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Abstract

This master thesis focuses on time series forecasting using machine learning to pre-
dict hourly production in run-of-river hydropower plants. As electrical energy cannot
be easily stored, it must be produced and consumed at the same time. To balance
production and consumption, power suppliers in Norway must report to Statnett their
expected energy production for the following day. Run-of-river hydropower plants
rely on the natural water flow in rivers and do not involve any storage. Therefore, the
production must be estimated based on the prevailing weather and hydrological con-
ditions. Accurate predictions are crucial to minimize imbalance fees and ensure grid
stability. The main objective of this study is to enhance the accuracy of predictions
compared to Småkraft AS’s current method. The study aims to answer three research
questions related to the most significant time intervals for weather variables that affect
production, the most important features for making predictions, and the model’s perfor-
mance in various weather situations. Two of Småkraft’s power plants, Bjørgum power
plant and Furegardane power plant, provide the data for testing three machine learning
models: a random forest regressor, a multilayer perception neural network, and a long
short-term memory neural network. Input data for the models include weather forecast
and observational-based variables, along with engineered features such as accumulated
rainfall and snowmelt. The study concludes that the long short-term memory neural
network is the best model and outperforms the current method used by Småkraft at
both locations. The findings suggest that machine learning models can significantly
improve the accuracy of hydropower production forecasting, which can benefit hy-
dropower plant operators as well as the stability of the electricity grid. One limitation
of the model is that it requires years of historical data and consequently will not be suit-
able for newly established power plants. Future work could focus on using data from
power plants with comparable location, production patterns, and climate to predict the
production in the power plant of interest.
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Chapter 1

Introduction
1.1 Background

Nearly 200 countries have committed to The Glasgow Climate Pact, which seeks to
limit global warming to 1.5 degrees Celsius and achieve net-zero greenhouse gas emis-
sions by 2050. The plan involves transitioning to clean energy and increasing invest-
ments in renewable energy [United Nations (2022)]. As power generation increasingly
comes from variable renewable energy sources, the flexibility of power systems will
decrease [Impram et al. (2020)]. Therefore, accurately predicting production will be
crucial to ensure a reliable energy supply and maintain grid stability. Additionally, in
order to accelerate the development of new renewable energy sources it is important that
the technologies are profitable and have minimal negative impact on the local environ-
ment. Småkraft AS is a company that have these aspects in the core of their business
model. Småkraft supports landowners in Norway to realise small-scale hydropower
projects by contributing with capital and competence. At the time of writing, Småkraft
owns and operates 176 small-scale hydropower plants in Norway and 45 small-scale
hydropower plants in Sweden, generating over 2TWh renewable energy in a normal
year [Småkraft (2023)].

1.1.1 A Brief History of Hydropower

For thousands of years, people have harnessed the power of water to produce work,
from grinding flour to generating electricity. Evidence of hydropower dates back to
the first millennium BC, and the coupling of water wheels and generators for electric
power began in the late 19th century. The first mills and water wheels were simple, but
the introduction of iron during the industrial revolution led to the development of more
advanced turbines. James Francis developed the first modern water turbine in 1849,
which is still widely used today [Breeze (2018)].

The Francis turbine, also known as a mixed flow turbine, is designed to extract the
maximum energy from water by carefully shaping its blades based on the water head
and flow volume. It is optimally used for medium water heads and large flow volumes
and can capture up to 95% of the energy in the water [Breeze (2019)]. In the 1870s,
American inventor Lester Allen Pelton developed the Pelton wheel, which is an impulse
turbine used for medium to high water heads and lower flow rates [Breeze (2019)].
Another important development is the Kaplan turbine which was developed by Viktor
Kaplan at the beginning of the 20th century with the aim to improve the efficiency of the
Francis turbine at low heads and variable flow rates. It is still a reaction turbine driven
by the pressure and velocity of the water, but its impeller shape and blade number differ
from the Francis turbine [Polák (2021)].
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Hydroelectric power plants have been in operation since the late 19th century, with
rapid innovation and optimisation of efficiency occurring throughout the 20th century.
Strong post-war economic and population growth led to significant hydropower devel-
opment in Western Europe, the Soviet Union, North America, and Japan [iha (2022)].
Today, hydropower remains the largest renewable source of electricity, generating more
than any other renewable technology. To reach the goal of net zero emissions by 2050, a
3% average hydropower capacity growth rate is required, which has not been achieved
in the last five years [Bojek (2022)]. Large-scale hydropower involve damming of rivers
and creating large reservoirs, which can have negative environmental impacts. These
impacts include the displacement of communities, loss of natural habitats, disruption
of aquatic ecosystems, alteration of river flow, and greenhouse gas emissions from de-
caying vegetation in flooded areas. As a result, attention has shifted to smaller-scaled,
run-of-river hydropower schemes, which are considered less harmful to the environ-
ment [Anderson et al. (2015)].

1.1.2 Run-of-River Hydropower Plants

Run-of-river hydropower plants utilise the natural water flow in rivers to produce en-
ergy. Small scale hydropower is defined as hydropower plants with capacities up to
10MW [NVE (2015)]. The key concepts of a hydropower plant will be explained in
Chapter 2: Theory.

The Norwegian Water Resources and Energy Directorate (NVE) has been responsi-
ble for managing Norway’s water and energy resources since 1921. NVE’s mandate is
to ensure that the development of Norwegian hydropower is environmentally friendly
and beneficial to society [NVE (2016)]. All small-scale hydropower plants with an in-
stalled capacity from 1 MW to 10 MW, has to apply to NVE for a licence (concession).
When granted a licence to build and operate a small-scale hydropower plant, NVE sets
requirements for, amongst other things, the amount of water the power plant is allowed
to use through maximum and minimum intake capacity, and requirements for environ-
mental water flow.

In this thesis data from two of Småkraft’s power plants, Bjørgum power plant and
Furegardane power plant, will be used. Bjørgum power plant is located in Agder
county, while Furegardane power plant is located in Vestland county, as illustrates in
Figure 1.1. A description of the power plant’s catchment areas and the climate at their
locations is presented in Chapter 4: Methods. Bjørgum power plant has been in oper-
ation since 2004, and has an average yearly production of 17GWh. The power plant
has a permit of using a maximum of 2.3m3/s, resulting in a capacity of 5.5MW. Fure-
gardane has been in operation since 2014, and has had an average yearly production of
11GWh. Furegardane has a permit to use 2.4m3/s, resulting in a capacity of 5.35MW.
Both power plants use one pelton turbine.
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Figure 1.1: Map displaying the location for Bjørgum power plant and Furegardane power plant.

1.1.3 The Norwegian power market

Norway is part of a joint Nordic power market with Sweden, Denmark and Finland, and
this is in turn integrated into the wider European power market. The power market is
composed of multiple markets where bids are presented and prices are decided, which
include the day-ahead market, continuous intraday market, and balancing market. Trad-
ing for day-ahead and intraday occurs on the Nord Pool exchange, while the balancing
market is operated by Statnett. The day-ahead market is the main power trading mar-
ket in the Nordic region where participants bid and offer contracts for physical power
delivery hour-by-hour the next day. Trading takes place on the Nord Pool exchange be-
tween 08:00 and 12:00 each day, and prices are determined based on all purchase and
sell orders received, as well as transmission capacity available [Norwegian Ministry of
Petroleum and Energy (2022)]. In this thesis, the deadline for submitting bids for the
next day is set to 11:30, aligning with the current practice of Småkraft.

Electricity cannot be easily stored, and there must therefore always be an exact
balance between generation and consumption. To address this, Statnett procures bal-
ancing power from the balancing power market. Imbalances arise from uncertainties in
plans and from failures in generation, consumption, and the grid. Thus, an imbalance
settlement is essential for a commercial electricity market [eSett (2023)]. For each im-
balance settlement period, the imbalance volumes are priced based on the regulation
power market prices. The price depends on the dominating direction from the regula-
tion power market and can be either up or down regulation price.

To illustrate this, consider two hypothetical scenarios where in both scenarios a
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heavy rainfall event is forecasted and a run of river hydropower plant is expected to
produce at maximum capacity the next day. However, the rainfall event does not occur
as expected, and the power plant is unable to generate as much power as planned. In
the first scenario, the consumption in the area is already surpassing the generation and
there would be an up regulation price. Since the power plant is contributing to the
imbalance, the regulation price for the power plant would be negative. In the second
scenario, the generation in the area is surpassing the consumption and there would be
a down regulation price. In this case, the power plant would be helping to reduce the
imbalance, and the regulation price would be positive.

To summarise, the regulation price vary both in direction and magnitude, making it
an unpredictable cost for the power supplier. The only way to reduce the risk of getting
high imbalance costs is to reduce the imbalance volume by having accurate estimates
of the production plan for the next day. In addition to the regulation price, there is a
fixed imbalance fee. At the time of writing, this fee is at 1.15EUR/MWh which equals
11.58NOK at the time of writing [Norges Bank (2023)].

1.2 Objectives

The main objective of this thesis is to build a machine learning model that is able to
predict next day’s production hour by hour in a run of river hydropower plant. Data
from two of Småkraft’s power plants will be used, and the goal will be to improve the
prediction accuracy compared to the solution Småkraft uses today. In relation to this,
the following research questions will be answered:

• Which time intervals for weather variables affect the production?

• Which features are most important when making predictions?

• How does the final model perform in various weather situations?

The structure of the thesis is as follows: Chapter 2 covers the theory including
key concepts in hydrology, the process of energy production in a hydropower plant,
data preparation techniques, and an introduction to machine learning, including model
descriptions and evaluation techniques. Chapter 3 outlines the data and methods used.
Chapter 4 presents and discusses the modelling results and addresses the research ques-
tions. Finally, Chapter 5 provides a summary and conclusion.



Chapter 2

Theory
2.1 Hydrology

The field of hydrology focuses on the movement and distribution of fresh water across
the earth’s surface, underground, and atmosphere [Davie (2019)]. The volume and
flow rate of water is what controls the power generation in a run of river hydropower
plant. In this section some fundamental hydrological concepts will be introduced and
explained.

In hydrology the most common spatial unit is the catchment which, by Davie
(2019), is defined as "the area of land from which water flows towards a river and then
in that river to the sea". This means that wherever water falls in the catchment it will
end up in the same place, unless it evaporates. Water moving in a channelised form
is referred to as discharge (m2/s). The size of a catchment can range from hectares
(0.01km2) to millions of square kilometres, and all catchments can bee divided into
a set of sub-catchments. The catchment boundary is determined by the topography
through the assumption that all water falling on the surface flows downhill. This as-
sumption may not always be correct as the underlying geology can make it possible
for the water to flow as groundwater to another catchment. This means that the surface
water catchment and the groundwater catchment are not necessarily the same [Davie
(2019)].

The hydrological cycle explains how water moves between the earth and the at-
mosphere in different states. The cycle consist of liquid water that evaporates into
water vapor and is moved around the atmosphere. At some point the water vapor con-
denses into liquid again and falls to the surface as precipitation. The deviation between
evaporation and precipitation in the terrestrial zone is the runoff which completes the
hydrological cycle. Davie (2019) defines the runoff as "water moving over or under the
surface towards the ocean". The concept of the hydrological cycle can be represented
in terms of an equation, the water balance equation:

P±E ±∆S±Q = 0

where P is precipitation, E is evaporation, ∆S is change in storage and Q is runoff.
The ± terminology is used as each term can be either positive (gain) or negative (loss)
depending on whether the equation is viewed in terms of the earth or the atmosphere.
The water balance equation can be re-arranged to quantify water flow in the river:

Q = P−E −∆S

In this equation the change in storage (∆S) can either be positive (water released) or
negative (water absorbed). The storage term includes soil moisture, deep groundwater,
water from lakes, glaciers and seasonal snow cover [Davie (2019)].
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The process of water moving below the surface includes infiltration into the soil
and the movement of water either in the unsaturated zone (throughflow) or the in the
saturated zone (groundwater flow). The amount of water that enters the soil over a
specific time interval is referred to as infiltration rate, and relies on the water content
in the soil and the soil’s ability to transmit water. Land-cover and antecedent moisture
condition are important factors controlling the infiltration rate. The antecedent moisture
condition indicates the initial level of soil moisture before the start of a rainfall event.
The infiltration rate will be faster in a drier soil than in a wetter soil.

2.2 Hydropower: water to energy

A run of river hydropower plant utilise the kinetic energy of running water in a river
to produce electrical energy. The power, often measured in mega watts (MW), is the
rate at which energy is generated. The amount of energy generated during one hour is
usually quantified in megawatt-hours (MWh). The power output largely depends on the
quantity of available water and the head, which refers to the vertical difference between
the water intake and the turbine. A higher head leads to a more substantial gravitational
force, resulting in a higher pressure, which translates to more power. Furthermore, the
efficiency of the power plant determines the amount of energy produced relative to the
available energy in the water. This can be summarised in the following equation:

Pprod = ρw ·Qprod ·g ·ηplant ·Hgross

where Pprod is the power output [W], ρw is the density of water [1000kg/m3], Qprod
is the water flow to the turbine [m3/s], g is the gravitational force [m/s2], ηplant is the
efficiency of the power plant, and Hgross is the vertical difference between the intake
and the turbine [m], as illustrated in Figure 2.1.

Figure 2.1: Illustration of a small-scale hydropower plant [Bøckman et al. (2008)].

When calculating the water flow to the turbine, Qprod , loss due to environmental
flow and over flow needs to be considered. The environmental flow is the amount of
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water that should be passing the intake at all times when operating. The overflow is the
amount of water lost when the total discharge minus the environmental flow exceeds
the maximum intake capacity. The water flow to the turbine can be defined by the
following equation:

Qprod = Qtotal −Qover f low −Qenvironmental

The efficiency of the power plant (ηplant) can be divided into the efficiencies of the
units (ηunit), which includes the turbine, generator and transformer, and the head loss
(ηheadloss) due to friction in the penstock:

ηunit = ηturb ·ηgen ·ηtrans

ηheadloss =
Hgross −Hloss

Hgross

Head loss due to friction can be calculated using Darcy-Weisbach’s equation for head
loss:

Hloss = fd ·
( Q

πrpipe2 )
2

2g
·

Lpipe

2rpipe

where Q is the water flow to the turbine [m3/s], Lpipe is the length of the penstock
[m], rpipe is the radius of the penstock [m], and fd is the head loss coefficient of the
penstock. Different types of penstocks have their own head loss coefficient, where a
higher head loss coefficient leads to a greater loss.

2.3 Data Management

Machine learning algorithms require large amounts of data to train, validate and test
the models. Consequently, data management is a large part of the machine learning
process.

2.3.1 Exploratory Data Analysis

Exploratory data analysis (EDA) involves summarising the main characteristics of a
dataset and presenting them through visualisations. This approach is useful for gaining
a better understanding of the data. In this thesis moving average has been used to
visualise the seasonality in the variables. A moving average is a time series constructed
by taking the averages of several sequential values of another time series. If the original
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time series is represented by y1, ...,yn, then a two-sided moving average of the times
series can be expressed as [Hyndman (2011)]:

zt =
1

2k+1

k

∑
j=−k

yt+ j, t = k+1,k+2, ...,n− k

Furthermore, to explore the linear relationship between variables, correlation has
been calculated. The correlation between two variables, x and y, can be expressed as:

rxy =
∑

n
i=1(xi − x̄)(yi − ȳ)√

∑
n
i=1(xi − x̄)2

√
∑

n
i=1(yi − ȳ)2

The correlation coefficient, rxy, varies from -1 to 1. A correlation of 1 implies
a perfectly positive relationship, meaning that when one variable increases the other
increases by the same amount. A correlation of -1 indicates a perfectly negative re-
lationship, meaning that when one variable decreases the other decreases by the same
amount. If two variables have no linear relationship, the correlation coefficient between
them would be 0 [James et al. (2013)].

2.3.2 Prepossessing Techniques

Preprocessing refers to the steps taken to prepare the data before feeding it into a ma-
chine learning model. These steps may include creating new features, handling missing
values, and scaling of variables. The approach used for handling missing data depends
on how the data is missing. Missing data is often categorises as data missing not at ran-
dom (MNAR), missing at random (MAR), and missing completely as random (MCAR).
Data missing not at random means that the mechanism for the missing data is related
to the unobserved value itself. On the other hand, data are missing at random if the
reason for the omission is not related to the unobserved value. Lastly, data are miss-
ing completely at random if the absence is unrelated to the values of both the observed
and unobserved data. The MCAR assumption is stronger than the MAR assumption,
and most imputation methods require MCAR to be valid. Assuming that the data are
MCAR, methods for handling the missing data could be to discard any missing val-
ues, rely on the learning algorithm to deal with the missing values in its training phase,
or use an impute-technique for filling any missing values. Methods for filling miss-
ing values may include using the variable mean, forward-fill, or if the variables have
some dependency it is possible to estimate the missing values with a predictive model
[Hastie et al. (2009)].

Another important part of preprocessing is scaling of data. While tree-based algo-
rithms are insensitive to the scale of the data, other models, such as neural networks,
rely heavily on scaling to operate optimally. Scaling ensures that each features have
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equal importance. The two most commonly used scaling techniques are max-min nor-
malisation and standardisation. Normalisation scales feature values to a range between
0 and 1 by subtracting the minimum value (xmin) from each value and dividing by the
range (xmax):

x′i =
xi − xmin

xmax
, i = 1, ...,n

When standardising the data, all variables are given a mean of zero and a standard
deviation of one:

x′i =
xi − x̄

σ
, i = 1, ...,n

where x̄ is the mean value of the variable and σ is the standard deviation of the variable.

2.4 Machine learning

2.4.1 Introduction to Machine Learning

In this section, a brief introduction to machine learning will be given together with ex-
planations of the concepts used in this thesis. Machine learning is a branch of artificial
intelligence, and uses concepts and results from many different fields including statis-
tics, information theory, cognitive science and mathematics [Mitchell et al. (2007)].
The main difference between statistics and machine learning is that machine learning
algorithms learn and improve from experience without explicit instructions from the
user. The machine learning algorithm is given a large dataset and is able to learn pat-
terns and relationships within the observations. The dataset is usually dived into three
subset: training data, validation data, and test data. The model is fit using the training
data, optimised using the validation data, and finally an unbiased performance measure
is calculated using the unseen test data.

Machine learning problems can be divided into two categories: supervised and un-
supervised. In a supervised learning problem, each predictor measurement xi is asso-
ciated with a response measurement yi, and the goal is to create a model that predicts
future responses accurately. This thesis focuses on such a problem. In contrast, an un-
supervised problem occurs when there are no associated responses to the observations.
The goal in this situation is to describe the associations and patterns among the input
variables [James et al. (2013)].

The variables in a machine learning problem can be either quantitative or qualita-
tive. Quantitative variables take on numerical values, while qualitative variables take
on values in one of K classes. Machine learning problems where the response variable
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is quantitative is referred to as regression problems, while problems involving a quali-
tative response variable is referred to as classification problems. The predictors in each
problem can be either quantitative or qualitative. In this thesis the aim is to predict the
power output in a hydropower plant, hence the response variable is quantitative and
regression algorithms will be used [James et al. (2013)].

2.4.2 Machine Learning Models

In this thesis, three different regression algorithms will be used to predict the response
variable. These models include a tree-based algorithm, specifically a Random Forest
Regressor, and two neural networks: a Multilayer Perceptron Neural Network and a
Long Short-Term Memory Neural Network.

Random Forest Regressor

Tree-based methods for regression and classification involve dividing the predictor
space into simpler regions and making predictions based on the mean or mode response
of training observations in each region. These approaches are simple and interpretive,
but less accurate than the best supervised learning methods. To address this issue, meth-
ods have been developed to combine a large number of trees, with random forest being
one of them.

In order to understand the random forest algorithm, a simple decision tree needs to
be introduced. A decision tree is built by dividing the predictor space into J distinct
and non-overlapping regions. This is done using a top-down, greedy approach referred
to as recursive binary splitting. The approach begins at the top of the tree with all
observations in one region, and then successively splits the predictor space where each
split is indicated by two new branches. The approach is referred to as greedy because
the best split is considered at the current step without looking ahead. The best split is
usually defined as the split leading to the greatest reduction in residual sum of squares
(RRS), given by:

RSS =
J

∑
j=1

∑
i∈R

(yi − ˆyR j)
2

where ˆyR j is the mean response for the training observations in the jth region [James
et al. (2013)]. However, other criteria for splitting can be chosen by the user. This pro-
cess is continued, but instead of splitting the entire predictor space, the two previously
identified regions are considered. The process continues until a stopping criterion is
reached, such as a maximum depth of the tree or a maximum number of observations
in each region. Figure 2.2 illustrate the output of a recursive binary splitting using two
predictors, X1 and X2, resulting in five regions, R1,...,R5.
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(a) Partition (b) Tree

Figure 2.2: The output of recursive binary splitting with two predictors illustrated with the partition (a)
and the corresponding tree (b) [James et al. (2013)].

The decision tree described suffers from high variance, meaning that if the training
data was randomly split in two and a decision tree was fit on each half the resulting
trees are likely to be very different. Bagging is a method that addresses this issue by
taking B bootstrap samples of size n from the initial training set and creating B different
decision trees. This means that for each tree, the n observations are selected from the
total training set with replacement such that some observations are likely to be repeated
while others a left out. The trees are deep, thus they have high variance and low bias.
The resulting predictions from each tree are then averaged, reducing the variance.

Random forest is an improvement over bagged trees by decorrelating the trees. Sup-
pose the dataset consist of a very strong predictor alongside several moderately strong
predictors. When using the begging method most or all of the trees will choose this
strong predictor as the first split, resulting in similar looking trees. The random forest
algorithm avoids this problem of correlated tress by only allowing the trees to consider
a random sample of predictors at each split [James et al. (2013)].

Multilayer Precepton Neural Network

The other two models used in this thesis are both neural networks. Neural networks
are the cornerstone of deep learning, and are based on the structure of the human brain.
Feed-forward neural networks (FNN), also called single- and multilayer preceptons
(SLP/MLP), are the most basic types of neural networks where the information flows
in one direction without any feedback. The MLP takes an input vector of p predic-
tors X = (X1,X2, ...,Xp) and builds a non-linear function f (X) to predict the response
Y . The structure of the model is what distinguishes the neural network from other
non-linear models such as the tree-based algorithms introduced above. The predictors
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X1,X2, ...,Xp make up the input layer, and each of the predictors feed into each of the
units in the following hidden layer. This is illustrated in Figure 2.3 for a SLP. The MLP
has the same structure, but with two or more hidden layers [James et al. (2013)].

Figure 2.3: Neural network with a single hidden layer [James et al. (2013)].

The neural network model has the form:

f (X) = β0 +
K

∑
k=1

βkg(wk0 +
p

∑
j=1

w jkX j) = β0 +
K

∑
k=1

βkAk

where all parameters β0, ...,βK and w1, ...,wK need to be estimated from data. The first
hidden layer is built up of K activations (also known as neurons) A1, ...,AK which are
non-linear functions that transform the input X1,X2, ...,Xp. These activations are then
fed into the next hidden layer which treats these as input and computes new activations.
The activations from the final hidden layer are fed to the output layer which is a linear
model that uses the activations as inputs, resulting in a function f (X) that outputs the
predicted value Y . The number of hidden layers and activations, as well as activation
functions need to be specified. The most commonly used activation function in modern
neural networks is the ReLU (rectified linear unit) activation function, which takes the
form:

g(z) = (z)+ =

{
0, if z < 0
z, otherwise

(2.1)
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This means that the ReLU function returns the input value if it is positive or zero, and
returns zero if the input is negative. This can be viewed as the units being activated if
the input value is above 0, and remaining inactive if the value is below 0 [James et al.
(2013)].

A widely used procedure for training neural network is back-propagation, first in-
troduces by Rumelhart et al. (1986). He defined the procedure as ”repeatedly adjusting
the weights of the connections in the network so as to minimize a measure of the dif-
ference between the actual output vector of the net and the desired output vector”. This
is done by first forward pass the input through the network until an output is produced,
and the error between the prediction and actual value can be calculated. The error is
then propagated from the output layer to the input layer, allowing the weights of the
network to be adjusted in a way that minimizes the error. This is achieved through the
use of the chain rule in calculus, which allows the gradient of the error with respect
to the weights to be calculated. The updated weights are then used in the next itera-
tion of forward propagation, and the process is repeated until the error is minimized
[Rumelhart et al. (1986)].

Long Short Term Memory Neural Network

The long short term memory neural network (LSTM) is a type of recurrent neural net-
work (RNN). RNNs are specifically designed for sequential data, making it ideal for
tasks such as forecasting. Unlike MLP, which processes input data in a feedforward
manner, RNN is designed to accommodate and take advantage of the sequential nature
of the input and processes the data by maintaining a memory of previous inputs. Figure
2.4 displays the structure of a simple recurrent neural network. On the left side of the
equal sign there is a compact depiction of the network which is unrolled into a more
detailed version on the right side.

Figure 2.4: Schematic of a simple recurrent neural network [James et al. (2013)].

The input to the neural network is a sequence of vectors X = {X1,X2, ...,XL}, and
the network is built up of a hidden-layer sequence {Al}1

L = {A1,A2, ...,AL}. As the
sequence is processed, each Xl feeds into the hidden layer which also takes the previous
activation vector Al−1 as input, and the current activation vector Al is produced. Each
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Al feeds into the output layer which produces a prediction Ol , but typically only the last
of these, OL, is of relevance. The same collection of weights W, U and B are used at
each step, and needs to be learned by the model.

The main limitation of a simple RNN is that it struggles to learn long-term depen-
dencies, which is often referred to as the vanishing gradient problem. This issue can
be addressed using more advanced neural networks such as the LSTM. The LSTM was
first indtroduced by Hochreiter and Schmidhuber (1997), and has since had a signifi-
cant impact on the development of recurrent neural network architectures. The LSTM
has two tracks of hidden layers, one containing the activations seen in the simple RNN
storing the short-term information and an additional layer called the cell state storing
the long-term information. This way, when the activation Al is computed it gets input
from hidden units both further back in time, and closer in time [James et al. (2013)].
Each cell has three gates: an input gate, an output gate, and a forget gate. The input
gate controls the flow of information from the current input and the previous hidden
state into the memory cell, and decides which information is important and should be
stored and which should be ignored. The output gate controls the flow of information
from the memory cell to the output at the current time step, and decides which infor-
mation should be output and which should be suppressed. The forget gate controls
the flow of information that is forgotten from the memory cell over time, and decides
which information is no longer relevant and should be removed from the cell [Gers
et al. (2000)].

Hyperparameter Tuning

As seen for the models above, there are some parameters that are determined based on
the data during the training process, while other parameters must be specified by the
user. These parameters are called hyperparameters and are used to control the behav-
ior and learning of the algorithm. For the random forest algorithm hyperparameters
that can be optimised include, amongst others, the number of trees used, the maximum
depth of the tress, and the criterion used to measure the quality of the split. For the MLP
neural network the number of hidden layers, the number of neurons, and the activation
function are some of the hyperparameters that can be tuned. These hyperparamters are
also relevant for the LSTM. In this thesis, the number of epochs and the batch size have
been specified for the LSTM algorithm. The number of epochs controls how many
complete iterations of the dataset that should be run and needs to be high enough to
allow the model to converge to a stable solution, but not so high that it overfits the
training data. The batch size defines the number of input sequences processed together
in a single forward/backward pass during training, which impacts the convergence rate
and ultimately affects the training time and generalization [Keras]. Typically, the mod-
els have default values for hyperparameters that come into effect when not specified by
the user.

In order to find the best hyperparameters, various methods can be employed. In
this thesis, the hyperparameters have been tuned using an iterative process called "grid
search". The method involves selecting the hyperparameters to be tuned and specifying
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a range of values for each one. The algorithm then runs through all possible com-
binations of hyperparameters to identify the optimal one. For each combination, the
machine learning model is trained, and an evaluation metric is computed on the vali-
dation data. The combination of hyperparameters that results in the best value for the
evaluation metric is chosen.

2.4.3 Evaluation Techniques

The aim of a machine learning model is to be able to accurately predict the response
value of unseen data. The model should be able to generalise, meaning that it does not
overfit or undefit the training data. When the complexity of a model increase, it tends
to adapt itself more closely to the training data and will not generalise well. However,
if the model is not complex enough it tends to underfit and fail to identify patterns in
the data, resulting in poor generalisation. This balance between over- and underfit-
ting is known as the bias-variance tradeoff. The bias represents the models ability to
accurately capture the relationship between the input variables and the response vari-
able. The variance referrers to the models ability to generalise, meaning how much
the model will change if trained on various datasets. A complex model has low train-
ing bias and high variance, while a simple model has high bias and low variance. To
achieve low prediction error on unseen data, the model must strike a balance between
bias and variance, as shown in Figure 2.5 [Hastie et al. (2009)].

Figure 2.5: Test and training error as a function of model complexity [Hastie et al. (2009)].

To get an unbiased estimate of the prediction error, the unseen test dataset is used.
The prediction error can be calculated using various metrics depending on the nature
of the problem. In this thesis mean squared error (MSE), mean absolute error (MAE),
accuracy-score and f-score have been used to evaluate the prediction error. The MSE
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and the MAE are measures used in regression problems, while accuracy-score and f1-
score are metrics used for classification problems. The accuracy- and f1-score have
been used to get an understanding of the model’s performance on different intervals of
power output. In this case each interval is considered a class.

The MSE measures the average squared error between the predicted and actual
value, and is given by:

MSE =
1
n

n

∑
i=1

(yi − f̂ (xi))
2

where f̂ (xi) is predicted response value for the ith class and yi is the actual value. By
squaring the error, the MSE is sensitive to outliers.

The MAE measures the average absolute error between the predicted and actual
value. The formula for MAE is given by:

MSE =
1
n

n

∑
i=1

|yi − f̂ (xi)|2

where f̂ (xi) is predicted response value for the ith class and yi is the actual value. The
MAE is indicate the average magnitude of the error, and are less sensitive to outliers
compared to the MSE. Calculating both the MSE and MAE can give an indication on
whether there are many outliers in the data.

The accuracy-score simply measures the percentage or ratio of correctly classified
observations out of the total number of observations in the dataset. This gives a mea-
sure of the overall performance of the model, however, this can be misleading in an
imbalanced dataset where the model performs well on the over-represented classes, but
are not able to correctly classify the under-represented classes. To address this issue,
the f1-score can be used which is defined as:

f1 =
2PR

(P+R)

where P is precision and R is recall. Precision is defined as the proportion of correctly
identified positive cases among all predicted positive cases, including true positives
(TP) and false positives (FP). This can be formulated as:

P =
T P

T P+FP
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Recall is defined as the proportion of correctly identified positive cases among all ac-
tual positive cases, i.e. all true postives (TP) and false negatives (FN). This can be
formulated as:

R =
T P

T P+FN

When dealing with multiple classes, the f1-score for each class can be calculated and
then their average can be taken. This approach is referred to as macro-averaged f1-score
and has been employed in this thesis.

To display information on the actual and predicted classifications, a confusion ma-
trix can be used. The confusion matrix consists of two dimensions, where one is in-
dexed by the actual class of an object, and the other is indexed by the predicted class
by the model. Figure 2.6 illustrates the fundamental format of a confusion matrix for
a multi-class classification task, where the classes are denoted by A1,A2, ...,An. In the
confusion matrix, Ni j represnts the number of samples that belong to class Ai but were
classified as class A j [Deng et al. (2016)].

Figure 2.6: Confusion matrix [Deng et al. (2016)].

To increase the comprehensibility of the confusion matrix, the values for Ni j can be
normalised by dividing each value with the number of observations in class Ai. This
results in each value representing the proportion of accurate or inaccurate predictions
within the given class. This normalised form of the confusion matrix has been used in
this thesis.
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Methods
This chapter outlines the methodology of the thesis. It starts by detailing the data
used in the project and the preprocessing techniques applied. Then, it covers feature
engineering, training methods, feature selection and evaluation techniques. Results
from the preprocessing and training process are presented in this chapter, while results
directly related to the research questions are presented in Chapter 4.

3.1 Data

For this project a combination of weather forecast data and observational based weather
data has been used as input in the machine learning models, and production data has
been used as the response. Hourly data has been gathered from 2017 to 2022 for two
different small scaled hydropower plants. In this section the data will be explained in
detail.

3.1.1 Locations

The selection of the two power plants was based on their location and production pat-
terns. Bjørgum power plant is located in Agder, the southernmost county in Norway.
The climate in Agder varies from the coastal areas in the south to the mountainous in-
land areas. According to data obtained from Valle meteorological station situated close
to Bjørgum power plant, the average annual temperature over the past ten years has
been 5.6◦C, and the average total precipitation received over a year has been 1160mm
[Klimaservicesenter (2023)]. The catchment area, shown in Figure 3.1, is extensive at
38.5km2 and comprises of 68% forest [NVE (2022)]. This leads to a relatively slow
runoff, resulting in stable production. The intake is situated at 560 masl, which leads
to the temperature dropping below freezing during the winter months. However, the
power plant is often able to operate almost throughout the winter. This is due to the
size of the catchment area and type of ground. As the catchment area consists mostly
of forest as well as mire, precipitation is absorbed during autumn and stored under the
snow during winter, maintaining a continuous baseflow to the river.

Furegardane power plant is situated in Vestland county on the west coast of Norway.
Vestland county exhibits a diverse climate, ranging from a mild and humid climate near
the coast to a drier climate inland by the fjords and mountains. Data collected from
Bulken meteorological station, which is the closes station to Furegardane power plant,
show that the average annual temperature over the past 10 years has been 6◦C, and the
average total precipitation over a year has been 1965mm [Klimaservicesenter (2023)].
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Figure 3.1: Catchment area for Bjørgum power
plant.

Figure 3.2: Catchment area for Furegardane
power plant.

The catchment area, shown in Figure 3.2, is nearly one-third the size of Bjørgum power
plant’s catchment area and is made up of 49% bare rock. The intake is placed at an
altitude of 310 masl, however, 50% of the catchment area is above 683 masl, with a
maximum altitude of 1129 masl [NVE (2022)]. This leads to faster runoff, resulting in
a more unstable production pattern with less operating hours than Bjørum power plant.

3.1.2 Production data

The production data is an hourly time series that represents the average power output
[MW] of the power plant during each hour, which corresponds to the amount of elec-
trical energy [MWh] produced during that time. There are available measurements of
power output both on the generator inside the power plant and on the grid outside the
power plant. The efficiency of the transformer and grid loss will lead to variations be-
tween these values, and the extent of the difference will depend on the placement of
the measuring point. For this project, the grid measurements have been used as the im-
balance costs are calculated based on these values. The data is sourced from Elhub
through Småkraft.

As previously stated, the selection of the two power plants was based on their dif-
fering production patterns. The distribution of power output for Bjørgum and Furegar-
dane are illustrated in Figure 3.3 and Figure 3.4 respectively. As depicted in Figure 3.3,
more than half of the values for Bjørgum are less than 2MW and nearly 15% of the
values exceed 5MW. The density plot for Furegardane (Figure 3.4) shows that a sig-
nificant number of values are equal to zero. Calculations reveal that 43% of the values
for Furegardane are equal to zero, while 10% of the values exceed 5MW. Hence, Bjør-
gum has more operating hours during a year than Furegardane with more of the power
output in the mid-range.
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Figure 3.3: Density plot for the power output at
Bjørgum power plant.

Figure 3.4: Density plot for the power output at
Furegardane power plant.

Figure 3.5 and Figure 3.6 show the seasonal variations in production for Bjørgum
and Furegardane respectively. The plots are created using a moving average of power
output with a window of two months. Day 0 in the plot refers to the 1st of January.
According to the plot for Bjørgum, production tends to be low in the beginning of the
year, but rises during spring. The production then proceeds to drop in the summer
months, before rising again in the fall. The plot for Furegardane reveals that the power
plant follows a similar cycle as Bjørgum, but with more variation across the years.
What remains consistent for Furegardane is that there is a clear peak in production
around May and June.

Figure 3.5: Plot showing seasonal variations of
production at Bjørgum power plant.

Figure 3.6: Plot showing seasonal variations of
production at Furegardane power plant.
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3.1.3 Forecast data

The weather forecast data was obtained from the Meterological Cooperation on Oper-
ational Numeric Weather Prediction (MetCoOp), a collaboration between the Finnish
Meteorological Institute (FMI), the Meteorological Institute of Norway (MET), and
the Swedish Meteorological and Hydrological Institute (SMHI). The forecast is gener-
ated by the MetCoOp Ensemble Prediction System (MEPS), which is an atmospheric
ensemble model that covers Scandinavia and the Nordic seas. The model produces a
66-hour forecast at 00, 06, 12, and 18 UTC, with a 2.5km grid spacing [Frogner et al.
(2019)]. To meet the requirement of power suppliers reporting their expected volumes
for the next day at 1130 UTC, the forecast produced by MEPS at 06 UTC has been
used in this thesis. Using 06 as the reference hour (hour 0), the forecast for hours 18
through 41 corresponds to the reporting period. To get a representative forecast for the
entire catchment area, an average value of all grid boxes within a chosen radius from
the center of the catchment area has been used.

On February 4th, 2020, there was a structural change in the model output of MEPS.
When selecting variables to use in the models, the change had to be taken into account
as new variables were added while others were removed. The variables listed in Table
3.1 were chosen from the variables that were present both before and after the update.
For the variables with the attribute _acc the values are accumulated from the start of
the forecast, i.e. for each hour after 06 and until the next forecast at 06.

Table 3.1: Weather forecast variables used in this project.

Standard name Long name Unit

precipitation_amount_acc Accumulated total precipitation kg/m2

snowfall_amount_acc Total accumulated solid precipitation kg/m2

air_temperature_2m Screen level temperature K

relative_humidity_2m Screen level relative humidity 1

x_wind Zonal 10 metre wind m/s

y_wind Meridional 10 metre wind m/s

The seasonal variations of the selected weather forecast variables for Bjørgum and
Furegardane from 2017 to 2022 are illustrated in Figure 3.7 and 3.8, respectively, using
a two-month moving average. Comparing the two figures, the seasonal cycles appear to
be similar. The precipitation plot for Furegardane shows a more distinct cycle than that
of Bjørgum, but both plots indicate a seasonal cycle with less precipitation in spring
and more precipitation in the winter and autumn months. The two figures also reveal
a notable seasonal cycle in snowfall and air temperature, with greater snowfall dur-
ing winter and no snowfall in summer, and low air temperatures at the beginning of
the year, a peak in summer, and a drop in fall. The relative humidity plots show a



22 Methods

weaker seasonal cycle with a slight reduction in the summer months, as supported by
the Clausius - Clapeyron relationship [Hartmann (2015)]. The wind variables in both x
and y-directions do not have a clear seasonal cycle, but there seem to be less variation
across the years during summer months.

(a) Precipitation. (b) Snowfall

(c) Air temperature (d) Relative humidity

(e) Wind x-direction (f) Wind y-direction

Figure 3.7: Seasonal variations of weather forecast variables for Bjørgum power plant.
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(a) Precipitation (b) Snowfall

(c) Air temperature (d) Relative humidity

(e) Wind x-direction (f) Wind y-direction

Figure 3.8: Seasonal variations of weather forecast variables for Furegardane power plant.

3.1.4 Observational based and modelled data

Observational based data for precipitation and temperature, as well as modelled data
for snow depth and snowmelt have been included in the model. This data is sourced
from Varsom SeNorge, a collaboration between NVE, MET, Statens Vegvesen, and
Kartverket [Varsom SeNorge]. The observations for precipitation and temperature are
interpolated to achieve a spatial resolution of 1km2 using data from measuring stations
throughout the country. The data is provided on a daily basis, with the temperature
indicating the daily average and the precipitation representing the total amount received
over the course of a day [Lussana et al. (2019)]. The estimation of snow data is based on
the HBV-model that takes into account temperature and precipitation. Essentially, the
model differentiates between snow and rain for temperatures below and above 0.5◦C,
and it estimates melting if temperatures rise above 0◦C [Saloranta (2012)].
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Table 3.2: Observational based and modelled variables used in this project.

Variable name Description Unit

rr Total daily precipitation mm

sd Snow depth cm

tm Average daily temperature ◦C

qsw Daily melted snow mm

Figure 3.9 and 3.10 show the seasonal variations for the chosen observational based
and modelled variables from SeNorge in the period 2017 to 2022 for Bjørgum and
Furegardane, respectively. The plots are made using a moving average with a window
of one month. As for the forecast variables, the seasonal cycle appear to be similar
at both locations. Comparing the precipitation plots, Bjørgum experiences a shorter
drop in precipitation during spring, while Furegardane’s drop lasts longer into the sum-
mer. The amount of precipitation for Bjørgum ranges from 0mm to 10.2mm, while for
Furegardane it ranges from 0mm to 23.6mm. The snow depth is at its highest during
winter and non-existent in the summer months. The figures indicate that the amount of
snow varies considerably from year to year. For Bjørgum, 2019 had the lowest snow
depth during winter, with approximately 50cm, and 2020 had the largest snow depth,
with a maximum of 175cm. For Furegardane, the lowest snow depth was in 2021,
with about 25cm during the winter months, and 2018 had the largest snow depth, with
around 200cm. The snow melting plots show that both locations have a peak in spring.
Comparing the two plots, the timing of the peak varies more from year to year for Bjør-
gum than for Furegardane. Lastly, the air temperature at each location exhibits a clear
seasonal cycle, with a peak during summer and a drop in the winter months.
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(a) Precipitation (b) Snow depth

(c) Snow melting (d) Air temperature

Figure 3.9: Seasonal variations for observational based and modelled weather variables at Bjørgum
power plant.

(a) Precipitation (b) Snow depth

(c) Snow melting (d) Air temperature

Figure 3.10: Seasonal variations for observational based and modelled weather variables at Furegar-
dane power plant.
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3.1.5 Missing data

Both the weather forecast and production datasets have some missing values. Addi-
tionally, missing values are created during engineering of accumulated features. The
data is assumed to be missing completely at random, meaning that the reason for its ab-
sence is unrelated to both the values of the observed and unobserved data. To handle
this, any rows containing NaN values were eliminated from the dataset. Another form
of missing data occurs when there are hours with sufficient runoff for the power plant
to operate, but for various reasons, no electricity is produced. This is classified as tech-
nical downtime, which could be caused by grid complications, operational restrictions,
or technical problems with the power plant. To avoid inaccurate input to the models,
these values have been removed. The values were identified by estimating the runoff
for each hour, and removed if the runoff estimate exceeded a certain value. For Bjør-
gum power plant the sum of daily snowmelt and 72 hours of accumulated rainfall were
used as a runoff estimate, and the threshold value was set to 25mm. This resulted in a
reduction in the dataset of 1,477 rows. For Furegardane power plant the sum of daily
snowmelt and 24 hours of accumulated rainfall were used as a runoff estimate, and the
threshold value was set to 10mm. This resulted in a reduction in the dataset of 1,241
rows. The process of selecting threshold values involved plotting both the runoff and
production data and examining which levels of runoff were associated with production.

As a result, Bjørgum’s dataset decreased from 50,664 to 47,715 rows, and Furegar-
dane’s dataset decreased from 50,664 to 46,749 rows. Despite the reduction in size, the
resulting datasets still have a sufficient number of samples.

3.2 Feature Engineering

The specifics of the catchment area play a role in determining how quickly and how
much of the precipitation and melted snow reaches the power plant’s intake. To account
for this lagged effect, accumulated features have been created. In this section, the
feature engineering will be explained.

3.2.1 Accumulated rainfall

The MET forecast variables provide hourly accumulated precipitation and snowfall
during a day. To determine the hourly accumulated rainfall, the snowfall variable has
been subtracted from the precipitation variable for each hour. Similarly, SeNorge pro-
vides observational based total daily precipitation without differentiating between snow
and rain. Using the daily average temperature from SeNorge and a threshold value of
273.15K, variables for daily rainfall and snowfall amounts have been created.

Furthermore, an hourly rainfall variable has been created by subtracting the previ-
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ous value, with the exception of the first value of the forecast which remains unchanged
(rain_h = Xh −Xh−1). From the hourly rainfall data, various intervals of accumulated
rainfall have been created. This way, the model will have information on the total rain-
fall in the catchment area during these intervals leading up to the hour to be predicted.
These features have been created as the rainfall events will have a delayed effect on
the runoff. Thus, it is expected that the specifics of the catchment area will determine
whether the model selects shorter or longer intervals of accumulated rainfall. To deter-
mine the most significant interval of accumulated rainfall for predicting production, the
correlation between accumulated precipitation over n hours and production has been
calculated. The results for are presented and discussed in Chapter 4: Results and Dis-
cussion.

Finally, a feature has been created to determine the accumulated precipitation over
the course of a month based on the observational based data from SeNorge. This feature
was created to reflect the degree of saturation of the ground at any given time. After
a period of drought, a greater amount of precipitation will be required to produce the
same level of runoff as compared to after a prolonged period of rainfall.

3.2.2 Accumulated snowmelting

As previously mentioned, seNorge provides estimated daily values for snowmelt in
millimeters runoff. These values are not interpolated between measurements, but cal-
culated based on precipitation and temperature. Since the predicted production will be
given on an hourly basis while the snowmelt values are given on a daily resolution, the
values have not been differentiated throughout the day. Instead, the value for the previ-
ous day is repeated for each hour of the next day. This allows the model to know how
much snow melted the day before.

From the daily snowmelt variable, various intervals of accumulated melted snow
have been created. As for the accumulated rainfall, the specifics of the catchment areas
for the different power plants will determine whether the model selects shorter or longer
intervals. Thus, the correlation between accumulated snowmelt over n days and pro-
duction was calculated. When calculating the correlation, periods with no snowmelt-
ing were excluded from the analysis. This equaled 83% of the time for Bjørgum power
plant and 79% of the time for Furegardane power plant. Since these instances dominate
the data, their inclusion would significantly affect the results. The results for Bjørgum
and Furegardane are presented and discussed in Chapter 4: Results and Discussion.

3.2.3 Time indicators

As seen in Figure 3.5 and Figure 3.6, the production data exhibits seasonal variations
following the natural runoff. To account for this, features have been created to indicate
the day of the year (doy) and month of the year (moy). The day of the year is inherently
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represented by a range of 1 to 365, while the month of the year spans from 1 to 12. To
achieve cyclicality, such that January 1st is next to December 31st, the features have
been split into two parts using sine and cosine functions. The functions are as follows:

day_sin = sin(2π ∗doy/365) month_sin = sin(2π ∗moy/12)
day_cos = cos(2π ∗doy/365) month_cos = cos(2π ∗moy/12)

3.2.4 Production trend

During periods of consistent weather conditions or in large catchment areas, there may
be small changes in the production level from day to day. To provide the model with
an estimate of the production level, a feature has been created that represents the aver-
age production during the six hours leading up to the reporting time. Specifically, the
average production from 06 to 11 has been used:

prod_trend =
1
6

11

∑
n=6

hn

3.2.5 Final dataset

Figure 3.11 displays a timeline indicating when the input variables are availible rela-
tive to the reporting time and forecast period. The observational based and modelled
variables obtained from SeNorge are calculated based on measurements taken between
07:00 on day 1 and 07:00 on day 2. The most recent version of the MEPS forecast for
day 3 becomes available at 06:00 on day 2, five and a half hours before the reporting
time, which is displayed at 11:30 on day 2. The forecast period is indicated on day 3.

Figure 3.11: Timeline showing when the input variables are available relative to the reporting time and
the forecast period.

Table 3.3 summarise all features in the final dataset.
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Table 3.3: Complete list of features with units and source.

Feature Unit Source Feature Unit Source

prod_trend MWh Elhub (measured) rainfall_acc_24h mm MEPS forecast

precipitation_amount_acc kg/m2 MEPS forecast rainfall_acc_30h kg/m2 MEPS forecast

snowfall_amount_acc kg/m2 MEPS forecast rainfall_acc_48h kg/m2 MEPS forecast

air_temperature_2m ◦C MEPS forecast rainfall_acc_60h kg/m2 MEPS forecast

relative_humidity_2m 1 MEPS forecast rainfall_acc_72h kg/m2 MEPS forecast

x_wind_10m 1 m/s MEPS forecast rainfall_acc_84h kg/m2 MEPS forecast

y_wind_10m m/s MEPS forecast rainfall_acc_96h kg/m2 MEPS forecast

month_sin rr(mm) mm SeNorge observational based

month_cos tm(Celcius) ◦C SeNorge observational based

day_sin sd(cm) cm SeNorge modelled

day_cos qsw(mm) mm SeNorge modelled

rainfall_amount_acc kg/m2 MEPS forecast snow_obs mm SeNorge observational based

precipitation_amount_inst kg/m2 MEPS forecast rain_obs mm SeNorge observational based

snowfall_amount_inst kg/m2 MEPS forecast rr_acc_month mm SeNorge observational based

rainfall_amount_inst kg/m2 MEPS forecast snowmelt_2day mm SeNorge modelled

rainfall_acc_week kg/m2 MEPS forecast snowmelt_3day mm SeNorge modelled

rainfall_acc_3h kg/m2 MEPS forecast snowmelt_4day mm SeNorge modelled

rainfall_acc_6h kg/m2 MEPS forecast snowmelt_5day mm SeNorge modelled

rainfall_acc_12h kg/m2 MEPS forecast snowmelt_6day mm SeNorge modelled

rainfall_acc_18h kg/m2 MEPS forecast snowmelt_7day mm SeNorge modelled

rainfall_acc_22h kg/m2 MEPS forecast

3.3 Training process

For this project three different multivariate regression models have been used to predict
the next day’s production. All models are trained, validated and tested on subsets of
data from 2017 to 2022. In this section, the models will be introduced, the general
training process used for the models will be explained, and choices made for the specific
models will be commented on. Figure 3.12 illustrates the total process from splitting
of data to selecting the best machine learning model.

Figure 3.12: Flow chart showing the steps and data used during training, model evaluation and model
selection.
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3.3.1 Models

The three models used in this project are a Random Forest Regressor (RFR), a Multi-
layer Precepton neural network (MLP) and a Long Short Term Memory neural network
(LSTM). Sklearn′s RandomForestRegressor (RFR) was used for the random forest al-
gorithm. The model is built by training several decision trees on different bootstrap
samples of the dataset and averaging the output of each tree. To determine the best split
at each node only a subset of features is considered. Building trees from subsets of
samples and using subsets of features for each split enhances the diversity of the forest
and reduces overfitting [scikit learn (a)].

Sklean′s MLP Regressor was used to train a multilayer precepton neural network.
Given a set of features X and a target y the model can learn a non-linear function
approximator. The network consists of at least four layers: an input layer, two or more
hidden layers, and an output layer. Neurons in the hidden layers transform values from
the previous layer using weighted summation and non-linear activation functions. The
output layer receives the last hidden layer’s values and transforms them into output
values [scikit learn (b)].

Finally, the LSTM model has been created using Keras′ deep learning library in
Python. An LSTM is a type of recurrent neural network (RNN) designed to process
sequential data such as time series data. It is capable of capturing long-term depen-
dencies in the data and is composed of memory cells that can store information for
an extended period. The LSTM architecture is designed to selectively forget or retain
information from previous time steps, allowing it to model complex patterns and re-
lationships in the data. Both the LSTM and MLP neural network are sensitive to the
scale of the features, thus the whole dataset had to be scaled such that the values for
each variable range from 0 to 1. More detailed description of the models are given in
Chapter 2: Theory.

3.3.2 Splitting of data

Before the training process, the dataset was divided into three distinct parts: training-
, validation-, and test data. The training data consists of data from 2017 to February
2021, while the validation data is from March 2021 to December 2021, and the test data
is from January 2022 to November 2022. The sequential splitting was done to prevent
autocorrelation issues. If the data was split randomly there is a high chance that the
model would be trained on data points nearly identical to those it would be tested on,
leading to biased performance metrics that do not accurately represent reality. In March
2021 Småkraft started using a new reporting solution. For comparison purposes the
validation data begins in March instead of January. Finally, each dataset was divided
into a matrix X containing all feature data and a vector y containing the production
values. The models are trained using the X matrix as input and the y vector as the
response.
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3.3.3 Feature selection

Eliminating less significant features from a model and retaining only the essential ones
can enhance the model’s efficiency and increase accuracy. The optimal approach to
feature selection differs among the models, and various techniques have been exper-
imented with. Initially, default hyperparameters were used to train each model, and
feature selection was performed on these default models. Ideally, feature selection
and hyperparameter tuning should be performed simultaneously to identify the optimal
combinations. However, doing so is likely to result in only a marginal improvement
in performance. As a result, for the sake of simplicity, the two procedures have been
carried out independently.

The first feature selection process used was a built-in function in the random
forest algorithm. Sklearn′s random forest module provides an attribute named
f eature importance which evaluates the significance of each feature when predict-
ing the target variable. For each split in the decision trees, the feature leading to the
greatest reduction of the criterion (often RSS) is selected. The goal for regression prob-
lems when building decision trees is to reduce the variance in the target variable. The
average decrease brought by each feature across all trees can be measured and indi-
cate its performance [scikit learn (a)]. Once all features had been evaluated, they were
sorted in descending order based on their importance, with the most important feature
at the top of the list. The result is presented in Chapter 4: Result and Discussion.

This list was used to determine the optimal number of features in the three mod-
els. Each model was fit using all features, and the resulting mean absolute error (MAE)
was computed using validation data. The feature with the lowest importance was elim-
inated, and the MAE was recalculated using the reduced set of features. This process
was repeated until only one feature remained. The result for each model for Bjørgum
and Furegardane are illustrated in Figure 3.13 and Figure 3.14, respectively.

(a) Random forest (b) MLP neural network (c) LSTM neural network

Figure 3.13: Mean absolute error using n features for Bjørgum power plant.



32 Methods

(a) Random forest (b) MLP neural network (c) LSTM neural network

Figure 3.14: Mean absolute error using n features for Furegardane power plant.

Another feature selection method used was Sklearn′s recursive feature elimination
(RFE). This technique progressively reduces the feature set by recursively eliminating a
certain number of features. In each iteration, the model is trained on the current feature
set, the features are given an importance score, and the least important feature(s) is
removed. Thus, this approach acknowledges that a features importance may change as
other features are eliminated. Using Sklearn′s RFE-model, an estimator that provides
information about feature importance needs to be specified. For this reason, the random
forest algorithm was used. The model also takes as input the number of features to
remove in each iteration. As the algorithm is quite extensive, this number was set to
two to increase efficiency. Additionally, the user must input the desired number of
features to be selected which was determined by analysing the plots in Figure 3.13 and
Figure 3.14. Accordingly, three recursive feature selection processes were performed
for each power plant, one for each of the models’ optimal number of features.

The last feature selection process was carried out using domain knowledge. The
dataset for each power plant was chosen based on knowledge about meteorology and
hydrology at the two different locations, and was restricted to the most basic features.
Thus, the whole feature selection process resulted in 14 datasets, as summarised in
Table 3.4. The MAE for each model using the different datasets were calculated on the
validation data, and the values are presented in Chapter 4: Results and Discussion. The
different datasets with specified features used in each one are included in the appendix.
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Table 3.4: Datasets created after feature selection.

Power plant Model Method n features

Bjørgum Radom Forest Regressor Sklearn′s f eature importance 36

Bjørgum MLP neural network Sklearn′s f eature importance 9

Bjørgum LSTM nerual network Sklearn′s f eature importance 16

Bjørgum Random Forest Regressor Sklearn′s recursive f eature selection 36

Bjørgum MLP neural network Sklearn′s recursive f eature selection 9

Bjørgum LSTM nerual network Sklearn′s recursive f eature selection 16

Bjørgum Domain knowledge 9

Furegardane Radom Forest Regressor Sklearn′s f eature importance 18

Furegardane MLP neural network Sklearn′s f eature importance 8

Furegardane LSTM nerual network Sklearn′s f eature importance 18

Furegardane Radom Forest Regressor Sklearn′s recursive f eature selection 18

Furegardane MLP neural network Sklearn′s recursive f eature selection 8

Furegardane LSTM nerual network Sklearn′s recursive f eature selection 18

Furegardane Domain knowledge 9

3.3.4 Hyperparameter tuning

Each machine learning algorithm has its own set of hyperparameters that limit its
behavior and learning. Optimal performance and accuracy of the algorithm can be
achieved by selecting the appropriate hyperparameters. These parameters have been
determined using domain knowledge alongside an iterative process of testing differ-
ent values for the parameters. Although machine learning algorithms have numerous
hyperparameters, only a subset of these have been tuned. The selection of hyperparam-
eters and values to be tested for each one is determined using domain knowledge, and
an algorithm is utilised to iterate through each combination of values. Tables 3.5 - 3.7
showcase the hyperparameters that were tuned for each of the three algorithms, along
with the corresponding values tested and the selected values for each power plant. For
each tested combination, the mean absolute error was calculated using validation data
and the set of hyperparameter values resulting in the lowest mean absolute error was
returned by the algorithm.
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Table 3.5: Tuned hyperparamters for the random forest algorithm.

Hyperparameter Default value Values tested Bjørgum Furegardane

n_estimators 100 [50, 100, 200, 300, 500] 300 300

max_depth None [5, 10, 15, 20, 50, 100] 50 10

criterion ’squared_error’ [’squared_error’, ’absolute_error’, ’friedman_mse’ ’poisson’

’friedman_mse’, ’poisson’]

Table 3.6: Tuned hyperparamters for the MLP neural network.

Hyperparameter Default value Values tested Bjørgum Furegardane

hidden_layer_sizes (100,) [(1,),(5,),(50,),(60,),(70,),(80,)] (70,) (50,)

activation ’relu’ [’identity’, ’logistic’, ’tanh’, ’relu’] ’tanh’ ’relu’

solver ’adam’ [’lbfgs’, ’sgd’, ’adam’] ’sgd’ ’adam

Table 3.7: Tuned hyperparamters for the LSTM neural network.

Hyperparameter Default value Values tested Bjørgum Furegardane

units 50 [5, 10, 50, 100, 200] 10 150

batch_size 32 [32, 64, 128] 64 64

epochs 10 [10, 50, 100, 200, 500] 100 500

*the default value for units and epochs for LSTM was manually selected.

3.4 Model Selection

So far, the validation dataset has been used to assess the performance of the models. At
this point, the final models have been chosen and the test dataset will be used to pro-
vide objective estimates of skill. In the process of feature selection and hyperparameter
tuning, the MAE was the sole metric employed. However, during the final model selec-
tion process, additional criteria such as mean squared error (MSE) and f1-score were
taken into account. The difference between MSE and MAE is that MSE gives more
weight to larger differences between predicted and true values due to the squaring of
the differences. In order to apply the f1-score the predicted values were categorised
into 25% intervals of maximum power: {0}, (0, 25%], (25%, 50%], (50%, 75%], and
(75%, 100%]. This allows for assessing the model’s performance under various sce-
narios, rather than solely focusing on its overall performance. It is of interest to see if
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the models are able to predict each class well and not only the most represented classes
as the distribution of values will vary from year to year.

To further investigate the models’ performance, a confusion matrix were created
together with plots of classification error. A confusion matrix is a matrix of size n x
n, where n is the number of classes. The matrix shows the performance of a model
by comparing the predicted labels with the actual labels, and summarises the number
of correct and incorrect predictions made by the model. If all values are correctly
classified, the confusion matrix will have only the diagonal cells filled with values, and
all off-diagonal cells will be zero. A further description of the confusion matrix is given
in Chapter 2: Theory. The classification error plots represent the same information in a
bar plot, where each bar represents the amount of actual values in a class and is divided
by colors to display the the share of correctly and wrongly predicted classes. The final
model for each location was selected based on the MAE together with an evaluation of
its performance on different intervals of power output.

3.5 Model Evaluation

As stated in the introduction, the primary goal of the thesis is to improve the accu-
racy of forecasting hourly production for the next day compared to Småkraft’s current
method. Hence, when evaluating the final machine learning model, the model has been
compared to the performance of Småkraft’s existing solution. Additionally, a simple
baseline model was created to serve as a reference point for assessing the performance
of both the existing method and the machine learning model. The simple baseline
model can also help understand if the benefit is worth the cost. To create the base-
line model the actual production was shifted back one day, meaning that the prediction
for the next day equals the previous day’s production, hour by hour. In order to com-
pare the different methods, the same metrics used in the model selection were used,
i.e. MAE, MSE and f1-score. Additionally, scatter plots, confusion matrices and clas-
sification error plots were created to further investigate the performance of the three
methods.

Following a comparison between the chosen machine learning model and the two
other available methods, an evaluation of the machine learning model’s performance
across various weather scenarios was carried out. This involved plotting the predicted
and actual production using the test dataset over the entire time series spanning from
January 2022 to November 2022. Subsequently, specific periods from each season were
selected for further investigation.
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Results and Discussion
The main objective of the thesis is to enhance the precision of predicting hourly pro-
duction for the upcoming day compared to the existing method used by Småkraft. The
reporting time for the predictions is at 11:30 and covers the time span from 00 to 24 the
next day, as illustrated in Figure 3.11. This chapter will investigate the performance of
the models and provide answers to the research questions. The structure of the chapter
will be as follows: Firstly, an analysis of the most significant time intervals will be pre-
sented and discussed. Secondly, the results obtained from the feature selection process
will be presented. Lastly, the evaluation of the models will be presented together with
an examination of the models’ performance in different weather situations.

4.1 Time Interval Analysis

One of the research questions concerns the time intervals for weather variables that
affect the runoff and production the most. To investigate this, the correlation between
hourly accumulated rainfall and production, as well as the correlation between daily
accumulated snowmelting, was calculated. The findings are illustrated in Figures 4.1
through 4.4.

Figure 4.1: Correlation between n hours accumu-
lated rainfall and production for Bjørgum power
plant.

Figure 4.2: Correlation between n hours accu-
mulated rainfall and production for Furegardane
power plant.

Figure 4.1 and Figure 4.2 indicate that for Bjørgum a longer interval of accumu-
lated rainfall will be important, while for Furegardane a shorter interval will be more
relevant. This aligns with the characteristics of the two catchment areas. With a larger
catchment area and more forest, the impact of rainfall on the runoff at Bjørgum is ex-
pected to be delayed. In contrast, Furegardane has a smaller catchment area with more
bare rock, leading to a quicker response to rainfall. It is noteworthy that the correla-
tion values in the Bjørgum plot range from 0.1 to 0.4, while those in the Furegardane
plot range from 0.4 to 0.55. This indicates that more information is available in the
accumulated intervals for Bjørgum compared to Furegardane. The plots offer useful
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information about the lagged effects of runoff in the catchment area, but do not neces-
sarily reveal the optimal value of n for predicting production. The relationship between
precipitation and production may not be entirely linear, and the accumulated values
will have a smoother curve leading to higher correlation.

Figure 4.3: Correlation between n days of accu-
mulated snow melt and production for Bjørgum
power plant.

Figure 4.4: Correlation between n days of accu-
mulated snow melt and production for Furegar-
dane power plant.

The correlation between n days of accumulated snowmelt and production is pre-
sented in Figure 4.3 and Figure 4.4. In the case of Bjørgum, the strongest correlation
of 0.57 is observed after 4 days. For Furegardane, the correlation decreases from day 1
before it increases from day 3 to day 6. However, the variation in correlation during the
first six days ranges from 0.36 to 0.39, which is not considered a significant difference.
Although the range of correlation values in either plot is small, it can indicate whether
or not daily accumulated snowmelt will provide additional information to the model.
It is important to note that, similar to accumulated rainfall, correlation may not reflect
the best value of n for production forecasting. A further investigation on this will be
presented in the section covering feature importance.

Figure 4.5 and Figure 4.6 illustrate the relationship between production and esti-
mated runoff for Bjørgum and Furegardane, respectively. The production is plotted
in green with MWh as unit, while the estimated runoff is plotted in blue with mm as
unit. The estimated runoff for Bjørgum was computed using a cumulative rainfall in-
terval of 96 hours and a cumulative snowmelt interval of 4 days. For Furegardane, the
runoff estimate was calculated using a cumulative rainfall interval of 48 hours and the
previous day’s snowmelt amount. This estimation, using the optimal values for accu-
mulated variables, appears to provide a satisfactory representation of the production
trend. However, based on the plots, there seems to be a benefit in providing the model
with additional information.
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Figure 4.5: Relationship between runoff and pro-
duction for Bjørgum.

Figure 4.6: Relationship between runoff and pro-
duction for Furegardane.

4.2 Feature Selection

The second research question presented in the introduction aimed to identify the key
features required for predicting the following day’s production. To achieve this, three
different feature selection techniques were employed for each model: Sklearn’s Fea-
ture Importance, Sklearn’s Recursive Feature Selection, and using domain knowledge.
In this section, the outcomes of Sklearn’s Feature Importance approach and the final
results from the feature selection process will be presented and discussed.

4.2.1 Feature importance

The results using Sklearn′s Feature Importance can easily be visualised by sorting the
features from most to least important, and are presented in Figure 4.7 and Figure 4.8 for
Bjørgum and Furegardane, respectivly. As a reminder, a subset for each model was cre-
ated using the top n important features, where n was chosen based on the plots in Figure
3.13 and Figure 3.14. The same was done for Sklearn′s Recursive Feature Selection.
However, these results are not as easily visualised since the feature ranking varies for
each value of n. The subsets created using Sklearn′s Recursive Feature Selection are
presented in the appendix, together with the subsets created using domain knowledge.

Comparing the two plots, the most important feature for both locations is the "av-
erage_prod", which represents the average production during the six hours leading up
to the reporting time. However, this feature is more significant for Bjørgum than Fure-
gardane. The x-axis for Bjørgum ranges from 0 to 0.8, while for Furegardane it ranges
from 0 to 0.4. As a result, other features at Bjørgum become relatively less important,
while at Furegardane, several other features have some significance. This difference
can be attributed to the characteristics of the catchment areas. Bjørgum has a large
catchment area with a substantial forest cover which causes a delay in the runoff, re-
sulting in less variation in production from day to day. Hence, the "average_prod"
feature will often be a good representation for the next day’s production. Furegardane,
on the other hand, has a smaller catchment area with a lot of bare rock, leading to more
rapid changes in production. Therefore, the production on one day may not be a good
representation of the following day’s production.
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Figure 4.7: Feature importance using the random forest algorithm for Bjørgum.

Both locations consider intervals of accumulated rainfall as the second and third
most important feature. Bjørgum places the most importance on 24 and 72 hour inter-
vals, while Furegardane considers 24 and 18 hour intervals to be the most significant.
This outcome aligns with the time interval analysis considering that Bjørgum selects
longer intervals than Furegardane. For accumulated snowmelt features, both locations
select the shortest interval available as the most significant. Additionally, both loca-
tions also consider observational-based rainfall during the last month (’rr_acc_month’)
as one of the most important features. This feature alone does not directly provide the
model with information on the next days runoff. Rather, it offers insights into how the
runoff will react to other variables. For example, if ’rr_acc_month’ is small (indicat-
ing unsaturated ground), the runoff’s response to rainfall is expected to be lower than
if ’rr_acc_month’ is large (suggesting saturated ground).
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Figure 4.8: Feature importance using the random forest algorithm for Furegardane.

4.2.2 Feature Selection Results

Table 4.1 and Table 4.2 display the MAE values obtained for each model using the
subsets derived from the feature selection process, as presented in Table 3.4. The MAE
values for each model using the complete dataset have been calculated for comparison
purposes. The subsets that yielded the lowest MAE for each model are denoted in bold
font and were chosen for hyperparameter tuning.
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Table 4.1: Mean absolute error [MWh] using different subsets with the Random forest regressor (RFR),
Multi layered precepton neural network (MLP) and Long short term memory neural network (LSTM)
algorithms for Bjørgum. The number of features in each subset is denoted in parenthesis.

MAE

Model Total dataset Feature importance Recursive feature elimination Domain knowledge

RFR 0.360 (49) 0.359 (36) 0.361 (36) 0.383 (9)

MLP 0.521 (49) 0.337 (9) 0.345 (9) 0.325 (9)

LSTM 0.369 (49) 0.364 (16) 0.389 (16) 0.459 (9)

Table 4.2: Mean absolute error [MWh] using different subsets with the Random forest regressor (RFR),
Multi layered precepton neural network (MLP) and Long short term memory neural network (LSTM)
algorithms for Furegardane. The number of features in each subset is denoted in parenthesis.

MAE

Model Total dataset Feature importance Recursive feature elimination Domain knowledge

RFR 0.558 (49) 0.551 (18) 0.550 (18) 0.551 (9)

MLP 0.742 (49) 0.601 (8) 0.642 (8) 0.565 (9)

LSTM 0.593 (49) 0.571 (18) 0.575 (18) 0.600 (9)

Table 4.1 shows that for Bjørgum the subset created using Sklearn′s f eature
importance resulted in the lowest MAE for both the random forest regressor and the
LSTM neural network, while the subset created based on domain knowledge gave the
lowest MAE for the MLP neural network. Table 4.2 shows that for Furegardane using
the subset created with Sklearn′s recursive f eature elimination resulted in the lowest
MAE for the random forest regressor, while Sklearn′s f eature importance yielded the
lowest MAE for the LSTM neural network. Finally, the MLP neural network had the
lowest MAE using the subset created based on domain knowledge.

The results indicate that there is little difference in MAE values for the random for-
est algorithm when using different subsets. Although it was expected that the recursive
feature elimination method would result in the lowest MAE, the difference between us-
ing this method and feature importance is minimal, and either subset is likely to yield
similar model performance. In contrast, selecting the optimal subset has a clear advan-
tage for the MLP neural network. The domain knowledge subset resulted in signifi-
cantly lower MAE values for both locations. As the domain knowledge subset contains
only the most basic features, it is apparent that the model is sensitive to noise. Lastly,
while the LSTM neural network benefits from selecting the best subset, the difference
in MAE is not as significant as for the MLP neural network. Lists of features included
in each dataset are available in the appendix.
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4.3 Model Selection

The MAE, MSE, and f1-score for each model were calculated using the test dataset
after the feature selection process and hyperparameter tuning. Table 4.3 presents the
results for Bjørgum and Furegardane, where the best score for each metric is high-
lighted in bold font. The table shows that, with the exception of the f1-score for Bjør-
gum, the LSTM neural network outperformed the other models at both locations. At
Bjørgum, the random forest regressor had the worst scores for MAE and MSE but the
best score for f1. This suggests that the LSTM neural network performs well on the
most represented classes, whereas the random forest regressor performs better for the
under-represented classes. To further investigate the models’ performance, confusion
matrices and plots of classification error are presented in Figure 4.9 and Figure 4.10.

Table 4.3: Calculated mean absolute error [MWh], mean squared error [MWh2] and f1-score [ ] for
the random forest regressor, the MLP neural network and the LSTM neural network for Bjørgum and
Furegardane.

Bjørgum Furegardane

Model MAE MSE f1-score MAE MSE f1-score

RFR 0.395 0.573 0.720 0.713 1.198 0.435

MLP 0.372 0.483 0.653 0.689 1.097 0.354

LSTM 0.316 0.453 0.695 0.573 0.942 0.458

As explained in Section 3.4, the predictions were categorised into five intervals of
power output. Figure 4.9 displays the confusion matrices and classification error plots
for the random forest regressor, MLP neural network, and LSTM neural network for
Bjørgum power plant based on these intervals. A description of the confusion matrix is
presented in Section 2.4.3. The classification error plots reveal that class 2, representing
values between 0MW and 25% of maximum power, is the most frequently occurring
class. The confusion matrices demonstrate that all models accurately classify approxi-
mately 90% of data points in this class. Similarly, all three models perform well on the
5th class, representing values between 75% and 100% of maximum power, with accu-
racies between 0.85 and 0.88. The accuracy refers to the fraction of correct predictions
as explained in Section 2.4.3. The models also exhibit similar performance for class 3
and 4, however, it is interesting to note that the LSTM neural network is outperformed
by both models on class 4. Lastly, the models’ performance on the first class (no pro-
duction) differs significantly. The random forest regressor achieves the highest score
for class 1 at 0.78, which is reflected in the f1-score presented in Table 4.3. The MLP
neural network correctly classifies 32% of the data points, while 63% of the data points
are predicted with values between 0MW and 25% of maximum power. The LSTM neu-
ral network predicts 59% of values in class 1 correctly, while 39% of the data points
are predicted within class 2.
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(a) Confusion matrix for Random forest (b) Classification error for Random Forest

(c) Confusion matrix for MLP neural network (d) Classification error for MLP neural network

(e) Confusion matrix LSTM (f) Classification error for LSTM

Figure 4.9: Distribution of predicted values for Bjørgum power plant.

To summarise, the LSTM neural network outperforms the other models on class
2,3 and 5. When examining the confusion matrix and classification error plot for the
LSTM neural network, it becomes evident that the misclassified data points for class
1 are predicted with values within class 2, and the misclassified data points for class
4 are predicted with values within class 3 and 5. Therefore, the errors are not large,
specifically they never exceed 25% of the maximum power. Based on this, together
with the results for MAE and MSE, the LSTM neural network was selected as the final
model for Bjørgum.

In Figure 4.10, the confusion matrices and classification error plots for the random
forest regressor, MLP neural network, and LSTM neural network are displayed for
Furegardane power plant. As for Bjørgum, the classification error plots reveal that the
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dataset is imbalanced with most of the data points in class 1 and 2. Despite the over-
representation of the first class, the classification error for the three models are high.
All three models predict the majority of the data points in class 1 with values within
class 2. An explanation to this could be undiscovered technical downtime, creating
noise in the dataset. The second class is also the second most represented class, and
the three models exhibit similar performance with accuracies between 0.56 and 0.68.
Interestingly, the LSTM neural network is outperformed by the other models on class 3
and 4, though the difference is not large. Looking at the distribution of the predictions
within class 3 and 4 for all three models, it is clear that these two classes are the most
difficult to predict. Finally, for class 5, the LSTM neural network attains the highest
accuracy of 0.67, while the random forest regressor and MLP neural network have
accuracies of 0.41 and 0.52, respectively.

(a) Confusion matrix for Random forest (b) Classification error for Random Forest

(c) Confusion matrix for MLP neural network (d) Classification error for MLP neural network

(e) Confusion matrix LSTM (f) Classification error for LSTM

Figure 4.10: Distribution of predicted values for Furegardane power plant
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In summary, although the LSTM neural network had the best MAE, MSE, and f1-
score, as shown in Table 4.3, a closer analysis of the distribution of the predictions
reveal that it does not outperform the other models on all classes. Nevertheless, the
LSTM still had notably better scores in the most represented classes and acceptable
scores for classes 3 and 4. Consequently, the LSTM neural network was chosen as the
final model for Furegardane as well.

4.4 Model Evaluation

The selected machine learning model was evaluated against both Småkraft’s current
method for forecasting hourly production the next day and a simple baseline model
that predicts next day’s production using only the previous day’s production. In do-
ing so, the MAE, MSE and f1-score were calculated for each method. The relative
improvement for the existing method and the LSTM neural network compared to the
baseline model is denoted in parentheses for each metric. The results are presented in
Table 4.4 and Table 4.5 for Bjørgum and Furegardane, respectively.

Table 4.4: MAE [MWh], MSE [MWh2] and f1-score [/] for the baseline model, Småkrafts current
approach and the LSTM neural network for Bjørgum. The improvement of each metric compared to the
baseline model in percentages is denoted in parenthesis.

Baseline model Existing method LSTM neural network

MAE 0.380 0.394 (-4%) 0.316 (16%)

MSE 0.771 0.741 (4%) 0.453 (41%)

f1-score 0.706 0.723 (2%) 0.695 (-2%)

Table 4.5: MAE [MWh], MSE [MWh2] and f1-score [/] for the baseline model, Småkrafts current
approach and the LSTM neural network for Furegardane. The improvement of each metric compared
to the baseline model in percentages is denoted in parenthesis.

Baseline model Existing method LSTM neural network

MAE 0.790 0.760 (4%) 0.573 (27%)

MSE 2.056 1.690 (18%) 0.942 (54%)

f1-score 0.518 0.501 (-3%) 0.458 (-12%)
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The LSTM neural network yielded the best results in terms of both MAE and MSE
for both locations. From an economic point of view, the MAE for the existing method at
Bjørgum equals 39,968 NOK in imbalance fees per year (11.58 NOK/MWh), whereas
the MAE for the LSTM neural network results in imbalance fees of 32,055 NOK per
year. Similarly, at Furegardane, the MAE for the existing method equals 77,095 NOK
in imbalance fees per year, while the MAE for the LSTM neural network results in
imbalance fees of 58,126 NOK per year. Using these figures as a reference for the 176
power plants Småkraft owns in Norway, the LSTM neural network has a potential of
reducing the imbalance fees by an amount between 1.4MNOK and 3.3MNOK per year.

Comparing the f1-scores across the three models, the LSTM neural network re-
sulted in the poorest score at both locations. Småkraft’s current method had the highest
f1-score for Bjørgum power plant, while the baseline model yielded the best f1-score
for Furegardane power plant. One possible explanation for this result is that the LSTM
neural network accurately classifies the over-represented classes, but struggles with the
under-represented classes. Another explanation is that the baseline model and the ex-
isting method have some large prediction errors, which is also indicated by the MSE.
To investigate this further, scatter plots of predicted versus actual production are pre-
sented in Figure 4.11 and 4.12, and confusion matrices and classification error plots are
presented in Figure 4.13 and Figure 4.14.

(a) Baseline model (b) Existing method (c) LSTM neural network

Figure 4.11: Scatterplot of predicted (y) versus actual (x) values of production.

In Figure 4.11 the predicted (y) and actual (x) production have been plotted to-
gether for each hour using the test dataset at Bjørgum for the baseline model (a), the
existing method (b) and the LSTM neural network (c). Data points are colored by den-
sity, with the most frequent values appearing yellow/green and the least frequent values
purple. The figure indicates that the baseline and existing models more often predict
no production when production does occur, compared to the LSTM neural network.
Additionally, the plots demonstrates that the existing method often underestimates pro-
duction, while the LSTM neural network exhibits a more evenly spread distribution of
values. In Figure 4.12 the same plots have been created using the test dataset at Fure-
gardane. Compared to the plots at Bjørgum, the data points in all three plots in Figure
4.12 are more spread out, demonstrating larger prediction errors. The density of data
points at the edges of the plot for the baseline model (a) and the existing method (b) in-
dicate that the models struggle to correctly predict full production and no production.
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This problem seems to be improved by the LSTM neural network. The plot for the
LSTM neural network (c) shows a more clear trend with fewer data points at the edges
compared to (a) and (b).

(a) Baseline model (b) Existing method (c) LSTM neural network

Figure 4.12: Scatterplot of predicted (y) versus actual (x) values of production.

Figure 4.13 display the confusion matrices and classification error pots for the base-
line model, existing method and LSTM neural network at Bjørgum. As seen in Figure
4.9 the LSTM neural network performs well on class 2 and 5, achieving accuracies of
0.92 and 0.88, respectively. The same values for the baseline model and the existing
method reveal that the performance on class 2 is comparable with the LSTM model,
while the performance on class 5 is weaker. When comparing class 3 and 4 across all
methods, it can be seen that the performance of the methods is similar. Looking at the
performances on class 1 on the other hand, the LSTM neural network exhibits poor per-
formance compared to the other methods. While the existing method and the baseline
model accurately predict data points within class 1 with accuracies of 0.83 and 0.92,
respectively, the LSTM neural network only correctly predicts 59% of the data points
with no production. Nonetheless, it is noteworthy that the confusion matrix values for
the LSTM neural network are more concentrated around the diagonal compared to the
other methods, which have values on the left side of the diagonal. This indicates that
these methods, in some cases, predict data points with values that are too low.
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(a) Confusion matrix for the baseline model (b) Classification error for the baseline model

(c) Confusion matrix for the existing method (d) Classification error for the existing method

(e) Confusion matrix for the LSTM neural network (f) Classification error for the LSTM neural network

Figure 4.13: Distribution of predicted values using the baseline model, Småkraft’s existing method and
the selected machine learning model (LSTM neural network) for Bjørgum power plant.

Figure 4.14 shows that the results for Furegardane are similar to that of Bjørgum’s.
The LSTM neural network outperforms the other methods on class 2, 4 and 5, and
all three models perform similar on class 3. Same as for Bjørgum, the LSTM neural
network performs poorly on class 1, where the model predicts 72% of the data points
with values within class 2. The baseline model and the existing method on the other
hand are able to predict data points within class 1 with accuracies of respectively 0.82
and 0.70. Lastly, it can be seen that the misclassified values are closer to the actual
values for the LSTM neural network than for the two other methods, as indicated by
the MAE and MSE. This is seen by the spread of values in the confusion matrix and
the share of categories within the bars in the classification error plots.
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(a) Confusion matrix for the baseline model (b) Classification error for the baseline model

(c) Confusion matrix for the existing method (d) Classification error for the existing method

(e) Confusion matrix for the LSTM neural network (f) Classification error for the LSTM neural network

Figure 4.14: Distribution of predicted values using the baseline model, Småkraft’s existing method and
the selected machine learning model (LSTM neural network) for Furegardane power plant.

4.5 Analysis of performance during various weather condi-
tions

The third and final research question aimes to determine the weather conditions un-
der which the model provides accurate predictions and those where it struggles. To
investigate this, Figures 4.15 and 4.16 display plots of predicted production alongside
actual production for periods during winter, spring, summer, and autumn at Bjørgum
and Furegardane. These figures will be used to evaluate the performance of the machine
learning model across various weather conditions.



50 Results and Discussion

(a) Winter (b) Spring

(c) Summer (d) Autumn

Figure 4.15: Predicted production plotted together with actual production for different periods during
the year for Bjørgum.

Figure 4.15 (a) shows the predicted and actual production at Bjørgum during a pe-
riod in winter 2022. The plot reveals that the model performs well for production values
ranging between 0MW and 1.5MW, where production remains stable. This finding was
also supported by the confusion matrix and classification error plot (class 2). The plot
displays to peaks, one on the 14th of January and another on the 30th of January. The
model seems to react at the right time during these two events, but underestimates the
magnitude. For the first peak the model appears to correct itself once it receives new
input on production levels through the average production feature. As a reminder, the
average production feature represents the average production during the six hours lead-
ing up to the reporting time and is the dominant feature as seen in Figure 4.7. During
the first peak, the observational based temperature increased from below 0◦C to 4◦C,
and 6mm of precipitation was forecasted over a period of 8 hours which was supported
by the observational based values. The forecasted temperature, however, appears to dif-
fer from the observational based values as they stay below 0◦C. This could explain why
the model underestimates the increase. For the second peak, the temperature during
the hours leading up to the production peak was 2-3◦C, but dropped below 0◦C during
the peak according to the forecast. At the same time, the forecast predicted 24mm of
precipitation over a 24-hour period, which was consistent with the observational based
values. The forecast indicated a combination of rain and snow. This could explain why
the model struggles to correctly predict the magnitude of the power output.

In Figure 4.15 (b), the predicted and actual production at Bjørgum during a period
in spring 2022 are displayed. The plot reveals that production gradually increases from



4.5 Analysis of performance during various weather conditions 51

minimal levels to maximum levels over the course of a week, from the 14th of April
to the 20th of April, and remains constant for the following week. During this period,
the temperature rises from below 0◦C to a maximum of 6◦C, while estimated snow
melt ranges from 6mm to 20mm. In the following period, from the 28th of April to
the 13th of May, the temperature appears to drop below 0◦C at night and rise above
0◦C during the day, which can explain the fluctuations in production. As production
begins to decrease, on the 13th of May, the temperature remains above 0◦C, but the
estimated snowmelt is equal to zero indicating that the snow storage is empty. Dur-
ing this snow melting event, the machine learning model accurately predicts the pro-
duction levels. However, after production dropped to around 1MW, the plot reveals
two predicted peaks in production, around the 26th of May, that do not match the ac-
tual production levels. Examination of the input values reveals a discrepancy between
observational-based and forecasted precipitation during this period, indicating that the
forecasted rainfall events did not occur.

In Figure 4.15 (c), the predicted and actual production at Bjørgum are displayed
for a period during summer 2022. The plot reveals that the power plant did not operate
from the beginning of June to the middle of August, which is a recurring trend observed
in the dataset dating back to 2017. This period is mostly characterised by drought,
but there are some rainfall events during which the power plant does not start. For
instance, on June 27th, almost 20mm of precipitation was forecasted during a 24-hour
period, resulting in a slight increase in predicted production. It seems like the model
recognises that the catchment area is not saturated as it does not predict a larger power
output. When the power plant resumes operations in mid-August, the input values to
the model indicate that around 25mm of precipitation was forecasted, which aligns with
the observational based data. The model predicts the increase in production six hours
later than the actual increase, and initially underestimates the increase before predicting
a higher power output for the next day when the actual production starts to decline. In
this situation the model may have corrected itself based on the average production
feature, as was observed in Figure 4.15 (a) as well. The same situation appears at the
end of August.

Figure 4.15 (d) displays the predicted and actual production at Bjørgum for a pe-
riod during autumn 2022. On the 13th of September, the production increased from
no production to full production over 12 hours. When comparing the predicted and
actual production during this period, it can be seen that the predictions increased two
hours earlier than the actual production, but then followed the actual production almost
perfectly until the peak. As observed in the other plots, the model underestimates the
magnitude of the peak, this time with 0.8MW, and then proceeds to increase the next
day when the actual production decreases. Investigating the weather conditions dur-
ing this period reveals a rainfall event of 40mm lasting around 30 hours. Following this
peak, the production decreases to zero over the course of a week. When the power plant
starts operating on the 23rd of September, the predictions exceed the actual power out-
put. Investigating the input variables reveal that 20mm of precipitation was forecasted
over a 24-hour period, while the observational based values indicate a smaller rainfall
event of 10mm. At the same time, the rapid decrease in production before this event
and the irregular fluctations in the following period indicate that there could have been
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some technical issues during this time.

(a) Winter (b) Spring

(c) Summer (d) Autumn

Figure 4.16: Predicted production plotted together with actual production for different periods during
the year for Furegardane.

Figure 4.16 (a) display the predicted and actual production at Furegardane for a pe-
riod during winter 2022. Comparing this plot to the same one for Bjørgum indicate
that there is much more variation in production for Furegardane. This applies to all
four seasons shown in the figure. For the period during winter, the machine learning
model seem to react mostly at the right time in terms of increase and decrease in pro-
duction, however, the it both under- and overestimates the magnitude. Specifically, the
model underestimates when the actual power output reaches maximum, whereas over-
estimation occurs when the power output falls below 2MW. The weather conditions
during this period is characterised by multiple heavy rainfall events, and temperatures
fluctuating around 0◦C. In some instances, the temperature may explain why the model
struggles to accurately predict the magnitude of the power output due to uncertainties
related to precipitation type and freezing/melting.

Figure 4.16 (b) displays the predicted and actual production at Furegardane for a
period during spring 2022. In the beginning of the plot there is an increase in produc-
tion from minimal production to maximum production in the period from the 15th of
April to the 24th of April, followed by a slight decrease until the 4th of May. Through-
out this period there are daily fluctuations in production. Investigations of the weather
situation at this time reveal that the temperature rise above 0◦C during the day, and sink
below 0◦C during night time. At the same time the values for snow melting follow
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the same overall trend in terms of increase and decrease in production. For the next
part, there are some longer periods with full production, until the 15th of May where
fluctuations can be observed again. The model predicts the period with full production
well, but struggles to accurately predict the following fluctuations. During this period,
specifically from the 15th of May until the 23th of May, the temperature seem to be
above 0◦C the whole time, but according to the values of estimated snow melting and
snow depth the snow storage is empty. As these values are estimated through the win-
ter without any observational corrections, any estimation error will be retained in the
dataset. For this reason, it is not unlikely that the estimated snow storage is wrong at
the end of the season. This would explain why the predicted production is restrictive
during the last part of the plot.

In Figure 4.16 (c), the production at Furegardane during a period in summer 2022
is shown and compared to the predicted values. Looking at the first three peaks in the
plot, occurring on the 18th, 20th and 25th of July, the timing of the peaks are accu-
rately predicted, but the model fails to predict the magnitude of the peaks. The first
peak was caused by a heavy rainfall event lasting around 10 hours, whereas the third
peak was due to a three-day long rainfall event. For the second peak, there appears to be
a discrepancy between the forecasted and observed precipitation. Similarly, just before
the last peak, starting on the 2nd of July, there was a short increase in predicted pro-
duction without any actual production, which can be attributed to another discrepancy
between forecasted and observational based precipitation. On this day, the forecast pre-
dicted 6mm of precipitation, but only 0.6mm was observed. The last peak, lasting for
five days, was caused by heavy rain over several days, and the model fits well when
comparing predicted and actual production for this event.

Figure 4.16 (d) displays the predicted and actual production at Furegardane for a
period during autumn 2022. Out of the four plots in Figure 4.16, this period seems to be
the one with the highest prediction error. Although the predictions generally follow the
same trend as the actual production, the model appears to overestimate production most
of the time. On the 5th of October there is a significant deviation where the predicted
power output is around 4MW, but the actual production is close to 0. This is the start of
a five-day heavy rainfall event with observational-based values ranging between 23mm
and 35mm each day. The sudden rise and fall in production during this time could
indicate technical issues such as problems with the intake due to debris brought down
by the river. During the period from the 9th of October to the 18th of Octber there are
significant discrepancies between the predicted and actual production. Investigations of
the weather data reveal large differences between forecasted and observational-based
values for precipitation. This could explain why the model expects high power output,
but the production remains low.
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Conclusions and Future Work
This thesis aimed to predict hourly production in run of river hydropower plants using
publicly available weather data, and increase the accuracy compared to the solution
Småkraft uses today. This was done by creating and optimising three different machine
learning models, and selecting the best one for comparison. The three models, a random
forest regressor, a multilayer precepton neural network and a long short term memory
neural network were evaluated both on their overall performance and on 25%-intervals
of maximum power output. The results revealed that the models performed differently
on the intervals, but the LSTM neural network had the overall best performance and
was selected for both locations.

The final model was then compared to the existing method, using a baseline model
where the forecasted production was equal to the previous day’s production, hour by
hour. The results for Bjørgum showed that the LSTM had a 16% improvement in MAE
and a 41% improvement in MSE compared to the baseline model, while the existing
method had a 4% increase in MAE and a 4% decrease in MSE compared to baseline
model. The existing method had a 2% improvement on the f1-score, while the LSTM
has a 2% decrease in the f1-score. Similariy for Furegardane, the results showed that the
LSTM had an improvement in MAE and MSE of 27% and 54%, respectively, compared
to the baseline model. The existing method at Furegardane had an improvement in
MAE of 4% and an 18% improvement in MSE compared to the basline model. At
Furegardane the baseline model had the best f1-score, while the existing method had a
3% decrease and the LSTM neural network had a 12% decrease. This indicates that the
LSTM neural network increases performance on the most represented classes, but not
on all classes. However, the improvements in MAE and MSE indicate that even though
the production is not always predicted within the correct class, the prediction errors are
not large. If the improvement seen at the selected power plants are representative for
all power plants, the findings suggest that utilising the LSTM neural network for the
176 power plants owned by Småkraft in Norway could potentially result in a decrease
in imbalance fees by an amount between 1.4MNOK to 3.3MNOK.

In relation to predicting hydropower production, the thesis investigates three re-
search questions. Firstly, the significance of different time intervals for weather vari-
ables related to production was examined. When comparing the feature selection re-
sults for Bjørgum and Furegardane, it became clear that the nature of the catchment
area play an important role in the controlling the runoff. This was supported by the
correlation analysis, even though the optimal values from the correlation plots did not
match exactly with the results from the feature selection. For Bjørgum the feature se-
lection process revealed that 24 hours and 72 hours of accumulated rainfall were the
most important, while for Furegardane 24 hours and 18 hours were most significant.

Secondly, the most important features for predicting production were identified for
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both locations. The analysis found that similar features were important at both location.
The most important feature at both locations was the average production feature, rep-
resenting the average production during the six hours leading up to the reporting time.
This feature dominated both datasets, however, it was more dominant at Bjørgum than
Furegardane. This can be explained by the production patterns for the power plants.
As Bjørum has less variation in production from day to day, the average production
from the day before is often representative for the next day. This is often not the case
for Furegardane which has more volatile production patterns. Furthermore, various
intervals of accumulated rainfall were important, together with the snowmelt-feature
(qsw(mm)). At both locations the accumulated rainfall during one month was selected
as one of the most important features, which provides the models with information on
the degree of saturation for the ground.

Finally, the performance of the final model was evaluated across different seasons
and weather situations, demonstrating its accuracy in predicting production under var-
ious conditions. The plots for Bjørgum and Furegardane was quite different due to the
different production patterns, however, similar problems arose at both locations. Firstly,
instances with discrepancies between forecasted precipitation and observational based
precipitation were found at both locations. In these cases, the input to the models are
wrong and consequently the predictions will be inaccurate. Secondly, both models
tend to underestimate the peaks. Specifically for Bjørgum, the model tends to under-
estimate the peaks and then, due to the dominant average production feature, correct
itself with the new input. Generally, the analysis showed that both models have good
timing. Bjørgum performed especially well on the lower values where the production
was stable. Furegardane performed good during the snow melting event, however, the
accuracy decreased at the end of the event when the estimated snow storage was empty.

In conclusion, the use of machine learning to predict hourly production in a run of
river hydropower plant has proven to be successful. However, the accuracy of the model
is highly dependent on the quality of the input data. Furthermore, the research ques-
tions provided valuable insights into the relationship between weather variables and
hydropower production, with certain time intervals and specific features being identi-
fied as most significant for accurate predictions.

One major constraint of the model is its dependence on a sufficient amount of high-
quality historical data, rendering it impossible to use on newly built power plants. Fu-
ture research could explore alternative approaches for applying the model to power
plants with limited historical data. One potential solution could involve identifying the
k nearest neighbors (power plants) in terms of location, as well as comparable catch-
ment area characteristics and climate, and then creating an ensemble model based on
the models of each identified neighbor. Another limitation is the model’s inability to
accurately predict every interval of power output. Future research could aim to en-
hance the accuracy of the under-represented intervals while maintaining the model’s
performance on the over-represented intervals.
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Appendix
6.1 Subsets used in each model



6.1 Subsets used in each model 57

Table 6.1: Subsets used in the random forest regressor, created using recursive feature elimination,
feature importance and domain knowledge at Bjørgum (in random order).

Feature importance Recursive feature elimination Domain knowledge

average_prod average_prod average_prod

snowmelt_11day snowmelt_13day month_sin

snowmelt_7day snowmelt_11day rainfall_amount_acc

snowmelt_5day snowmelt_7day qsw(mm)

snowmelt_3day snowmelt_5day rr_acc_month

snowmelt_2day snowmelt_3day air_temperature_2m

snow_obs snowmelt_2day rainfall_acc_24

rr_acc_month rr_acc_month rainfall_acc_48

rain_obs rain_obs rainfall_acc_72

qsw(mm) qsw(mm)

tm(Celcius) tm(Celcius)

sd(cm) sd(cm)

rr(mm) rr(mm)

rainfall_acc_120 rainfall_acc_120

rainfall_acc_108 rainfall_acc_108

rainfall_acc_96 rainfall_acc_96

rainfall_acc_84 rainfall_acc_84

rainfall_acc_72 rainfall_acc_72

rainfall_acc_60 rainfall_acc_60

rainfall_acc_48 rainfall_acc_48

rainfall_acc_24 rainfall_acc_24

rainfall_acc_18 rainfall_acc_18

rainfall_acc_12 rainfall_acc_12

rainfall_acc_6 rainfall_acc_6

rainfall_acc_week rainfall_acc_week

rainfall_amount_acc rainfall_amount_acc

day_of_year_cos day_of_year_cos

day_of_year_sin day_of_year_sin

month_cos month_cos

month_sin month_sin

y_wind_10m y_wind_10m

x_wind_10m x_wind_10m

relative_humidity_2m relative_humidity_2m

air_temperature_2m air_temperature_2m

snowfall_amount_acc snowfall_amount_acc

precipitation_amount_acc precipitation_amount_acc
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Table 6.2: Subsets used in the MLP neural network, created using recursive feature elimination, feature
importance and domain knowledge at Bjørgum (in random order).

Feature importance Recursive feature elimination Domain knowledge

average_prod average_prod average_prod

rainfall_acc_week rainfall_acc_week month_sin

rainfall_amount_acc rainfall_amount_acc rainfall_amount_acc

qsw(mm) qsw(mm) qsw(mm)

rr_acc_month rr_acc_month rr_acc_month

rainfall_acc_72 rainfall_acc_72 air_temperature_2m

rainfall_acc_60 rainfall_acc_48 rainfall_acc_24

rainfall_acc_48 rainfall_acc_24 rainfall_acc_48

rainfall_acc_24 tm(Celcius) rainfall_acc_72

Table 6.3: Subsets used in the LSTM neural network, created using recursive feature elimination, fea-
ture importance and domain knowledge at Bjørgum (in random order).

Feature importance Recursive feature elimination Domain knowledge

average_prod average_prod average_prod

month_cos snowmelt_3day month_sin

rainfall_amount_acc rainfall_amount_acc rainfall_amount_acc

qsw(mm) qsw(mm) qsw(mm)

rr_acc_month rr_acc_month rr_acc_month

air_temperature_2m air_temperature_2m air_temperature_2m

rainfall_acc_72 rainfall_acc_72 rainfall_acc_24

rainfall_acc_60 rainfall_acc_60 rainfall_acc_48

rainfall_acc_48 rainfall_acc_48 rainfall_acc_72

rainfall_acc_24 rainfall_acc_24

rainfall_acc_week rainfall_acc_week

sd(cm) sd(cm)

y_wind_10m y_wind_10m

precipitation_amount_acc precipitation_amount_acc

day_of_year_cos day_of_year_cos

day_of_year_sin tm(Celcius)
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Table 6.4: Subsets used in the random forest regressor and LSTM neural network, created using recur-
sive feature elimination, feature importance and domain knowledge at Furegardane (in random order).

Feature importance Recursive feature elimination Domain knowledge

average_prod average_prod average_prod

rr_acc_month rr_acc_month month_sin

rr(mm) rr(mm) rainfall_amount_acc

rainfall_amount_acc rainfall_amount_acc qsw(mm)

rainfall_acc_96 rainfall_acc_96 rr_acc_month

rainfall_acc_24 rainfall_acc_24 air_temperature_2m

rainfall_acc_22 rainfall_acc_22 rainfall_acc_3

rainfall_acc_18 rainfall_acc_18 rainfall_acc_6

rainfall_acc_12 rainfall_acc_6 rainfall_acc_18

rainfall_acc_week rainfall_acc_week

rainfall_amount_acc rainfall_amount_acc

month_sin month_sin

x_wind_10m x_wind_10m

relative_humidity relative_humidity_2m

air_temperature_2m air_temperature_2m

snowfall_amount_acc snowfall_amount_acc

qsw(mm) qsw(mm)

tm(Celcius) tm(Celcius)

Table 6.5: Subsets used in the random forest regressor, created using recursive feature elimination,
feature importance and domain knowledge for MLP neural network at Furegardane (in random order).

Feature importance Recursive feature elimination Domain knowledge

average_prod average_prod average_prod

rr_acc_month rr_acc_month month_sin

rainfall_amount_acc rainfall_amount_acc rainfall_amount_acc

rainfall_acc_24 rainfall_acc_96 qsw(mm)

rainfall_acc_22 rainfall_acc_24 rr_acc_month

rainfall_acc_18 rainfall_acc_18 air_temperature_2m

rainfall_acc_12 rainfall_acc_week rainfall_acc_3

qsw(mm) snowmelt_14day rainfall_acc_6

rainfall_acc_18
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