic and Barents Seas is strongly affected by the topography 

(Mork & Skagseth, 2010). From the south flows warm, high salinity Atlantic water 

which gradually becomes cooler and less salty on its way north due to mixing with 

the coastal current and arctic water, as well as precipitation and heat loss to the 

atmosphere (Østerhus et al., 2005; Skagseth et al., 2011). This heat transport along 

the Norwegian coast and the vertical heat flux in the Barents Sea are part of the so-

called Atlantic Meridional Overturning Circulation (AMOC), where warm and salty 

water is transported northwards near the surface were it gradually cools and sink 

and is then transported southwards at depth. Cold, low salinity Polar Water, which 

originates in the Arctic Ocean, is transported by the East Greenland Current into the 

Nordic Seas along the east coast of Greenland, while the low salinity Norwegian 

Coastal Current which originates primarily from the Baltic and the freshwater runoff 

from Norway flows northwards along the Norwegian coast (Sætre, 2007). 
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Figure 4. Map of simulated sea surface salinity (SSS), simulated sea surface temperature (SST), and 
observed sea ice cover (top) where SSS and SST are based on model outputs from Nemo-NAA10km and 
show simulated winter values for year 2000 as an illustration, while the ice cover is based on 
observations from EUMETSAT OSI SAF. Trends over the last 40 years are also included (bottom) where 
SSS and SST observations from three various transect along the Norwegian coast (marked in map) are 
included (Havforskningsinstituttet, 2022), as well observed trends in ice cover for winter (March, blue) 
and  summer (September, red) (EUMETSAT OSI SAF). 

Over the past decades, the Nordic and Barents Seas have experienced changes due 

to climate change (Skagseth et al., 2020). The change in sea ice cover in the Barents 

Sea is one of the most visible signs, where observations document a 50% decline in 

the winter sea-ice extent (Årthun et al., 2012). In the Barents Sea, sea surface 

temperature has increased by 1°C during the last 40 years (Timmermans & Ladd, 

2019), and temperatures have also increased in the Nordic Seas (Tsubouchi et al., 

2021). Salinity have also been increasing leading to a shift in the Nordic and Barents 

Seas from cold and fresh conditions during the 1980s and 1990s to relative warm 

and saline conditions towards 2010. However, the last couple of years this trend has 

declines, especially for salinity which is now at lower levels similarly to the 1970s 

(Havforskningsinstituttet, 2022).   
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Ecosystem 

The ecosystem in the Nordic Seas has a relatively low biodiversity, but the food chain 

is productive and certain species occur in very large numbers. The phytoplankton 

establishes the bottom of the food chain and is found in enormous quantities during 

the short, but intense spring blooms. Zooplankton species, like Calanus 

finmarchicus, is consumed by abundant pelagic fish and a variety of marine 

mammals including minke whales and larger whales such as humpback and fin 

whales (Gjøsæter et al., 2009).  

The fish community in the Nordic Seas is characterized by large stocks of medium 

sized pelagic species such as Norwegian spring spawning herring (Clupea harengus), 

mackerel (Scomber scombrus) and blue whiting (Micromesistius poutassou). These 

stocks are highly migratory and none of them spend their entire life cycle within the 

Norwegian Sea. Both blue whiting and mackerel spawn west of the British Isles and 

the North Sea, before migrating back into the Nordic Seas. Norwegian spring 

spawning herring, on the other hand, has its main spawning and feeding areas in the 

Nordic Seas, but the main nursery area is in the Barents Sea. Mackerel vertical 

distribution is typically closer to the surface, herring is often distributed somewhat 

deeper, while the blue whiting has the deepest distribution (ICES, 2008). Other 

abundant species include whales, seabirds, as well as mesopelagic fish like pearlside 

(Maurolicus muelleri) and lanternfish (Benthosema glaciale), which have a dial 

vertical migration and are important as food for several commercial species.  

The ecosystem of the Barents Sea is surprisingly diverse considering its northern 

distribution. Krill and amphipods are key components in the diet of many 

ecologically and economically important fish species in the Barents Sea. Juvenile 

herring  drifts along the Norwegian coast after hatching and also ends up in the 

Barents Sea (Olsen et al., 2010), and is along with capelin (Mallotus villosus) and 

polar cod (Boreogadus saida) considered as key species in the Barents Sea food-web, 
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transferring energy from lower trophic levels to higher trophic levels (Hop & 

Gjøsæter, 2013). Northern shrimp (Pandalus borealis) is an important prey for 

several fish species, and is also commercially harvested (ICES, 2008). 

The Barents Sea holds the largest cod stock (Gadus morhua) in the world, and cod is 

considered the most important predator in the area feeding on a variety of prey. 

Haddock (Melanogrammus aeglefinnus) and saithe (Pollachius virens) also represent 

important predators that are commercially harvested. Beaked redfish (Sebastes 

mentella) and golden redfish (Sebastes norvegicus) are slow-growing, deep-water 

species that have been heavily fished, and their fishing is now strictly regulated to 

rebuild the stocks. Greenland halibut (Reinhardtius hippoglossoides) is found around 

the eastern shelf and is also commercially exploited. Snow crab (Chionoecetes 

opilio), is a new species in the Barents Sea where it was first observed in 1996 

(Kuzmin et al., 1999), and has gradually increased its abundance in the later years. 

Seabirds and whales are also present, and minke whales are by far the most 

abundant whale species (Øien, 2009). 

Figure 5. Simplified representation of some of the key ecosystem components in the Nordic and Barents 
Seas. The lines indicate how energy flow from lower to higher trophic levels. 
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The species of the Nordic and Barents Seas are exposed to extensive seasonal 

variability in terms of light availability, fluctuations in temperature as well as 

formation and melting of sea-ice. Through the course of evolution these species 

have adapted to these variable conditions with their own sets of unique 

physiological and biochemical traits that are necessary for surviving in these harsh 

conditions (Jakobsen and Ozhigin, 2012).  

However, the recent warming due to climate change in the Nordic and Barents 

Seas has led to a change in spatial distribution of fish communities, with boreal 

communities expanding northwards as the Arctic is warming (Frainer et al., 2021). 

Arctic species, on the other hand, suffer from increased competition and predation 

from boreal species, as well as  decreases in suitable habitats (Hodapp et al., 2023) 

and are retracting and declining (Fossheim et al., 2015). Understanding how climate 

changes are altering the structure and composition of Arctic ecosystems is therefore 

vital. 
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3. Introduction to papers 

This chapter briefly summarize the papers produced in this thesis, as well as 
important findings and contribution to science. 

 

3.1 Paper I:  
Exploring the role of Northeast Atlantic cod in the Barents Sea food 
web using a multi-model approach 
Ina Nilsen*, Cecilie Hansen, Isaac Kaplan, Elizabeth Holmes and Øystein Langangen 

 

To address the structural uncertainty related to model complexity, we compare two 

different ecosystem models: a minimalistic model based on relatively few species 

(Gompertz) and a highly complex model (Atlantis). We apply this multi-model 

approach to investigate the role of the Northeast Arctic (NEA) cod (Gadus morhua) 

in the Barents Sea, with a focus on the effects of the size of the NEA cod stock on 

capelin (Mallotus villosus) and polar cod (Boreogadus saida).  

These models differ in complexity, number of species, and the amount of time 

required to run and build them. However, both models are comparable in terms of 

spatial and temporal scale and the links between NEA cod and capelin and polar cod. 

To compare the response to changes in the size of the NEA cod stock, we perturbed 

the historical fishing pressure by ±50% and used the same NEA cod biomass in both 

models (Figure 6). We then identified consistent results across models, and as well 

as divergence between the two. Rather than trying to select a 'best' model, we 

compared the models mechanistically by exploring the strengths of each model, 

while learning from the differences between them.   
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The results from our study indicate that indirect effects, through other food-web 

components present in the Atlantis model but not in the Gompertz model, might be 

as important as the direct predator-prey interactions. Differences in spatial 

structure of the models, and therefore the overlap between species, also influenced 

how strongly the species responded to the perturbations. We concluded that for 

fishery management purposes, the two models can complement each other, and 

that the differences highlighted important areas where more knowledge is needed. 

Our study also supports the idea that fisheries management strategies could benefit 

from using multiple models of varying complexity, rather than relying on single 

models to assess ecosystem impacts of management and predator abundance. 

 

Figure 6. Conceptual figure of the set-up of Paper I, where the biomass of cod was perturbated through 
fishing, resulting in three scenarios with varying levels of cod. The effect of cod on capelin and polar cod 
were then examined in a minimalistic Gompertz model and in a complex Atlantis model. 
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3.2 Paper II:  
Trivial gain of downscaling in future projections of higher trophic 
levels in the Nordic and Barents Seas 
Ina Nilsen*, Filippa Fransner, Are Olsen, Jerry Tjiputra, Robinson Hordoir and Cecilie Hansen 

 

Downscaling physical forcing from global climate models translates coarse 

information to a regional scale to better capture the dynamics of primary production 

and lower trophic levels. However, the process is both time consuming and labor 

demanding, and it is not clear how important it is for representation of higher 

trophic levels in coarse ecosystem models.  

In this study we therefore focus on higher trophic level species and apply the Nordic 

and Barents Seas Atlantis ecosystem model (NoBa) to study the consequences of 

using physical forcing from a global climate (NorESM2) model versus using that from 

a regional model (Nemo-NAA10km). We apply physical forcing from the SSP5-8.5 

scenario and adapted the physics from the two climate models to the NoBa grid 

before applying it in the model. 

 
Figure 7. Conceptual figure of the set-up for Paper II, where physical forcing from a global (NorESM2) 
and a regional (Nemo-NAA10km) oceanographic model was applied to an ecosystem model (NoBa). 
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To investigate the extent to which a global climate model can be used for regional 

ecosystem predictions we addressed three research objectives: 

1. How the physics from the two oceanographic models differ after being fitted 

to the NoBa grid. 

2. How the differences in physics affect higher trophic level species. 

3. How future climate changes affect the ecosystem when accounting for the 

uncertainty from applying two sets of physical forcing with varying resolution. 

 

The results from our study showed slight differences in temperature, salinity and ice 

cover between the two sets of physical forcing after being tailored to the NoBa grid. 

However, we found that few higher trophic level species were affected by using 

forcing from a global versus a regional model, and there was a general agreement 

on future biomass trends and distribution patterns. However, the slight difference 

in temperature between the models dramatically impacted Northeast Arctic cod 

(Gadus morhua), which highlights how species projection uncertainty could arise 

from poor representation of the physical forcing, in addition to uncertainty in the 

ecosystem model parameterization.  

We concluded that for modelers lacking downscaled physics, the physical forcing 

from a global model can be sufficient for studying higher trophic levels. Yet, the case 

of cod demonstrated the importance of downscaling essential ocean features for 

the species that are being studied, in our case the temperatures at cod spawning 

grounds. Our study also highlighted the value of not only using multiple ecosystem 

models or climate projections, but also physical forcing of varying resolution to 

assess uncertainty. 
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3.3 Paper III:  
A shifting chessboard: projections of prawn, capelin, mesopelagic fish, 
zooplankton, and their Nordic and Barents Seas food web under 
climate change.  
Ina Nilsen*, Isaac Kaplan and Cecilie Hansen 
 

In this study we investigated the effect of climate change in the Nordic and Barents 

Seas by using the NoBa Atlantis model. We applied downscaled physics from three 

Shared Socioeconomic Pathways (SSPs) scenarios ranging from low (SSP1-2.6), 

medium (SSP2-4.5) and high CO2-emission (SSP5-8.5) to study the differences that 

arise between the species for the different scenarios. To account for high 

uncertainty in how phyto- and zooplankton will respond to future climate change, 

we also included variation in the simulations by changing the growth rate of phyto- 

and zooplankton. This was the first study where physical forcing from three different 

SSP scenarios has been applied to an ecosystem model in this area, and we therefore 

treat the results with caution and focus on the underlying mechanisms of the model. 

 

Figure 8. Conceptual figure of the set-up of Paper III, where the combined effects of changing 
temperatures and varying levels of plankton were examined in the NoBa Atlantis model. The black lines 
represent the historic period from 1980-2015, while the colored lines show how changes in physical 
forcing and changes in plankton was applied after year 2015 
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We identified several important mechanisms in the model, including thermal 

sensitivity, shifts in diets, predator-prey overlap and cascading effects.  Key mid- and 

lower-trophic level groups projected to respond to climate change were 

mesopelagic fish, prawns, capelin, and large zooplankton, and the effects on these 

groups cascaded to other species, especially predators. The spatial nature of the 

model also allowed us to study how local changes in temperature and prey could 

affect entire populations.  

We conclude that future ecosystem studies could benefit from both modeling and 

empirical studies that consider not only broad-brush impacts on primary production 

and trophic transfer, but also spatial considerations of local predator-prey 

interactions and thermal habitat and spawning-area suitability.  Our results agree 

with previous modeling and expert-based vulnerability assessments for the Nordic 

and Barents Seas, but also suggest new vulnerabilities and mechanisms. 

 

 

 

  



 31 

3.4 Contribution to science  

Through our work we have demonstrated the value of using ecosystem models of 

varying complexity, climate models of varying resolution and climate projections 

under various emission scenarios to assess and understand the uncertainty 

regarding model projections. In line with other highly-profiled Intergovernmental 

climate assessments (IPCC, 2022; Tittensor et al., 2018) we highlighted how this can 

improve our understanding and build trust in ecosystem models. 

We demonstrate how the use of multiple ecosystem models to study ecosystems 

can improve our understanding of the models and their underlying mechanisms, as 

well as provide useful information in terms of mechanisms we are uncertain about 

and point to areas that need more research.  Our study supports the idea that 

fisheries management strategies can benefit from using models of varying 

complexity to capture a broad range of ecosystem responses, rather than relying on 

single models to assess ecosystem impacts. 

By comparing outputs from a coarse resolution ecosystem model using physics from 

a regional climate model and its driving global model, we found that for modelers 

lacking available downscaled physical forcing, using physics from a global model 

could be sufficient to study climate effects on higher trophic level species. In line 

with other studies (Drenkard et al., 2021) we support the idea that the primary 

objective of downscaling should be to resolve important ocean features for the 

species that are being studied, if those features are not captured by the global 

climate model. In our case this was illustrated by the importance of temperature at 

spawning grounds for Northeast arctic cod, which must be downscaled properly 

given what we know about that species and how it is represented in the ecosystem 

model. 
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Through simulating future climate change in the Nordic and Barents Seas we 

identified high-priority species such as mesopelagic fish, prawns, capelin, and large 

zooplankton, due to their responses to the changing temperature as well as their 

tight linkage to other species, especially predators. As in earlier projections of 

climate change impact in Australia (Fulton, 2011), we found both winning and losing 

species under climate change, but also ‘surprises’ that were not anticipated by 

earlier modeling or expert-based vulnerability assessments. Perhaps more 

importantly, we highlighted several important mechanisms in the model, including 

thermal sensitivity, shifts in diets, predator-prey overlap and cascading effects, 

which should be considered when studying effects of climate change. 

Through working with this thesis, we have also developed three sets of downscaled 

physical forcing for the NoBa Atlantis model, including SSP1-2.6, SSP2-4.5 and SSP5-

8.5, as well as physical forcing from a global model for SSP5-8.5. Since the NoBa 

Atlantis model was set up in 2016, there has only been one set of physics available 

representing the rcp4.5 scenario from CMIP5 (Shchepetkin and McWilliams, 2005), 

and the development of multiple sets of physical forcing various future climate will 

be highly valuable for future studies using the NoBa Atlantis model. 

Our results have broad relevance not just in the Barents and Nordic Seas, but also in 

other regions as fishery managers must increasingly cope with the shifting 

distribution and productivity of species due to climate change. Karp et al., (2019) 

have highlighted the understanding mechanisms and evaluation of risks and 

priorities as two of the six steps toward climate-informed fishery management. Our 

results particularly address mechanisms and priorities. Our analysis specifically 

addresses these two issues, and points to the need for both empirical and modeling 

studies to understand and detect spatial considerations of local predator-prey 

interactions and thermal habitat and spawning-area suitability.   
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4. Future perspectives  

By using multiple ecosystem models of varying complexity in Paper I, we identified 

strengths and weaknesses related to model complexity. However, according to 

Collie et al. (2016) there is a ‘sweet spot’ along the gradient from simple to complex 

that balances model bias and parameter uncertainty which are defined as models of 

intermediate complexity. Future studies could benefit from applying such 

intermediate models to identify how those compare to simple and complex model, 

whether the responses would lie somewhere in between, or be completely different 

from models with alternate levels of complexity. Paper I also identified uncertainties 

regarding polar cod, as the direction of the response of polar cod differed between 

the complex and simple ecosystem models. The study shows that using multiple 

ecosystem models are useful to improve and support a more holistic management 

approach.  

In Paper II, where we investigated what we gained from downscaling physical forcing 

from a global model, we interpreted this at the resolution of the NoBa model grid. 

Although we demonstrated that using physics from a global model could be 

sufficient for studying climate effects on higher trophic levels, it is not clear how this 

would translate to other ecosystem models with different grid resolution or other 

species included. Applying physics of various resolution to ecosystem models with 

other grids or in other regions is therefore important to fully assess the benefits of 

downscaling physical forcing for ecosystem models.  

For both Papers II and III, turning on the thermal niche affected the species’ 

responses to temperature, both in terms of collapses due to temperatures being too 

low (Paper II) and decreases due to temperatures being too high (Paper III). The 

temperature ranges in NoBa are based on literature, but species temperature 

tolerance is uncertain, especially for the functional groups where multiple species 
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are grouped together, and for non-commercial species where information is scarce. 

Increasing efforts to understand species tolerates temperature limits should 

therefore be prioritized, as this is an important part of projecting responses to future 

climate changes. In addition, the polygons in NoBa are large and the coarse 

resolution makes it challenging to represent temperature tolerance as there might 

be suitable habitats within the polygons although the mean temperature is outside 

the reported thermal niche. There are multiple options to determine how the 

thermal sensitivity affects species in Atlantis models (Audzijonyte et al., 2017), and 

exploring these options to include more “soft” responses to temperature (e.g. 

Gaussian curves instead of the currently applied cut-off shape) should therefore be 

investigated for future studies. 

The forced migration patterns of the modelled species in NoBa also represented a 

limitation to this study. As the option restricts species to be in certain polygons at 

specific times and to follow the observed seasonal migration patterns, the option of 

tracking distributional changes due to climate change were reduced, as species 

could only redistribute within the given polygons in which they are currently 

observed. As recent observations and studies have shown that boreal species are 

increasing their distribution further north (Fossheim et al., 2015; Mueter et al., 

2021), the need to study such potential shifts is essential. Currently there are no 

possibilities in Atlantis for combining the strong seasonal spawning and feeding 

migrations, with redistribution due to temperature and food availability. Recoding 

the Atlantis framework to allow for such potential shifts is therefore highly 

important and should be considered for future studies.  

In high-latitude ecosystems where species are specialized to cope with extreme 

differences in seasonal variability, the species’ ability to adapt to climate changes 

should also be considered when studying the effects of climate change. Currently, 

climate-adaptive measures are largely missing from fisheries management policies 
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and approaches (Barange et al., 2018; Holsman et al., 2019; Karp et al., 2019), and 

Intergovernmental climate assessments have highlighted the need to evaluate 

existing fishery management plans for maladaptation to climate change (Barange et 

al., 2018; IPCC, 2022). Allowing for shifts in distribution is one way to deal with this, 

but also considering the species capacity to adapt to changes in temperatures 

should be prioritized. 

NoBa was the first Atlantis model to be set up for high-latitude ecosystems, with 

large seasonal variance in light and sea-ice (Hansen et al., 2016). The ice-module is 

still under development at CSIRO and has only previously been set up for an Atlantis 

model representing the Eastern Antarctica that is currently under development. 

These studies thereby represent the first attempt at applying seasonal sea ice in an 

Atlantis model. Our results showed that adding ice as forcing had a weak effect on 

the species,  also Arctic species which are known to be highly dependent on ice (e.g. 

polar cod, polar bear) (Gjøsæter et al., 2020; Kjesbu et al., 2021). This suggests that 

further development of the ice parameters in the NoBa model and other Atlantis 

models is needed to properly address the effects of reduction on sea-ice in high-

latitude ecosystems.  

Although our study mainly addresses the effects of changing temperature, climate 

change has many different manifestations (e.g., ocean acidification, thermohaline 

circulation alteration, stratification, changes in oxygen levels, invasive species). In 

order to fully assess future climate risks, the effects of these factors also need to be 

thoroughly examined. 
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1 | INTRODUC TION 
All fish species are part of complex communities of interacting 
species, typically including predators and prey as well as competitors. 
Therefore, a change in the abundance or biomass in one species may 
propagate to others. In addition, abiotic factors, such as climate 
warming, may play an important role in the dynamics of marine 

ecosystems, for instance by affecting recruitment of fish (Ottersen et 
al., 2013). As a result, ecosystem-based fisheries management 
(EBFM) which recognizes the interactions within an ecosystem has 
been advocated for decades (Botsford et al., 1997; May et al., 1979). 
Yet, EBFM is rarely implemented in tactical management (Skern-
Mauritzen et al., 2016).
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Abstract 
It is commonly accepted that no ecosystem model is the ‘best’, but rather that 
ecosystem models should be used in ensembles. This is also the case for the Barents 
Sea ecosystem, where we have used two different ecosystem models to explore the 
role of the top-predator Northeast Arctic (NEA) stock of Atlantic cod (Gadus morhua, 
Gadidae) in the food web. The two models differ in complexity; Gompertz being less 
complex in terms of food web (7 components) and processes compared to the complex 
Nordic and Barents Seas Atlantis model (53 components). On the other hand, 
Gompertz provides thousands of stochastic realizations for each scenario, whereas 
Atlantis provides only one deterministic simulation. To compare the response to 
changes in NEA cod on two key prey species, capelin (Mallotus villosus, Osmeridae) 
and polar cod (Boreogadus saida, Gadidae), we perturbed the historical fishing 
pressure by ±50% and used the same NEA cod biomass in both models. Even though 
the links between NEA cod and the prey species are similar in the two models, the 
results from the study reveal that indirect effects through other food-web components 
might be as important as direct predator–prey interactions. Differences in spatial 
structure and overlap between species also influence the species response to the 
perturbations. In this study, we focus on the mechanisms that drives the changes in 
the models, and advise on potential consequences for fisheries management. The two 
models can complement each other, and the differences between them point to areas 
where more knowledge is needed. 
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One reason for this is the level of uncertainty associated with the 
response of marine ecosystems to management actions, which 
includes process, observational and model uncertainty as well as 
uncertainty associated with human behaviour (Harwood & Stokes, 
2003). Model uncertainty is often used interchangeably with structural 
uncertainty (Geary et al., 2020; Hill et al., 2007) and describes the 
uncertainty that is introduced by assuming a certain model structure 
over any other. 

Structural differences may lead to different models giving different 
projections under the same scenarios. For ecosystem models, this is 
further complicated by the fact that the models may not run with the 
same set of species or functional groups, the same spatial structure 
or at the same time scale (Spence et al., 2018). Another problem is 
selecting the appropriate level of detail for a model (Levins, 1966), 
which is often considered one of the most difficult aspects of the 
modelling process (Brooks & Tobias, 1996; Law, 1991). However, parts 
of these uncertainties can be addressed by basing decisions on 
multiple independent models (e.g. Fulton et al., 2015; Hill et al., 2007), 
that is a multi-model approach. 

Multi-model approaches are already widely used for climatic 
predictions at a global scale (Gregory et al., 2005; IPCC, 2013), where 
similar-yet-different Earth System Models are used to draw possible 
trajectories of global temperature under different emission scenarios, 
thus integrating model uncertainty into the projections. Such multi-
modelling approaches rely on addressing a single question with 
common scenarios and applying them to different models. Because 
models have different assumptions about system dynamics, a multi-
model approach can highlight key areas of uncertainty in ways that 
support decision-making (Ianelli et al., 2016; Jacobsen et al., 2016; 
Marasco et al., 2007; Thorpe et al., 2015). A multi-model approach can 
also facilitate collaboration among modellers and provide a common 
interpretation of available information (Fulton et al., 2015). 

Inevitably, marine ecosystem models are often tailored to 

specific ecosystems, time periods and geographies, and are time- 

consuming and costly to develop and standardize. Even models of 

the same marine ecosystem may differ significantly, both in terms of 

taxonomy, age groups, density independence, species interactions 

and linear vs non-linear responses, as well as environmental forcing, 

human impacts, and spatial and temporal resolution. The practice 

of considering model uncertainty in implemented ecosystem models 

therefore appears to be relatively rare. Several recent efforts have 

largely focused on uncertainty in parameter values, initial conditions 

and the process uncertainty that arises from natural variation (Bracis 

et al., 2020; Hansen et al., 2019; McGregor et al., 2020), whereas 

uncertainties about model structure have received less attention 

(Geary et al., 2020; Hill et al., 2007; Wildermuth et al., 2018). 

Still, studies have emphasized that EBFM often benefits from a 

suite of ecosystem models that span a broad range of objectives. For 

instance, some models are useful for data organization and as 

catalysts for subsequent efforts, some may allow full exploration of 

parameter uncertainty within a limited number of species, and others 

may trace ecological impacts through a broader set of drivers and 

species (Fulton et al., 2015; Kaplan et al., 2019). In this study, we will 

address model uncertainty by testing fisheries management scenarios 

in two ecosystem models of varying complexity representing the same 

geographical area. 

The Barents Sea ecosystem, situated in the Arctic region north of 
Norway and Russia, offers an ideal opportunity to understand further 
aspects of model uncertainty. This opportunity arises because current 
modelling efforts in this region include a minimalistic multispecies 
model (the Gompertz model), and one of the most complex (Atlantis). 
Both model types are fitted and tested using best practices (see below 
for details), but with important structural differences. The Barents Sea 
is also a great study area because the ecosystem dynamics and model 
behaviour can be focused on relatively few abundant fish stocks of 
high ecological and socio-economic importance (Olsen et al., 2010) 
as well as several key species at lower trophic levels, including krill and 
Calanus species. In particular, the Barents Sea holds the largest 
Atlantic cod (Gadus morhua, Gadidae) stock in the world (Kjesbu et 
al., 2014) the Northeast Arctic (NEA) cod. NEA cod play a dominant 
role in the Barents Sea ecosystem as important predators due to their 
high abundance, wide distribution, long migrations and generalist 
feeding habits, which influence practically all trophic links (Link et al., 
2009). NEA cod also consume a very wide range of food items and 
can switch to prey that are more abundant in a given season and area 
(Jakobsen & Ozhigin, 2011). Therefore, predictions regarding the 
ecological role and effects of NEA cod are of clear interest, as is 
understanding how these predictions vary across models.
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In this study we focus on the effect of NEA cod on other species, 
in particular forage fish species: capelin (Mallotus villosus, 
Osmeridae) and polar cod (Boreogadus saida, Gadidae). We use two 
different ecosystem models of varying complexity (Gompertz and 
Atlantis) to address the ecological role of NEA cod under different 
fisheries management scenarios, and investigate consistent results 
across models, and as well as divergence in model projections. We 
adopt this detailed analysis to better understand the ecosystem 
dynamics in the Barents Sea and the role of structural uncertainty in 
the models used. Rather than trying to select a ‘best’ model, we 
compare the models mechanistically by exploring the strengths of 
each of the models, while learning from the differences between 
them. 

 
 
2 | MODEL S AND METHOD  
 
Two different ecosystem models were chosen to explore how 

 Climate is represented through time series of annual sea ice cover 
during wintertime, while fishing is given as a fraction of biomass 
removed. Fishing is only applied to capelin as it is the only dynamic 
species that was significantly harvested historically during the period 
with available data (1980–2015). 

The model is fitted in a Bayesian state-space framework, where 
the species and processes are described by a set of state variables 
and equations referred to as the ‘process model’. The process model 
consists of five equations to describe the dynamics of copepods, krill, 
amphipods, capelin and polar cod. The five equations describing the 
log-transformed biomass dynamics are presented below in a compact 
form (Equation 1) and as a matrix (Equation 2). 

changes in NEA cod abundance would impact the Barents Sea 
ecosystem: Gompertz (Stige et al., 2019) and NoBa Atlantis 
(Hansen et al., 2019a). These two models differ in complexity, 
number of species and the amount of time required to run and build 
them. However, both models were comparable in terms of spatial and 
temporal scale as well as having common species included.  

 
2.1 | The Gompertz model 
 
The Gompertz model is widely used in many aspects of biology 
(Tjørve & Tjørve, 2017). It has been used to describe the growth of 
animals and plants (Paine et al., 2012; Winsor, 1932), as well as multi- 
species dynamics (Hampton et al., 2013; Ives et al., 2003; Langangen 
et al., 2017; Stige et al., 2018) and growth of bacteria and cancer cells 
(Laird, 1964; Vaghi et al., 2020; Zwietering et al., 1990). In this study, 
a state-space version of the Gompertz model was used and analysed 
(Stige et al., 2019). This model was originally developed to study the 
direct and indirect effects of sea ice cover on the major zooplankton 
groups and planktivorous fish in the northern Barents Sea. The model 
can be regarded as a minimalistic ecosystem model and will hereafter 
be referred to just as ‘Gompertz’. 

In short, our Gompertz model focus on five species or groups of 
species that are modelled dynamically: capelin, polar cod, krill, 
amphipods and copepods. In addition to these, two key predators, 
that is NEA cod and herring (Clupea harengus, Clupeidae), are included, 
as well as impacts from fishery and ice cover. To limit model 
complexity, the NEA cod, which is included as a covariate based on 
time series of observed biomass, is only allowed to affect the 
dynamics of capelin and polar cod biomasses. Herring is also included 
as a covariate that affects capelin, mainly through predation on 
capelin larvae. 

 

In these equations, the state variable xi represents the biomass of 
the five dynamically modelled species on log scale: x1 is copepod 
biomass, x2 is krill biomass, x3 is amphipod biomass, x4 is capelin 
biomass and x5 is polar cod biomass, while z1–z4 represents the 
covariates ice, NEA cod, herring and fishing respectively. The 
subscript T symbolizes the year (1980–2015) while the c coefficients 
represent the productivity (ci0), density dependence (cii) and biotic and 
abiotic effects (cij). 

In addition, process error (8) for all of the five species was 
included. The process errors, which account for environmental factors 
not included in the model (Ives et al., 2003), were assumed to be 
independent in time and were jointly estimated from a multivariate 
normal distribution that accounts for the potential correlation structure 
(Stige et al., 2019). 

With the Bayesian state-space approach, the process model is 
linked to data by an observation model. The observation model 
explicitly accounts for uncertainties about biological processes and 
observation noise (Clark & Bjørnstad, 2004). The output of the 
Bayesian state-space model is the posterior distributions of the model 
parameters, which can be used to quantify uncertainty in the 
ecosystem dynamics (Langangen et al., 2017). We use 2000 
estimated parameter posterior samples to simulate the biomasses of 
capelin, polar cod, krill, amphipods and copepods from 1980 to 2015. 
A schematic representation of the species and the covariates and 
the interactions between them is given in Figure 1. The 
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FI G U R E 1 Schematic representation of both models. (a) Gompertz model where the black figures represent the dynamically modelled species, 
while grey figures represent other key abiotic or biotic variables. Arrows symbolize interactions where thickness is approximately proportional to 
mean estimated effect sizes (posterior means of c-values) while red and blue color indicates positive or negative interaction. Note that not all 
interactions shown were statistically significant, as whole lines indicates 95% c.i. (Stige et al., 2019). (b) Atlantis model where the black figures 
and arrows represent the species included in both models and their interactions with other species. Grey figures and arrows show the species 
and interactions not included in Gompertz. Multiple fishing fleets, physical forcing through temperature, salinity and currents, and spatially 
specific aspects are also included 
 

strength of the interactions between the species was estimated 
from the mean of the posterior samples and is illustrated by the 
colour and widths of the arrows (Stige et al., 2019). Note that not 
all the interactions were statistically significant (dotted lines). To 
estimate the magnitude of the interactions throughout the simulation, 
we multiplied the cij -values with the biomass at the previous 
timestep. For example, the direct effect of NEA cod on capelin 
would then be c47 (NEA cod effect on capelin) multiplied with the 
biomass of cod at the previous timestep (z4T−1) as the direct effect 
is both determined by the cij -value and the biomass. For the 
comparison between the two models, we analyse the median 
output of the Gompertz model. 
 
 

2.2 | The Atlantis model 
The Atlantis modelling framework (Audzijonyte et al., 2019; Fulton et 
al., 2011) is one of the most complex marine end-to-end ecosystems 
models in the world (Plagányi, 2007). It combines oceanography, 
population dynamics, spatial distributions, nutrient cycling, fisheries 
and species interactions in a spatially explicit domain. Most species 
are modelled as individual species or aggregated into functional 
groups with species of similar life history and ecological 
characteristics. The version implemented in the Nordic and Barents 
Seas (NoBa) (Hansen et al., 2016, 2019a) is the 

 version that will be used in this study and will hereafter be referred to 
as ‘Atlantis’. 

Atlantis includes all trophic levels from phytoplankton to marine 
mammals, represented by 53 species and functional groups. These 
species are connected through a diet matrix where the proportion 
of prey in the predator´s diet is defined (Figure 1). The availability 
of prey also depends on spatial and temporal overlap, as well as the 
gape size limit, that is the size of the prey compared to the predator. 
The harvest sub-model allows for multiple fishing fleets with its own 
set of features like gear selectivity, target species and management 
structures. In the base run set up prior to this study, fisheries of the 
12 main commercially important stocks were set up and harvested 
close to historical fishing levels (Hansen et al., 2019b). The model is 
forced bottom-up by daily inputs of temperature, salinity and 
currents from a Regional Ocean Modelling system (ROMS: 
Shchepetkin & McWilliams, 2005) covering the Northeast Atlantic 
(Skogen et al., 2007). Some of the key aspects of the model are 
summarized in Table 1. 

There is a high taxonomic resolution in Atlantis, especially for 
species that are harvested, vulnerable and/or economically import-
ant. Lower trophic levels are also represented but are to a larger 
degree aggregated into groups based on size. Zooplankton, for ex-
ample, are split into large, medium, small and gelatinous groups. This 
means that the amphipods and krill, which are simulated individually 
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TA B L E 1  

Comparison of the structural 
differences in the models 

 
 
Species and functional groups 

 
 
5 (+2) 53 

Spatial resolution None 60 polygons, 7 depth layers 

Model type Statistical state-space Deterministic end-to-end 

Includes process error Yes No 

Number of model realizations 2000 1 

Dynamic (i.e. project through time) Yes Yes 

Trophic interaction Two-way coupling +one way Two-way coupling 

Number of links between all species 8 423 
 
Number of links: Capelin 6 23 

Number of links: Polar cod 5 19 

Representation of harvest Timeseries of landings data of 
capelin at the stock level 

Varying fishing mortality rates 
on commercially harvested 
species 

Representation of physics Yearly ice cover given in % Daily input of physical forcing 
through temperature, salinity 
and currents 

Representation of life stages None All vertebrates separated into 
age groups, while some 
invertebrates (prawn, squid) 
are separated into juvenile/ 
adults 

in Gompertz, are gathered into one broader group of ‘large zoo- 
plankton’ in Atlantis. Capelin and polar cod, on the other hand, are 
modelled as individual species in both models, and the ‘Medium zoo- 
plankton’ group in Atlantis corresponds to the ‘Copepods’ as both 
groups are based on data and characteristics of Calanus finmarchicus 
(Hansen et al., 2016, 2019a; Stige et al., 2019). Another difference is 
that all vertebrate groups in Atlantis are age structured in up to 10 age 
classes, which is not the case in Gompertz, where all age classes for a 
given species are aggregated. 

NEA cod and herring are also included in both models. However, 
in Atlantis both species are dynamically modelled, while in Gompertz 
they are represented as covariates based on forced time series. This 
means that NEA cod and herring are unaffected by fluctuations 
in climate and other species abundance in Gompertz, while this is not 
the case in Atlantis. The number of species also differ greatly between 
the two models, as Atlantis includes more than ten times more 
species and functional groups than Gompertz. This is also reflected 
by the number of trophic links included in the models. 

 
 
2.3 | Comparison of model structure 
 
Each of these ecosystem models have pros and cons associated with 
their use in providing projections. The Gompertz model is by design 
limited to a narrow taxonomic scope and simple representations of 

predator effects on forage fish, but this simplicity facilitates larger 
numbers of model projections and inclusion of both process and 
observational error. The Atlantis framework, in contrast, is limited 
in terms of replicates by slow simulation time and therefore lacks 
the stochasticity and uncertainty handled by the Gompertz model, but 
in exchange it includes a broader representation of the whole food 
web and encompasses additional important species and interactions 
(with the exception of large zooplankton which had a more detailed 
representation in Gompertz). Atlantis is however more difficult to 
link directly to data. Atlantis models can be calibrated to historical 
time series (Hansen et al., 2019b) and can be tested via extensive 
sensitivity analysis (Hansen et al., 2019a) and skill assessment 
(Olsen et al., 2016), but statistically fitting to data, as is done with 
the Gompertz model, is precluded by the long simulation times. 
Atlantis also includes age structure and spatial dynamics, which are 
lacking in Gompertz. These aspects tend to make models like 
Atlantis less responsive to perturbations than models like 
Gompertz (Walters et al., 2016). Using these two independently 
derived models with distinctive assumptions and trade-offs could 
highlight key areas of uncertainty and help address complex 
ecosystem management issues. Analysing models of different 
complexity might also help us understand how much resolution of 
space, species and sizes is needed to address complex ecosystem 
questions. In Table 1, we compare some of the key aspects of these 
ecosystem modelling approaches. 
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2.4 | Scenarios 
 
To compare the two models, we took a hindcasting approach 
where historical time-series covering the years 1980–2015 
were used. This was done to avoid typical problems associated 
with forecasting, such as potential large uncertainties and over- 
confidence in model forecasting (Brander et al., 2013). Since the 
models differed in several aspects, it was necessary to define a 
common baseline to compare the outputs. Atlantis simulates NEA cod 
biomass, while Gompertz uses forced time series as input. 
Consequently, the simulated NEA cod biomass from Atlantis was 
used as input in Gompertz, as the two time-series were quite similar 
(grey and black line, Figure 2). With this approach, it was possible to 
compare the ecosystem response in the two models while NEA cod 
biomass was the same. For species other than NEA cod, parameters 
and forcing were left unchanged, to investigate the isolated effects of 
NEA cod. 

A base run in Atlantis set up with historic fishing levels was used 
as the control run in the two models. The NEA cod biomass from this 
scenario was found to be significantly correlated with observations (r 
= 0.97, p = 0) (Figure 2). The NEA cod biomass was then perturbed 
by changing the fishing regimes on NEA cod in Atlantis. First, the 
historic fishing pressure was reduced by 50%, and then the fishing 
pressure was increased by 50%. The three scenarios used for analysis 
are summarized in Table 2 along with the mean fishing mortality 
throughout the simulated period. The historic fishing pressure applied 
in Atlantis was based on the reported values (ICES, 2018, 2019). 

2.5 | Elimination of unstable runs 
 
Our application of the Gompertz model involved replacing the original 
NEA cod time series (which itself was based on fishery survey 
observations) with Atlantis NEA cod trends. This resulted in some 
of the 2000 posterior samples from the Gompertz model indicating 
unstable dynamics. Investigation of the instability indicated that it 
was largely driven by the parameters of density dependence for 
capelin (c44) and polar cod (c55) being larger than 1 for some of the 
posteriors. Figure S3 demonstrates the effect of density 
dependence on capelin and polar cod and how values above 1 could 
lead to unstable dynamics. 

The range of parameters describing density dependence (cii) were 
not restricted below 1 in the original model parameter estimation 
(Supplementary materials; Stige et al., 2019), and we therefore 
attempted to stabilize the model by constraining c44 and c55 to be 
below 1 (Figure S4). This reduced the number of unstable runs to 
some extent, but it did not solve the problem completely. 

Since the samples had extreme values that would not be realistic 
in real ecosystems, it was decided to remove them from the analysis. 
Based on Ives et al. (2003), unstable posteriors were classified by 
analysing the eigenvalues of the B-matrix of the interaction strengths. 
The B-matrix is formed by the c values with 0s where there is no 
interaction between species (matrix in Equation 1). All the c values for 
the 2000 runs were assembled into B-matrices at a 10 × 10 form, and 
the largest eigenvalue was computed for those matrices. The 
posterior samples where the B-matrix had an eigenvalue larger than 
1 (i.e. unstable dynamics) were then excluded from the analysis. 

 
 

 
 
FI G U R E 2 Biomass of NEA cod in both models normalised to zero mean and unit standard deviation. Black line shows simulated biomass 
from Atlantis used as the base case in both models, while the grey line shows observed biomass used in the original Gompertz model. Dotted 
lines show scenarios from Atlantis where the fishing mortality on NEA cod was reduced (blue) or increased (orange) by 50% 
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TA B L E 2 Scenarios set up in Atlantis and 
used as input in Gompertz. The base run 
represents historical fishing levels, while in 
F_0.5 and F_1.5 the historical fishing 
pressure for NEA cod was changed by 
±50%, respectively. 

 
 

FI G U R E 3 Simulated biomass of capelin and polar cod in both models normalised to zero mean and unit standard deviation. Black line 
shows the base run scenario and dotted lines show scenarios where the fishing mortality of NEA cod was reduced (blue) or increased (orange) 
by 50% 

 
 

We found that the model preformed consistently across 
different ways of treating the instabilities, especially when focusing on 
the median as we do here. Nevertheless, the instability of the 
Gompertz model for some of the posterior samples was not optimal 
and this must be kept in mind when interpreting the results. 

 
 
3 | RESULTS 
 
In the results, we study the impacts of NEA cod by concentrating 
on how capelin and polar cod responded to the NEA cod 
perturbations in the two models. Then we try to understand why 
the two species responded the way they did by investigating the 
underlying mechanisms of the models, first in Gompertz and then 
in Atlantis. All biomass outputs were normalized to zero mean and 
unit standard deviation to facilitate comparison. Since Atlantis 
produced one model realization per simulation while Gompertz 
produced 2000, the median of the Gompertz samples was used 
for comparison. The median was calculated after 605 (~30%) 
unstable runs were removed based on the calculated eigenvalue. 
The fact that the median was used should be kept in mind when 
interpreting the results, as this excludes the uncertainty of the 

Gompertz results. For those interested, a figure including the 
uncertainty of the Gompertz results can be found in  
the Figure S2. All plotting was carried out through ‘R studio’ (R Studio 
Team, 2020) under version 4.1.2. 

First, we had to find out how the perturbated fishing scenarios 
affected the NEA cod biomass and how the simulated NEA cod from 
Atlantis compared to the observed time series in Gompertz (Figure 2). 
The NEA cod stock in Atlantis (black line) corresponded well with the 
observed biomass (grey line), and most of the variability in the model 
originated from variation in catch over time. For the perturbated 
scenarios, the biomass of NEA cod was, as expected, higher when 
the fishery was reduced, and lower when the fishery increased. These 
biomass projections of NEA cod from the three scenarios were then 
used as time series input in the Gompertz model. 

 
 

3.1 | Northeast Arctic cod effect on capelin and 
polar cod 
The NEA cod harvesting regimes affected capelin and polar cod 
differently in the two models (Figure 3). One of the most apparent 
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Scenario Description 
 

Mean F ± sd 

Base_run Historic NEA cod fishery  0.32 ± 0.12 

F_0.5 Historic NEA cod fishery multiplied by 0.5  0.16 ± 0.06 

F_1.5 Historic NEA cod fishery multiplied by 1.5  0.47 ± 0.18 
 

NILSEN et al. 



 
 

PAPER I 

 
 

differences between them was the magnitude of the response: both 
capelin and polar cod were less affected by the NEA cod perturbations 
in Atlantis compared to Gompertz. This was especially true for 
capelin, which was noticeably affected by cod in Gompertz, but hardly 
affected at all in Atlantis. In terms of the direction of the response, both 
the Gompertz and Atlantis models projected that a higher biomass of 
NEA cod would have negative effects on capelin. On the other hand, 
the direction of the response of polar cod differed between the two 
models. While polar cod was slightly negatively affected by higher 
levels of NEA cod in Atlantis, higher levels of NEA cod resulted in 
more polar cod in Gompertz. Still, it should be noted that when 
accounting for the uncertainty (Figure S2), the effects of higher versus 
lower NEA cod on polar cod were largely overlapping for the 
Gompertz model, and the results should therefore be considered 
uncertain. 

To understand why the species responded differently to NEA 
cod perturbations in the two models, we further analysed the results 
of each model separately by looking at the underlying mechanisms, 
as detailed below. 

 
 
3.2 | Effects of Northeast Arctic cod in Gompertz 
As depicted for the Gompertz model in Figure 1, the direct 
effects of cod on both capelin and polar cod were expected to  

be negative, via predation. However, the Gompertz model 
projections suggested that cod would have a negative effect on 
capelin, but a positive effect on polar cod. We therefore 
investigated if NEA cod could affect polar cod indirectly through 
other species. The structure of the Gompertz model allowed us to 
visualize this directly from the estimated species interaction 
coefficients in Equation 1. Two different pathways were explored 
(Figure 4), where the magnitude of the c coefficient was multiplied 
with the change in biomass for that particulate species. Figure 4a 
illustrates the direct effect of NEA cod on capelin as well as the 
indirect effect on polar cod through capelin and copepods. Figure 4b 
shows the pathway in the opposite direction where NEA cod 
affects polar cod directly and then capelin indirectly through polar 
cod and copepods. 

The results confirmed that the dominating effect on capelin was 
the direct negative effect of NEA cod (Figure 4a). Polar cod, on the 
other hand, was both affected by NEA cod directly and indirectly 
through capelin and copepods, where the latter seemed to be the 
most dominant. The negative effect on capelin due to higher NEA cod 
abundance had a positive effect on copepods which then had a 
positive effect on polar cod (Figure 4a). This indirect effect was 
stronger than the negative direct effect of NEA cod on polar cod 
(Figure 4b), which explains why polar cod responded positively to 
increased NEA cod biomass. 

 

 
FI G U R E 4  Direct and indirect effects of NEA cod in the Gompertz model. The two pathways of how capelin and polar cod and affected are 
presented to the left with arrows showing the strength of the interaction (thickness) and whether the effect is positive (blue) or negative (red). 
Note that the arrows directly correspond to interaction c coefficients in Gompertz, Equation 1. Not all interactions shown were statistically 
significant, as solid lines indicate significance based on the 95% CI, and dashed lines are not significant based on 95% CI (Stige et al., 2019). 
(a) Direct effect on capelin and indirect effect on polar cod through capelin and copepods. (b) Direct effect on polar cod and indirect effect on 
capelin through polar cod and copepods. Black line shows the base line scenario and dotted lines show scenarios where the fishing mortality 
of NEA cod was reduced (blue) or increased (orange) by 50%. The total effect of species x on species y was estimated by multiplying the 
biomass of species x with the c coefficient determining the strength of x´s effect on y. 
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In addition to the direct and indirect effects of NEA cod, there was also 
an effect caused by the density dependent parameters. As mentioned, 
the cii parameters govern the strength of the density dependence in the 
Gompertz model. As cii increases, the compensatory effect of density 
dependence decreases, and when cii = 1 no density dependence 
occurs (Ives et al., 2003). This means that a population with high density 
dependence (cii close to 0) will be more robust against predation as the 
predation will be partly compensated for, while populations with low 
density dependence (cii close to 1) are likely to respond more strongly 
to altered predation pressure. Comparing the density dependent 
parameters for capelin and polar cod also indicated that capelin had 
more runs with low density dependence, which most likely contributes 
to the stronger response to NEA cod seen in capelin biomass (Figure 
S3). 
 
 

3.3 | Effects of Northeast Arctic cod in Atlantis 
 
To get a better overview of the Atlantis results, we plotted the 
biomass as change in percentage for NEA cod, capelin and polar cod 
(Figure 5). We also examined the direct effect of NEA cod on capelin 
and polar cod by investigating the change in NEA cod predation 
under the two scenarios. Both capelin and polar cod experienced 
changes in predation pressure from NEA cod under the two 
scenarios, indicating a direct link between the two species and NEA 
cod. Still, the change in capelin and polar cod biomass was almost 
negligible compared to the changes in NEA cod biomass and 
predation mortality, as the mean change in biomass was <10% for 
capelin and <5% for polar cod. 

To investigate why the response to NEA cod was so weak, the 
total mortality from all predators was plotted (Figure 6). Although NEA 
cod accounts for a significant portion of the total predation on 
capelin and polar cod, the figure also introduced other predators and 
showed how the mortality increased and decreased in the two 
scenarios with varying NEA cod abundance. 

Most of the reduction in NEA cod predation seemed to be 
replaced by increased predation from other species. When predation 
from NEA cod was reduced, capelin and polar cod experienced a 
higher predation pressure from species such as herring and blue 
whiting (for capelin) and skates (for polar cod). This effect was the 
opposite when the NEA cod predation increased. Still, the total 
predation pressure (black line, Figure 6) slightly increased in the 
scenario with 50% lower fishing pressure on NEA cod and 
decreased in the scenario with 50% higher fishing pressure, indicating 
that the responses in capelin and polar cod in large part was caused 
by a direct effect from NEA cod. 

The spatial overlap between NEA cod, capelin and polar cod in 
Atlantis was also investigated (Figure S6). This spatio-temporal 
overlap of prey and predators is explicitly represented in the Atlantis 
model, and the overlap could therefore be studied. NEA cod and 
capelin were in the same areas throughout the entire course of a 
year. The overlap between NEA cod and polar cod, on the other 

hand, was present throughout the year, but mainly prominent during 
fall and wintertime in the Southeastern Barents Sea, when polar cod 
migrates further south. 

Since Atlantis models a wide range of species, we also included 
a figure of how all species in Atlantis responded to the various cod 
scenarios (Figure S7). Results showed that the response to the 
altered NEA cod stock was negligible for most species in the early 
period of the simulation (1985–1990), but slightly stronger towards 
the end (2010–2015). Another visible overall trend was that most 
species responded positively to less NEA cod and were negatively 
affected by more NEA cod. Multiple species responded to the 
altered fishing regime, including prawns, herring, long rough dab and 
large demersal fish. The strongest response was seen in haddock and 
the planktonic groups. However, the plankton groups in Atlantis are 
highly variable, and haddock depends strongly on the plankton 
biomass for recruitment, so these results are highly uncertain and 
were not used for further interpretation. 

Overall, the results revealed that the prey communities in the 
two ecosystem models responded differently to the same NEA cod 
abundance. Capelin responded negatively to NEA cod in both models 
but had a stronger negative response in Gompertz. Polar cod, on 
the other hand, reacted opposite in the two models: positive to 
NEA cod in Gompertz and slightly negatively in Atlantis. Even 
though NEA cod had negative direct effects on capelin and polar 
cod in both models, this negative effect was overshadowed by an 
indirect positive effect through capelin and copepods in the Gompertz 
model. This indirect effect could not be identified in Atlantis, which 
resulted in the two models projecting different responses in polar 
cod. Even though the polar cod response in the Gompertz model was 
non-significant (Figure S2), the results still provided a good contrast 
to the Atlantis result and emphasize the uncertainty regarding this 
species’ responses to changes in cod fishery exploitation. 

 

4 | DISCUSSION  
 
To understand why the models responded differently we take a 
closer look at the structural differences between the models, focusing 
on the food web complexity and the fact that Atlantis included 
additional features like age structure and horizontal grid resolution. 
We also discuss our results in the broader context of best practices 
for handling structural uncertainty in multi-model approaches and 
consider how this can be used for living marine resource 
management purposes. 

 
4.1 | Food web complexity and age structure 
The main difference between the responses in the two models was 
that Gompertz projected a stronger response to the NEA cod 
perturbations than Atlantis. These results seemed to emerge from 
a combination of weaker direct effects in Atlantis compared to 
Gompertz, in addition to the differences in taxonomic resolution, 
as Atlantis includes nearly 10 times as many species and a higher 
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FI G U R E 5 The effect of NEA cod on 
capelin and polar cod explained through 
changes in NEA cod predation in the 
Atlantis model. Black line shows the base 
line scenario and dotted lines show 
scenarios where the fishing mortality of 
NEA cod was reduced (blue dotted lines) 
or increased (orange dashed lines) by 50% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

number of links between the species. This structural difference led to 
NEA cod predation in Atlantis being largely compensated for by other 
species, and capelin and polar cod was therefore less affected in 
Atlantis than in Gompertz. These results are consistent with previous 
studies of how various models of the same ecosystem can produce 
different outcomes, as both Smith et al. (2011) and Kaplan et al. (2013) 
found that models including fewer species (EwE, OSMOSE) projected 
stronger impacts compared to Atlantis with its high taxonomic 
resolution. 

Still, we also highlighted the significance of other species in 
the Gompertz model. Even though Gompertz included few species, 
the indirect effects from other species on polar cod were more 
important for its response to the perturbations compared to 
direct predation effects. Note that these results were based on 
mean posterior samples and not all effects were statistically 
significant (Figure S2). Previous studies have shown similar results 
of how indirect effects may lead to unforeseen responses, such as 
Kaplan et al. (2017), which saw a positive effects of reduced sardine 
abundance on zooplankton and small forage fish. However, these 
indirect effects on polar cod through copepods were not easy 
to verify through field data. Studies have indicated that warmer  

 

temperatures may increase overlap between capelin and polar cod 
causing increased competition for copepods (McNicholl et al., 2016; 
Orlova et al., 2002, 2009). Hence, one could assume that cod 
affecting capelin positively or negatively could result in the 
opposite effect on polar cod due to increased competition for 
copepods. 

In Atlantis, polar cod was directly affected by NEA cod, but 
the response was partly compensated for by other species such 
as skates and long rough dab. Stomach content data indicates that 
polar cod is a part of skate's diet in the Barents Sea (Dolgov, 2005), 
but the exact strength of the link is hard to identify due to lack of data. 
This response was not accounted for in the Gompertz model and 
raises the question to whether skates should be included when 
modelling polar cod, or if the link is so uncertain that it should be 
excluded. Still, using the two models emphasized different links that 
could potentially play a part in polar cod responses to changes in NEA 
cod abundance. 

In addition to taxonomy, Atlantis also includes life history traits 
in the form of age structure. The inclusion of age structure could 
be partially responsible for the speed with which different species 
responded to the perturbations; this differs from the Gompertz 
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FI G U R E 6 The portions of predation mortality for capelin and polar cod caused by various predators in Atlantis for the three scenarios. 
Black lines show how the total predation mortality varied between the scenarios 

 
model, which omits age structure. Results showed that the species 
biomasses were quicker to respond to the change in NEA cod in 
Gompertz compared to Atlantis. This response was most evident 
for polar cod where Gompertz allowed for a relatively large 
percent change in biomass over the first 10 years of the simulations, 
while polar cod was hardly affected at all in Atlantis. In return, the 
response in polar cod in Atlantis steadily increased throughout the 
simulation and could potentially have proved to be greater than 
the effect on capelin if a longer simulation time was applied instead of 
a hindcast. This could be caused by the fact that capelin has a faster 
life history than polar cod in the Atlantis model, as the life span 
of polar cod is set to 10 years while it is set to only 5 years for 
capelin. 

 
 
4.2 | Spatial complexity 
 
Another important difference between the two models was that 
Atlantis included a spatial aspect, while Gompertz did not. Spatial 
resolution is an important issue when considering the dynamics of 
ecosystems. Enhanced spatial resolution generally increases model 
complexity and requires more data for model construction, 
parameterization, calibration and validation, and may lead to great 
increases in computing time. However, without spatial structure, 
competitors and predators are effectively ‘everywhere’ and encounter 
rates are not related to abundance as they are in nature (Fulton et 
al., 2004). 

Non-spatial models may also underrepresent seasonal dynamics in 
cases where spatial complexity involves seasonal movement or 
migration by one or more key consumers. Fulton et al. (2004) studied 
the effect of reducing spatial resolution in models and found that 
simpler models did not capture the effects of changes in nutrient loads 
or fishing pressure as well as more complex models. An alternative 
could be to add an implied spatial structure to more simple models 
(like Strath E2E2, Heath et al., 2020). 

In a spatially explicit model like Atlantis, the interactions between 
species are determined by spatial and temporal overlap. The degree 
to which species overlap in time and space will therefore largely 
determine the strength of the interactions between the species. In 
Gompertz, these interactions are governed by the cij parameters, 
which are constant throughout the run, but vary between the 2000 
model realizations. However, the input data were selected to 
represent the central and northern Barents Sea, which partly accounts 
for the spatial overlap (Stige et al., 2019). 

Looking at the spatial distribution of the NEA cod, capelin and 
polar cod in Atlantis, results imply that the slightly stronger direct 
effect on capelin could be explained by a greater spatial overlap with 
NEA cod. We also saw that NEA cod represents a stronger part of the 
predation mortality applied to capelin compared to polar cod. 

The geographical distribution of polar cod in the Barents Sea is 
not as well-known as capelin, as the current knowledge is mostly 
based on surveys that primarily targeted capelin, and areas north and 
east of the usual distribution of capelin have thus not been 
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covered (Gjøsæter et al., 2020). Stomach data from 1984 to 2016 
does not identify polar cod as a big part (occurrence in less than 10% 
of the samples) of NEA cod diet (Holt et al., 2019), which supports the 
assumptions made in Gompertz. However, Barents Sea field 
observations have shown that since the early 2000s, warmer 
temperatures have led to an expansion of NEA cod feeding grounds 
towards the northern Barents Sea (Fall et al., 2018), resulting in a 
greater overlap with polar cod. In these areas the NEA cod 
consumption of polar cod increased, with evidence of polar cod 
practically replacing capelin in the NEA cod diet in some local areas 
(Orlova et al., 2009). This indicates that the link between NEA cod and 
polar cod might be increasingly strong. Climate change and shifts in 
distribution might therefore call for spatial resolution, or at least some 
implicit modelling of overlap functions through time. While the 
Gompertz model is built for a specific area, it does not capture the 
dynamics in species distribution. This can only be modelled in 
spatially explicit models such as Atlantis. 

 
 
4.3 | Model uncertainty 

 
Our approach here has been to understand how structural differences 
between the two models lead to divergent responses of species such 
as polar cod; however we have neither formally created a model 
ensemble, nor have we weighted or ranked the models. 
Structural uncertainty and resulting divergence in predicted 
responses are common in complex ecosystem models (Geary et al., 
2020). Unlike physical ocean models that generally share a common 
set of state variables and governing equations, ecosystem models 
often differ in model structure and components, complicating efforts 
to formally combine predictions across models (Spence et al., 2018). 
Methods of combining outputs for different ecosystem models have 
previously been proposed, though applications of these methods are 
more rare. One method is to use a ‘democracy’ of simulators (Knutti, 
2010; Payne et al., 2015) where each model gets one vote, regardless 
of how well it represents the true ecosystem, and a distribution of 
possible outputs is derived from this. Alternative approaches are to 
find the ‘best’ model based on fits to historical data, or to apply 
Bayesian model averaging, again based on model fits to data (such 
as Ianelli et al., 2016). Another novel approach, developed by Spence 
et al. (2018), is to construct a flexible statistical meta-model of the 
relationships between a collection of mechanistic models and their 
biases or discrepancies. This is particularly appealing because even 
when an individual model omits a species, the method statistically 
predicts behaviour of that species based upon interspecies 
relationships that can be obtained from other models in the ensemble, 
and ultimately this gap filling allows quantitative comparison across 
an ensemble of somewhat dissimilar models. Overall, our exploration 
of structural uncertainty is a step towards ‘mingling models’ (Reum et 
al., 2021; Townsend et al., 2014), not fully achieving formal 
ensembles but nonetheless using multiple models to strengthen 
inference and qualitatively compare predictions from models that 

span a range of complexity. This study also has the strength of being 
able to look at model responses mechanistically, which might be hidden 
by a statistical ensemble. 

 
 
4.4 | Consequences of model complexity for 
ecosystem-based fisheries management 
Incorporating ecosystem considerations requires moving from the 
single-species models used in stock assessments to more complex 
models that include species interactions, environmental drivers and 
human consequences. Model uncertainty generally increases with the 
number of assumptions made, which often increases with the 
complexity of the system of interest since more processes can be 
represented (Hill et al., 2007). With this increasing complexity, model 
fit can improve, but parameter uncertainty increases. Overly simple 
models, on the other hand, may not be able to represent important 
aspects of ecosystem dynamics and can thus have large model bias 
(Collie et al., 2016). Our study applied two models of very different 
complexity that illustrate these trade-offs, where the models are 
potentially on each side of the complexity scale. 

The complexity of the Gompertz model is relatively low, while the 
opposite is true for the Atlantis model (Plagányi, 2007). This large 
difference in complexity between the models is likely to lead to a 
relatively high risk of model bias in the Gompertz model while Atlantis 
may be prone to higher risk of parameter uncertainty (Collie et al., 
2016). Neglecting model uncertainty can lead to underrepresentation 
of uncertainty in model predictions, with important implications for 
management (Hill et al., 2007), as also indicated by our analysis of 
the underlying mechanisms of the ecosystem response to changed 
fishing pressure in cod in the two contrasting models. It is important 
to use the ecosystem models for what they are designed for, among 
other purposes as an important tool to explore trade-offs from 
changes in management strategies (Link et al., 2012). The 
consequences for management of our analysis depend on the 
credibility of the two models. We summarize the possible 
interpretations and consequences of the different combinations of 
model credibility in Table 3. 

The perturbation of the NEA cod fishery by 50% was regarded as 
extreme and we consider it a relatively unlikely scenario. Still, the 
results could provide valuable information for future management 
of capelin and polar cod in the Barents Sea. For capelin, both models 
projected that increased harvesting of NEA cod was associated with 
a higher capelin biomass. However, the magnitude of the increase 
was quite different between the two models, which indicates the 
role of model uncertainty caused by the structural differences in the 
models. The management of capelin and NEA cod is currently one of 
the few examples of EBFM in the world, as the importance of capelin 
as food for cod has been considered in the capelin fishery since 1991 
(Skern-Mauritzen et al., 2016). These results thereby support the 
current management strategy that capelin and NEA cod should be 
considered together. 
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TA B L E 3  Possible interpretation of the credibility of the models 

 

Atlantis is more credible than Gompertz Spatial and age resolution are essential to understand foodweb dynamics, suggesting that models 
which lack such resolution should be given less priority. Given the relatively long-run times of 
Atlantis, incorporating uncertainty analysis in this should be high on the agenda rather than 
obtaining large samples sized from running overly simplistic models. We may need standards 
for the ‘minimum requirements’ for a model to be considered credible for foodweb response 
evaluation. 

 
Both Gompertz and Atlantis are equally 
credible 

We can have higher confidence in the responses that are common to both models, while we remain 
uncertain about the sensitivity of key links in the foodweb to the cod fishery where the responses 
differ between the two models. It is also uncertain how much spatial structure and taxonomic 
structure is necessary to characterize the foodweb response. Based on Collie et al., we may gain 
important insights from Models of intermediate complexity (MICE, Plagányi et al., 2014) that are 
more complex than Gompertz, but simpler than Atlantis. 

 
 

For polar cod, the situation was somewhat different. The 
perturbations did not affect polar cod strongly in Atlantis, and 
Gompertz model, there was an indirect positive effect on polar cod, 
but this was quite uncertain (Figure S2). This indicates that a smaller 
change in NEA cod management would be unlikely to have 
catastrophic effects on this species. The results indicate that NEA 
cod and polar cod are quite independent, and a classical single 
species management approach would not differ extensively from a 
multispecies approach. 

However, Atlantis results (Figure S5) displayed the impacts of 
NEA cod on other parts of the ecosystem that one might have missed 
with a single-species model, or even a simpler ecosystem model like 
Gompertz. Results showed similar responses as capelin and polar 
cod on additional species, such as prawns and herring that are 
important prey for NEA cod, as well as long rough dab and large 
demersal fish that compete with NEA cod for the same type of prey. 
Even though the changes in these species were not dramatic, the 
results emphasize the benefits of models including multiple species 
to capture a broad range of ecosystem responses. 

 
 
5 | CONCLUSIONS 
 
Our study emphasized the value of using multiple models to study 
ecosystems, both to better understand the models, and to provide 
useful information in terms of connections we are uncertain about and 
areas that need more research. Similar to earlier studies (Fulton et al., 
2015; Kaplan et al., 2019), we find that a suite of models can be 
valuable in a collaborative context. By applying a multi-model 

approach to investigate the role of NEA cod in the Barents Sea, we 
draw the following conclusions: 

• Including similar food webs for a selected set of species in the 
Barents Sea, the results from two ecosystem models are 
consistent in terms of the direction of effects on capelin, an 
important prey group, even though the magnitude varied. 
• In both ecosystem models, indirect food web effects can be as 
important as direct effects. 
• As illustrated by the case of polar cod, differences in horizontal 
model grid resolution are in part responsible for different responses 
to the same perturbations, due to changes in overlap between the 
top predator and its prey. This could potentially be important for 
models used in management, as these usually does not take into 
account neither other species nor have a spatial resolution. 
Applying models both with and without a spatial resolution could 
help identify the size of this uncertainty. 
• The two models complement each other, and used in a 
management context they can guide the actions on different 
species, for instance using the strong cod-capelin interactions 
of the Gompertz model to explore potential management trade-
offs between those species. The Atlantis model can be used to 
understand broader impacts of cod across a full suite of species 
ranging from prawns to larger demersal fish. 

 
Our study supported the idea that fisheries management 

strategies could benefit from using multiple models of varying 
complexity, rather than relying on single models to assess ecosystem 
impacts of management and predator abundance. The results also 
illustrated the importance of trophic effects that would not be
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Gompertz is more credible than Atlantis This implies that we should focus more on computational speed and ensemble size of projections 
to estimate uncertainty, rather than formulating a single model including a large range of 
mechanisms with less certainty on parameter values. Interaction strengths of Gompertz is more 
likely to be correct with implications for fisheries management of fewer but stronger foodweb 
links. The Gompertz model is also much more tractable for quantifying parameter and process 
uncertainty. 

Neither models are credible We may need to consider more models before being able to meaningfully inform fisheries 
management. Based on perceived failings of a model, we might gain some information on lacking 
mechanisms and potential large parameter uncertainties. Ensemble methods (Spence et al., 2018) 
may help maximize the information we can get from available models and help with credibility 
issue. 

Possible Interpretation Discussion & Consequences 
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incorporated in single-species fisheries management, and which 
potentially could have impact on other parts of the ecosystem. 

Although NEA cod is considered to be sustainably managed (Kjesbu 
et al., 2014), EBFM encourages consideration of trophic links and 
other drivers, to strengthen and coordinate management across not 
only this target species but also co-occurring species such as polar 
cod and capelin. This study shows that ecosystem models are useful 
tools to improve and support this more holistic management 
approach. 
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Supplementary materials for:  
Exploring the role of Northeast Atlantic cod in the Barents Sea food web 
using a multi-model approach 
	
Figure S1 shows how removing unstable runs using eigenvalue greatly reduced the uncertainty of the 
Gompertz output, without affecting the mean. Panel a) plots all the runs compared to after unstable 
posteriors (identified by calculation the eigenvalue) was removed. The red lines show Gompertz with 
Atlantis cod biomass, while the blue line show the original Gompertz outputs. We see that removing 
unstable runs using eigenvalue greatly reduced the uncertainty of the results, mainly for capelin, but 
also for the other species. In panel b) we investigated how removing unstable runs affected the 
confidence interval and the median. Here the red line displays the results before removing unstable 
runs, while the blue lines show after. We see that removing unstable runs greatly affected the 
confidence interval but only impacted the median of the runs marginally. 

 
a) 
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Figure S2 show the results in Figure 3, but with the uncertainty included of the Gompertz 
results included. The uncertainty bands indicate that there is a great uncertainty of the results. 
For capelin the effects of cod could be more extreme than what the median of the results 
indicated, but there is little overlap between the two scenarios. For polar cod there is a big 
overlap of the two scenarios which indicates that the effect of NEA cod on polar cod was more 
uncertain. 

 
  

Figure S1. A) All posterior samples from Gompertz using observed NEA cod biomass (blue) and Atlantis simulated 
biomass (red) before and after removing unstable runs. Solid line shows the median while shaded area represents the 
95 % confidence interval. B) A comparison of the posterior samples before (red) and after (blue) correcting for unstable 
runs. This shows how the uncertainty was reduced, while the median of the runs only changed marginally. 

Figure S2. Results of simulations with uncertainty of Gompertz results included. The black line shows 
the base line scenario and dotted lines show scenarios where the fishing mortality of NEA cod was 
reduced (blue) or increased (orange) by 50%. Solid lines show the median while shaded areas show 95 
% confidence intervals. 
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Figure S3 demonstrates the effect of density dependence on capelin and polar cod. Two 
posterior samples were selected for capelin and polar cod where the density dependent 
parameters were either high or low, while the other parameters (c-values) were kept relatively 
constant. This was done to study the effect of density dependence alone and how it impacted 
the results. In Figure S3 we see how low-density dependence in the Gompertz model caused 
a stronger response to NEA cod perturbations for both capelin and polar cod. We also see that 
the number of runs with low density dependence (cii > 1) was higher for capelin than polar 
cod, which contributes to the stronger response to NEA cod perturbations in capelin biomass. 
Note that the figure show all of the runs before the unstable ones were removed. 

 

 
 

 
 
 
  

Figure S3. Two different posterior samples with varying density dependence for capelin and polar cod in the 
Gompertz model. The effect of NEA cod was kept constant between the two samples for each of the species 
to investigate the effect of density dependence alone. The black line shows the baseline scenario and dotted 
lines show scenarios where the fishing mortality of NEA cod was reduced (blue) or increased (orange) by 
50%. The figure also displays how many of the runs that had the density dependence above 1 where we see 
that this was the case for a higher fraction of the cii values for capelin compared to polar cod.  
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Figure S4 show the distribution of the model parameters before and after the density dependent 
coefficients for capelin and polar cod (c44 and c55) were constrained to be below 1. This was done 
in an attempt to fix the problem with unstable runs. This reduced the number of unstable runs (from 
30 % to 15 %), but it did not solve the problem completely. Note that we reran the model with only 
3 chains for timesaving reasons, which causes the frequency to be lower at the modified version. 
 

  

Figure S4. The distribution of the model parameters before and after the density dependent coefficients for 
capelin and polar cod (c44 and c55) was constrained to be below 1.   
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In figure S5 we attempt to show how much the parameters contributed to the variation in capelin 
and polar cod biomass. We see clearly that the density dependent parameters (c44x4 and c55x5, 
green) had a great impact on both species. We also see that the direct effect of cod was greater on 
capelin compared to polar cod (c47z2 and c57z2, blue). 

  

Figure S5. The contribution to the variation in capelin and polar cod biomass in the Gompertz base run. The 
density dependence (green, c44x4 and c55x5) seemed to have a big impact on both species. We also see that the 
impact of cod (blue, c47z2 and c57z2) was greater on capelin than polar cod.   
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Figure S6 show the spatial distributions of NEA cod and polar cod in Atlantis during the course 
of a year, and the percentage of the capelin or polar cod stock overlapping with NEA cod. 
Capelin seems to have a greater overlap with NEA cod compared to polar cod, as the overlap 
with NEA cod is relatively high throughout most of the year. Polar cod is mainly distributed 
further north, but during wintertime when polar cod migrates to the South-eastern Barents Sea, 
the overlap with NEA cod increases. 

 

 

 
  

Figure S6. The geographical distribution of NEA cod and polar cod in Atlantis throughout the course of 
a year. The figure shows how the biomass (given as a portion of the total biomass) is distributed 
throughout the polygons, as well as the percentage of the capelin and polar cod stock overlapping with 
NEA cod.  
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Atlantis includes more species than Gompertz, which makes it possible to look at how the 
perturbated cod fisheries affected the entire ecosystem. Figure S7 shows how the other 
species responded in the scenarios in terms of percentage change in biomass. The change in 
biomass was calculated from the mean of a five-year period during the early stage of the 
simulation (1985-1990) and by the end of the simulation (2005-2010). 

 
The species that were most affected by NEA cod was haddock and the planktonic groups. 
However, these results should be treated with caution as the plankton groups are highly 
variable, and haddock depends strongly on plankton for recruitment. Other species groups 
that responded to the change in NEA cod were prawns and herring, that were positively 
affected by less NEA cod, and long rough dab and large demersal fish that were negatively 
affected by more NEA cod and positively affected by less NEA cod. The most noticeable effect 
was that while cod responded strongly during the early period, the response of most other 
species was stronger during the later period of the simulation. Another overall trend in the 
results was that most species reacted negatively to more cod, and positively to less cod, the 
same as what was seen in capelin and polar cod. 
 

 

 
 
 

  

Figure S7. An overview of how all the other species in Atlantis responded to the perturbed cod 
fisheries in terms of change in biomass. The mean change in biomass during a five-year period was 
calculated first in the early stage of the simulation (1985-1990) and then in the late period towards 
the end of the simulation (2010-2015). Dark blue/orange areas are changes above or below 30%. 
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Abstract 14 

Downscaling physical forcing from global climate models is both time consuming and 15 
labor demanding and can delay or limit the physical forcing available for regional 16 
marine ecosystem modelers. Earlier studies have shown that downscaled physics is 17 
necessary for capturing the dynamics of primary production and lower trophic 18 
levels, however, it is not clear how higher trophic levels respond to the coarse 19 
resolution physics of global models. Here, we apply the Nordic and Barents Seas 20 
Atlantis ecosystem model (NoBa) to study the consequences of using physical 21 
forcing from global climate models versus using that from regional models. The 22 
study is therefore (i) a comparison between a regional model and its driving global 23 
model to investigate the extent to which a global climate model can be used for 24 
regional ecosystem predictions, and (ii) a study of the impact of future climate 25 
change in the Nordic and Barents Seas. We found that few higher trophic level 26 
species were affected by using forcing from a global versus a regional model, and 27 
there was a general agreement in future biomass trends and distribution patterns. 28 
However, the slight difference in temperature between the models dramatically 29 
impacted Northeast Arctic cod (Gadus morhua), which highlights how species 30 
projection uncertainty could arise from poor physical representation of the physical 31 
forcing, in addition to uncertainty in the ecosystem model parameterization. 32 

Keywords: Atlantis, Barents Sea, Climate change, Downscaling, Ecosystem modeling, 33 
Northeast Arctic cod 34 
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1. Introduction 36 

Global warming is already causing large-scale impacts in sub-Arctic and Arctic Ocean 37 
regions, with temperatures quickly rising and sea ice receding (Comiso, 2011; 38 
Smedsrud et al., 2013). These changes are altering the ecosystem by displacing 39 
southern, boreal species further north, while arctic species are retreating and 40 
declining (Fossheim et al., 2015; Frainer et al., 2017; Kjesbu et al., 2021, 2014). With 41 
the increasing number of marine environmental stressors  (Henson et al., 2017), 42 
there is an urgent need to understand how marine ecosystems will respond to these 43 
changes (Fagundes et al., 2020). 44 

The only process-based tools available to study the implications of future climate 45 
change are models. To study potential responses in ecosystem function and 46 
structure to climate change, output from climate models is often used as forcing for 47 
ecosystem models (Lotze et al., 2019; Tittensor et al., 2021). Over the past few years, 48 
the Intergovernmental Panel on Climate Change (IPCC) has developed five SSP 49 
narratives to describe alternative pathways for future society (IPCC, 2022).  The SSPs 50 
contain a range of baseline scenarios spanning between 1.9 and 8.5 W/m2 of 51 
radiative forcing by 2100 and play an important role in facilitating integrated 52 
research across multiple climate modeling communities (O’Neill et al., 2016). 53 

Global climate models, such as those used in the IPCC reports (IPCC, 2022), are 54 
generally capable of reproducing the observed long-term trends at a global scale. 55 
However, due to their global coverage, even with increasing computational power, 56 
their spatial resolution and parameterizations remain insufficient at regional scales 57 
that are relevant for marine ecosystems (Melsom et al., 2009; Tjiputra et al., 2007). 58 
This can lead to biases relative to observational data and inaccuracies in regional 59 
details (Skogen et al., 2018). 60 

A way to improve such biases is through downscaling, where a high-resolution 61 
regional ocean circulation model is initiated from, and/or nested into, a global 62 
climate model (Skogen et al., 2018). This is done to translate coarse global 63 
information into finer scale resolution in order to simulate more accurate regional 64 
processes and obtain climate information on scales that are relevant to society 65 
(Ekström et al., 2015). Regional models also have the advantage of better-calibrated 66 
parameterizations targeted for the study regions (Hordoir et al., 2022). 67 

Previous studies have explored the impact of increased model resolution and found 68 
that higher-resolution physical forcing produces results closer to observations and 69 
provides a better representation of ocean dynamics and variability. Increased 70 
resolution has been found to improve the representation of physical processes such 71 
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as the northward transport of heat and salt (Langehaug et al., 2019), frontal regions 72 
(Kirtman et al., 2012), and deep convection (Busecke et al., 2019). Improving these 73 
processes results in temperatures and salinity closer to observations (Melsom et al., 74 
2009; Sandø et al., 2014; Skogen et al., 2018) and improves the timing of spring 75 
bloom and estimates of net primary production (Hansen and Samuelsen, 2009; 76 
Skogen et al., 2018). 77 

However, the process of downscaling physical forcing from global models is both 78 
time consuming and labor demanding, which can delay or limit the physical forcing 79 
available for ecosystem modelers. Some ecosystem models have coarse resolution 80 
grids with few or only one grid cell. Examples for the Nordic and Barents seas include 81 
Ecopath with Ecosim (Pedersen et al., 2021), Gompertz (Nilsen et al., 2022; Stige et 82 
al., 2019), NDND (Planque et al., 2014), RCaN (Planque et al., 2022), Gadget 83 
(Lindstrøm et al., 2009) and NoBa Atlantis (Hansen et al., 2016), where only the last 84 
one has more than two grid cells. The coarse resolution will cause these models to 85 
lose the details provided by the high-resolution models. However, differences in 86 
physics might still be reflected in the mean values used as forcing.  If this is the case, 87 
how large are these differences, and would they impact not only the lower trophic 88 
levels, but also higher?  89 

Several studies have used ecosystem models to study how species in the Nordic and 90 
Barents Seas might respond to future climate changes, from lower trophic levels to 91 
complex systems including several trophic levels. Skogen et al. (2018) used physical 92 
forcing from climate models of various resolution, and found no trends in future 93 
nutrient levels or primary production. Hansen et al. (2019b) studied the effect of 94 
changes in management strategies in combination with climate changes, and found 95 
an increased vulnerability in pelagic and demersal functional groups when 96 
harvesting a higher number of species. Cheung et al. (2010) showed that high-97 
latitude areas such as the Norwegian and Barents Seas are likely to experience an 98 
increase in total catch potential in the future, based on calculations of future primary 99 
production, trophic level, and geographic range. This is supported by observations 100 
from the Barents Sea over the last decades, where increasing temperatures have 101 
been beneficial for e.g., Northeast Arctic cod (Gadus morhua) (Kjesbu et al., 2021, 102 
2014).  103 

In this study, we aim to focus on the higher trophic level species, and the goal is 104 
twofold: 1) study how much we gain, if anything, when applying downscaled forcing 105 
compared to forcing from a global climate model in a coarse resolution end-to-end 106 
ecosystem model simulation, and 2) to evaluate expected ecosystem changes in the 107 
Nordic and Barents Seas under the future climate changes with the two different 108 
types of forcing. 109 
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2. Models and simulations 110 

To investigate how much we gain from downscaling, we study ecosystem responses 111 
to applying physical forcing from a global circulation model and from a downscaled 112 
regional model in the Nordic and Barents Seas Atlantis model.  We will also 113 
investigate how sensitive the projections of the Barents Sea ecosystem are to the 114 
underlying physical forcing. 115 

 116 

2.1 Models 117 
We use physical forcing taken directly from the ocean component of a global climate 118 
model (NorESM2) and as downscaled with a regional ocean circulation model 119 
(Nemo-NAA10km) and apply them to an ecosystem model (NoBa Atlantis). The 120 
concept is illustrated in Figure 1 and a short description of the two oceanographic 121 
models and the ecosystem model follows below. Figure 1 also shows a comparison 122 
of the sea surface temperature as projected for the Nordic Seas and parts of the 123 
Arctic Ocean by NorESM2 and Nemo-NAA10km. Clearly, the RCM appears to capture 124 
spatial aspects in greater detail, including the northward flowing Atlantic Water and 125 
circulation along the coasts. 126 
 127 
 128 
 129 

2.1.1 NorESM2 130 

The Norwegian Earth System Model version 2 (NorESM2-MM; Seland et al., 2020; 131 
Tjiputra et al., 2020) is a fully coupled Earth system Model developed in Norway in 132 
collaboration with the National Center for Atmospheric Research (NCAR) in the 133 
United States. The model is an important tool for Norwegian climate researchers in 134 
the study of the past, present and future climate, and was recently updated from its 135 
original version NorESM1 (Bentsen et al., 2013; Tjiputra et al., 2013). The NorESM2-136 
MM has contributed to the Coupled Model Intercomparison Project phase 6 – 137 
CMIP6 and to the latest assessment report of IPCC-AR6. It consists of the 138 
atmospheric model CAM6-Nor, the ocean physical model BLOM (Bentsen et al., 139 
2020), the ocean biogeochemistry model iHAMOCC (Tjiputra et al., 2020), the sea 140 
ice model (CICE5.1.2), land model (CLM5), and river runoff model (MOSART). BLOM 141 
has a horizontal resolution of ~1° and 53 vertical isopycnic layers. CAM6-Nor has a 142 
horizontal resolution of ~1° on 32 vertical layers. The NorESM2-MM will hereafter 143 
be referred to just as “NorESM”, and a full description including an evaluation of its 144 
key climatic and biogeochemical features is available in Seland et al. (2020) and 145 
Tjiputra et al.  (2020). 146 
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 147 

 148 

Figure 1. An overview of the experiment configurations in the study where physical forcing from a global 149 
climate model and from a regional ocean circulation model are applied to an ecosystem model. Note 150 
that the regional extent of Nemo does not correspond to the one in the figure. The lower part of the 151 
figure illustrates the effects of downscaling, here visualized by showing projected mean sea surface 152 
temperatures (SST) from January 2000 directly from NorESM2 and as downscaled by Nemo-NAA10km. 153 

 154 

2.1.2 Nemo-NAA10km downscaling 155 

The Norwegian Institute of Marine Research's regional ocean model Nemo-156 
NAA10km (Hordoir et al., 2022) covers a major part of the North Atlantic and of the 157 
Arctic Oceans. This model is used for studying ocean processes in a changing climate, 158 
it is based on the NEMO ocean engine for both representing ocean and sea ice 159 
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dynamics. The model works in forced mode at its surface and open boundary 160 
conditions. The model can be forced either by an atmospheric/oceanic reanalysis 161 
such as the ERA5 reanalysis (Hersbach et al., 2020) for the atmosphere, or the 162 
GLORYS reanalysis (Egbert and Erofeeva, 2002) for the ocean. The model can also 163 
be forced by a climate model both for the atmosphere and the ocean (climate 164 
downscaling), which allows for a better representation of ocean processes than that 165 
represented in climate models due to the higher resolution available. Nemo-166 
NAA10km has been forced by the NorESM2 climate model for several emission 167 
scenarios (including SSP5-8.5 which is applied here). 168 

Nemo-NAA10km is a forced model but runs without any kind of restoring in salinity 169 
nor in temperature. This enables a representation of the inter-annual variability of 170 
the thermohaline structure of the ocean. More information about this can be found 171 
in the supplementary materials and in Hordoir et al. (2022) 172 

 173 

 174 

2.1.3 NoBa Atlantis (ecosystem model) 175 

The Atlantis modeling framework (Audzijonyte et al., 2019; Fulton et al., 2011) is one 176 
of the most complex marine end-to-end ecosystem models in the world (Plagányi, 177 
2007). In this study, the version implemented in the Nordic and Barents Seas 178 
(hereafter NoBa) (Hansen et al., 2019a, 2016) will be used. 179 

The NoBa model contains 53 key species and functional groups (hereafter 180 
components) that are connected through a diet matrix. Most vertebrate species are 181 
age-structured while invertebrates are gathered into biomass pools. The model 182 
simulates spatial variation and is divided into 60 polygons with up to 7 depth layers 183 
depending on total water column depth (Hansen et al., 2016). The species can move 184 
between polygons and layers either actively through swimming or passively 185 
transported by currents (e.g., plankton, egg, larvae, nutrients). The majority of the 186 
vertebrate species have forced migration to ensure seasonal movement patterns 187 
throughout the year. The species are however free to distribute themselves (e.g., 188 
based on food availability, temperature preference, etc.) within these given 189 
polygons. A thorough description of the updates of this version of the NoBa model 190 
following the ODD (Overview, Design concepts, Details) protocol (Grimm et al., 191 
2020, 2006) is included in the Supplementary material. 192 
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2.2 Forcing 193 

NoBa is forced by daily inputs of temperature, salinity, sea ice in each polygon, and 194 
also the net transport of water (m3s-1) between the polygons. In this study, monthly 195 
output from NorESM2 or 5-day mean forcing from Nemo-NAA10km was used to 196 
create the physical forcing for NoBa. To create the forcing files, an average value (of 197 
temperature, salinity, or sea ice concentration) was calculated over all grid cells 198 
(either Nemo-NAA10km or NorESM2) included in each of the 60 polygons of NoBa 199 
Atlantis. In the vertical, the average was calculated over the layers from the physical 200 
models which were within the depth levels of NoBa. Net transport was calculated 201 
across each face of the polygons (253 in total) for all depth levels. Linear 202 
interpolation was used to create daily fields from the monthly and 5-day means from 203 
NorESM2 and Nemo-NAA10km, respectively.  204 

NoBa explicitly simulates concentrations of nutrients through nitrate which depends 205 
on primary production, remineralization (Murray and Parslow, 1997), horizontal 206 
transport, and vertical exchange between layers and sediments. Light is also 207 
calculated within the model for each of the polygons. Primary production is 208 
determined by a maximum growth rate and by limiting factors such as nutrients, 209 
light, and an eddy scalar (to facilitate vertical mixing between the layers). After the 210 
forcing from NorESM2 and Nemo-NAA10km was fitted to the NoBa grid we refer to 211 
the simulations using the two various sets of forcing as just “NorESM” and “Nemo” 212 
respectively to avoid confusion. 213 

 214 

2.3 Simulations 215 

Following the application of new forcing, the commercially exploited species in NoBa 216 
had to be calibrated to fit better to observations. This was done in order to ensure 217 
that the biomasses and the catches would be at observed levels and thereby 218 
represent the current situation. The same tuning was applied for both simulations 219 
i.e., Nemo-NAA10km and NorESM2 forced (Table S1), and the model was initiated 220 
from year 1980 and included a 24-year spin-up period where the same physical state 221 
of the year 1980 was repeated. The change in forcing started after the spin-up. 222 
Historical fishing levels were applied for the hindcast period (year 1980-2020) using 223 
assessment catches and total stock biomass data (ICES, 2021, 2020). After this, the 224 
fishing mortality in the last year (year 2020) was applied and maintained throughout 225 
the rest of the simulation. More information about the parameters that were tuned, 226 
and the results of the tuning can be found in the supplementary materials (Table S1, 227 
Figure S1). 228 
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 229 

In this study, we use the SSP5-8.5 scenario, which represents the highest emissions 230 
no-policy baseline scenario with fossil-fueled development and a growing economy. 231 
Although the SSP5-8.5 is the “worst-case scenario” and might not represent the 232 
most realistic future (Mohr et al., 2015; Wang et al., 2017) we decided to use this 233 
high-end baseline scenario to explore what ‘could’ happen, as it offers the largest 234 
signal-to-noise ratio, which was of interest in our study. 235 

To compare the impact of physical forcing from the two models, eight simulations 236 
were set up (Table 1). In these simulations, we used forcing from either Nemo-237 
NAA10km or NorESM2 (Nemo_ref, NorESM_ref), and then turned on the thermal 238 
niche of the species (Nemo_temp, NorESM_temp), included ice as forcing 239 
(Nemo_ice, NorESM_ice), or included both ice as forcing and the thermal niche 240 
(Nemo_ice_t, NorESM_ice_t). These scenarios were set up to study how the distinct 241 
parameter settings affected the species. 242 

 243 

Table 1. Overview of the NoBa simulations conducted in this study 244 

NO NAME DESCRIPTION 
1 Nemo_ref Forcing from Nemo-NAA10km 
2 NorESM_ref Forcing from NorESM2 
3 Nemo_temp Forcing from Nemo-NAA10km, thermal niche turned on 
4 NorESM_temp Forcing from NorESM2, thermal niche turned on 
5 Nemo_ice Forcing from Nemo-NAA10km, including ice forcing 
6 NorESM_ice Forcing from NorESM2, including ice forcing 
7 Nemo_ice_t Forcing from Nemo-NAA10km, including ice forcing and 

thermal niche turned on 
8 NorESM_ice_t Forcing from NorESM2, including ice forcing and thermal 

niche turned on 
 245 

Turning on the thermal niche restricts the species to spawn or reside in polygons 246 
within their tolerated temperature range. Hence, if the temperature in the polygon 247 
is below or above the species´ temperature range, the species cannot inhabit or 248 
spawn in that polygon when the thermal niche is turned on. However, the 249 
temperature still affects the species when the thermal niche is turned off as it is 250 
included in both growth and consumption equations (Audzijonyte et al., 2017). The 251 
temperature ranges set in NoBa were based on literature (Hansen et al., 2016). 252 
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Using ice as forcing was important since the Barents Sea is largely covered by ice 253 
during winter and early spring. Including ice also affects the distribution of the 254 
species, as some species don´t tolerate being under ice, while others thrive being 255 
on, in or under the ice. The ice cover also affects the primary production by limiting 256 
the availability of light in the water underneath it. 257 

 258 

2.4 Data analysis 259 

To compare both the forcing from the models and the results from the NoBa 260 
simulations, two different periods of 15 years: an early (year 2005-2020) and a late 261 
(year 2085-2100) were chosen. These periods were used to examine the trends 262 
throughout the simulation and compare potential future levels to the present. The 263 
temperature, salinity and ice of the entire model area were estimated by accounting 264 
for the area and depth of the polygons and layers. For temperature and salinity, the 265 
median values over all polygons were used for comparison since the distribution of 266 
values was somewhat skewed and had some clear outliers. Total ice cover was 267 
estimated by summarizing the areas covered with ice concentration > 30 %. Monthly 268 
and yearly means of the physical forcing were calculated based on snapshots taken 269 
every 5th day throughout the year. 270 

To study the effects of the physical forcing on the ecosystem, the difference in 271 
biomass (%) in NorESM simulations compared to Nemo was used. We considered 272 
any difference exceeding 15 % to be significant based on uncertainty limits used in 273 
the ICES reports (ICES, 2021). The biomass estimates were based on five snapshots 274 
throughout the year to capture seasonal variation, and a yearly mean was calculated 275 
based on this. It should be noted that haddock (Melanogrammus aeglefinus), snow 276 
crab (Chionoecetes opilio) and king crab (Paralithodes camtschaticus) were removed 277 
from the results, as these species are either collapsing or increasing to unrealistically 278 
high levels. There is no obvious reason to believe this would happen in the real 279 
world, such that this behavior is in all likelihood a consequence of model artifacts. 280 
The species were sorted by trophic levels (Fishbase, 2022) to investigate the effect 281 
of the physical forcing on the different parts of the food chain. Species with trophic 282 
levels > 3 were considered high trophic level species (Pauly and Watson, 2005).  283 

When studying the sensitivity to future climate changes in NoBa, all species and 284 
groups were gathered into 11 categories (Table S2). The biomasses of the species 285 
within each category were summarized to study how the total biomass varied 286 
compared to the mean biomass in the early period (year 2005-2020) in the 287 
scenarios. The groups of bacteria and benthos were not plotted for these future 288 
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studies as these contain large functional groups and the parameterization of these 289 
is more uncertain. 290 

The spatial distribution of the commercial species was also investigated to evaluate 291 
how it is affected by the difference in physical forcing. This was calculated by 292 
estimating the center of gravity of the distribution, based on the mean longitude 293 
and latitude coordinates where the greatest portion of the stock resides throughout 294 
the seasons. We then explored the change in this point, either between the 295 
scenarios with different physical forcing, or from early period to late period. To 296 
evaluate the change, we decided that the change in distribution point was 297 
considered significant when the distance was equal to or more than 10 km, which is 298 
a relatively small distance compared to observed changes in distribution, but due to 299 
the coarse resolution of the model and the fact that it was based on mean changes 300 
over a 15-year period, it would still provide insight into projected movement.  301 

All figures were created using “R studio” (RStudio Team, 2020), version 4.1.2. 302 

 303 

 304 

3. Results  305 

The results are separated into three sections. The first summarizes how the physics 306 
from the two oceanographic models differed after being fitted to the NoBa 307 
polygons, the second evaluates the sensitivity of the NoBa Atlantis ecosystem 308 
simulations to the difference in physics, and the third uses the different scenarios 309 
and forcings to study impacts of future climate change on the Nordic and Barents 310 
Sea ecosystem. 311 

 312 

3.1 Differences in temperature, salinity and ice cover 313 

The monthly climatology of temperature and salinity from Nemo and NorESM above 314 
and below 150 meters for the early (year 2005-2020) and late (year 2085-2100) 315 
periods were compared after being fitted to the NoBa grid (Figure 2). For 316 
temperature, the difference largely depended on what part of the water column we 317 
compared. In the upper 150 meters, Nemo projected a higher overall median 318 
temperature throughout the year, both for the early- (3.3 °C compared to 3.0 °C) 319 
and the late period (5.0 °C compared to 4.6 °C; Figure 2a). Below 150 meters 320 
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however, Nemo projected lower temperatures, both for the early (1.9 °C compared 321 
to 2.2 °C) and the late period (2.9 °C compared to 3.2 °C; Figure 2a). While Nemo 322 
projected warmer temperatures in the shallower parts of the water column mainly 323 
around Svalbard and in the Barents Sea, NorESM projected warmer temperatures in 324 
the deeper layers of the Norwegian Sea (Figure S2). Accounting for the volume of 325 
the polygons the overall temperature was higher in NorESM, but the greatest 326 
differences between the two models were observed in the sea surface layer where 327 
Nemo was warmest (up to 6 °C). The difference in the upper layers was highest in 328 
September (> 1 °C) for both periods, while for the lower part of the water column 329 
the difference was more or less the same throughout the year. Between 2005-2020 330 
and 2085-2100, the median temperatures throughout the entire water column 331 
increased by 1.4 and 1.2 °C in NorESM and Nemo, respectively.  The overall 332 
difference between the two also increased as the median difference went from 333 
0.3°C to 0.5 °C.  334 

335 
Figure 2. Monthly climatology of temperature and salinity above and below 150 meters of the water 336 
column throughout the entire model when using Nemo (pink) or NorESM (purple) as forcing. The solid 337 
lines show the early period (2005-2020), while dotted lines show the late period (2085-2100), and the 338 
shaded bands shows the 95 % confidence interval.  339 

For salinity, the situation was somewhat different (Figure 2b). The difference in 340 
salinity was uniformly distributed across all polygons and layers (but with a slightly 341 
greater difference in the layers closest to the surface for the early period) (Figure 342 
S3). The biggest difference here was temporal rather than spatial as NorESM 343 
projected a clear decline in the salinity throughout the simulation, while Nemo was 344 
quite stable and slightly increasing. For the early period, NorESM projected 345 
marginally lower salinity than Nemo (median -0.1 compared to Nemo), while 346 
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towards the end of the simulation the salinity was substantially lower (median -0.93 347 
compared to Nemo). From the early period to the late, NorESM projected a decrease 348 
in median salinity from 35.1 to 34.4, while Nemo had a slight increase from 35.2 to 349 
35.4. The difference in salinity was largest in the upper 150 meters of the water 350 
column in both periods. 351 

The NoBa-fitted sea ice cover from Nemo and NorESM was compared, focusing on 352 
the area with sea ice concentration > 30%. The seasonal ice cover was calculated as 353 
a mean and compared for the early- and late periods. The results showed a 354 
consistent decrease in ice concentration from the early to the late period in both 355 
models. In Nemo the ice cover extended further southward along eastern 356 
Greenland, compared to NorESM where the ice cover was mostly confined to the 357 
northeastern Barents Sea (Figure 3).  358 

 359 

Figure 3. Mean seasonal sea ice cover [%] from Nemo and NorESM and how they varied throughout 360 
the year, when interpolated into NoBa grids (polygon outlines). The sea ice cover was given as 361 
concentration averaged over the a) early (year 2005-2020) and b) late (year 2085-2100) periods.  362 

 363 
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The total area covered with ice throughout the entire year was approximately the 364 
same for Nemo and NorESM in the early period, while in the late period the area 365 
was slightly greater (20 %) in NorESM compared to Nemo. When comparing the 366 
monthly sea ice cover (Figure S4) for the early period, Nemo projected more ice in 367 
the spring (February-May), while NorESM projected more during the rest of the 368 
year, especially in the late summer (July-September). In the late period NorESM 369 
projected more ice than Nemo in all months except April and December. 370 

3.2 Species responses to forcing from Nemo or NorESM  371 

The biomasses of all components in NoBa were compared to explore how they 372 
responded to the two sets of physical forcing (Figure 4). This was done for the two 373 
15-year periods defined as early and late, which allowed for comparison between 374 
the two physical forcings and how this difference varied through time. The 375 
components were sorted by trophic levels to investigate the effect of the physical 376 
forcing on the different parts of the food chain.  377 

 378 

Figure 4. Difference in biomass for the components in NoBa when using physics from NorESM compared 379 
to Nemo. The difference in mean biomass for two 15-year periods were compared; an early- (year 2005-380 
2020) and a late period (year 2085-2100). Green cells indicate a higher biomass in NorESM compared 381 
to Nemo, while red cells indicate a lower biomass in NorESM, and differences > 15 % are given as values. 382 

 383 
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The majority of the species in the model were not notably impacted by using 384 
NorESM as physical forcing instead of Nemo. The species and groups that were most 385 
impacted were lower trophic levels species such as the phyto- and zooplankton 386 
groups, prawns, and mesopelagic fish. 387 

However, some higher trophic level species were also impacted in the simulations, 388 
in particular long rough dab (Hippoglossoides platessoides) and Greenland halibut 389 
(Reinhardtius hippoglossoides). Both species responded when turning on the 390 
thermal niche, and the difference was the same whether ice was included as forcing 391 
or not, indicating that the thermal niche was the main driver for this response.  The 392 
biomass of long rough dab was reduced in NorESM compared to Nemo both in the 393 
early (-18 %) and late (-20%) periods. The reduction in biomass was caused by a 394 
reduction in numbers rather than weight and occurred first in age class 1 at the start 395 
of the simulation indicating a reduction in recruitment. Greenland halibut, on the 396 
other hand, increased in biomass (by 22 %) in NorESM compared to Nemo in the 397 
late period when the thermal niche was turned on. The increase in biomass was also 398 
here caused by a higher abundance and occurred in the first age class. 399 

When comparing the early period to the late, it was evident that the difference in 400 
biomass between the NorESM and Nemo simulations was apparent for more species 401 
in the late period compared to the early. Another tendency was that higher trophic 402 
level species also responded more strongly to the difference in physical forcing when 403 
the thermal niche was turned on. 404 

We also investigated which traits might the influence stability of biomass to 405 
environmental change (Supplementary materials, Figure S5). The changes in 406 
biomass in NorESM compared to Nemo from figure 4 were converted to absolute 407 
values as a measure of variability. This variability was plotted for all species and 408 
separately only for vertebrates, against trophic level, lifespan (a proxy for population 409 
growth rate or population productivity), temperature sensitivity (the width of the 410 
thermal niche) and core area (size of occupied habitat at model initialization for 411 
vertebrates). Results showed a negative correlation between variability and trophic 412 
level and lifespan. When focusing only on vertebrates there was also a significant 413 
negative correlation between variability and thermal niche, as well as the area 414 
occupied area at model initialization.  415 

How the different sets of physical forcing affected the distribution of the commercial 416 
species was also studied. The distributions were not notably altered when using 417 
different physical forcing (i.e Nemo vs NorESM). The only changes were observed 418 
when the thermal niche was turned on, and occurred in herring, which was displaced 419 
between 24-11 km (depending on the seasons) to the East in NorESM compared to 420 
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Nemo in the late period, and Northeast Arctic cod (Gadus morhua), hereafter cod, 421 
which was relocated 18 km southwest in NorESM in the spring. However, these 422 
displacements were relatively small compared to the size of the polygons and were 423 
considered negligible.  424 

 425 

3.3 Species responses to future climate changes 426 

Using two sets of physical forcing and various temperature and ice sensitivity 427 
settings offered the opportunity to include uncertainty in the projections when 428 
studying the ecosystem responses to climate changes. The species in NoBa were 429 
grouped into categories, and the change in total biomass within each category 430 
throughout the simulation was plotted (Figure 5).  431 

 432 

Figure 5.  Projected changes in total biomass for various species groups. Grey lines represent the 433 
projected biomass from the different simulations, while black solid line shows median and shaded area 434 
shows the 95 % confidence interval. Horizontal dotted lines indicate changes greater than 15 %. Please 435 
note that the number of species within each category varies and that the y-axes for the zoo- and 436 
phytoplankton groups differ from the others. 437 
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For most of the categories the overall trend was the same for all simulations, while 438 
the biomass levels varied slightly. The groups of whales and mesopelagic species had 439 
positive biomass trends and increased by 30-40 % towards year 2100, while other 440 
mammals and seabirds decreased by 10-20 %. The pelagic species first decreased 441 
and then increased before stabilizing. The zoo- and phytoplankton groups were 442 
highly variable, but the overall level was stable throughout the run. The sharks and 443 
the demersal species had a stable mean, but the various simulations projected 444 
different trends. For sharks, the simulations with the thermal niche turned on 445 
projected a slight positive increase of 5-10 % towards the end of the simulation, 446 
while the runs without the thermal niche projected a slight decrease of ~5 %.  447 

The most striking effect of climate change was in the demersal group where 448 
projections displayed two big drops in biomass depending on the different 449 
scenarios. Investigating the species within this group revealed that cod was causing 450 
most of this variation (Figure 6). The cod stock experienced two severe declines in 451 
biomass in year 2032 and 2060, happening only in the scenarios where NorESM was 452 
used as forcing and the thermal niche was turned on (NorESM_ temp and 453 
NorESM_ice_t). The biomass in these years was reduced by ~60 % with catches 454 
reduced to ~50 % compared to current levels (year 2005-2020). 455 

 456 

 457 

Figure 6. Projected changes in Northeast Arctic cod biomass and annual catches in scenarios with 458 
various physical forcing and parameter settings showed several drops in biomass. Grey lines represent 459 
the projected biomass from the different scenarios with the two projections resulting in collapse marked 460 
as red. The black solid line shows median biomass and shaded area shows the 95 % confidence interval. 461 
Lines indicating changes greater than 15 % was marked as horizontal dotted lines. 462 

Investigating the collapses further revealed that the temperatures in the spawning 463 
areas of cod were lower in NorESM compared to Nemo. The minimum spawning 464 
temperature of cod was set to 4 °C based on literature (Bergstad et al., 1987; Höffle 465 
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et al., 2014; Langangen et al., 2019; Righton et al., 2010; Sandø et al., 2020), and 466 
temperature in NorESM was thereby below the tolerated temperature for cod to 467 
spawn, resulting in recruitment failure. This could clearly be observed as 468 
intermittent declines in temperature in the spawning area were followed by stock 469 
collapses and occurred when NorESM had particularly low temperatures. Although 470 
the temperatures from Nemo also occasionally dropped below 4 °C, the durations 471 
of these events were generally much shorter. The individual species within each 472 
category were investigated separately to reveal if this was happening in any of the 473 
other species as well (Figure S6), but this mainly occurred with cod. 474 

Comparing the early period to the late period showed that both models projected 475 
notable changes in distribution for the different commercial species, especially for 476 
herring (Clupea harengus), saithe (Pollachius virens), cod, golden redfish (Sebastes 477 
norvegicus) and Greenland halibut. All these species moved in a northeastern 478 
direction, with the exception of saithe, which moved northwest. Turning on the 479 
thermal niche slightly increased the change in distribution, but the overall results 480 
were more or less the same for all the scenarios. The change in distribution also 481 
appeared gradually for these species, as opposed to a sudden shift in distribution. A 482 
summary of the distance between the early and the late period can be found in table 483 
S3. 484 

  485 
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 486 

 487 

4. Discussion 488 

In this study we had two objectives. First, to study how much we gain when applying 489 
downscaled forcing compared to forcing from a global climate model in a coarse 490 
resolution end-to-end ecosystem model simulation. And second, to evaluate 491 
expected ecosystem changes in the Nordic and Barents Seas under future climate 492 
changes with the two different types of forcing.   493 

What we gain from downscaled physics was interpreted at the resolution of our 494 
ecosystem model, NoBa, and therefore the translation from Nemo-NAA10km and 495 
NorESM2 onto NoBa was critical. Comparing the physical forcing in Nemo and 496 
NorESM revealed that the temperature and ice cover varied between the two 497 
models even after being converted to the coarse NoBa grid. Nemo projected higher 498 
temperatures in the upper water column around Svalbard, while NorESM projected 499 
higher temperatures below 150 meters in the Norwegian Sea (Figure 2a). The 500 
temperature difference slightly increased throughout the simulation.  The sea ice 501 
cover in terms of area with ice concentration > 30 % was similar in the two models 502 
for the early period, while in the late period Nemo projected less ice than NorESM. 503 
The distributions of the sea ice cover also differed between the models with Nemo 504 
projecting more ice east of Greenland compared to NorESM (Figure 3). 505 

A large part of the differences between NorESM and Nemo was most likely a result 506 
of the different horizontal resolutions of NorESM2 and Nemo-NAA10km. It is well 507 
known that the representation of currents, fronts, and sites of deep convection, are 508 
improved with an increased horizontal resolution of ocean models (Busecke et al., 509 
2019; Kirtman et al., 2012; Langehaug et al., 2019). In the Nordic and Barents seas, 510 
increased resolution typically leads to an increased northward transport of heat and 511 
salt (Langehaug et al., 2019), which brings the simulated temperature and salinity 512 
closer to the observed. NorESM2 and Nemo-NAA10km further have different 513 
vertical coordinate systems, vertical resolution, and physical parameterizations, 514 
which all have an impact on the representation of vertical mixing and the bottom 515 
boundary currents. Also, the river forcing and the sea ice modules differ between 516 
the models, which can give rise to differences in the freshwater budget. To get 517 
around problems with biases in the physical forcing, adopting an anomaly approach 518 
could be a possible solution, i.e., where the ecosystem model is forced with modeled 519 
changes from present climatology, instead of the modeled full field 520 
hydrography.  Similar approaches are used for example in data assimilation (Bethke 521 
et al., 2021), and in acidification studies (Fransner et al., 2022), and could be applied 522 



 
 

Paper II - Trivial gain of downscaling in future projections of higher trophic levels in the Nordic and Barents Seas 20 

PAPER II 

to future ecosystem studies. A detailed investigation of the inter-model differences 523 
would require an extensive analysis of the simulated ocean dynamics and additional 524 
sensitivity runs and is beyond the scope of this paper. 525 

The lower trophic levels in NoBa responded quickly to changes in physics and were 526 
generally more variable than the higher trophic levels. The results of the study were 527 
therefore in line with the findings that the lower trophic levels were more sensitive 528 
to the resolution of the physical forcing (Hansen and Samuelsen, 2009; Lee et al., 529 
2016; Skogen et al., 2018), although a direct comparison is not easy as NoBa has a 530 
coarse resolution and is better at capturing the dynamics of higher trophic level 531 
species. While variable, the projected lower trophic level biomass showed no clear 532 
trend with time in the various simulations. This could be due to the fact that the 533 
planktonic groups in NoBa are divided based on size rather than species, where the 534 
size classes have wide temperature ranges and will therefore not be constricted by 535 
the thermal niche. Generally, high-latitude spring-bloom ecosystems should benefit 536 
from higher temperatures giving increased production, but other factors like 537 
changes in mixed-layer-depth may alter this (Skogen et al., 2018). Other recent 538 
papers have also found uncertainty in projections of future trends in plankton and 539 
net primary production, but more agreement across models and stronger impacts 540 
regarding the effects of climate change on higher trophic levels (Heneghan et al., 541 
2021; Lotze et al., 2019; Skogen et al., 2018; Tittensor et al., 2021).  542 

Generally, few species responded differently to using forcing from NorESM2 543 
compared to Nemo-NAA10km (Figure 4). The high trophic level species that stood 544 
out in our results were cod, long rough dab and Greenland halibut, where all three 545 
had in common that they responded in the simulations where the thermal niche was 546 
turned on. Cod had the most dramatic response where events of massive 547 
recruitment failure occurred in NorESM, leading to collapses in total biomass and 548 
greatly reduced catches (Figure 6). This was due to the temperature in NorESM 549 
occasionally falling below the tolerated spawning temperature of cod. Investigating 550 
the temperature in the polygons where the adult long rough dab spawned revealed 551 
that, similar to cod, the temperature in NorESM was occasionally below their 552 
tolerated spawning temperature in several of the polygons, leading to a reduced 553 
recruitment. Greenland halibut, on the other hand, responded positively in the 554 
NorESM scenario as opposed to the other two. This response was due to the 555 
reduction in long rough dab (and partly cod) as these prey on the same species and 556 
overlap in distribution. 557 

Investigating which traits might influence stability showed that species with short 558 
lifespans were more variable in the model.  Lower trophic level species and species 559 
with narrower thermal niches experienced higher variability, although the 560 
significance of this correlation depended on whether all species were studied or just 561 
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vertebrates were included. Vertebrate species also experienced higher variability 562 
when occupying a smaller habitat at model initialization.  Lower trophic levels, which 563 
consistently responded more strongly to changes in physical forcing, include a 564 
temperature correction in the growth rates. The correction is higher for 565 
phytoplankton than other species (Hansen et al., 2016) and might lead to stronger 566 
responses in phytoplankton-feeding organisms (like zooplankton) which in turn 567 
could impact other zooplankton-feeding species (such as prawns). The response to 568 
this variability is dampened through the system (Bracis et al., 2020; Hansen et al., 569 
2019; Pantus, 2006). In addition, plankton and other invertebrates use all their 570 
energy to grow (in our model formulation), while vertebrates devote energy to 571 
reproduction.  Furthermore, our results suggest that for vertebrates in particular, 572 
traits such as lifespan, thermal niche, and area occupied influence stability.  573 

Turning on the thermal niche had a larger effect on the species when comparing the 574 
scenarios, both in terms of how the species responded to the physical forcing from 575 
NorESM or Nemo, and their projections in a future warmer climate. The 576 
temperature ranges that were set in NoBa were based on literature, but species 577 
temperature tolerance is uncertain, and in our model especially for the functional 578 
groups and non-commercial species where information is scarce. Even for cod, the 579 
tolerated temperature range for spawning grounds has been discussed in several 580 
studies (Bergstad et al., 1987; Höffle et al., 2014; Langangen et al., 2019; Righton et 581 
al., 2010; Sandø et al., 2020) with minimum temperature ranging from 2.0 – 6.5 °C. 582 
The lowest tolerated temperature for cod spawning was set to 4 °C in NoBa, but this 583 
divergence reflects the uncertainty regarding the species´ tolerated temperature 584 
ranges. Another issue was that due to the coarse spatial resolution of NoBa, the 585 
temperature range of several species had to be adjusted to allow them to be in areas 586 
where they had been observed historically (Table S1). The thermal niche also 587 
affected the species in such a way that if the temperature was outside the species 588 
range it could not spawn or inhabit that polygon. Given the coarse resolution of 589 
NoBa, future studies might benefit from adjusting this parameter to first reduce the 590 
spawning or habitat quality before inhibiting it when the temperature is outside the 591 
tolerated range. 592 

Adding ice as forcing had a weaker effect on the species compared to the thermal 593 
niche, especially for the higher trophic level species discussed above. However, 594 
many Arctic species are known to be highly dependent on ice (Kearney et al., 2021). 595 
Polar cod (Boreogadus saida) is an example of such a species, where the reduction 596 
in ice cover projected by the SSP5-8.5 scenario is expected to severely impair their 597 
recruitment and habitat conditions. (Gjøsæter et al., 2020; Kjesbu et al., 2021). The 598 
fact that polar cod was not negatively affected in our projections suggests that 599 
further development of the ice parameters in the NoBa model is needed, as the link 600 
between the species and their dependence on ice might be too weak. This was the 601 
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first attempt at applying ice in an Atlantis model, and for future studies the link 602 
between the survival of a species and its dependency on ice should be revised. 603 

There was a Northeastern shift in some species throughout the simulations. The 604 
same trends were observed in Nemo and NorESM and occurred independent of 605 
whether the various settings were turned on. As most vertebrate species in NoBa 606 
are restricted to seasonal migrations, the species cannot move into completely new 607 
areas, but how the stock is distributed within the given polygons can change. When 608 
the thermal niche is turned off, the distribution depends on migration pattern and 609 
food availability. Since the trends were observed in all scenarios this indicates that 610 
the Northeastern shift was caused by a change in food availability. The primary 611 
production in NoBa is affected by light and nutrients, and the reduced ice coverage 612 
in NorESM and Nemo would therefore lead to increased production further north 613 
which can explain the shift in distribution. These results are consistent with other 614 
studies indicating increased primary production in the Arctic Ocean (Steinacher et 615 
al., 2010; Vancoppenolle et al., 2013) and species moving further North (Fossheim 616 
et al., 2015; Frainer et al., 2017).  617 

Another trend in response to future climate changes was that whales and 618 
mesopelagic species were increasing, while sea birds and other marine mammals 619 
were declining. Sea birds are expected to decline under future climate changes (Dias 620 
et al., 2019; Mitchell et al., 2020) due to a higher frequency of extreme weather 621 
events and lower food supply.  Marine mammals that depend on ice (such as polar 622 
bear and seals included in the “other mammals” group) are also expected to decline 623 
due to habitat loss, while the effects on whales are more uncertain (Kovacs and 624 
Lydersen, 2008). Mesopelagic species are less studied, but are expected to be 625 
positively impacted based on assessment reports (Kraft et al., 2021). The projected 626 
trends are therefore in line with what other studies have suggested. 627 

Overall, most of the higher trophic level species did not respond notably to using 628 
physics from the global model compared to the regional. The NoBa simulations also 629 
mostly agreed on the sign of future changes with both sets of forcing. Our results 630 
therefore indicate that for modelers lacking available downscaled physical forcing, 631 
using physics from a global model could be sufficient to study climate effects on 632 
higher trophic level species. This is in line with Drenkard et al. (2021) who have 633 
suggested a pragmatic approach when considering if downscaling is needed for 634 
ecosystem studies. They argue that the primary objective of downscaling should be 635 
to resolve ocean features (e.g., mesoscale activity and upwelling (Small et al., 2015)) 636 
that are important for the species that are being studied, that are not captured by 637 
the global climate model.  638 
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The case of cod illustrates such an ocean feature, in this case the temperature at 639 
spawning grounds, that must be downscaled properly given what we know about 640 
that species and how it is represented in the ecosystem model. The future state of 641 
the cod stock and potential consequences for fisheries are uncertain.  A warmer 642 
climate might increase suitable feeding areas for cod (Kjesbu et al., 2021), while at 643 
the same time cause potential negative effects on its prey species (Gjøsæter et al., 644 
2020). However, the collapses of the cod stock in our results were caused by cooler 645 
temperatures, not warmer. Although the stock has been at low levels before (ICES, 646 
2021), sudden collapses, like the ones projected in the scenarios using NorESM and 647 
turning on the thermal niche, have not been reported and seem rather unlikely.  648 

To analyze the results and determine the effects of the different physical forcing on 649 
the species we chose to set certain boundaries. Whether the species were regarded 650 
as impacted, or if the change in distribution point was significant depended on the 651 
boundaries set prior to the study, as well as the periods that were chosen to study 652 
changes throughout the simulation. All of these choices inevitably affect the results 653 
and how we interpret them. A crucial uncertainty regarding the results of this study 654 
is where we set these limits, as well as the assumptions within the models. The 655 
temperature ranges set for the thermal niche, as discussed above, are also uncertain 656 
and demonstrate another boundary setting that should be treated with caution. It 657 
should also be noted that the species were not parameterized to be affected by the 658 
salinity (which differed greatly between Nemo and NorESM) and were only 659 
marginally affected by ice. The results could therefore have been entirely different 660 
if the dependency on salinity and ice were strengthened. There were also species 661 
that were excluded which could have impacted the results, including haddock, snow 662 
crab and king crab. The recruitment of haddock strongly depends on variability in 663 
lower trophic levels, which results in high variability in biomass and makes it 664 
unrealistically sensitive to any perturbations (Olsen et al., 2019). Snow crab larval 665 
dispersion was not parameterized correctly in this study which caused it to collapse, 666 
while king crab is currently represented as biomass pools instead of individuals 667 
which leads to unrealistic behavior, and the group is therefore in the process of 668 
being reparametrized as a vertebrate. 669 

Using ensembles of ecosystem models (Heneghan et al., 2021; Lotze et al., 2019; 670 
Tittensor et al., 2021) or multiple climate models and projections (IPCC, 2022) to 671 
deal with uncertainty is commonly applied, but this study also highlights the benefits 672 
of using multiple sets of physical forcing to deal with uncertainty.   673 
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5. Conclusions 674 

This study focused on investigating ecosystem changes in the Nordic and Barents 675 
Seas under the future climate, as well as how much we gain from applying 676 
downscaled forcing compared to forcing from a global model in a coarse resolution 677 
ecosystem model. Most commercial species were projected to move further north 678 
as a response to future temperature change, which is consistent with previous 679 
studies suggesting a borealization of the Arctic Ocean/Barents Sea with climate 680 
change (Fossheim et al., 2015; Frainer et al., 2017). Whales and mesopelagic species 681 
were increasing, while sea birds and other marine mammals were declining, which 682 
is also in line with former studies (Dias et al., 2019; Kovacs and Lydersen, 2008; 683 
Mitchell et al., 2020). 684 

Higher trophic levels were generally not particularly impacted by using downscaled 685 
physics compared to physics from a global model. This suggests that physical forcing 686 
from global models in many cases is sufficient to study higher trophic levels. 687 
However, cod illustrates an exception to this, and we demonstrated how even minor 688 
differences in temperature may impact the modeled species. The reason behind cod 689 
being particularly sensitive was that the temperature in the spawning areas was 690 
below the tolerated temperature range. This highlights the need for higher precision 691 
when dealing with species with higher sensitivity to the physical environment, in 692 
which cases downscaling can become of importance. Without access to the 693 
downscaled physical forcing the results would project collapses in the future cod 694 
stock, which would be of huge importance as cod is the most valuable stock in the 695 
Norwegian economy.  696 

697 
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 944 
 945 
Downscaling NorESM2 with Nemo-NAA10km 946 
The two paragraphs below describe how NorESM2 was downscaled with Nemo-NAA10km. 947 
More detailed information can be found in Hordoir et al. (2022). 948 

 949 

Design of Atmospheric Forcing – NorESM2 to Nemo-NAA10km 950 

Nemo-NAA10km uses a bulk formulation for its connection with the atmosphere following 951 
Large and Yeager (2009). The wind velocity fields are extracted from the NorESM simulations 952 
at an altitude of 10m. Air temperature and specific humidity are also extracted at an altitude 953 
of 2m from the NorESM simulations. The long wave and short-wave radiation fields are 954 
provided by NorESM, so are solid and liquid precipitation fields, as well as the sea level 955 
pressure. A random check on surface ocean stresses for Nemo-NAA10km and NorESM shows 956 
that the fields are almost similar. The bulk formulation uses a relative wind speed when 957 
computing ocean surface stresses following the ocean-atmosphere coupling performed in 958 
NorESM, which differs from the reference Nemo-NAA10km reference simulation made in 959 
hindcast mode (Hordoir et al., 2022) that uses an absolute wind speed following the re-960 
analysis used in hindcast mode for which the atmosphere sees a static ocean. 961 

 962 

Design of Oceanic Forcing – NorESM2 to Nemo-NAA10km 963 

Nemo-NAA10km has two open boundary conditions for which the forcing is extracted from 964 
NorESM for temperature and salinity only. Using the sea level data from NorESM proved to 965 
give non-realistic results. The structure of the Atlantic temperature and salinity stratification 966 
simulated by NorESM can not be used directly, as the mixed layer depth at this boundary in 967 
NorESM is much greater than that simulated by Nemo-NAA10km in hindcast mode, and 968 
produces an un-realistic AMOC of 60 Sv. Therefore we chose to use the temperature and 969 
salinity trend from the NorESM mixed layer interpolated on the open boundary condition of 970 
Nemo-NAA10km, and apply it to the climatological mixed layer used for some part of the 971 
simulation done in Hordoir et al. (2022). 972 

As in the hindcast simulation of Hordoir et al. (2022), tidal forcing is applied as a forcing 973 
through the open boundary conditions, as well as through a tidal potential. As in Hordoir et 974 
al. (2022), the runoff field is considered as climatological (i.e., seasonal variability but no inter-975 
annual variability). The simulations starts in 1950 with the same initial fields used in Hordoir 976 
et al. (2022). 977 

 978 
 979 
 980 
 981 



 
 

Paper II - Trivial gain of downscaling in future projections of higher trophic levels in the Nordic and Barents Seas 30 

PAPER II 

Model description of the NoBa Atlantis model 982 
A model description of the NoBa Atlantis model which follows the ODD (Overview, Design 983 
concepts, Details) protocol for describing individual- and agent-based models, as updated by 984 
Grimm et al. (2020) can be found in the below. 985 
 986 
Purpose and pattern 987 
The purpose of this modelling exercise was to reproduce historical patterns in biomass in 988 
order to explore the effects of the resolution of the physical forcing on ecosystem projections. 989 
We evaluate the model by its ability to reproduce patterns such as historical catches, total 990 
stock biomass, and spawning stock biomass. This required tuning of the commercial species 991 
by altering the parameter files to fit the new physical forcing provided by NEMO. All 992 
commercial species were tuned and compared to data taken from the ICES annual assessment 993 
reports (ICES, 2021, 2020) and non-commercial species were monitored.  994 
 995 
Entities, state variables and scales  996 

The model combines oceanography, population dynamics, spatial distributions, nutrient 997 
cycling, fisheries, and species interactions in a spatially explicit domain.  The model 998 
components are modelled as individual species (e.g., mackerel, Northeast Atlantic cod) or 999 
aggregated into functional groups (e.g., small pelagic fish, large demersal fish) for species of 1000 
similar life history and ecological characteristics.  Most vertebrate species are age-structured 1001 
while invertebrates are gathered into biomass pools. The model tracks the flow of nutrients 1002 
through the trophic levels using nitrogen as the currency, giving the weights of all components 1003 
as mg nitrogen (mg N).   1004 

 1005 
Process overview and scheduling  1006 
The major processes on growth, diet, consumption, mortality, and recruitment are as 1007 
described in (Audzijonyte et al., 2017). In this version, parameters regarding mortality, 1008 
recruitment and distribution were altered to take into account new physical forcing. See table 1009 
S1 for more details regarding which parameters that were tuned. 1010 
 1011 
Design concepts  1012 

Emergence  1013 
Species distribution and population development emerges from the changes in physical 1014 
forcing. These changes may also impact the predator-prey relationships between species 1015 
and can therefore lead to alterations in the ecosystem structure.  1016 
Fitness  1017 
Fitness can be measured in biomass, catches, numbers and distribution of the species 1018 
Objectives  1019 
The objective measure used by the model is to investigate the effect of using a high- and 1020 
a low-resolution physical forcing, given the already coarse resolution grid of the model. 1021 
Sensing  1022 
Species are assumed to sense the change in temperature and will therefore change its 1023 
distribution if the temperature is outside the species temperature range. 1024 
Interactions  1025 
Species-interactions through diet matrix and overlap in time and space. 1026 
Stochasticity  1027 
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Atlantis is a deterministic model, and there is no stochasticity in the processes included.   1028 
Collectives  1029 
The model contains functional groups where species with similar life history traits are 1030 
gathered into one group. This was done due to practical reasons and lack of data.  1031 
Observations  1032 
Growth rates, total stock biomass, spawning biomass, catches, predator-prey 1033 
relationships, distributions  1034 

 1035 
Initialization  1036 
The model was initiated with biomass levels corresponding to those observed in the early 1037 
1980s. Details on these and their parameters can be found in Hansen et al. (2016). For these 1038 
simulations, parameters regarding reproduction, mortality and distribution were altered (see 1039 
section on Entities, state variables and scales, and table S1). The fisheries mortalities were 1040 
extended to include harvest rates until 2020, and age-dependent fisheries were implemented 1041 
for all commercial vertebrates.  1042 
 1043 
Input  1044 
Details on the input files can be found in (Hansen et al., 2016, 2019a). New and updated 1045 
fisheries were implemented from 1980-2020, and an age specific mortality was included to 1046 
ensure that the fisheries only catch above certain age classes. The fishing mortalities and age 1047 
specific mortality were estimated based on ICES annual assessment reports (ICES, 2021, 1048 
2020). The mean fishing mortalities (F) and standard deviations (sd) are given below. 1049 

 1050 

  
Blue 

whiting Capelin 
Greenland 
halibut Haddock Mackerel Cod 

Beaked 
redfish 

Golden 
redfish Saithe Herring 

F 0.28 0.40 0.03 0.30 0.98 0.40 0.05 0.22 0.33 0.13 
sd 0.08 0.68 0.01 0.10 0.22 0.11 0.04 0.09 0.13 0.09 
 1051 
Submodels  1052 
Atlantis has several available modules related to management and economics. However, in 1053 
this case only the harvest module was applied.  1054 

 1055 

 1056 
 1057 
 1058 
 1059 
Tables 1060 

Prior to the study the biomasses and catches of all commercial species were tuned to fit the 1061 
historical values. The tuning was conducted for species where the biomass was much higher 1062 
or lower than observations. This was primarily done by tweaking the parameters in the biol-1063 
file related to recruitment, mortality, or growth rate. Parameters that governed the density 1064 
dependent movement and depth restrictions were also updated to ensure that the species 1065 
were distributed correctly. Table S1 describes in detail which parameters that were altered. 1066 

 1067 



 
 

Paper II - Trivial gain of downscaling in future projections of higher trophic levels in the Nordic and Barents Seas 32 

PAPER II 

Table S1. Detailed overview of which parameters that were altered to ensure that the species corresponded to 1068 
observed values. The name of the parameter in the model and a short description is included as well as which 1069 
changes that were done to which species. 1070 
 1071 

Parameter Description Species Value before Value after 
 

BHalpha_XX 

 

Parameter that governs 
the recruitment 

Mackerel  
Haddock  
Redfish  

Other redfish 

9.55 x109 

0.01 x108 
3.25 x1011 

0.75 x109 

2.50 x1010 
0.07 x108   
3.25 x108   
0.05 x108 

 

mQ 

Parameter that governs 
the mortality of juvenile 

and adults 

Cod 
Greenland halibut 
Other redfish 

1.75 x10-10    9.48 x10-10 
1.09 x10-10    4.20 x10-09 
9.05 x10-11    1.05 x10-10 

1.75 x10-10    1.48 x10-10 
1.09 x10-11    4.20 x10-10 
9.05 x10-12    0.25 x10-11 

 
 

maxtodepth 

Parameter that restricts 
the total allowed depth 
that the species can be in. 

Cod 
Haddock 
Saithe 

Greenland halibut 
Redfish 

Skates and rays 

4000 
4000 
4000 
4000 
4000 
4000 

600 
1000 
500 
2200 
1500 
2000 

 
ddepend 

Parameter that governs 
the movement 

Sharks 
Arctic seabirds 

2 
2 

0 
0 

 
mum 

Parameter that specifies 
the maximum growth 

rate 

Dinoflagellates 0.55 0.95 

 

max_move_temp 

Parameter that limits the 
maximum tolerated 

temperature 

Mackerel 
Blue whiting 
Redfish 
Haddock 

Arctic seabirds 

6.0 
1.0 
4.0 
2.0 
-0.5 

0.0 
-1.9 
-0.5 
-0.5 
-1.9 

 
min_move_temp 

Parameter that limits the 
minimum tolerated 

temperature 

Capelin       
Redfish        
Polar cod 

 

6.0 
30.0 
2.0 
 

9.0 
10.0  
10.0 
 

 
max_spawn_temp 

Parameter that limits the 
maximum temperature 

for spawning 

Polar cod       
Haddock 

21.0 
6.0 

10.0 
10.0 

 

 

min_spawn_temp 

 

Parameter that limits the 
minimum temperature 

for spawning 

Snow crab       
Capelin       
Mackerel      

Blue whiting     
Greenland halibut       

Polar cod        
Haddock 

Arctic seabirds 

1.0 
2.0 
9.0 
7.0 
0.0 
0.0 
4.0 
4.0 

-1.9 
-1.9 
2.0 
0.0 
-1.9  
-1.9 
-0.5 
-1.9 

 1072 

 1073 
 1074 
 1075 
 1076 
 1077 
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Table S2. List of species and functional groups in the NoBa model, including corresponding abbreviations and 1078 
species the group is parameterized as separated in guilds.  1079 
 1080 
Category Species Abb. Species included 

 
Whale 

  

Killer whale KWH  
Fin whale FWH  

Minke whale MWH  
Sperm whale SWH  

Humpback whale HWH  
 
Other mammals 

Polar bear POB  
Harp seal HAS  

Hooded seal HOS  
Ringed seal RIS  
Bearded seal BES  

Seabird 
 

Arctic seabirds  SBA  
Boreal seabirds  SBB  

 
Shark 

Sharks, other SHO Picked dogfish, Porbeagle, Tope shark 
Skates and rays 

 
SSK Arctic skate, starry ray, sailray, longnosed skate, thornback ray, round 

skate, spinytail skate 
  

 
Demersal 

fish 

Demersal fish, large DEL Monkfish, Atlantic halibut, Atlantic wolffish, northern and spotted 
wolffish 

Demersal fish, other DEO Ling, Tusk 
Flatfish, other FLA European plaice, common dab, winter flounder 

Greenland halibut GRH  
Haddock HAD  

Long rough dab LRD  
Northeast Arctic cod NCO  

Polar cod PCO  
Redfish RED Beaked redfish 

Redfish, other REO Golden redfish 
 

 
Pelagic 
fish 

Blue whiting BWH  
Capelin CAP  
Mackerel MAC  

Norwegian Spring 
Spawning herring 

SSH  

Pelagic fish, large PEL Atlantic salmon   
Pelagic fish, small PES Lumpfish, Norway pout 

Saithe SAI  
Mesopelagic Mesopelagic fish MES Silvery lightfish, glacier lantern fish 

 Cephalopods CEP Gonatus fabricii  
  

 
Benthos 

  

Benthic filter feeders BFF Selected molluscs, barnacles, moss animals, anemones  
Corals COR Lophelia pertusa 
Sponges SPO Geodia baretti  
Prawn PWN Pandalus borealis  

Red king crab KCR  
Snow crab SCR  

Detritivore benthos BD Selected annelids, echinoderms 
Predatory benthos  BC Echinoderms, sea urchins, annelids and anemones 

  
Zooplankton 

 

Gelatinous zooplankton ZG Aurelia aurita, Cyanea capillata 
Large zooplankton ZL Thysanoessa inermis 

Medium zooplankton ZM Parameterized as Calanus finmarchicus 
Small zooplankton ZS Small copepods, oncaea, pseudocalanus  

 
Phytoplankton 

Dinoflagellates DF  
Large phytoplankton PL Diatoms 
Small phytoplankton  PS Flagellates 

 
 

Bacteria 
 

Benthic bacteria BB  
Pelagic bacteria PB  

Carrion DC  
Labile detritus DL  

Refractory detritus DR  
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Table S3. List of the change in the center of gravity of the distribution for the commercial species. The change is 1081 
given in km and the direction of the change for the various parameter settings. Red numbers mark the 1082 
simulation where the greatest change was observed.  1083 
 1084 
Species        Season Ref Ice Temp Temp_ice Dir 

Saithe Fall 71.4 70.3 70.8 71.3 NW 
Saithe Summer 70.7 69.6 70.0 70.4 NW 
Saithe Spring 70.3 69.1 69.5 69.9 NW 

Golden redfish Spring 30.4 32.3 31.8 30.7 NE 
Herring Spring 30.3 34.4 40.0 46.9 NE 
Saithe Winter 26.7 26.3 26.5 26.7 SW 

Green. halibut Fall 22.9 23.1 18.1 18.2 NE 
Green. halibut Summer 22.8 22.9 18.0 18.2 NE 
Green. halibut Spring 22.7 22.8 17.9 18.1 NE 

Herring Winter 22.1 24.1 30.6 34.0 NE 
Herring Fall 20.6 23.1 29.2 32.2 NE 

Green. halibut Winter 20.5 20.7 15.6 15.8 NE 
Herring Summer 19.8 22.0 25.7 30.3 NE 
Cod Spring >10km >10km 24.5 24.1 NW 
Cod Winter >10km >10km 10.5 10.4 NW 

 1085 
 1086 
Figures 1087 

The figure below shows the result of the tuning of the species with most species close to 1088 
observed values. Please note that the biomasses of cod and beaked redfish are a bit off 1089 
because the total stock biomass is not reported for those species, only the biomass of adult 1090 
individuals. However, since the catches matched well with observations for these species, we 1091 
decided to allow the simulated biomass to be a bit higher to account for the juvenile part of 1092 
the stock. 1093 

 1094 
Figure S1. Simulated biomass from NoBa compared to observations for commercial species. Green line represents the 1095 
simulated biomass while the black line represents observations. Shaded area shows the 30 % uncertainty. 1096 
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The two figures below show the change in temperature and salinity in NorESM compared to 1097 
Nemo. The difference is given in °C and psu for the early- (year 2005-2020) and late period 1098 
(year 2085-2100) for all layers in the water column. The plots were made to get an overview 1099 
of where the greatest differences were. 1100 

 1101 
Figure S2. Temperature difference in NorESM compared to Nemo in the early and late period in the different depth layers 1102 
down in the water column. Differences greater than ± 1.5 °C were labeled. The figure shows how the temperature in NorESM 1103 
was colder in the upper parts of the water column especially in the Barents Sea, and warmer in the deeper layers in the 1104 
Norwegian Sea. These differences seemed to slightly increase in the late period compared to the early. 1105 
 1106 
 1107 

 1108 
Figure S3. Salinity difference in NorESM compared to Nemo in the early and late period in the different depth layers down 1109 
in the water column. Differences greater than ± 0.5 psu were labeled. The figure shows how the salinity in NorESM was lower 1110 
in the upper layers in the early period, and decreased in all layers in the late period. 1111 
 1112 
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 1113 

 1114 

Figure S4 compares the monthly sea ice cover for the early- and late periods in Nemo and 1115 
NorESM. The ice-covered area was calculated by summarizing areas of polygons with ice 1116 
concentration > 30 %. Nemo projected more ice in the spring (February-May), while NorESM 1117 
projected more during the rest of the year, especially in the late summer (July-September). In 1118 
the late period NorESM projected more ice than Nemo in all months except April and 1119 
December. 1120 

 1121 
 1122 

 1123 
Figure S4. Monthly averaged of area covered by sea ice from Nemo and NorESM for the early (year 2005-2020) and late 1124 
(year 2085-2100) period. The areas covered by ice was considered when the concentration is > 30 %.  1125 
 1126 
 1127 
We also investigated which traits might influence stability of biomass to environmental 1128 
change. Below we provide scatterplots as a quantitative analysis for the species variability 1129 
with respect to physical forcing. The changes in biomass in NorESM compared to Nemo with 1130 
the various parameter settings (_ref, _temp, _ice and _ice_t) from figure 4 were converted to 1131 
absolute values as a measure of variability, and were plotted against trophic level, lifespan (a 1132 
proxy for population growth rate or population productivity), temperature sensitivity (the 1133 
width of the thermal niche) and core area (size of occupied habitat at model initialization for 1134 
vertebrates). The r-squared value (R 2) which measures how well the regression model 1135 
explains observed data (in this case how much of the variation can be attributed to trophic 1136 
level, lifespan, thermal niche or core area) were included as well as the p-value to indicate 1137 
significance (p<0.05).  1138 
 1139 
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 1140 
 1141 
Figure S5.  Correlation between variability and trophic level, lifespan (year), width of thermal niche (°C) and core area (km2). 1142 
Results of all species were plotted with colors indicating which group they belong in and were separated into plots where 1143 
either all species (a) or only vertebrates (b) were included. The r-squared value (R2) which measures how well the regression 1144 
model explains observed data (in this case how much of the variation can be attributed to trophic level, lifespan, thermal 1145 
niche or core area) were included as well as the p-value to indicate significance (p<0.05). For vertebrates the thermal niche 1146 
and core area were separated into juveniles and adults, as well as seasons. 1147 
 1148 
 1149 
We found that when including all species (a) as expected, there was a significant negative 1150 
correlation between variability and trophic level and lifespan. However, this was not the case 1151 
for the width of the thermal niche. The result related to the thermal niche could be due to 1152 
the fact that our functional groups for plankton, invertebrates, and some non-commercial 1153 
species are aggregates of species for which less is known about thermal tolerance, and 1154 
therefore the width of the modelled temperature range is wider than for commercially 1155 
important species receiving more attention in literature.  1156 
 1157 
For vertebrates (b) the correlation between variability and trophic levels was insignificant, 1158 
while as expected the correlation between stability and lifespan, thermal niche and core area 1159 
were significant and negative. The r-squared values were quite low for all plots and showed 1160 
that only 1.5-6.5 % of the variance in biomass could be attributed to the four traits we 1161 
investigate here, which highlights the importance of additional traits and factors (such as 1162 
predation, as well as food, nutrients, temperature, light availability etc.). 1163 
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Using two sets of physical forcing and various temperature and ice sensitivity settings offered 1164 
the opportunity to include uncertainty in the projections when studying the responses to 1165 
climate changes. While the species in NoBa was grouped into categories and studied in figure 1166 
5, figure 6S explored the species within each category separately. The change in total biomass 1167 
from the early period was plotted throughout the simulation for each species separately and 1168 
the shaded area show the 95 % confidence interval based on all simulations.  1169 
 1170 

 1171 
 1172 
Figure S6.  Projected changes in biomass for various species. Black lines represent the median changes, while shaded area 1173 
shows the 95 % confidence interval of all scenarios. Horizontal dotted lines depict changes greater than 15 %. Please note 1174 
that the y-axis species differ between the species. 1175 
 1176 
 1177 
 1178 
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