
1. Introduction
Climate models have been key tools for answering fundamental questions about our climate systems. However, 
large uncertainties exist with many key processes being parameterized and biases in several of the Earth system 
components (e.g., ocean, atmosphere, sea ice, and land) being larger than the projected changes in climate and 
larger than the variability being predicted (Palmer & Stevens, 2019). While models have improved through the 
successive generations of coordinated model intercomparison projects (CMIP)—version 6 being the latest (Eyring 
et al., 2016)—many of the large biases persist, for example,: the double-Intertropical Convergence Zone (ITCZ) 
problem (Tian & Dong, 2020); the tropical Atlantic bias (Richter et al., 2014) and the signal-to-noise paradox 
(Scaife & Smith, 2018). Although some simulations are being tested at a breakthrough resolution (Zhongming 
et al., 2020), we are still most likely decades away from being able to perform operational climate simulations 
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Coupled Model Intercomparison Project simulations. It also modifies atmospheric teleconnections. Connecting 
the model via their weighted mean (one of the two approaches tested) causes a spurious deflation of variability. 
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with models that can explicitly resolve the most important physical processes. In the meantime, one can test alter-
nate methods to understand and mitigate these biases using the current generation of models.

The classical approach to mitigate model error is to take the multi-model average of independent model simulations 
(a-posteriori) so that errors in the different models cancel. This approach is standard for climate projection but can 
also improve predictions (Branicki & Majda, 2015). One can refine the post-processing by taking a weighted mean of 
the different runs—an approach referred to as a super ensemble (Krishnamurti et al., 2016). However, this approach 
has limitations as most models share the same deficiencies (e.g., double ITCZ, warm bias in the tropical Atlantic) 
and because linear post-processing does not necessarily correct non-linear responses, such as climate sensitivity.

Supermodeling builds on the interactive ensemble approach (Kirtman & Shukla, 2002) where multiple realiza-
tions of the same atmospheric general circulation model are simultaneously coupled to a single ocean general 
circulation model through averaging their air-sea fluxes. Supermodels couple simultaneously different models 
and take advantage of their diversity to compensate their errors (Duane et  al.,  2018). Models are connected 
as they run via their state variables or their tendencies. Models can either be connected to each other (e.g., 
Mirchev et al., 2012; Smith, 2001) or toward their weighted mean (Schevenhoven & Carrassi, 2021; Wiegerinck 
et  al.,  2013). During a training phase, the connection terms are optimized to formulate a new synchronised 
dynamical system that achieves enhanced performance. Supermodels rely on two important properties: first, it is 
possible to synchronise different models exchanging a few variables—an approach referred to as chaos synchro-
nisation of non-linear dynamical systems (Duane & Tribbia,  2001; Pecora et  al.,  1997)—and second, model 
diversity can encompass the true behavior of the dynamical system.

Supermodels have been tested with various models and experimental designs of different complexity. At first, ideal-
ized framework experiments (or observing system simulation experiments, Halem & Dlouhy, 1984) were used. 
Theses are convenient because they avoid challenges associated with the real framework and because the truth 
(constructed from a model) is known. One can introduce model error (e.g., by perturbing parameter values or using 
a different model) and disclose only part of the true model state as observations (perfect or not). Supermodeling was 
successfully demonstrated for parametric model error forming a convex envelope around the truth and that with low 
dimensional dynamical systems (e.g., Lorenz 63, Lorentz 96, Rossler systems; see Mirchev et al., 2012; Van den Berge 
et al., 2011; Du & Smith, 2017), quasi-geostrophic atmospheric models (Schevenhoven & Selten, 2017; Wiegerinck 
& Selten, 2017), and the global atmosphere–ocean–land model of intermediate complexity SPEEDO (Schevenhoven 
& Selten, 2017; Selten et al., 2017). However, when the model error does not cancel out (i.e., parameters do not form 
a convex envelop around the truth), one can use negative weights (Schevenhoven & Carrassi, 2021; Schevenhoven 
et al., 2019), which raises new challenges. Furthermore, the supermodel can degrade performance on time scales 
different to those it was trained on (Wiegerinck & Selten, 2017). Nevertheless, the first demonstration of supermod-
eling with real data successfully mitigated the double ITCZ bias and improved the representation of the dynamics 
in the equatorial Pacific (Shen et al., 2016, 2017). These results were achieved with two versions of the ECHAM5 
Atmospheric General Circulation Models (AGCM)—each of them using a different convection scheme—providing 
the weighted average fluxes to a single Oceanic General Circulation Model (OGCM), Max Planck Institute Ocean 
Model (MPIOM) (Shen et al., 2016). One may expect to enhance the performance of supermodeling by broadening 
model diversity that expands the convex envelop so that it may enclose the true Earth system—to the extent possible, 
recognizing that the real climate system is far more complicated than any numerical model.

Building a supermodel with fundamentally different ESMs raises new challenges. Models do not share the same 
model-state space, nor do they have comparable resolution and representativity (Janjić et al., 2018). For this purpose, 
Du and Smith (2017) suggested formulating pseudo-observations of the different models and assimilating them back 
into the different models. The approach was demonstrated with low-dimensional systems and in an idealized frame-
work. Another challenge is practical limitations with feasible data volume exchanged among models and frequency of 
the synchronisation steps. Here, we aim to assess whether a supermodel can achieve synchronisation (a requirement of 
supermodeling) in a configuration where data exchange is sparse, synchronisation steps infrequent, and models have 
a radically different structure. We will apply part of the formalism proposed by Du and Smith (2017)—connecting 
models via assimilation of synthetic pseudo-observations generated from the multi-model ensemble. We will exam-
ine the impact of generating the pseudo-observations from a single model or constructing it from an equal-weighted 
mean. In future work, we will implement training  and  analyze the resulting supermodel's performance.

This paper is organized as follows. Section 2 presents the practical implementation of the supermodeling frame-
work: the description of the individual ESMs, the synchronisation methodology and the data assimilation (DA) 
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method. Section  3 introduces the validation data sets and metrics, and 
Section 4 presents the result of two supermodeling frameworks, first globally 
with a focus on the damping of internal variability (ocean and atmosphere) 
and impact on the SST bias and second with a focus on the ENSO region and 
associated teleconnections.

2. Supermodeling Framework
This section describes the practical implementation of the supermodel frame-
work for ESMs using ocean connections. It combines the Norwegian Earth 
System Model (NorESM), the Community Earth System Model (CESM) 
and the Max Planck Institute Earth System Model (MPI-ESM) (Figure 1). 
The three ESMs are connected via their SST every month. We implement 
an assimilation system into each model individually based on the Ensem-
ble Optimal Interpolation. The DA method updates the whole water column 
based on the synthetic SST pseudo-observations constructed from the 
multi-model ensemble mean or from a single model.

2.1. CESM

The CESM is a global, fully coupled model for climate simulations. We used 
the CESM Large Ensemble Project (LENS) version based on CESM1.1.2 
(Kay et al., 2015), with all components at approximately 1° horizontal reso-
lution. External forcing complies with CMIP5's historical experiment. The 
atmospheric component is the Community Atmosphere Model version 5, 
(CAM5, Hurrell et  al.,  2013) with 30 vertical levels and a finite-volume 
grid (f09, i.e., approximately 1°). The Community Land Model, version 4 

(CLM4), is on the same grid as the atmosphere. The Parallel Ocean Program, version 2 (POP), is run with 60 
vertical levels. The horizontal resolution of the ocean is approximately 1°, but it is enhanced in the meridional 
direction around the equator and both in zonal and meridional directions at high latitudes (g16 grid). The sea ice 
[Los Alamos Sea Ice Model (CICE) version 4] component model is on the same grid as the ocean model. We use 
historical forcing from 1920 to 2005 (Lamarque et al., 2010) and retrieve the initial conditions from the National 
Center for Atmospheric Research repository (b.e11.B20TRC5CNBDRD.f09_g16.001) in 1950. As POP2 only 
allows modification for one time level of the leapfrog scheme, we follow the approach of the data assimila-
tion research testbed (DART, Anderson et al., 2009). It uses a forward Euler scheme for the first time step but 
reverts to the leapfrog scheme afterward. The barotropic velocities and surface pressure  gradients are adjusted to 
preserve the ocean volume. The flag POPDART can activate this option in POP2.

2.2. NorESM

We use the medium-resolution NorESM1-ME (Tjiputra et al., 2013) that contributed to the CMIP5. It is based on 
the CESM version 1.0.3 (CESM1, Vertenstein et al., 2012). However, the atmospheric component (CAM4-OSLO) 
features an advanced aerosol chemistry scheme (Kirkevåg et al., 2013), and the ocean is an updated version of 
the isopycnal coordinates ocean model MICOM (Bentsen et al., 2012). The atmosphere and land components 
are configured on a finite-volume grid with a latitude and longitude resolution of 1.9 × 2.5°. The atmosphere 
component uses 26 hybrid sigma-pressure levels with a model top at approximately three hPa. The horizontal 
resolution of the ocean and sea-ice model is approximately 1°. The ocean uses 51 isopycnal layers and two layers 
representing the bulk mixed layer with time-evolving thicknesses and densities. The initial condition is taken 
from a historical simulation in 1980.

2.3. MPI-ESM

We use the MPI-ESM1-LR (Block & Mauritsen, 2013; Dunstone et al., 2018; Giorgetta et al., 2013) model that 
contributed to the CMIP5. The AGCM of MPI-ESM1-LR is the sixth generation European Centre Hamburg 

Figure 1. Schematics of the supermodel framework. The green arrows denote 
dynamical coupling in the individual models, and the yellow band denotes 
synchronisation in the different ocean models achieved using data assimilation.
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general circulation model (ECHAM6, Stevens et al., 2013), and the OGCM is the MPIOM (Jungclaus et al., 2013; 
Marsland et al., 2003). The land model (JSBACH, Reick et al., 2013; Schneck et al., 2013), which includes vege-
tation, and the marine biogeochemistry model (HAMOCC5, Ilyina et al., 2013) are considered as subsystems of 
ECHAM6 and MPIOM, respectively. ECHAM6 employs T63 spectral resolution (approximately 1.9° horizontal 
resolution) and 47 vertical levels, and MPIOM employs a rotated curvilinear grid with an approximate 1.5° hori-
zontal resolution and 40 z-levels. The poles of MPIOM are moved to Greenland and the Weddell Sea. We start 
the simulation from a historical simulation in 1980.

2.4. Synchronisation Methodology

The three ESMs use different models, grids, coordinates, and resolutions (Table 1). NorESM and CESM may 
be more similar, but they use a fundamentally different ocean model (in geopotential depth coordinates for 
CESM and isopycnal coordinates for NorESM), and the atmospheric model in CESM is a more advanced version 
(CAM5 vs. CAM4) and has a higher resolution (1° vs. 2°). Consequently, one cannot simply use state replace-
ment or nudging, as they will generate imbalances and may lead the models to crash. Data assimilation (DA) can 
estimate the best possible (most likely) state based on observations, a dynamical model, and their uncertainties. 
It is designed to preserve the dynamical consistency of the individual models and optimally handle observation 
uncertainty (Carrassi et al., 2018).

A limitation of DA methods for this application is that they are (with few exceptions, e.g., Nerger et al., 2020; S. 
Zhang et al., 2007) working offline—meaning that the model is stopped, the state written on disk, DA applied 
on the files and the model restarted. With such large systems as the ESMs, the time required for initializing 
the model and writing the input/output is burdensome (see, e.g., Karspeck et  al., 2018), limiting the feasible 
frequency of the synchronisation. Similarly, one needs to limit the number of variables that will be synchronised 
to keep the cost of the DA-step low.

As a first attempt before developing a more advanced connected supermodel of ESMs, we try to synchronise 
the three models through their SST at a monthly frequency. SST is sufficient to constrain the variability in many 
regions of the earth system, particularly in the tropics (Shukla, 1998; Wang et al., 2019; Zhu et al., 2017). It is 
observed over a long period with a good level of accuracy, enabling the possibility to effectively train our super-
model and validate it for an independent period. With monthly synchronisation, the additional computational cost 
of the monthly assimilation remains small.

We test two supermodeling approaches that differ in their formulation of the pseudo-observations. The first 
scheme belongs to the category of state-constrained weighted supermodels (Schevenhoven & Carrassi, 2021). 
The three models are integrated forward for 1 month, and their SSTs are interpolated to a common 1° grid. The 
pseudo-observations are the equal-weighted mean of these outputs (referred to as EW in the following). Weights 
should be trained using observations to optimize model performance, but this optimisation is out of the scope 
of the paper. The pseudo-observations are then assimilated into the individual models using the EnOI method 
(Section 2.5), and the models are then restarted for the next cycle. The first synchronisation step in the two 
supermodel frameworks started on the first of February 1980 for practical reasons. We do not synchronise models 
under the union of all three models sea ice mask.

In the second scheme, the workflow is similar, but the pseudo-observations are formulated from a single model 
(hereafter referred to as SINGLE). This approach is, for instance, used in the cross-pollination in time method 

Table 1 
We Summarize the Key Characteristics of the Different Earth System Models Used

Model version Ocean Atmosphere Reference

NorESM1-ME MICOM(σ; 1°) CAM4 (finite-volume, 2°) Tjiputra et al. (2013)

CESM1.1.2 POP2 (z, 1°) CAM5 (finite-volume, 1°) Kay et al. (2015)

MPI-ESM1-LR MPIOM (z,1.5°) ECHAM6 (spectral, 2°) Block and Mauritsen (2013)

Note. The first column details the model versions. The second column reports the name of the ocean models, their resolution 
and coordinate system in the vertical—that is, isopycnal (σ-coordinate) or geopotential depth (z-coordinate). The third 
column is the name of the atmospheric models and their discretization scheme. The last column provides a reference to the 
model version.
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(Du & Smith,  2017; Smith,  2001). Another objective of this experiment is that it should not be affected by 
variability damping—for example, experienced with interactive ensemble (Kirtman & Shukla, 2002; Kirtman 
et al., 2004; W. Zhang & Kirtman, 2019)—and can serve as a benchmark for the EW. It can serve to assess the 
potential synchronisation that can be achieved with SST and monthly synchronisation steps. We have selected 
arguably CESM that has higher resolution and provides overall the best performance. We interpolate the CESM 
pseudo-observations onto the common grid to have a comparable interpolation error between the two schemes. 
Formulating the pseudo-observations in the native CESM grid enhances the performance slightly but does not 
change any conclusion unless reported.

The performances of the two supermodel approaches are compared to a non-interactive multi-model ensemble 
(hereafter referred to as NI) which start from the same initial condition than the two supermodels, but do not stop 
for the synchronisation steps. Thus, NI provides a benchmark for assessing the degree of synchronisation in the 
supermodels. All models start from a historical simulation in 1980 using CMIP5 historical forcing, and RCP8.5 
is used for 2006 (Taylor et al., 2012) when our simulations stopped.

The system runs on 11 nodes (1408 CPU) on the Norwegian high performance computer Betzy (a BullSequana 
XH2000) and can achieve about 10 model-year per day. CESM runs on eight nodes and runs 1 month in approx-
imately 7 mins, NorESM runs on two nodes and performs the 1-month simulation in approximately 7 mins, 
MPI-ESM uses one node and performs a 1-month simulation in approximately four and half minutes. The model 
integration accounts for approximately 7 mins, while the DA step accounts for approximately 2 mins. The assim-
ilation is currently performed sequentially (i.e., one model after the other), and this step could have been reduced 
to 40 s if parallelized.

2.5. Ensemble Optimal Interpolation

The Ensemble Optimal Interpolation (EnOI, Evensen, 2003; Oke et al., 2002) is a computationally cheap sequen-
tial DA method derived from the Ensemble Kalman Filter (EnKF, Evensen, 2003).

The EnOI provides multivariate updates based on the model's historical covariance. Formulating the covariance 
from the same model ensures the preservation of linear quantities (such as geostrophic balance) and limits initial-
ization shock (Counillon & Bertino, 2009). The covariance matrix is constructed based on an ensemble of N 
model snapshots (each of dimension n, where n is the state dimension):

𝐗𝐗
𝑠𝑠 = [𝐱𝐱1, . . . , 𝐱𝐱𝑁𝑁 ] ∈ 

𝑛𝑛×𝑁𝑁
. (1)

The static ensemble anomaly A s is calculated so that 𝐴𝐴 𝐀𝐀
𝑠𝑠 = 𝐗𝐗

𝑠𝑠 − 𝐗𝐗𝑠𝑠𝟙𝟙
𝐓𝐓 , with 𝐴𝐴 𝐗𝐗𝑠𝑠 being the static ensemble mean 

and 𝐴𝐴 𝟙𝟙𝑚𝑚 = [1, 1, . . . , 1]∈ 
1×𝑁𝑁 .

To correct a forecast x f, using the observation vector d, one can estimate a new analysis state x a as follows:

𝐱𝐱
𝑎𝑎 = 𝐱𝐱

𝑓𝑓 +𝐊𝐊
(

𝐲𝐲 −𝐇𝐇𝐱𝐱
𝑓𝑓
)

. (2)

where H is the observation operator that relates the prognostic model state variables to the measurements. The 
Kalman Gain K, is computed as follows:

𝐊𝐊 = 𝐀𝐀
𝑠𝑠
𝐀𝐀

𝑠𝑠T
𝐇𝐇

T
(

𝐇𝐇𝐀𝐀
𝑠𝑠
𝐀𝐀

𝑠𝑠T
𝐇𝐇

T + 𝐑𝐑
)−1

. (3)

For each model, the static ensemble is composed of the monthly snapshot outputs from a stable pre-industrial 
control run. Sampling the model states from a pre-industrial condition was preferred over sampling it from a 
historical run because composing the static ensemble from a model with transient forcing can introduce spurious 
correlation. The monthly static ensemble comprises 72 members for MPI-ESM, 80 for NorESM, and 80 for 
CESM. We use a local framework analysis (Evensen, 2003) with a radius of 235 km without tapering—this radius 
ensures at least one observation per grid cell. We limit the local observations to one (retaining only the nearest). 
We update all prognostic state variables in the vertical. The update is done in the model's native coordinates—that 
is, in geopotential depth for MPI-ESM and CESM and isopycnal coordinates for NorESM. We use the k-factor 
formulation (Sakov et al., 2012) which artificially inflates the observation error if the assimilation pushes the 
update beyond twice the ensemble spread. We set the pseudo-observation error for both supermodel approaches 
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as the pointwise de-seasoned (with the mean seasonal cycle removed) time 
standard deviation of the three models divided by 30 (see Figure 2). We have 
played with the scaling factor (from 3 to 100), but the results were not very 
sensitive to this choice (not shown) due to the k-factor formulation.

3. Validation Data Sets and Metrics
For validating the simulations, we use SST from the NOAA OISST V2 
(Reynolds et al., 2002) analysis data set. We use the monthly averaged prod-
uct available on a 1° grid, which extends back to 1982. We assess perfor-
mance by comparing the climatological difference between the models and 
the observation and calculating grid cell area-weighted root mean square 

error (RMSE). For estimating correlation between SST and precipitation, we use in addition the Global Precipi-
tation Climatology Project monthly precipitation (GPCP) Version 2.3 data set (Adler et al., 2003).

Internal variability can be suppressed when combining models, as for example, through the averaging of 
multi-instance fluxes in the interactive ensemble framework (Kirtman & Shukla, 2002; Kirtman et al., 2004; 
W. Zhang & Kirtman, 2019). Hence, we introduce two metrics to investigate how internal variability is affected 
by the connection. The parameter δ relates to how synchronisation is achieved by the model and it is the ratio 
between the time standard deviation of the multi-model mean and the time average of the inter-model standard 
deviation. If we denote a model quantity (e.g., SST) at a given grid cell and calendar month 𝐴𝐴 𝐱𝐱

𝑗𝑗

𝑖𝑖
 with the superscript 

j referring to the model indices (j ∈ [1, Ns], with Ns = 3) and the subscript i referring to the year (i ∈ [1, Ny]; with 
Ny = 26). We can decompose the model variable into:

𝐱𝐱
𝑗𝑗

𝑖𝑖
= 𝐱𝐱

𝑠𝑠

𝑖𝑖
+ 𝐚𝐚

𝑗𝑗

𝑖𝑖
, (4)

where 𝐴𝐴 𝐱𝐱
𝑠𝑠

𝑖𝑖
 is the multimodel mean at a given year i and 𝐴𝐴 𝐚𝐚

𝑗𝑗

𝑖𝑖
 is the anomaly from the mean. The time variance of the 

model j is:

𝜎𝜎
2

𝑗𝑗
= 𝜎𝜎

2

𝑠𝑠 + 𝜎𝜎
2

𝑎𝑎𝑎𝑗𝑗
𝑎 (5)

with 𝐴𝐴 𝐴𝐴2

𝑠𝑠 is the time variance of the multimodel mean and 𝐴𝐴 𝐴𝐴2

𝑎𝑎𝑎𝑎𝑎
 is the variance of the anomaly from the mean.

𝛿𝛿
2
=

𝜎𝜎2

𝑠𝑠

1

𝑁𝑁𝑠𝑠

∑𝑁𝑁𝑠𝑠

𝑗𝑗=1
𝜎𝜎2

𝑎𝑎𝑎𝑗𝑗

 (6)

δ is computed for every grid cell and every calendar month. If all models are independent and identically distrib-
uted (iid) variables (with, 𝐴𝐴 𝐴𝐴2

𝑗𝑗
  = σ 2, ∀j), we know from the Bienaymé identity that 𝐴𝐴 𝐴𝐴2

𝑠𝑠 = 𝐴𝐴2∕𝑁𝑁𝑠𝑠 . Using this relation 
and Equation 5, we can show that δ 2 for iid is:

𝛿𝛿
2

𝑖𝑖𝑖𝑖𝑖𝑖
=

𝜎𝜎2
𝑠𝑠

1

𝑁𝑁𝑠𝑠

∑𝑁𝑁𝑠𝑠

𝑗𝑗=1

(

𝜎𝜎2 − 𝜎𝜎2
𝑠𝑠

)
=

𝜎𝜎2
𝑠𝑠

𝑁𝑁𝑠𝑠𝜎𝜎
2
𝑠𝑠 − 𝜎𝜎2

𝑠𝑠

=
1

𝑁𝑁𝑠𝑠 − 1
, (7)

giving δiid = 0.7 with three models. If δ is larger than 0.7, some synchronisation is achieved. For example, a 
value of three indicates that the time standard deviation of the multi-model mean is three times larger than the 
inter-model standard deviation. Values lower than 0.7 can occur when the bias of the individual models is larger 
than the time variability of the multi-model mean (i.e., models are strongly attracted to their bias and have little 
variability). In the manuscript we analyze the yearly mean value of the monthly δ estimate. This is preferable to 
computing the δ from de-seasoned time series, which can overestimate synchronisation for quantity with a strong 
seasonal variability—for example, precipitation in the tropic where it rains only during few calendar months.

A second metric, called λ, quantifies the damping of the multi-model mean; that is, the ratio between the 
multi-model mean time variability (denominator) and the mean of the variability in the unconnected individual 
models (numerator; Equation 8). In a perfect synchronisation regime, there is no damping (Duane & Tribbia, 2001). 
Assuming that the time variability of each individual models is equal, an equal-weight multi-model mean would 
have comparable variability to the mean variability of the individual models (λ should be one). If only partial 

Figure 2. Pseudo-observation error standard deviation (in °C) used for 
assimilation.
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synchronisation is achieved, the value gets larger than one. For example, λ equal to 2 means that the standard 
deviation of the multi-model mean is half that of the unconnected model. For the iid case the damping will be 

𝐴𝐴
√

𝑁𝑁𝑠𝑠 , meaning about 1.8 with 3 models. As for δ we present the yearly average of the monthly estimates.

𝜆𝜆
2
=

1

𝑁𝑁𝑠𝑠

∑𝑁𝑁𝑠𝑠

𝑖𝑖=1
𝜎𝜎2

𝑗𝑗

𝜎𝜎2

𝑠𝑠

 (8)

4. Supermodel Results
We compare the performance of EW, SINGLE and NI (see Section 2.4) over the period 1982–2006. In Figure 3, 
we show the de-seasoned time standard deviation of the multi-model mean of NI, EW and SINGLE and the 
OISSTV2 observations. The time variability in the NI multi-model mean provides a benchmark for synchro-
nisation, as it is a result of averaging largely independent variability in three simulations. As a result, the NI 
standard deviation of the multi-model mean is 𝐴𝐴 1∕

√

3 that of the standard deviation of the individual models, and 
it is substantially lower than in the observations. In EW, it is also reduced—albeit less than in the NI—, while 
SINGLE has nearly comparable amplitude to the observations.

In Figure 4, we are analyzing the properties of each system in achieving synchronisation and causing damping of 
multi-model mean time variability. We present individual 2-dimensional maps of the yearly mean of the monthly 
δ and λ (metrics introduced in Section 3) and the 2-dimensional probability density function (PDF) of δ versus 
λ. An ideal supermodel will have the highest probability centered on the dashed brown line (λ = 1) and on the 
right-hand side of the red line (i.e., δ > 0.7).

We can see that for NI (Figures 4a, 4d, and 4g), δ and λ values are centered near the expected value of an iid case. 
There is barely any synchronisation, and models are only connected via their historical CMIP5 forcing, while the 
interannual variability overpowers the climate change signal for the period 1980–2005. Note that such damping 
can be avoided by averaging the variance of the individual NI models.

In the EW supermodel (Figures 4b, 4e, and 4h), there is some synchronisation (δ > 0.7) and the damping λ is 
mostly around 1.5. The synchronisation and the damping are improved compared to NI, and the maximum like-
lihood moves toward the optimal. Synchronisation is maximum in the equatorial Pacific, reaching a value of 3.5 
and is above 1 in the tropical Pacific, part of the North Pacific and part of the North Atlantic (entrance of the 
Nordic Seas). In those regions, λ lowers toward 1 (albeit remaining above). However, δ remains below or close to 
0.7 in several regions: for example, in the equatorial Atlantic and the eastern boundary upwelling system and most 
of the Southern Oceans. No synchronisation is achieved there, and internal variability of the multi-model mean 
is damped and of comparable amplitude to NI mean. The shape of δ in the equatorial Pacific shows maxima on 

Figure 3. De-seasoned time standard deviation of sea surface temperature in the NOAA OISST2 observations (a), the multi-model average of NI (b), EW (c) and 
SINGLE (d).
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either side of the equator but achieves only moderate synchronisation at the equator. Hence, the fast Kelvin waves 
are driven by wind bursts in the equatorial Pacific, while atmospheric variability is poorly constrained in our 
ocean-constrained system. Slower Rossby waves control the thermocline variability off the equator, and the effect 
of winds is weaker and slower. Ocean DA with monthly synchronisation steps can control such a process better.

The pattern of the value of δ with SINGLE (Figures 4c, 4f, and 4i) resembles that of EW, but the values are 
considerably larger. Synchronisation δ is mostly greater than 1.5, and the damping λ is reduced (approaching one 
and rarely exceeding 1.5). Actually, the CESM model (to which all models are connected) has a lower time stand-
ard deviation than MPI-ESM and NorESM, while the denominator in λ is the average of the time standard devia-
tion of the three models. It partly explains the slight damping remaining (λ > 1). Synchronisation is now achieved 
in most parts of the Southern Ocean, the Atlantic Ocean, and the Indian Ocean. In the equatorial Atlantic and the 
eastern boundary upwelling system, synchronisation is still not achieved, and the damping is substantial. This 
region is notorious for being very challenging for models (Richter et al., 2014) and a considerable fraction of the 
bias relates to atmospheric origin (e.g., wind bias, Koseki et al., 2018).

The analysis above is carried for SST that is directly constrained by assimilation, and we now analyze synchro-
nisation for other quantities: sea surface height (SSH), sea level pressure, zonal surface stress and precipitation 
(Figure 5). As for SST, no synchronisation is found for NI (Figures 5a, 5d, 5g, and 5j).

The SSH variations relates to the thickness of the upper layer and thermocline-depth variations, which are mostly 
wind driven and not strongly forced by the common external forcing. Some synchronisation is found for both EW 
and SINGLE (Figures 5b and 5c), which can be related the multivariate properties of our assimilation scheme—
the SST observation corrects the full water column and as such the steric sea level. As a matter of fact, the region 
where synchronisation is achieved coincides very well with region where assimilation of SST reduces error in 
SSH (see e.g., Figure 14 in, Wang et al., 2019).

Atmospheric quantities are not directly corrected by assimilation but can be synchronised through forcing by 
the underlying SST. This dynamical adjustment occurs in between the monthly synchronisation cycle. Sea 
level pressure (SLP), zonal surface stress and precipitation show some synchronisation in EW (Figures 5e, 5h, 
and 5k) and SINGLE (Figures 5f, 5i, and 5l), as a response to the constrained ocean variability. The synchro-
nisation for these three variables is greatest over the Pacific and Indian Ocean, but extends to the tropical 

Figure 4. The first row is the synchronisation metric δ with NI mean (a), EW (b) and SINGLE (c). The second row (d–f) is the same for the synchronisation metric λ, 
and the last row (g–i) is the 2-dimensional probability density function of δ versus λ in the different systems. The red and brown solid lines highlight the expected values 
for an iid case (λ = 𝐴𝐴

√

𝑁𝑁𝑠𝑠 ; δ = 𝐴𝐴

√

1

𝑁𝑁𝑠𝑠−1
 ). The dashed brown line highlights the perfect synchronisation case (λ = 1; δ = ∞).
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Atlantic and to the higher latitudes. This is consistent with stronger ocean-atmosphere interaction in the trop-
ics, with SST influencing SLP and precipitation directly, which drives changes in surface winds (Back & 
Bretherton, 2009; Gill, 1980; Lindzen & Nigam, 1987). Synchronisation across the tropics is also facilitated 
by interbasin interactions (Cai et al., 2019; Keenlyside et al., 2020), while teleconnections from the tropics can 
explain some weak synchronisation in the extra-tropics (Bjerknes, 1969; Hoskins & Karoly, 1981; Wallace & 
Gutzler, 1981); where underlying SST are less synchronised and have relatively weak impact on the atmosphere 
that is not well simulated with relatively coarse horizontal resolution models (Kirtman et al., 2012; Kushnir 
et al., 2002; Smirnov et al., 2015).

The above analysis focused on the time standard deviation of the multi-model mean. We now analyze the varia-
bility in the individual models. In Figure 6, we show the quantile-quantile plot of de-seasoned SST of the CESM 
from the NI simulation (i.e., the unconnected CESM historical run) versus that of CESM in the EW and SINGLE 
simulations. Focusing on CESM allows us to discard the discrepancies of variability between models—CESM 
has weaker temporal variability than the two other models (i.e., 𝐴𝐴 𝐴𝐴2

CESM
< 𝐴𝐴2

NorESM
 and 𝐴𝐴 𝐴𝐴2

MPIESM

 ). In EW, the time 
variability of CESM is reduced. The other models (MPI-ESM and NorESM) of EW show comparable damping 
(not shown). Contrarily, SINGLE does not cause deflation, and the regression line yields a slight overestima-
tion. It may relate to the fact that assimilating pseudo-observations in a common grid adds energy to the system 
(because of the imbalance). A perfect fit is obtained if pseudo-observations are formulated in the CESM native 
grid (not shown).

In Figure 7, we analyze the SST bias of the individual models compared to OISSTV2 observations. In the NI 
system (Figures 7a–7c), CESM has a lower bias than MPI-ESM and NorESM. NorESM has a pronounced cold 
bias. In the EW supermodel (Figures 7d–7f), the bias of CESM and NorESM is reduced compared to that of NI, 
but remains identical in MPI-ESM. Achieving such a result is highly promising, considering that weights have 
not  been trained. In SINGLE (Figures 7g–7i), the bias structure in all models resembles that of CESM in NI. It 
yields a bias reduction for MPI-ESM and NorESM but increases the bias in CESM compared to NI. The interpo-
lation to the common grid causes the degradation (not shown).

Figure 5. The first row is the synchronisation metric δ with NI mean (a), EW (b) and SINGLE (c) for sea surface height, the second row (d–f) is for sea level pressure, 
the following row (g–i) for zonal surface stress and last row (j–l) for precipitation.
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The bias of the multi-model mean of EW and NI (see Figures 8a and 8b) are comparable in pattern and ampli-
tude (NI has a slightly lower area-weighted RMSE). Still, some discrepancies exist. Figure 9 shows the absolute 
difference between the two. The bias of EW reduces in the tropics, except in the equatorial Atlantic and the east-
ern boundary upwelling system. Improvement tend to coincides with regions where synchronisations is achieved 
(i.e., δ > 1 and λ < 1.5; Figure 4b). In the equatorial Pacific (5°S–5°N and 150°W–90°W), the error reduces 

Figure 7. The first row is the sea surface temperature climatological bias computed over 1982–2006 with the NI ensemble for Max Planck Institute Earth System 
Model (a), Community Earth System Model (b) and Norwegian Earth System Model (c); the second row with the EW (d–f) and the last row with SINGLE (g–i). The 
quantity in red reports the global spatial root mean square error normalized by grid cell area.

Figure 6. Quantile-quantile plot of the pointwise de-seasoned time standard deviation of a historical unconnected 
Community Earth System Model (CESM) simulation (CESM in NI multi-model) versus CESM in the connected multi-model 
EW (red) and SINGLE (blue). The dashed color line show the regression line and the solid black line shows the perfect 
regression line.
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from 0.91 to 0.67°. A bias reduction compared to the a-posteriori average results from the non-linear response 
of the climate system to model bias. Contrarily, performance degrades where synchronisation is poor (Antarctic 
Circumpolar current, Equatorial Atlantic and eastern boundary upwelling system). There, ocean synchronisation 
is quickly lost, and noise adds energy to the system. In the north Pacific, synchronisation is achieved, but the bias 
is degraded. The reason is unclear, but we propose several hypotheses. First, variability there during winter is 
driven by storm systems mixing the ocean. The EW experiment without atmospheric synchronisation effectively 
damps the impact of fluxes in the ocean, which can cause a bias. Second, the Pacific Decadal Oscillation (PDO) 
over 1982–2006 is almost solely positive, while the interannual variability of our models is not synchronised with 
the observations. The bias may relate to a modulation of the PDO. Third, we did not apply synchronisation under 
sea ice, which may cause some artifacts near the ice edge.

The bias in the SINGLE multi-model mean (see Figure 8c) has a comparable spatial pattern than in the CESM 
model of NI, but is larger because of the interpolation error in the pseudo-observation grid. It does not outperform 
the multi-model mean of NI.

We further analyze the results in the ENSO region, which stands out as one of the regions where our 
ocean-connected supermodel reaches good synchronisation and reduced bias. The time series of the Niño 3.4 
index (SST anomaly in the region, 5°S–5°N and 120°W–170°W) is presented in Figure 10. In the NI (Figure 10), 
the individual models produce large ENSO variability that is not synchronised. The ensemble mean shows one 
prominent peak when a strong El Niño event occurs (by chance) in phase in 2003 in all models. The probability of 
such a coincidental occurrence scale with the power of the number of models. In our example (with three models 
and El Niño occurring typically every 4 years), such an event will happen every 64 years. Consequently, the NI 
methods will underestimate extreme events, particularly with more models. Contrarily, in EW and SINGLE, all 
models are evolving in phases.

To analyze further the representation of ENSO events, we compare the PDF of the Niño 3.4 index for 1982–2006 
in Figure 11. The tropical Pacific variability is notoriously asymmetric, with the magnitude of SST anomalies 
over the eastern equatorial Pacific being more prominent during the warm phase than during the cold phase (e.g., 
T. Zhang et al., 2017). By taking the mean of unconnected and independent models, one expects the PDF to show 
less variability (being steeper around 0) and becoming more Gaussian (getting less skewed). The latter is because 
the average of skewed distributions will converge toward a Gaussian distribution (central limit theorem). As 
expected, there is damping of variability in the NI model mean, while in EW and SINGLE, the standard deviation 

reasonably matches the observed PDF. All multi-model means show a more 
skewed PDF than in the observations. However, the period 1982–2006 was 
quite anomalous in the observations, as no significant ENSO events occurred 
beyond 1998. In comparison, the standard deviation and skewness computed 
for 1950–2005 were respectively 0.87, and 0.89 (T. Zhang et al., 2017). We 
do not see the reduction of skewness expected in NI, but we think it is artifi-
cially high here because of the coincidental El Niño event, referred to above. 
Obtaining more statistically robust results requires much longer runs and thus 
we limit our analysis to these basic metrics (Wittenberg, 2009).

To assess the ability of the supermodel framework to reproduce ENSO tele-
connections we have analyzed the correlation of Niño3.4 SST index with 
global SST, precipitation, and SLP. Overall, the teleconnections of the indi-
vidual models are very similar to that of the multi-model mean (not shown). 

Figure 8. Climatological sea surface temperature bias computed over 1982–2006 for the multi-model mean of NI ensemble (a), EW (b) and SINGLE (c). The quantity 
in red reports the global spatial root mean square error normalized by grid cell area.

Figure 9. Difference of the absolute climatological sea surface temperature 
bias (EW-NI) of the multi-model mean over 1982–2006. Negative values 
indicate that the bias in EW is smaller than in NI.
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To first order all model configurations agree reasonably well with the observed patterns. To illustrate this we only 
show results for precipitation for boreal summer (Figure 12). There are subtle differences among the NI, EW, and 
SINGLE simulations. During June–September, teleconnections with Africa are changing from a positive correla-
tion in NI to a negative correlation in EW, as in the observations. In some regions EW degrades the teleconnection 
pattern, such as in June-July-August-September over Australia where SINGLE performs best. These results are 
nevertheless encouraging. They show that a connected supermodel can reasonably simulate atmospheric telecon-
nection patterns and that the pattern could be potentially improved through training.

5. Conclusions and Future Perspectives
This paper investigates critical characteristics for developing the first supermodel of ESMs with ocean synchro-
nisation. Synchronisation with models having different grids and structures is handled by assimilating synthetic 
pseudo-observations of SST constructed from the multi-model every month. We show that such a framework can 
achieve partial synchronisation in the ocean component and in the atmospheric component in regions where the 
ocean drives the climate variability—where the impact of atmospheric fluxes is limited in relation to the oceanic 
timescales.

We compared two methodologies for constructing the pseudo-observations, either from a single model or an 
equal-weight mean. The latter tends to reduce model bias in the synchronised region compared to the unconnected 
version. The variability of the multi-model mean in the two connected models is smaller than in the observa-
tions. This variability is damped less in synchronised regions, while it converges to that of the non-interactive 
multi-model mean in the unsynchronized regions. The damping is more pronounced in the equal-weight version 
than in the version connected to a single model, as in the former, the variability of all of the individual models 
is also reduced. The multi-model averaging of unsynchronized variability (e.g., driven by chaotic atmospheric 
variability) reduces variability in the assimilated pseudo-observations causing a deflation when updating the 
model snapshots.

Figure 10. Niño 3.4 time series of the three models in the NI ensemble (left), the EW (middle) and the SINGLE (right). The black line shows the multi-model 
ensemble mean.

Figure 11. Histogram of Niño 3.4 over 1982–2006. The blue bars are for OISSTV2; the green bars are for the multi-model mean of NI (a), the red for EW (b) and the 
yellow for SINGLE (c). The standard deviation and skewness of the distribution are reported in parenthesis for observations and the multi-model mean.

 19422466, 2023, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003310 by U
niversitetsbiblioteket I, W

iley O
nline L

ibrary on [28/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Advances in Modeling Earth Systems

COUNILLON ET AL.

10.1029/2022MS003310

13 of 16

The system presented only uses a minimal amount of data exchange (monthly SST). Increasing the frequency 
of the synchronisation steps and assimilating more pseudo-observations will enhance synchronisation and may 
help to reduce the damping in the weighted mean supermodel framework. Ongoing works include a complete 
ocean pseudo-observations network (sea surface elevation, 3D hydrography), increasing the frequency of the 
ocean connection (to weekly synchronisation step) and complementing the system with synchronisation of other 
components of the ESM (ocean and sea ice component).

We will investigate in a future study how model error can reduce with the training of the weights. It is unclear 
which of the two framework presented here will, at term, achieve the best performance. Weighted-mean super-
models have drawbacks in a partial synchronisation regime (variability damping) not faced with a connection to a 
single model. However, a weighted supermodel can provide locally a more accurate fit to the observation than a 
version where models are connected to a single model becaus —in the latter, skill is bounded by the best model. 
However, the single model to which we connect can vary spatially and for different variables (Du & Smith, 2017; 
Schevenhoven & Carrassi, 2021; Smith, 2001). Furthermore, if one can afford an ensemble of supermodels (with 
several members for each model), models could be synchronised from a randomly drawn single member/model 
every time, so that the frequency of the optimal weight is satisfied. Such a scheme resembles the cross-pollination 
in time, envisioned in Du and Smith (2017).

We will explore other alternatives to reduce the spurious damping in the weighted mean supermodel version 
by (a) adding back the reduced atmospheric driven variability term in the pseudo-observations or (b) isolating 
the part of variability that can be synchronised from the model snapshots (observation operator). In particular, 
machine learning techniques have emerged as powerful tools to carry process-identification (e.g., Sonnewald 
et al., 2019).

Data Availability Statement
The model experiment presented—SINGLE, EW and NI: multi-model mean and individual model outputs on 
a common grid- have been archived and are accessible from https://archive.sigma2.no/pages/public/datasetDe-
tail.jsf?id=10.11582/2023.00009. NOAA OISSTV2 Reynolds et  al.  (2002) can be downloaded from https://
psl.noaa.gov/data/gridded/data.noaa.oisst.v2.html. GPCP data Adler et  al.  (2003) can be downloaded from 
https://psl.noaa.gov/data/gridded/data.gpcp.html.

Figure 12. Averaged of detrended correlation of Niño3.4 indices with precipitation for June–September in the GCPC observations (a) multi-model mean of NI 
ensemble (b) EW (c) and SINGLE (d).
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