
Speech-to-text models to
transcribe emergency calls

Jens A. Thuestad, Øyvind Grutle

Master’s thesis in Software Engineering at

Department of Computer science, Electrical
engineering and Mathematical sciences,

Western Norway University of Applied Sciences

Department of Informatics,
University of Bergen

May 2023

1

Acknowledgements

We would like to express our deepest gratitude to our supervisor Dr. Alexan-
der Selvikv̊ag Lundervold, for his guidance and support throughout this thesis.
His expertise and insights have made a significant contribution to our learning
process, and we sincerely appreciate the knowledge we have gained from him.

Our gratitude extends to Professor Guttorm Brattebø, Dr. Emil Iversen, and
the rest of the AI-support in Medical Emergency Calls research group for help-
ing us to delve into such a meaningful project. Being part of this progressive
development has been both enlightening and rewarding.

We sincerely thank our fellow master’s thesis students at the Mohn Medical
Imaging and Visualization Centre (MMIV), who contributed to a vibrant and
enjoyable workspace.

Jens

I would like to express my thanks to my family for all their encouragement,
love, and support. A special word of gratitude goes to my partner, Juliana.
Your patience, understanding, and love have provided me with the stability and
motivation I needed along the way. Lastly, I wish to acknowledge the unwavering
commitment of my co-author, Øyvind. His camaraderie has made this journey
an enjoyable one.

Øyvind

I want to thank my family for their consistent support throughout this project.
Their backing was helpful in the completion of this thesis. Lastly, a special
mention to Jens, my co-author. His commitment and our collaborative effort
made this journey both efficient and enjoyable.

2

Abstract

This thesis is part of the larger project “AI-Support in Medical Emergency Calls
(AISMEC)”, which aims to develop a decision support system for Emergency
Medical Communication Center (EMCC) operators to better identify and re-
spond to acute brain stroke. The system will utilize historical health data
and the transcription from the emergency call to assist the EMCC operator in
whether or not to dispatch an ambulance and with what priority and urgency.

Our research primarily focuses on adapting the Automatic Speech Recognition
(ASR) model, Whisper, to create a robust and accurate ASR model to transcribe
Norwegian emergency calls. The model was fine-tuned on simulated emergency
calls and recordings done by ourselves. Furthermore, a proof-of-concept ASR
web application was developed with the goal of streamlining the manual task of
transcribing emergency calls.

After demonstrating the application to the involved researchers in AISMEC, and
the potential users, both suggested optimism about the potential of this solution
to streamline the transcription process. As part of our research, we conducted
an experiment where we utilized the suggested transcriptions provided by the
application and then corrected them for accuracy. This approach showed a
notable reduction in our transcription time. We also found that establishing a
machine learning pipeline to fine-tune the model on historical emergency calls
was feasible.

Further work would involve training the model on actual emergency calls. To
investigate the efficiency of the ASR web application further, a larger scale of the
semi-automatic transcription experiment could be conducted by the professional
audio transcribers at Haukeland universitetssjukehus.

3

Glossary

AI Artificial Intelligence.
AISMEC AI-Support in Medical Emergency Calls.
API Application Programming Interface.
ASR Automatic Speech Recognition.

BPE Byte Pair Encoding.

EMCC Emergency Medical Communication Center.

GPT Generative Pre-trained Transformer.

HEMS Helicopter Emergency Medical Services.

NLP Natural Language Processing.

OHCA Out-of-Hospital Cardiac Arrest.

SRT SubRip Subtitle.

UI User Interface.

WAV Waveform Audio File Format.
WER Word Error Rate.

4

Contents

Glossary 4

1 Introduction 9
1.1 Expected results . 10
1.2 Research questions . 10
1.3 Research methods . 10
1.4 Machine learning methods . 11
1.5 Evaluation . 11

I Background 13

2 The context: emergency medicine and emergency communica-
tion centers 14
2.1 Prehospital emergency medicine 14
2.2 Emergency Medical Communication Centers (EMCCs) 15
2.3 Brain stroke . 15
2.4 Diagnostic workflow for brain stroke 16

3 Methods: deep learning for speech recognition 18
3.1 Machine learning and deep learning 18
3.2 Speech recognition . 19
3.3 Deep learning for speech recognition 19
3.4 Transformer models . 21
3.5 Byte Pair Encoding Tokenization 21
3.6 Mel-frequency Spectogram . 22
3.7 The Whisper system for automatic speech recognition 22

4 Related work 24

II Experimental work 27

5 Design and implementation 28
5.1 Fine-tuning Whisper . 28

5.1.1 Data . 28
5.1.2 Augmentations and simulation 28
5.1.3 Training . 29

5

5.1.4 Evaluation . 29
5.2 Transcription web app . 30

5.2.1 Architecture and implementation 30
5.2.2 Technology stack . 36

6 Results 38
6.1 Fine-tuning . 38
6.2 Transcription web app . 40

6.2.1 Functionality . 40
6.2.2 Speaker Tagging . 42
6.2.3 Metrics . 42
6.2.4 Feedback from demonstrations of application prototypes . 43
6.2.5 Demonstration for researchers involved with the AISMEC

project . 43
6.2.6 Demonstration for professional audio transcribers, HUS . 44
6.2.7 A preliminary semi-automatic transcription experiment . 46

III Discussion and conclusion 47

7 Discussion, conclusion, and further work 48
7.1 Fine-tuning Whisper . 48
7.2 Transcription web app . 50
7.3 Semi-automatic transcription . 51
7.4 Conclusion . 52
7.5 Further work . 52

Bibliography 54

A Additional resources 59
A.1 GitHub project . 59
A.2 Video demonstration . 59

B Questions and answers from AISMEC 60

C Questions and Answers from Seksjon for medisinsk dokumen-
tasjon, HUS 61

6

List of Figures

3.1 Example Mel Spectogram. 22

5.1 Web application architecture. 36
5.2 Web application technology stack. 37

6.1 Web application home page. 41
6.2 Web application with transcribed audio. 41
6.3 Confusion matrix illustrating the accuracy of speaker tagging. . . 42
6.4 Runtime vs Input Size . 43
6.5 Answers from involved researchers in the AISMEC project. . . . 44
6.6 Answers from Seksjon for medisinsk dokumentasjon. 45

7

List of Tables

3.1 Glossary of selected terms used. 21

6.1 Comparison between vanilla Whisper and fine-tuned Whisper. . . 38
6.2 Longer comparison between vanilla Whisper and fine-tunedWhis-

per. 39
6.3 WER of original and fine-tuned Whisper large-v2 on unseen data. 39
6.4 Performance metrics for each epoch during model training. . . . 40
6.5 Results from the transcription experiment 46

8

Chapter 1

Introduction

The ultimate goal of this project is to improve emergency calls using Artifi-
cial Intelligence (AI) and machine learning. Today, emergency calls are handled
only by the operator and their ability to make a decision with guidance from the
Norwegian Index for Emergency Medical Assistance (“Index”) [35]. A system
that could use artificial intelligence to efficiently produce suggestions that can
help the operator during the call could make the process much more efficient
and increase the accuracy of choosing the correct resources to spend in different
scenarios. Furthermore, since a computer can gather data and make computa-
tions quickly, patient records, health data about the caller, and outputs from
AI models based on this and similar data could be instantly accessible to the
operator. This includes beneficial information such as what medication they
might be using and previous health-related complications. For a machine to
extract actionable information about an ongoing call, it is also useful to analyze
what is said during the call, for example, based on accurate transcriptions from
speech-to-text models.

Speech-to-text is something that has been around for some time. One well-
known example of speech-to-text is the auto-generated subtitles on YouTube
videos. However, this system is limited because it is only available for a limited
set of languages [53], which does not include Norwegian. There is a lack of good
solutions tailored to the Norwegian language, especially when the audio quality
is poor, as it often is in phone calls. As mentioned, a set of historical 113 calls
will be used to develop the models. These recordings are per now saved in such
a way that both the callers’ and the operators’ audio is layered in the same file.
This, in addition to other implications such as background noise and imprecise
speech, as it is not uncommon for the caller to be flustered in the case of an
emergency situation, makes it hard to transcribe the audio unless the model is
trained to tackle these problems.

Another use for models trained to analyze human speech is to have them de-
tect information about how the caller communicates, such as having slurred or
strange speech. If the person experiencing the emergency is the one calling,
such irregular speech may be helpful information for the diagnostic process. It
could, for example, be a sign of a brain stroke [49]. This is not explored in our

9

thesis, but similar methods to the ones we employ are natural candidates for
such detection tasks.

1.1 Expected results

The objective is to develop a speech-to-text model specifically tailored for tran-
scribing Norwegian emergency calls. Our focus is on enhancing the robustness
of the model for handling real emergency phone recordings, rather than out-
performing existing general-purpose speech-to-text models. This will ensure
greater accuracy and effectiveness in critical situations where clear and precise
communication is vital.

1.2 Research questions

With this master thesis, we aim to investigate existing speech-to-text models in
order to develop a solution best suited for transcribing Norwegian emergency
calls. While our research primarily contributes to the existing “AI-Support in
Medical Emergency Calls (AISMEC)” research project, we also explore other
application areas for the model. It is essential, regardless, to ensure that the
finished product can be accessed from within hospitals and emergency call cen-
ters. The actual implementation of our system inside the hospital infrastructure
is beyond the scope of our thesis. Still, we are designing and documenting our
setup to ease any subsequent migration process. To clarify the scope of this
thesis, we formulate the following research questions and research objectives:

RQ1
Can we construct a system for accurately transcribing
Norwegian emergency calls by fine-tuning OpenAI’s Whis-
per model using historical emergency calls?

RQ2
Which further steps, for example, source separation, can
improve the resulting system referred to in RQ1?

RQ3
What technologies and infrastructure can be used to make
such a transcription system available inside the hospital
and emergency call centers?

1.3 Research methods

We have incorporated a loose interpretation of the prototyping research method-
ology [55], an iterative development cycle described below.

1. Determine objective: Understand the requirements that the system
must fulfill.

2. Build Prototype: Create a prototype based on the requirements.

3. User feedback: Demonstrate the prototype to stakeholders and/or po-
tential users of the system.

4. Refinement: Improve the prototype based on user feedback.

10

5. Iteration: Repeating the evaluation and refinement process until the
prototype meets the desired requirements.

We have drawn from the prototyping research methodology, but it is important
to note that we loosely implement them; it does not follow the conventional
prototyping methodology to the letter. Moreover, since our goal is not to im-
plement a complete system as suggested by the final stage of the prototyping
methodology but to explore the potential viability of such a system, the last
step of implementation falls outside the scope of our thesis.

See Section 5.2.2 about the chosen technology stack. To construct the machine
learning solution at the core of our prototype, we have chosen a well-suited set
of software tools and libraries, described next.

1.4 Machine learning methods

Python1 is highly appropriate for machine learning due to its widely developed
ecosystem of libraries, which allows us to create state-of-the-art models without
necessitating the development of existing solutions from scratch. Hugging Face
Transformers2 is an especially useful tool as this library can help us build good
solutions using pretrained models. Hugging Face also makes a wide variety of
datasets readily available and ready to use without needing much preprocessing
on the data.

We conduct several tests using OpenAI’s pre-trained model Whisper3, which is
trained in a supervised manner on 680,000 hours of multilingual audio samples.
Since Whisper handles Norwegian speech effectively, we choose to investigate its
performance in transcribing audio from phone calls involving multiple speakers.
Our initial task is to use Whisper for transcribing a simulated phone call in
Norwegian between a professional Emergency Medical Communication Center
(EMCC) operator and an acting caller. Next, we use this simulated phone call,
along with our transcription of it, to fine-tune the model.

1.5 Evaluation

We use a combination of quantitative and qualitative research methods to eval-
uate the performance of the ASR model. One obvious way to assess the per-
formance of an ASR system is the Word Error Rate (WER). WER provides a
numerical metric that is a clear and standardized way to quantify the accuracy
of an ASR system’s transcription. While WER is a good way to evaluate the
performance of an ASR system, it does not capture the entire picture, especially
when it comes to understanding the content and context of the transcription [26].
We, therefore, manually inspect the transcriptions to assess the improvement in
understanding important phrases and words after fine-tuning the model. It is
important to note that improving these qualitative aspects does not necessarily
correspond to a decrease in the WER. If the model better understands impor-

1https://www.python.org/
2https://huggingface.co/docs/transformers/index
3https://huggingface.co/openai/whisper-large-v2

11

https://www.python.org/
https://huggingface.co/docs/transformers/index
https://huggingface.co/openai/whisper-large-v2

tant phrases and words, it could be considered a better-performing model even
if the WER does not improve.

We use a similar approach to evaluate the efficiency of the transcription web
application. We measure the time taken for the application to transcribe au-
dio clips and conduct experiments to measure the efficiency of using a semi-
automatic transcription method instead of manually transcribing the whole au-
dio. After demonstrating the application to different stakeholders and potential
users, we use their feedback to further develop the application.

12

Part I

Background

13

Chapter 2

The context: emergency
medicine and emergency
communication centers

2.1 Prehospital emergency medicine

The Norwegian healthcare system is divided into two levels, primary care, and
secondary (specialist/hospital) care. Primary care of patients involves emer-
gency medical assistance provided by General Practitioners and the out-of-hours
service, which addresses health issues at the most appropriate and effective level
of care [11]. Patients requiring urgent medical assistance are mainly handled by
Norway’s secondary health services, which include the ambulance service and
Emergency Medical Communication Center (EMCC) [29, 62].

The ambulance service provides transportation through different means, such
as cars, boats, planes, and helicopters. Cars are operated by a team of two
ambulance workers, planes by specialized nurses, and helicopters are managed
by anaesthesiologists and rescuers [20]. Rescue and transportation of patients
in Norway can be incredibly challenging because of seasonal weather changes,
geographical land formations such as fjords and mountains, and poor road con-
ditions [29]. Helicopter Emergency Medical Services (HEMS) are, therefore,
specifically beneficial when it comes to geographical access, transportation time,
and the ability to administer advanced critical care interventions to patients
before they reach the hospital [16, 32, 30]. One crucial factor is that EMCC op-
erators correctly dispatch HEMS to patients who actually need it. The EMCC
has the authority to dispatch all of the different emergency medical transport
options, except for HEMS. If EMCC notifies HEMS, a decision to accept the
mission will be made by an anesthesiologist based on medical indications [38,
11].

All contacts within the secondary health care system are made with the EMCCs,
which received 936 419 inquiries in 2015 [34].

14

2.2 Emergency Medical Communication Centers
(EMCCs)

Emergency Medical Communication Centers (EMCCs), known as “AMK-sentraler”
in Norway, were developed in the early 1980s with healthcare as the driving force
and the police, fire department, and the former Televerket as important part-
ners [34]. The purpose of these centers was to provide a quick and effective
response to medical emergencies and to coordinate the response of different
emergency services.

Today, there are 16 emergency medical communication centers in Norway [34].
EMCCs operate on a 24/7 basis and handle all types of emergency calls, from
minor injuries to life-threatening emergencies. They provide medical advice and
assistance over the phone and dispatch the appropriate emergency services to
the scene. The operators who work in these centers are trained professionals who
use medical protocols to provide instructions to the caller until the ambulance
or other emergency services arrive at the scene [20, 11].

The increase in the elderly population and the prevalence of diseases are some
of the challenges that EMCCs faces, leading to a greater demand for emer-
gency medical services. Therefore, there is a need to strengthen the EMCCs’
assessment, coordination, and prioritization functions by enhancing the opera-
tors’ healthcare expertise, improving medical involvement, and developing bet-
ter decision-support tools [34].

2.3 Brain stroke

A brain stroke occurs when the blood flow to the brain is interrupted, which
can happen in two ways: a blood artery that provides blood to the brain is
blocked by a blood clot, or it ruptures and bleeds into the brain. When the
blood supply to the brain is interrupted, brain cells die [50]. Since more brain
cells die as time passes, time is of the essence. This is also emphasized by the
phrase “Time is brain”, coined by Neurologist Camilo Gomez, M.D. Essentially
this means that it is crucial for the ambulance to reach the patient as quickly
as possible.

Dead brain cells lead to different symptoms that vary depending on the affected
part of the brain [58]. Still, the most common symptoms are sudden difficulty
speaking or understanding others, sudden weakness or numbness in the face,
arm, or leg, especially on one side of the body, sudden vision problems, sud-
den difficulty walking or loss of balance, and sudden severe headache. To help
recognize a stroke, the acronym F.A.S.T is useful [27, 28]:

15

Face Their face may droop to one side. Ask the person to smile.

Arms
The person may have weakness or numbness in one arm.
Ask the person to raise both hands over the head and see
if one arm drifts downwards or cannot be raised.

Speech
The person’s speech may be slurred. Ask the person to
repeat a simple phrase or sentence and listen for any dif-
ficulty or changes in their speech.

Time
If any of the mentioned symptoms are present, it is time
to call the emergency number since getting help fast in
case of a brain stroke is critical.

There are two types of treatment for brain stroke: either medical treatment or
surgical treatment. The most common medical treatment is called thromboly-
sis, a blood clot-dissolving treatment through medication. A standard surgical
procedure is called thrombectomy, which removes a blood clot from a blood
vessel by inserting a small, flexible tube (catheter) into the blood vessel. The
catheter is guided to the blood clot, where a stent retriever is used to grasp and
remove the clot [21, 22].

2.4 Diagnostic workflow for brain stroke

Norwegian Index for Emergency Medical Assistance [35] give an overview of
different symptom criteria which gives reason to suspect acute brain stroke
and possibly trigger an acute response, also called a red response. An essential
aspect of the pre-hospital phase is establishing a system for notifying the relevant
hospital. Patients with symptoms of a brain stroke should get high priority for
immediate service from an ambulance. An air ambulance may be considered if
it is necessary to reach the hospital within four hours from the first symptom,
or the transportation time can be reduced by more than 30 minutes [37].

To ensure effective and accurate diagnosis, there should be clear procedures
when the patient arrives at the hospital. Upon arrival, the time of symptom
debut should be clarified. If it is less than four hours since the first symptoms,
a decision should be made quickly as to whether the patient is a potential
candidate for thrombolysis (and/or) thrombectomy.

Numbers from a study based on Emergency department and EMCC records
from a comprehensive stroke centre in Oslo, Norway, during a six-month pe-
riod (2019-2020) 1 show that 77% of brain stroke patients was identified by the
EMCC and given the appropriate response. In those cases, the EMCC used
on avarage 01:29 minutes to assess the need for an acute medical response in
contrast to 00:55 minutes in the 23% where brain stroke was not identified. The
ambulance used on avarage 06:01 and 07:39 minutes, respectively, to arrive at
the scene after being alarmed. It was also found that in the cases where brain
stroke was not identified, there was a median 11-minute prehospital delay. This
is due to approximately half of these cases being given the degree of urgency

1Source: personal communication with Bjørn Jamtli, Oslo University Hospital, OsloMet,
and Norwegian Directorate of Health

16

Urgent instead of Acute in addition to the ambulance personnel spending more
time on site. From this, we can see that in the case of a time-sensitive condition
like a brain stroke, accurate diagnosis is critical to ensure prompt arrival at
the hospital and improve patient outcomes. Therefore, it is essential to prior-
itize developing and implementing effective diagnostic tools and protocols for
healthcare professionals.

17

Chapter 3

Methods: deep learning for
speech recognition

3.1 Machine learning and deep learning

Machine learning [31] is a subfield of artificial intelligence (AI) focused on devel-
oping algorithms that can learn from data, imitating how humans learn. These
algorithms are designed to improve their performance on a specific task over
time by learning from experience.

The experiences typically come as a set of labeled data, and the machine learning
algorithms attempt to learn the relationship between the input data and the
desired output labels. Once the algorithm has learned this relationship, it can
be used to make predictions on new, unseen data.

This forms the foundation of what is known as supervised learning. There are
other kinds of machine learning, including unsupervised learning and reinforce-
ment learning. Supervised learning algorithms are trained on labeled examples,
where the correct output is provided for each input. Unsupervised learning al-
gorithms are trained on unlabeled data and can find patterns and relationships
in the data without any prior knowledge. Reinforcement learning algorithms
are trained to make decisions in a dynamic environment in order to maximize
a reward.

Machine learning algorithms are used in a wide variety of applications, such as
image and speech recognition, recommendation systems, and predictive mod-
eling. These algorithms can often make more accurate predictions or suggest
more effective actions than what would be possible using traditional program-
ming techniques.

Deep learning [14] is a specific kind of machine learning that uses artificial neural
networks to model and solve complex problems. The term “deep” refers to the
number of layers in the network, with deep artificial neural networks having
multiple hidden layers between the input and output layers. These hidden
layers enable deep learning algorithms to learn and represent more abstract and

18

complex relationships between inputs and outputs, allowing them to perform
complicated tasks such as image and speech recognition with high accuracy.

3.2 Speech recognition

Automatic Speech Recognition (ASR) models are under constant development
but have existed for a long time. The history of ASR started in 1952 with a
system developed by researchers at Bell Laboratories. The system was able to
recognize spoken digits by a single speaker with an accuracy varying between 97
and 99 percent [10]. Even though this was very impressive at the time, it had
a very limited vocabulary and required a controlled environment. During the
1960s and 1970s, researchers began to explore more complex statistical models
for ASR, such as Hidden Markov Models [42], which worked by modeling the
probability distribution of acoustic features and using these models to predict
the most likely sequence of words. During the 1980s and 1990s, more robust
and scalable ASR systems were developed. These models could recognize larger
vocabularies and work in real-world environments. This led to ASR systems
being used in applications like telephone-based customer service and dictation
software. The introduction of neural networks and deep learning have led to
significant improvements in ASR systems, and they are now being used in a
variety of applications.

3.3 Deep learning for speech recognition

The robustness and accuracy have increased drastically after deep learning
revolutionized the field of speech recognition. The ability to learn complex
relationships in data makes it ideal for this task, and after the introduction
of Transformer models [54] the development of ASR models has skyrocketed.
Transformer models can process inputs in parallel, making them more efficient.
It can also capture long-range dependencies using a mechanism called “atten-
tion”, which enables the model to focus on different parts of the input sequence
when producing the output. Additional information about some selected terms
in deep learning are included in the glossary 3.1.

Deep learning also faces challenges when applied to ASR. Emergency calls often
tend to contain background noise, several speakers, and irregular speech given
the often stressful nature of the situation. By training the model on a diverse set
of data, including these challenging factors, the models can learn to understand
and transcribe these kinds of calls accurately.

Utilizing pre-trained models makes it possible to significantly reduce the need
for extensive fine-tuning on task-specific data. The pre-training involves train-
ing the model on a large dataset, containing audio from different contexts. This
allows the model to learn features, patterns, and nuances in the audio. If this
training data also includes audio with background noise, it can learn to iso-
late speech patterns and ignore irrelevant noise. This is useful when dealing
with emergency calls as these tend to contain some level of background noise,
which will vary depending on the environment of the call. Using a multilin-
gual pre-trained model such as Whisper [44] drastically reduces the need for

19

fine-tuning on a specific language. This is because a multilingual model has
already learned to understand and process a variety of languages. Not only is it
familiar with the syntax, semantics, and structure of the languages, but it also
has an understanding of the different accents and dialects that can exist within
a language. A multilingual model also has the advantage of transfer learning
across languages, meaning that the understanding learned from one language
can be used in the processing of another. This benefits low-resource languages,
such as Norwegian since they can benefit from the understanding derived from
related or more resource-rich languages.

Autoregressive models Pre-trained models tasked with predicting the next
word given the previous outputs. The output at each
time step is fed back to the model as input for the next
time step [51].

Self-supervised learning Type of machine learning that involves training on a
large amount of unlabeled data, which removes the
need for human annotation. In language modeling,
the model can be trained to predict the next word
based on the context of the previous words.

Transfer learning Transfer learning is a machine learning technique
where a pre–trained model is used as a starting point
for a different but similar problem. Transfer learn-
ing consists of pre-training a model, typically on a
large dataset where the model learns generic features.
The second step is fine–tuning, where the pre–trained
model is adapted to a different problem, usually with
a smaller dataset. The idea behind transfer learn-
ing is to leverage the knowledge from the pre-trained
model to enhance the performance on the second prob-
lem [39].

Tokenization Tokenization is a process in Natural Language Pro-
cessing (NLP) that breaks down text into smaller units
(or tokens), such as words, sub-words, or characters.
In this way, machines can understand the meaning of
each individual part both independently and in the
context in which it is used.[4]

Language model Language models are a type of machine learning model
that is trained on a large amount of text data, trained
to understand, generate and manipulate human lan-
guage. It can be used for different NLP tasks such as
text generation, translation, question answering, and
more [59]. Transformer models has significantly im-
proved the performance of language models.

Transformers Transformer models are a type of neural network archi-
tecture. The defining feature of Transformer models is
the self-attention mechanism, which enables the model
to pay attention to different parts of the input when
producing the output [33]. See also Section 3.4.

20

GPT Generative Pre-trained Transformer (GPT) models
are a family of large language models developed by
OpenAI [43]. These models are trained on a large
amount of text in a self-supervised manner, where the
objective is to try and predict the next word based on
the preceding words. By training on large amounts
of data, the models learn statistical language pat-
terns, such as semantics, syntax, and context. These
pre-trained models can be fine-tuned on specific NLP
tasks, such as translation, text classification, question
answering, and chatbots (for example, ChatGPT 1).

Zero–shot Zero-shot is the ability to classify or understand data
that was not seen during the model training [61]. For
an ASR model this could mean the ability to correctly
transcribe words it has never seen before and in lan-
guages it was not specifically trained on.

Table 3.1: Glossary of selected terms used the following exposition. Some of
these concepts are expanded upon in the following sections.

3.4 Transformer models

A transformer model is a type of neural network used to process sequential
data, for example, speech or natural language. It was first introduced in 2017
by Ashish Vaswani in the paper Attention is all you need [54].

The Transformer model architecture consists of an encoder-decoder structure.
The encoder maps the input sequence (x1, ..., xn) to a sequence of continuous
representations Z = (z1, ...zn). Based on the sequence Z, the decoder generates
an output sequence (y1, ..., yn) one element at a time. The model is auto-
regressive at each step, using the previously generated symbols as input when
generating the next. The key to the transformers models is the self-attention
mechanism which allows the model to attend to different parts of the input se-
quence while generating the output sequence. The attention mechanism is com-
puted from the dot-product of the input embeddings with trainable parameters,
and these weights capture the relevance between the input token and output
token. The model can dynamically adjust these weights to focus on different
parts of the input. This enables the model to capture long-range dependencies
between the distant parts of the input sequence, which differs from Recurrent
Neural Networks (RNN) [57], which rely on fixed-length context windows.

3.5 Byte Pair Encoding Tokenization

Byte Pair Encoding (BPE) is a data compression algorithm that has been
adopted to use as a text tokenizer in Natural Language Processing (NLP), iter-
atively merging the most frequent pairs of characters until the vocabulary size
is reached or the desired level of compression [6].

1https://openai.com/blog/chatgpt

21

https://openai.com/blog/chatgpt

The algorithm computes the unique set of words used in the corpus, building
the vocabulary using all the symbols used in the corpus to write those words.
As an example, let us consider a corpus of five words: “hug snug pug hans bun
pun”. We would then follow the following steps to construct our vocabulary:

1. Construct base vocabulary: ’h’, ’u’, ’g’, ’s’, ’n’, ’p’, ’a’, ’b’

2. Count frequencies of adjacent character pairs: ’hu’: 1, ’ug’: 3, ’sn’: 1,
’nu’: 1, ’pu’: 2, ’ha’: 1, ’an’: 1, ’ns’: 1, ’bu’: 1, ’un’: 2

3. Merge most frequent pair: ’ug’

4. Update the vocabulary: ’h’, ’u’, ’g’, ’s’, ’n’, ’p’, ’a’, ’b’, ’ug’

5. Repeat steps 2-4 until the desired vocabulary size or level of compression
is reached.

3.6 Mel-frequency Spectogram

The Mel-frequency spectrogram is a visual representation of frequencies that
make up sounds over time which is commonly used in areas such as automatic
speech recognition. The Mel-frequency spectrogram is constructed by taking the
original spectrogram (frequency at a given time with color as amplitude) [60]
and applying a mathematical function called the Mel scale [46]. The Mel scale
is a logarithmic function that is designed to provide a more accurate represen-
tation of the way humans perceive sound. The Mel scale, therefore, gives more
weight to sounds with lower frequencies, as humans are more sensitive to lower
frequencies. This results in a two-dimensional representation of the audio signal,
with frequency on the y-axis and time on the x-axis. The color intensity at a
given point indicates the amplitude of the sound at the time and frequency.

Figure 3.1: Example Mel Spectogram. This Mel-spectrogram represents sound
frequency on the y-axis and time on the x-axis, with color intensity showing
sound amplitude at any given point.

3.7 The Whisper system for automatic speech
recognition

The Whisper model uses the basic encoder-decoder Transformer model, de-
scribed in Section 3.4, since the focus was studying the capabilities of large-
scale supervised pre-training for speech recognition and since this model has
been validated to scale reliably [44].

The dataset is constructed by audio paired with transcripts from the internet,
which results in a very diverse dataset consisting of audio from different se-
tups, environments, languages, and speakers. Since many transcripts on the

22

internet are generated by existing Automatic Speech Recognition (ASR) sys-
tems, these kinds of transcripts were removed from the dataset since training
on datasets consisting of mixed human and automatically generated data have
been proven to impair the performance of translation systems [13]. Machine-
generated transcriptions also often remove aspects that are difficult to predict,
such as punctuation, commas, exclamation marks, question marks, paragraphs,
and capitalization, which means that all-uppercase or all-lowercase is unlikely
to be transcribed by a human.

The audio was resampled to 16,000 Hz, and the melspectogram was computed
on 25 millisecond windows. The tokenizer for the English-only models is a
BPE text tokenizer, which is the same tokenizer used in GPT-2 [48]. For the
multilingual models, the vocabulary is refitted but kept the same size.

The Whisper model is created to perform the whole speech recognition pipeline,
not only the recognition part. It is able to perform several tasks such as trans-
lating and transcribing several languages, predict no speech, and time stamps.
For this to work in a single model, some task specification is required. A simple
format is used to specify all tasks and conditioning information as a sequence
of input tokens to the decoder. The start of a prediction is indicated by the
<|startoftranscript|> token. The model starts by predicting the spoken lan-
guage, which is represented as a special token (for example <|no|> for Norwe-
gian bokm̊al). If no speech is detected, the model is trained to predict no speech
represented as the special token <|nospeech|>. The next token is the given task,
which is either <|transcribe|> or <|translate|>. To specify if the model should
predict timestamps or not, the <|notimestamps|> is included. The prediction
ends with a <|endoftranscript|> token.

Since the start of this project, a new speech recognition model has been intro-
duced, the Conformer-1 by AssemblyAI [8]. The model is trained on 650,000
hours of labeled English audio. This model, similar to Whisper, is proven ex-
tremely robust to noise, which could improve the accuracy of emergency calls
since these tend to contain some background noise. It also can do several dif-
ferent tasks, including labeling speakers and entity detection, which could be
useful when transcribing emergency calls. However, since it is currently only
trained on the English language, it is not a viable option for this project.

23

Chapter 4

Related work

Even though Automatic Speech Recognition (ASR) has been around for some
time, it is in recent years that the performance of ASR systems has skyrock-
eted. This includes the application of ASR technology in emergency call centers,
driven by the need to address the time-sensitive nature of such calls, requiring
rapid and accurate decision-making. Given the rapid growth and widespread
application of ASR worldwide, we have chosen to narrow the scope and con-
centrate on the development and applications of ASR in emergency call centers
and public safety organizations in the Nordic region. We choose to focus on the
development of ASR in Nordic languages because ASR technology for these lan-
guages is still lagging behind its English counterparts. This is because English is
a widely spoken and dominant language in the technology sector, and therefore
has naturally received considerable attention and resources in the development
of ASR.

CORTI AI

A machine learning framework was developed to predict Out-of-Hospital Car-
diac Arrest (OHCA) to increase the chance of survival by quickly recognizing
OHCA [5]. The mean incidence of OHCA is 84 per 100,000 population per
year [17], with the corresponding incidence rate of resuscitation is 56 per 100,000
population and a survival rate of 8% [18]. By performing cardiopulmonary re-
suscitation (CPR) and using an automated external defibrillator, the survival
rate can increase in 7 of 10 cases of OHCA. Since time is critical in cases of
OHCA, it is important that these cases are recognized as soon as possible. The
aim of this study was to examine if a machine learning framework can increase
the proportion of recognized OHCA calls within the first minute compared to
dispatchers.

The machine learning framework consists of two machine learning models: an
ASR model that transcribes the speech to text and a detection model that
predicts OHCA from the transcribed text. The ASR model is based on Connec-
tionist Temporal Classification [3], and it was trained on 45 hours of uniform
randomly selected Swedish emergency calls from 2015 to understand the Swedish

24

language. The OHCA detection model is a densely connected deep neural net-
work predicting OHCA based on the transcribed text from the ASR model. The
model is trained on 3944 calls labelled as OHCA and 39,888 calls labelled as no
OHCA.

We use a very similar approach to solve our problem, but there are still some
differences. We use Whisper to transcribe Norwegian emergency calls, which
is already trained on the Norwegian language and therefore does not require
as much fine-tuning to get a good ASR model. Since CORTI is engaged in
another domain, OHCA, several sections of the call might influence the model’s
prediction. While CORTI combines transcriptions and raw audio to predict
OHCA, our approach concentrates solely on the call transcription.

Given the success of CORTI AI’s ASR model for predicting OHCA, researchers
in Denmark researched how an ASR, at the EMS Copenhagen, could contribute
to a more accurate stroke detection and impact the stroke-related treatment [47].
Under the assumption that stroke detection rates would increase by the same
amount as the OHCA detection rate through CORTI AI, patients treated with
thrombolysis will rise by 5% within the group of patients calling within the
time-to-treatment for thrombolysis. They found that using ASR for stroke de-
tection would be particularly relevant for females, younger stroke patients, calls
received through the 1813-Medical Helpline (an out-of-hours number providing
direct contact with trained nurses and physicians), and on weekends. These are
promising results given that the goal of the larger project, AISMEC, is to detect
stroke patients using ASR.

AI4INTERVIEWS

Oslo Police District is currently developing an AI solution to streamline the task
of transcribing interviews. The objective is to make the task of transcribing
interviews more effective by designing, creating, and implementing AI-powered
solutions for ASR and text analysis. [2]

Annually, the Norwegian police conduct thousands of interviews of various types,
including organized crime, violence, child abuse, and financial crime. Typically,
these interviews are either manually transcribed in whole or in part, or con-
densed into a summary, which is time-consuming and tedious work for inves-
tigators and police. Furthermore, the demand for interviews linked to these
types of crimes is expected to increase continuously. Therefore it is crucial to
address these challenges by employing automation technologies such as machine
learning.

Even though this is a different domain, it is interesting for our project because
AI4INTERVIEWS uses deep learning techniques to automatically transcribe
Norwegian interviews.

AMK Simulator

RAKOS and Headroom Life Science AS are developing a tool called Emergen-
cyPerform to increase the competence level of emergency call operators [1].
The tool is a 1:1 training simulator where the health personnel interacts with
virtual patients developed using artificial intelligence. The project got granted

25

access to real emergency calls in November of 2021 and has been able to im-
prove their speech-to-text algorithms. This project is very relevant to our work,
not only because they are developing speech-to-text algorithms using real emer-
gency calls but also because they are affiliated with the same health region as
the current project, “Helse Vest”. Unfortunately, we have not been able to find
more information about this project or establish any collaboration with them.

26

Part II

Experimental work

27

Chapter 5

Design and implementation

5.1 Fine-tuning Whisper

To make Whisper suitable for emergency calls in Norwegian, we are fine-tuning
Whisper on simulated emergency calls. The Whisper model already performs
well on Norwegian audio, so our goal is to make the model more robust for
medical terms and improve performance on the poor audio quality from phone
calls. How well this works mainly depends on the amount and quality of data
we have available to train the model.

5.1.1 Data

The training data for the model consists of Waveform Audio File Format (WAV)
files with a sampling rate of 16,000 Hz. It’s important to specify the format of the
audio files, as the characteristics of different file formats, such as compression,
bit depth, and sampling rate, can significantly impact the quality and size of
the audio data.

Actual emergency call recordings would be ideal for fine-tuning the model. Un-
fortunately, this could not be done because it would require access to the secure
location of the recordings, in addition to the whole training loop would need to
be running from inside that same location. This means we cannot access large
amounts of data usable for training.

5.1.2 Augmentations and simulation

As a result of insufficient data, we devised an alternative to the original emer-
gency calls. Initially, we acquired a simulated call by having a physician act
as a patient and an actual EMCC operator answering. This simulated call was
generated using the same system as a genuine emergency call, guaranteeing the
same audio format and quality. The result was a six-minute audio clip that
imitated a real-life emergency. Later, we got another call made in the same
way. However, we would need more data than just these two simulated calls to
enhance the model’s robustness to such audio.

28

To replicate noise and variations that may arise in actual emergency calls, it
may be beneficial to do some augmentation on the data. Our first step was to
record noises from outside traffic to layer on top of our simulated call. This is to
provide audio examples with background noise to ensure the model can perform
well in such cases.

Even if we split up our one emergency call into smaller bits to get more clips
to train on, they will all have the same speakers. This may create some bias
as dialects and language quality do not change much across all the training
data. The best solution to prevent this is to acquire more data from different
speakers. As we can’t train on actual emergency calls at this time, we chose to
create more audio ourselves based on the simulated call. This provides a small
amount of additional data containing speakers with different voices and dialects.
This audio was created using an audio recorder on the phone with both speakers
in the same room. To create some diversity between the two speakers, one was
put closer to the microphone than the other.

5.1.3 Training

Fine-tuning is done by first preparing the small amounts of available data. The
simulated calls are first manually transcribed so that they are labeled. Then
the audio clips are split into smaller chunks, shorter than 30 seconds per chunk.
This is necessary as the Whisper feature extractor will truncate longer audio
samples to 30 seconds. The new audio samples are then loaded into the training
loop with an AudioFolder1 dataset loader from Hugging Face. This dataset now
contains all the audio segments with their matching transcriptions.

A small part of the dataset is set aside for evaluation after the model is fine-
tuned. The rest is sent through the processing steps to make the data usable
for the Whisper model. The audio must be converted to log-Mel spectograms,
and the transcriptions must be translated to label ids with the tokenizer before
training starts.

5.1.4 Evaluation

The effectiveness of fine-tuning Whisper on our own Norwegian audio may be
evaluated in different ways, both qualitative and quantitative. The most obvious
way to measure the quality of a speech-to-text model is to look at the Word
Error Rate (WER) on audio samples the model has not seen before. This is also
true in our case, as it is important that the model maintains a high accuracy
after fine-tuning. What this does not tell us anything about is the accuracy
of which it can correctly guess more important medical terms or words that
might be unseen by the vanilla Whisper model. One key consideration is that
there may be multiple correct ways to transcribe a single audio clip. Two
transcriptions could have different formats, or one might include more filler
words than the other, yet both could still be considered correct by humans.
This becomes particularly relevant for models like Whisper, which are designed
to function across various fields with different transcription formats. Whisper
addresses this challenge to a degree by standardizing the text prior to calculating

1https://huggingface.co/docs/datasets/audio_load

29

https://huggingface.co/docs/datasets/audio_load

the WER, thus reducing the negative impact of non-semantic differences [44].
Given our limited amount of training data, we cannot expect any major impact
on the quantitative metrics. Therefore, human inspection of the results might
be a more effective way to evaluate the quality of the fine-tuned model in our
scenario.

We are also evaluating the feasibility of the fine-tuning process. This involves the
exploration of practical aspects such as the required resources, the complexity
involved, and the time commitment for fine-tuning. Understanding these factors
is important in order to facilitate a fine-tuning pipeline inside the same secure
environment where the data is stored.

5.2 Transcription web app

As a proof-of-concept, we developed a web application to showcase how Auto-
matic Speech Recognition (ASR) could streamline the manual task of transcrib-
ing historical emergency calls. The result was a web application where the user
is able to upload an audio file, which is then transcribed using ASR.

Since this web application is mainly developed for streamlining different manual
transcription tasks within “Helse Vest”, it is important to focus on functional-
ity that could be useful for the different tasks at hand. For example, Seksjon
for medisinsk dokumentasjon, Dokumentasjonsavdelingen ved Haukeland uni-
versitetssjukehus is currently manually transcribing historical emergency calls
formatted to indicate which person is speaking at a given time. This could
also be useful in the case of supervisory cases, in addition to timestamps which
makes it possible to play the audio clip together with subtitles.

Since this application will be used to transcribe real emergency calls, the solution
must run within the same secure environment as the recordings are stored, which
comes with some constraints the system must abide by. OpenAI provides an
Application Programming Interface (API) for the Whisper system, but there
are several reasons why using this API is not a viable solution. First, because
of the sensitive nature of the data, we cannot upload the recordings to servers
outside the environment where recordings are stored. This API also does not
allow us to fine-tune the model, which means adapting the model to Norwegian
emergency calls is impossible. Emergency calls also vary in length, and since
the API is limited to 25MB file uploads, this may be a limiting factor. Hugging
Face also provides an inference API, but this comes with the same restrictions
as OpenAI’s API, the only difference being that you can make inferences using
your own fine-tuned models. With these constraints in mind, we developed a
web application that should be able to run inside the “Helse Vest” environment
with minimal adjustments.

5.2.1 Architecture and implementation

The web application consists of a front-end developed using React and Type-
Script that communicates with the back-end, created using the Python frame-
work Flask. The front-end is responsible for handling the representation of logic
and is also the part of the application the client can interact with. The back-

30

end is responsible for handling the business logic. This includes doing speech
recognition and constructing the response.

To fetch resources from the back-end, we use the Fetch API [12] to access
resources across the network. When the user uploads an audio file, the function
will set the variable audio with the uploaded audio file, create an object URL,
and assign this URL to the source property making it possible to play the audio
in the browser, see Listing 5.1. When pressing the Transcribe button, provided
there is an audio file, the function sends the file and the file name to an API, see
Listing 5.2, where a new FormData object is constructed using the audio file and
the file name. Then the Fetch API sends a POST request to the back-end using
the FormData object as the request body. This is done with an asynchronous
function using the async/await syntax in TypeScript. Since the await keyword
is present, the function is paused until the request is completed. If an error
occur during the transcription, an alert will be presented to the user.

When the back-end receives a POST request with the audio file in the request
body, we can use ASR to transcribe the audio. When done, the back-end re-
sponds with a JSON object with two elements: the raw transcription with
speaker tags and the transcription with timestamps formatted as SubRip Sub-
title (SRT).

1 const uploadAudio = async (audio : F i l e) => {
2 i f (audio) {
3 s e tAud ioF i l e (audio) ;
4 const ob j e c tUr l = URL. createObjectURL (audio) ;
5 conso l e . l og (ob j e c tUr l) ;
6 i f (audioRef . cur r ent) {
7 audioRef . cur r ent . s r c = ob j e c tUr l ;
8 }
9 }

10 } ;

Code Listing 5.1: This code snippet defines an asynchronous function,
’uploadAudio’, which accepts an audio file as input. If a valid file is provided,
the function will set the audio file, create an object URL for it, and then assign
this URL to the current source property of a referenced audio object.

31

1 const t ransc r ibeAudio = async (f i l e : Blob) => {
2 setLoading (true) ;
3 setDocTranscr ipt (””) ;
4 i f (! f i l e) {
5 setLoading (fa l se) ;
6 return ;
7 }
8 try {
9 const re sponse = await API . t ransc r ibeAud io (f i l e ,

aud i oF i l e ! . name) ;
10 setLoading (fa l se) ;
11 setDocTranscr ipt (re sponse . doc t ex t) ;
12 s e t S r t (re sponse . s r t t e x t) ;
13 } catch (e r r o r) {
14 t oa s t ({
15 t i t l e : ”An e r r o r has occurred . ” ,
16 d e s c r i p t i o n : ”An e r r o r occurred during the

t r a n s c r i p t i o n . Try again l a t e r . ” ,
17 s t a tu s : ” e r r o r ” ,
18 durat ion : 5000 ,
19 i sC l o s ab l e : true ,
20 }) ;
21 }
22

23 } ;

Code Listing 5.2: This code snippet defines the ’transcribeAudio’ asynchronous
function, which takes an audio file as a Blob object as input. Initially, it sets the
loading state to true and clears any previous transcript. If no file is provided, it
stops the loading state and returns. If a file is provided, it sends the file to an
API for transcription. After receiving the response, it stops the loading state
and sets the received text transcript and SRT format to the corresponding state
variables.

To do the ASR with speaker diarization, we load theWhisper and pyannote.audio
speaker diarization model [40] into memory from local storage using Hugging
Face’s pipeline function. This is to avoid loading the models each time a request
is made, which would significantly increase response time. Using Hugging Face’s
pipeline, we create a pipeline object that abstracts most of the complexity from
the library.

32

1 wh i s p e r p i p e l i n e = p i p e l i n e (
2 ”automatic−speech−r e c o gn i t i o n ” ,
3 model=”<PATH TO TRANSCRIPTION MODEL>” ,
4 chunk l ength s =30,
5 dev i ce=device ,
6 generate kwargs={
7 ” language ” : ”<|no |>” ,
8 ” task ” : ” t r a n s c r i b e ”
9 }

10)
11

12 d z p i p e l i n e = P ip e l i n e . f r om pre t ra ined (
13 ’<PATH TO DIARIZATION MODEL> ’ ,
14 use auth token=”<AUTHTOKEN>”
15)
16

17 @app . route (’ / t r an s c r i b e ’ , methods=[’POST ’])
18 def t r an s c r i b e aud i o () :
19 a u d i o f i l e = reques t . f i l e s [’ f i l e ’]
20 f i l e name = ”temp−data/”+a u d i o f i l e . f i l ename
21

22 a u d i o f i l e . save (f i l e name)
23

24 t r a n s c r i p t i o n = wh i s p e r p i p e l i n e (f i l e name , return t imestamps=
True) [”chunks”]

25 dz = dz p i p e l i n e (f i l e name , min speakers=2, max speakers=5)
26

27 os . remove (f i l e name)
28

29 s p e a k e r l i s t = g e t s p e a k e r l i s t (dz)
30

31 l a b e l e d t r a n s c r i p t i o n s = l a b e l t r a n s c r i p t i o n s (t r an s c r i p t i on ,
s p e a k e r l i s t)

32

33 s r t t e x t = g e n e r a t e s r t t e x t (l a b e l e d t r a n s c r i p t i o n s)
34 doc t ex t = gene r a t e do c t ex t (l a b e l e d t r a n s c r i p t i o n s)
35

36 data = {}
37 data [’ doc t ex t ’] = doc t ex t
38 data [’ s r t t e x t ’] = s r t t e x t
39

40

41 return j s o n i f y (data)

Code Listing 5.3: ASR and speaker diarization model is loaded into memory.
The end point receives an audio file, transcribes it, and returns transcription
with speaker tagging and as SRT.

The speaker tagging of each text segment that the Whisper model produces is
done with the function label transcriptions() as shown in Listing 5.5. It takes a
list of transcribed segments from the Whisper model and a list of segments with
labeled speakers from the get speaker list() and matches each transcription to a
speaker. The speaker segments serve as “buckets” so that if a transcription is
within the range of one speaker segment, that transcription is labeled with that
speaker. Each transcription segment is represented by the median of start and
end times. This ensures that each transcription segment can only be put into
one “bucket”.

The speaker list, as displayed in Listing 5.4, transforms the output generated

33

by the pyannote.audio diarization model into more meaningful speaker labels,
such as “MO” (“Medisinsk Operator”; eng: “Medical Operator”) and “I” (“In-
nringer”; eng.: “Caller”). It also tags additional speakers with “I” followed by
a number.

1 def g e t s p e a k e r l i s t (d i a r i z a t i o n) :
2 s p e a k e r l i s t = []
3 s p e ak e r d i c t = {}
4

5

6 for t rack in d i a r i z a t i o n . i t e r t r a c k s (y i e l d l a b e l=True) :
7

8 # Find the speaker l a b e l s
9 i f len (s p e ak e r d i c t) == 0 :

10 s p e ak e r d i c t [t rack [2]] = ”MO”
11

12 e l i f t rack [2] not in s p e ak e r d i c t . keys () :
13 i f len (s p e ak e r d i c t) > 1 :
14 s p e ak e r d i c t [t rack [2]] = ” I ” + str (len (s p e ak e r d i c t

))
15 else :
16 s p e ak e r d i c t [t rack [2]] = ” I ”
17

18

19 s p e a k e r l i s t . append ([t rack [0] . s t a r t , t rack [0] . end ,
s p e ak e r d i c t [t rack [2]]])

20 return s p e a k e r l i s t

Code Listing 5.4: This Python code snippet defines the function get speaker list,
which takes the diarization output from the pyannote.audio model as input.
This function iterates over the tracks in the diarization output and assigns
meaningful speaker labels to each track. The first speaker is labeled as MO
(Medical Operator), and subsequent speakers are labeled as I (Caller) or I
followed by a number, for additional speakers. The function ultimately returns
a list of speaker segments, each represented by start and end times and the
corresponding speaker label.

34

1 def l a b e l t r a n s c r i p t i o n s (t r an s c r i p t i o n s , speaker s) :
2 l a b e l e d t r a n s c r i p t i o n s = []
3

4 for t r a n s c r i p t i o n in t r a n s c r i p t i o n s :
5 # I f the median o f t r a n s c r i p t i o n i s i n s i d e o f t imerange o f

speaker , then l a b e l i t with that speaker
6 t r an s c r i p t i on med ian = (t r a n s c r i p t i o n [” timestamp”] [0] +

t r a n s c r i p t i o n [” timestamp”] [1]) / 2
7 c l o s e s t s p e a k e r i n d e x = f ind bucke t (speakers ,

t r an s c r i p t i on med ian)
8 i f c l o s e s t s p e a k e r i n d e x == 0 :
9 # Do the same but round down the median to c l o s e s t

i n t e g e r
10 t r an s c r i p t i on med ian = int (t r an s c r i p t i on med ian)
11 c l o s e s t s p e a k e r i n d e x = f ind bucke t (speakers ,

t r an s c r i p t i on med ian)
12

13

14 l a b e l e d t r a n s c r i p t i o n s . append ({
15 ”timestamp” : [t r a n s c r i p t i o n [” timestamp”] [0] ,

t r a n s c r i p t i o n [” timestamp”] [1]] ,
16 ” text ” : speaker s [c l o s e s t s p e a k e r i n d e x] [2] + ” : ” +

t r a n s c r i p t i o n [” t ext ”] ,
17 ” s p e a k e r l a b e l ” : speaker s [c l o s e s t s p e a k e r i n d e x] [2]
18 })
19

20 return l a b e l e d t r a n s c r i p t i o n s
21

22 def f i nd bucke t (speakers , t r an s c r i p t i on med ian) :
23 c l o s e s t s p e a k e r i n d e x = 0
24 for i , speaker in enumerate(speaker s) :
25 i f t r an s c r i p t i on med ian >= speaker [0] and

t r an s c r i p t i on med ian <= speaker [1] :
26 c l o s e s t s p e a k e r i n d e x = i
27 break
28 return c l o s e s t s p e a k e r i n d e x

Code Listing 5.5: This Python code snippet defines two functions,
label transcriptions and find bucket. The label transcriptions function accepts
two parameters: transcriptions and speakers. It assigns speaker labels to each
transcription segment based on the median timestamp of the segment. If
the median timestamp falls within the time range of a speaker’s speech, the
corresponding speaker label is appended to the transcription. The function
returns a list of labeled transcriptions, each with start and end times, the
transcribed text with speaker label, and the speaker label itself. The find bucket
function finds and returns the index of the speaker whose speech segment’s time
range includes the given median timestamp. If no such speaker is found, it
returns the index 0.

35

Figure 5.1: Web application architecture. The user uploads audio, which is sent
to the back-end for ASR. The back-end returns the transcribed audio.

5.2.2 Technology stack

To develop a web application with the features we want to implement, we need
to decide on a technology stack that is able to provide us with the functionality
we need. We need front-end technologies to develop the front-end that the user
can interact with, and we need back-end technology that can handle requests
from the front-end and give an appropriate response. We also need technology
to load the pre-trained Whisper model and to fine-tune the model on our data.
Therefore we have decided on the technology stack described below.

React

React is an open-source library for JavaScript released in 2013 by Facebook
for building User Interfaces (UIs) and web applications. React applications
are based on components, which are reusable UI pieces that can be composed
together to make web applications [45].

Chakra UI

Chakra UI is an open-source component library for React. It provides a variety
of components that are customizable, accessible, and reusable. These compo-
nents are highly customizable and can be manipulated by passing properties to
the components. Using Chakra UI eliminates the need to write CSS [7].

TypeScript

TypeScript is a subset of JavaScript that was created to be a static typechecker
for JavaScript programs, which means that it is a tool that runs before the code
(static) and ensures that the types are correct. This is a powerful tool because
the most common errors that occur are type errors: a value was used where
a different kind of value was expected [19]. Since JavaScript is a dynamically
typed language, types are determined at runtime and are prone to runtime
errors, while errors are uncovered during compilation in TypeScript.

36

Hugging Face

Hugging Face is a platform where you can build, train and deploy machine
learning models. Hugging Face’s Transformer library is an open-source library
for building state-of-the-art deep learning models built on top of PyTorch and
TensorFlow frameworks. It includes pre-trained models that can be fine-tuned
for specific tasks such as text classification, question answering, and speech
recognition. The Transformer library can be installed as a Python package,
making it possible to train models with as little as three lines of code [52]. These
models can then be shared to the Hugging Face Hub [23] where you easily can
do inference using your model via the Hugging Face Inference API [25] using
simple API calls.

PyTorch

PyTorch is a machine learning library for building and training deep learning
models developed by Facebook’s AI Research group [41]. In addition to the
Python interface, PyTorch supports a range of hardware platforms, such as
GPUs, CPUs, and TPUs. PyTorch also supports distributive training, which
allows parallel processing across multiple GPUs.

Flask

Flask [56] is a Python web framework based on the Wergzeug2 toolkit and
Jinja23 templating engine. With Flask, it is easy to define routes and bind
them to functions that is executed when the route is accessed.

Figure 5.2: Web application technology stack. Front-end consisting of react,
TypeScript, and Chakra UI. Back-end consisting of PyTorch, Hugging Face,
and the Python framework Flask.

2https://werkzeug.palletsprojects.com/en/2.3.x/
3https://palletsprojects.com/p/jinja/

37

https://werkzeug.palletsprojects.com/en/2.3.x/
https://palletsprojects.com/p/jinja/

Chapter 6

Results

This chapter presents the evaluation and results of the research and experi-
ments conducted as part of this master’s thesis. The primary objective of our
evaluation was to assess the effectiveness and usability of the application. The
evaluation was performed using quantitative and qualitative methods, including
performance metrics, manual inspection, usability tests, and user feedback.

6.1 Fine-tuning

Whisper is already trained on enormous amounts of data, and because of that,
little fine-tuning is required to create a robust model, even though Norwegian
is considered a low-resource language. After fine-tuning the model on approxi-
mately six minutes of simulated audio, we notice some minor changes (illustrated
in Table 6.1). To evaluate performance on unseen data more extensively, we cal-
culate the WER on the simulated call not included in the training. The results
(as seen in Table 6.3) show a marginal improvement in the fine-tuned version
of the Whisper large-v2 model compared to the original.

Ground truth Fine-tuned Whisper

MO: Ja. Er det s̊ann
at hun føler hun holder
p̊a å besvime?

MO: Ja, er det s̊ann at
hun selv holder p̊a å
besvime?

MO: Er det s̊ann at
hun selv holder p̊a å
befime?

Table 6.1: Example results from comparing a vanilla Whisper model against
Whisper fine-tuned on emergency call data. The results are generated by up-
loading the same audio to the application two times. Each time with a different
model.

38

Ground truth Fine-tuned Whisper

I: Jeg er pjuskete selv,
s̊a jeg klarer ikke løfte
opp Margit. Hun er
stor dame.
MO: Svarer hun or-
dentlig n̊ar du snakker
til henne?
I: Margit? Ja, Margit?
Ja da, hun svarer. Hun
sier hun har vondt da.
Hun har sl̊att seg litt.
Hun har vondt i hofta
si sier hun.

I: Jeg husker ikke selv,
s̊a jeg klager ikke å
løfte opp Margit, hun
er en store dame.
MO: Ja, svar hun or-
dentlig n̊ar du snakker
med henne?
I: Margit, ja, Margit.
Ja da, hun svarer. Hun
sier hun har vondt da
hun har sl̊att seg litt.
I: Hun har vondt i
hofta, sier hun.

I: Jeg husker det selv,
s̊a jeg klarer ikke å løfte
opp Margit, sin store
dame.
MO: Ja, og svarer
hun ordentlig n̊ar du
snakker til henne?
I: Margit, ja, Margit.
I: Ja, da, hun svarer.
Hun sier hun har vondt
da hun har sl̊att seg
litt. Hun har vondt i
hofta sitt i fyrhund.

Table 6.2: Example results from the same test as in Table 6.1. These are longer
examples that show the two models’ ability to reproduce the original message.

Model WER

Fine-tuned 32.9443 %

Whisper large-v2 33.4829 %

Table 6.3: Resulting Word Error Rate (WER) from testing both the fine-tuned
and original Whisper large-v2 models on an unseen simulated emergency call.

The results from training (illustrated in Table 6.4) show how the model improves
on the training set during training. We stopped the training after ten epochs, as
we observed no further improvements beyond this point. Continuing to train for
a longer period, especially with a limited volume of training data, risks leading
to overfitting, which occurs as the model becomes increasingly specialized in
fitting the training data, reducing its ability to generalize to unseen data.

The training was done on a machine with an AMD Ryzen Threadripper Pro
5975WX CPU, 256GB memory, and an NVIDIA RTX A6000 GPU. Because
of the model size, training consumed almost the entirety of the GPU’s 48GB
VRAM. It took 4 minutes and 18 seconds to train the model over 10 epochs
using roughly 7 minutes of audio data.

39

Training Loss Epoch Step Validation Loss WER

1.2935 1.0 1 1.0842 38.2653

1.2935 2.0 2 1.0339 35.7143

1.1811 3.0 3 0.9826 33.1633

0.9953 4.0 4 0.9103 28.5714

0.7994 5.0 5 0.8852 28.0612

0.7257 6.0 6 0.8624 28.5714

0.6560 7.0 7 0.8423 28.8265

0.5976 8.0 8 0.8274 28.5714

0.5572 9.0 9 0.8110 27.8061

0.5096 10.0 10 0.8049 28.0612

Table 6.4: Performance metrics for each epoch during model training.

6.2 Transcription web app

The web application was constructed as an easy and accessible way to access
and use the fine-tuned Whisper model. The end product is a web application
that can transcribe a single audio file.

6.2.1 Functionality

The core functionality of the web application is to transcribe an uploaded WAV
file using the fine-tuned Whisper model. The application has a simple interface,
shown in Figure 6.1.

40

Figure 6.1: Web application home page, with the option to upload a WAV file,
listen to it, and transcribe it.

After hitting the Transcribe button, the transcribed audio is returned, together
with speaker tags, and displayed in an editable text window. The user can then
download the transcription, either as a DOC or SRT file, shown in Figure 6.2.

Figure 6.2: Web application with transcribed audio, with the option to download
the transcription as a DOC or SRT file.

The source code for this application and a video demonstration can be found in
Appendix A.

41

6.2.2 Speaker Tagging

In order to incorporate speaker tagging into the application, we matched the re-
sults from the pyannote.audio speaker diarization model with the transcriptions
from Whisper and got a suggested speaker for every transcription segment from
Whisper, visible in Figure 6.2. Evaluating the accuracy was done by manually
counting the number of correct and incorrect speakers, presented in a confusion
matrix in Figure 6.3.

MO I
Predicted labels

M
O

I
Tr

ue
 la

be
ls

40 9

4 64

Confusion Matrix

10

20

30

40

50

60

Figure 6.3: Confusion matrix illustrating the accuracy of speaker tagging by
comparing manual annotations with the suggested speakers obtained from the
integration of the pyannote.audio speaker diarization model and Whisper tran-
scriptions.

6.2.3 Metrics

To evaluate the application’s performance, we have timed the execution time
for audio clips whose lengths varied from 0.75 minutes to 4 minutes, as shown in
Figure 6.4. Given these inputs, the execution time varies from 10.2 seconds to
58.8 seconds. By observing the graph, we can see that as the input size increases,
the run-time increases, as anticipated. We can also see that the increase in run-
time seems relatively linear, indicating that the model maintains a consistent
performance level as the input size increases. This was done on a machine with
an AMD Ryzen Threadripper 1950X CPU, 64GB memory, and an NVIDIA
GeForce GTX 1080 Ti GPU, with the models running on the GPU.

42

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Input Size (minutes)

10

20

30

40

50

60
Ru

nt
im

e
(s

ec
on

ds
)

Runtime vs. Input Size

Figure 6.4: This line plot depicts the relationship between input size (in min-
utes) and computational runtime (in seconds). As input size increases, the
computational runtime also increases.

6.2.4 Feedback from demonstrations of application proto-
types

When developing a web application, it is vital to get feedback from the poten-
tial users of the application. This could be feedback about what features to
prioritize, validate design choices, and enhance the user experience. Therefore,
we organized two demonstrations for two sets of stakeholders: the researchers
and developers involved with the research project “AI-Support in Medical Emer-
gency Calls (AISMEC)” and personnel from a group tasked with transcribing
audio at the hospital.

6.2.5 Demonstration for researchers involved with the AIS-
MEC project

Early in the development, we had a demonstration for researchers in the “AI-
Support in Medical Emergency Calls (AISMEC)” project. Although they were
not the application’s target users, their familiarity with Seksjon for medisinsk
dokumentasjon’s work enabled them to provide valuable feedback. We gave
them three questions and the participants could respond on a scale from 1 to
5, where 1 representing strong disagreement and 5 indicating strong agreement,
shown in Figure 6.5.

43

1 2 3 4 5

0 0
1

0

3

Response

F
re
q
u
en
cy

(1) How likely would you be to use such
a solution to assist with the manual
transcription of audio logs?

1 2 3 4 5

0 0
1

3

0

Response

F
re
q
u
en
cy

(2) How satisfied are you with the de-
sign of the application?

1 2 3 4 5

0
1 1 1 1

Response

F
re
q
u
en
cy

(3) How satisfied are you with the func-
tionality of the application?

Figure 6.5: Answers from involved researchers in the AI-Support in Medical
Emergency Calls (AISMEC) project.

Question 4: Do you have any other comments or feedback on the
application? Feel free to provide a brief explanation for your answers
as well.

“Such a tool can be used for many different things and will be of great help and
streamlining of various work processes.”

“I’ve only seen a demo on the screen, but it looks very promising!”

“It seems to be efficient and accurate. Simple design with a black screen, but
probably just fine, as long as the user interface is easy to understand and straight-
forward. Nice with the box that came up with the text, as well as the option to
download.”

6.2.6 Demonstration for professional audio transcribers,
HUS

After demonstrating our applications to Seksjon for medisinsk dokumentasjon,
we got some helpful feedback, shown in Figure 6.6. For the three first statements,
the participants could respond on a scale from 1 to 5, where 1 representing strong
disagreement and 5 indicating strong agreement.

44

1 2 3 4 5

0 0 0 0

2

Response

F
re
q
u
en
cy

(1) The use of this technology will lead
to faster transcription.

1 2 3 4 5

0 0

2

0 0

Response

F
re
q
u
en
cy

(2) The use of this technology will lead
to more accurate transcription.

1 2 3 4 5

0 0 0

2

0

Response

F
re
q
u
en
cy

(3) The implementation of this solu-
tion will contribute to a better work-
day for you.

Figure 6.6: Answers from Seksjon for medisinsk dokumentasjon.

Comments question 1

“Absolutely, it will facilitate the task. We have speech recognition in Helse
Bergen, assisted speech recognition, doctors dictate, secretaries edit. It seems to
be the same solution. Work on building up a vocabulary list.”

Comments question 2

“Yes, that might be the case. There are different people transcribing at Seksjon
for medisinsk dokumentasjon. There is some variation in how they perceive
things.”

“I chose 3 because if the word ‘WILL’ is asserting something that’s going to
happen, I’m unsure about it based on the experience that the company’s speech
recognition wasn’t as good as we initially thought.”

Comments question 3

“The solution will enable us to spend less time on the task and accomplish more
tasks, as well as most likely make it somewhat easier for secretaries to listen to
a suggested text rather than having to write the entire text themselves. We are
dependent on work tasks, so considering that we might have less work, it’s not
necessarily a better workday.”

“Yes, that could be the case. Secretaries do enjoy writing. As for time usage:
yes, absolutely.”

45

Question 4: Even though the solution is developed for EMCC, do you
think it can be useful for other tasks? If so, which ones?

“It’s difficult to answer, as they already have a speech recognition system for
patient documentation. I don’t know if one is better than the other. What they
have now has been in use for a very long time. It’s only in the last few years that
it has become more similar to what was assumed it could do 10 years ago. I see
that more and more people are using it. However, the existing speech recognition
system has its weaknesses. Score 5 if there wasn’t already a speech recognition
system, 3 since there is one. It depends on whether it’s better or not.”

Question 5: If you were to use this application, do you have any
suggestions or proposals for improvements?

“As simple as possible; the fewest possible buttons. Those that are there should
be very clear. No mix of Norwegian and English; either one or the other. As
simple as possible; no flashing lights, etc.”

6.2.7 A preliminary semi-automatic transcription experi-
ment

In order to evaluate the efficiency of utilizing the web application to assist in
transcribing emergency calls, we conducted a preliminary experiment where we
compared the time spent on transcribing both with and without the assistance
of the application. The experiment was performed by ourselves, who had not
previously listened to the full audio recordings we were going to transcribe.
Both of us shared similar prior experiences, having each transcribed a single
simulated emergency call, and we also both used the same setup for transcribing
throughout the experiment. The audio clip was split into two equal parts and
each of us had assistance on a different part. This was done to minimize the
problem of one part being easier to transcribe. The timed results (illustrated in
Table 6.5) show that both improved significantly when using the application.

Semi-automatic Manual Improvement

Author 1 23:07 (Part 2) 31:17 (Part 1) 8:10 (35.33 %)

Author 2 15:49 (Part 1) 24:43 (Part 2) 8:54 (56.26 %)

Table 6.5: Results from the transcription experiment in minutes, including tran-
scription time and improvement. The time the model used to generate a tran-
scription is taken into account in the semi-automatic results. This means the
results reflect the time used in a real scenario, from loading an audio clip to
producing the corresponding transcription.

46

Part III

Discussion and conclusion

47

Chapter 7

Discussion, conclusion, and
further work

In this chapter, we will discuss the findings of our study, which centered around
our three research questions. In our first research question (RQ1), we tried to
determine the feasibility of constructing a system for accurately transcribing
Norwegian emergency calls by fine-tuning OpenAI’s Whisper model on actual
emergency calls. Our second research question (RQ2) focused on which other
steps, such as source separation, could improve the resulting system developed
in RQ1. Finally, research question three (RQ3) explored the technological and
infrastructural requirements for implementing such a system inside the hospital
and emergency call centers. We will also discuss further steps that can be done
to build upon this research.

7.1 Fine-tuning Whisper

To answer RQ1 regarding building a system for accurately transcribing Norwe-
gian emergency calls, we first needed a model that would be good enough for
this task. For this, we used the Automatic Speech Recognition (ASR) model
Whisper, which can already transcribe Norwegian audio out of the box. We
researched the potential to improve this model by fine-tuning it so that it would
perform better on audio from Norwegian emergency calls.

Fine-tuning Whisper was done by using the Hugging Face library. As previously
mentioned, Hugging Face streamlines the process of utilizing advanced technolo-
gies needed to load and train a model. This lets us focus on the more important
task of providing a sufficiently accurate model rather than spending time setting
up the fine-tuning. Unfortunately, we had minimal amounts of data available,
making it hard to produce good fine-tuning results. However, exploring this to
demonstrate the feasibility and discuss the possible effects of fine-tuning using
larger-scale real emergency call transcriptions was still an important part.

Information about what hardware is needed is important in order to set up the
fine-tuning loop inside the same secure environment where the real emergency

48

calls are stored. Whisper is a rather large model in terms of the number of
parameters and thus resource needs. We found that fine-tuning required a lot
of GPU memory, consuming approximately the entire 48GB VRAM we had
available. However, it is hard to pinpoint the exact amount of memory that is
needed. It might also be a possibility to tune the training arguments in order
lower the memory requirements. This could come at the cost of the time it takes
to train the model, which is even more relevant when training with much larger
sets of data than what we managed to do in this research. To evaluate and use
the model, all we need to do is load it, which requires roughly 10GB of GPU
memory. This means that getting transcriptions for real emergency calls is less
demanding when we’re simply using an already-trained model.

Unsurprisingly, given the small amount of data, the results from the fine-tuning
show that the performance difference compared to the original model is not
substantial. It is challenging to determine whether the variations in the resulting
transcript have positively impacted the model or if they simply are the product
of the systems’ randomness. The phrases that differ between the models are not
medical phrases in particular or phrases that were widespread in the training
data. The small positive change in WER also does not necessarily mean that the
model has improved. As previously explained, the WER may not always serve
as a reliable metric. In fact, in some instances, it might yield poorer results for
a model that performs better in practical applications. This leads us to believe
that while our small-scale fine-tuning experiment altered the model slightly, it
did not significantly improve its performance.

Although the data used for fine-tuning is simulated, it was based on real emer-
gency calls, and the majority was recorded with the same system employed
by Emergency Medical Communication Center (EMCC). Moreover, an actual
EMCC operator acted out the part of the medical operator. This implies that
the performance should closely resemble the actual outcomes when testing the
model on genuine emergency calls. However, the only data available for our
analysis were two simulated emergency calls, along with the recordings we cre-
ated ourselves. A limitation of this approach is that both simulated calls were
performed by the same individuals, which could potentially introduce bias when
evaluating the model using the second simulated call. Another potential issue is
the variability in speech patterns among individuals in real emergency calls. Our
research primarily focuses on “Helse Vest”, thereby limiting the distribution of
different Norwegian dialects likely to be encountered. However, we must still
account for these dialects and accommodate non-native Norwegian speakers.
Addressing this concern would likely involve fine-tuning the model on a diverse
range of real emergency calls to improve its adaptability and effectiveness, an
effort that is currently underway.

In the paper “Robust Speech Recognition via Large-Scale Weak Supervision” [44]
accompanying the release of OpenAI’s Whisper model, they clearly state that
the goal of Whisper is to create a system that can perform well without the
need for dataset-specific fine-tuning. The results from the same paper show
that zero-shot Whisper models come very close to human robustness. In con-
trast, the supervised models trained on LibriSpeech make about twice as many
errors as humans on datasets they have not been trained on. This shows that
models based on Whisper hold a unique advantage when transcribing a vari-

49

ety of real emergency calls where unpredicted speech patterns can occur. This,
however, does not eliminate the effect of fine-tuning completely. The same pa-
per accompanying the Whisper model also reported that fine-tuning directly
correlates with the model’s zero-shot performance on that language. From this,
in addition to how we have seen Whisper perform in our research, this model
seems to fit very well for this specific task.

7.2 Transcription web app

To fully answer RQ1, we decided to develop a simple web application using
OpenAI’s Whisper model, fine-tuned on our own data. To also try and answer
RQ3, we had to make deliberate choices of what technologies to use in building
the system. We developed a front-end using React, TypeScript, and Chakra
UI. Initially, we hosted the model on Hugging Face and accessed the model
using Hugging Face’s Inference API. However, we quickly became aware of the
limitations of this approach, which included loading time for the model to be
initialized, input size limitations, and the fact that real emergency calls can
not be uploaded to a remote server for ASR. We then decided to develop and
host our own back-end using the Python framework Flask and Hugging Face’s
pipeline functions.

There are several benefits to developing and hosting our own back-end. First, we
have complete control over the features and functionality, allowing us to tailor
the system to this project’s requirements. In the early stages of the development,
we used Hugging Face’s Inference API, which came with limitations that made
it unsuitable for this project, such as the file size being restricted to 25MB and
requiring frequent model loading, which took around two minutes. We are also
able to integrate it with the existing systems at “Helse Vest” since it has to run
within the same environment as where the emergency calls are stored. Hugging
Face’s Inference APIs work by uploading the audio to a remote server, which is
impossible with emergency calls since they can’t be stored outside of the secure
environment. By building our own back-end, we eliminate the restrictions that
came with Hugging Face, resulting in no loading time since the models are
already loaded into memory, no file size limitations, and we can integrate it
within a secure environment with access to the emergency calls.

Further steps to improve the system, as requested by our RQ2, primarily con-
sisted of implementing speaker tagging with the pyannote.audio speaker diariza-
tion model. The results indicate that the speaker tagging performs reasonably
well, and its few errors do not significantly impact the performance for its cur-
rent intended use, namely as an assistance for manual transcription. The biggest
weakness of our implementation, and what makes up the majority of errors, is
the identification of speakers when they speak in short or single-word utter-
ances. For instance, if one speaker is saying affirmative words like ’yes’ while
the other is mid-sentence. Addressing these problems might require an improved
speaker diarization model as it struggles to separate such tiny segments. It is
still worth mentioning that our algorithm that matches Whispers transcriptions
with a speaker segment might also have room for improvement. One limiting
factor caused by how we have implemented speaker tagging is that we base all
tags on the segments Whisper produces using its own voice activity detection.

50

If Whisper detects speech from two people as one speaker, we will still only
give that segment a single speaker tag. We also know that Whisper can do
multiple tasks by specifying input tokens to the decoder [44], which means that
it could potentially support speaker tagging in the future. Further development
and improvements in the EMCC systems might also lead to the emergency calls
being recorded on two tracks instead of one, meaning that the two speakers will
already be separated. Because of these considerations, we did not spend much
time researching speaker tagging as the preliminary results proved satisfactory.

After demonstrating our first application prototype to the involved researchers
in the “AI-Support in Medical Emergency Calls (AISMEC)” project, we felt
that they were optimistic about our solution. Furthermore, they were enthu-
siastic about such a semi-automatic transcription system since it appeared to
streamline the process of transcribing emergency calls, which is currently done
manually.

After further developing our application, we demonstrated it to members of
Seksjon for medisinsk dokumentasjon at Haukeland University Hospital. As
illustrated in Figure 6.6, they were optimistic that the solution would streamline
the task of transcribing emergency calls since they could correct a suggested
transcription instead of manually transcribing the whole audio.

However, they raised some concerns about the possible consequences of increased
efficiency. As their roles rely on work tasks, they questioned whether this so-
lution would improve working conditions since the increased efficiency brought
by such a solution could potentially lead to reductions in the workforce.

They were also curious about how the model would handle other languages,
such as Swedish and Danish. Since Whisper is a multilingual model, it can also
transcribe different languages, such as Swedish and Danish, with Word Error
Rate (WER) 8.5 and 13.8, respectively, on the FLEURS dataset [15].

7.3 Semi-automatic transcription

To evaluate the efficiency of the application’s primary use case, we manually
transcribed two parts of an emergency call, one with and the other without the
application’s assistance. As illustrated in Table 6.5, we significantly reduced our
transcription time. This is probably because correcting a suggested transcrip-
tion is more efficient than transcribing the whole audio manually from scratch,
even though the suggested transcription is not 100% accurate. Our experience
was that having some initial text made it easier to follow along with the audio
without having to pause or rewind as frequently. It also proved beneficial when
speakers talked simultaneously, as the suggested text would help focus on each
voice separately. Without its assistance, one might have to rewind and listen to
the clip multiple times to comprehend and accurately transcribe the conversa-
tion in the proper sequence order. But this can also introduce some unwanted
effects. Given the suggested transcription, the professional audio transcribers
might be inclined to accept the automated transcription as correct, even when
it contains errors, also known as automation bias [9]. We believe this will be
particularly true when there are words or phrases in the audio that are very
unclear, and the suggested transcription sounds about correct, but in reality, it

51

is not.

As with any research endeavor, this study has limitations, which should be
considered when interpreting the results. As outlined in the introduction, our
research employs a prototyping research methodology, though without the ca-
pacity to develop a fully functional prototype for use beyond our own. This
constraint affects the extent and quality of the evaluation we can conduct on
the resulting application, like having our target group perform a test. A signif-
icant part of this is due to the logistical challenge of moving the system from
our local setup to the secure location with access to emergency calls, a task that
requires effort from “Helse Vest” and is beyond our control. Thus, our research
has aimed to deliver a proof-of-concept system rather than a fully implemented
prototype.

7.4 Conclusion

In this study, we aimed to examine the feasibility of constructing a Automatic
Speech Recognition (ASR) system to accurately transcribe Norwegian emer-
gency calls by fine-tuning OpenAI’s Whisper model on historical emergency
calls, in response to our first research question (RQ1) (see Section 1.2). We
found that it is feasible to construct a machine learning pipeline to train the
model on actual emergency calls, and it demonstrated potential in improving the
efficiency of transcribing emergency calls, hence showing promise for practical
applications.

Regarding research question two (RQ2), we investigated source separation as a
potential step to further improve the resulting system referred to in RQ1. We
implemented speaker tagging to identify the different speakers in the transcrip-
tion automatically. The results proved satisfactory for the current intended use,
where most errors occur when they speak in short or single-word utterances.

Considering research question three (RQ3), we explored viable technologies and
infrastructure to integrate such a transcription system within the hospital and
emergency call centers. This resulted in the development of an ASR web appli-
cation designed with modern technologies that could be migrated to these en-
vironments, streamlining the process of manually transcribing emergency calls.

It is also important to acknowledge the limitations of our research, such as the
model only being trained on simulated emergency calls and the limited volume
of the training data. We will discuss potential further work in the following
section.

7.5 Further work

At the beginning of this project, the aim was to fine-tune the model on real
emergency calls to create a robust and accurate speech-to-text model for Nor-
wegian emergency calls. Unfortunately, this proved difficult since the fine-tuning
had to happen in the same environment where the emergency calls were stored.
Late in our research process, we gained access to a development environment
equipped with the necessary packages. As a result, we have obtained some very

52

early results on how the original Whisper large-v2 model performs on real emer-
gency calls. While it is too early to provide specific details on this, we can now
confirm that it is feasible to run Whisper inside this environment. In addition,
the preliminary examination of the resulting transcript also indicates promis-
ing potential. A natural next step would be to continue this evaluation using
our fine-tuned model instead of the original. Then, to increase the model’s
accuracy and robustness, fine-tune the model using the real emergency calls
that is available in this environment. Seksjon for medisinsk dokumentasjon,
Dokumentasjonsavdelingen ved Haukeland universitetssjukehus has transcribed
several hundred audio logs and continues to transcribe more.

Integrating spellchecking into the transcription process could improve the qual-
ity of the resulting transcript without needing to enhance the transcription
model itself. This could be accomplished by running a spellchecker, for example,
Hunspell [24], to rectify misspellings in the transcription output from Whisper.
However, additional pre-processing steps, like censoring personal and sensitive
information in the transcripts, would also need to be considered. We have
tried using GPT-4 [36], requesting it to redact sensitive data from a Whisper-
generated transcript. Preliminary results suggest that it effectively conceals
names, social security numbers, and addresses, signifying that integrating a
GPT model can be a promising approach.

Evaluating the effectiveness of semi-automatic transcription using our solution
was only done by ourselves. To realistically tell how well the system would work
in a real scenario would be to conduct a more extensive evaluation with pro-
fessional audio transcribers. We can assume that these professionals are much
faster writers than us and have more experience and better routines regard-
ing this type of task. This might reduce the beneficial impact shown by our
experiment on a first-time test without practicing with the system beforehand.

AI-generated suggestions might negatively and incorrectly impact a human’s
decisions. For example, sometimes there are words that, when you hear them,
depending on what you believe is being said, are what you will hear. We have
yet to test if our system could suggest the wrong word in such cases. It could
be beneficial to do more research on that topic and see whether this would be
a problem to the system’s performance and, if so, to what extent.

While we mainly focused on AI-generated transcriptions using Whisper models,
we also made it possible to tag the different speakers with the pyannote.audio
diarization model. For now, our implementation of this model in the system
seems to provide satisfactory results. The primary weakness related to speaker
tagging in our system seems to be when the speaker speaks in short or single-
word utterances. This weakness might depend on the accuracy of the models’
output and also the algorithm we use to match the speaker with transcription.
The extent to which available technology could enhance this aspect requires
further investigation.

53

Bibliography

[1] AMK SIMULATOR: Et komplett verktøy for kompetansebygging for me-
disinsk nødmeldetjeneste, basert p̊a simuleringstrening og kunstig intelli-
gens - Prosjektbanken. Prosjektbanken - Forskningsr̊adet. url: https:
/ / prosjektbanken . forskningsradet . no / project / FORISS / 309676

(visited on 04/19/2023).
[2] Artificial Intelligence in Innovation of Investigative Interviews Speech-To-

Text and Text Analysis Using Machine Learning - Prosjektbanken. Pros-
jektbanken - Forskningsr̊adet. url: https://prosjektbanken.forsknin
gsradet.no/project/FORISS/331893 (visited on 04/15/2023).

[3] Lasse Borgholt et al. “Do end-to-end speech recognition models care about
context?” In: arXiv preprint arXiv:2102.09928 (2021).

[4] Anni Burchfiel. What is NLP (Natural Language Processing) Tokeniza-
tion? tokenex. May 16, 2022. url: https://www.tokenex.com/blog/ab-
what-is-nlp-natural-language-processing-tokenization/ (visited
on 05/24/2023).

[5] Fredrik Byrsell et al. “Machine learning can support dispatchers to better
and faster recognize out-of-hospital cardiac arrest during emergency calls:
A retrospective study.” In: Resuscitation 162 (2021), pp. 218–226.

[6] Byte-Pair Encoding tokenization - Hugging Face Course. url: https:
//huggingface.co/course/chapter6/5 (visited on 03/01/2023).

[7] Chakra UI - A simple, modular and accessible component library that gives
you the building blocks you need to build your React applications. Chakra
UI: Simple, Modular and Accessible UI Components for your React Ap-
plications. url: https://chakra-ui.com (visited on 02/27/2023).

[8] Conformer-1: a robust speech recognition model. News, Tutorials, AI Re-
search. Mar. 15, 2023. url: https : / / www . assemblyai . com / blog /

conformer-1/ (visited on 04/13/2023).
[9] Mary L. Cummings. “Automation and Accountability in Decision Sup-

port System Interface Design.” In: The Journal of Technology Studies 32
(2006), pp. 23–31.

[10] Ken H Davis, R Biddulph, and Stephen Balashek. “Automatic recognition
of spoken digits.” In: The Journal of the Acoustical Society of America
24.6 (1952), pp. 637–642.

[11] Eirin Nybø Ellensen. “Norwegian Index for Emergency Medical Assis-
tance. Studies on the Use and Precision of the Emergency Medical Dis-
patch Guidelines in Norway.” eng. Accepted: 2017-10-03T11:01:34Z ISBN:
9788230839829. Doctoral thesis. The University of Bergen, Aug. 2017.

54

https://prosjektbanken.forskningsradet.no/project/FORISS/309676
https://prosjektbanken.forskningsradet.no/project/FORISS/309676
https://prosjektbanken.forskningsradet.no/project/FORISS/331893
https://prosjektbanken.forskningsradet.no/project/FORISS/331893
https://www.tokenex.com/blog/ab-what-is-nlp-natural-language-processing-tokenization/
https://www.tokenex.com/blog/ab-what-is-nlp-natural-language-processing-tokenization/
https://huggingface.co/course/chapter6/5
https://huggingface.co/course/chapter6/5
https://chakra-ui.com
https://www.assemblyai.com/blog/conformer-1/
https://www.assemblyai.com/blog/conformer-1/

url: https://bora.uib.no/bora-xmlui/handle/1956/16736 (visited
on 02/28/2023).

[12] Fetch API - Web APIs — MDN. Feb. 20, 2023. url: https://developer.
mozilla.org/en-US/docs/Web/API/Fetch_API (visited on 03/23/2023).

[13] Behrooz Ghorbani et al. Scaling Laws for Neural Machine Translation.
2021. doi: 10.48550/ARXIV.2109.07740. url: https://arxiv.org/
abs/2109.07740.

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. ht
tp://www.deeplearningbook.org. MIT Press, 2016.

[15] google/fleurs · Datasets at Hugging Face. Feb. 1, 2023. url: https://
huggingface.co/datasets/google/fleurs (visited on 05/05/2023).

[16] Katherine Gordon et al. “The Wellington life flight helicopter emergency
medical service (HemS): a retrospective audit against new Ministry of
health criteria.” In: NZ Med J 127.1402 (2014), pp. 30–43.

[17] Jan-Thorsten Gräsner et al. “EuReCa ONE 27 Nations, ONE Europe,
ONE Registry: A prospective one month analysis of out-of-hospital cardiac
arrest outcomes in 27 countries in Europe.” In: Resuscitation 105 (2016),
pp. 188–195.

[18] Jan-Thorsten Gräsner et al. “Survival after out-of-hospital cardiac arrest
in Europe-Results of the EuReCa TWO study.” In: Resuscitation 148
(2020), pp. 218–226.

[19] Handbook - The TypeScript Handbook. url: https://www.typescriptla
ng.org/docs/handbook/intro.html (visited on 02/28/2023).

[20] Ministry of Health and Care Services. Akuttmedisinforskriften. no. Rund-
skriv. Publisher: regjeringen.no. Apr. 2015. url: https://www.regjering
en.no/no/dokumenter/akuttmedisinforskriften/id2409330/ (visited
on 02/28/2023).

[21] Hjerneslag. NHI.no. url: https://nhi.no/sykdommer/hjernenervesys
tem/hjerneslag-og-blodninger/hjerneslag/ (visited on 05/23/2023).

[22] Hjerneslag. Helsebiblioteket. url: https : / / www . helsebiblioteket .
no/innhold/artikler/pasientinformasjon/hjerneslag (visited on
12/14/2022).

[23] Hugging Face Hub documentation. url: https://huggingface.co/docs/
hub/index (visited on 03/08/2023).

[24] hunspell/hunspell: The most popular spellchecking library. url: https:
//github.com/hunspell/hunspell (visited on 05/30/2023).

[25] Inference API - Hugging Face. url: https://huggingface.co/inferen
ce-api (visited on 03/08/2023).

[26] Is Word Error Rate Useful? News, Tutorials, AI Research. Sept. 9, 2021.
url: https://www.assemblyai.com/blog/word-error-rate/ (visited
on 05/19/2023).

[27] Dawn O. Kleindorfer et al. “Designing a Message for Public Education
Regarding Stroke.” In: Stroke 38.10 (2007), pp. 2864–2868. doi: 10.1161/
STROKEAHA.107.484329. eprint: https://www.ahajournals.org/doi/p
df/10.1161/STROKEAHA.107.484329. url: https://www.ahajournals.
org/doi/abs/10.1161/STROKEAHA.107.484329.

[28] Rashmi U. Kothari et al. “Cincinnati Prehospital Stroke Scale: Repro-
ducibility and Validity.” In: Annals of Emergency Medicine 33.4 (1999),
pp. 373–378. issn: 0196-0644. doi: https://doi.org/10.1016/S0196-

55

https://bora.uib.no/bora-xmlui/handle/1956/16736
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://doi.org/10.48550/ARXIV.2109.07740
https://arxiv.org/abs/2109.07740
https://arxiv.org/abs/2109.07740
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://huggingface.co/datasets/google/fleurs
https://huggingface.co/datasets/google/fleurs
https://www.typescriptlang.org/docs/handbook/intro.html
https://www.typescriptlang.org/docs/handbook/intro.html
https://www.regjeringen.no/no/dokumenter/akuttmedisinforskriften/id2409330/
https://www.regjeringen.no/no/dokumenter/akuttmedisinforskriften/id2409330/
https://nhi.no/sykdommer/hjernenervesystem/hjerneslag-og-blodninger/hjerneslag/
https://nhi.no/sykdommer/hjernenervesystem/hjerneslag-og-blodninger/hjerneslag/
https://www.helsebiblioteket.no/innhold/artikler/pasientinformasjon/hjerneslag
https://www.helsebiblioteket.no/innhold/artikler/pasientinformasjon/hjerneslag
https://huggingface.co/docs/hub/index
https://huggingface.co/docs/hub/index
https://github.com/hunspell/hunspell
https://github.com/hunspell/hunspell
https://huggingface.co/inference-api
https://huggingface.co/inference-api
https://www.assemblyai.com/blog/word-error-rate/
https://doi.org/10.1161/STROKEAHA.107.484329
https://doi.org/10.1161/STROKEAHA.107.484329
https://www.ahajournals.org/doi/pdf/10.1161/STROKEAHA.107.484329
https://www.ahajournals.org/doi/pdf/10.1161/STROKEAHA.107.484329
https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.107.484329
https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.107.484329
https://doi.org/https://doi.org/10.1016/S0196-0644(99)70299-4
https://doi.org/https://doi.org/10.1016/S0196-0644(99)70299-4

0644(99)70299-4. url: https://www.sciencedirect.com/science/
article/pii/S0196064499702994.

[29] Audun Langhelle et al. “International EMS Systems: the Nordic coun-
tries.” en. In: Resuscitation 61.1 (Apr. 2004), pp. 9–21. issn: 0300-9572.
doi: 10.1016/j.resuscitation.2003.12.008. url: https://www.
sciencedirect.com/science/article/pii/S030095720300460X (vis-
ited on 02/28/2023).

[30] Nicola Littlewood et al. “The UK helicopter ambulance tasking study.”
en. In: Injury 41.1 (Jan. 2010), pp. 27–29. issn: 0020-1383. doi: 10.1016/
j.injury.2009.04.002. url: https://www.sciencedirect.com/
science/article/pii/S002013830900223X (visited on 02/28/2023).

[31] Machine Learning. July 6, 2022. url: https://www.ibm.com/cloud/
learn/machine-learning (visited on 12/14/2022).

[32] Carl McQueen et al. “Does the use of dedicated dispatch criteria by Emer-
gency Medical Services optimise appropriate allocation of advanced care
resources in cases of high severity trauma? A systematic review.” en. In:
Injury 46.7 (July 2015), pp. 1197–1206. issn: 0020-1383. doi: 10.1016/
j.injury.2015.03.033. url: https://www.sciencedirect.com/
science/article/pii/S0020138315001709 (visited on 02/28/2023).

[33] Rick Merritt. What Is a Transformer Model? NVIDIA Blog. Mar. 25,
2022. url: https://blogs.nvidia.com/blog/2022/03/25/what-is-a-
transformer-model/ (visited on 05/24/2023).

[34] Ministry of Health and Care Services. Sentrale elementer vedrørende or-
ganisering av AMK-sentralene. no. Rapport. Publisher: regjeringen.no.
Sept. 2016. url: https://www.regjeringen.no/no/dokumenter/sen
trale-elementer-vedrorende-organisering-av-amk-sentralene/

id2511460/ (visited on 03/01/2023).
[35] NAKOS. Norsk indeks for medisinsk nødhjlep. https://www.helsedir

ektoratet.no/veiledere/norsk-indeks-for-medisinsk-nodhjelp/

Norskindeksformedisinskndhjelp.pdf.
[36] OpenAI. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL].
[37] Organisering av prehospitale tjenester. Helsedirektoratet. url: https://

www.helsedirektoratet.no/retningslinjer/hjerneslag/behandlin

gskjeden-ved-hjerneslag/organisering-av-prehospitale-tjenest

er (visited on 05/23/2023).
[38] Ø. Øster̊as, G. Brattebø, and J.-K. Heltne. “Helicopter-based emergency

medical services for a sparsely populated region: A study of 42,500 dis-
patches.” en. In: Acta Anaesthesiologica Scandinavica 60.5 (2016). eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/aas.12673, pp. 659–667.
issn: 1399-6576. doi: 10.1111/aas.12673. url: https://onlinelibrar
y.wiley.com/doi/abs/10.1111/aas.12673 (visited on 02/28/2023).

[39] Barak Or PhD. Learning Transfer Learning. Medium. Jan. 6, 2023. url:
https://towardsdatascience.com/learning-transfer-learning-

31b4b05f5a1a (visited on 05/24/2023).
[40] pyannote/speaker-diarization · Hugging Face. Jan. 17, 2023. url: http

s : / / huggingface . co / pyannote / speaker - diarization (visited on
04/19/2023).

[41] PyTorch. url: https://www.pytorch.org (visited on 05/31/2023).

56

https://doi.org/https://doi.org/10.1016/S0196-0644(99)70299-4
https://doi.org/https://doi.org/10.1016/S0196-0644(99)70299-4
https://doi.org/https://doi.org/10.1016/S0196-0644(99)70299-4
https://www.sciencedirect.com/science/article/pii/S0196064499702994
https://www.sciencedirect.com/science/article/pii/S0196064499702994
https://doi.org/10.1016/j.resuscitation.2003.12.008
https://www.sciencedirect.com/science/article/pii/S030095720300460X
https://www.sciencedirect.com/science/article/pii/S030095720300460X
https://doi.org/10.1016/j.injury.2009.04.002
https://doi.org/10.1016/j.injury.2009.04.002
https://www.sciencedirect.com/science/article/pii/S002013830900223X
https://www.sciencedirect.com/science/article/pii/S002013830900223X
https://www.ibm.com/cloud/learn/machine-learning
https://www.ibm.com/cloud/learn/machine-learning
https://doi.org/10.1016/j.injury.2015.03.033
https://doi.org/10.1016/j.injury.2015.03.033
https://www.sciencedirect.com/science/article/pii/S0020138315001709
https://www.sciencedirect.com/science/article/pii/S0020138315001709
https://blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-model/
https://blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-model/
https://www.regjeringen.no/no/dokumenter/sentrale-elementer-vedrorende-organisering-av-amk-sentralene/id2511460/
https://www.regjeringen.no/no/dokumenter/sentrale-elementer-vedrorende-organisering-av-amk-sentralene/id2511460/
https://www.regjeringen.no/no/dokumenter/sentrale-elementer-vedrorende-organisering-av-amk-sentralene/id2511460/
https://www.helsedirektoratet.no/veiledere/norsk-indeks-for-medisinsk-nodhjelp/Norsk indeks for medisinsk nødhjelp.pdf
https://www.helsedirektoratet.no/veiledere/norsk-indeks-for-medisinsk-nodhjelp/Norsk indeks for medisinsk nødhjelp.pdf
https://www.helsedirektoratet.no/veiledere/norsk-indeks-for-medisinsk-nodhjelp/Norsk indeks for medisinsk nødhjelp.pdf
https://arxiv.org/abs/2303.08774
https://www.helsedirektoratet.no/retningslinjer/hjerneslag/behandlingskjeden-ved-hjerneslag/organisering-av-prehospitale-tjenester
https://www.helsedirektoratet.no/retningslinjer/hjerneslag/behandlingskjeden-ved-hjerneslag/organisering-av-prehospitale-tjenester
https://www.helsedirektoratet.no/retningslinjer/hjerneslag/behandlingskjeden-ved-hjerneslag/organisering-av-prehospitale-tjenester
https://www.helsedirektoratet.no/retningslinjer/hjerneslag/behandlingskjeden-ved-hjerneslag/organisering-av-prehospitale-tjenester
https://doi.org/10.1111/aas.12673
https://onlinelibrary.wiley.com/doi/abs/10.1111/aas.12673
https://onlinelibrary.wiley.com/doi/abs/10.1111/aas.12673
https://towardsdatascience.com/learning-transfer-learning-31b4b05f5a1a
https://towardsdatascience.com/learning-transfer-learning-31b4b05f5a1a
https://huggingface.co/pyannote/speaker-diarization
https://huggingface.co/pyannote/speaker-diarization
https://www.pytorch.org

[42] L. Rabiner and B. Juang. “An introduction to hidden Markov models.”
In: IEEE ASSP Magazine 3.1 (1986), pp. 4–16. doi: 10.1109/MASSP.
1986.1165342.

[43] Alec Radford et al. “Improving Language Understanding by Generative
Pre-Training.” In: OpenAI (2018).

[44] Alec Radford et al. Robust Speech Recognition via Large-Scale Weak Su-
pervision. en. arXiv:2212.04356 [cs, eess]. Dec. 2022. url: http://arxiv.
org/abs/2212.04356 (visited on 02/22/2023).

[45] React – A JavaScript library for building user interfaces. url: https:
//reactjs.org/ (visited on 02/17/2023).

[46] Leland Roberts. Understanding the Mel Spectrogram. Analytics Vidhya.
Aug. 17, 2022. url: https://medium.com/analytics-vidhya/underst
anding-the-mel-spectrogram-fca2afa2ce53 (visited on 05/22/2023).

[47] Mirjam Lisa Scholz et al. “Artificial intelligence in Emergency Medical Ser-
vices dispatching: assessing the potential impact of an automatic speech
recognition software on stroke detection taking the Capital Region of Den-
mark as case in point.” In: Scandinavian Journal of Trauma, Resuscitation
and Emergency Medicine 30.1 (2022), pp. 1–17.

[48] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine
Translation of Rare Words with Subword Units. en. arXiv:1508.07909 [cs].
June 2016. url: http : / / arxiv . org / abs / 1508 . 07909 (visited on
02/22/2023).

[49] Slik kjenner du att eit hjerneslag. Jan. 31, 2020. url: https://www.
helsenorge.no/sykdom/hjerneslag/slik-gjenkjenner-du-et-hjern

eslag/ (visited on 10/12/2022).
[50] Stroke - What Is a Stroke? — NHLBI, NIH. Mar. 24, 2022. url: https:

//www.nhlbi.nih.gov/health/stroke (visited on 05/31/2023).
[51] Summary of the models. url: https://huggingface.co/docs/transfo

rmers/model_summary (visited on 03/01/2023).
[52] Transformers. url: https://huggingface.co/docs/transformers/

index (visited on 03/08/2023).
[53] Use automatic captioning - YouTube Help. url: https://support.goo

gle.com/youtube/answer/6373554?hl=en#zippy=%5C%2Cautomatic-

captions-on-long-form-videos-and-shorts (visited on 05/22/2023).
[54] Ashish Vaswani et al. Attention Is All You Need. Dec. 5, 2017. arXiv:

1706.03762[cs]. url: http://arxiv.org/abs/1706.03762 (visited on
02/21/2023).

[55] Jeannine Volchko. Prototyping Methodology: Steps on How to Use It Cor-
rectly. url: https://www.lumitex.com/blog/prototyping-methodolo
gy (visited on 05/20/2023).

[56] Welcome to Flask — Flask Documentation (2.2.x). url: https://flask.
palletsprojects.com/en/2.2.x/ (visited on 03/22/2023).

[57] What are Recurrent Neural Networks? — IBM. url: https://www.ibm.
com/topics/recurrent-neural-networks (visited on 05/31/2023).

[58] What Happens During a Stroke? — Premier Health. url: https://www.p
remierhealth.com/your-health/articles/women-wisdom-wellness-

/what-happens-during-a-stroke- (visited on 05/31/2023).
[59] What Is a Language Model? — deepset. url: https://www.deepset.ai/

blog/what-is-a-language-model (visited on 05/24/2023).

57

https://doi.org/10.1109/MASSP.1986.1165342
https://doi.org/10.1109/MASSP.1986.1165342
http://arxiv.org/abs/2212.04356
http://arxiv.org/abs/2212.04356
https://reactjs.org/
https://reactjs.org/
https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53
https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53
http://arxiv.org/abs/1508.07909
https://www.helsenorge.no/sykdom/hjerneslag/slik-gjenkjenner-du-et-hjerneslag/
https://www.helsenorge.no/sykdom/hjerneslag/slik-gjenkjenner-du-et-hjerneslag/
https://www.helsenorge.no/sykdom/hjerneslag/slik-gjenkjenner-du-et-hjerneslag/
https://www.nhlbi.nih.gov/health/stroke
https://www.nhlbi.nih.gov/health/stroke
https://huggingface.co/docs/transformers/model_summary
https://huggingface.co/docs/transformers/model_summary
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://support.google.com/youtube/answer/6373554?hl=en#zippy=%5C%2Cautomatic-captions-on-long-form-videos-and-shorts
https://support.google.com/youtube/answer/6373554?hl=en#zippy=%5C%2Cautomatic-captions-on-long-form-videos-and-shorts
https://support.google.com/youtube/answer/6373554?hl=en#zippy=%5C%2Cautomatic-captions-on-long-form-videos-and-shorts
https://arxiv.org/abs/1706.03762 [cs]
http://arxiv.org/abs/1706.03762
https://www.lumitex.com/blog/prototyping-methodology
https://www.lumitex.com/blog/prototyping-methodology
https://flask.palletsprojects.com/en/2.2.x/
https://flask.palletsprojects.com/en/2.2.x/
https://www.ibm.com/topics/recurrent-neural-networks
https://www.ibm.com/topics/recurrent-neural-networks
https://www.premierhealth.com/your-health/articles/women-wisdom-wellness-/what-happens-during-a-stroke-
https://www.premierhealth.com/your-health/articles/women-wisdom-wellness-/what-happens-during-a-stroke-
https://www.premierhealth.com/your-health/articles/women-wisdom-wellness-/what-happens-during-a-stroke-
https://www.deepset.ai/blog/what-is-a-language-model
https://www.deepset.ai/blog/what-is-a-language-model

[60] What is a Spectrogram? Pacific Northwest Seismic Network. url: http
s://pnsn.org/spectrograms/what- is- a- spectrogram (visited on
05/31/2023).

[61] What is Zero-Shot Classification? - Hugging Face. Nov. 16, 2022. url:
https://huggingface.co/tasks/zero-shot-classification (visited
on 05/31/2023).

[62] Erik Zakariassen, Elisabeth Holm Hansen, and Steinar Hunskaar. “Inci-
dence of emergency contacts (red responses) to Norwegian emergency pri-
mary healthcare services in 2007 – a prospective observational study.” In:
Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine
17.1 (July 2009), p. 30. issn: 1757-7241. doi: 10.1186/1757-7241-17-
30. url: https://doi.org/10.1186/1757-7241-17-30 (visited on
02/28/2023).

58

https://pnsn.org/spectrograms/what-is-a-spectrogram
https://pnsn.org/spectrograms/what-is-a-spectrogram
https://huggingface.co/tasks/zero-shot-classification
https://doi.org/10.1186/1757-7241-17-30
https://doi.org/10.1186/1757-7241-17-30
https://doi.org/10.1186/1757-7241-17-30

Appendix A

Additional resources

A.1 GitHub project

The GitHub project for the web application can be found here:
https://github.com/AMK-MsC/amk-s2t

A.2 Video demonstration

A video demonstration of the project can be viewed here:
https://www.dropbox.com/s/1h8qdfbqvhyej81/demo-lyd.mp4?dl=0

59

https://github.com/AMK-MsC/amk-s2t
https://www.dropbox.com/s/1h8qdfbqvhyej81/demo-lyd.mp4?dl=0

Appendix B

Questions and answers from
AISMEC

1. Hvor sannsynlig er det at du ville tatt i bruk en slik løsning for
å hjelpe med manuell transkribering av lydlogger?

(Ingen tekstsvar)

2. Hvor fornøyd er du med designet av applikasjonen?

(Ingen tekstsvar)

3. Hvor fornøyd er du med funksjonaliteten til applikasjonen?

(Ingen tekstsvar)

4. Har du noen andre kommentarer eller tilbakemeldinger til ap-
plikasjonen? Skriv ogs̊a gjerne en liten begrunnelse av svarene
dine.

• Svar: Et slikt verktøy kan brukes til mye forskjellig og vil være til
god hjelp og effektivisering av ulike arbeidsprosesser.

• Svar: Har jo kun f̊att demo p̊a skjerm, men det ser veldig lovende
ut!

• Svar: Ser ut til å være effektiv og nøyaktig. Enkelt dsign med
svart skjerm, men trolig helt OK, s̊a lenge brukergrensesnittet er
lettfattelig og greit. Fint med boksen som kom opp med teksten,
samt mulighet for download.

60

Appendix C

Questions and Answers
from Seksjon for medisinsk
dokumentasjon, HUS

1. Bruken av denne teknologien vil føre til raskere transkribering.

• Svar: Absolutt, det vil lette oppgaven. Vi har talegjenkjenning i
Helse Bergen, assistert talegjenkjenning, legene dikterer, sekretærene
redigerer. Det virker å være samme løsning. Jobb med å bygge opp
ordliste.

2. Bruken av denne teknologien vil føre til mer korrekt transkriber-
ing.

• Svar: Ja, det kan være. Det er ulike personer som transkriberer hos
Skrivetjenesten. Det varierer litt hvordan de oppfatter ting.

• Svar: Valgt 3 fordi dersom ordet VIL er en p̊astand om at det blir
og det er jeg usikker med tanke p̊a den erfaringen Talegjenkjenning
i foretaket ikke var s̊a bra som man hadde trodd.

3. Implementeringen av denne løsningen vil bidra til en bedre ar-
beidshverdag for dere.

• Svar: Ja, det kan være. Sekretærer liker å skrive. Tidsbruk: ja,
absolutt.

• Svar: Løsningen vil gjøre at vi bruker mindre tid p̊a oppgaven og f̊ar
utført flere oppgaver samt at det mest sannsynlig vil bli noe enklere
for sekretærene å lytte p̊a en forslagstekst enn å m̊atte skrive hele
teksten selv. Vi er avhengig av arbeidsoppgaver, s̊a med tanke p̊a
om vi f̊ar mindre arbeid, s̊a er jo ikke det nødvendigvis en bedre
arbeidshverdag.

4. Selv om løsningen er utviklet for AMK, tror dere den kan være
nyttig for andre arbeidsoppgaver? I s̊a fall, hvilke?

61

• Svar: Vanskelig å svare p̊a, for de har allerede et talegjenkjen-
ningssystem for pasientdokumentasjon. Vet ikke om det ene er bedre
enn det andre. Det de har n̊a har vært i bruk veldig lenge. Først de
siste årene at det har blitt mer tilnærmet det en antok at det kunne
gjøre for 10 år siden. Ser at flere og flere bruker det. Men det har
sine svakheter det eksisterende talegjenkjenningssystemet. Score 5
hvis det ikke fantes et talegjenkjenningssystem fra før, 3 siden det
allerede finnes. Avhengig av om det er bedre eller ikke.

5. Dersom dere skulle benyttet denne applikasjonen, har dere noen
innspill eller forslag til forbedringer?

• Svar: S̊a enkelt som mulig; færrest mulig knapper. De som er der
er veldig tydelige. Ikke blanding av norsk og engelsk; enten eller. S̊a
enkelt som mulig; ikke blinkende lys etc.

62

	Glossary
	Introduction
	Expected results
	Research questions
	Research methods
	Machine learning methods
	Evaluation

	I Background
	The context: emergency medicine and emergency communication centers
	Prehospital emergency medicine
	Emergency Medical Communication Centers (EMCCs)
	Brain stroke
	Diagnostic workflow for brain stroke

	Methods: deep learning for speech recognition
	Machine learning and deep learning
	Speech recognition
	Deep learning for speech recognition
	Transformer models
	Byte Pair Encoding Tokenization
	Mel-frequency Spectogram
	The Whisper system for automatic speech recognition

	Related work

	II Experimental work
	Design and implementation
	Fine-tuning Whisper
	Data
	Augmentations and simulation
	Training
	Evaluation

	Transcription web app
	Architecture and implementation
	Technology stack

	Results
	Fine-tuning
	Transcription web app
	Functionality
	Speaker Tagging
	Metrics
	Feedback from demonstrations of application prototypes
	Demonstration for researchers involved with the AISMEC project
	Demonstration for professional audio transcribers, HUS
	A preliminary semi-automatic transcription experiment

	III Discussion and conclusion
	Discussion, conclusion, and further work
	Fine-tuning Whisper
	Transcription web app
	Semi-automatic transcription
	Conclusion
	Further work

	Bibliography
	Additional resources
	GitHub project
	Video demonstration

	Questions and answers from AISMEC
	Questions and Answers from Seksjon for medisinsk dokumentasjon, HUS

