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Abstract
We prove that certain Severi varieties of nodal curves of positive genus on gen-
eral blow-ups of the twofold symmetric product of a general elliptic curve are
nonempty and smooth of the expected dimension. This result, besides its intrin-
sic value, is an important preliminary step for the proof of nonemptiness of Severi
varieties on general Enriques surfaces.
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1 INTRODUCTION

Let 𝑆 be a smooth, projective complex surface and 𝜉 ∈ Num(𝑆). Let

𝑝𝑎(𝜉) =
1

2
𝜉 ⋅ (𝜉 + 𝐾𝑆) + 1

be the arithmetic genus of 𝜉. If 𝐿 is a line bundle or divisor on 𝑆 with class 𝜉 in Num(𝑆), we set 𝑝𝑎(𝐿) = 𝑝𝑎(𝜉). We denote
by 𝑉𝜉(𝑆) the locus in the Hilbert scheme of 𝑆 parameterizing the curves 𝐶 on 𝑆 such that the class of 𝑆(𝐶) in Num(𝑆)
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coincides with 𝜉. Assume that 𝐿 is a line bundle or divisor on 𝑆 with class 𝜉 inNum(𝑆) and that 𝑝𝑎(𝐿) ⩾ 0. For any integer
𝛿 satisfying 0 ⩽ 𝛿 ⩽ 𝑝𝑎(𝜉), we denote by 𝑉

𝜉

𝛿
(𝑆) the Severi variety parameterizing irreducible 𝛿-nodal curves contained in

𝑉𝜉(𝑆). This is a possibly empty locally closed set in 𝑉𝜉(𝑆).
Let𝑉 be an irreducible component of𝑉𝜉(𝑆) and, for any 𝛿 such that 0 ⩽ 𝛿 ⩽ 𝑝𝑎(𝜉), let𝑉𝛿 be an irreducible component

of 𝑉 ∩ 𝑉
𝜉

𝛿
(𝑆). It is well known that

dim(𝑉𝛿) ⩾ dim(𝑉) − 𝛿, (1.1)

where the right-hand side is called the expected dimension of 𝑉𝛿. Moreover, if the equality holds in (1.1), then, for all
0 ⩽ 𝛿′ ⩽ 𝛿, the closure of the intersection of𝑉𝜉

𝛿′
(𝑆)with𝑉 contains𝑉𝛿, and any of its components whose closure contains

𝑉𝛿 has the expected dimension dim(𝑉) − 𝛿′ (see [25, Theorem 6.3]).
Severi varieties were introduced by Severi in Anhang F of [26], where he proved that all Severi varieties of irreducible

𝛿-nodal curves of degree 𝑑 in ℙ2 are nonempty and smooth of the expected dimension. Severi also claimed irreducibility
of such varieties, but his proof contains a gap. The irreducibility was proved by Harris [17] more than 60 years later.
Severi varieties on other surfaces have received much attention in recent years, especially in connection with

enumerative formulas computing their degrees.
Nonemptiness is known to hold for all Severi varieties associated to big and nef classes on Del Pezzo surfaces (as well

as rational surfaces under certain assumptions) by [16, Theorems 3-4] and for Hirzebruch surfaces, a result implicitly
contained in [27, section 3]. In both cases of Del Pezzo and Hirzebruch surfaces, all Severi varieties are smooth of the
expected dimensions, cf., for example, [27, Lemma 2.9] or [7, p. 45]. Moreover, all Severi varieties of Hirzebruch surfaces
are irreducible [31], and Severi varieties parameterizing rational curves onDel Pezzo surfaces of degrees⩾ 2 are irreducible
as well [30]; the same holds true for general Del Pezzo surfaces of degree 1, except for the Severi variety parameterizing
rational curves in the anticanonical class [29, Corollary 6.4].
On a general primitively polarized 𝐾3 surface (𝑆, 𝜉), all Severi varieties 𝑉𝑛𝜉

𝛿
(𝑆), where 0 ⩽ 𝛿 ⩽ 𝑝𝑎(𝑛𝜉), are nonempty

by a result of Mumford [23] if 𝑛 = 1 and of Chen [5] for all 𝑛; moreover, all components are always smooth of the expected
dimension 𝑝𝑎(𝑛𝜉) − 𝛿 [7, 28]. The irreducibility question (for 𝛿 < 𝑝𝑎(𝑛𝜉)) has been the object of much attention, see
[1, 8, 13, 18, 19], and was recently solved in the case 𝑛 = 1 for all 𝛿 ⩽ 𝑝𝑎(𝜉) − 4 in the preprint [2].
Similarly, on a general primitively polarized abelian surface (𝑆, 𝜉), all Severi varieties𝑉𝑛𝜉

𝛿
(𝑆), where 0 ⩽ 𝛿 ⩽ 𝑝𝑎(𝑛𝜉) − 2,

are nonempty (by [21] if 𝑛 = 1 and [20] in general) and smooth of the expected dimension 𝑝𝑎(𝑛𝜉) − 𝛿 [22]. Irreducibility
does not hold: The various irreducible components in the case 𝑛 = 1 have been described by Zahariuc [32].
Very little is known on other surfaces, where problems such as nonemptiness, smoothness, dimension, and irreducibil-

ity are regarded as very hard. In particular, Severi varieties may have unexpected behavior: Examples are given in [6]
of surfaces of general type with reducible Severi varieties, and also with components of dimension different from the
expected one.
In this paper, we consider the case of blow-ups of a particular type of ruled surface over an elliptic curve.
Let 𝐸 be a general smooth irreducible projective curve of genus 1 and set 𝑅 ∶= Sym2(𝐸). Let 𝑅 be the blow-up of 𝑅 at

any finite set of general points. Our main result in this paper shows that Severi varieties of a large class of line bundles on
𝑅 are well behaved:

Theorem 1.1. In the above setting, let 𝐿 be a line bundle on 𝑅 verifying condition (⋆) (cf. Definition 2.1) and let 𝜉 be the class
of 𝐿 in Num(𝑅). Let 𝛿 be an integer satisfying 0 ⩽ 𝛿 < 𝑝𝑎(𝐿). Then, 𝑉

𝜉

𝛿
(𝑅) is nonempty and smooth with all components of

the expected dimension −𝐿 ⋅ 𝐾𝑅 + 𝑝𝑎(𝐿) − 𝛿 − 1.

The statement about smoothness and dimension follows from standard arguments of deformation theory, once
nonemptiness has been proved, cf. Proposition 2.2 below. Moreover, we remark that, by what we said above, it suffices
to prove Theorem 1.1 for the maximal number of nodes, that is, 𝛿 = 𝑝𝑎(𝐿) − 1. This will follow from Proposition 2.3
below, which treats the special case in which the blown-up points are in a special position. In [10], we will make use
of Proposition 2.3 in order to prove nonemptiness of Severi varieties on Enriques surfaces. The question of smoothness
and dimension of Severi varieties on Enriques surfaces has been treated in [9].
The irreducibility question for 𝑉𝜉

𝛿
(𝑅) is not treated in this paper; thus, we pose the following:

Question 1. Are the varieties 𝑉𝜉

𝛿
(𝑅) from Theorem 1.1 irreducible?
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576 CILIBERTO et al.

The paper is organized as follows. In Section 2, we recall some preliminaries concerning twofold symmetric products of
elliptic curves. Section 3 is devoted to recalling a degeneration of the symmetric product of a general elliptic curve studied
in [11]. In Section 4, we construct certain families of curves on some blow-ups of the projective plane that turn out to be
useful in the proof of Proposition 2.3, which is proved by degeneration in Section 5.

2 THE TWOFOLD SYMMETRIC PRODUCT OF AN ELLIPTIC CURVE

Let𝐸 be a smooth irreducible projective elliptic curve. Denote by⊕ (and⊖) the group operation on𝐸 and by 𝑒0 the neutral
element. Let 𝑅 ∶= Sym2(𝐸) and 𝜋 ∶ 𝑅 → 𝐸 be the (Albanese) morphism sending 𝑥 + 𝑦 to 𝑥 ⊕ 𝑦. We denote the fiber of 𝜋
over a point 𝑒 ∈ 𝐸 by

𝔣𝑒 ∶= 𝜋−1(𝑒) = {𝑥 + 𝑦 ∈ Sym2(𝐸) | 𝑥 ⊕ 𝑦 = 𝑒 (equivalently, 𝑥 + 𝑦 ∼ 𝑒 + 𝑒0)},

(where ∼ denotes linear equivalence), which is the ℙ1 defined by the linear system |𝑒 + 𝑒0|. We denote the algebraic
equivalence class of the fibers by 𝔣.
For each 𝑒 ∈ 𝐸, we define the curve 𝔰𝑒 (called 𝐷𝑒 in [4]) as the image of the section 𝐸 → 𝑅 of the Albanese morphism

mapping 𝑥 to 𝑒 + (𝑥 ⊖ 𝑒). We let 𝔰 denote the algebraic equivalence class of these sections, which are the ones with
minimal self-intersection, namely, 1, cf. [4]. One has

𝐾𝑅 ∼ −2𝔰𝑒0 + 𝔣𝑒0 .

Let 𝑦1, … , 𝑦𝑛 ∈ 𝑅 be distinct points and let 𝑅 ∶= Bl𝑦1,…,𝑦𝑛 (𝑅) → 𝑅 denote the blow-up of 𝑅 at 𝑦1, … , 𝑦𝑛, with exceptional
divisors 𝔢𝑖 over 𝑦𝑖 . We denote the strict transforms of 𝔰 and 𝔣 on 𝑅 by the same symbols.

Definition 2.1. A line bundle or Cartier divisor 𝐿 on 𝑅 is said to verify condition (⋆) if it is of the form 𝐿 ≡ 𝛼𝔰 + 𝛽𝔣 −∑𝑛

𝑖=1
𝛾𝑖𝔢𝑖 (where≡ denotes numerical or, equivalently, algebraic equivalence), with 𝛼, 𝛽, 𝛾1, … , 𝛾𝑛 as integers such that:

(i) 𝛼 ⩾ 1, 𝛽 ⩾ 0;
(ii) 𝛼 ⩾ 𝛾𝑖 for 𝑖 = 1, … , 𝑛;
(iii) 𝛼 + 𝛽 ⩾

∑𝑛

𝑖=1 𝛾𝑖;
(iv) 𝛼 + 2𝛽 ⩾

∑𝑛

𝑖=1
𝛾𝑖 + 4.

Condition (ii) is satisfied if 𝐿 is nef. Condition (iv) is equivalent to −𝐿 ⋅ 𝐾𝑅 ⩾ 4.
The statement about smoothness and dimension in Theorem 1.1 follows from the following more general result, well

known to experts:

Proposition 2.2. Let 𝑆 be a smooth projective complex surface and 𝜉 ∈ Num(𝑆) such that −𝜉 ⋅ 𝐾𝑆 > 0. Let 𝛿 be an integer
satisfying 0 ⩽ 𝛿 ⩽ 𝑝𝑎(𝜉).
If 𝑉𝜉

𝛿
(𝑆) is nonempty, it is smooth and every component has the expected dimension −𝜉 ⋅ 𝐾𝑆 + 𝑝𝑎(𝜉) − 𝛿 − 1.

Proof. Let 𝑋 be any curve in 𝑉
𝜉

𝛿
(𝑆) and let 𝑉𝜉(𝑆) be the Hilbert scheme defined in the introduction. Since

deg(𝑋∕𝑆) = 𝜉2 = 𝜉 ⋅ (𝜉 + 𝐾𝑆) − 𝜉 ⋅ 𝐾𝑆 = 2𝑝𝑎(𝜉) − 2 − 𝜉 ⋅ 𝐾𝑆 > 2𝑝𝑎(𝜉) − 2,

the normal bundle𝑋∕𝑆 is nonspecial, whence𝑉𝜉(𝑆) is smooth at [𝑋] of dimension ℎ0(𝑋∕𝑆) = −𝜉 ⋅ 𝐾𝑆 + 𝑝𝑎(𝜉) − 1 (cf.,
e.g., [24, section 4.3]).
Let 𝜑 ∶ 𝑋 → 𝑆 be the composition of the normalization𝑋 → 𝑋 with the inclusion𝑋 ⊂ 𝑆 and consider the normal sheaf

𝜑 defined by the short exact sequence

0 ⟶ 𝑋 ⟶ 𝜑∗𝑆 ⟶ 𝜑 ⟶ 0.
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CILIBERTO et al. 577

The tangent space to 𝑉𝜉

𝛿
(𝑆) at [𝑋] is isomorphic to𝐻0(𝑋,𝜑), and𝜑 is a line bundle, as 𝑋 is nodal (cf., e.g., [24, section

3.4.3] or [14]). Let 𝑔 be the geometric genus of 𝑋. Since deg𝜑 = −𝑋 ⋅ 𝐾𝑆 + 2𝑔 − 2 > 2𝑔 − 2 by the above sequence, the
line bundle𝜑 is nonspecial, and

ℎ0(𝜑) = −𝜉 ⋅ 𝐾𝑆 + 𝑔 − 1 = −𝜉 ⋅ 𝐾𝑆 + 𝑝𝑎(𝜉) − 𝛿 − 1 = dim(𝑉𝜉(𝑆)) − 𝛿,

which is the expected dimension of 𝑉𝜉

𝛿
(𝑆). Thus, 𝑉𝜉

𝛿
(𝑆) is smooth at [𝑋] and of the expected dimension. □

By what we said in the introduction, it suffices to prove Theorem 1.1 for the highest possible 𝛿, that is, for 𝛿 = 𝑝𝑎(𝐿) − 1,
in which case, the Severi variety in question parameterizes nodal curves of geometric genus 1. We will prove the theorem
by specializing the points 𝑦1, … , 𝑦𝑛 as we now explain.
Let 𝜂 be any of the three nonzero 2-torsion points of 𝐸. The map 𝐸 → 𝑅 defined by mapping 𝑒 to 𝑒 + (𝑒 ⊕ 𝜂) realizes 𝐸

as an unramified double cover of its image curve

𝑇 ∶= {𝑒 + (𝑒 ⊕ 𝜂) | 𝑒 ∈ 𝐸}.

We have

𝑇 ∼ −𝐾𝑅 + 𝔣𝜂 − 𝔣𝑒0 ∼ 2𝔰𝑒0 − 2𝔣𝑒0 + 𝔣𝜂, (2.1)

by [4, (2.10)]. In particular,

𝑇 ≁ −𝐾𝑅 and 2𝑇 ∼ −2𝐾𝑅. (2.2)

We denote the strict transform of 𝑇 on 𝑅 by the same symbol. Suppose that 𝑦1, … , 𝑦𝑛 ∈ 𝑇 are general points. Then, by
(2.1)–(2.2) we have

𝑇 ∼ 2𝔰𝑒0 − 2𝔣𝑒0 + 𝔣𝜂 − 𝔢1 −⋯− 𝔢𝑛 ≁ −𝐾𝑅, 2𝑇 ∼ −2𝐾𝑅

on 𝑅. In particular,

𝑇 ≡ −𝐾𝑅 ≡ 2𝔰 − 𝔣 − 𝔢1 −⋯− 𝔢𝑛.

As remarked in the introduction, Theorem 1.1 is a consequence of the following result, which we will prove in Section 5.

Proposition 2.3. Let 𝐸 be a general irreducible smooth projective curve of genus 1. Let 𝑦1, … , 𝑦𝑛 ∈ 𝑇 be general points, with 𝑇
on 𝑅 = Sym2(𝐸) as defined above. Let 𝐿 be a line bundle on 𝑅 = Bl𝑦1,…,𝑦𝑛 (𝑅) verifying condition (⋆) with class 𝜉 inNum(𝑅).
Then, 𝑉𝜉

𝑝𝑎(𝐿)−1
(𝑅) is nonempty and smooth, of the expected dimension 𝐿 ⋅ 𝑇 = −𝐿 ⋅ 𝐾𝑅.

3 A DEGENERATION OF THE TWOFOLD SYMMETRIC PRODUCT OF A GENERAL
ELLIPTIC CURVE

Let 𝐸 be a smooth irreducible projective elliptic curve. We recall a degeneration of 𝑅 = Sym2(𝐸) from [11], to which we
refer the reader for details.
Let  → 𝔻 be a flat projective family of curves over the unit disk 𝔻, with  smooth, such that the fiber 𝑋0 over 0 ∈ 𝔻

is an irreducible rational 1-nodal curve and all other fibers 𝑋𝑡, 𝑡 ∈ 𝔻 ⧵ {0}, are smooth irreducible elliptic curves. Let
𝑝 ∶  → 𝔻 be the relative 2-symmetric product. Then, for 𝑡 ≠ 0, the fiber𝑌𝑡 = 𝑝−1(𝑡) ≃ Sym2(𝑋𝑡) is smooth, whereas the
special fiber 𝑌0 = 𝑝−1(0) = Sym2(𝑋0) is irreducible, but singular. The singular locus of 𝑌0 consists of the curve

𝑋𝑃 ∶= {𝑥 + 𝑃 | 𝑥 ∈ 𝑋0},

where 𝑃 is the node of 𝑋0.
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Let 𝜈 ∶ ℙ1 ≃ 𝑋0 → 𝑋0 be the normalization, with 𝑃1 and 𝑃2 the preimages of 𝑃 (with the notation of [11, p. 328], this is
the case 𝑔 = 1 with 𝑃 = 𝑃1). Then, 𝜈 induces a birational morphism

Sym2(𝜈) ∶ ℙ2 ≃ Sym2(𝑋0) ⟶ Sym2(𝑋0) = 𝑌0. (3.1)

Under the isomorphism on the left, the diagonal in Sym2(𝑋0) corresponds to a smooth conic Γ in ℙ2 that is mapped by
Sym2(𝜈) to the diagonal Δ0 of 𝑌0 and, for each 𝑥 ∈ 𝑋0, the curve

{𝑥 + 𝑄 | 𝑄 ∈ 𝑋0} ⊂ Sym2(𝑋0)

corresponds to the line in ℙ2 tangent to Γ at the point corresponding to 2𝑥.
The threefold  has local equations at the point 2𝑃 ∈ 𝑌0 given by

𝑧25 − 𝑧3𝑧4 = 0, 𝑧1𝑧5 + 𝑧2𝑧3 = 0, 𝑧1𝑧4 + 𝑧2𝑧5 = 0, 𝑧1𝑧2 + 𝑧5 + 𝑡 = 0,

with (𝑧1, … , 𝑧5, 𝑡) ∈ ℂ5 × 𝔻 (cf. [11, p. 329]). In particular, is singular only at the point 2𝑃, corresponding to the origin 0.
Its special fiber 𝑌0 is locally reducible at 0 = 2𝑃, where it consists of three irreducible components 𝑆1 ∪ 𝑆2 ∪ 𝑆3 (named
𝑆𝑖1 in [11]), where 𝑆

1 is the 𝑧2𝑧4-plane, 𝑆2 is the 𝑧1𝑧3-plane, and 𝑆3 has equations 𝑧3 = 𝑧21, 𝑧4 = 𝑧22, 𝑧5 = −𝑧1𝑧2, meeting as
in [11, fig. 1]. The singular locus 𝑋𝑃 = Sing(𝑌0) of 𝑌0 has a node at the origin, 𝑌0 has double normal crossing singularities
along 𝑋𝑃 ⧵ 2𝑃 and the intersection curves 𝐶1 = 𝑆3 ∩ 𝑆1 and 𝐶2 = 𝑆3 ∩ 𝑆2 (named 𝐶𝑖

1 in [11]) are the two branches of the
curve 𝑋𝑃 at 0 = 2𝑃. Finally, in these local coordinates, the diagonal Δ0 of 𝑌0 (Δ0 = Δ1

0,1 ∪ Δ1
0,2 in [11, fig. 1]) consists of the

𝑧2, 𝑧1-axes and it has a node at the point 2𝑃.
Let 𝜇 ∶ ̃ →  be the blow-up at the point 2𝑃 ∈ Sym2(𝑋0) = 𝑌0 ⊂  and denote the exceptional divisor by  (called

𝐸1 in [11]). Then,  ≃ 𝔽1 and ̃ is smooth (see [11, p. 330]). All fibers over 𝑡 ≠ 0 are unchanged. The special fiber 𝑌0 of
̃ → 𝔻 is the union of  and of an irreducible surface 𝑆, which is the strict transform of 𝑌0. We have

𝑆 ∩  = 𝑠0 + 𝑒1 + 𝑒2,

where 𝑒1 and 𝑒2 are two fibers of  ≃ 𝔽1 and 𝑠0 (called 𝜂1 in [11, fig. 2]) is the section satisfying 𝑠20 = −1. The surface 𝑆 is
singular, with double normal crossings singularities along the proper transform𝑋𝑃 of the curve𝑋𝑃. The proper transform
on ̃ of the diagonal of  intersects 𝑌0 along

Δ̃0 + 𝑠0,

where Δ̃0 is the proper transform of the diagonal Δ0 on 𝑌0.
To normalize 𝑆, one unfolds along 𝑋𝑃. The resulting surface 𝑊 is smooth. Denote the normalization map by

𝜎 ∶ 𝑊 → 𝑆. The preimage of 𝑋𝑃 is a pair of curves, which we call 𝑋𝑃1 and 𝑋𝑃2 . Denoting the inverse images on 𝑊 of
the curves 𝑒1, 𝑒2, 𝑠0 on 𝑆 by the same symbols, the intersection configuration between the curves 𝑒1, 𝑒2, 𝑠0, 𝑋𝑃1 , 𝑋𝑃2 on𝑊

looks as follows:

Under the map 𝜎, the two curves 𝑋𝑃1 and 𝑋𝑃2 are identified: We denote the identification morphism by 𝜔 ∶ 𝑋𝑃1 ≃ 𝑋𝑃2 .
Under this morphism, the intersection points of the above configuration are mapped as follows:
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CILIBERTO et al. 579

Definition 3.1. We say that a curve 𝐶 ⊂ 𝑊 is 𝜔-compatible if 𝐶 contains neither 𝑋𝑃1 nor 𝑋𝑃2 and 𝜔 maps the
0-dimensional intersection scheme of 𝐶 with 𝑋𝑃1 to the intersection scheme of 𝐶 with 𝑋𝑃2 .

If the curve 𝐶 is 𝜔-compatible, then 𝜎(𝐶) is a Cartier divisor on 𝑆. Conversely, any curve on 𝑆 that is a Cartier divisor
and does not contain the singular curve of 𝑆 is the image by 𝜎 of an 𝜔-compatible curve on𝑊.
One sees that the curves 𝑠0, 𝑒1, 𝑒2 are (−1)-curves on𝑊 (see [11, pp. 331–332]). Contracting them, we obtain a morphism

𝜙 ∶ 𝑊 → ℙ2 ≃ Sym2(𝑋0) such that

𝜙(𝑠0) = 𝑃1 + 𝑃2, 𝜙(𝑒1) = 2𝑃1, 𝜙(𝑒2) = 2𝑃2

and

𝜙(𝑋𝑃𝑖 ) = 𝑋𝑃𝑖 ∶= {𝑃𝑖 + 𝑄 | 𝑄 ∈ 𝑋0},

fitting in a commutative diagram

(see [11, p. 332]). This is shown in the next picture:

Remark 3.2. The morphism 𝜔 ∶ 𝑋𝑃1 → 𝑋𝑃2 is geometrically interpreted in the following way (see [11]). Via 𝜙 the curves
𝑋𝑃1 and 𝑋𝑃2 map isomorphically to the two lines on the plane ℙ

2 in red in Figure 1 joining the point 𝑃1 + 𝑃2 with the
points 2𝑃1 and 2𝑃2, respectively. In ℙ2, we have the conic Γ (mapped by Sym2(𝜈) to the diagonal Δ0 of 𝑌0), which is
tangent to these lines at the points 2𝑃1 and 2𝑃2. The map 𝜔 associates two points if and only if their images in the plane
lie on a tangent line to Γ. (The two points 𝑃1 + 𝑄 and 𝑃2 + 𝑄 of ℙ2 lie on the tangent line to Γ at the point 2𝑄 and are the

F IGURE 1
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580 CILIBERTO et al.

intersection points of this tangent line with the two lines joining 2𝑃1 with 𝑃1 + 𝑃2 and 2𝑃2 with 𝑃1 + 𝑃2, namely, 𝜙(𝑋𝑃1)

and 𝜙(𝑋𝑃2).)

The Picard group of𝑊 is generated by ℎ, 𝑒1, 𝑒2, 𝑠0, where ℎ is the pullback by 𝜙 of a line. In particular,

𝑋𝑃𝑖 ∼ ℎ − 𝑠0 − 𝑒𝑖, 𝑖 = 1, 2. (3.2)

One has

−𝐾𝑊 = 3ℎ − 𝑒1 − 𝑒2 − 𝑠0.

Let us look at what happens to the classes of 𝔰 and 𝔣 under the degeneration of 𝑅 to 𝑌0. This is described in [11, section
2] together with the more general description of the degeneration of line bundles on 𝑅 under the degeneration of 𝑅 to 𝑌0,
which we are now going to recall.
Let ℎ′ be an 𝜔-compatible member of |ℎ| on𝑊 (cf. Definition 3.1), not containing any of 𝑒1, 𝑒2, or 𝑠0. There is a one-

dimensional irreducible family of such curves whose general member is the strict transform on𝑊 of a general tangent
line to the conic Γ of ℙ2 mapped to the diagonal of 𝑌0 by Sym

2(𝜈) (cf. Remark 3.2). Since ℎ ⋅ 𝑒1 = ℎ ⋅ 𝑒2 = ℎ ⋅ 𝑠0 = 0, we
have 𝜎(ℎ′) ∩  = ∅, so that 𝜎(ℎ′) ⊂ 𝑆 determines a Cartier divisor on 𝑌0. The class of 𝔰 on 𝑅 degenerates to the class of
𝜎(ℎ′).
The class ℎ − 𝑠0 on𝑊 satisfies (ℎ − 𝑠0) ⋅ 𝑠0 = 1 and (ℎ − 𝑠0) ⋅ 𝑒𝑖 = (ℎ − 𝑠0) ⋅ 𝑋𝑃𝑖 = 0, 𝑖 = 1, 2. Thus, the general member

𝐹 of the pencil |ℎ − 𝑠0| is 𝜔-compatible and 𝜎(𝐹) intersects  in one point along 𝑠0. Therefore, the union of 𝜎(𝐹) with the
fiber of  over the intersection point on 𝑠0 is a Cartier divisor on 𝑌0, which turns out to be the limit of 𝔣.
Let 𝐶 ≡ 𝑎𝔰 + 𝑏𝔣 on 𝑅, with 𝑎, 𝑏 ⩾ 0, and let 𝐶0 be its limit on𝑌0. Assume that it neither contains any of 𝑒1, 𝑒2, 𝑠0 nor the

double curve of 𝑆. We may write 𝐶0 = 𝐶𝑆 ∪ 𝐶 with 𝐶𝑆 ⊂ 𝑆 and 𝐶 ⊂  . Then, 𝐶𝑆 ∩ 𝐶 ⊂ 𝑠0 and 𝐶 is a union of fibers of
 . We have 𝐶𝑆 = 𝜎(𝐶𝑊), with 𝐶𝑊 a 𝜔-compatible curve satisfying

𝐶𝑊 ∼ 𝑎ℎ + 𝑏(ℎ − 𝑠0) = (𝑎 + 𝑏)ℎ − 𝑏𝑠0.

This is because the transform of the limit of 𝔰 is numerically equivalent to ℎ on 𝑊 and the transform of the limit of 𝔣
is equivalent to (ℎ − 𝑠0). This means that 𝜙(𝐶𝑊) ⊂ ℙ2 is a plane curve of degree 𝑎 + 𝑏 with a point of multiplicity 𝑏 at
𝑃1 + 𝑃2, with intersection points with 𝑋𝑃1 and 𝑋𝑃2 satisfying the suitable “gluing conditions” given by 𝜔.
Conversely, we have the following:

Lemma 3.3. Let 𝑎, 𝑏 ⩾ 0 and 𝐶𝑊 ∈ |(𝑎 + 𝑏)ℎ − 𝑏𝑠0| be an𝜔-compatible curve not containing any of 𝑒1, 𝑒2, 𝑠0 and intersect-
ing 𝑠0 in distinct points. Let 𝐶 denote the union of fibers on  ≃ 𝔽1 such that 𝐶 ∩ 𝑠0 = 𝐶𝑊 ∩ 𝑠0. Then, 𝜎(𝐶𝑊) ∪ 𝐶 is the
flat limit of a curve algebraically equivalent to 𝑎𝔰 + 𝑏𝔣.

Proof. Since 𝐶𝑊 ⋅ 𝑋𝑃𝑖 = 𝑎, the locus of 𝜔-compatible curves in |𝐶𝑊| has dimension
dim |𝐶𝑊| − 𝑎 =

1

2

(
𝑎2 + 3𝑎 + 2𝑎𝑏 + 2𝑏

)
− 𝑎 =

1

2

(
𝑎2 + 𝑎 + 2𝑎𝑏 + 2𝑏

)
,

which equals the dimension of the Hilbert scheme of curves algebraically equivalent to 𝑎𝔰 + 𝑏𝔣. The result follows from
the discussion prior to the lemma. □

Let us now go back to the degeneration  → 𝔻 of a general elliptic curve 𝐸 to a rational nodal curve 𝑋0 we considered
at the beginning of this section. This can be viewed as a degeneration of the group 𝐸 to ℂ∗, where (keeping the notation
introduced at the beginning of this section) ℂ∗ = ℙ1 ⧵ {𝑃1, 𝑃2}. Since ℂ∗ has a unique nontrivial point of order 2, that is,
−1, we see that in the degeneration  → 𝔻 one of the three nontrivial points of order 2 of the general fiber degenerates to
−1, so it is fixed by the monodromy of the family  → 𝔻. (The other two nontrivial points of order 2 must degenerate to
the node of 𝑋0.) This implies that we have a divisor  on ̃ such that the fiber 𝑇𝑡 for 𝑡 ≠ 0 is a curve 𝑇 ⊂ 𝑅 like the one
we considered in Section 2. Since 𝑇 ≡ 2𝔰 − 𝔣, the proper transform 𝑇𝑊 on𝑊 of the limit of the curve 𝑇 is such that

𝑇𝑊 ∼ 2ℎ − (ℎ − 𝑠0) ∼ ℎ + 𝑠0
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CILIBERTO et al. 581

(remember that the pull-back on𝑊 of the limit of 𝔰 and 𝔣 are ℎ and ℎ − 𝑠0, respectively). More precisely, since 𝑇 has zero
intersection with the diagonal of 𝑅, the image of 𝑇𝑊 in ℙ2 via 𝜙 ∶ 𝑊 → ℙ2 must intersect the conic Γ, which is mapped
by Sym2(𝜈) to the diagonal of 𝑌0 (see (3.1)), only in points of Γ that are blown up by 𝜙, that is, in the points corresponding
to 2𝑃1 and 2𝑃2 (see Figure 1). This implies that

𝑇𝑊 = ℎ0 + 𝑒1 + 𝑒2 + 𝑠0,

where ℎ0 is the strict transform by 𝜙 of the line in ℙ2 through 2𝑃1 and 2𝑃2.
Since 𝑇𝑊 contains 𝑠0, the divisor  contains  . By subtracting  from  , the resulting irreducible effective divisor  − 

intersects the central fiber in a curve that consists of two components: one component on 𝑆, which is 𝜎(ℎ0), and another
component sitting on  that is the pull-back on  ≃ 𝔽1 of the unique line of ℙ2 passing through the two points in which
ℎ0 intersects 𝑒1 and 𝑒2. However, what will be important for us in what follows is that 𝜎(ℎ0) is in the limit of 𝑇.

4 A USEFUL FAMILY OF RATIONAL CURVES ON SOME BLOW-UPS OF THE PLANE

In this section,we prove some results on certain line bundles on someblow-ups of the surface𝑊 introduced in the previous
section. They will be useful in the proof of Proposition 2.3 in Section 5. We go on keeping the notation and convention we
introduced in the previous section.
Let 𝑦1, … , 𝑦𝑛 ∈ ℎ0 be general points. Choose sections of 𝑝 ∶ ̃ → 𝔻 passing through 𝜎(𝑦1), … , 𝜎(𝑦𝑛) ∈ 𝜎(ℎ0) and

through general points 𝑦𝑡1, … , 𝑦𝑡𝑛 ∈ 𝑇𝑡 on a general fiber 𝑌𝑡. Blowing up ̃ along these sections, we obtain a smooth
threefold  ′ with a morphism 𝑝′ ∶  ′ → 𝔻 with general fiber the blow-up of 𝑌𝑡 = Sym2(𝑋𝑡) at 𝑛 general points of 𝑇𝑡

and special fiber 𝑌′ ∶= 𝑆′ ∪  , where 𝑆′ = Bl𝜎(𝑦1),…,𝜎(𝑦𝑛)(𝑆), and there is a normalization morphism 𝜎′ ∶ 𝑊′ → 𝑆′, where
𝑊′ = Bl𝑦1,…,𝑦𝑛 (𝑊). Let 𝑒𝑦𝑖 denote the exceptional divisor in𝑊′ over 𝑦𝑖 , for 𝑖 = 1, … , 𝑛. We denote the strict transforms of
𝑒1, 𝑒2, 𝑠0, 𝑋𝑃1 , 𝑋𝑃2 , ℎ0 on𝑊′ by the same symbols. Note that (3.2) still holds; furthermore,

ℎ0 ∼ ℎ − 𝑒1 − 𝑒2 − 𝑒𝑦1 −⋯− 𝑒𝑦𝑛

and

−𝐾𝑊′ = 3ℎ − 𝑒1 − 𝑒2 − 𝑠0 − 𝑒𝑦1 −⋯− 𝑒𝑦𝑛 ∼ ℎ0 + 𝑒1 + 𝑒2 + 𝑋𝑃1 + 𝑋𝑃2 + 𝑠0. (4.1)

Moreover, the pull-back on𝑊′ of the limit of 𝑇 on 𝑆′ contains ℎ0.
We next fix a general point 𝑥1 ∈ 𝑋𝑃1 and set 𝑥2 = 𝜔(𝑥2) ∈ 𝑋𝑃2 . The following picture summarizes the situation:

We introduce the following notation. For a line bundle on𝑊′, we denote by 𝑉 the locus of curves 𝐶 in || on𝑊′

such that

(1) 𝐶 is irreducible and rational,
(2) 𝐶 intersects 𝑋𝑃𝑖 only at 𝑥𝑖 , 𝑖 = 1, 2, and it is unibranch there.
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582 CILIBERTO et al.

We denote by 𝑉∗

the open sublocus of 𝑉 of curves 𝐶 with the further properties that

(1) 𝐶 intersects 𝑠0 transversely,
(2) 𝐶 is smooth at 𝑥𝑖 , 𝑖 = 1, 2,
(3) 𝐶 is nodal.

Lemma 4.1. Assume 𝑉 ≠ ∅.

(i) If ⋅ (ℎ + 𝑠0 − 𝑒𝑦1 −⋯− 𝑒𝑦𝑛) ⩾ 1, then for each component 𝑉 of 𝑉 one has

dim(𝑉) = −𝐾𝑊′ ⋅ − 1 − ⋅ 𝑋𝑃1 − ⋅ 𝑋𝑃2 =  ⋅ (ℎ + 𝑠0 − 𝑒𝑦1 −⋯− 𝑒𝑦𝑛) − 1.

(ii) If ⋅ (ℎ + 𝑠0 − 𝑒𝑦1 −⋯− 𝑒𝑦𝑛) ⩾ 4, then 𝑉∗


≠ ∅.

Proof. The result follows from [3, section 2], as outlined in [12, Theorem (1.4)]. □

Proposition 4.2. Let 𝛼, 𝛽, 𝛾1, … , 𝛾𝑛 be nonnegative integers verifying conditions (i)–(iv) in Definition 2.1. Set  = (𝛼 +

𝛽)ℎ − 𝛽𝑠0 −
∑

𝛾𝑖𝑒𝑦𝑖 . Then, 𝑉
∗

is nonempty with all components of dimension 𝛼 + 2𝛽 −

∑
𝛾𝑖 − 1.

In the proof of Proposition 4.2, we will need the following:

Lemma 4.3. Given three lines 𝓁1, 𝓁2, 𝓁3 in the plane ℙ not passing through the same point, we set 𝑦𝑖𝑗 = 𝓁𝑖 ∩ 𝓁𝑗 for 1 ⩽ 𝑖 <

𝑗 ⩽ 3. Fix integers 𝑑 > 𝑚 ⩾ 0, 𝑛 ⩾ 0,𝑚1,… ,𝑚𝑛 ⩾ 1, such that

𝑑 ⩾

𝑛∑
𝑖=1

𝑚𝑖 and 𝑑 ⩾ 𝑚 +𝑚𝑖, 𝑖 = 1, … , 𝑛.

Then, there is a reduced and irreducible rational curve 𝛾 in ℙ of degree 𝑑 with the following properties:

(1) 𝛾 has a point of multiplicity𝑚 at 𝑦12,
(2) the pull-back on the normalization of 𝛾 of the 𝑔1

𝑑−𝑚
cut out by the lines through 𝑦12 has two total ramification points

mapping to generic points 𝑥1 ∈ 𝓁1 and 𝑥2 ∈ 𝓁2, respectively (in particular, different from 𝑦12, 𝑦13, 𝑦23),
(3) 𝛾 has 𝑛 points of multiplicities 𝑚1,… ,𝑚𝑛 that are pairwise distinct points on 𝓁3 (in particular, different from 𝑦13 and

𝑦23).

Proof. Set 𝛿 = 𝑑 −𝑚. The assertion is trivial if 𝛿 = 1. So we assume 𝛿 ⩾ 2. Consider a morphism 𝑓 ∶ ℙ1 → ℙ1 of degree
𝛿 with two points of total ramification, that is, a 𝑔1

𝛿
with no base points. Fix a general effective divisor 𝐷 of degree 𝑚 on

ℙ1, so that 𝑔1
𝛿
+ 𝐷 is a 𝑔1

𝑑
. Fix 𝑛 general points 𝑃1, … , 𝑃𝑛 of ℙ1, and consider the fibers

𝑓−1(𝑃𝑖) = 𝑃𝑖1 +⋯+ 𝑃𝑖𝛿, 𝑖 = 1, … , 𝑛.
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CILIBERTO et al. 583

Consider then the divisor

𝐸 =

𝑛∑
𝑖=1

𝑚𝑖∑
𝑗=1

𝑃𝑖𝑗 + 𝐹,

where 𝐹 is a general effective divisor of degree 𝑑 −
∑𝑛

𝑖=1 𝑚𝑖 on ℙ1. The divisor 𝐸 has no common point with the general
divisor of 𝑔1

𝛿
+ 𝐷. Hence, 𝐸 and 𝑔1

𝛿
+ 𝐷 span a 𝑔2

𝑑
with no base points. Moreover, this 𝑔2

𝑑
is birational. Indeed, if 𝑔2

𝑑
were

composed with a 𝑔1𝜈, then, by the generality of the divisor 𝐷, the 𝑔1𝛿 would have base points, a contradiction.
Let 𝛾 be the image of ℙ1 via the 𝑔2

𝑑
. This is a rational plane curve of degree 𝑑, with a point of multiplicity 𝑚 at a point

𝑦12 of ℙ2. Moreover, there are two lines 𝓁1, 𝓁2 passing through 𝑦12, that each intersects 𝛾 at one point apart from 𝑦12, call
it 𝑥1 and 𝑥2, respectively, where the 𝑔1𝛿 has total ramification. Finally, there is a third line 𝓁3 that pulls back to ℙ

1 to the
divisor 𝐸. By the choices we made, this line does not pass through 𝑥1 and 𝑥2 and the divisors

∑𝑚𝑖

𝑗=1
𝑃𝑖𝑗 , for 𝑖 = 1, … , 𝑛, are

contracted by the 𝑔2
𝑑
to 𝑛 distinct points on 𝓁3 that have multiplicities𝑚1,… ,𝑚𝑛. The genericity of 𝑥1, 𝑥2 can be achieved

by acting with projective transformations of the plane fixing the lines 𝓁1, 𝓁2, 𝓁3, which keep the points of multiplicities
𝑚1,… ,𝑚𝑛 pairwise distinct. □

Proof of Proposition 4.2. Let 𝑑 = 𝛼 + 𝛽, 𝑚𝑖 = 𝛾𝑖 , and 𝑚 = 𝛽. Consider the plane ℙ containing the curve 𝛾 constructed in
Lemma 4.3. Let us blow up the points 𝑦12, 𝑦13, 𝑦23 and the 𝑛 points of multiplicities𝑚1,… ,𝑚𝑛 on 𝛾 along 𝓁3.
We will consider the family of the surfaces𝑊′ as above where the points 𝑦1, … , 𝑦𝑛 are no longer general but simply

pairwise distinct. We call 𝑏 > 0 the dimension of the parameter space of this family. There is a line bundle on that
restricts on each member of to the line bundle𝑀 as in the statement of the proposition. Accordingly, we can consider
the families  and ∗


of all varieties 𝑉𝑀 and 𝑉∗

𝑀 as before.
The blow-up at the beginning of the proof can be interpreted as a member𝑊′

0 of with 𝜔(𝑥1) = 𝑥2, since there is a
unique irreducible conic Γ tangent to the lines 𝓁1, 𝓁2 at 𝑦13 and 𝑦23, respectively, and tangent also to the line joining the
two points 𝑥1 and 𝑥2 (cf. Remark 3.2). We denote by𝑀0 the restriction of to𝑊′

0.
Lemma 4.3 implies that 𝑉𝑀0

is nonempty, which by Lemma 4.1 implies in turn that 𝑉∗
𝑀0

is nonempty, with all compo-
nents of the expected dimension 𝛼 + 2𝛽 −

∑
𝛾𝑖 − 1. This yields that ∗


is nonempty. Then, its dimension is at least the

expected dimension, which is 𝛼 + 2𝛽 −
∑

𝛾𝑖 − 1 + 𝑏 that is strictly larger than the dimension of 𝑉∗
𝑀0
. This implies that

for𝑊′ general in , the variety 𝑉∗
𝑀 is nonempty of the expected dimension 𝛼 + 2𝛽 −

∑
𝛾𝑖 − 1, as wanted. □

5 PROOF OF PROPOSITION 2.3

Let us go back to 𝑅 and 𝑅 = Bl𝑦1,…,𝑦𝑛 (𝑅), where 𝑦1, … , 𝑦𝑛 are general points on 𝑇, with exceptional divisors 𝔢𝑖 over 𝑦𝑖 , for
𝑖 = 1, … , 𝑛.

Proof of Proposition 2.3. As we already noted, condition (iv) in Definition 2.1 of (⋆) is equivalent to−𝐾𝑅 ⋅ 𝐿 ⩾ 4. Hence, as
remarked for Theorem 1.1 in the introduction, the statements about dimension and smoothness follow fromProposition 2.2
once nonemptiness is proved. So it remains to prove nonemptiness.
We prove the result by degeneration of 𝑅 to 𝑌′, as indicated in Section 4, from which we keep the notation.
On the surface𝑊′, consider

𝐿0 ∼ 𝛼ℎ + 𝛽(ℎ − 𝑠0) −
∑

𝛾𝑖𝑒𝑦𝑖 .

Denote by {𝐿0}𝑊′ ⊂ |𝐿0| the sublocus of 𝜔-compatible curves.
Claim 5.1. dim({𝐿0}𝑊′) = dim(|𝐿0|) − 𝛼 =

1

2

(
𝛼2 + 𝛼 −

∑
𝛾𝑖 −

∑
𝛾2
𝑖

)
+ 𝛽(𝛼 + 1).

Proof of Claim. By Proposition 4.2, the linear system |𝐿0| contains an irreducible curve. Since ℎ1(𝑊′) = 0, it therefore
follows that

ℎ1(−𝐿0) = ℎ1(𝐿0 + 𝐾𝑊′) = 0. (5.1)
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584 CILIBERTO et al.

Set 𝐴 ∶= ℎ0 + 𝑒1 + 𝑒2 + 𝑋𝑃1 + 𝑋𝑃2 + 𝑠0. Then, 𝐴 is a reduced cycle of rational curves, thus of arithmetic genus 1, and it is
anticanonical by (4.1). Since 𝐿0 ⋅ 𝐴 ⩾ 4 by condition (iv) of (⋆), it follows in particular that |𝐿0 + 𝐴| contains a reduced,
connected member. It therefore follows that

ℎ1(−𝐿0 − 𝐴) = ℎ1(𝐿0) = 0 and ℎ0(−𝐿0 − 𝐴) = ℎ2(𝐿0) = 0. (5.2)

In particular, using Riemann–Roch on𝑊′, one computes that

dim(|𝐿0|) = 1

2

(
𝛼2 + 3𝛼 −

∑
𝛾𝑖 −

∑
𝛾2
𝑖

)
+ 𝛽(𝛼 + 1),

thus proving the right-hand equality of the claim.
We have left to prove that {𝐿0}𝑊′ has codimension 𝛼 in |𝐿0|.
To this end, let 𝑍1 ∈ Sym𝛼(𝑋𝑃1) be general, and set 𝑍2 ∶= 𝜔(𝑍1) ∈ Sym𝛼(𝑋𝑃2). From the two restriction sequences,

0 ⟶ 𝐿0 + 𝐾𝑊′ ⟶ 𝐿0 ⟶ 𝐿0|𝐴 ⟶ 0

and

0 ⟶ 𝐿0 + 𝐾𝑊′ ⟶ 𝐿0 ⊗ 𝑍1∪𝑍2 ⟶ 𝐿0|𝐴(−𝑍1 − 𝑍2) ⟶ 0,

together with (5.1), we see that

codim
(|||𝐿0 ⊗ 𝑍1∪𝑍2

|||, |𝐿0||
)
= codim

(|𝐿0|𝐴(−𝑍1 − 𝑍2)|, |𝐿0|
)
.

A standard computation involving restriction sequences to the various components of𝐴 shows that the latter codimension
is 2𝛼. Therefore,

dim
(|||𝐿0 ⊗ 𝑍1∪𝑍2

|||
)
= dim(|𝐿0|) − 2𝛼.

(This equality can also be obtained applying [12, Theorem (1.4.0)].) Varying 𝑍1 ∈ Sym𝛼(𝑋𝑃1), we obtain the whole of
{𝐿0}𝑊′ . Thus,

dim({𝐿0}𝑊′) = dim
(|||𝐿0 ⊗ 𝑍1∪𝑍2

|||
)
+ dim(Sym𝛼(𝑋𝑃1)) = dim(|𝐿0|) − 𝛼,

finishing the proof of the claim. □

Denote by {𝐿0} the locus of curves on 𝑌′ = 𝑆′ ∪  of the form 𝜎′(𝐶) ∪ 𝐶 , where 𝐶 is an element of {𝐿0}𝑊′ and 𝐶 is the
union of fibers on  ≃ 𝔽1 such that 𝐶 ∩ 𝑆′ = 𝜎′(𝐶) ∩ 𝑠0. Then, there is a one-to-one correspondence between {𝐿0}𝑊′ and
{𝐿0}. Thus, by the last claim,

dim({𝐿0}) =
1

2

(
𝛼2 + 𝛼 −

∑
𝛾𝑖 −

∑
𝛾2
𝑖

)
+ 𝛽(𝛼 + 1). (5.3)

Note that all members of {𝐿0} are Cartier divisors on 𝑌′. Moreover, by Lemma 3.3, the closure of the locus {𝐿0} is (a
component of) the limit of the algebraic system {𝐿} on 𝑅 of curves of class 𝛼𝔰 + 𝛽𝔣 −

∑
𝛾𝑖𝔢𝑖 . Since the anticanonical divisor

on 𝑅 is effective, we have ℎ2(𝐿) = ℎ0(𝐾𝑅 − 𝐿) = 0, whence Riemann–Roch yields

dim{𝐿} = dim |𝐿| + 1 = 𝜒(𝐿) + ℎ1(𝐿)

=
1

2
𝐿 ⋅ (𝐿 − 𝐾𝑅) + ℎ1(𝐿)

=
1

2

(
𝛼2 + 𝛼 −

∑
𝛾𝑖 −

∑
𝛾2
𝑖

)
+ 𝛽(𝛼 + 1) + ℎ1(𝐿).
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CILIBERTO et al. 585

By (5.3) and semicontinuity, we must have ℎ1(𝐿) = 0 and

dim({𝐿0}) = dim({𝐿}). (5.4)

Let𝑥1 and𝑥2 be as in Section 4 and pick a general𝐶 in a component of𝑉∗
𝐿0
in𝑊′ (which is nonempty by Proposition 4.2).

Then, 𝐶 intersects 𝑠0 transversely at 𝐿0 ⋅ 𝑠0 = 𝛽 distinct points. Denote as above by 𝐶 the union of the 𝛽 fibers on  such
that𝐶 ∩ 𝑠0 = 𝜎′(𝐶) ∩ 𝑠0. Then,𝜎′(𝐶) ∪ 𝐶 is amember of {𝐿0}, with an𝛼-tacnode at𝜎′(𝑥1) = 𝜎′(𝑥2), andnodal otherwise,
stably equivalent to 𝜎′(𝐶). Varying 𝑥1, we obtain by Proposition 4.2 a family  of dimension 𝛼 + 2𝛽 −

∑
𝛾𝑖 = −𝐿 ⋅ 𝐾𝑅 of

such curves, and this is the expected dimension of 𝑉𝜉

𝑝𝑎(𝐿)−1
(𝑅).

Let 𝛿0 be the number of nodes of 𝐶, which equals the number of singular points of 𝜎′(𝐶) on the smooth locus of 𝑌′.
Then,

𝛿0 = 𝑝𝑎(𝐿0) =
1

2

(
𝛼2 − 3𝛼 +

∑
𝛾𝑖 −

∑
𝛾2
𝑖

)
+ 𝛽(𝛼 − 1) + 1.

Grant for the moment the following1:

Claim 5.2. The family of curves in {𝐿0} passing through the 𝛿0 nodes of 𝜎′(𝐶) and having an (𝛼 − 1)-tacnode at 𝜎′(𝑥1) =
𝜎′(𝑥2) has codimension 𝛿0 + 𝛼 − 1 in {𝐿0}, that is, it has dimension 𝛼 + 2𝛽 −

∑
𝛾𝑖 = dim.

Arguing as in [15, Theorem 3.3, Corollary 3.12, and proof of Theorem 1.1],2 we may deform 𝑌′ to 𝑅 deforming the 𝛼-
tacnode of 𝜎′(𝐶) to 𝛼 − 1 nodes, while preserving the 𝛿0 nodes and smoothing the nodes 𝜎′(𝐶) ∩ 𝐶 . Thus, 𝜎′(𝐶) ∪ 𝐶

deforms to a curve algebraically equivalent to 𝐿 with 𝛿 nodes, where

𝛿 = 𝛿0 + 𝛼 − 1 =
1

2

(
𝛼2 − 𝛼 +

∑
𝛾𝑖 −

∑
𝛾2
𝑖

)
+ 𝛽(𝛼 − 1).

One computes

𝑝𝑎(𝐿) =
1

2

(
𝐿2 + 𝐿 ⋅ 𝐾𝑅

)
+ 1 = 𝛿 + 1.

This shows that 𝐶 has geometric genus 1, as wanted.
We have left to prove the claim.

Proof of Claim 5.2. Let  be the family of curves in {𝐿0}𝑊′ passing through the 𝛿0 nodes of 𝐶 and being tangent to 𝑋𝑃𝑖 at
𝑥𝑖 with order 𝛼 − 1, for 𝑖 = 1, 2. The statement of the claim is equivalent to dim = 𝛼 + 2𝛽 −

∑
𝛾𝑖 .

Denoting by 𝑁 the scheme of the 𝛿0 nodes of 𝐶 and by 𝑍𝑖 = (𝛼 − 1)𝑥𝑖 the subscheme on 𝑋𝑖 , whence on𝑊′, we have
that  is the locus of 𝜔-compatible curves in |𝐿0 ⊗ 𝑁∪𝑍1∪𝑍2 |, which has codimension 1, as 𝐿0 ⋅ 𝑋𝑖 = 𝛼. Thus,

dim() = dim(|𝐿0 ⊗ 𝑁∪𝑍1∪𝑍2 |) − 1.

To compute this, let 𝑞 ∶ 𝑊′′ → 𝑊′ denote the blow-up of𝑊′ at 𝑁 and denote the total exceptional divisor by 𝐸. Denote
the inverse images of 𝑍𝑖 by the same names. Then,

dim() = dim
(|(𝑞∗𝐿0 − 𝐸) ⊗ 𝑍1∪𝑍2 |) − 1. (5.5)

Let 𝐶 be the strict transform of 𝐶 on 𝑊′′, which is a smooth rational curve. Then, 𝐶 ∼ 𝑞∗𝐿0 − 2𝐸. We therefore have a
short exact sequence

0 ⟶ 𝑊′′(𝐸) ⟶ (𝑞∗𝐿0 − 𝐸) ⊗ 𝑍1∪𝑍2 ⟶ 𝐶(𝑞
∗𝐿0 − 𝐸)(−(𝛼 − 1)(𝑥1 + 𝑥2)) ⟶ 0,
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586 CILIBERTO et al.

whence, from (5.5), we have

dim() = ℎ0((𝑞∗𝐿0 − 𝐸) ⊗ 𝑍1∪𝑍2) − 2

= ℎ0(𝐶(𝑞
∗𝐿0 − 𝐸)(−(𝛼 − 1)(𝑥1 + 𝑥2))) − 1

= deg(𝐶(𝑞
∗𝐿0 − 𝐸)(−(𝛼 − 1)(𝑥1 + 𝑥2)))

= (𝑞∗𝐿0 − 2𝐸)(𝑞∗𝐿0 − 𝐸) − 2(𝛼 − 1)

= 𝐿20 − 2𝛿0 − 2𝛼 + 2

= 𝛼 + 2𝛽 −
∑

𝛾𝑖,

as desired. □

The proof of Proposition 2.3 is now complete. □
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ENDNOTES
1From a deformation-theoretic point of view, the claim asserts the smoothness of the equisingular deformation locus of 𝜎′(𝐶) ∪ 𝐶 , which is a
dense open subset of , cf. [15, Lemma 3.4].

2The setting in [15] is slightly different, as the central fiber in the degeneration is a transversal union of two smooth surfaces, whereas 𝑆′ in the
present setting is singular. Moreover, the central fiber in the degeneration in [15] is regular, whence linear and algebraic equivalence coincide,
which is not the case on𝑌′. However, the reasoning in [15] is local, so the proof goes through in the present setting as well. The two hypotheses
(1) and (2) in [15, Theorem 3.3] correspond, respectively, to (5.4) and the statement in Claim 5.2.
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