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Abstract

Numerical simulations have become essential for understanding blood circulation and

perfusion, as well as providing important insights for medical applications. More real-

istic models have become possible with technological advances, not only in the form of

more complex physics, but also in the flow detail of an entire organ circulation. These

characteristics are frequently of interest because blood vessels at different spatial scales

have different physiological properties.

This thesis focuses on the modeling and simulations of blood flow, tracer transport,

and perfusion in an organ tissue. The physical processes are expressed in a multiscale

flow model with segmented arteries and veins forming a vascular network flow model

that is connected to a microcirculation model. The unobservable vasculature, including

small vessels and capillaries, represented by the connection model, is simulated by using

a continuum and discrete approach.

A multiscale framework for solving blood circulation is presented. The novelty of

this framework comes from combining an existing hybrid flow model for a multiscale

circulation with vasculature-induced nonlinearities such as vessel wall elasticity and ves-

sel curvature. By using an appropriate linear algebra precondition, the corresponding

nonlinear system can be efficiently solved by using an iterative Newton method. This

allows us to formulate more realistic blood circulation in a complex physical domain by

employing a relatively simple framework with a low computational cost.

The models and their implementation are presented in the papers that constitute

Part II of this thesis. In the paper section, we propose a framework to generate a digital

phantom for perfusion imaging. Moreover, we evaluate tracer kinetic models demon-

strating the significant value of post-processing of medical data. We also investigate

optimal vascular networks revealing a complex interdependence between the geometry

of the vascular network, the capillary bed and organ shape.

The results of this thesis contribute to a better understanding of blood perfusion

models in tissue and their potential, as well as the potential of scientific computing, for

medical applications not limited to perfusion imaging.
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Sammendrag

Numeriske simuleringer har hatt vesentlig betydning for v̊ar forst̊aelse av perfusjon og

blodsirkulasjon, og simuleringer gir ogs̊a viktig innsikt under utviklingen av medisinske

anvendelser. Teknologiske fremskritt har muliggjort bruken av mer realistiske modeller,

ikke bare i form av mer kompleks fysikk, men ogs̊a ved at en kan studere sirkulasjonen

i hele organer. Disse kjennetegnene er ofte av interesse da fysiologiske egenskaper er

forskjellige p̊a tvers av romlige størrelsesordener.

Denne avhandlingen fokuserer p̊a modellering og simulering av blodstrøm, sporstoff-

transport og perfusjon i organvev. De fysiske prosessene er uttrykt i en flerskala

strømningsmodell der segmenterte arterier og vener danner en nettverksmodell for

vaskulær strømning, og som er knyttet til en mikrosirkulasjonsmodell. Den ikkeob-

serverbare vaskulaturen beskrevet av modellen simuleres b̊ade med en kontinuerlig og en

diskretisert tilnærming.

Vi presenterer et flerskala rammeverk for å studere blodsirkulasjon. Det nytenkende

aspektet ved rammeverket best̊ar i å kombinere en eksisterende hybrid strømningsmodell

for flerskala sirkulasjon med vaskulærfremkalte ikke-lineariteter som har opphav i bl.a.

veggelastisiteten og kurvaturen til blodkarene. Anvendelsen av en passende betingelse

fra lineær algebra gjør at vi effektivt kan løse det tilknyttede ikke-lineære systemet ved

bruk av en iterativ Newtons metode, og det relativt enkle rammeverket beskriver slik

blodsirkulasjon i et komplekst fysisk domene med en lav beregningsmessig kostnad.

Modellene og deres tilhørende implementeringer presenteres i artiklene som utgjør

Del II i avhandlingen. Her foresl̊ar vi et rammeverk for å generere digitale fantomer for

avbildning av perfusjon, og ved å evaluere kinetikkmodeller for sporstoff demonstrerer

vi de betydelige verdiene som finnes i etterbehandling av medisinske data. I tillegg un-

dersøker vi optimale vaskulære nettverk som avslører en kompleks gjensidig avhengighet

mellom geometrien til det vaskulære nettverket, kapillærene og organene.

Resultatene fra denne avhandlingen bidrar til en bedre forst̊aelse av blodperfusjons-

modeller i vev og potensialet til disse, samt potensialet som vitenskapelig databehandling

har i medisinske anvendelser utover perfusjonsavbildning.
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Chapter 1

Introduction

The study of blood flow in the human circulatory system has been of great importance

in the past couple of centuries. Blood circulation is a complex system that involves

vascular vessels at different spatial scales, ranging from arteries to capillaries to veins.

Mathematical modeling and numerical simulations are essential for describing the entire

vascular system and assessing the risk and benefit of a scenario during surgery. Math-

ematical models can also aid in the understanding of physical processes in the vascular

system and are clinically relevant to a wide range of medical applications.

Patient-specific hemodynamic simulations are typically initiated by acquiring a medi-

cal image from an imaging modality [23, 37, 49]. Hence, having complete vasculature im-

age data from an organ is essential. Magnetic resonance imaging (MRI) is a noninvasive,

radiation-free imaging modality that generates three-dimensional detailed anatomical

images. However, even with a 7T scanner, the resolution limit of an MRI is 250 microns,

which is far greater than the radius of capillary vessels [67]. Time-of-flight magnetic res-

onance angiography (ToF-MRA) acquisition can only identify larger arteries [21], and a

quantitative susceptibility map (QSM) allows for the extraction of larger veins [2]. To

complete a full blood flow modeling, unobservable vessels, including microvasculature,

must be acquired by using another imaging modality or described by using a suitable

physical model. It must be said that there are imaging modalities allowing for higher

resolution capable to resolve capilaries. However, the shortcoming is that these can cover

only small-sized regions/tissues typically formalin-fixed. They are currently not suitable

for living organisms. Thus, a physical modeling and good choice of boundary conditions

for the unresolved vasculature is currently be preferred. The microvasculature consists

of three types of small vessels: arterioles, capillaries, and venules, and the computa-

tional cost for flow simulation in these network is rather expensive [49, 51, 61]. However,

coarsening the capillary networks can reduce the complexity and the computational cost.

Reichold et al. [57] implemented such an approach in rats’ cerebral microvasculature and

found that an upscaled vessel could replace multiple vessels within a region. The capil-
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lary bed volume was divided into sub-domains, minimizing the computational costs by

a factor depending on the number of capillaries in the sub-domain. Nevertheless, this

approach requires the full knowledge of the microvasculature to calculate the upscaled

vessels, which as explained above, is not possible for living tissues. In Olufsen et al. [43],

a structured tree was constructed as boundary condition for each arterial terminal to

represent the capillary bed and the vein network. Combining both ideas, a structured

tree from [43] can can be used to approximate the upscaled microvasculature proposed

in [57].

A complex architecture of blood circulation makes it difficult not only to understand

the mechanisms that occur at the various levels but also to assess their interdependence.

According to Perdikaris et al. [49], a multiscale flow model is believed to have great

potential for solving this problem. It also overcomes the resolution limitation in the

image-based blood flow modeling, in which the observable vessels are linked using a

physiologically realistic model. One approach to the multiscale flow model is a discrete-

continuum system, where the microcirculation is defined as a porous media. Several

studies using this approach have explored the blood flow simulation for the cerebral and

liver microvasculature, both in humans and animals [14, 51, 58, 61]. Such proposed

models use a blood flow model that couples a 1D vessel network model and a 3D Darcy

continuum model, thus decreasing the computational cost significantly and allowing for

full brain simulations [23].

It should be noted, however, that 0D and 1D models have lower accuracy with respect

to full 3D models, especially when used to describe large vessels [8]. The simplified

physics model, such as a 0D model, requires some adjustments to recover the loss of

accuracy caused by modeling simplification, like vessel curvature, bifurcations, pressure

drops, and vessel wall elasticity. These adjustments introduce nonlinearities into the

modeling framework. In medical applications, this approach has become essential in

place of or in addition to, fully-resolved CFD modeling [8, 40]. It results in a framework

that is significantly easier to solve than existing 3D models and yet it allows for good

description of changes in hemodynamics even in complex blood circulation scenarios [37].

However, only a limited number of multiscale models integrate these nonlinearities. For

instance, Rohan et.al’s work only incorporated pressure drop at junctions in their model,

using Bernoulli’s equation [58].

The application of blood flow modeling in this thesis is primarily for the development

of digital reference objects in perfusion imaging MRI, such as dynamic contrast enhanced

(DCE)-MRI and Arterial Spin Labeling (ASL). This imaging technique have been widely

used to obtain physiological parameters for patient diagnosis, prognosis, and monitoring

[13, 17, 22, 29]. The tissue parameters (e.g. plasma flow, blood volume) from imaging
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data are mostly extracted by using black-box tracer-kinetic models (TKMs) [63, 66],

which have systematic errors depending on the model assumptions [11, 32]. Hence, the

estimation methods require evaluations and validations to provide a reliable result.

A phantom model is an artificial physical object that is scanned to test, analyze,

and tune MRI systems, as well as imaging performance and quantification methods,

including tracer kinetic models [72]. Digital phantoms, on the other hands, are usually

constructed by using a TKM to generate synthetic data [13, 22, 36, 62]. However, this

approach has the issue of model bias for evaluating TKMs since the data synthesis and

the model evaluation stages are not independent. Advances in computational resources

and approaches for blood flow modeling enable vast applications in the medical study

[46, 49, 55, 56], including development of digital phantom in perfusion imaging.

Developing a new multiscale flow model for blood circulation and perfusion can be a

daunting task due to the reasons stated above. This thesis addresses some of these issues

by focusing on three major issues: i) The need for a robust and efficient framework for

vasculature-induced nonlinearities in the blood circulation. ii) The complex processes

occurring in microcirculation and the coupling with macrocirculation, involving meticu-

lous physical modeling. iii) The evaluation of the framework for digital reference objects

in perfusion imaging.

Given this context, a multiscale framework is introduced for blood circulation and

extended to nonlinear problems in the vasculature. The framework allows a complicated

problem to be divided into manageable parts by considering the individual scale domains

separately, and thereby facilitates a consistent modeling and coupling between different

scales of the domain. For microcirculation, two approaches are presented: a porous

media in the discrete-continuum system and a direct connection model. Finally, the

frameworks were used to generate synthetic perfusion imaging data for the validation of

tracer kinetic models.

1.1 Main contributions

A mathematical model for multiscale structure in blood circulation that includes vasculature non-

linearities. A discrete-continuum blood flow model [23] is extended to cover vasculature

nonlinearities in vessels in Paper A. The model, which is validated by using frog exper-

imental data from [4, 35], accounts for physical processes such as elasticity and vessel

bifurcation in a frog tongue blood circulation. In the vessel occlusion scenario, the non-

linear effects in the discrete-continuum system are investigated in comparison to the fully

linearized model, which provides a more realistic result than the simplified model.
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A direct connection model for the unobservable microcirculation. A realistic model for a contin-

uum approach by using porous media requires a suitable permeability, which is difficult

to obtain from clinical data. The homogeneous assumption allows blood to spread from

an artery terminal to the entire organ, whereas blood perfusion takes place locally in the

capillary bed. In Paper C, we combined Reichold et al.’s upscaled vessel concept [57]

with a structured fractal tree to link the observable arteries and veins to enable us to

set up an upscale pressure drop that represents the capillary network [18]. This discrete

approach not only ensures local perfusion in the capillaries, but also serves as a starting

point for the continuum model’s permeability distribution.

Digital reference objects for perfusion imaging. Aside from providing knowledge on hemody-

namics and vasculature, advancements in blood flow modeling will continue to improve

a generation of various synthetic medical imaging data [3, 41, 48, 52]. The blood flow

model was used to generate synthetic data that can be used to test and validate phar-

macokinetic quantification methods. This application shows how a blood flow model can

be used as a digital reference object for a perfusion image with controlled parameters.

Paper B describes the preliminary work for generating tracer indicator flow by using the

hybrid flow model. Furthermore, paper C compares and evaluates four TKMs by using

a network flow model that generates synthetic data.

A study of the optimal vasculature in an organ based on multiscale flow model. The human

vascular structure in nature is believed to be an optimized construction for blood cir-

culation. A mathematical model that describes and mimics this vasculature allows for

various application. By employing the multiscale framework described in Paper A, the

optimization on the structure of the vascular network as the macrocirculation is studied

in paper D. The fluxes and time-of-flight in the capillary bed tissue of the model were

used as the basis for optimization. We discovered several local minima and a’short-cut’

in generated vessels as a result of the flux optimizations. The TOF optimization results,

on the other hand, were consistent and provided less stagnation in the domain, favoring

better distribution of oxygenated blood and nutrients to the tissue.

1.2 Outline

This thesis is divided into two parts. Part I is an introduction to the physiological

models, tracer kinetic analysis, mathematical formulations, and numerical methods used

in the papers. Part II consists of one paper published in a scientific journal, one peer

reviewed book chapter, and two journal articles ready for submission. The remainder of

Part I is organized as follows:
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Chapter 2 presents a brief overview of the physiological background theory behind the

mathematical model, where the main focus is on the multiscale architecture

of the blood circulation.

Chapter 3 discusses the tracer kinetic analysis of perfusion MRI.

Chapter 4 describes the mathematical model, including governing equations for fluid

and tracer flow for the multiscale models.

Chapter 5 introduces the discretizations of the mathematical models stated in Chap-

ter 4 and the numerical implementation.

Chapter 6 provides a summary of each of the papers in Part II and their scientific

contributions.



8 Introduction



Chapter 2

Physiological theory of blood circula-

tion

In this chapter, we introduced basic concepts describing the physiology of blood flow

and the fundamental theory for developing a mathematical model. The role of the blood

circulation is to distribute nutrients and oxygen to the tissue, and to carry the metabolic

waste away from the tissue. The oxygenated blood is pumped from heart, circulated

through arteries, distributed to the tissue via capillaries. The deoxygenated blood and

metabolic waste are transported away from the tissues to the heart via veins.

This chapter begins with an explanation of multiple-scale geometry and blood

circulation-related notation. The model scales are separated according to the imag-

ing modality’s resolution limitation. Then the physiological aspects are discussed, such

as the vascular network structure, vessel wall structure, and blood rheology.

2.1 Blood circulation system: a multiple-scale architecture

We classify the structural organization of the entire vasculature, the scales of interest

and the term that will be used in the remainder of this thesis, which is shown in Figure

2.1. This classification is a simplified version from definition in Quarteroni’s work [55],

and similar with the hybrid models in a multiple-scale architecture in blood circulation

[15, 23, 51, 61].

2.1.1 Macrocirculation

The macrocirculation is the observable vessels from an image modality (e.g. MRI, ASL,

etc), typically for vasculature greater than 250 µm in diameter, and possibly up to 140

µm using a 7T whole body scanner [67] of a formalin-fixed human tissue. This vessel

support a fast, stable and resilient flow. While the artery networks supply the oxygenated

blood and nutrients to the organ tissue, a similar vein networks usually parallel to the
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Figure 2.1: The architecture of blood circulation in this thesis consists of macro- and microcirculation. The
macrovasculature is extracted from an imaging data. While the microcirculation represents the connection be-
tween the observable arteries and veins. The image was taken and edited from www. britannica. com

arteries will carry the metabolic waste contained in the blood back to the heart.

Within this study, we will focus on the macrocirculation of an organ with vessels

radius below one mm and has dampened pulse wave in the upstream arterial vessels

[14, 51]. Hence, the blood flow can be considered as a laminar flow.

2.1.2 Microcirculation

In connection between the arterial and vein network, we define the unobservable vascu-

lature including arterioles, capillaries, and venules as a microcirculation. An arteriole is

a small vessel that branches out from an artery and connects to capillaries. The capillar-

ies are the smallest blood vessels in the body (5-10 µm in diameter), which form a dense

interconnected vessel network known as “capillary bed”. Molecular exchanges between

the blood and tissue cells occurred within the capillary bed, where the red blood cells

and the molecules transported by the plasma carry oxygen and nutrients. The space-

filling structure of the capillary bed ensures the supplies to the whole organ regions by

minimizing the distance between any point of the tissue and the capillary vessel, which

involves a huge number of vessels.

Both a continuum and a discrete approach to microcirculation were employed in

the thesis. The unobservable vessel networks were assumed to be porous media in the

continuum method. The microcirculation can also be described as a multi-compartment

system, with paper A implementing a two-compartment system for the arterial and

venous capillary bed, respectively. The discrete approach describes a direct link between

two adjacent artery and vein terminals within an effective radius, obviating the need for

a capillary network between those terminals. This method ensures local perfusion within

an effective range, which was not possible with a porous media in Paper B.
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2.2 Vascular network structure

The term ”vascular networks” in this study refers to the macrocirculation of an organ’s

vascular system, which includes artery and vein networks. One of the most noticeable

geometrical features of vascular networks is branching. Murray proposed the first the-

oretical studies on the structure of vascular networks in 1926, employing the principle

of minimum work [38, 39]. Half decade later, Kamiya and Togawa [30], and Zamir [74]

proposed the principle of minimum total drag force (shear stress) on the vessel wall.

The branching vessel (child) rule was generalized by Uylings, and the radii were

characterized using a scaling law with a bifurcation exponent in the range of 2 ≤ ξ ≤ 3

[70]. An exponent between 2 and 2.3 corresponds to turbulent flow in the aorta, while

3 is for laminar flow in the arterioles and capillaries. This exponent value has been

validated using measurement from vascular network in organs of human and animals

[25–27, 31, 42, 59, 68, 69, 75, 76]. In addition, Murray defined the optimal bifurcation

angle between parent and child vessel to obtain the optimal branching structure [39].

2.3 Blood vessel wall structure

The blood vessel wall is composed of three layers, each of which serves a distinct function.

The inner layer is made of endothelial tissue, which allows blood to flow smoothly and

without friction also acting as a sensor for wall shear stress. The middle layer is made

up of smooth and elastic muscle cells that allow blood vessels to adjust the size of their

lumens. Finally, the outer layer is composed of collagen, which protects, strengthens,

and connect the blood vessels to the surrounding tissues.

As a result, each blood vessel has a distinct structure based on its function. Arteries

have a thick layer of muscle cells and a flexible structure since they control blood flow at

high pressure. Veins have a thicker outer layer and thinner walls than arteries since the

lower blood pressure passing through them, despite having valves that ensure one-way

blood flow. Capillaries, on the other hand, have very thin walls and no smooth muscle

cells because they exchange gases and nutrients from blood vessels to surrounding tissue

at low pressure.

Therefore, the mathematical model must include a specific vessel wall structure for

each blood vessel to model the entire calculation. The inner wall is present in all blood

vessels, but the thickness of the middle and outer wall layers vary. Because our model

considers the dynamics of the vessel wall, only elasticity is used to differentiate the vessel

wall structure for each vessel.
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2.4 Blood rheology

Our model’s main object is blood, which consists of plasma, red blood cells (erythro-

cytes), white blood cells (leukocytes), and platelets. Plasma is a pale yellow fluid made

of proteins and electrolytes that transports cells and proteins throughout the body and

accounts for approximately 55% of total blood volume. Red blood cells (RBCs) ac-

count for approximately 45 % of total blood volume (in humans), and this will be the

hematocrit HD assumption for the remainder of the thesis. White blood cells are re-

sponsible for protecting the body from infection. Platelets are blood components that

aid in the blood clotting process. The last two blood components account for a much

smaller proportion of total blood than RBCs, which is about 1% of total blood.

Blood plasma, which consists mostly of water, can be considered to be very close to a

Newtonian fluid. The whole blood, on the other hand, has complex mechanical properties

that become especially important when the particle (especially RBCs) size is comparable

to the blood vessel size [53, 60]. In this case, blood cannot be modelled as a homogeneous

fluid in the microcirculation, it is necessary to consider it as a suspension of blood cells in

plasma. The presence of blood cellular elements and their interactions causes significant

changes in blood rheological properties. Therefore, accurate measurements are required

to develop appropriate a microcirculation model. Otherwise, based on the size of the

blood vessels and the flow behavior, it can be classified as a Newtonian or nonNewtonian

fluid.



Chapter 3

Tracer kinetic analysis

One of the goal for developing mathematical models in this thesis is to contribute to the

difficult task of validating tracer kinetic models in medical applications. In this chapter

we describe tracer kinetic analysis and tracer kinetic models. The main reference for this

chapter is from Sourbron et. al’s study [66], and we adopt much of the notation from

there.

3.1 Basic theory of tracer kinetic models

A tracer is an indicator molecule that follows a systemic substance, such as blood, within

a system or an organ [73]. Tracing these systemic substances in a system, that is, analyz-

ing their temporal and spatial distributions, contributes important informations about

the substance kinetics and the metabolic functioning of the system itself. The conser-

vation of tracer mass serves as the foundation for all tracer kinetic models. In addition,

the general tracer kinetic theory of linear and stationary systems is the foundation for

understanding them [50, 64, 66].

3.1.1 Conservation of tracer mass

Consider a region of tissue has several inlets and outlets, which a tracer may be deliv-

ered to one or more of these inlets. The tissue tracer concentration C(t) [M] is a value

measured directly in MRI, namely the number of tracer molecules relative to the total

volume of tissue. The tracer’s volume of distribution v (dimensionless or in [ml/100ml])

is the volume fraction of tissue that is accessible to the tracer, i.e. intravascular and

interstitium space, which is equivalent to the porosity of tissue. Since the tracer is a

water-soluble substance, it is restricted in the blood plasma, and the volume of distribu-

tion for whole blood therefore depends on the hematocrit, HD:

v = vb (1−HD) , (3.1)
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where vb denotes the total blood volume. The blood tracer concentration c(t) [M] is

defined as the number of tracer molecules in blood relative to the volume of distribution:

c(t) =
C(t)

v
. (3.2)

The blood flow in the inlet or outlet is defined as the tracer clearance F (in

[ml/min/100ml] or [min−1]) that is normalized to tissue volume [50]. The tracer flux

J(t) [mol/min/ml] is the number of tracer molecules through an inlet or outlet per

minute:

J(t) = Fc(t). (3.3)

The rate of change of the tissue concentration is equal to the difference between the total

influx and outflux in a region of tissue:

dC(t)

dt
=
∑

i∈Inlets

Fici(t)−
∑

o∈Outlets

Foco(t), (3.4)

where ci(t) and co(t) represent the tracer concentration at each inlet and outlet, respec-

tively. Equation (3.4) is the conservation of tracer mass inside a tissue region.

3.1.2 Linear and stationary systems

A relation between influx and outflux in a tissue region can be obtained through the

notion of tracer transit time, defined as the time elapsed between entering and leaving

the tissue. Because of the probabilistic nature of particle movement in tissue, the tracer

passage for inlet i is characterized by a probability distribution of transit times Hi(t)

[min−1]. If we assume the response to an influx is proportional to the concentration (lin-

ear) and Hi(t) is independent of the time of injection (stationary), the inlet i contributes

to the total outflux out of the tissue as follows:

∑

o∈Outlets

Jo(t) =
∑

i∈Inlets

Hi(t) ∗ Ji(t), (3.5)

where the convolution product * of two function f(t) and g(t) is defined as follows:

f(t) ∗ g(t) =
∫ t

0

dxf(x)g(t− x). (3.6)

Inserting equation (3.5) into equation (3.4) and integrating the result produces a relation

between tissue concentration and influx:

C(t) =
∑

i∈Inlets

Resi(t) ∗ Ji(t), (3.7)
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The residue function Resi(t) of the inlet i is the fraction with a transit time larger than

t, defined in terms of Hi(t):

Resi(t) = 1−
∫ t

0

Hi(u)du or Hi(t) = −dResi(t)

dt
. (3.8)

Another implication is that the mean transit time, T [min], is equal to the area under

curve Res(t):

T =

∫ ∞

0

Res(t)dt. (3.9)

In general, the measured tissue concentration C(t) and the arterial influx concentration

ca(t), known as arterial input function (AIF), are related by convolution with an impulse

response function I(t)(insert equation (3.3) into (3.7) with a single inlet):

C(t) = I(t) ∗ ca(t) with I(t) = FpRes(t). (3.10)

This function be determined by the tissue characteristic model assumption and param-

eters in TKM that will be discussed further in the following section.

3.2 Compartment models

A compartment is defined as a well-mixed space, i.e. a region where the concentration is

spatially uniform within the volume of distribution. As a consequence, the concentration

at any outlet must equal the uniform tissue concentration c(t). The equation of mass

conservation(3.4) for a compartment then depends on c(t) and the inlet concentrations,

ci(t) (inserting equations (3.2) into (3.4)):

v
dc(t)

dt
=
∑

i∈Inlets

Fici(t)−
∑

o∈Outlets

Foc(t). (3.11)

Solving this equation for c(t) and comparing the result to equation (3.7) shows that a

compartment is characterized by an exponential decaying residue function:

Res(t) = e−t/T with T =
v∑

o∈Outlets Fo
. (3.12)

In equation (3.9), the area under curve Res(t) can represent the mean transit time of

the compartment. This result show that T depends only on the volume of distribution

and the total outlet clearance, and independent of the inlet.

A multi-compartments model compromises of n interconnected compartments, where

the inlets of one compartment is the outlets of another. Applying equation (3.11) to

each compartment accordingly produces a system of n first-order differential equations

[34, 66].
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Figure 3.1: Schematic illustration of a simplified model of the capillary-tissue system in the one- and two-
compartment model. The plasma flow Fp carries tracer particles into and out of the tissue of interest. The
compartment assumption causes the tracer concentration flow rate proportional to the upstream compartment
concentration. (Left) The one-compartment model consider the whole extracellular space as a single plasma
compartment. (Right) Plasma and interstitium are defined as compartments in the two-compartment model, the
interstitium can only exchange with the plasma compartment at a rate determined by PS.

3.3 Tracer kinetic models

The thesis will focus on the models that are most commonly applied for extracting

blood flow Fp and blood volume vp parameters from DCE-MRI imaging data. The

models below are fundamentally based on the compartment model for the capillary tissue

[20, 28, 32, 34, 66]. Figure 3.1 shows the illustration of the one- and two-compartment

models.

3.3.1 One-compartment model (1CM)

The one-compartment model describes a tissue consisting of a single well-mixed ‘extracel-

lular’ compartment to represent the plasma space (with plasma’s volume of distribution

vp) inside a tissue region. The mass balance for a capillary compartment is:

vp
dcp(t)

dt
= Fp [ca(t)− cp(t)] , (3.13)

where Fp is the plasma flow and cp is the plasma concentration. The solution for this

model is

Res(t) = e−t/Tp with Tp =
vp
Fp

, (3.14)

yields an impulse function

I(t) = Fpe
−t

Fp
vp (3.15)
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and inserting this into equation (3.10) gives

C(t) = Fpe
−t

Fp
vp ∗ ca(t). (3.16)

3.3.2 Maximum slope model (MS)

The maximum slope model is a no-outflux model, by assuming no indicator molecule

leaving the tissue region when the indicator influx rate reaches the maximum value. This

model is based on a single-compartment with a simplified conservation of indicator mass

as follows (equation (3.13)):

dC(t)

dt
= Faca(t)− Fvcv(t), (3.17)

where indexes a and v denote the arterial inlet and the vein outlet, respectively. In an

enclosed tissue region, the inlets and outlets indicator clearance will be equal, Fa = Fv =

F0:
dC(t)

dt
= F0 [ca(t)− cv(t)] . (3.18)

If t is much smaller than the indicator transit time in the tissue (t ≪ Tp), then we can

assume that cv(t) ≈ 0 when ca(t) reaches maximum value. Therefore, it holds that

F0 =
maxtC

′(t)

maxtca(t)
, (3.19)

where the tissue concentration rate C ′(t) will be maximized if ca(t) is maximum since

the system is stationary.

3.3.3 Two-compartment exchange model (2CXM)

The Two-compartment exchange model describes two compartments, ‘plasma’ (vp) and

‘interstitial volume’ (ve), with their exchange in terms of capillary permeability PS in

addition to Fp (see the schematic illustration in Fig. 3.1). The indicator mass balance for

a plasma compartment has the form of equation (3.13) with an additional the interstitium

parameter:

vp
dcp(t)

dt
= Fpca(t)− Fpcp(t) + PSce(t)− PScp(t), (3.20)

and mass conservation for interstitium compartment:

ve
dce(t)

dt
= PScp(t)− PSce(t), (3.21)

where the total tissue concentration C(t) is defined as

C(t) = vpcp(t) + vece(t). (3.22)



18 Tracer kinetic analysis

Solving equation (3.20), (3.21) and (3.2) yields the impulse function for 2CXM, which

is given by

I(t) = Aex1t + (1− A)ex2t, (3.23)

where the exponents are roots of a quadratic equation [12, 34, 65]

x1, x2 =
1

2


−
(
PS + Fp

vp
+

PS

ve

)
±

√(
PS + Fp

vp
+

PS

ve

)2

− 4
PS

ve

Fp

vp


 , (3.24)

and the coefficients are

A =
α + PS

vp
+ PS

ve

α− β
and (1− A) =

β + PS
vp

+ PS
ve

β − α
. (3.25)

3.3.4 Two-compartment uptake model

The 2CUM is a simplified version of the 2CXM, by assuming a long mean transit time

(MTT) compared to measurement time, hence, there is only uptake flow from vp to ve

during measurement time [12, 65]. Hence, the backflux PSce(t) from interstitium in the

2CXM will be neglected (equation (3.20) and (3.21)), result in a conservation of mass

for plasma compartment:

vp
dcp(t)

dt
= Fpca(t)− Fpcp(t)− PScp(t), (3.26)

and for interstitium compartment:

ve
dce(t)

dt
= PScp(t). (3.27)

Solving the equations (3.26) and (3.27) yields the residue function for each compartment

Resp(t) = e−t/Tp , (3.28)

Rese(t) = EF (1− e−t/Tp), (3.29)

where

Tp =
vp

Fp + PS
and EF =

PS

Fp + PS
(3.30)

are the mean transit time in the plasma compartment and the exchange fraction, re-

spectively. The impulse function for the two-compartment uptake model is given by

I(t) = Fp[Rp(t) + Re(t)], inserting this function to equation (3.10) yields

C(t) = Fp

[
(1− EF )e

−t/Tp + EF

]
∗ ca(t). (3.31)
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3.4 Delay and dispersion

The above described system is assuming AIF, in the tissue region is measured directly

at each inlet. In practice, the tracer concentration is measured in a bigger upstream

vessel, so that the actual inlet concentration is both delayed and dispersed compared to

the measured upstream AIF. A delay can be detected in a poor fit in the upslope of the

first pass and easily be fixed by shifting the impulse function according to the time delay

I(t) = FpR(t− T0). (3.32)

T0 represents time delay, an additional parameter that can be determined by a suitable

model fitting procedure [5]. While dispersion can only be corrected by modelling the

vascular tracer transport explicitly [6, 7]. The correction is implemented by a convolution

of vascular transit time Ha(t) into the impulse function (equation (3.10)):

I(t) = FpR(t) ∗Ha(t), with Ha(t) =
e−t/Ta

Ta
, (3.33)

where Ta denotes the mean arterial transit time, i.e. the average time required for tracer

to travel from AIF measured location to the local inlet at the region of interest (ROI).

This value may be estimated using computational fluid model, such that the local AIF

can be computed from the measured AIF. In general, the combination of delay and

dispersion can be expressed by

Ha(t) =
e−t/T ′

a

T ′
a

∗ δ(t− T ′′
a ), (3.34)

where T ′
a and T ′′

a are the dispersion time and delay time, respectively. The sum of both

values is the mean transit time of the arterial vasculature, Ta = T ′
a + T ′′

a .
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Chapter 4

Mathematical model for blood circu-

lation

The physiological theory of blood circulation has been introduced in Chapter 2 and

is the starting point for developing the mathematics and geometry applicable to the

model scale. Before going deeper into the flow model, the first section describes the

simplifications and hypotheses for blood flow. The rest of this chapter is organized as

follows. First, we define the geometry for multi-scale modeling, as well as the model-

ing objects and notation used to label them. The mathematical model for each scale is

then described, including the model connection via coupling and the boundary condi-

tions. Finally, the transport equation for tracer flow modeling in the blood circulation

is introduced.

4.1 Main simplifications and hypotheses

In this thesis, the blood flow are simulated with focus on the following main assumptions:

• The segment of the blood vessel is considered as a long cylindrical tube with a

constant radius and non-slip conditions on the vessel walls.

• The blood hematocrit is assumed to be uniform in the whole vasculature, so that the

distribution of the red blood cells and the nonlinearities induced by it are neglected

[23, 51, 57].

• The capillaries and small vessels is assumed to be isotropic and homogeneous for

continuum approach in microcirculation.

We also present a number of other hypotheses that apply to all frameworks. First,

blood flows at approximately 1-5 cm/s in small artery and vein vessels less than 1 mm

in radius, and approximately 1 mm/s in the capillary network, so the Reynolds number

is consistently less than 200, allowing inertial effects to be ignored and the flow to be
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laminar. Second, because the Womersley number in small vessels is less than 0.1, the

pulsatility is negligible. The flow is then assumed to be stationary. We also conclude

that the mass density of blood ρ and gravity g are constant throughout the circulation,

so the pressures used in all calculations are defined as fluid pressures minus hydrostatic

pressures.

4.2 Vascular network model

A vascular network is an interconnected vessels forming either a network of artery and

veins. A single vessel segment in the vascular network is constituted by Poiseuille’s law

and some nonlinearities induced by the vasculature. The last, several vessels connected

into a vessel network model, require boundary conditions.

4.2.1 Poiseuille equation

The basis for our blood flow models is the Poiseuille equation [57, 61]. This is the sim-

plified Navier–Stokes equation for an incompressible Newtonian fluid flow with pressure

gradient as the only driving force.

∂u

∂t
+ (u.∇)u = −µ

ρ
∇2u− 1

ρ
∇P + f , (4.1)

where u is the velocity field, and the fluid has viscosity µ and density ρ; the fluid flow

driving force are a pressure field P and a body force f (which is assumed to be zero). If

the flow is assumed to be steady and the advection term is neglected, then this reduces

to

0 = −µ

ρ
∇2u− 1

ρ
∇P.

If the vessel is then assumed to be a long cylindrical tube, so that we can assume a

purely axial flow (i.e. with negligible radial and circumferential velocity components),

then this further reduces to

0 = − µ

ρr

∂

∂r

[
r
∂uz
∂r

]
− 1

ρ

∂P

∂z
(4.2)

with the subscript z is the axial component of flow and it is assumed that the pressure

is uniform over the cross-sectional area.

We can solve equation (4.2) with no slip boundary condition that requires uz = 0

at the vessel wall and symmetry at the flow center-line. Integrating the solution over

the vessel volume of length L and radius r give the flow resistance in the vessel, which

known as hydraulic resistance

R =
8µL

πr4
, (4.3)
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with

∆P = QR, (4.4)

where ∆P denotes the applied pressure difference and Q is the volumetric blood flow in

the vessel. This relationship is equivalent to the Ohm’s law in electrical circuit that is

one of the basic concept in a lumped parameter model [44, 45, 55].

4.2.2 Blood viscosity in the microvasculature

In the Poiseuille equation (4.3), the resistance to flow is linearly proportional to the

viscosity of blood. The viscosity is only a function of the blood haematocrit in larger

vessels, but in small vessels it is also strongly dependent upon the vessel diameter. This

is due to the finite size of red blood cells, typically around 8µm, is in the same order

of magnitude as that of the diameters of the smaller blood vessels; and the interaction

between these cells and the vessel wall which it is flowing results in a number of interesting

types of behaviour. This is known as the F̊ahraeus-Lindqvist effect and may be accounted

for by letting the viscosity depend on the vessel radius. Experimental studies show a

decreased apparent viscosity in vessels with a diameter from 300µm to about 10µm [60].

Therefore, the capillaries with diameter in this range contribute significantly to the total

resistance in the vascular system. We use the algebraic relationship of Secomb and

Pries’s work to describe radius-dependent viscosity [60],

µ(d) = µ0

[
1 + (µ0.45 − 1)

(1−HD)
G − 1

(1− 0.45)C − 1

(
d

d− 1.1

)2
](

d

d− 1.1

)2

(4.5)

where µ0 is the normal blood viscosity, d = 2r is the vessel diameter, HD is the blood

hematocrit with HD = 0.45 for reference,

µ0.45 = 6 exp (−0.085d) + 3.2− 2.44 exp (−0.06d0.645) (4.6)

and

G = (0.8 + exp(−0.075d))(−1 + (1 + 10−11d12)− 1) + (1 + 10−11d12)−1. (4.7)

Introducing equation (4.5) into the whole vascular system allows to determine the blood

viscosity for each vessel, and maintain the linearity of the Poiseuille equation (4.3).

4.2.3 Vessel wall model

Vessel wall elasticity is a physiological regulatory factor that forces blood flow in a

particular direction. On the other hand, the vessel wall elasticity also allows for a

vessel radius dependence on the pressure gradient, to favour blood supply in case of
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an alteration of the vascular system [71]. The vessel wall has stiffness G at a baseline

pressure P0 and the vessel area A0 during normal (rest) condition is given by the Young’s

modulus and Poisson’s ratio of the linear elastic material as follows

G =
dP

d(A/A0)

∣∣∣∣
A=A0

=
h0
r0

E

2(1− λ2)
, (4.8)

where h0 is the vessel wall thickness, E is the Young modulus, r0 is the initial vessel

radius during rest, and λ is the Poisson ratio. The pressure drop due to a change in

radius is described by the independent ring model [16] that neglects shear stress and

longitudinal displacement of vessel:

∆P = P − P0 = 2G

[√(
A

A0

)
− 1

]
, (4.9)

where P0 and A0 are a baseline pressure and the vessel area during normal (rest) con-

dition. Whereas P and A are the pressure and vessel area during compression or ex-

pansion, respectively. The pressure P is defined as an average pressure in the vessel

segment, which is simplified as the average pressures at both vessel endpoints. The

elasticity equation (4.9) has the effect of introducing a nonlinearity to equations (4.4).

4.2.4 Flow in a vascular network

In this section, we show how the above models presented for blood flow in single vessels

can be combined into a model for a vascular network. First, the flow is considered to

be in steady state, the Poiseuille equation (4.3) can be assumed. Then the viscosity of

the fluid needs to be known for each vessel. If a constant hematocrit is used, then the

resistance can be calculated as a function solely of the radius, Eq. (4.5). If the vessel is

also considered elastic, then the elasticity (4.9) is included into the system.

The remaining assumption that needs to be made is how the boundary conditions for

each vessel are linked together. Conservation of flow is needed and however there are two

different approaches that are used to match pressure at nodes. 1) The static pressure at

the node is equal at the end of each connecting vessel and independent to the flow rate

in vessels, which is the more common assumption and leads to the most straightforward

mathematical model. 2) The total dynamic pressure at the exit of a vessel is matched

at the inlet to all connected vessels:

P0 +
1

2
ρu20 = P1 +

1

2
ρu21 = P2 +

1

2
ρu22, (4.10)

where indexes 0, 1 and 2 denote each connected vessel at a junction. Both methods are

widely used, although little formal consideration has been given to the differences.
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In this thesis, a total pressure match scheme was used to define vessel pressure drop

connected to the junction node, which also allows for energy loss at bifurcation [40, 47].

An additional pressure drop estimation was defined from [8],

∆P b
n =

ρQ2
dat

2π2r4dat

(
1 +

Q2
nr

4
dat

Q2
datr

4
n

− 2Qnr
2
dat

Qdatr2n
cos (

3

4
θ(dat,n))

)
, (4.11)

where the upper index b stands for bifurcation and the index dat refer to the datum

vessel, i.e. the vessel from which the flow approaches the junction. Further, θ(dat,n)

is the angle between the datum vessel and vessel n. The pressure drop equation was

constructed based on Bernoulli equation to match the total pressure at the inlet and

outlet vessels at bifurcation. The derivation details were described on Mynard et al.’s

work for converging and diverging flow at a junction [40]. Hence, the total pressure drop

after a bifurcation node was computed as the sum of both equation (4.4) and (4.11),

∆Pn = ∆P h
n +∆P b

n. (4.12)

In addition to flow conservation, the model must have Dirichlet boundary conditions at

the vascular network’s inlet and outlet, which can be either pressure or volumetric flow.

4.3 Porous medium model

The hybrid model is an upscale approach for blood flow modelling in the multiscale

architecture of blood circulation [16, 51, 55]. This model combines the vascular network

model for the macrocirculation and a porous media as the microcirculation. The flow

in the unobservable vessels are defined using Darcy’s single-phase flow equation and

discretized with a uniform grid. The complex network of small vessels and capillaries

are simplified by modeling the capillary bed with Darcy equations. As a result, it

can reduce computational costs while still producing reliable blood flow results in the

capillary network. The disadvantage of this method is the inhomogeneity of capillaries

in organ tissue, which necessitates careful modeling to resemble the blood flow in a real

capillary network. In this thesis, we assume the permeability of the capillary bed is

homogeneous.

4.3.1 Conservation of mass

Conservation law, which includes mass conservation, energy conservation, and momen-

tum conservation, serves as the foundation for many physical models’ frameworks. Ac-

cording to the law of conservation of mass, the change in mass within a volume K ⊂ Ωi

equals the sum of the fluxes flowing over the volume boundary and any sources and
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sinks q within the volume:

∫

K

∂ (ϕρ)

∂t
dV = −

∫

∂K

ρv · ndA+

∫

K

qdV (4.13)

where ϕ is the porosity of the porous media (microcirculation), v is the blood flow flux,

and n is the outward pointing normal vector. In this model, q is a source or sink, for

instance describing the flow in or out a terminal node in the arterial or venous system

for coupling with vascular network model, or a describing the passage of flow from one

compartment to the other. The conservation of mass must be valid for any volume Ωi,

hence, by the divergence theorem

∂ (ϕiρi)

∂t
+∇ · ρivi = qi. (4.14)

4.3.2 Fluxes

In addition to the mass conservation, the constitutive laws are needed to describe the

physical process of interest. The capillary bed, which blood flows through, is defined as

a porous medium in this context. Darcy’s law, which applies to creeping blood flow in

capillaries, states that a fluid flows from regions of higher pressure to regions of lower

pressure in a linear manner. Thus

v = −K

µ
(∇P − ρg), (4.15)

where v is the Darcy flux (volumetric flow rate per unit area), K is the permeability

tensor of the porous medium, µ is the viscosity [10], and g is the gravity acceleration.

There are many common assumptions to simplify the system, which is also used in this

thesis, that the blood is an incompressible fluid (ρ is constant) and neglect gravitational

terms. Incorporating Darcy flow into the continuity equation (4.14) gives

−∇ · (K
µ
∇P ) = q. (4.16)

The capillary bed is described as a dual compartment system, using one compartment

for the arterial part and one for the venous part. Blood perfusion is interpreted as the

interchange between the two compartments, i.e. the exchange of oxygenated blood with

deoxygenated blood in the capillary bed. The driving force for perfusion is the pressure

difference between the two compartments [23], giving the linear relation

Perf = α(Part − Pvein) (4.17)
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where α is the perfusion parameter. The Darcy model for the two compartments becomes

−∇ · (Kβ

µ
∇Pβ) = qβ + Perf in Ωv (4.18)

where qβ =
ρQβ

V and the index β = {art, vein} stands for artery and vein respectively.

4.3.3 Boundary conditions

To complete the mathematical model of the blood flow in the porous media, the con-

servation of mass and governing equations must be supplemented by suitable boundary

conditions. The boundary condition for each compartment Ωi in a multi-compartment

model

uβ · nβ = 0 (Neumann BC) on ∂Ωβ, (4.19)

In hybrid model, both the arterial and venous Darcy systems are combined with the

terminal nodes of the arterial and venous networks as point sources/sinks for porous

media model (microcirculation). The analytic solution of the Darcy equation around

these points is a Dirac delta function, with a singularity at the source/sink point, creating

a problem at the 3D-1D interface. To avoid this problem, a fluid distribution function

is introduced [23]

f(x) =




CD exp

(
−1

1−|x|2

)
if |x| < 1

0 if |x| ≥ 1
(4.20)

and use this function with a finite radius ϵ, f ϵ(x) = f(xϵ ) on the Darcy domain. CD is

described as a quadratic function. Thus, at a terminal node l (source/sink), we take

qϵl =

∫

Ω

ql(x)f
ϵ(x− xl)dx. (4.21)

Beside mass continuity, we have to describe pressure continuity between the 1D vas-

cular graph and the 3D Darcy model. The pressure drop between the terminal node i

and the surrounding tissue is thus given as

Pl −
∫

Ω

P (x)f ϵ(x− xl)dx = κQl, (4.22)

where κ represents the resistance estimation for capillary system around terminal i in the

Darcy model. The resistance is estimated by computing resistance of a cylindrical tube

connecting a terminal node to the Darcy domain inside a finite radius ϵ using equation

(4.3). The tube radius is computed using Murray’s law in bifurcation, r3t = Nϵr
3
c , with

rt is the radius of terminal node, Nϵ is the number of cells (discretized units in Darcy

domain) inside radius ϵ, and rc represents the tube radius. The tube length is equal to

the radius ϵ.
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Both flow and pressure couplings between the vascular graph and Darcy model close

the loop from the arterial roots to the venous roots. While a well-posedness analysis

of the full model with nonlinear effects is beyond the scope of this paper, a linearized

model similar to the one considered in this model was recently shown to be well-posed,

both in the continuous setting and when discretized by low-order finite volume methods

[24].

4.4 Direct connection model

This section introduces a direct connection model as an upscale approach to describe mi-

crocirculation, which is essentially an interconnected vascular network consisting of capil-

laries, arterioles, and venules [14, 51, 56, 57]. A vascular graph model based on Poiseuille

equation (4.3) is, therefore, a straightforward approach for this structure. However, it

relies on computational resources and needs a fine detail of the vascular network [57].

The direct connection network models the linkage between the observable vascular net-

work (including arterioles, veneers and capillaries of less than 30 microns) which cannot

be directly observed due to the limitations in the imaging modality resolution.

4.4.1 Capillary network

We hypothesize that the flow of blood in capillaries is localized in a connection area

close to the network terminals. Over a sufficiently short time, the microcirculation in

the connection area can be interpreted as a series of major streams (direct connections)

between the terminal nodes of the arterial and venous vessels feeding the area. We define

the connection area as a circular (spherical in 3D) region centered at a terminal of the

arterial networks with radius ρc, as seen in figure 4.1. The value of ρc can be related to

the smallest resolution for vessels in perfusion MRI imaging data. We assume no flow

observed between arterial or venous vessels which belong to different connection area.

A direct connection is an extra network vessel, linking the arterial terminal to a venous

terminal in the same connection area. The pressure gradient across the connection (4.3) is

multiplied by a constant, γ, the relative capillary resistance to account for the capillarity

effect in direct connection k, yielding a pressure drop

Pa − Pv = γ
8µLkQk

πr4k
. (4.23)

The analytic derivation of the relative capillary resistance γ is explained below.
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Figure 4.1: Fig. 1 of paper C, the direct connections (black lines, left image) are introduced to model unresolved
vessels (including arterioles, venules and capillary tissue with a radius less than 30 microns). The flow resistance
in each direct connection was analytically computed from parameters derived from the corresponding connection
area (cyan circle, left image), see text for details. The vascular network structure in our simulation was obtained
from the classical work [9] and extracted using the imaging segmentation process in [19]. Direct connections
for the complete network structure are shown as black lines between terminal nodes, right picture).For a more
detailed description of the figure, see the original figure in paper II

4.4.2 Capillary resistance relative

The parameter γ in (4.23) is determined analytically to account in the direct connec-

tion vessel for the resistance due to the flow in the connection area. This is done by

extending the arterial and venous tree at the terminals with auxiliary branching, up to

n-generations, and connecting the auxiliary arterial terminals to the corresponding aux-

iliary venous terminals (see figure 4.2). The two auxiliary networks are identical and

symmetric. Direct connection k has length Lk (distance between the connected arterial

and venous terminals) and radius rk. The latter is computed using Murray’s law for

vessel bifurcation,

r3t =
∑

i∈Nc

r3i , (4.24)

where rt is the radius of arterial terminal t node, and Nc is the number of direct connec-

tions from the arterial terminal node t in the connection area. The direct connections

in the same connecting area are assumed to have the same radius, thus rk = rtN
−1/3
c .

The length of each branch in the auxiliary trees is assumed to be proportional to the

auxiliary vessel radius and subject to the constraint that the total length projection to

be equal to Lk, the length of the direct connection, coinciding with the distance between

the connected terminal nodes prior to the auxiliary network’s construction (see figure

4.2).

Lk = 2(L1 cos θ1 + L2 cos θ2 + ...+ Ln cos θn) (4.25)
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Figure 4.2: The auxiliary networks in a connection between the observable artery (red) and vein (blue) terminal
nodes(top figure). The auxiliary branches are generated to n-generation represents the resistance relative in the
direct connection (bottom figure).

with θ the angle between the parent vessel and the child vessel is defined as

cos θ =
r4p + r4c1 − r4c2
2(rprc1)2

, (4.26)

where rp is the parent vessel radius and rc1, rc2 are the two child vessel radii [39]. Because

of the symmetric branch assumption for children pairs in the auxiliary network, results

cos θn = r2n−1/2r
2
n and the n-generation radii is

rn = 2(n/3)rk. (4.27)

Inserting equation (4.26) into (4.25) yields

Lk =
L1r

2
k

r21
+

L2r
2
1

r22
+ ...+

Lnr
2
n−1

r2n
. (4.28)

By substituting equation (4.27), then this reduces to

Lk = 2
2
3 (L1 + L2 + ...+ Ln) . (4.29)

The length of vessel is assumed to be proportional to its radius, Ln ∝ rn. Then, the

n-generation vessel length is Ln = 2
1−n
3 L1. So, the equation (4.29) can be written in L1

as

Lk = 2
2
3L1

(
1 + 2−

1
3 + ...+ 2

1−n
3

)
. (4.30)

Due to the child vessel symmetric has similar resistance, the pressure drop in each

generation vessels are identical. It therefore satisfies the parallel circuit rule in electrical,

which follows the hypothesis in a 0D/lumped parameter blood flow modelling [43]. The
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Figure 4.3: An electric circuit scheme representation of the structured tree represents the calculation of the equal
resistance replacement for the whole system.

equivalent resistance simplifies the whole networks as for resistors in an electrical circuit.

The electric circuit representation is described in figure 4.3,

R = R1 +
R2

2
+

R3

4
+ ...+

Rn

2(n−1)
. (4.31)

Each vessel in n-generation has resistance computed using Poiseuille equation (4.3).

Hence, the total resistance in the structured tree

R =
8µ

π

(
L1

r41
+

L2

2r42
+

L3

4r43
+ ...+

Ln

2(n−1)r4n

)
. (4.32)

By substituting equation (4.30) and (4.27), the resistance in the structured tree is

R =
8µLk

πr4k

(
2

2
3 + 2

5
3 + ...+ 2

3n−1
3

1 + 2−
1
3 + ...+ 2

1−n
3

)
. (4.33)

The effective resistance of the auxiliary branching with n generations is then given ana-

lytically by

γn =

∑n
i=1 2

(3i−1)/3

∑n
i=1 2

(1−i)/3
(4.34)

This leaves us with a decision on the number of generations n for the auxiliary trees.

One alternative is to define a minimum radius, rn = rmin [44]. In the current analysis,

we use n = 1 for simplicity’s sake (γ = γ1). Further analysis and comparative findings

for different values of n are beyond the scope of this work.

The resistance will have the radius dependent viscosity for each vessel in the auxiliary

networks when including the F̊ahraeus-Lindqvist effect (equation (4.5)),

R =
8Lk

πr4k

(∑n
i=1 µ(2

−i/3rk)2
(3i−1)/3

∑n
i=1 2

(1−i)/3

)
, (4.35)

Thus, the flow resistance (4.23) in the direct connection has radius dependant viscosity

as this effect is apparent in vessels with radii up to 300 µm. Combined with equation

(4.34) we get

Rn =
8Lk

πr4k

(∑n
i=1 µ(2

−i/3rk)2
(3i−1)/3

∑n
i=1 2

(1−i)/3

)
(4.36)
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with index k refers to the connecting vessel. To maintain the linearity of the system, the

viscosities of each vessels were computed before solving the system.

3D auxiliary structure

The direct connection model is not only limited to the 2D structure but also allows for

a 3D vascular system with a simple alteration. Rotating the branch for each generation

with an axis parallel to the connection vessel (dashed line in figure 4.1) is the basic

modification to create a 3D structure, which creates a cone-shaped auxiliary network

after n-generation network. The parameter γ in equation (4.34) will be identical to:

γn =

∑n
i=1 2

(3i−1)/3

∑n
i=1 2

(1−i)/3
. (4.37)

Another approach is using a 3-branches bifurcation, which forms a tetrahedron at a

bifurcation node, instead of a 2-branches. Therefore, the n-generation radii will be

smaller than 2-branches bifurcation

rn = 3(n/3)rk, (4.38)

and the angle between a branch to the connecting line is a constant for any generation

branch

cos θn =
√

2/3. (4.39)

Inserting equation (4.39) into (4.25) yields

Lk = 2
√

2/3(L1 + L2 + ...+ Ln). (4.40)

Since we assume Ln ∝ rn, the n-generation vessel length is Ln = 3(
1−n
3

)L1, revers to

equation (4.38). Then, equation (4.40) reduces to

Lk = 2
√

2/3L1

(
1 + 3−

1
3 + ...+ 3

1−n
3

)
. (4.41)

The electric circuit representation for this 3D structure differs an additional branch for

each 2-branches from 2D auxiliary network in figure 4.3.

R =
2R1

3
+

2R2

9
+ ...+

2Rn

3n
. (4.42)

Inserting Poiseuille equation (4.3), (4.5) and (4.38) results

R =
8Lk

πr4k

(∑n
i=1 µ(3

−i/3rk)3
8(i−2)/3

∑n
i=1 3

−i/3

√
2

3

)
(4.43)
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or parameter γ:

γn =

(∑n
i=1 3

8(i−2)/3

∑n
i=1 3

−i/3

√
2

3

)
. (4.44)

If we change the angle θn in equation (4.39), parameter γ will be altered accordingly.

4.5 The transport equation

Transport processes are the primary functions of blood circulation in the human body,

such as the transport of oxygen and metabolic waste, as well as the transport of tracer

agents. In general, advective and diffusive processes govern this transport. Given the

blood flux field vi and the diffusivity Di in the domain Ωi, the conservation of the scalar

quantity ci is given by the conservation equation

∂ (ϕici)

∂t
+∇ · (civi −Di∇ci) = qc in Ωi (4.45)

where qc is the source/sink term. The source term in the Darcy model is blood perfusion

from another compartment, as well as inflow and outflow from the vascular terminal.

The gadolinium tracer diffusivity by dynamic-contrast-enhanced MRI was estimated to

be 2.08(±0.88) × 104mm2/s based on in vivo measurements [33]. Indicator diffusion in

a compartment is instantaneous, based on the conservation of indicator mass (3.4) and

the well-mixed compartment model described in Chapter 3. As a result, the diffusion

term is neglected, and the rate of change of the tracer within the control volume yields

∫

Ωi

∂ (ϕici)

∂t
= − 1

Ωi

∫

∂Ωi

cβ(vβ · n)dA+ qc. (4.46)

This transport equation is assumed to apply to the transport processes in the vascular

network and the direct connection model, with a porosity of one, and the source/sink

term represents the vascular network’s input/output.
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Chapter 5

Numerical model

The first topic in this chapter is the discretization of vascular structures, including the

vascular network as a macrocirculation and the direct connection model introduced in

the previous chapters. Section 5.2 provides an overview of discretization of tissue as a

porous medium, while Section 5.4 focuses on temporal discretization. The final section

contains details on how to combine the models for the entire vascular system in an organ

while accounting for both microcirculation models.

5.1 Vascular network discretization

The imaging data is used to derive the arterial and venous vascular networks. This data

segmentation directly provides a discretization of vascular segments and nodes for the

entire vascular network. The governing equation in the vascular network is simply a 0D

flow model, which can be observed in dedicated medical imaging acquisitions. A system

of equations in a fully linearized model is governed by (4.3) and the conservation of flow

in the vascular network. In the case of a nonlinear system, the vessel elasticity (4.9) and

pressure drop at junctions (4.11) are taken into account for the loss of accuracy in the

linear model, which causes nonlinearities in the system.

Figure 5.1: The finer vessel discretization description. Each vessel is divided into n subsegments representing
voxels in a cylindrical region. This voxel tracer concentration value then gives contrast for mimicking medical
image data.
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In order to map tracer concentration in a more detailed image, a finer discretization of

vascular segment is constructed. According to the required image resolution, each vessel

segment i is divided into ni subsegments associated with central axis voxels, and every

remaining voxel in the segment is assigned to the closest central axis point, resulting in

disc-like discretization volumes referring to subsegment within a segment [23].

5.2 Darcy discretization

The Darcy equations (4.18) in the capillary bed are solved using a two-point flux ap-

proximation (TPFA). First, we compute the fluid transmissibility between adjacent cells

i and j,

τij = 2Sij

(
∆xiµi
Kβ,i

+
∆xjµj
Kβ,j

)−1

(5.1)

where Sij is the face area between cells i and j, and, as above β ∈ {a, v}. Because of the
homogeneity of the system, constant parameters and uniform discretization, equation

(5.1) simplifies to

τij = S
Kβ

µ∆x
. (5.2)

Then, applying TPFA to (4.15) in single cell i and adjacent cells j ∈ Ni, neighbour cells

around i, we obtain ∑

j∈Ni

τij(Pi − Pj) = Qi. (5.3)

Applying this procedure for all cells in the domain, we obtain a system of equations

ADx = b, where AD is a symmetric matrix with elements

aik =





∑
j∈Ni

τij if k = i

−τik if k ̸= i.
(5.4)

We note that while the TPFA method is not a consistent discretization for general

grids, but it will be consistent and convergent on the quadrilateral grids used in this

study [1].

5.3 Model implementation

This section explains how to implement a multiple-scale model. In terms of microcir-

culation models, there are two options for simulating the entire vascular system in an

organ:

• Hybrid model that combines a vascular network model (Section 4.2) and a porous

media model (Section 4.3) into a (nonlinear) system of equations.



5.3 Model implementation 37

• Connection model that uses a direct connection model (Section 4.4) to connect

the observable (macrocirculation) arteries to the nearest vein terminal nodes.

In general, the system of equation can be written in matrix form as Ax = b, where

A is the resistance matrix for vessels in the whole vascular system, x is the unknown

vector consisting of the pressure and the volumetric flow rate in each vessel and b is

the vector of pressures in the inlet and outlet nodes as the boundary conditions. The

macrocirculation and the microcirculation models are combined in a (nonlinear) system

of equations 

AN−N AN−T 0

AT−N AT−T AT−M

0 AM−T AM−M







xN

xT

xM


 =



bN

0

0


 . (5.5)

The indexes N and T refer to the internal and terminal nodes in the vascular network,

and index M stands for the microcirculation discretization. The unknown x consists of

xN =

(
pN

qN

)

xT = pT

xM =

(
pM

qM

)
,

where p and q are the pressure at the nodes and flow rate in the corresponding seg-

ment, respectively. The blocks matrices represent systems of equations in the following

domains:

• Matrix AN−N ∈ RN×N is a matrix representation of the vascular graph model’s

system of nonlinear equations. It is based on equation (4.12), (4.9), and conservation

of mass. It consists of as many equations as the number of vessels and nodes in the

internal nodes network. It also has no more than four nonzero entries per row.

• Matrix AT−T ∈ RT×T is the system of nonlinear equations on terminal nodes at

the coupling between the vascular graph and the microcirculation model. It is based

on equation (4.12) and (4.9). The matrix is a diagonal matrix.

• Matrices AN−T ∈ RN×T and AT−N ∈ RT×N are couplings between the internal

nodes and the terminal nodes from equations (4.12), (4.9), and conservation of mass.

• Matrix AM−M ∈ RM×M is the system of equation for microcirculation. The hybrid

model uses the system of linear equations based on the Darcy’s law discretization in

equation (5.4). It has the same number of variables as the number of discretization

cells in the capillary domain and is symmetric. The direct connection vessel (Section
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4.4) is used in the connection model, and the flow resistance is represented by a

matrix based on equation (4.43).

• Matrices AM−T ∈ RM×T and AT−M ∈ RT×M are couplings between the terminal

nodes and microcirculation. The pressure and mass continuity are based on equation

(4.22) and (4.21) for the hybrid model. The connection model, on the other hand,

simply assumes equal pressure and flow rate in the coupling vessel (the conservation

of mass and energy).

• The bN term in the RHS is from the boundary conditions of the circulation system’s

inlet and outlet in Section 4.2.4.

We propose the specific solution to equation 5.5. The model will be solved efficiently

according to the model type (hybrid and connection model).

Hybrid model The hybrid model consists of linear and nonlinnear system in the governing

equations (5.5). The linear Darcy discretization system of equations (matrix AM−M ) is

solved separately and then combined back into the governing equation using the Schur

complement method. The nonlinear system is then solved iteratively. Let

B =

(
AT−T AT−M

AM−T AM−M

)
.

The Schur complement of block AM−M for the matrix B is defined as B/AM−M :=

AT−T − AT−MA−1
M−MAM−T . A−1

M−M is not computed explicitly, due to of the large

size of the matrix. Instead, the system of linear equation AM−MC = AM−T is solved

giving C = A−1
M−MAM−T . The linear system can easily be solved using, for instance, a

LU factorization. Substituting back in matrix A (5.5), we have

(
AN−N AN−T

AT−N B/AM−M

)(
xN

xT

)
=

(
bN

0

)
. (5.6)

The above nonlinear system (5.6) is solved using an iterative nonlinear least square opti-

mization algorithm based on Powell’s dogleg method [54]. The solution of the linearized

system (by omitting the nonlinearities) is used as the nonlinear solver’s initial approxi-

mation value. More information about this implementation can be found in Paper A.

The problem is defined as a nonlinear minimization problem, and it is solved using the

Levenberg–Marquardt and Powell’s dogleg methods in this thesis. Occlusion experiments

in paper A are used to evaluate the methods for accuracy and robustness. The results of

Powell’s dogleg method are more robust than those of the Levenberg–Marquardt method.

In varying percentages of occlusion, Powell’s method consistently converges.
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Connection model In comparison to the hybrid model, the system in equation (5.5) is a

nonlinear system of equations with fewer linear equations. The direct connection model

produces as many linear equations as there are close connections between the observable

veins and arteries. In this case, the Schur complement method is ineffective, so the

system is solved directly by a nonlinear solver. To solve the nonlinear system in the

hybrid model, we use Powell’s dogleg method. In paper B, the network flow model that

generates synthetic MRI data uses the direct connection model as the microcirculation.

5.4 Temporal discretization of tracer

Tracer movements in the vascular system are mapped as time-series data based on equa-

tion (4.46). A temporal discretization is necessary to solve the equation and find the

time-series tracer distribution. Consider the time derivative of concentration C in a

discrete cell, given by a function S,

∂C

∂t
= S(C)

The function S(C) is obtained from the solution of blood flow model in Section 5.3. The

volumetric blood flow determines the rate of concentration change in cell i as follows,

S(C) =
∑

j∈Ninflux

CjQj

volj
− Ci

voli

∑

jinNoutflux

Qj ,

where Ninflux denotes the adjacent upstream cells, voli is the volume of cell i, and Noutflux

is the adjacent downstream cells. The time derivative can be replaced by a finite dif-

ference approximation at discrete time points. The unknown concentration at the next

time step, Ck+1, can be obtained from the solution at the current time step, Ck, by the

theta rule:

Ck+1 = Ck +
[
θS(Ck+1) + (1− θ)S(Ck)

]
∆t (5.7)

where ∆t is the time step and θ in [0, 1] is a given parameter. We use ∆t = 3×10−4 s for

(0 s, 120 s) interval in the simulation. In equation (5.7), θ = 1 defines the implicit Euler

scheme, θ = 0 gives the explicit Euler scheme, and θ = 0.5 gives the Crank-Nicolson

scheme.

This modeling framework can be implemented in either a 2D or 3D domain. In this

thesis, we use the explicit Euler scheme. The other schemes will be computationally

expensive to implement, and there will be no benefit to using them in this framework.

In the explicit Euler method, we ensure tracer mass conservation by scaling the final

tracer mass of the calculation to its initial mass in each iteration. As a result, the tracer

mass that increases to and decreases from the domain is maintained to come solely from
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arterial and venous input and output. In order to reduce the error, we use a small ∆t.



Chapter 6

Summary and outlook

Figure 6.1: An overview of the papers in the thesis and their connections. A solid line denotes an existing
connection, whereas a dashed line denotes a potential connection and comparable relation. The papers are split
into two categories: flow models and applications.

6.1 Summary of papers

Part I of the thesis concludes with a summary of the papers and their relationships.

Figure 6.1 sketches the research topic dealt within each paper and connection between

them.

Paper A examines the nonlinearity effects in our multi-scale blood flow model and

presents the mathematical basis for the hybrid flow model. Nonlinearities in the model

are caused by pressure correction due to vessel elasticity and estimation of pressure drop

at vessel junctions. In this paper, we demonstrate our framework using a 2D anatomical

frog tongue and validate it using experimental data.
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A simplified model from Paper A is used in Paper B to synthesize tracer concentration

flow data from DCE-MRI. Instead of the dual-compartment Darcy flow model described

in paper A, a single-compartment Darcy flow model is used for the capillary bed. The

simulation produces a qualitatively accurate tracer concentration flow as well as a good

starting point for future development in the clinical application. However, assuming a

constant and uniform permeability in the Darcy model has a disadvantage because the

microcirculation flow is observed as a circle spread of tracer around the terminal nodes.

In paper C, we create a network flow model framework that serves as a reference for

tracer-kinetic models. The direct connection simplifies the microcirculation in paper A

and B by replacing the Darcy model. The framework proposed here is used to compare

four traditional pharmacokinetics models of varying complexity. The experiments show

that the modeling framework can help with the development of digital phantom models

in a variety of ways.

Paper D is a vascular network optimization application based on paper A. In macro-

circulation, the vascular network’s structure, such as length and angle, is optimized. We

hypothesized that the vascular network is optimally designed to feed the tissue within

an organ so that the tissue will receive nutrients equally regardless of its location from

the arterial root of the organ. We compare and evaluate the optimization objective in

this study using blood fluxes and time of flight within the microcirculation. The re-

sults show that time-of-flight optimization is more robust than flux optimization. The

study, however, is limited to simple geometry, which creates an unrealistic vasculature

in nature.

An extended summary of each paper is presented below. As the first author of the

papers, I have contributed by designing, writing the necessary software, implementing,

analyzing and discussing the results, and writing the manuscript. The other authors

have also participated in the study’s design and methodological selection, as well as dis-

cussion of the findings and feedback on the writing.

Paper A: A nonlinear multi-scale model for blood circulation in a realis-

tic vascular system

Ulin Nuha A. Qohar, Antonella Zanna Munthe-Kaas, Jan Martin Nordbotten and Erik

Andreas Hanson (2021), published in the Royal Society Open Science Journal.

DOI: https: // doi. org/ 10. 1098/ rsos. 201949

The effects of nonlinearity in our developed multiscale blood flow model are investigated

in this paper. The framework is made up of a coupling of vascular network flow describ-

ing macrocirculation and a hybrid flow model for microcirculation in an organ’s entire
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vascular system. The vascular model is based on Poiseuille’s law, with pressure correc-

tion by elasticity and pressure drop estimation at vessels junctions. Darcy’s law is used

to model the porous capillary bed as a two-compartment domain (artery and venous).

The fluid exchange between the arterial and venous capillary bed compartments is re-

ferred to as blood perfusion. We show our framework on a 2D anatomical frog tongue

from a textbook and validate it with experimental data. The numerical experiments

demonstrate that the proposed blood circulation model is 1) highly dependent on the

structure and parameters of both the vascular vessels and the capillary bed, and 2) pro-

vides a realistic blood circulation in the organ. The proposed model has the advantage

of being complex enough to reliably capture the main underlying physiological function

while also being extremely adaptable in terms of incorporating various local effects. Fur-

thermore, the model’s numerical implementation is straightforward, allowing simulations

to be run on a standard desktop computer.

Paper B: A multi-scale flow model for studying blood circulation in vascular

system

Ulin Nuha A. Qohar, Antonella Zanna Munthe-Kaas, Jan Martin Nordbotten and Erik

Andreas Hanson (2020), Proceeding of the European Conference on Numerical Mathe-

matics and Advanced Applications (ENUMATH 2019).

DOI: http: // dx. doi. org/ 10. 1007/ 978-3-030-55874-1_ 73

Paper B shows how to replicate perfusion imaging data using the framework developed

in Paper A for tracer concentration flow simulation. This work is the preliminary work

for creating a digital reference object capable of producing synthetic perfusion MRI

data. Numerical experiments show that blood circulation is closely related to the vas-

cular system’s structure and functional parameters. The simulations generate tracer

concentration flows that are qualitatively realistic. A constant parameter for permeabil-

ity in Darcy, on the other hand, demonstrates an unrealistic flow within microcirculation,

where the tracer flow is not exchanged locally within the capillary bed connected to the

nearest artery and vein. This model served as the foundation for further development in

paper C, which included a modification for microcirculation.

Paper C: Network flow simulation as digital reference in DCE-MRI tracer

kinetic model validation

Ulin Nuha Abdul Qohar, Steven Sourbron, Antonella Zanna Munthe-Kaas, Erik An-

dreas Hanson (2022), submitted to Magnetic Resonance in Medicine Journal.
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In paper C, we create a network flow model framework in a realistic vascular system

that serves as a reference for tracer-kinetic models. The proposed model is based on a

macrocirculation vascular graph model and a direct connection model that connects the

observable arteries and veins (microcirculation). It is assumed that the injected contrast

agent (CA) particles will flow passively along with the bloodstream. We compare four

traditional pharmacokinetics models of varying complexity to demonstrate the potential

application of the proposed framework. The experiments indicate that the modelling

framework may provide several contributions to the development of digital phantom

models. First, the synthetic data demonstrates the possibility of a more detailed evalu-

ation of the elusive problem of model bias than was previously possible. Second, it may

bring new light to the understanding of AIF placement. While localized AIFs eliminate

the problem of bolus dispersion, they increase parameter estimation errors in the com-

partment models. Third, the proposed network flow model is well-suited for a traditional

one-compartment-based model (1CM and MS).

Paper D: A Study of Vascular Structure Optimization Using Hybrid Flow

Model

Ulin Nuha A. Qohar, Antonella Zanna Munthe-Kaas, Jan Martin Nordbotten and Erik

Andreas Hanson (2021), Preprint

The vascular structure in nature is believed to be an optimized design for delivering

nutrients to tissues and carrying metabolic waste back to the heart. In this paper, we

attempt to find a mathematical optimization that describes the construction of a vascu-

lar network. The model is based on the multi-scale framework described in paper A, with

the structure of the vascular network as the macrocirculation optimized. The optimiza-

tion objective is based on the fluxes and time-of-flight in microcirculation, which is the

capillary bed tissue in the model. The flux optimization yields several local minima, and

the TOF is consistent with the outcome. This study, however, was unable to accurately

represent the vascular structure found in nature. The outcome provides some insight

into the method for determining the mathematical structure underlying this problem.

6.2 Outlook

We have shown that the system of human blood circulation is a complex system to

simulate in full scale. By using a multi-scale framework, can be simplified while still able

to capture complex behaviours. Paper A describes a nonlinear multi-scale framework
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that induces nonlinearities due to the F̊ahræus-Lindqvist effect, vessel elasticity, and

pressure drop at the junction. Other nonlinearities, including but not limited to blood

vessel curvature, plasma skimming, and precapillary sphincters, can be easily added to

the framework by modifying it. The model can also be numerically treated in the same

manner, using the Schur complement approach and solving for all nonlinearities in the

same Newton iteration. The model formulation allows also for a study of the effect of

each nonlinearity, and can provide a better understanding of the complexity of blood

circulation.

Paper B presents a tracer generator based on the multi-scale flow model from paper A.

The results show that a lack of correct modeling parameters can result in understanding

unphysical behaviour like the tracer to take a very long time in some specific microcir-

culation regions, as well as a circular spread of the tracer from the arterial terminals.

This study could be extended to include a physiological parameter derived from perfu-

sion imaging data, such as the permeability distribution of tissue derived from DCE-MRI

data, which would result in a more accurate tracer simulation. Darcy microcirculation

could limit blood flow from an arterial node to the nearest vein nodes by creating a

heterogeneous permeability. Finding the physiologically relevant permeability is thus

another option for future studies. When the permeability is changed from orthogonal

to heterogeneous, the two-point flux approximation (TPFA) may encounter a problem.

There are TPFA modifications that attempt to solve this problem by either locating the

degree of freedom at the circumcenter or introducing nonlinear transmissibility. Another

option for overcoming this limitation is to use conforming polyhedron meshes.

The difficulty in defining permeability without using perfusion imaging data inspired

the study in paper C. The study’s goal is to generate synthetic data to be used for

validating perfusion tracer kinetic models. As a result, the model must be built indepen-

dently of the tracer kinetic models that calculate perfusion parameters. This research

can be expanded into a vascular network by using an imaging modality such as MRA

(Magnetic Resonance Angiography), which produces a well-defined segmented vascular

network. Future research will also necessitate more accurate simulation of key imaging

characteristics such as limited spatial resolution and partial volume effects.

The study in paper D continues by extending the model into a 3D structure based

on real image data of an organ, i.e. extracting arterial network using ToF-MRA image,

identifying vein vasculature using QSM, and segmenting tissues and organ boundary us-

ing T1-weighted anatomical 3D data. Within the brain numerical domain, the alteration

can be limited to a certain extent. Another option is to grow the vascular network from

the existing vascular network in order to recover the unobservable vascular network,

which can then be validated using perfusion imaging data.
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As a final note, the work of this thesis embraces the principle of open science, by shar-

ing computational codes and data along with the papers. There are already numerous

open-sources and codes available in the context of blood flow modeling, and this work is

only a minor contribution by the author to the development of digital reference objects.

The primary reason for sharing the code is to support the reproducibility of scientific

results, which accelerates scientific progress in this field.
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In the last decade, numerical models have become an
increasingly important tool in biological and medical science.
Numerical simulations contribute to a deeper understanding of
physiology and are a powerful tool for better diagnostics and
treatment. In this paper, a nonlinear multi-scale model
framework is developed for blood flow distribution in the full
vascular system of an organ. We couple a quasi one-
dimensional vascular graph model to represent blood flow in
larger vessels and a porous media model to describe flow in
smaller vessels and capillary bed. The vascular model is based
on Poiseuille’s Law, with pressure correction by elasticity and
pressure drop estimation at vessels’ junctions. The porous
capillary bed is modelled as a two-compartment domain
(artery and venous) using Darcy’s Law. The fluid exchange
between the artery and venous capillary bed compartments is
defined as blood perfusion. The numerical experiments show
that the proposed model for blood circulation: (i) is closely
dependent on the structure and parameters of both the larger
vessels and of the capillary bed, and (ii) provides a realistic
blood circulation in the organ. The advantage of the proposed
model is that it is complex enough to reliably capture the main
underlying physiological function, yet highly flexible as it offers
the possibility of incorporating various local effects.
Furthermore, the numerical implementation of the model is
straightforward and allows for simulations on a regular
desktop computer.

1. Introduction
Nowadays, computational approaches have become one of the
complementary tools in studying structure, function and blood
regulation of the vascular systems [1–10]. The fundamental
purpose of developing a numerical model is to understand how
changes in the vascular structure affect transport mechanisms in
organs, giving important clinical information. However, one of

© 2021 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
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the challenging modelling issues for these systems is the fact that vascular systems are made of vessels at
different scales [8], ranging from large arteries with close to turbulent blood flow, to smaller arteries and
arterioles with mostly laminar flow, and to capillaries, with perfusion of cellular particles between artery
and vein capillaries. This complexity makes it difficult to fully understand the connection between scales
and the effect of localized changes on the whole organ.

The multi-scale mathematical modelling for blood circulation offers a reasonable solution to these
difficulties. By combining the well-established flow models at various vascular scale levels, one may
achieve a global model that also takes into account multiple local properties. The coupling between each
level is the key to creating a complete model with a suitable balance between computational cost and
detail, as required for pathological characterization [6,8,11]. To this end, several earlier studies have
proposed suitable modelling set-ups [1,5,7,12–16]. The authors in [5] propose a three-dimensional/one-
dimensional coupling for combining large and small arteries in the cerebral vasculature. In [10], the
authors consider a network representation that includes arteries, veins and capillaries. This model
assumes that the whole vasculature is an interconnected tube network and results in a much larger
system. However, the computational cost of this approach limits its applicability at a clinically relevant
scale. To overcome the limitation, the authors in [10] replaced the capillaries and arterioles with a coarser
network with similar resistivity. In a recent study [3], the authors treat vessels as a one-dimensional
network model and the capillary bed as a three-dimensional continuum model, thus decreasing
significantly the computational cost and allowing for full brain simulations. Other works addressing a
discrete-continuum system have investigated the blood flow simulation for cerebral and liver
microvasculature, both in humans and animals [7,12,17,18]. It must be mentioned, however, that zero-
dimensional and one-dimensional models have a reduction in accuracy when compared to full three-
dimensional models, in particular when applied to describe large vessels [19].

In the current work, we propose a multi-scale model for blood circulation that incorporates
nonlinearities induced by the vascular structure. The blood flow in the vascular network (arteries and
veins) is described using a vascular graph model [10] in which vessel segments are represented as long
cylindrical tubes with constant radii. To compensate for the accuracy loss of this model, a model for
pressure drop is included at vessel bifurcations [19,20] and we allow for a vessel radius dependence on
pressure due to vessel elasticity [21]. Darcy flow is used to describe the continuum representation of the
micro-circulation in the smaller vessels and the capillary bed. Further, a continuous distribution is
introduced to model the unresolved structure between the vascular network terminals and the Darcy
domain, with the purpose of reflecting the micro-vessel structure surrounding each terminal node.
Differently from [3], we investigate the impact of nonlinear interactions between pressure and flow, as
well as the role of vessel bifurcations in the flow network, and the effect of vessel occlusion in an organ.
Our model was developed for full-organ simulations with parameters from experiment data on frogs
[22–25] accompanied by estimations [21,26–28] to obtain results purely from governing equations and
the given anatomy.

2. Material and methods
In this section, we present our modelling framework. We construct a system consisting of an arterial and
venous vascular network, a two-compartment capillary bed and the couplings between the parts. A
realization of the model configuration is illustrated in figure 1, where the dotted line represents the
coupling and connection between compartments. Blood flows from the roots of the arterial network
(bottom left) through the arterial network (red), then to the continuous domains of the capillary
compartments (light red for arterial and light blue for venous compartment), and finally to the
venous network structure (blue) and to the venous roots at the bottom right of the venous network.
The arterial and venous terminal nodes are connected to the respective continuous capillary domains
in the capillary bed (red solid and blue dashed dotted-lines).

2.1. Model simplifications and hypotheses
Ourmodelling framework is quite generic and, as such, does not take into account all micro andmacro effects
related to the flow in the vascular system. Yet, by expressing the system in a multi-scale framework, we
manage to capture some of the underlying micro-scale details using the macro-scale parameters.

The main simplification in this model is that the capillary bed is assumed to be a homogeneous and
isotropic porous media. Further, the nonlinearities induced by the capillary physiology and the blood
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itself are neglected [29]. These include, among others, the non-Newtonian behaviour of the blood [30],
the Fahraeus–Lindqvist effect [31], plasma skimming [32] as well as viscoelasticity in the capillary
bed. The effect of these limitations is partly studied in a recent simulation framework [33].
Nevertheless, the reported simulations are only performed on a micro-scale and, to our knowledge,
no current simulation framework is able to incorporate all these micro-effects into a multiscale model.

With the simplifications mentioned above, the nonlinearities in this work are restricted to effects
arising from and affecting the vascular network, namely pressure drop at bifurcations and vessel
elasticity. Other than that, we limit our model to situations where the structure of the vascular system
is in a fixed passive condition (steady-state), so that all parameters and coefficients are constant over
the simulation time.

2.2. Graph structure model for vascular networks
A system of equations was constructed based on a network structure for both arteries and veins.
Assuming laminar flow and non-slip conditions on the vessel walls, each vessel segment n was
modelled as a long cylindrical tube of length Ln with constant radius rn≪ Ln. The vessel radius was
computed as an average radius value from the segmentation data. The pressure drop ΔPn in a single
vessel segment n was computed using Hagen–Poiseuille’s Law [10]

DPh
n ¼ 8mLnqn

pr4n
, ð2:1Þ

where the upper index h stands for hydrodynamic, μ is the blood viscosity and qn is a volumetric blood
flow. At a junction node, a pressure match scheme was used to define vessel pressure drop connected to
the junction node [34]. An additional pressure drop estimation was defined from [19,20]

DPb
n ¼ rq2dat

2p2r4dat
1þ q2nr

4
dat

q2datr
4
n
� 2qnr2dat

qdatr2n
cos

3
4
uðdat,nÞ

� �� �
, ð2:2Þ

where the upper index b stands for bifurcation and the index dat refers to the datum vessel, i.e. the vessel
from which the flow approaches the junction. Further, θ(dat,n) is the angle between the datum vessel and

artery capillary bed vein

mode

y

x

Figure 1. The quasi-three-dimensional numerical model for a two-dimensional spatial problem. The xy (vertical) axis represents the
two-dimensional computational domain in space and the third axis (horizontal) is the model axis. Blood flows from the roots of the
arterial network through the arterial network (red), then to the continuous domains of the capillary compartments (light red for
arterial and light blue for venous compartment) and finally to the venous network structure (blue) and to the venous roots at the
bottom of the venous network. The arterial and venous terminal nodes are connected to their respective continuous capillary
domains in the capillary bed (red solid and blue dashed dotted lines). The green dotted lines represent the pixel-wise bridge
between capillary compartments, which is modelled as the blood perfusion in §2.4.
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vessel n. The pressure drop equation was constructed based on Bernoulli equation to match the total
pressure at the inlet and outlet vessels at bifurcation. The derivation details were described in [20] for
converging and diverging flow at a junction. Hence, the total pressure drop after a bifurcation node
was computed as the sum of both equations (2.1) and (2.2)

DPn ¼ DPh
n þ DPb

n, ð2:3Þ
see figure 2. The other governing equation was the conservation of mass at a nodeX

qin ¼
X

qout, ð2:4Þ

with qin representing the blood that flows into the node and qout is a flow out of the node.

2.3. Elasticity on vessel walls
Vessel wall elasticity provides capacitance and pulse-wave dampening, allowing the arteries to maintain a
relatively constant pressure despite the pulsating nature of the blood flow.On the other hand, the vesselwall
elasticity also allows for a vessel radius dependence on the pressure gradient, to regulate blood supply in
case of an alteration of the vascular system [21]. The change in radius due to pressure was described by

Dr ¼ r� rinit ¼ ð1� l2Þr2init
hE

ðPin � PextÞ, ð2:5Þ

where rinit is the initial vessel radius without pressure gradient, h is the vessel wall thickness, E is the Young
modulus, λ is the Poisson ratio, and Pin, Pext are the pressures inside and outside the vessel, respectively. The
vessel thickness is assumed to be proportional to the vessel radius, with h = 0.22r for the arteries and h = 0.1r
for the veins. This is within the approximated range reported in [24]. For the elasticity parameters, the Young
modulus in the arteries Ea is two times bigger than Ev in the veins, Ea = 2Ev = 1 MPa, and λ = 0.5 [21,27]. Pin is
defined as the average pressure in the segment, that is the average pressures at both segment endpoints, and
Pext as the capillary pressure at the midpoint outside the vessel. The elasticity equation (2.5) has the effect of
introducing a nonlinearity to the system. Thus, the pressure difference between two adjacent nodes in avessel
is determined by substituting equation (2.5) into equations (2.1) and (2.2).

2.4. Capillary model
In the capillary model, smaller vessels and the capillary bed were discretized with a uniform grid and
described by Darcy’s single-phase flow equation. Darcy’s Law, describing the flow of a fluid in a porous
medium, states that a fluid flows from regions of higher pressure to regions of lower pressure in a linear
manner. Thus

v ¼ �K
m
rP, ð2:6Þ

where v is the Darcy flux (volumetric flow rate per unit area (m3 s−1 m−2)),K is the permeability tensor of the
porousmedium and μ is the viscosity [35]. In addition, we assume conservation of mass (continuity equation)

r � v ¼ Q, ð2:7Þ
whereQ is the source term (s−1). In thismodel,Q is a source or sink, for instance describing the flow in or out a
terminal node in the arterial or venous system, or describing the passage of flow fromone compartment to the
other. We assume blood to be an incompressible fluid, and by incorporating Darcy flow into the continuity

DPdat
h DPn

b DPn
h

DP n1
h

DP n1
b

DP
n2

b

DP
n2

h DP dat2
h

DP
dat1

h

Figure 2. Illustration of pressure drop at junctions, see (2.3). The arrow represents the direction of blood flow.
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equation, we obtain

�r � K
m
rP

� �
¼ Q: ð2:8Þ

The capillary bed is described as a two-compartment system, using one compartment for the arterial part and
one for the venous part. Blood perfusion is interpreted as the interchange between the two compartments, i.e.
the exchange of oxygenated blood with deoxygenated blood in the capillary bed. The driving force for
perfusion is the pressure difference between the two compartments [3], giving the linear relation

F ¼ aðPa � PvÞ, ð2:9Þ

where α is the perfusion parameter. The Darcy model for the two compartments becomes

�r � Ka
m rPa

� �
¼ Qa � aðPa � PvÞ in Va

�r � Kv
m rPv

� �
¼ Qv þ aðPa � PvÞ in Vv

and ub � nb ¼ 0 ðNeumann BCÞ on @Vb,

9>>>=
>>>;

ð2:10Þ

where Vb is the Darcy capillary volume and the index β= {a, v} stands for artery and vein, respectively.

2.5. Coupling vascular structure and capillary models
To complete the system, both the arterial and venous Darcy systems were combined with the terminal
nodes of the arterial and venous networks as point sources/sinks. The analytic solution of the Darcy
equation around these points is a Dirac delta function, with a singularity at the source/sink point,
creating a problem at the three-dimensional–one-dimensional interface. To avoid this problem, a fluid
distribution function was introduced [3]

f ðxÞ ¼ C exp �1
1�jxj2

� �
if jxj , 1

0 if jxj � 1,

(
ð2:11Þ

and this function was used with a finite radius ε, fε(x) = f (x/ε) on the Darcy domain. The finite radius ε
can be set to a user-chosen constant or to a fraction of the terminal vessel’s radius. In this manuscript, it is
set to three pixels to represent the vessels that are not observable in the imaging data. As a result, the flow
at a terminal node Qt is coupled to the capillary compartment as a number of sources/sinks QbðxÞ
according to the relation

Qe
t ¼

ð
Vb

QbðxÞf eðx� xtÞdx: ð2:12Þ

Beside mass continuity, we have to describe pressure continuity between the one-dimensional vascular
graph and the three-dimensional Darcy model. The pressure drop between the terminal node t and
the surrounding tissue was thus given as

Pt �
ð
Vb

PbðxÞf eðx� xlÞdx ¼ kQt, ð2:13Þ

where κ represents the resistance estimation for capillary system around terminal t in the Darcy model. In
this work, the resistance κ was estimated as a constant by using equation (2.1) to compute the resistance
of a cylindrical tube connecting a terminal node to the Darcy domain inside the sphere of radius ε centred
at the terminal node. The tube has a length of ε and a radius of m−1/3rt, where m is the number of
computational cells within the sphere.

Both flow and pressure couplings between the vascular graph and Darcy model close the loop from
the arterial roots to the venous roots. While a well-posedness analysis of the full model with nonlinear
effects is beyond the scope of this paper, a linearized model similar to the one considered in this paper
was recently shown to be well posed, both in the continuous setting and when discretized by low-order
finite volume methods [36].
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2.6. Numerical implementation of the flow

2.6.1. The vascular network

It consists of vessel segments and nodes and is governed by (2.1), (2.4) and (2.11). For each graph segment
n, the pressure drop (2.1) (linear part) and the pressure drop at junctions (2.2) (nonlinear part) were
considered. When considering elasticity, equation (2.5) was used.

The equations at the nodes are of three different types: at the root nodes, we have control equations/
boundary conditions (given with the problem); at the internal nodes (connecting two or more segments)
we have conservation of volume (2.4), and at the terminal nodes we have coupling equations with the
Darcy model. In our four roots terminal (two arterial and two venous roots), there were several
options to assign the boundary conditions.

Five further control equations must be considered for the system to have a unique solution. These
were constructed by assigning constant pressure on the arterial and the venous root nodes (Dirichlet
BC) and conservation of mass for the whole system

Proot,b ¼ PBC ð2:14Þ
and X

n[Nroot

qn ¼ 0, ð2:15Þ

where root, β = a, v is a root node on the arterial or the venous structure, PBC represents the constant
pressure on two arterial roots (input) and two venous roots (output), and Nroot are root segments,
with qn > 0 for the artery and qn < 0 for the vein. Finally, the whole complex is represented as a system
of nonlinear equations F(x) = b, where F(x) =A(x)x.

2.6.2. The Darcy domains (capillary bed)

The Darcy equations (2.10) in the capillary bed were solved using a two-point flux approximation (TPFA)
on a uniform grid. We assume that the permeability K in the capillary bed is constant and uniform, and
represent it by K (scalar). First, we computed the fluid transmissibility between adjacent cells i and j,

tij ¼ 2Sij
Dximi

Kb,i
þ Dxjmj

Kb,j

� ��1

, ð2:16Þ

where Sij is the face area between cells i and j, and, as above β∈ {a, v}. Because of the homogeneity of the
system, constant parameters and uniform discretization, equation (2.16) simplifies to

tij ¼ S
Kb

mDx
: ð2:17Þ

Then, applying TPFA to (2.6) in single cell i and adjacent cells j∈Ni, neighbour cells around i, we obtainX
j[Ni

tijðPi � PjÞ ¼ Qi: ð2:18Þ

Applying this procedure for all cells in the domain, we obtain a system of equations AD−Dx = b, where
AD−D is a symmetric matrix with elements

aik ¼
P

j[Ni
tij if k ¼ i

�tik if k = i:

�
ð2:19Þ

We note that while the TPFA method is not a consistent discretization for general grids, it is consistent
and convergent on the uniform grids used in this study [37].

2.6.3. The full coupling

Finally, the vascular networks and the Darcy domains were combined in a (nonlinear) system of
equations Ax = b, A =A(x), with unknown x consisting of the pressure and the flow rate in the model

AN�N AN�T 0
AT�N AT�T AT�D
0 AD�T AD�D

0
@

1
A xN

xT
xD

0
@

1
A ¼

bN
0
0

0
@

1
A: ð2:20Þ
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The indexes N and T refer to the internal and terminal nodes in the vascular network, and index D stands
for the Darcy equation discretization. The unknown xN is the pressure at the internal nodes and flow rate
in the corresponding segment, xT is the pressure in the terminal nodes, and xD is the pressure on the
Darcy domain. The blocks matrices represent systems of equations in the following domains:

— Matrix AN−N∈RN×N is a matrix representation of the vascular graph model’s system of nonlinear
equations. It is based on equations (2.3)–(2.5) and consists of as many equations as the number of
vessels and nodes in the internal nodes network. It also has no more than four non-zero entries
per row.

— Matrix AT−T∈RT×T is the system of nonlinear equations on terminal nodes at the coupling between
the vascular graph and the capillary model. It is based on equations (2.3) and (2.5). The matrix is a
diagonal matrix.

— Matrices AN−T∈RN×T and AT−N∈RT×N are couplings between the internal nodes and the terminal
nodes from equations (2.3)–(2.5).

— Matrix AD−D∈RD×D is the system of linear equations based on the Darcy’s Law discretization in
equation (2.19). Its number of variables is the number of discretization cells in the capillary
domain and the system is symmetric.

— Matrices AD−T∈RD×T and AT−D∈RT×D are couplings between the terminal nodes and Darcy
discretization cells. The pressure and mass continuity are based on equations (2.13) and (2.12).

— The bN term in the r.h.s. is from the boundary conditions of the circulation system in equation (2.14).

Despite the nonlinearity in the governing equations, it can be solved efficiently by using the Schur
complement method. Let

B ¼ AT�T AT�D
AD�T AD�D

� �
:

The Schur complement of block AD−D for the matrix B is defined as B=AD�D :¼ AT�T �AT�DA�1
D�DAD�T .

A�1
D�D is not computed explicitly, due to of the large size of the matrix. Instead, the system of linear

equation AD−DC =AD−T is solved giving C ¼ A�1
D�DAD�T . Substituting back in matrix A (2.20), we have

AN�N AN�T
AT�N

B
AD�D

� �
xN
xT

� �
¼ bN

0

� �
: ð2:21Þ

The above nonlinear system (2.21) is solved using an iterative nonlinear least-square optimization
algorithm based on the Powell dogleg method [38]. The solution of the linearized system (by omitting
the nonlinearities) was used as the initial approximation. The entire framework was solved using
MATLAB 2019b on a desktop PC with an Intel(R) Core(TM) i7-7700 CPU 3.60GHz and 32 GB RAM,
and the codes and instructions for reproducing the results are included in the dataset [39].

2.7. Vascular structures in image data
The model described above is generic and applicable to any two-dimensional or three-dimensional
domain. As an illustrative example, we used the model to simulate blood flow in a frog tongue from
a two-dimensional anatomical image from a classical biology textbook [23]. This example resembles a
realistic vascular system while still being more easy to visualize, interpret and analyse compared to a
full three-dimensional system. A drawback of this choice is that the original sample is not available,
thus we cannot validate the correctness of the vessel structure. Furthermore, there is an apparent
deformation of the geometry. The vascular networks are simplified into two flat networks, as shown
in figure 1 as we do not have information about thickness and curvature in the third dimension.
Incorrect vessel structure and incorrect geometry may have an impact on the blood flow in the entire
domain, especially for intertwined vessels, which are not captured from the two-dimensional image.
Still, we believe that the balance between arteries and veins in the image is highly realistic. Since the
application to this two-dimensional domain is included as an illustrative example, a deeper analysis of
the limitations is outside the scope of the current work.

Figure 3 shows the original image of the frog tongue, with the physiologist’s segmentation of the
main vessels. The frog tongue was stretched flat and nailed to a canvas. Thereafter, the trained
physiologist manually traced the arterial and venous network structures on it. One may notice that
only a few vessels serve the middle part of the tongue.
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Both the arterial and venous network structures consist of two main vessels (left and right). Our
network structure was based on an image segmentation of these using the method in [40]. The small
arteries and veins that are near the roots but not visibly connected to the main vessels were discarded
in our segmentation, as we need control over inlets and outlets.

We observed that both the arterial and venous networks have some level of anastomoses. The two
arterial networks are connected in the uppermost part of the tongue (point A in figure 3) by a small
vessel, and the venous networks are connected in the middle of the tongue by a large vessel (point

Figure 3. An anatomical frog tongue image from a classical textbook [23], with arterial (red) and venous (blue) vascular network
structures. The networks are obtained by segmenting the anatomical vessel structures. Our capillary domain is the region inside the
tongue’s boundary. Vessel A connects two arterial networks, while Vessel B connects two vein networks.

Table 1. Vascular model parameters.

parameter value unit reference

capillary model size (two-dimensional) 515 × 634 pixel —

real size 30.9 × 38 mm [23]

porosity of the capillary bed (ϕ) 0.1 dimensionless [12]

permeability of arterial compartment (Ka) 3 × 10−6 mm2 [41]

permeability of venous compartment (Kv) 6 × 10−6 mm2 [41]

perfusion parameter (α) 5 × 10−4 kg−1 mm s−1 [3]

viscosity of blood (μ) 3 · 10−6 kPa s−1 [3]

artery inlet pressure 30 mmHg [22]

vein outlet pressure 7.5 mmHg [24]

Young modulus (E) 1 MPa [28]

Poisson’s ratio (λ) 0.5 dimensionless [28]

arterial vessel wall thickness ratio 0.22 dimensionless [24]

venous vessel wall thickness ratio 0.1 dimensionless [24]
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B). These connected structures have a regulation effect, maintaining blood circulation for the whole organ
when some vessel is severed or occluded.

The frog tongue model parameters for our simulations are found in table 1. The real size of the image
was estimated based on information from the original source [23]. The pressure inlet is defined as the
blood pressure in an average adult frog Pseudis paradoxsus [22], and the pressure outlet is assumed to
be equal to the average vein pressure in a male frog Rana pipiens mesentery [24]. The vessel elasticity
parameters were chosen based on the mechanical properties of vessels around those sizes [21,27,28].
The isotropic and homogeneous permeability of the capillary bed was estimated using a simplified
Darcy in scalar setting

Q
A

¼ �Kb

m

DP
DL

, b ¼ a, v, ð2:22Þ

with frog cerebral cortex values as reference data [42]. The blood velocity is approximately 0.5 mm s−1 in
an arteriole with length of 2mm for a pressure drop of ΔP = 7.5 mmHg. We obtain an estimated
permeability of 1.2 × 10−6 mm2. However, the value was adjusted in the simulation (refer to table 1) to
match a normal blood flow in veins vessels based on the experimental data in Rana pipiens, which is
166.61 ± 21.33 μm s−1 (mean ± standard deviation) in the veins with a radius around 10–20 μm [42].
The venous capillary compartment was assumed to be twice as permeable as the arterial capillary
compartment.

3. Results and discussion
Using the model proposed above, we have simulated blood flow in several numerical experiments: a
baseline model simulation, partial models and linearized simulations, and simulations with vessel
occlusions. In particular, the occlusion experiments demonstrate possible applications to the study of
blood circulation for an alteration or pathology of the vascular system.

3.1. Baseline model
The baseline model is the fully nonlinear model with nonlinearities due to both pressure drop at
junctions as well as vessel elasticity. It was based on equations (2.1), (2.2), (2.4), (2.10), (2.5), (2.12)
and (2.13). Figure 4 shows the computed pressure distribution in the whole vascular domain. The
simulated pressure distribution has a good resemblance to the experimental data on Rana pipiens
mesentery in [24]. We see a stronger agreement with the data for the big vessels compared to the
smaller vessels close to the capillary bed (labels a and b in figure 4). The smaller vessels appear to
have an overestimated pressure exceeding the observed data slope. This may be caused by
rounding discretization effects as the vessel radius approaches pixel size. Further, the frog tongue
vascular image from the textbook [23] was hand-drawn with a pen, with no emphasis on
estimating diameters. In addition, the tongue was flat-streched, thus deformed from its original
shape. The inaccuracy of vessel radii caused by a combination of the three above-mentioned
reasons may result in a lower pressure drop across the vessel compared to the anatomically realistic
pressure drop (label a in figure 4). We might expect the flow pattern in the system to be impacted
accordingly.

The total computational time for the baseline simulation is 82.6 s, with the nonlinear equation
(2.21) taking 63.1 s to solve. The total pressure drop in the whole system was 22.5 mmHg (table 1),
with the arterial network being the major contributor (71.6% of total). Further, the arterial
compartment contributed with 2.7%, the venous compartment with 2.8%, and the vein vascular
network had a 5.15 mmHg pressure drop (22.9%). These values are in a realistic range and indicate
the importance of the arterial vascular structure to provide the blood circulation through the whole
organ. If there is an alteration on an arterial vessel, its impact for the blood circulation will be
greater than for a similar vein alteration. The pressure distribution is consistent with the
distribution on humans or other animals [25,43,44]. From figure 4, we see that the arterioles are the
biggest contributor to the pressure drop in the whole vasculature. The arterioles with a radius less
than 100 μm provided 80% of the total pressure drop in the arterial network. In contrast to our
result, the numerical experiments in [45] show that the smallest capillary vessels (r < 5 μm)
contribute the most resistance in the mouse cortex micro-circulation simulation. Their
haemodynamic modelling was conducted in a micro-scale vascular network with diameter less
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than 50 μm, which, in our simulation set-up, is inside the range of the capillary bed (modelled as a
Darcy domain). Hence, this particular detail could not be captured in our experiment due to the
difference in the simulation scale and set-up.

artery vessels
arteriole capillary bed venule

vein vessels
artery capillary compartment

vein capillary compartment
 experimental data from male
Rana pipiens (Gore [24])
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Figure 4. The static blood pressure distribution from our simulations has good estimation across the whole vascular system. The
computed pressures (asterisks) follow the effective pressure from experimental data (brown solid line), the light brown area
representing the variation from several experimental data measurements [24]. Our simulations produce some overestimation in
the small arteriole (label a) and venule (label b) regions. The inaccurate simulation pressure is likely caused by vessel
diameters in the range of the pixel size, so that the rounding of the vessel radius in the segmentation is in mismatch to the
true value.
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Figure 5. The pressure distribution for the baseline model: the segment thickness in the vascular graphs is proportional to the flow
rate passing through it and the local pressure distribution in the Darcy domain. (a) The arterial network structure and the arterial
compartment with pressure ranging from 7.6 to 11 mmHg (8.6 ± 0.7 mmHg). The right arterial vessel input provides 16% more
blood flow compared to the left vessel, causing higher pressure in the right area. (b) The vein network structure and venous
compartment with pressure ranging from 7.4 to 10.8 mmHg (8.5 ± 0.8 mmHg). The right vein vessel output has 4.3 times
more blood flow than the left vessel, playing a vital role in blood distribution in the vein compartment.
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In [17], the authors demonstrated a qualitatively comparable result to the experimental data using
isotropic and homogeneous porous media as the capillary bed in the human cerebral cortex. Our
result shows a similar agreement, that is, the dual Darcy compartment provided a good
approximation as a replacement for small arterioles, venules and capillaries (see the capillary pressure
drop in figure 4). The defined capillary bed covered not only capillaries but also unresolved vessels
with diameter less than 60 μm, in which small arterioles and venules are covered. Figure 5 shows the
local pressure distribution in the capillary bed. It was observed that the pressure is high around the
top edges and low in the left bottom edges of the domain. This result is related to the vascular
structure having a small number of branches from the arterial input vessel in the lower region.
Pressures at the right area for both compartments are high compared to the left region, reflecting the
blood distribution in the vascular network. The right arterial vessel input provides 16% more blood
flow compared to the left vessel and the right vein vessel output has 4.3 times more blood flow
compared to the left vessel.

Note that there is a good correlation between the pressures in the arterial and venous compartments,
see figure 5, as the pressure follows the same distribution in both compartments. The pixel-wise pressure
difference between the compartments is expected to be the driving force for local perfusion.

3.2. The partial models and the linearized model
The simulation with the linearized model follows the same set-up as the baseline model, but without the
nonlinearities due to vessel elasticity and pressure drops at junctions. We have also tested a setup
involving only one of the mentioned nonlinearities at the time (partial models). The macroscopic changes
caused by each nonlinearity were compared across the entire system, including the total volumetric flow,
total flow resistance and average resistance of the model components. Flow resistance, like an electrical
resistance, is equal to the pressure drop divided by the volumetric flow in the system, R = (Pin− Pout)/Q
(kg mm−4 s−1). The flow resistance of the model component is an approximation; for example, the pressure
drop in the arterial network is the difference between the average pressure at the arterial network
terminals and the input pressure. In this section, the models are defined as:

— The Elasticity model: baseline model omitting the pressure drop at junctions equation (2.2).
— The Junction model: baseline model omitting the elasticity equation (2.5).

Table 2. Numerical simulation results for several experiments: flow resistance, like the electrical resistance, is equal to the total
pressure drop divided by the total volumetric flow in the system, R = (Pin− Pout)/Q (kg mm

−4 s−1). The indexes aN and vN refer
to the arterial and venous vascular networks, the indexes aC and vC to the arterial and vein capillary compartments respectively.
The total computational time for simulation is denoted by ttot, while tsys refers to the time for the solution of the system (2.21).

simulation Qtotal (mm
3 s−1) Rtotal (kg mm

−4 s−1) RaN RvN RaC RvC ttot(tsys) (s)

baseline modela 1.644 1.825 1.306 0.418 0.049 0.051 82.6 (63.1)

elasticity modelb 1.646 1.823 1.307 0.416 0.049 0.051 66.5 (47.1)

junction modelc 1.643 1.825 1.307 0.418 0.049 0.051 90.2 (70.7)

linear model 1.754 1.710 1.319 0.357 0.018 0.017 19.4 (10−5)

artery-1 occlusiona 1.410 2.127 1.614 0.420 0.046 0.047 3216.4

artery-2 occlusiona 1.286 2.332 1.819 0.411 0.050 0.052 374.1

vein-1 occlusiona 1.644 1.824 1.297 0.442 0.042 0.044 757.2

vein-2 occlusiona 1.554 1.930 1.320 0.488 0.060 0.062 157.1

artery-1 occlusion 1.460 2.054 1.663 0.354 0.019 0.017 20.3

artery-2 occlusion 1.339 2.240 1.850 0.359 0.016 0.015 20.1

vein-1 occlusion 1.724 1.740 1.319 0.387 0.018 0.017 20.1

vein-2 occlusion 1.709 1.755 1.319 0.401 0.018 0.017 20.1
aBaseline model refers to the fully nonlinear model.
bElasticity model: baseline model omitting the pressure drop at junctions equation (2.2).
cJunction model: baseline model omitting the elasticity equation (2.5). Occlusion: a 50% reduction of the original artery/vein radius.
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— The Linear model: fully linear model omitting both equations (2.2) (pressure drop at junctions) and
(2.5) (elasticity equation) from the baseline model. The linearized model coincides with the model
considered in [3]. The solution of this model is used as the initial value for the nonlinear solver in
the other models.

3.2.1. Elasticity model

The vessel’s elasticity operates similarly to the capacitance in an electrical system. Thus, elasticity can
maintain pressure constant by increasing or decreasing the vessel radii. However, this effect also gives
additional resistance to blood flow, equivalent to impedance in electricity. Table 2 reports and
compares the flow resistance in the system, which is equal to the total pressure drop divided by the
total volumetric flow and is analogous to an electrical resistor.

The arterial vessel tends to expand if the pressure in the surrounding Darcy domain is lower than
vessel inner pressure. On the other hand, the vein vessel tends to tighten and increase resistance. In our
experiments, the elasticity model gives a total resistance of 1.823 kg mm−4 s−1 (table 2), which is smaller
than the baseline model. The elasticity model provided some small differences in arterial flow input and
the resistance distribution compared to the baseline model. The computational time is less than the
baseline, with the nonlinear system being solved in 47.1 s (table 2). The elasticity model has a shorter
running time because it only modifies the Poiseuille equation (2.1) by removing the junction term from
the baseline model. The linear model solution is used as the initial value for the nonlinear solver.

3.2.2. Junction model

The pressure drop at the junctions increased the total resistance in the vascular structure, both in
arteries and veins [20]. It is also causing the total blood flow in the whole system to decrease, since
the volumetric blood flow, Q, changes according to the relation ΔP =RQ. This bifurcation set-up is
known as pressure matching at a junction node, which introduces nonlinearity in the flow model [34].
The resistance distribution in the whole system is 0.00069 kg mm−4 s−1 bigger than the baseline model
resistance (after rounding the values, the difference is lost in table 2). The junction model takes
slightly longer time than the baseline model, mostly due to taking a longer time to achieve
convergence in the nonlinear system.

The junction and the elasticity models only incorporate one of the nonlinear equations into the system
at a time. Both simulations give results almost similar to the simulation with the baseline model. These
results indicate that the effect of the junction pressure drop and the vessels elasticity do not stack up
when combined. Indeed, the elasticity decreases the resistance built up by the junction pressure drop
relaxing the vessel walls across the network. In this comparison setup, both nonlinearities play an
essential role in describing blood regulation in the organ.

3.2.3. Linear model

This model is the fully linear setup based on equations (2.1), (2.4), (2.10), (2.12) and (2.13). The total
resistance in this model was lower compared to the above models, thus allowing a larger volumetric
blood flow (table 2). The arterial structure provided 77.1% of the total resistance and venous structure
20.9%, the Darcy compartments contributing only 1.0% and 1.0% of the total value. This is a notable
change in resistance distribution compared to the partial models and the baseline model. The total
resistance was reduced by 6.3% with respect to the baseline model. This result is consistent with
another independent study [19], in which it was found that the average resistance underestimation
using a fully linearized one-dimensional blood flow model was in the range 4.6–6.4% for human
cerebral networks modelling. These findings indicate that, by removing all nonlinearities, both the
total resistance and the resistance distribution of the system are altered (table 3) .

3.3. Occlusion in root vessels
In this section, we demonstrate how our model framework can be applied to understand the blood flow
regulation due to pathology or network alterations. A series of simulations were performed by occluding
one root vessel at a time, in each network. The occlusions were in a range between 5% and 100% of the
original vessel radius (figure 6). When the occlusion reaches 80% of the initial radius value, the resistance
becomes almost constant, for both arteries and veins, and for both baseline and linear models. The
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occlusion experiments in the baseline model take considerably longer to run than the non-occluded
experiments, due to the time required to achieve convergence in the nonlinear system (2.21). The
occlusion location and the initial values determined using the linear model solution may be the cause
of the large difference in convergence time (table 2).

3.3.1. Artery occlusion

Artery 1 and artery 2 occlusions generated expected results, increasing total resistances for both the
occlusion on the baseline model and the linear model. The pressure above the occluded part of the
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Figure 6. The vascular system resistance R as a function of the occlusion rate in vessels: (a) Resistance estimates for occlusions,
baseline model. (b) Resistance estimates for occlusions, linear model. The occlusion rate (x-axis) in a vessel varies from 5% to 100%
of the original radius for each simulation. Arteries 1 and 2 refer to a segment in the right and left big vessel of the arterial structure.
Veins 1 and 2 refer to a segment in the right and left big vessel of the venous structure. The artery occlusions cause an increment of
the macroscopic flow resistance in the whole system for both the baseline and linear models. For the vein 1 occlusion, the entire
vascular resistance is almost constant (+3% of the original total resistance). By contrast, the increment of the total resistance in
vein 2 occlusion shows that the vein 2 plays vital role in draining blood from the organ tissue. This effect is only observed in the
nonlinear simulation, while the linear model failed to capture this anomaly.
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Figure 7. Pressure drop distribution in the capillary compartments with simulated occlusions (marked by black circle) computed
with the baseline model. (a,b) Pressure drop distribution for artery occlusions are not mirroring each other due to the asymmetric
structure of the arterial network with artery 1 occlusion generated bigger pressure drop. (c) Even with a negligible change in the
macroscopic pressure drop (table 2), the pressure drop distribution in vein 1 experiment shows a notable pressure drop distribution
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flow through the venous vessel rather than in the venous capillary. This microscopic alteration can occur with small change in the
macroscopic flow.
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structure was notably lower than the rest. Furthermore, the artery 1 occlusion caused a steeper pressure
gradient (left to right) compared to the artery 2 occlusion (figure 7a,b). This is due to the asymmetric
structure of the left and right of the arterial network.

Table 2 reports a summary of the occlusion experiments with both baseline and linear models. Note
that occlusions in the arterial roots increase resistance in the arterial structure and decrease total flow into
the system. The driving pressure has to be raised around 20% compared to the non-occluded model to
keep a similar volumetric blood flow. The artery 2 occlusion had a higher total resistance because the
artery 2 vessel provides 16% more blood flow compared to the artery 1 vessel in the baseline model
(figure 5). It shows that a prior higher blood flow in the occluded vessel will, in general, cause a more
severe change to the system resistance. For artery occlusions, the linear model performs similarly to
the baseline model, particularly for fully occluded vessels.

Figure 7 shows the pressure drop in the capillary compartments. Experimental studies of
penetrating arteriole occlusion demonstrate similar effects. Table 3 summarizes the comparison
between our findings and previous studies in the occlusion experiment. The observation in [46]
reports a pressure drop in a region close to the occluded vessel and tissue hypoxia was detected in 6
h post-occlusion. The impact of vessel occlusion in penetrating arterioles in animal and human cortex
has been studied both experimentally and numerically [2,46–48,51]. Although the two-dimensional
frog tongue in this work differs extensively in terms of anatomical and functional properties to the
cerebral cortex, the results show a good agreement for artery occlusion. In our simulation set-up, with
only a pair of arteries and veins penetrating the capillary bed, the occlusion of one of the two main
vessels had a more notable effect than for one vessel occlusion in the cerebral cortex, having instead
several penetrating arterioles and venules [2,46].

3.3.2. Vein occlusion

The numerical results for the occluded venous networks show that the resistance changes for vein 1 and
vein 2 occlusions had different character. While the vein 1 occlusion resulted in an almost constant total
resistance, the vein 2 occlusion provided a resistance increase.

For the vein 1 occlusion, the total resistance only changed around +3% of the baseline model,
regardless of the occlusion percentage. This was due to vein 2 having 4.3 times more blood flow than
vein 1, so that blood was drained from the vein compartment mainly through the vein 2 vessel. We
also observed that the downstream vessels from the occlusion point were able to support blood influx
from nearby terminals with an almost constant volumetric flow. In the converse situation, the vein 1
vessel could not support the blood flow when the vein 2 vessel was collapsed.

The vein 2 occlusion effects were consistent with venule occlusion in [2]. It generated a notable total
resistance compared to the arteriole occlusion, except the capillary pressure increased instead of
decreasing. In our simulation, the pressure drop in the vein 2 occlusion is less than for the artery
occlusions (figure 7).

The simulated occlusions, both in arteries and veins, had a detectable impact to the blood circulation
in general. These results are in good agreement with the experimental result on occlusions of one
penetrating arterioles and venules in rats cortex (table 3) [46].

Without being necessarily physiologically consistent, the linear and baselinemodels occlusion results for
vein 1 illustrate the models’ capability to account for collateral circulation effects. A finer tuning of the
modelling parameters may enable the system to maintain a close-to-constant net flow in varying
anatomical setups. Yet, the present structure of the venous network has a good collateral circulation and
maintains blood circulation in the whole system. This condition was mainly supported by the existence of
anastomosis in the form of a big connected vessel in the venous network system, that allows flow across
both sides of the vein network. These phenomena were consistent with the experimental result in [50],
which showed that occlusion of one surface venule left the system’s blood regulation almost unchanged
when a collateral vessel provided a new drain.

Our vessel occlusion experiments do not take into account possible anatomical auto-regulating
changes that can occur in the system over time. After a certain period, a real vascular system may
change or heal to compensate for a blood circulation imbalance. This is a limitation of the model at
present. An adaption of the model to allow for vessel tree growth would be highly interesting for
instance in infarction modelling, but it is outside the main scope of this paper.

The resulting pressure distribution change in the venous compartment allows for blood going
through the veins more than once and thereby also causes reduced blood flow in the capillary bed.
Figure 7d shows an example of blood flow in the reverse direction due to a high-pressure difference
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in the venous Darcy compartment. Higher pressure gradients between several terminal nodes in the
bottom left corner make blood flow through venous vessels rather than in the capillary bed. In the
vein 2 occlusion, around 5% of blood flow direction in the venous vessels was reversed, 28% of
venous vessels had an average 23% blood flow increase, while the remaining vessels had a decrease
of 16%. This result was also shown in the experimental result in the venule occlusion [50]: cortical
ascending venules occlusions caused blood flow decrease and reversed flow direction (table 3). They
also observed a radius dilation up to 25%, while the radii dilation in our simulation was less than 5%.
The simulation design and parameters are crucial in determining vessel change, which may allow for
greater radius dilation similar to experimental values.

4. Conclusion
We have introduced a nonlinear multi-scale modelling framework incorporating important features
of blood flow in a full organ vasculature. The model is demonstrated using a two-dimensional
geometry domain and vasculature from a frog tongue [23]. Our numerical experiments indicate that
the modelling complexity is sufficient to account for important physiological and structural features.
The combination of the explicit vessel representation and a generic Darcy model representation yields
realistic full-organ simulations, without having a detailed knowledge of the local microvasculature.
The framework is also highly flexible allowing for inclusion of other local nonlinear processes.

In the numerical experiments, the baseline simulations are in good agreement with empirical data from
a male frog Rana pipiens mesentery [24]. Further, we conduct simulations with a pressure drop distribution
in the whole vasculature consistent with the average distribution in other animals as well as humans
[25,43,44]. The linearized simulations indicate the nonlinearities have an impact on the system. The
simulations with partial models suggest that the nonlinear effects of vessel elasticity and pressure drop
at vessel junctions do not stack up when combined, indicating that the two compensate for each other.

We illustrate the modelling potential by applying the method to vascular occlusions. Vessel networks
alteration simulations confirm that both local and global blood circulations in the vascular system
depend on the vascular structure. In our simulations, the existence of an anastomosis in form of a big
connected vessel in the venous network system has an important role in maintaining blood circulation
when a main root is occluded. We illustrate how an occlusion in the venous structure alters the
microscopic flow resistance, while at the same time has negligible effects on the macroscopic flow.

Our simulations indicate that it is important to simulate the complete vascular system including the
venous system, and not just the arterial system. In line with [50], our results of the venous occlusion
experiments emphasize the importance of introducing elasticity and nonlinearities to provide a more
accurate simulation of the blood flow.
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