
University of Bergen
Department of Informatics

A Functional Implementation of a

Multiway Dataflow Constraint

System Library

Author: Bo Victor Isak Aanes

Supervisors: Mikhail Barash, Jaakko Järvi, Knut Anders Stokke

June, 2023

Abstract

Developing graphical user interfaces (GUIs) is a time consuming and error prone task.

The complexity and difficulity of implementation tends to arise as more and more el-

ements are introduced into the GUI, along with dependencies and constraints between

these elements. This will often lead to poor maintainability and technical debt, which in

turn slows down development rates of projects. Libraries like HotDrink (Freeman et al.,

SIGPLAN Notices 48, 2012) and domain specific languages like WarmDrink (Stokke et

al., J.Comput.Lang. 74, 2023) aim to eliminate errors, while also improving the devel-

oper experience. These systems provide a declarative way of defining constraints between

elements in a user interface and manage all business logic behind the scenes. This thesis

introduces a purely functional implementation of both HotDrink and WarmDrink and

a way to interact with these engines through a command line interface. We show that

implementing multiway dataflow constraint systems and an engine for structural manip-

ulation in a functional language, such as Haskell, can deliver a codebase with clear and

concise function definitions that highlight the ideas of constraint systems themselves.

Such clarity helps in further development of GUI frameworks and libraries. It also helps

new programmers to learn and adapt this new technology. We desribe how our Haskell

implementation was used by the students of a programming language class.

Acknowledgements

I would like to thank my supervisors Mikhail Barash, Jaakko Järvi, and Knut Anders

Stokke for their invaluable advice, expertise, and persistent encouragement.

My heartfelt thanks are extended to my family, whose belief in me has been a great

support throughout this challenging journey. I am grateful for my friends, whose com-

panionship and support have transformed countless hours of study into an enjoyable and

unforgettable experience.

Finally, my acknowledgement wouldn’t be complete without thanking everyone at

Jafu. The collaborative spirit, endless hours of procrastination, and warmth of everyone

have been a lot of fun.

Thank you.

Bo Victor Isak Aanes

Thursday 15th June, 2023

Contents

1 Introduction 1

2 Background 3

2.1 Multiway Dataflow Constraint Systems 3

2.1.1 HotDrink . 3

2.2 Structure Manipulation . 6

2.2.1 WarmDrink . 6

2.3 Functional Programming . 7

3 Constraint Systems in Haskell 9

3.1 User Interface . 10

3.1.1 Constructing a Constraint System Interactively 10

3.2 Planning . 12

3.2.1 Simple Planner . 12

3.2.2 Hierarchical Planner . 14

3.3 Constraint System as a Commutative Monoid 17

4 Structure Manipulation in Haskell 21

4.1 WDFun . 21

4.2 User Interface . 25

4.2.1 Constructing a List of Components Interactively 25

4.2.2 Manipulating the List of Components 28

5 Implementation 30

5.1 HDFun . 30

5.1.1 Graph Representation of Constraint Systems 30

5.1.2 Commutative Monoid Representation 33

5.1.3 Method Expressions . 33

5.1.4 Planning . 34

5.1.5 Extracting the Methods . 35

i

5.1.6 Command Line Interface and State Management 36

5.1.7 User Input . 37

5.1.8 Processing User Input . 38

5.1.9 Parsing Expressions . 40

5.1.10 Evaluating Expressions . 43

5.2 WDFun . 44

5.2.1 Data Structure . 44

5.2.2 Expanding the State and CLI . 45

5.2.3 Enforcing Intercalating Constraints 47

6 Evaluation 49

7 Related Work 51

7.1 Constraint Systems . 51

7.1.1 ConstraintJS . 51

7.1.2 Babelsberg . 52

7.1.3 SolidJS . 52

7.2 Functional Web Frameworks . 53

7.2.1 Elm . 53

7.2.2 PureScript . 54

7.2.3 Clojure, ClojureScript and Reagent 54

8 Conclusion and Future Work 55

Bibliography 57

ii

List of Figures

3.1 The prompt of the CLI. 10

3.2 Graph representation of an example constraint system. 11

3.3 Rectangle constraint system. 13

3.4 Solution graph for the rectangle constraint system using the simple planner. 14

3.5 Rectangle constraint system with stay constraints. 15

3.6 Solution graph using hierarchical planner with descending variable strength

ordering of a, w, h, and p. 16

3.7 Method graph of m1. 18

3.8 Graph representation of C1. 19

4.1 Graph representation of constraint C1 containing one method m1. 23

4.2 Method graph of im1. 23

4.3 Graph representation of the component list. 24

4.4 WarmDrink CLI. 26

7.1 Currency conversion in Babelsberg. 52

7.2 Instantiating and using the CurrencyConversion class. 52

iii

Listings

2.1 Defining a constraint system using HotDrink’s API. 5

3.1 Fold operation. 20

4.1 Defining the list of talks in the CLI. 26

4.2 Defining an intercalating constraint in the CLI. 27

4.3 Values of the components after applying the intercalating constraint. . . 27

4.4 The state of the list after inserting a component and updating its value of

duration to 50. 28

4.5 The state of the list after swapping components 3 and 4. 28

5.1 VertexType data type. 31

5.2 MethodGraph for M1 and M2. 32

5.3 Constraint data type. 33

5.4 Constraint containing M1 and M2. 33

5.5 Semigroup instantiation. 33

5.6 Monoid instantiation. 33

5.7 AST data type for method expressions. 34

5.8 Plan function. 35

5.9 Function to find methods to enforce. 36

5.10 State data type. 36

5.11 User input loop. 37

5.12 Prompt function. 37

5.13 Processing user input. 38

5.14 Input method. 39

5.15 Function for converting a method to a graph. 40

5.16 Enforcing constraints. 40

5.17 Parser for values. 41

5.18 Parser for factors . 42

5.19 Parser for expressions . 42

5.20 Evaluation of expressions. 43

5.21 ComponentList data type. 44

iv

5.22 Component data type. 44

5.23 Agenda data structure. 45

5.24 CLI mode. 46

5.25 Satisfying intercalating constraints. 47

7.1 Currency conversion in SolidJS. 53

v

Chapter 1

Introduction

Developing graphical user interfaces (GUIs) can be a complex task [23, 24], especially

with large amounts of elements and dependencies, as well as interactions between them.

Without a proper architecture, difficulty in both maintaining and further developing GUIs

quickly rise with the size of the GUI. Inconsistencies in user experience or unexpected

behavior can occur if these interactions are not properly handled. HotDrink [9, 8], a

multiway dataflow constraint system (MDCS) library written in JavaScript, introduces a

way of specifying constraints based on relations between GUI elements. It also handles

all business logic to ensure that all relations between elements hold. This programming

model (MDCS) is a powerful way for developers to manage constraints between elements,

not only in GUIs, but in other applications as well, such as spreadsheets [27], and collab-

orative systems [19].

Difficulties regarding user interfaces are also prevalent in the context of structures,

such as lists [28]. WarmDrink [28] is a domain specific language (DSL) that generates

JavaScript code for specifying relations between elements in GUI structures. WarmDrink

assists the developer in specifying operations for manipulating a GUI strucutre such that

relations between all elements hold.

There exists a variety of implementations of MDCSs which either use HotDrink di-

rectly or implements HotDrink in some other way. Examples of these are: HotDrink used

in spreadsheet applications [27], visual specifications used to define constraint systems

with HotDrink [2], as well as an implementation of HotDrink’s functionality in Rust and

WebAssembly [29].

1

In this thesis we combine an implementation of a multiway dataflow constraint system

and a system for specifying constraints between elements in structures. Furthermore we

provide the end-user or developer with a way of interacting with these implementations

through a command line interface (CLI). This allows the user to define constraint sys-

tems within isolated components as well as manipulate lists of these components, where

components can exhibit relations to each other. The CLI provides a way of interacting

with our system, which in turn utilizes both of the engines for constraints and structure

manipulation to simplify this usually tedious work, and deliver something the user can

trust and confidentially rely on.

Our implementation is written in Haskell, which is a purely functional programming

language. This benefits us in several ways, as we can use the language to express our ideas

in a concise and elegant way, while being able to trust that our constraint models always

remain pure. Using a pure and declarative language like Haskell allows the focus during

development of these systems to be on the actual ideas and semantics of the systems,

rather than getting lost in all the implementation clutter that may arise when using an

imperative language.

This thesis is organized as follows. Chapter 2 provides the reader with the necessary

background information regarding multiway dataflow constraint systems and structural

manipulation, mainly within the context of HotDrink and WarmDrink. Functional pro-

gramming and Haskell is also introduced in order to provide necessary information about

this programming paradigm, and some of Haskell’s semantics. Chapter 3 goes in depth

about HDFun, a functional version of HotDrink’s business logic implemented in Haskell.

We explain how the user interacts with the engine and how constraint systems can be

constructed. Furthermore, we go into details about the algorithmic parts and data types.

In Chapter 4 we introduce how we have tackled structural manipulation in our imple-

mentation. We discuss the data types and algorithms related to our interpretation of

WarmDrink, as well as how the user can specify relations between elements in lists.

Chapter 5 is split into two parts where we present the actual Haskell implementation of

HDFun and WDFun, respectively. In Chapter 6, we discuss how our implementation has

been utilized in a course at the University of Bergen. Chapter 7 presents related work,

and Chapter 8 offers a conclusion as well as discussions about future work.

2

Chapter 2

Background

In this chapter we will give an overview of multiway dataflow constraint systems [15]

and HotDrink library [9, 8], which provides a way to define multiway dataflow constraint

systems in JavaScript. We will also provide an overview of structural manipulation of

components in such constraint systems, where we will discuss WarmDrink [28] — a spec-

ification language for this purpose. We will touch upon benefits of approaching these

domains using functional programming.

2.1 Multiway Dataflow Constraint Systems

A multiway dataflow constraint system S is defined as a tuple of variables and constraints

denoted as ⟨V,C⟩, where V is the set of variables in S, and C is the set of constraints in

S [29]. A constraint is defined as a tuple ⟨R, r,M⟩. R ⊆ V is the set of variables in the

constraint, r is the set of n-ary relations among the variables in R, and M is the set of

methods in the constraint. If a method m in M is executed, the constraint is enforced

by taking some subset of R as input, and evaluating and storing the results in another

subset of R. If all values in V satisfy the relations in r, we say that the constraint is

satisfied.

2.1.1 HotDrink

HotDrink is a JavaScript library that provides both an API, as well as a DSL to build

constraint systems and bind elements of the document object model (DOM) to variables

3

of the constraint system. To build a view-model for a working GUI, the developer only

needs to define the different components of the constraint systems, and the methods of

these components. This is done declaratively via an API or a DSL. A user updating

the value of a DOM-element that causes a constraint system’s variable to change, might

lead to the constraint system not being satisfied. HotDrink will then need to recompute

the values of the variables which do not satisfy their constraint. This is done through

planning and solving.

An alternative way to represent a constriant system is through a graph, more accu-

rately an oriented bipartite graph. The graph G = ⟨V +M,E⟩ consists of vertices V and

M , which contain the variables and methods of the constraint system, respectively. E

represents the directed edges between the vertices and expresses the inputs and outputs

of methods in M [14].

Let us consider an example of how we can define constraints of a rectangle that a user

can manipulate in a GUI. The rectangle has a width and a height, and we want to be

able to manipulate these values. However, we also want to be able to manipulate the area

of the rectangle, and we alaways want the values to uphold their relations. This means

that if we change the width or the height, the area should change accordingly, and vice

versa. Furthermore, we also want to take the circumfrence, or rather the perimeter, of the

rectangle into consideration as well. We can express these relations using mathematical

equations, which we will use later to define our constraints in HotDrink. The constraint

system consists of the values for width, height, area and perimeter of a rectangle, re-

spectively denoted as w, h, a, and p. By observing the properties of a rectangle we see

that we have relations between area, and width and height, as well as relations between

perimeter, and width and height. In other words, we can compute a based on w and h,

as well as the other way around. We can also compute p based on the w and h, as well

as w and h individually using p and either w or h.

These properties lets us define two constraints, one between a, w and h, and one

between p, w and h. We will refer to these namely as C1 and C2. C1 contains three

relations, one for computing a, one for computing w and one for computing h. These

relations can be defined using the following equations:

a = w · h

w =
√
a

h =
√
a

4

For C2 we have tree relations as well: one for computing p, one for computing w and

one for computing h. These relations can be defined using the following equations:

p = 2 · (w + h)

w =
p

2
− h

h =
p

2
− w

To define a constraint system consisting of these relations using the HotDrink API

and DSL in JavaScript, we can do the following:

Listing 2.1: Defining a constraint system using HotDrink’s API.
1 const constraintSystem = new ConstraintSystem ();
2
3 const component = component ‘
4 var w, h, a, p;
5
6 constraint {
7 area(w, h -> a) = w * h;
8 widthHeight(a -> w, h) = [Math.sqrt(a), Math.sqrt(a)];
9 }
10
11 constraint {
12 perimeter(w, h -> p) = 2 * (w + h);
13 height(p, w -> h) = p/2 - w;
14 width(p, h -> w) = p/2 - h;
15 }
16 ‘;
17
18 constraintSystem.addComponent(component);
19 constraintSystem.update ();

In Listing 2.1, we first instantiate a ConstraintSystem object using the API, then we

construct a component using JavaScripts template literal syntax1. Within this template

literal string, we use the HotDrink DSL to define our constraint system. First we define

our variables w, h, a and p. We then define two constraints, namely C1 and C2 (not

named in the DSL-example). The constraints both consists of a set of methods that

correspond to our equations defined above. Notice how width and height are computed

by one method alone with the method returning a list list of two expressions that write

to their corresponding variables in the order defined by the method signature, namely:

widthHeight(a -> w, h).

Finally, we add our component to the constraint system, and invoke any methods

needed to satisfy the constraint system with the update function.

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template literals

5

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

2.2 Structure Manipulation

Manipulating structures such as lists or trees in GUIs may seem like a trivial task, and

in many cases it is. However, when elements of such structures are related to each other,

things might not be so trivial after all.

As an example [28], consider a GUI that represents an agenda of talks at a conference.

The structure of the GUI would be a list of talks. Each talk would have a start time and

a duration, among other less important properties, such as a title and the name of the

speaker. The first talk may start at, e.g., 09:00 and have a duration of 30 minutes. This

implies that the second talk must start no earlier than 09:30. If the second talk has a

duration of 20 minutes, then the third talk cannot start before 09:50 and so on.

At first glance, it may seem like all we need to in the example above is to calculate

the start time based on the previous talk’s duration and start time. However, since we

want to be able to manipulate the list, there are several other things we need to be able

to compute. Say we want to swap talks 1 and 2. This means that talk 1 will now last

20 minutes, and that talk 2 will start at 09:20. Furthermore, we may want to support

other operations, such as inserting a talk wherever we would like, and of course removing

a talk.

In addition to this, we want to be able to perform operations on the talks themselves,

such as changing the duration, which will in turn affect the start time of the following

talks. The complexity of what may seem like a simple implementation grows quickly.

2.2.1 WarmDrink

WarmDrink [28] is a domain specific langauge (DSL) designed to relieve the developer

from having to implement the logic for manipulating structures such as lists and trees.

The developer only needs to define the structure of the GUI and the relations between

the elements of the structure. The developer can then use the DSL to define the opera-

tions that can be performed on the structure. The DSL will then generate the logic for

manipulating the structure.

Formally, a WarmDrink specification can be represented as a tuple ⟨S, F,R, T ⟩, where
S = ⟨V,E⟩ is a GUI structure specification, more specifically a rooted acyclic graph. V

6

represents a set of vertices which in turn represents WarmDrink components [28]. E

is a set of labeled edges between components that represents features inside structural

elements [28]. F is a set of subroutines which can be either procedures or predicates

defined in JavaScript code. R is the set of finitary relations defined on elements of the

structure. A relation r in R is in turn its own triple ⟨rtest, restablish, runestablish⟩ where
rtest checks whether a predicate holds, restablish establishes a predicate, and runestablish

unestablishes a predicate. The two former elemets are optional, and are JavaScript

functions. T is the set of transformation rules to define transformations on relations.

2.3 Functional Programming

Functional programming is a programming paradigm that treats computation as the eval-

uation of mathematical functions and avoids mutating the state of data. It is a declarative

programming paradigm in the sense that the program logic is expressed without describ-

ing its control flow.

Unlike imperative programming, where the developer writes specific instructions for

what the computer should do, functional programming is more about specifying the result

we want from the computer. This is done by defining functions that take input and return

output. The output of one function can be used as input to another function, and so on.

This is called function composition.

A well-known example of a functional programming language is Haskell [4]. Haskell

is a purely functional programming language, which means that it does not have any

side effects. Functions in Haskell are also mathematical functions: a function will always

return the same value for the same input. Furthermore, a Haskell function will never

perform updates to values or other expressions outside of itself. This is what defines

Haskell as a pure language.

Another advantage many functional programming languages provide is algebraic data

types. An algebraic data type is a data structures that provides one or more constructors,

each of which can contain zero or more arguments. These algebraic data structures may

inhabit certain properties a developer can exploit in order to write more concise and

legible code. In Haskell, for instance, a developer can instantiate certain type classes [11]

for a custom data type. A type class is an interface consisting of a set of functions that

must be implemented for the given data type. A developer can define functions that

7

work for any type that instantiates a specific type class. This enables the developer to

write polymorphic functions [11] that work for any type that instantiates a specific type

class. An example of a type class in Haskell is Eq, which defines the behavior of equality.

Any type that instantiates Eq can be compared for equality using the polymorphic ==

function.

8

Chapter 3

Constraint Systems in Haskell

In the previous chapter, we explained how multiway dataflow constraint systems work,

and how they can be specified in JavaScript using the HotDrink library. We also discussed

structure manipulation and the use of WarmDrink. In addition to this we explained

benefits of using functional programming to approach different problems and domains.

In this chapter we will discuss an implementation of the core of HotDrink in Haskell,

which we call HDFun. By this core we mean the ability to specify constraints between

values, i.e., to specify constraint systems, plan and solve them.

As discussed in the previous chapter, HotDrink is a JavaScript library that provides

the developer with both an API and a DSL to define constraints between variables. It is

implemented in JavaScript and also uses a graph representation of the constraint system

the user builds. The variables defined with HotDrink can be subscribed to by DOM-

elements in HTML and will be updated automatically when constraints are enforced by

HotDrink. HotDrink follows the Model-View-ViewModel architecture [9]. In short, the

Model embodies business logic of the application. The View represents the GUI, which

binds values to the ViewModel. The ViewModel serves as an intermediary, managing

data transmission between the Model and the user. In HotDrink, the ViewModel is a

constraint system. Its connections to the view are through variable bindings.

While our Haskell implementation of HotDrink contains all the necessary logic needed

to represent, plan and enforce constraint systems, we do not provide an immediate way

of binding values of variables in a given constraint system to some View. Instead, our

implementation can be considered an engine, which allows it to be used as a tool for

building other applications on top of.

9

3.1 User Interface

The user interface of our implementation is a command line interface (CLI) that allows the

user to define constraint systems. In our implementation, a constraint system consists of a

collection of variables, a collection of constraints, as well as a strength for each variable,

which will be further elaborated later in the thesis. The user can define variables of

different types, such as numbers and booleans. These variables can be updated whenever

the user wants to, and the constraint system will satisfy all its constraints according to

the current values and strengths.

When a user runs the CLI, they are prompted with a welcome message and a prompt

(see Figure 3.1). The user can list all the available commands with the help command.

Figure 3.1: The prompt of the CLI.

3.1.1 Constructing a Constraint System Interactively

Fiugre 3.1 shows the available commands in the CLI. The user can define variables with

the new var command, which takes a variable name and a value as arguments. The user

can update the value of a variable with the upd var command.

The process of defining a constraint in the CLI involves specifying the relationships

between methods and their input and output variables. This is achieved by using the

new ctrn command, which takes a single argument representing the number of methods

involved in the constraint.

For each method, the user is prompted to provide the following information:

10

• Method name: The user is prompted with ”Enter name of method:” and is expected

to input a unique identifier for the method.

• Input variables: The user is prompted with ”Enter space-separated input names

to method:” and is expected to input the names of the input variables, separated

by spaces.

• Output variables: The user is prompted with ”Enter output variables to

method:” and is expected to input the names of the output variables, separated

by spaces.

• Expressions for output variables: For each output variable, the user is

prompted with ”Enter expression for [variable]:” and is expected to input the ex-

pression for that variable in terms of the input variables. The system will then

attempt to parse the expression and return either ”Parse success” or an error mes-

sage.

Upon successful parsing of expressions for all methods in the constraint, the system

constructs a graph representing the possible data flows within the constraints, that is, the

methods with their input and output variables, as well as the expressions of their methods.

Figure 3.2 outlines an example of how a graph representation of a constraint might look.

The squared nodes represent variables and the circular nodes represent methods. The

dashed edges represent which variables a given method reads from, and the solid edges

represents which variables a given methods writes to.

a m1

b m2 c

Figure 3.2: Graph representation of an example constraint system.

Once all methods have been defined and their expressions successfully parsed, the

CLI confirms the addition of the constraint to the system by displaying the message

”Added constraint with [number of methods] methods.” This signifies the completion of

the constraint definition process.

11

3.2 Planning

Whenever the value of a variable in the constraint system is updated, constraints that

contain that variable may need to be re-enforced as the required relation between variables

may no longer hold. Invoking any of the defined methods in the corresponding constraint

will enforce the constraint and make all variables satisfy their relations. However, when

a method is invoked, it may also update variables that are part of other constraints,

meaning that these constraint now need to be enforced again too. To satisfy all relations

in the constraint system, at least one method from each constraint need to be executed,

and this needs to happen in a topological order according to the flow of data in the graph

[14].

A graph containing all variables and a single method from each constraint is called a

solution graph. A solution graph G consists of variables V , where each variable have a

maximum in-degree of 1, methods M where each method is part of a unique constraint,

and contains no cycles.

In order to satisfy all constraints, we must determine which methods need to be

invoked. Specifically, this involves computing a solution graph, an action we refer to as

planning. A planning algortihm will select one method from each constraint such that

the selections results in a valid solution graph. There are several approaches to this, and

different planning algorithms we can use to solve a constraint system, to ensure that all

relations hold. Below we discuss two types of planning algorithms, the simple planner

and the hierarchical planner.

3.2.1 Simple Planner

The simple planner is what is known as a propagate degrees of freedom planner [30]. A

variable that is only part of one constraint is called a free variable, and a free method is a

method that only writes to free variables. These properties let us observe that as long as

we only pick methods that are free, we can safely invoke these methods without writing

values to variables part of other constraints. As such we can satisfy the constraint system

by picking one free method from each constraint.

The pseudocode for the algorithm can be found in a previously published work, which

also contains a detailed explanation. This work is referenced in the provided citation

12

Algorithm 1 Simple Planner(G⟨V +M,E⟩)[14]
1: Ms ← ∅
2: Mu ←M
3: while Mu ̸= ∅ do
4: if no free methods in G[V + Mu] then
5: return no solution
6: end if
7: m← a free method in G[V + Mu]
8: Mu ←Mu \ {m}
9: Ms ←Ms ∪ {m}
10: end while
11: return G[V + Ms]

[14] and the algorithm is outlined as Algorithm 1. The algorithm for the simple planner

carries a state, consisting of: Ms, the set of methods that are part of the solution graph,

and Mu, the set of methods for the constraints which are not yet satisfied [14].

Let us consider the example from Section 2.1.1 and apply the simple planner to it.

The graph representation of the constraint system is shown in Figure 3.3. The squared

nodes represent variables, and the circular nodes represent the methods. The dashed

edges represent the inputs to the methods, or which variables a method reads from. The

solid edges represents the output of the methods, or which variables a method writes to.

The constraint C1 represents the relations between a, w and h and contains the methods

m1 and m2 (colored red). The constraint C2 represents the relations between p, w and h

and contains the methods m3, m4 and m5 (colored green).

a

m1

w

m2

h

m4

p

m3

m5

Figure 3.3: Rectangle constraint system.

13

To satisfy the constraint system using the simple planner, we first need to pick a free

method from each constraint. We can pick any free method, but for simplicity we will

pick the first free method we encounter. In this case we pick m1 from C1 and m3 from

C2 (note that these are also the only free methods in the constraint system). We then

add these methods to the set Ms, the set of methods we want to invoke. We then remove

these methods from the set Mu, the set of methods we have not yet invoked. We then

repeat this process until Mu is empty. In this case we pick m1 from C1 and m3 from C2,

as these are the only free methods in each constraint. We now end up with a solution

graph containing m1 and m2 along with all their inbound and outbound edges, as well as

all the variables (see Figure 3.4 below). We can now invoke the methods of m1 and m3

in any order we like and the constraint system will satisfy all its relations.

a

m1

w

h

m3

p

Figure 3.4: Solution graph for the rectangle constraint system using the simple planner.

3.2.2 Hierarchical Planner

Although the basic planner outlined above is capable of satisfying all constraints, it may

inadvertently overwrite variables that have just been updated by the user. There is no

control over how the constraint system should be satisfied, if there is more than one way

to do it. For instance, in the aforementioned example, variables a and p were overwritten,

but this is not the only choice. With different choices of free methods, the algorithm could

also write to a, and w, a and h, or w, h and p. Ideally, to make sure the variables are

updated in an expected manner, we should update variables in the constraint system in a

way that avoids overwriting variables recently modified by the user as much as possible.

14

a

m1

w

m2

h

m4

p

m3

m5

Figure 3.5: Rectangle constraint system with stay constraints.

To this end, a hierarchical planning algorithm [16] can be employed to determine the

optimal set of methods to be invoked. This algorithm assigns a strength value to each

variable, which is used to order the variables based on the order they were last updated.

Each variable is given a stay constraint that is comprised of only one method, which

(if selected as part of the solution graph) ensures that the value of the corresponding

variable remains unchanged. If the planner selects a stay constraint, it cannot select any

other methods that overwrite the value of that variable. The hierarchical palnner favors

stronger stay constraints over weaker ones when searching for a plan.

Again, consider the rectangle as an illustrative example. Suppose that the user has

updated the variables in a descending order, namely, a, w, h, and p, whereby a was

the most recently updated variable and p was the least recently updated. Accordingly,

the priority of the variables in terms of retaining their values should be such that a

has the highest priority, followed by w, h, and p, respectively. The addition of the stay

constraints to the constraint system can be visualized in Figure 3.5, where the gray circles

represent the method in each stay constraint. It is noteworthy that the variables which

were previously free, are no longer free upon the inclusion of stay constraints in the

15

graph. Consequently, if we intend to maintain the value of variable a, we need to select

the corresponding stay constraint that is associated with a. This, in turn, precludes us

from selecting the method m1 to a valid solution graph, as variable a would then have two

incoming edges, which is not permissible. I.e., the stay constraints we select (the values

we would like to preserve) directly influences the selection of the remaining methods from

the constraints.

To determine which stay constraints we should select, we first start with none of

the stay constraints selected, and then add constraints one by one in the order of their

strength. If adding a stay constriant results in an invalid solution graph, we skip this stay

constraint an move on to the next. We continue this way until a valid solution graph is

found, i.e. a graph with one method from each constraint (excluding the stay constraitns

that were not included of course). This algorithm will be described in more detail in

Section 3.3.

a

m2

w

h

m3

p

Figure 3.6: Solution graph using hierarchical planner with descending variable strength
ordering of a, w, h, and p.

Let us now walk through the process of selecting the appropriate methods using

the variable strength mechanism described earlier. We commence by selecting the stay

constraint associated with variable a. As a result, we can observe that method m1 is

no longer a viable option for our solution graph. Instead, we choose method m2 from

constraint C1.

Next, we consider variables w and h, which are also part of our solution graph. Since

each of these variables only have one incoming edge, we cannot select their corresponding

stay constraints. In the case of constraint C2, we note that selecting eitherm4 orm5 would

16

result in an invalid solution graph, as it would introduce an additional incoming edge for

either w or h. Consequently, the only viable option is to choose m3 from constraint C2.

Finally, variable p acquires an incoming edge from m3, implying that its stay constraint

cannot be included in our solution graph. We are now left with a valid solution graph

(see Figure 3.6) containing the stay constraint of a, as well as the methods m2 from C1

and m3 from C1. In order to satisfy the constraint system we need to sort the method

vertices topologically in order to ensure that the data flows downstream. Once this is

accomplished, we invoke each method in this topological order to satisfy the constraint

system.

3.3 Constraint System as a Commutative Monoid

In languages like Haskell, and functional languages in general, designing algorithms is

approached quite differently as compared to imperative languages. In functional pro-

gramming, we tend to think of algorithms as a series of transformations on data, rather

than a series of instructions to be executed (recall Section 2.3). As such, concepts like

loops do not exist and we rather handle looping through recursion or other techniques.

This makes implementing an algorithm like the simple planner less trivial, let alone the

hierarchical planner.

Many functional programming languages, including Haskell, has support for algebraic

data types. Often we can prove that these algebraic data types we define can be algebraic

structures which have certain properties we can exploit in order to write simple and

concise code.

One example of such an algebraic structure is a monoid [10]. A monoid is a set M

with a binary operation ◦ and an identity element e, such that the following properties

hold:

• Closure: ∀a, b ∈M : a ◦ b ∈M

• Associativity: ∀a, b, c ∈M : (a ◦ b) ◦ c = a ◦ (b ◦ c)
• Identity: ∃e ∈M : ∀a ∈M : a ◦ e = e ◦ a = a

A very simple example of a monoid is the set of all non-negative integers as the set

M , along the binary operation + (addition) with 0 as its identity element. We can easily

observe that the above laws hold for this example.

17

When studying multiway dataflow constraint systems, we make the observation that

they can be expressed as monoids [14]. We define the monoid as follows:

• Set: A constraint (which is a list of method graphs, explained below)

• Binary operation: The cartesian product of two methods graphs with a custom

graph union function

• Identity element: A constraint with a list consisting of an empty graph as a single

element

As stated above, we can express methods as graphs (called method graphs). A method

graph is denoted as mg and contains both its vertex m as well as all its inbound and

outbound vertices along with their respective edges. In turn, we can express the graph of

a constraint as the graph union of all method graphs in a constraint. Consider the earlier

example of the constraint system for the rectangle. The method graph for m1 consists

of the method vertex m1 itself, as well as both its inbound and outbound vertices, w, h

and a (see Figure 3.7 below).

a m1

w

h

Figure 3.7: Method graph of m1.

Now, if we consider the constraint C1, we can express its graph as the graph union of

the method graphs of m1 and m2, where the method graph of m2 consists of m2 itself as

well as w, h and a, just like m1. We then end up with the graph representation of C1 as

can be seen below in Figure 3.8. The same process clearly applies for C2 as well.

As mentioned previously, a solution graph is a subset of the constraint graph that

comprises a method graph from each constraint, optionally excluding stay constraints

that may invalidate the solution graph. Furthermore, the solution graph should be acyclic

and each variable can have a maximum in-degree of one.

In previous work [14], it is demonstrated that the possible solution graphs of a con-

straint system can be obtained by folding1 the cartesian product over the constraint

1https://wiki.haskell.org/index.php?title=Foldr Foldl Foldl%27&oldid=62842

18

https://wiki.haskell.org/index.php?title=Foldr_Foldl_Foldl%27&oldid=62842

a

m1 w

m2 h

Figure 3.8: Graph representation of C1.

system, where a constraint is represented as a list of the method graphs within that con-

straint. Subsequently, any invalid solution graphs are removed from the obtained set [14].

The cartesian product is our binary monoid operation ◦. This fold gives us a list of all

the possible solution graphs of the constraint system. The function applied on the pairs

of method graphs in the cartesian product is a custom graph union operation. We call

this operation methodUnion [14]. If the union of the two graphs is acyclic and contains

no variable vertices with an in degree of more than one, we return the union. If the

operation fails we discard it. This function will be adressed in detail in Chapter 5.

When we have computed the possible plans (or rather all possible flows of data),

we can take stay constraints into consideration. As discussed earlier, stay constraints

are constraints that only include one method graph which only retains the value of its

corresponding variable. We use stay constraints as a technique to avoid enforcing a

constraint system in a way that could be surprising to the user. Recall that the strength

of all variables is maintained in accordance with the sequence in which they were last

updated. Although the variables are not explicitly assigned a literal value, a list is

maintained to track the variables in descending order based on their most recent update.

To find the best possible solution, that is the plan that does not overwrite the variables

most recently edited by the user, we can fold the binary operator over the constraints

along with the stay constraints. We first start by including all stay constraints, meaning

that we presevere all the variables values. If this does not result in any valid solution

graph, we remove the stay constraint associated with least recently updated variable, and

perform the fold again. We continue by removing stay constraints in lexicographically

descending order, while performing the fold for each iteration until a valid solution graph

is found. By removing the stay constraints in lexicographically order, we preserve the

variable’s values in the best way possible. The fold we perform for each iteration is shown

in Listing 3.1.

19

Listing 3.1: Fold operation.
1 foldl (\a b -> if a <> b == Constraint [] then a else a <> b) mempty

While this technique certainly works, it is not very efficient. The fold is performed

for each combination of stay constraints, which is exponential in the number of variables

within a constraint system. Instead of discarding stay constraints one by one in lexi-

cographically descending order, we can precompute the possible solution graphs of the

regular constraints and attempt to add stay constraints one by one starting with the

highest prioritized stay constraint. If adding a stay constraint results in no valid solution

graphs, we simply discard the stay constraint and move on to the next.

Let us revisit the example discussed previously and use the priority of the variabels in

the descending order, now denoting each stay constraint as Sid, with id representing the

variable identifier. We will denote our constraint consisting of possible solution graphs

as Gsol. We have, in descending order of priority, GSa, GSw, GSh, and GSp. In sequence

we apply the monoid operation on each stay constraint in the list. First, we compute all

possible solution graphs including Sa by doing Sa ◦Gsol. This operation applies the union

of Sa to all the possible solution graphs and discards the invalid ones. In this example

we would introduce an incoming edge to a resulting in any solution graph containing

m1 to be invalid (see Figure 3.5). Unless the result of Sa ◦ Gsol results is an empty list

(i.e., there are no possible solution graphs containing Sa), we continue with the next stay

constraint by doing Sb ◦ Sa ◦Gsol and so on. If we cannot add the stay constraint to any

of the solution graphs, we discard the result and proceed to the next stay constraint by

doing Sb ◦Gsol.

The technique described above highlights how a planner for a multiway dataflow con-

straint system can be expressed in short and concise code, when leveraging its monoidal

properties, which in turn allows the developer to work with a concise implementation,

and thus overall improving the developer experience.

20

Chapter 4

Structure Manipulation in Haskell

As discussed in Section 2.2, WarmDrink is a DSL for manipulating structures in constraint

system-based GUIs [28]. In this chapter we introduce our way of manipulating GUI

structures in Haskell, called WDFun. While WarmDrink supports strucutre manipulation

of rooted directed acyclic graphs [28], the work in this thesis is limited to manipulation

of lists; extending support for more kinds of structures will be discussed in Chapter

8. Furthermore, our WarmDrink interpretation differs from the original specification in

terms of defining, manipulating and enforcing relations between components.

This chapter presents an implementation that expands on our implementation of HD-

Fun. Similar to HDFun, WDFun functions as an engine, rather than a full implementation

tied to a GUI. This engine facilitates structure manipulation, while distinguishing itself

from the DSL nature of WarmDrink. The co-utilization of WDFun and HDFun permits

the user to define components containing isolated constraint systems, as well as defining

relations between these components. In this process, we take advantage of the graph

representation of constraint systems elaborated in Sections 2.1 and 3.2.

We also explain how we have extended the CLI introduced in Section 3.1 to support

the new features of WDFun. This will be further elaborated in Section 4.2.

4.1 WDFun

In our implementation of structure manipulation, we have defined a data type that rep-

resents components and relations between these. The data type, called ComponentList,

21

consists of a set of components and a set of what we call intercalating constraints. A

component is, as mentioned above, a complete constraint system itself that utilizes the

HDFun engine. A component contains its own isolated constraints that we refer to as

local constraints. An intercalating constraint is defined in the same way as a local con-

straint, and actually uses the exact same data type and graph representation explained

in Section 3.3. However, due to the nature of structures in WarmDrink being acyclic, we

can skip the planning step for these constraints.

All components in a ComponentList must have the same set of variables. This means

that if a variable a is defined in component x, it must also be defined in component y, if x

and y are in the same ComponentList. The same is true for constraints. If a component

x has a constraint C, so must component y, and the converse is also true. The only

difference between components is that the values of variables can be different. This may

seem restrictive, but it is actually very beneficial as each component is well-formed and

eliminates the possibilities for heterogeneity in user-defined components.

An intercalating constraint is, as mentioned above, an instance of the same data type

as a local constraint, and is defined in the same way as a constraint in a component. The

only difference to a regular constraint that it is not tied to a component, but rather exists

on its own in the set of intercalating constraints.

We will consider the example from Section 2.2 regarding the conference agenda. Let

us say we want to have a sequence of talks, where each talk has three variables: start,

duration and end. Observing the properties of a talk’s variables, we can define a relation

between these variables, such that a talk’s end time is equal to its start time plus its

duration. We have the following equation defining the relation between a talk’s variables:

end = start+ duration (4.1)

With this relation we can define a constraint C1 containing one method called m1.

The graph representation of this constraint is shown in Figure 4.1.

22

start

duration

m1 end

Figure 4.1: Graph representation of constraint C1 containing one method m1.

In addition to this, we want to have a small break of five minutes between each talk

so every presenter has time to prepare. Thus, for every following talk, the start time is

equal to the previous talk’s end time plus five minutes. We introduce this relation defined

by the equation below using subscripts to refer to components in the list. The unit used

here are minutes, but for simplicity we will regular integers to represent minutes.

startnext = endprev + 5 (4.2)

The references next and prev are only used to indicate which component the variable

belongs to. The actual constraint containing the relation does not have references to the

given components. Because the data between components only propagates in one direc-

tion, we know always to read from the preceding component, and write to the succeeding

one. The way this is handled is explained in Section 5.2. Using the above relation, we

can define an intercalating constraint I1 containing one method called im1. The graph

representation of this constraint is shown in Figure 4.2.

endprev

im1

startnext

Figure 4.2: Method graph of im1.

While this constraint exists in its own collection of intercalating constraints, we can

visualize how the data would propagate through the entire system. The graph repre-

sentation of the entire conference agenda, containing three talks, is shown in Figure 4.3.

23

Every dotted rectangle represents a component in our structure. Each component is a

talk in the agenda containing the same set of variables and constraints as every other

talk. We can see how the intercalating constraint I1 propagates data throughout the list

of talks.

start

duration

m1 end

talk

start

duration

m1 end

talk

start

duration

m1 end

talk

im1

im1

Figure 4.3: Graph representation of the component list.

To give an illustrative example of how the data propagation would work in this ex-

ample, we can start at talk number one. We will set its start time to 1 and its duration

to 10. Invoking m1 in C1 would then set the end time of talk number one to 11. Because

24

we have now changed the values of a component, we need to apply the intercalating

constraint I1 on the next component. I1 will then read the value of end in talk one, and

write this value (plus five), to start of talk two. The value of start of talk two, would

then be set to 11 + 5 = 16. This chain of data would then flow down stream until the

last component.

The example in Figure 4.3 gives an example of how data propagates through the list

of talks. While the dataflow is correctly visualized, the way the intercalating constraint

is applied to the list of components is by traversing accross the list of components and

computing the correct values while writing to the desired components’ variables. As

such, the intercalating constraints do not ”exist” between each component as visualized

in Figure 4.3. This is explained in Section 5.2.

4.2 User Interface

In order to provide the user with a way to define components and lists of these along

with intercalating constraints, we have extended the CLI described in Section 3.1.

4.2.1 Constructing a List of Components Interactively

Figure 4.4 shows the output of the command help. This command lists all the available

commands in the CLI. The user can define a component with the command new comp,

which adds a component to the component list. If there are no items in the list, the

created component will not contain any variables or constrains. If the list contains one

or more components, however, it will duplicate the last component and add it to the

end of the list, before enforcing the constraints (both local, and intercalating). The user

can also create a list of components using the new list command which takes a single

integer as an argument for how many components to add.

When the component list has a set of components, the user can define variables and

constraints on a component level using the commands new var and new ctrn, respec-

tively, as described in Section 3.1. These commands add variables and constraints to

each component in order to preserve structural equality between all components. After

defining a variable, the user can update the actual values on an individual level for each

25

Figure 4.4: WarmDrink CLI.

component by using the command upd var, which takes three arguments: the identifier

of the component, the variable’s identifier, as well as the actual value.

We can define the list of talks used in the conference agenda example with the following

commands used in succession:

Listing 4.1: Defining the list of talks in the CLI.
1 $ new list 3
2 $ new var start 1
3 $ new var duration 10
4 $ new var end 1
5 $ new ctrn 1

This will create a list of three components, each containing the variables start,

duration and end. We also define the constraint C1 with one method, which is then

applied to each component. This sequence of commands results in the system containing

three components (talks), all with the same variables, constraints and values. To define

an intercalating constraint, we can use the command new ictrn. Similarily to defining

a regular constraint, this command also takes an integer as its only argument specifying

the number of methods the constraint contains. In this example, we add an intercalating

constraint containing one method. The user is prompted for the method name, input

variables, output variables as well as expressions for each output variable (see Listing

4.2).

26

Listing 4.2: Defining an intercalating constraint in the CLI.
1 $ new ictrn 1
2 Enter name of method:
3 $ im1
4 Enter space separated input names to method:
5 $ end
6 Enter output variables to method:
7 $ start
8 Enter expression for s:
9 $ end + 5
10 Parse success
11 Added intercalating constraint with 1 methods

The process of adding an intercalating constraint is exactly the same as adding lo-

cal constraints, except the constraints are added to the set of intercalating constraints

instead. In fact, the command invokes the same set of IO actions described in Section

3.1.1. The implementation of this is explained in Section 5.2.

Once the intercalating constraint has been added, it is applied to the list of components

in order to satisfy each local constraint as well as the relations between all the components.

We can display the components’ values using the command show comp. In our case we

are left with three components, or rather talks, with the following values.

Listing 4.3: Values of the components after applying the intercalating constraint.
1 $ show comp
2 Component 0:
3 start = 1.0
4 duration = 10.0
5 end = 11.0
6
7 Component 1:
8 start = 16.0
9 duration = 10.0
10 end = 26.0
11
12 Component 2:
13 start = 31.0
14 duration = 10.0
15 end = 41.0

The example illustrated in Listing 4.3 show the three components we defined, with

their respective variables and values. We can verify that the local constraint, C1, in

each component is satisfied as each component’s end time is the sum of its start time

and its duration. Furthermore, we observe that the start time of component 2 and

3, respectively, is equal to its preceding component’s start time plus five. Hence, our

intercalating constraints are satisified across the list of components.

27

4.2.2 Manipulating the List of Components

While defining components, variables and constraints lays the foundation for constructing

a list of arbitrary components, we want to be able to manipulate this list, continually

making sure that each constraint (both local, and intercalating) is satisfied. In a list,

particularly, we want to be able to both remove and insert elements at any given position,

as well as swap any two given elements. With our implementation we can provide this

functionality without having to update values manually. This is achieved by invoking the

methods of constraints downstream from where values have been modified.

Let us consider an example using the list of talks from Listing 4.3. Suppose we

want to insert a talk after the first talk. We can use the command ins after. The

command takes an integer as its only argument, and it inserts a component into the

list after the component with the given identifier. As with the commands used in the

example above, the added component will be added along with the same set of variables

(with values duplicated from the preceding component) and local constraints as the other

components. After inserting this component, we invoke the method in the intercalating

constraint from its preceding component, which in turn will invoke all other methods

downstream from the preceding component, consequently satisfying all the constraints in

the component list.

Listing 4.4: The state of the list after
inserting a component and updating its
value of duration to 50.

1 $ ins after 1
2 $ show comp
3 Component 1:
4 start = 1.0
5 duration = 10.0
6 end = 11.0
7
8 Component 4:
9 start = 16.0
10 duration = 50.0
11 end = 66.0
12
13 Component 2:
14 start = 71.0
15 duration = 10.0
16 end = 81.0
17
18 Component 3:
19 start = 86.0
20 duration = 10.0
21 end = 96.0

Listing 4.5: The state of the list after
swapping components 3 and 4.

1 $ swap 3 4
2 $ show comp
3 Component 1:
4 start = 1.0
5 duration = 10.0
6 end = 11.0
7
8 Component 3:
9 start = 16.0
10 duration = 10.0
11 end = 26.0
12
13 Component 2:
14 start = 31.0
15 duration = 10.0
16 end = 41.0
17
18 Component 4:
19 start = 46.0
20 duration = 50.0
21 end = 96.0

Moreover, suppose that the newly inserted talk’s duration is 50, rather than 10 (the

value set when the component was inserted). We can use the command upd var with

28

the component’s identifier, the variable’s identifier, as well as the value to set. We set

the value to 50 like this: upd var 4 duration 50.

The swap command allows for the swapping of two components. It requires two

integer arguments, which correspond to the identifiers of the components that need to

be switched. When two components are swapped, it triggers the intercalating constraint.

This invocation occurs from the component preceding the first component selected for

swapping. However, if the very first component in the list is the one chosen for swapping,

the invocation will occur from there.

29

Chapter 5

Implementation

5.1 HDFun

As previously stated, HotDrink is a JavaScript library that has been specifically devel-

oped for the purpose of applying multiway dataflow constraint systems within graphical

user interfaces on web-based platforms. HotDrink allows the developer to handle dataflow

and constraints between variables in the constraints system. These variables are typically

bound to specific DOM-elements. Our implementation introduces a multiway dataflow

constraint system engine in Haskell that enables the user to define variables and con-

straints via interacting with a CLI. The planning algorithms and data structures all take

advantage of common patterns in functional programming to allow for an implementa-

tion that focuses more on the overall idea, instead of the artefacts of the implementation

itself. This chapter explains how we have implemented a HotDrink-engine in Haskell1,

and how we take advantage of functional programming patterns to accomplish this. We

also discuss how the CLI is implemented and what techniques are used here. We have

also implemented a custom lightweight language to define the expressions contained in

methods; we will discuss how this is implemented and what techniques we use to parse

these expressions from the CLI.

5.1.1 Graph Representation of Constraint Systems

As explained in Section 2.1.1, we represent any given constraint system as an oriented

bipartite graph, denoted as G = ⟨V + M,E⟩, where V is the variable vertices, M is

1The implementation is found at https://github.com/boaanes/hdwdfun

30

https://github.com/boaanes/hdwdfun

the method vertices, and E is the edges between the vertices. To represent a graph in

Haskell, we use the Algebraic Graphs library (alga) [21]. This library provides several

ways to construct graphs as algebraic data structures. At the core of the library lies

the polymorphic type class Graph g, which defines four basic polymorphic constructors

that all type class instances must satisfy, namely: empty, vertex, overlay, and connect

[21]. With these operations, we can construct any valid graph. The library comes with

several different data types for representing graphs, one of which is AdjacencyMap2. It

is a parameterized data type that allows constructing algebraic graphs and comes with

different functions to facilitate different types of graph operations.

Because the vertices in a constraint system’s graph can be one of two types (a variable

or a method), we have defined a data type that lets us differentiate between these [14].

The data type VertexType is defined in Listing 5.1:

Listing 5.1: VertexType data type.
1 data VertexType
2 = VertexVar String
3 | VertexMet Method
4 deriving (Eq, Ord , Show)

The VertexVar constructor only holds a String as its parameter, which refers to the

name of the variable. This is because we store the actual values themselves in a state,

which is discussed in Section 5.1.6. The VertexMet constructor holds a parameter called

Method, which is defined as follows:

type Method = (String, [(String, Expr)])

The Method type is a tuple that holds a String and a list of tuples. The String

refers to the name of the method. In the list of tuples, each tuple connects a method

to its output variable. The String is the variable identifier and Expr is the expression

from our own AST discussed in Section 5.1.3. As an example, consider method M2 from

Section 3.3. It reads from a, and writes to w and h. The value of a constant defining this

method would then be:

m2 = ("M_2", [("w", UnOp "sqrt" (Var a)), ("h", UnOp "sqrt" (Var a))])

2https://hackage.haskell.org/package/algebraic-graphs-0.7/docs/Algebra-Graph-
AdjacencyMap.html

31

https://hackage.haskell.org/package/algebraic-graphs-0.7/docs/Algebra-Graph-AdjacencyMap.html
https://hackage.haskell.org/package/algebraic-graphs-0.7/docs/Algebra-Graph-AdjacencyMap.html

To define a method graph, we have implemented another type alias for the

AdjacencyMap data type from the alga library. We call this type alias MethodGraph

and define it as follows:

type MethodGraph = AdjacencyMap VertexType

Finally, we can represent methods as method graphs (described in Section 3.3). For

example, constraints containing the values corresponding to the method graphs for M1

and M2 can be constructed as follows:

Listing 5.2: MethodGraph for M1 and M2.
1 m1 :: Method
2 m1 = ("m1", [("w", BinOp "*" (Var "w") (Var "h"))])
3
4 m2 :: Method
5 m2 = ("m2", [("w", UnOp "sqrt" (Var "a")), ("h", UnOp "sqrt" (Var

↪→ "a"))])
6
7 m1Graph :: MethodGraph
8 m1Graph =
9 edges [
10 (VertexVar "w", VertexVar m1),
11 (VertexVar "h", VertexMet m1),
12 (VertexMet m1 , VertexVar "a")
13]
14
15 m2Graph :: MethodGraph
16 m2Graph =
17 edges [
18 (VertexVar "a", VertexMet m2),
19 (VertexMet m2 , VertexVar "w"),
20 (VertexMet m2 , VertexVar "h")
21]

In this example, we use the function edges from the alga library to construct the

graphs. The function takes a list of tuples, where each tuple represents an edge in the

graph. The first element of the tuple is the source vertex, and the second element is the

target vertex.

Finally, to represent an actual constraint, we have defined a newtype3 Constraint,

which contains a list of method graphs. A newtype in Haskell, is a type declaration that

works the same way as a normal data type, except it only has one constructor that only

holds one field. We use Haskell’s record syntax to wrap the type in a single function

unConstraint, which allows us to easily access the inner value of the data type. We

define a constraint as shown in Listing 5.3. The value of the constraint corresponding to

C1, containing M1 and M2 is shown in Listing 5.4.

3https://wiki.haskell.org/Newtype

32

https://wiki.haskell.org/Newtype

Listing 5.3: Constraint data type.
1 newtype Constraint = Constraint { unConstraint :: [MethodGraph] }

Listing 5.4: Constraint containing M1 and M2.
1 constraintOne :: Constraint
2 constraintOne = Constraint [m1Graph , m2Graph]

5.1.2 Commutative Monoid Representation

Because we represent Constraint as a newtype rather than a type alias, Haskell allows

us to instantiate type classes. To prove that our constraint data type indeed is a monoid

we also have to prove that it is a semigroup. A semigroup is the same as a monoid, but

without an identity element [10]. We have to provide an implementation of the binary

operator <>. This can be achieved by instantiating the Semigroup type class on our

constraint type, as seen in Listing 5.5. As discussed in Section 3.3, the binary operator

is a concatenation of the custom union function applied on each pair of the Cartesian

product of two constraints, which in turn results in a new constraint. To complete the

monoid definition, we have to provide a definition for the monoid identity element, which

is a constraint with the empty graph as its only element (see Listing 5.6).

Listing 5.5: Semigroup instantiation.
1 instance Semigroup Constraint where
2 Constraint as <> Constraint bs =
3 Constraint $ catMaybes [methodUnion a b | a <- as, b <- bs]

Listing 5.6: Monoid instantiation.
1 instance Monoid Constraint where
2 mempty = Constraint [empty]

5.1.3 Method Expressions

In the JavaScript implementation of HotDrink, the variables in the constraint system

can be of any type. Methods can be represented by regular JavaScript functions as

they are dynamically typed. However, due to the strict type system of Haskell, storing

actual functions in the method type is not feasible. While technically possible, doing so

would require that each function has the same type, which would consequently limit the

implementation’s functionality, as every function would need to accept a fixed number of

33

input arguments of a certain type and return only a specific type of output. Therefore,

we have implemented a simple AST, along with an evaluator and a parser (discussed

in 5.1.9), which can handle arithmetic and Boolean expressions (see Listing 5.7). This

language can be expanded as needed; for this thesis it is considered as a placeholder for a

more expressive DSL. The capabilites of this expression language are an orthogonal issue

to planning, solving and dynamically managing the structure of constraint systems —

which are the main emphases of this thesis.

Listing 5.7: AST data type for method expressions.
1 data Value
2 = DoubleVal Double
3 | BoolVal Bool
4 deriving (Eq, Ord , Show)
5
6 data Expr
7 = BinOp String Expr Expr
8 | UnOp String Expr
9 | Var String
10 | Lit Value
11 deriving (Eq, Ord , Show)

5.1.4 Planning

The instance declarations that make the constraint type a monoid give us leverage. By

using the properties of the monoid, it becomes possible to implement the algorithm

in a succinct way that finds the best plan given the strength of variables. We have

implemented a function plan, in a module called Algs.hs, that takes two arguments: a

list of stay constraints in descending order by strength, and a constraint containing all

possible solution graphs (obtained by folding the binary operator over the user defined

constraints), as shown in Listing 5.8. The code for this planner differs drastically from the

fold we introduced in Section 3.3, but conforms with the more efficient algorithm described

at the end of Section 3.3. While both this planner and the fold accomplish the same task,

this implementation is more efficient. This is because the fold in Section 3.3 will have

to be run for each combination of stay constraints, in lexicographically descending order

until a valid solution graph is found. Because of this, all (method graphs of) constraints in

a given constraint system will be concatenated for each combination of stay constraints.

This may lead to bad performance for larger constraint systems. Because of this, we have

designed the function in Listing 5.8 to receive an already concatenated list of constraints

as its second argument. This function is only called once in order to find the best plan.

In Section 3.3, it is established that the most optimal solution graph can be deter-

mined, given the current strengths of the variables, by applying the monoid operation

34

Listing 5.8: Plan function.
1 plan :: [Constraint] -> Constraint -> Constraint
2 plan [] c = c
3 plan (x:xs) c =
4 let cAndX@(Constraint cx) = x <> c
5 in if null cx
6 then plan xs c
7 else plan xs cAndX

to each stay constraint in descending order of strength. The plan function (Listing 5.8)

conducts this operation recursively according to the order of the list that contain the

constraints. If applying the binary operator results in an empty list, a recursive call is

made with the solution graphs computed in the preceding function call, and discarding

the current stay constraint from the solution graph. The returned value is either a con-

straint containing a valid solution graph, or an empty constraint (in which no valid plan

is found).

5.1.5 Extracting the Methods

While the solution graph contains both vertices for variables and methods along with

their respective edges, we are only really interested in the methods and in which order

they must be executed. The method vertices themselves contain the expressions which

need to be invoked, along with the variables they write to. As mentioned in Section

3.2 the methods contained in the solution graph need to be invoked in such an order

that data flows downstream. This can be achieved by performing a topoloical sort of the

solution graph and filtering out the variable vertices. To achieve this, we use a function

called methodsToEnforce, which takes a constraint as input and returns a value of the

type Maybe [VertexType]. Maybe is a Haskell way to handle null-like values4. In Listing

5.9, we perform a pattern matching5 on the input constraint. If the constraint does not

contain any method graphs, we return Nothing as there are no valid solution graphs

found. If it contains a method graph, we sort the graph topologically using a function

topSort from Alga [22]. This function returns a value of the type Either (Cycle a)

[a], which means we either get a cycle, meaning the graph cannot be sorted topologically,

or we get a list of vertices in topologial order.

In instances where a cycle occurs, the function returns the value Nothing. However,

the presence of cycles is impossible, given that the planner is incapable of computing

4https://wiki.Haskell.org/index.php?title=Maybe&oldid=64585
5https://en.wikibooks.org/w/index.php?title=Haskell/Pattern matching&oldid=4276286

35

https://wiki.Haskell.org/index.php?title=Maybe&oldid=64585
https://en.wikibooks.org/w/index.php?title=Haskell/Pattern_matching&oldid=4276286

Listing 5.9: Function to find methods to enforce.
1 methodsToEnforce :: Constraint -> Maybe [VertexType]
2 methodsToEnforce (Constraint [x]) = case topSort x of
3 Right es -> Just $ filter (\case VertexVar _ -> False; _ -> True)

↪→ es
4 Left _ -> Nothing
5 methodsToEnforce _ = Nothing

a plan containing cycles, as no valid solution graph with cycles exists. Therefore, this

serves as a safeguard to ensure exhaustive pattern matching. Upon obtaining the list of

vertices organized in topological order, variable vertices are filtered out, as the focus lies

on extracting the methods in order to invoke them.

5.1.6 Command Line Interface and State Management

While the data structures, the planner, and other algorithms make up the engine for

multiway dataflow constraint systems we need a way for an end user to interact with the

system itself. To enable this process, we have developed a command line interface (as

described in Section 3.1) to allow the user to define variables and constraints. The values

of the variables are stored in a state using Haskell’s state monad6. While mutability

is not directly possible in Haskell, the state monad allows us to emulate state by con-

suming some current state and producing some new state. To combine the state monad

with input/output (IO) operations, we use the monad transformer7 StateT. The StateT

functionality permits the execution of operations on a user-defined state in a sequential

manner, while at the same time having the ability to lift out of this monad and perform

actions in another monad.

The state of our constraint system consists of a set of variables, a set of constraints,

and a strength assignment to each variable. The methods are contained within each

constraint themselves. Listing 5.10 shows how we define the data type of our state using

Haskell record syntax.

Listing 5.10: State data type.
1 data ConstraintSystem
2 = ConstraintSystem
3 { variables :: Map String (Maybe Value)
4 , constraints :: [Constraint]
5 , strength :: [String]
6 }

6https://wiki.Haskell.org/index.php?title=State Monad&oldid=62675
7https://en.wikibooks.org/w/index.php?title=Haskell/Monad transformers&oldid=4055108

36

https://wiki.Haskell.org/index.php?title=State_Monad&oldid=62675
https://en.wikibooks.org/w/index.php?title=Haskell/Monad_transformers&oldid=4055108

Using the ConstraintSystem datastrucutre, we construct a state monad transformer

of the type StateT ConstraintSystem IO (). This enables us to modify the state of

a constraint system while letting the user interact with our program. As can be seen in

Listing 5.10, variables are stored in a Map8 with variable identifiers as keys and nullable

doubles as values.

5.1.7 User Input

The user input is handled by a recursive looping function called userInputLoop (see

Listing 5.11), which is of type StateT ConstraintSystem IO (). This function prompts

the user for a command, using a custom prompt function (see Listing 5.12), and then

processes this command in a function called processInput. This is the CLI function

that handles most of the state management.

Listing 5.11: User input loop.
1 userInputLoop :: StateT ConstraintSystem IO ()
2 userInputLoop = do
3 input <- liftIO prompt
4 processInput input
5 unless (input == "exit") userInputLoop

Listing 5.12: Prompt function.
1 prompt :: IO String
2 prompt = do
3 putStr "\ESC [32m$ "
4 hFlush stdout
5 input <- getLine
6 putStr "\ESC[0m"
7 return input

The above-mentioned prompt function displays a green dollar sign to the user, flushes

the standard output, and subsequently reads a line from standard input. ANSI escape

codes are employed to achieve the green dollar sign [31]. Utilizing the hFlush function

ensures that the standard output buffer is flushed, thereby guaranteeing the prompt’s

display prior to reading user input. Meanwhile, the getLine function is responsible

for reading a line from standard input, while the ANSI escape code \ESC[0m resets the

terminal’s color to its default setting. As a result, the prompt function returns the user’s

input in the form of a string. This function is employed not only within the user input loop

function (Listing 5.11), but also throughout the CLI, as specific commands necessitate

additional prompts.

8https://hackage.Haskell.org/package/containers-0.4.0.0/docs/Data-Map.html

37

https://hackage.Haskell.org/package/containers-0.4.0.0/docs/Data-Map.html

5.1.8 Processing User Input

As mentioned in Section 5.1.7, the looping user input function (Listing 5.11) calls a

function processInput with the user’s command. This function splits the input string

into words and pattern matches the input using Haskells case of syntax [20]. In the

example below (Listing 5.13), we can see how the function is defined, and how we can

add varialbes to the constraint system state. The function pattern matches the keywords

”new var” along with two arguments, namely var and val and inserts the variable var

with the value val into the variables map mentioned above in Section 5.1.6. We use

the function modify to update the constraint system. modify takes a function of the type

s -> s that receives the current state as an argument and outputs the new state. In the

example below (Listing 5.13), we insert a variable with the key var that points to the

value val. Furthermore, we also prepend the variable identifier to the list of strengths.

Finally a message is displayed to the user indicating the variable insertion.

Listing 5.13: Processing user input.
1 processInput :: String -> StateT ConstraintSystem IO ()
2 processInput input = do
3 case words input of
4 ["new", "var", var , val] -> do
5 case parseValue val of
6 Nothing -> liftIO $ putStrLn "Couldnt parse the value"
7 Just v -> do
8 modify $ \s -> s { variables = Map.insert var (Just v)

↪→ (variables s) }
9 modify $ \s -> s { strength = var : strength s }
10 liftIO $ putStrLn $ "Added variable: " ++ var ++ " = " ++ val
11 ...

Updating a variable in the constraint system is much like adding one, in fact we can

use the insert function exaclty like in the example of adding one as it replaces the

exisitng entry. Instead of prepending the variable to the list of strength, we rather move

the corresponding variable identifier to the front of the list.

In the process of adding and updating variables, the implementation is generally

straightforward. However, when it comes to introducing constraints, certain challenges

arise. First, it is necessary to determine the number of methods involved in the constraint.

Additionally, each method may have varying inputs. It is also important to note that a

single method can write to multiple output variables, with different expressions associated

with each output.

To add a constriant to the constraint system the user inputs the command ”new

ctrn” followed by a positive integer n, the number of methods involved in the constraint

38

(as explained in Section 3.1). We then proceed by adding an empty constraint to the

constraint system by prepending the value Constraint [] to constraints. Continuing,

we traverse9 a function inputMethod n times to add each method. inputMethod is

a function of the type StateT ConstraintSystem IO () that prompts the user name

of the method, along with its input and output variables. Furthermore we parse an

expression for each output varible by traversing a function inputExpr, which we will

discuss in Section 5.1.9. For each method we construct a method graph using a function

methodToGraph and add the method graph to the empty constraint that we initally added

to the constraint system. See Listing 5.14 and Listing 5.15 for the implementation for

inputMethod and methodToGraph, respectively.

Listing 5.14: Input method.
1 inputMethod :: StateT ConstraintSystem IO ()
2 inputMethod = do
3 liftIO $ putStrLn "Enter name of method:"
4 name <- liftIO prompt
5 liftIO $ putStrLn "Enter space separated input names to method:"
6 inputsStr <- liftIO prompt
7 liftIO $ putStrLn "Enter output variables to method:"
8 outputsStr <- liftIO prompt
9 let inputs = words inputsStr
10 outputs = words outputsStr
11 exprs <- liftIO $ traverse inputExpr outputs
12 let method = (name , exprs)
13 methodGraph = methodToGraph inputs method
14 modify $ \s -> s { constraints = Constraint (methodGraph :

↪→ unConstraint (head $ constraints s)) : drop 1 (constraints
↪→ s) }

In the function in Listing 5.14, the user is prompted to provide the essential inputs

to a method. Subsequently, the obtained input is utilized to construct a Method by

parsing expressions, followed by the creation of a MethodGraph, which is then integrated

into the constraint system. This incorporation is carried out using the previously ex-

plained modify function. The supplied function operates by obtaining the current state

of the constraints, discarding the first element (which corresponds to the constraint being

modified or to which a method is being added), accessing the inner value through the

unConstraint function, and subsequently appending the newly created method graph to

this value (list of method graphs). Finally, the constraint is put back into the Constraint

type and reintroduced to the list of constraints.

To construct a method graph based on the user’s input in the previous step, we

use the function methodToGraph. This function takes two arguments, namely a list of

input variables and a Method. The method is a tuple consisting of a name and a list of

expressions, as explained in Subsection 5.1.1. The function first creates a list of vertices

9https://en.wikibooks.org/w/index.php?title=Haskell/Traversable&oldid=3850129

39

https://en.wikibooks.org/w/index.php?title=Haskell/Traversable&oldid=3850129

Listing 5.15: Function for converting a method to a graph.
1 methodToGraph :: [String] -> Method -> MethodGraph
2 methodToGraph inputs method =
3 let inputVertices = map VertexVar inputs
4 methodVertex = VertexMet method
5 inputEdges = map (, methodVertex) inputVertices
6 outputEdges = map ((methodVertex ,) . VertexVar . fst) (snd

↪→ method)
7 in overlay (edges inputEdges) (edges outputEdges)

corresponding to the input variables using the VertexVar constructor, followed by a

vertex corresponding to the method, using the VertexMet constructor. Subsequently,

edges are created between the input vertices and the method vertex, and between the

method vertex and the output variables. Finally, the edges are combined into a single

graph using the overlay function from alga.

In order to satisfy the constraint sytem, we use the function satisfy (see Listing 5.16),

which will retrieve the current strengths and the constraints from the state, compute

a plan, and invoke the methods of the computed solution graph. computePlan is a

function which maps strengths to stay constraints, and returns the method vertices of

the methods to enforce. The function enforceMethods will then take a list of tuples

containing variable identifiers and expressions, evaluate these and modify the state with

the evaluated expressions.

Listing 5.16: Enforcing constraints.
1 satisfy :: StateT ConstraintSystem IO ()
2 satisfy = do
3 st <- gets strength
4 cs <- gets constraints
5 maybe (putLnIO "No plan found") (enforceMethods .

↪→ concatExprsInMethodList) (computePlan st cs)
6
7 enforceMethods :: [(String , Expr)] -> StateT ConstraintSystem IO ()
8 enforceMethods = traverse_ (\(name , e) -> do
9 vars <- gets variables
10 let newVal = eval e vars
11 modify $ \s -> s { variables = Map.insert name newVal (variables

↪→ s) }
12)

5.1.9 Parsing Expressions

As discussed in Section 3.1, each method contains an expression for each output variable.

These expressions are represented as abstract syntax using the AST data types explained

in Subsection 5.1.3. However, the user does not input these expressions as abstract

40

syntax, hence we need to parse them. As such we have built a parser using a parsing

technique called parser combinators, which is a technique that involves combining simple

parsers using higher order functions to form more complex parsers [13].

We have utilized two parsing libraries called megaparsec [17] and parser-combinators

[18] to build several parsers and combine these to fit to our abstract syntax tree. Consider

Listing 5.7, We can see that we need to be able to parse literal values (booleans, and

doubles), as well as expressions which include binary operators, unary operators, variable

identifiers, as well as literals which reference values. With the technique of combining

parsers, we can build smaller parsers to parse each of these elements on their own. A

parser in this context is essentially a constant function that can be supplied as an argu-

ment to the function parse from megaparsec. parse will then run the given parser on

the given string.

As an example we can consider the parser for parsing values. This parser first tries

to parse the input string as a DoubleVal (which in turn will try to parse the value as a

double or an integer). If that does not work, it will try to parse the input string as a

BoolVal. We use Haskell’s alternative operator <|>, which first attempts to parse the

input using the expression on the left. If this is successful, it returns its result. If the

left expression fails, it then tries the expression on the right. If both expressions fail, it

results in a failed parse, typically yielding a Nothing (in the case of the Maybe monad) or

a Left value (in the case of the Either monad), which would encapsulate an error message

or detail.

Listing 5.17: Parser for values.
1 parseValue :: Parser Value
2 parseValue = try (DoubleVal <$> (parseInt <|> parseDouble)) <|>

↪→ (BoolVal <$> parseBool)
3 where
4 parseDouble = signed ws $ lexeme ws float
5 parseInt = signed ws $ lexeme ws (fromIntegral @Integer @Double

↪→ <$> decimal)
6 parseBool = lexeme ws ((True <$ string "true") <|> (False <$

↪→ string "false"))

The function try10 (line 2, Listing 5.17) is a function from megaparsec which will

try to parse with the given parser. If it fails, it will backtrack and try the next parser

without consuming the input. If we were to only use <|> in this example, the parser would

consume the input, thus there would be nothing left to parse for the other alternative.

10https://hackage.haskell.org/package/megaparsec-9.3.1/docs/Text-Megaparsec.html#v:try

41

https://hackage.haskell.org/package/megaparsec-9.3.1/docs/Text-Megaparsec.html#v:try

Listing 5.18: Parser for factors
1 parseFactor :: Parser Expr
2 parseFactor = parseParen <|> parseLit <|> try parseKeyword <|> parseVar
3 where
4 parseParen = between (symbol "(") (symbol ")") parseExpr
5 parseLit = Lit <$> parseValue

To parse factors in our AST we can introduce a couple of more parsers and combine

these with the parser for values shown in Listing 5.17. The parser shown in Listing

5.18 combines parsers for parentheses, literal values, keywords, and variable identifiers.

The parser for literal values is just a wrapper around our parser from Listing 5.17, and

the parser for parentheses just consumes the symbols for parentheses and parses the

middle content. parseKeyword parses keywords for unary operators and booleans, while

parseExpr is the top-most parser, that combines all the other parsers.

Because different operators and keywords (or functions), can have different order of

precendece, we need to be able to parse expressions in a way that respects this. For

example, we want to parse the expression 1 + 2 * 3 as 1 + (2 * 3), and not (1 + 2)

* 3. The megaparsec library allows us to specify parsers that decides this precedence

using a table as input. As such we have defined the parser for expressions as shown in

Listing 5.19.

Listing 5.19: Parser for expressions
1 parseExpr :: Parser Expr
2 parseExpr = makeExprParser parseFactor operatorTable
3 where
4 operatorTable =
5 [[InfixL (BinOp <$> symbol "*")
6 , InfixL (BinOp <$> symbol "/")
7]
8 , [InfixL (BinOp <$> symbol "+")
9 , InfixL (BinOp <$> symbol "-")
10]
11 , [InfixL (BinOp <$> symbol "==")
12 , InfixL (BinOp <$> symbol "!=")
13]
14]

In Listing 5.19, we can see how the function makeExprParser, allows us to specify a

list of lists of operators, where each list represents a level of precedence. The first list

in the list of lists will have the highest precedence, and the last list will have the lowest

precedence. In each list, we can specify the associativity of the operators, as well as the

parser for the operator. In this case we have specified that the operators * and / have the

highest precedence, followed by + and -, and lastly == and !=. We have also specified that

all operators are left associative (by using InfixL), meaning that 1 + 2 + 3 is parsed

as (1 + 2) + 3.

42

5.1.10 Evaluating Expressions

In Section 5.1.5, we desbribed how we can retrieve the identifiers of the methods we need

to invoke to run a given plan, in order to satisfy all constraints. As mentioned in Section

5.1.1, these methods contain the identifiers of variables to write the new values to, along

with the respective abstract syntax of our AST to evaluate. We have written a simple

evaluator which takes an expression and a variable store as an input and outputs a value

of the Maybe Value type.

Listing 5.20: Evaluation of expressions.
1 eval :: Expr -> Data.Map.Map String (Maybe Value) -> Maybe Value
2 eval (BinOp op e1 e2) env = do
3 v1 <- eval e1 env
4 v2 <- eval e2 env
5 case op of
6 "+" -> liftBinOp (+) v1 v2
7 "-" -> liftBinOp (-) v1 v2
8 "*" -> liftBinOp (*) v1 v2
9 "/" -> liftBinOp (/) v1 v2
10 "==" -> liftBoolBinOp (==) v1 v2
11 "!=" -> liftBoolBinOp (/=) v1 v2
12 _ -> Nothing
13 eval (UnOp op e) env = do
14 v <- eval e env
15 case op of
16 "!" -> liftBoolUnOp not v
17 "sqrt" -> liftDoubleUnOp sqrt v
18 "log" -> liftDoubleUnOp log v
19 _ -> Nothing
20 eval (Var name) env = do join $ Data.Map.lookup name env
21 eval (Lit v) _ = Just v

The evaluator is shown in Figure 5.20. We pattern match on the different construc-

tors of the Expr type, and recursively evaluate the expressions. For binary operators, we

use the liftBinOp function to lift the binary operator into the Value type, and apply

it to the two inner values before returning a new Maybe Value. If both values passed

to the function are of the type DoubleVal, we return the result of the binary opera-

tion wrapped in Just, otherwise we return Nothing. The liftBoolBinOp function is

similar, but for boolean binary operators. Furthermore, the functions liftDoubleUnOp

and liftBoolUnOp are also similar, but for unary operators. For variables, we use the

Data.Map.lookup function to retrieve the value from the variable store. If the variable

is present in the environment, the function returns the value wrapped in Just, otherwise

it returns Nothing. For literals, we simply return the value wrapped in Just.

43

5.2 WDFun

As discussed in Section 2.2.1, a specification of a WarmDrink structure can be represented

as a tuple, ⟨S, F,R, T ⟩ consisting of its GUI structure specification, a set of subroutines,

a set of relations on the elements in the structure as well as a set of transformation

rules [28]. As highlighted in Chapter 4, our methodology for manipulating structure

varies significantly from WarmDrink’s specification. In our implementation we can view

a WarmDrink specification as an ordered list of components, and a set of constraints

which define the relations between components. These constraints, called intercalating

constraints, are not directly related, or tied to any components. But are, when needed,

traversed accross the ordered list of components, enforcing their methods to ensure all

constraints are met.

5.2.1 Data Structure

To extend the functionality of the implementation to support structural manipulation

of lists, we first introduce a new data type. We call this data type ComponentList. It

contains the ordered list of components, along with any intercalating constraints defined

by the user.

Listing 5.21: ComponentList data type.
1 data ComponentList
2 = ComponentList
3 { components :: [Component]
4 , intercalatingConstraints :: [Constraint]
5 }

The type Component is a version of the type ConstraintSystem introduced in Section

5.1.6, extended with an identifier. Hence, all the components in our component list are

also their own isolated constraint systems.

Listing 5.22: Component data type.
1 data Component
2 = Component
3 { identifier :: Int
4 , variables :: Map String (Maybe Value)
5 , constraints :: [Constraint]
6 , strength :: [String]
7 }

44

As seen in Listing 5.21, an intercalating constraint is a list of elements of the type

Constraint. This is the same type as the constraints defined for components, how-

ever they are more ”constrained” in terms of data flow direction. This is becuase in a

WarmDrink strucutre, data propagation is acyclic between components.

Listing 5.23: Agenda data structure.
1 c1 :: Constraint
2 c1 = Constraint [graphOfM1]
3
4 i1 :: Constraint
5 i1 = Constraint [graphOfI1]
6
7 talk1 :: Component
8 talk1 = Component
9 { identifier = 1
10 , variables = Map.fromList [("start", Just (DoubleVal 1.0)),

↪→ ("duration", Just (DoubleVal 10.0) , ("end", Nothing))]
11 , constraints = [c1]
12 , strength = ["start", "duration", "end"]
13 }
14
15 -- talk2 and talk3 are defined similarly to talk1 , with different

↪→ identifiers
16
17 agenda :: ComponentList
18 agenda = ComponentList
19 { components = [talk1 , talk2 , talk3]
20 , intercalatingConstraints = [i1]
21 }

Using the data types defined in Listing 5.21 and 5.22, we can define the agenda of

talks from Section 5.2.1. Listing 5.23 shows how the values of the component list of

agendas would be represented in code.

5.2.2 Expanding the State and CLI

To expand the functionality of the CLI, we need to expand the state of the program in

order to work on a component list, rather than a single constraint system or component.

As such we introduce a new state type, which contains the component list, as well as a

list of all the methods defined by the user. We use the monad transformer StateT again,

in combination with ComponentList and IO, to enable a user to manipulate components.

Our IO functions (processInput, inputExpr, etc.) discussed in Section 5.1, now operate

on this state instead and allows the user to define an ordered list of components along

with intercalating constraints, as introduced in Section 4.2.

Furthermore, we’ve incorporated a specialmode that the user has the option to engage.

When this mode is activated, the system won’t automatically satisfy the constraints. This

45

allows for debugging, as well as observing the properties of the component list and the

constraint system itself. This mode is a simple data type consisting two data constructors.

data Mode = Normal | Manual

The CLI contains commands for switching between these modes, namely normal and

manual, as can be seen in Figure 4.4. The function processInput introduced in Section

5.1.8 is extended to take a Mode as an argument and produce a result of Mode. Consider

Listing 5.24. Here we can observe how processInput now returns a Mode, as well as

the functionality for switching between these. Notice how when switching to normal

mode, we satisfy the constraint system using the function satisfyInter to ensure that

all constraints are satisfied. This function is discussed in Section 5.2.3.

Listing 5.24: CLI mode.
1 processInput :: Mode -> String -> StateT ComponentList IO Mode
2 processInput mode input = do
3 case words input of
4 ["manual"] -> putLnIO "Entering manual mode" >> return Manual
5 ["normal"] -> do
6 comps <- gets components
7 maybe
8 (putLnIO "Entering normal mode" >> return Normal)
9 (\c -> satisfyInter ((show . identifier) c) >> putLnIO

↪→ "Entering normal mode" >> return Normal)
10 (safeHead comps)

In order to avoid enforcing the constraint system when the user is in manual mode

we use the function unless, where required. unless accepts two parameters: a boolean

expression and a monadic action. It executes the monadic action under the condition

that the provided boolean expression evaluates to False. In other words, the action is

carried out unless the condition is True.

monadicFunction :: Mode -> StateT ComponentList IO Mode

monadicFunction mode = do

-- perform any actions here

unless (mode == Manual) $ satisfyInter ident

return mode

46

5.2.3 Enforcing Intercalating Constraints

In Section 5.2.1, we examined the concept of intercalating constraints, which are not

inherently tied to any individual component. The challenge is, therefore, to properly

traverse our list of components and correctly apply these intercalating constraints to

each one. This is achieved through the function satisfyInter, as delineated in Listing

5.25.

The satisfyInter function, specifically designed to manage this task, cleverly com-

bines two additional functions — satisfy and enforceIntercalatingConstraint. It

accepts a single input, the identifier of a component, and then systematically pro-

gresses through each component starting from the given identifier, executing satisfy >>

enforceIntercalatingConstraint in sequence. The function satisfy, which has been

modified from its original definition in Listing 5.16, now takes a component as its input.

Despite the modification, it performs the same function for the specified component. Its

companion function, enforceIntercalatingConstraint, mirrors the operational flow of

satisfy. The primary distinction lies in its role — it applies intercalating constraints

rather than local ones. For this function, inbound variable values are pulled directly from

the given constraint. These values are then used as the variable store for the evaluation

of the methods in the intercalating constraint, which are written to the next component

in the list.

Listing 5.25: Satisfying intercalating constraints.
1 satisfyInter :: String -> StateT ComponentList IO ()
2 satisfyInter ident = do
3 case readMaybe @Int ident of
4 (Just n) -> do
5 comps <- gets components
6 traverse_ (\c -> satisfy c >>

↪→ enforceIntercalatingConstraint (identifier c)) $
↪→ dropWhile (\c -> identifier c /= n) comps

7 _ -> putLnIO "Couldnt parse id"

When the user manipulates the component list in such an order that the intercalating

constraints are no longer satisfied, that is, runs a command that invalidates either local or

intercalating constraints, the function satisfyInter is called at the correct component

in order to enforce the constraints. Thus, if the user updates a local variable of a compo-

nent, we run satisfyInter from this given component, which will first enforce its local

constraints, and then the intercalating constraints before traversing downstream until

the end of the list. Another example is if the user swaps two components. The function

satisfyInter must then be run from the preceding component of the first component

the user wants to swap.

47

satisfyInter lies at the core of the functionality of our implementation. Given an

identifier of a constraint, it will satisfy all constraints downstream from the the given

constraint until the end of the list.

48

Chapter 6

Evaluation

As a part of the course Programming Languages, or INF222, taught during the spring

semester of 2023 at the University of Bergen1, the students were given a mandatory

assignment with the objective of defining a multiway dataflow constraint system using

procedures in a custom language called PIPL. The main objective of the task was to define

these procedures correctly in accordance with the example constraint system given with

the assignment. The constraint system used in the task consisted of relations between

properties of triangles, rectangles, parallelograms and circles.

The first task in the assignment consisted of defining a constraint system for a tri-

angle’s properties such as ensuring that the Pythagorean theorem is satisfied, as well as

trigonometrical properties and relations between the length of the sides in accordance

with perimeter and height. The subsequent task expanded with the students having to

define a constraint system for a parallelogram, with its corresponding properties. Finally,

the last task involved specifying a constraint system consisting of the properties of a

parallelogram, two rectangles, two triangles and two circles. The students were to define

constraints locally within each geometric figure, as well as constraints involving relations

between the figures. Among these were a relation which specified that one of the rectan-

gles should have the same area as the parallelogram, and that the two triangles and the

other rectangle should be a decomposition of the parallelogram. That is, the sum of the

areas of the three figures should equal the area of the parallelogram etc.

The assignment was given to the students in order to give them a better understanding

of how multiway dataflow constraint systems work, and how constraints can be imple-

mented. During the course, which 153 students were signed up for, our implementation of

1http://www.uib.no/en/course/INF222

49

http://www.uib.no/en/course/INF222

HDFun was used in order to facilitate planning of constraint systems defined by the user.

The students were given an introduction into multiway dataflow constraint systems, and

they designed their own constraint system, but did not undertake any tasks regarding the

algorithms of planning or other business logic of MDCS. Our implementation was used

as a black box for the constraint systems the students defined in PIPL.

Using our implementation in this mandatory assignment gave us the opportunity to

evaluate our implementation in a real world scenario, as well as contribute to the course’s

future development.

50

Chapter 7

Related Work

In this chapter we will discuss different approaches to constraint systems and functional

frontend web frameworks.

7.1 Constraint Systems

7.1.1 ConstraintJS

ConstraintJS [25] is a JavaScript library that allows the developer to define one-way

dataflow constraint systems [3]. Unlike a multiway dataflow constraint, where two values

can change each other depending on which one is updated, a one-way dataflow constraint

only has the ability to update variables in a single direction. An example of this can be

the sides of a rectangle. We can have a slider which determines the length of one side,

and the other side will always be, e.g., two times the length. This can be represented by

a simple equation sideA = 2*sideB. Here the right side is reevaluated whenever the left

side’s value gets updated, but not the other way around.

ConstraintJS aims to provide an API that allows the user to specify bindings between

elements in the DOM with variables in the constraint system using handlebars-like syntax.

51

7.1.2 Babelsberg

Babelsberg [6] is an object constraint langauge that allows the developer to specify con-

straints between variables. The langauge itself uses Ruby [7] as its base language and

introduces some semantic extensions to support constraints. Consider Figure 7.1 for how

we can define a currency conversion between NOK and USD.

1 class CurrencyConversion
2 attr_accessor :usd , :nok
3 def initialize
4 @usd = 10.0
5 @nok = 107.59
6 always { @usd == @nok * 10.759 }
7 end
8 end

Figure 7.1: Currency conversion in Babelsberg.

To instantiate an instance of the class CurrencyConversion we can do what is shown

in Figure 7.2. When we set the value of one of the variables of the object to a certain

value, the solver will be triggered and the constraint will be satisfed. Notice that the

keyword always will make sure that the constraint should hold indefinitely [6].

1 cc = CurrencyConversion.new
2 cc.usd = 20.0
3 # this will trigger the solver and set cc.nok to 215.18

Figure 7.2: Instantiating and using the CurrencyConversion class.

7.1.3 SolidJS

SolidJS is a frontend web framework intended for building graphical user interfaces [1].

It uses a primitive known as signals for tracking and updating values. To run a side

effect when the value of a signal changes, we can use a primitive known as effects. By

leveraging these two primitives, we can define the currency constraint system we defined

for Babelsberg in Section 7.1.2 as shown in Listing 7.1.

We can compare the signals in Listing 7.1 to variables in HotDrink, and the bodies of

the createEffect functions to the methods in HotDrink.

52

Listing 7.1: Currency conversion in SolidJS.
1 function CurrencyConversion () {
2 const exchangeRate = 10.759;
3 const [usd , setUsd] = createSignal (1);
4 const [nok , setNok] = createSignal (10.759);
5
6 createEffect (() => {
7 setUsd(nok() * exchangeRate)
8 });
9
10 createEffect (() => {
11 setNok(usd() / exchangeRate)
12 });
13
14
15 return (
16 /* display the values here */
17);
18 }

7.2 Functional Web Frameworks

7.2.1 Elm

Elm is a strongly typed purely functional programming language used for frontend web

development [5]. It compiles to Javascript that runs on the client side of a website, similar

to other web frameworks/libraries like e.g. React1.

Elm’s architecture consists of three parts: the model, the view and update. The model

is the datastructure that represents the state of an application. It can be structured in

any way the user wants to fit to their needs. The view is Elm’s way to convert the state

into HTML. The view can be considered one or several functions that takes the Model

as input and outputs HTML. Update is Elm’s way of handling user interactions. A user

may click a button which then triggers the update function that takes the state and an

action (the button click) as input and outputs some new state (Model). Because of Elm’s

purely functional nature, the state of the application can only be updated through the

Update-function and Elm applications rely completely on this ”loop” of user interaction.

Elm has many similarities with Haskell, like its syntax and type system. However

Elm’s type system is simpler than Haskell’s. While both lanugages’ type systems are

strong, static and inferred, Elm does not support type classes like Haskell.

1https://react.dev/

53

https://react.dev/

7.2.2 PureScript

Another purely functional frontend web framework is PureScript [26]. Like Elm, Pure-

Script is also syntactically similar to Haskell, but it offers more flexibility and functionality

than Elm. One of the advantages to PureScript is that it offers interoperability between

languages. As a developer you can for instance, set up PureScript to handle all logic and

state, and then use JavaScript to write the user interface. Another example is writing

everything in some other web framework, but have tests written in PureScript.

In addition to language interoperability, PureScript offers a more complex type system

than Elm. While Elm keeps things simple and more constrained, PureScript allows for

the usage of type classes, like Haskell does, for instance.

7.2.3 Clojure, ClojureScript and Reagent

Clojure is a general purpose language that is mostly functional [12]. Clojure by default

uses immutable data structures, but one can also take advatage of mutable state if needed.

Hence, Clojure is not purely functional, like Elm or PureScript, but still offers exclusive

immutability if one desires. While Elm and PureScript are strongly influenced by Haskell,

and as such are similar syntactially, Clojure is completely different (it is actually a dialect

of Lisp [12]).

As mentioned, Clojure is a general purpose language, and therefore not solely used

for frontend web development. ClojureScript, however, is a compiler for Clojure which

compiles (or transpiles) Clojure code into JavaScript, which can be run in web browsers.

To provide an easier way of creating a website using Clojure, Reagent2 offers an interface

between ClojureScript and React. This allows the developer to take advantage of React’s

design pattern, and build their website block by block using small reusable components.

2https://reagent-project.github.io/

54

https://reagent-project.github.io/

Chapter 8

Conclusion and Future Work

Multiway dataflow constraint systems is a powerful programming model for defining

relations between variables, especially in the context of user interfaces. Libraries like

HotDrink and DSLs like WarmDrink allow for defining constraint systems and specifica-

tions manipulating GUI-structures. HotDrink exists as a library in the JavaScript NPM

ecosystem, and while WarmDrink is not directly a library, it generates JavaScript code to

use alongside HotDrink. This is especially useful in the context of web development, as

JavaScript is the main language supported by most web browsers. However, JavaScript

is an imperative langauge, which can often be cumbersome to work with.

In this thesis we have presented a functional implementation of a library for multiway

dataflow constraint systems and structure manipulation on lists with relations between

elements. This is done entierly in Haskell, a purely declarative functional programming

language. We demonstrate that implementing both the HotDrink library and the War-

mDrink specification in a purely functional language is valuable. A key reason for this is

because we can ensure that the constraints, along with its methods and variables always

remain pure and without side effects. Another argument for developing a functional im-

plementation is that we express all the logic, data structures and alogrithms declaratively.

This enables the development of constraint systems to focus on features and semantics,

as it keeps the focus on the essence of the ideas by expressing the implementation declar-

atively, instead of the clutter that can be found in an imperative implementation.

In the course Programming Languages (INF222) at the University of Bergen, our

Haskell-based implementation of multiway dataflow constraint systems was used as a

practical teaching tool. Students used our implementation to define procedures and

55

constraints in the context of geometric figures using PIPL. The exercise helped to deepen

their understanding of multiway dataflow constraint systems and provided us with a

valuable opportunity to observe our system in use, highlighting both its utility and areas

that could benefit from further refinement. This application in a real-world educational

setting underlines the potential of a functional approach to developing multiway dataflow

constraint systems.

We have identified a range of opportunities for future work. First of all, our imple-

mentation covers manpipulating lists. However, expanding the implementation to support

other types of structures like trees and grids would be beneficial as these are common

structures that are prevalent in GUIs.

In addition to this we have have exploited the monoidal properties of constraints in

order to make the implementation concise and easier to work with. This mainly applies to

the HDFun part of our implementation. However, discovering a purely algebraic formula-

tion and generic specification for structures of WDFun would certainly be advantageous.

Furthermore, we could use the implementation of our library in order to generate

graphical user interfaces for the end-user. A user-study could then be conducted on these

as well as being tested using some end-to-end testing framework like Cypress1. As for

extending the implementation itself, we would like to include other types of constraint

system libraries as well, and integrate these with HDFun and WDFun. Another technical

extension that would greatly improve the usability of our implmentation, is extending

the AST covered in Section 5.1.3.

1https://www.cypress.io/

56

https://www.cypress.io/

Bibliography

[1] The New Solid Docs. Online, 2023.

URL: https://docs.solidjs.com/. [Online; accessed 13.06.2023].

[2] Daniel Berge. Visual specification of multi-way data-flow constraint systems. Mas-

ter’s thesis, The University of Bergen, 2022.

URL: https://hdl.handle.net/11250/3001154.

[3] Borning, Alan and Duisberg, Robert. Constraint-Based Tools for Building User

Interfaces. ACM Trans. Graph., 5(4):345–374, oct 1986. ISSN 0730-0301. doi:

10.1145/27623.29354.

URL: https://doi.org/10.1145/27623.29354.

[4] Haskell.org Committee. Haskell documentation, 2023.

URL: https://www.haskell.org/documentation/. [Online; accessed 13.02.2023].

[5] Evan Czaplicki. Elm language, 2021.

URL: https://elm-lang.org/. [Online; accessed 13.06.2023].

[6] Tim Felgentreff, Alan Borning, and Robert Hirschfeld. Babelsberg: Specifying and

solving constraints on object behavior, volume 81. Universitätsverlag Potsdam, 2014.

[7] David Flanagan and Yukihiro Matsumoto. The Ruby Programming Language: Ev-

erything You Need to Know. ” O’Reilly Media, Inc.”, 2008.

[8] Gabriel Foust, Jaakko Järvi, and Sean Parent. Generating Reactive Programs for

Graphical User Interfaces from Multi-Way Dataflow Constraint Systems. SIGPLAN

Not., 51(3):121–130, oct 2015. ISSN 0362-1340. doi: 10.1145/2936314.2814207.

URL: https://doi.org/10.1145/2936314.2814207.

[9] John Freeman, Jaakko Järvi, and Gabriel Foust. HotDrink: A library for web user

interfaces. SIGPLAN Not., 48(3):80–83, sep 2012. ISSN 0362-1340. doi: 10.1145/

2480361.2371413.

URL: https://doi.org/10.1145/2480361.2371413.

57

https://docs.solidjs.com/
https://hdl.handle.net/11250/3001154
https://doi.org/10.1145/27623.29354
https://www.haskell.org/documentation/
https://elm-lang.org/
https://doi.org/10.1145/2936314.2814207
https://doi.org/10.1145/2480361.2371413

[10] Pierre A. Grillet. Abstract Algebra. Springer, 2 edition, 2007. Chapter 1, Section 1:

Semigroups.

[11] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler.

Type Classes in Haskell. ACM Trans. Program. Lang. Syst., 18(2):109–138, mar

1996. ISSN 0164-0925. doi: 10.1145/227699.227700.

URL: https://doi.org/10.1145/227699.227700.

[12] Rich Hickey. Clojure, 2023.

URL: https://clojure.org/. [Online; accessed 13.06.2023].

[13] Graham Hutton and Erik Meijer. Monadic Parsing in Haskell. J. Funct. Program.,

8(4):437–444, 1998. doi: 10.1017/s0956796898003050.

URL: https://doi.org/10.1017/s0956796898003050.

[14] Jaakko Järvi, Magne Haveraaen, John Freeman, and Mat Marcus. Expressing multi-

way data-flow constraint systems as a commutative monoid makes many of their

properties obvious. In Proceedings of the 8th ACM SIGPLAN Workshop on Generic

Programming, WGP ’12, page 25–32, New York, NY, USA, 2012. Association for

Computing Machinery. ISBN 9781450315760. doi: 10.1145/2364394.2364399.

URL: https://doi.org/10.1145/2364394.2364399.

[15] Jaakko Järvi, Gabriel Foust, and Magne Haveraaen. Specializing planners for hi-

erarchical multi-way dataflow constraint systems. SIGPLAN Not., 50(3):1–10, sep

2014. ISSN 0362-1340. doi: 10.1145/2775053.2658762.

URL: https://doi.org/10.1145/2775053.2658762.

[16] Jaakko Järvi, Gabriel Foust, and Magne Haveraaen. Specializing Planners for Hier-

archical Multi-Way Dataflow Constraint Systems. SIGPLAN Not., 50(3):1–10, sep

2014. ISSN 0362-1340. doi: 10.1145/2775053.2658762.

URL: https://doi.org/10.1145/2775053.2658762.

[17] Mark Karpov. Megaparsec: Monadic parser combinators. Hackage, 5 2023.

URL: https://hackage.haskell.org/package/megaparsec. [Online; accessed 06.06.2023].

[18] Mark Karpov and Alex Washburn. Parser-combinators: Lightweight package

providing commonly useful parser combinators. Hackage, 2 2021.

URL: https://hackage.haskell.org/package/parser-combinators. Available at

https://hackage.haskell.org/package/parser-combinators.

[19] Kai Lin, David Chen, Geoff Dromey, and Chengzheng Sun. Maintaining constraints

expressed as formulas in collaborative systems. In 2007 International Conference on

58

https://doi.org/10.1145/227699.227700
https://clojure.org/
https://doi.org/10.1017/s0956796898003050
https://doi.org/10.1145/2364394.2364399
https://doi.org/10.1145/2775053.2658762
https://doi.org/10.1145/2775053.2658762
https://hackage.haskell.org/package/megaparsec
https://hackage.haskell.org/package/parser-combinators

Collaborative Computing: Networking, Applications and Worksharing (Collaborate-

Com 2007), pages 318–327, 2007. doi: 10.1109/COLCOM.2007.4553850.

[20] Miran Lipovača. Learn You a Haskell for Great Good!, 2011.

URL: http://learnyouahaskell.com/. [Online; accessed 11.05.2023].

[21] Andrey Mokhov. Algebraic graphs, 2022.

URL: https://hackage.haskell.org/package/algebraic-graphs. [Online; accessed

06.05.2023].

[22] Andrey Mokhov. Algebra-graph-adjacencymap-algorithm: Algebraic graphs and

algorithm implementation, topological sort, 2022.

URL: https://hackage.haskell.org/package/algebraic-graphs-0.7/docs/Algebra-Graph-

AdjacencyMap-Algorithm.html#v:topSort. [Online; accessed 10.05.2023].

[23] Brad Myers. Why are Human-Computer Interfaces Difficult to Design and Imple-

ment? 09 1993.

[24] Brad Myers and Mary Beth Rosson. Survey on User Interface Programming. pages

195–202, 01 1992. doi: 10.1145/142750.142789.

[25] Oney, Stephen. ConstraintJS, 2018.

URL: https://soney.github.io/constraintjs/. [Online; accessed 12.06.2023].

[26] PureScript. Purescript, 2023.

URL: https://www.purescript.org/. [Online; accessed 13.06.2023].

[27] Torjus Fitje Schaathun. Integrating multi-way data-flow constraint systems in

spreadsheets. Master’s thesis, The University of Bergen, 2022.

URL: https://hdl.handle.net/11250/3001141.

[28] Knut Anders Stokke, Mikhail Barash, and Jaakko Järvi. A domain-specific lan-

guage for structure manipulation in constraint system-based guis. Journal of Com-

puter Languages, 74:101175, 2023. ISSN 2590-1184. doi: https://doi.org/10.1016/

j.cola.2022.101175.

URL: https://www.sciencedirect.com/science/article/pii/S2590118422000727.

[29] Rudi Blaha Svartveit. Multithreaded Multiway Constraint Systems with Rust and

WebAssembly. Master’s thesis, The University of Bergen, 2021.

URL: https://bora.uib.no/bora-xmlui/handle/11250/2770614.

59

http://learnyouahaskell.com/
https://hackage.haskell.org/package/algebraic-graphs
https://hackage.haskell.org/package/algebraic-graphs-0.7/docs/Algebra-Graph-AdjacencyMap-Algorithm.html#v:topSort
https://hackage.haskell.org/package/algebraic-graphs-0.7/docs/Algebra-Graph-AdjacencyMap-Algorithm.html#v:topSort
https://soney.github.io/constraintjs/
https://www.purescript.org/
https://hdl.handle.net/11250/3001141
https://www.sciencedirect.com/science/article/pii/S2590118422000727
https://bora.uib.no/bora-xmlui/handle/11250/2770614

[30] Brad Vander Zanden. An Incremental Algorithm for Satisfying Hierarchies of Mul-

tiway Dataflow Constraints. ACM Trans. Program. Lang. Syst., 18(1):30–72, jan

1996. ISSN 0164-0925. doi: 10.1145/225540.225543.

URL: https://doi.org/10.1145/225540.225543.

[31] Wikipedia contributors. ANSI escape code — Wikipedia, the free encyclopedia,

2023.

URL: https://en.wikipedia.org/w/index.php?title=ANSI escape code&oldid=1153083102.

[Online; accessed 10.05.2023].

60

https://doi.org/10.1145/225540.225543
https://en.wikipedia.org/w/index.php?title=ANSI_escape_code&oldid=1153083102

	Introduction
	Background
	Multiway Dataflow Constraint Systems
	HotDrink

	Structure Manipulation
	WarmDrink

	Functional Programming

	Constraint Systems in Haskell
	User Interface
	Constructing a Constraint System Interactively

	Planning
	Simple Planner
	Hierarchical Planner

	Constraint System as a Commutative Monoid

	Structure Manipulation in Haskell
	WDFun
	User Interface
	Constructing a List of Components Interactively
	Manipulating the List of Components

	Implementation
	HDFun
	Graph Representation of Constraint Systems
	Commutative Monoid Representation
	Method Expressions
	Planning
	Extracting the Methods
	Command Line Interface and State Management
	User Input
	Processing User Input
	Parsing Expressions
	Evaluating Expressions

	WDFun
	Data Structure
	Expanding the State and CLI
	Enforcing Intercalating Constraints

	Evaluation
	Related Work
	Constraint Systems
	ConstraintJS
	Babelsberg
	SolidJS

	Functional Web Frameworks
	Elm
	PureScript
	Clojure, ClojureScript and Reagent

	Conclusion and Future Work
	Bibliography

