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Females typically carry most of the burden of reproduction in mammals. In

humans, this burden is exacerbated further, as the evolutionary advantage of a

large and complex human brain came at a great cost of women’s reproductive

health. Pregnancy thus became a highly demanding phase in a woman’s life cycle

both physically and emotionally and therefore needs monitoring to assure an

optimal outcome. Moreover, an increasing societal trend towards reproductive

complications partly due to the increasing maternal age and global obesity

pandemic demands closer monitoring of female reproductive health. This

review first provides an overview of female reproductive biology and further

explores utilization of large-scale data analysis and -omics techniques

(genomics, transcriptomics, proteomics, and metabolomics) towards diagnosis,

prognosis, and management of female reproductive disorders. In addition, we

explore machine learning approaches for predictive models towards prevention

and management. Furthermore, mobile apps and wearable devices provide a

promise of continuous monitoring of health. These complementary

technologies can be combined towards monitoring female (fertility-related)

health and detection of any early complications to provide intervention

solutions. In summary, technological advances (e.g., omics and wearables)

have shown a promise towards diagnosis, prognosis, and management of

female reproductive disorders. Systematic integration of these technologies is

needed urgently in female reproductive healthcare to be further implemented in

the national healthcare systems for societal benefit.

KEYWORDS

pregnancy, endocrinology, metabolic syndrome, pregnancy complications, omics
technologies, e-health, biomarkers
1 Endocrinology through the female life cycle

Female reproductive life starts from fetal life, spanning childhood and puberty, to the

reproductive years with final ovarian follicle depletion and menopause. The ovaries

maintain the health of the female reproductive system, and they secrete two main

hormones—estrogen and progesterone. Reproductive longevity is essential for fertility
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and influences healthy aging in women. Energy homeostasis and

gonadal steroid levels control the female reproductive life cycle.

Genetic and environmental factors can cause perturbations to it,

with resultant increased body fat and insulin resistance, leading to

metabolic syndrome. Diseases associated with ovaries include

ovarian cysts, ovarian cancer, certain menstrual cycle disorders,

and polycystic ovary syndrome (PCOS). Similar to every organ

system, the female reproductive system is dependent on energy

homeostasis. Premature adrenarche, PCOS, and gestational diabetes

can occur due to shifting to androgenic gonadal steroid levels and

reduced insulin sensitivity. Changes or abnormalities in ovarian

function are related to environmental, genetic, and epigenetic

factors, and they coexist with metabolic abnormalities.
2 Female reproductive and
pregnancy-related complications

The two most common reproductive disorders in women are

PCOS and endometriosis. PCOS is a disorder characterized by

hyperandrogenism, ovulatory dysfunction, and polycystic ovaries.

Hyperandrogenism is recognized as a key diagnostic factor, in

combination with other symptoms of the syndrome (1). There are

some disparities in diagnostic approaches worldwide. According to

the NIH (National Institutes of Health), PCOS is diagnosed by the

presence of both hyperandrogenism and olgio/amenorrhoea (2).

The incidence of PCOS varies according to the diagnostic criteria.

Women with hyperandrogenic chronic anovulation (i.e., NIH

criteria) make up approximately 7% of reproductive-aged women.

The Rotterdam criteria require the ultrasonic appearance of the

polycystic ovary for PCOS diagnostics (3) and the presence of one

polycystic ovary is sufficient to provide the diagnosis (4). It increases

the prevalence of PCOS in women with normogonadotropic

anovulation to 91% from 55% using the NIH criteria (5). All

diagnostic approaches recommend that secondary causes (such as

adult-onset congenital adrenal hyperplasia, hyperprolactinemia,

and androgen-secreting neoplasms) should first be excluded.

Machine learning approaches show promise towards PCOS

detection. A machine learning technique applied on ovary

ultrasonography scans could reliably predict PCOS using image

data (6). Despite the fact that both PCOS and endometriosis impair

female reproduction and can lead to infertility, they are very

different. Endometriosis is a gynecologic disorder characterized by

the presence of endometrial tissue outside the uterine cavity, and

PCOS is caused by a hormonal imbalance. It has been hypothesized

that endometriosis and PCOS represent extreme (and diametric

opposite) outcomes of variation in HPG axis development and

activity, with endometriosis mediated mostly by low prenatal and

postnatal testosterone, while PCOS is mediated by high prenatal

testosterone (7). Endometriosis affects approximately 5% of women

in reproductive age and often presents with pelvic pain, infertility,

or an ovarian cystic mass in these women. Growth of endometrial

lesions is stimulated by estrogen and inhibited by androgens.

Genomics analysis revealed the role of aromatase, which activates

the promoter of steroidogenic factor-1 and subsequently increased

the local conversion of androgen to estrogen (8).
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Pregnancy is a highly resource-intensive stage in the female

reproductive life cycle. Most women suffer from physical and/or

psychological disturbances during pregnancy. Therefore, pregnancy

without any complications is in fact not so common. We further

elaborate on some of the common pregnancy complications.
2.1 Preeclampsia

Preeclampsia complicates 2%–8% of pregnancies globally and is

responsible for over 20% of maternal deaths. Preeclampsia is a

multi-system disorder of pregnancy and is a leading cause of both

maternal morbidity and neonatal mortality (9, 10). Risk factors

include extremes of maternal age, twin paternity, nulliparity,

increased BMI, increased systolic and diastolic blood pressure

during early pregnancy, and the presence of gestational diabetes.

Preeclampsia is the main maternal risk factor for low-birth-weight

newborns and/or intrauterine growth restriction and/or fetal death

(11). Currently, there is no single reliable, cost-effective screening

test for preeclampsia. Management of preeclampsia depends on

gestational age and its severity and its basic objectives are

supportive (including termination of pregnancy or uneventful

delivery and birth of infant) since the conditions return to

normal after the delivery of the baby. ACOG guidelines for the

management of preeclampsia include monitoring and management

of blood pressure, and risks of expectant management in the

presence of severe features, namely, pulmonary edema, MI,

stroke, ARDS, coagulopathy, renal failure, and retinal injury.

Medications to treat severe preeclampsia include antihypertensive

drugs, anticonvulsant medications (magnesium sulfate), and

corticosteroids. Preeclampsia is multifactorial in origin, and

genetic, immunologic, and environmental risk factors influence

the development of preeclampsia. The etiology and pathogenesis

of preeclampsia are not yet fully understood and numerous theories

on the pathophysiological mechanisms are available (12). The

dominating theory of the origin of preeclampsia is defective

placentation and insufficient penetration of trophoblasts, which

result in impaired maternal blood flow through narrow spiral

arteries (13) and the reason for this defective trophoblast

behavior is not known. It could be due to immunologic

dysfunction causing unwanted hampering of normal trophoblast

activity, and other mechanisms could be placental and endothelial

dysfunction, immunological maladaptation to paternal antigens,

and exaggerated systemic inflammatory response (14–16).
2.2 Gestational diabetes

Gestational diabetes mellitus is defined as carbohydrate

intolerance resulting in hyperglycemia, including impaired

glucose tolerance with first onset or detection during pregnancy

(17). The prevalence of gestational diabetes is thought to be between

2% and 25% worldwide. Moreover, the prevalence of GDM is on the

rise likely due to increased maternal age and BMI during pregnancy.

Risk factors of GDM include history of previous GDM, macrosomia

and congenital anomalies, BMI ≥ 25, pregnancy-induced
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hypertension, family history of diabetes, history of stillbirth, PCOS,

history of abortion, age ≥ 25 years, multi-parity, and history of

preterm delivery (18). Gestational diabetes is thought to be caused

by the inability of the pancreas to produce insulin to handle excess

sugar load during pregnancy. Women with GDM have a 50%

chance of developing diabetes. Gestational diabetes increases the

risk of complications for both mother and child during pregnancy,

childbirth, and beyond. Furthermore, the disruption of maternal

metabolism during pregnancy and periconception increases the risk

of future diseases in children. An aberrant intrauterine environment

caused by elevated maternal glucose levels is related to elevated risks

for increased birth weights and metabolic disorders in later life, such

as obesity or type 2 diabetes (19).
2.3 Preterm birth

Approximately 10% of all newborns are preterm. There are

serious health risks associated with premature birth, including

lifelong disabilities and high healthcare costs for children.

Prevention of premature births is therefore a high priority, but

the etiology of the majority of cases is not known. Apart from omics

data, many other macro-level strategies have been suggested,

including studying the effects of migration and of populations in

transition, public health programs, tobacco control, routine

measurement of length of the cervix in mid-pregnancy by

ultrasound imaging, prevention of non-medically indicated late

preterm birth, and identification of pregnant women for whom

treatment of vaginal infection may be of benefit (20).
2.4 Mental health

Approximately 70% of perinatal women hide their mental

health issues. Untreated mental health issues is a public health

concern as it affects the physical and mental health of the entire

family. Maternal mental health problems include antenatal and/or

postnatal depression, anxiety, obsessive–compulsive disorder,

postpartum psychosis, and post-traumatic stress disorder.

Depending on the severity, different care or treatment plan is

needed. Young mothers face mental health challenges during and

after pregnancy including increased rates of depression compared

to older mothers.

Prenatal depression risk factors include demographic measures

(lower socioeconomic status, less education, non-marital status,

unemployment, less social support, unintended pregnancy, partner

violence, and history of child abuse) and physiological variables

(cortisol, amylase, and pro-inflammatory cytokines and

intrauterine artery resistance) (21). Income and marital status

significantly moderated the relationship for depressive symptoms

in late pregnancy, and stress in late pregnancy mediated the effects

of marital status and satisfaction with relationship in early

pregnancy. The effects of young maternal age, single marital

status, low education, Aboriginal ethnicity, low income, poor

relationship status, and high stress in early pregnancy were

partially or completely mediated through smoking and drug use
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in late pregnancy in predicting depressive symptoms in late

pregnancy in a longitudinal Canadian cohort study (22).
3 Machine learning and multi-omics

Advances in sequencing technologies have exploded in recent

decades. Generation of data at various -omics levels (epigenome,

transcriptome, proteome, and metabolome) is no longer a

bottleneck in characterizing the disease states. The challenge is to

integrate large multi-omics data in a meaningful way to understand

functional wiring of the system under study. The term “omics”

refers to the scientific domains involved in high-throughput

measurements of biological molecules (DNA, RNA, protein, and

metabolites). Associating omics-based molecular data with a clinical

outcome of interest is the common objective of omics

investigations. The justification is that by utilizing omics-based

data, there is a possibility of creating predictive or prognostic

models for certain medical conditions or diseases that are more

accurate than what can be acquired through conventional clinical

procedures. Machine learning, i.e., statistical approaches used to

“learn” through training models using data and fitting models to

data, is used to integrate and analyze the various omics data,

enabling the discovery of new biomarkers. These biomarkers have

the potential to help in accurate disease prediction, patient

stratification, and delivery of precision medicine (23). Precision

medicine, which predicts which treatment procedures are likely to

be effective on a patient based on a variety of patient features and

the context of the therapy, is the most common application of

classical machine learning in healthcare (24). Deep learning or

neural network models with numerous levels of features or variables

that predict results are an example of the more advanced types of

machine learning (25). Novel deep learning and machine learning

approaches have been applied successfully recently to robustly

predict patient survival subtypes using multi-omics data (26).
4 Multi-omics for diagnostics,
prevention, and management

Maternal urine and blood are widely used for pregnancy

monitoring due to the easy availability of these samples.

Accordingly, many -omics technologies have been applied to

these samples to find diagnostic markers but are yet to be used in

clinical protocols. The plasma concentration of ADAM12 (A

Disintegrin and Metalloproteinase-12) has been found to be

altered in several pregnancy-related disorders, but the usefulness

of ADAM-12 as a marker for adverse outcomes is still unclear (27).

Glucocorticoid receptor co-chaperone gene sensitivity in peripheral

blood gene expression diminished with the progression of

pregnancy and increasing maternal depressive symptoms and

may serve as a biomarker for risk of developing depressive

symptoms during pregnancy (28). Lower allopregnanolone during

pregnancy predicts postpartum depression, with every additional 1

ng/ml of second-term allopregnanolone resulting in a 63%

reduction in the risk of developing PPD (29).
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The umbilical cord blood (UCB) is in contact with all the fetal

tissues and can reflect the state of the fetus (both physiological and

pathological, if any), and UCB can be compared with maternal

blood. UCB is an easily available biofluid of diagnostic value and

poses small risks to donors. During fetal development, many

regulatory substances are exchanged and released into UCB,

which could reflect the physiological and pathological condition

of the fetus and pregnancy status and therefore have a prognostic

value (30). Changes in UCB proteins (alpha-fetoprotein,

adiponectin, and leptin) are used as diagnostic and therapeutic

parameters to monitor fetal and neonatal disorders.

Genomics: Genome-wide association studies (GWAS) are

widely applied to identify causal genetic factors for both health

and disease traits. For example, a GWAS study of 281,416

individuals without diabetes identified 242 loci associated with

glycemic traits (31). There are a few leading studies on the

genetics of PCOS (32, 33). The first GWAS included a group of

744 women with PCOS and 895 controls of Han Chinese women.

The two replication cohorts included 2,840 women with PCOS and

5,012 controls, and 498 women with PCOS and 780 controls,

respectively. The PCOS GWAS identified three main gene loci at

chromosome 2p16.3, 2p21, and 9q33.3. Postpartum depression has

been called a disease of modern civilization because of the mismatch

between current and evolutionary historical perinatal circumstances

(34). About half of the variability in perinatal depression can be

explained by genetic factors, significantly more than the heritability

of non-perinatal depression at 32% (35). Genomics analyses thus

show promise to find biomarkers as an objective index to facilitate

diagnosis (e.g., postpartum depression) removing subjectivity of the

medical practitioner.

Development during pregnancy is significantly influenced by

epigenetic processes. Methylomics revealed that the fetal

methylation profile inferred from maternal plasma resembled that

of the placental methylome. The diagnosis of fetal trisomy 21 is a

possible clinical use for maternal plasma bisulfite sequencing (36).

Epigenetic changes during the pregnancy monitored by DNA

methylation variation at HP1BP3 and TTC9B without a previous

psychiatric diagnosis could predict the risk of postpartum

depression with an area under the curve (AUC) of 0.81 (37). A

substantial number of methylation differences reside in non-coding

regions of the genome that are associated with the overexpression of

long non-coding RNAs (lncRNAs). These lncRNAs expressed

abnormally in placenta from preeclamptic pregnancies and they

may play a role in the functional development of preeclampsia (38).

Proteomics: Urinary proteomics can identify biomarkers for

preeclampsia more than 10 weeks before clinical presentation. Two

such markers are fragments of SERPINA1 and albumin,

upregulated in women with preeclampsia but downregulated in

gestational hypertension. Increased levels have also been seen in

inflammatory conditions such as vasculitis and cardiovascular

disease. This profile has a better predictor compared with the

sFlt1:PIGF ratio and urine protein:creatinine ratio. Chen and

colleagues also had similar findings in women with preeclampsia

and gestational hypertension as compared with normal pregnancy

via proteomics (32). Twenty-two highly replicable candidate

biomarkers that were significantly different between women with
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GDM and controls across various proteomic platforms were found,

which were most strongly linked to pathways related to

complement and coagulation cascades (39). Models built from

plasma proteomic data predict spontaneous preterm delivery with

intact membranes with higher accuracy and earlier in pregnancy

than transcriptomic models (40).

Metabolomics: Metabolomics is a rapidly growing technology

that characterizes the complete collection of metabolites or small

molecules found in an organism or in its cells, tissues, and biofluids.

Odibo described four metabolites (hydroxyhexanoylcarnitine,

alanine, phenylalanine, and glutamate) that increase during

preeclampsia (41). The serum metabolomic profile of postpartum

depression identified increased levels of glutathione-disulfide,

adenylosuccinate, and ATP, which are associated with oxidative

stress, nucleotide biosynthesis, and energy production pathways

(42). Ten metabolites were differentially expressed in PPD urine in a

small metabolomic study (43).

Other omics: Though previously mentioned omics approaches

are most widely used, there are many other relevant ones.

Metallomics analysis revealed the increase of several metals (As,

Cd, Ni, Pb, Al, Mn, and Co) in the preeclampsia placenta. An Rb

deficiency might be related to preeclampsia occurrence. The

comparable concentrations of Ca, P, and Mg in controls and cases

indicate a subordinate role of mineralization in preeclampsia, despite

the disorder’s hypertensive origin (44). Transcriptomics variations

related to preeclampsia in early pregnancy was detected in a study

(45) that identified genes associated with preeclampsia overlap with

transcriptome signatures associated with maternal asthma, vitamin D

insufficiency, and excess BMI.

Microbiome: Both gut and vaginal microbiome are highly relevant

to pregnancy. The study of the microbiota has been transformed by the

sequencing-based metagenomics research on the human microbiome

because it can produce an extensive library of microbial genomes across

a variety of ecological niches within large hosts like humans (46).

Microbiota studies during pregnancy are timely and highly relevant for

many conditions. For example, increased risk of pelvic inflammatory

disease is linked to an imbalance in the vaginal microbiome, and

polymicrobial etiology makes diagnosis and treatment problematic

(47). A microbiome study for preterm birth revealed that women who

delivered preterm exhibited significantly lower vaginal levels of

Lactobacillus crispatus and higher levels of BVAB1, Sneathia amnii,

and TM7-H1, and preterm-birth-associated taxa were correlated with

proinflammatory cytokines in vaginal fluid (48).
4.1 Biomarkers for maternal
health and aging

Birth rates among female birth cohorts are declining, and

childbearing occurs at an increasingly older age. An increasing

proportion of women want to have children after 40 years of age,

but more women fail to meet their fertility intentions expressed at

34–36 years of age (49). Sterility was unlikely the main cause for this

as sterility was estimated at approximately 1% and it did not change

with age (50). Typically, women have a biological reproductive span

of approximately 37 years but fertility is not uniform through the
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reproductive span (51). By the age of 30, fertility begins to decline

and the decline accelerates further to be exhausted by the age of 45

in most women. Moreover, aging increases risk to other diseases

including of the reproductive system such as uterine fibroids and

endometriosis. Almost all pregnancy complications are linked to

age. Pregnancy at advanced maternal age has an increased risk of

gestational diabetes or preeclampsia as the disease susceptibility

rises with age. Furthermore, the likelihood of genetic and

chromosomal abnormalities of fetus is highly increased with

maternal age.

The genetic mechanisms causing pathway changes to affect age-

related infertility are now being identified. One such process is DNA

damage response (DDR) pathways, and experimental manipulation

of DDR pathways highlighted by human genetics increases fertility

and extends reproductive life in mice (52). Another process is the

clonal hematopoiesis of indeterminate potential (CHIP), an age-

related expansion of hematopoietic cells with leukemogenic

mutations without detectable malignancy (53). The presence of

CHIP is associated with a higher risk of atherosclerotic

cardiovascular disease, cancer, and mortality. Accordingly, CHIP

is strongly linked to age acceleration in multiple aging clocks (54).

Early menopause is an independent risk factor for cardiovascular

disease in women, but mechanisms underlying this association

remain unclear. Early menopause, especially natural early

menopause, was independently associated with CHIP among

postmenopausal women (55). Across individual lifestyle factors,

having a normal body mass index was strongly associated with a

lower prevalence of CHIP but a healthy lifestyle score was not

associated with CHIP (56). A cohort study of over 44,000 UK

biobank participants showed that the prevalence of CHIP decreased

as diet quality improved from unhealthy to intermediate to healthy

(57). In summary, CHIP might provide a proxy for overall health

status and could potentially be used to identify a population at high

risk for adverse outcomes including high risk of all-cause mortality.
5 Machine learning and
predictive models

Humans are multi-cellular complex organisms and the

biological processes within single cells are complex. Most current
Frontiers in Endocrinology 05
omics technologies allow genome-wide readout only at a single level

(genomic, epigenomic, transcriptomic, proteomic, metabolomic,

etc.). Multi-omics refers to combining two or more omics

datasets for data analysis, visualization, and interpretation to

understand the biological processes behind disease states. With

advances in multi-omics technologies, a wealth of large genomics

data, including at the single-cell level, is becoming available, and

more and more atlas-based initiatives help unravel fundamental

cellular biology (Table 1). The combined use of heterogeneous and

complementary multi-omics assays can reveal interactions between

modalities that are key to biological processes. Only through the

integration of multiple types of data across molecular, cellular,

spatial, and population scales can biological systems be fully

characterized. The rapid progress of digital and -omics

technologies, together with the advances in machine learning, is

now building up momentum for precision medicine to apply the

personalized healthcare solutions developed under research setting

into clinical practice. Glycemic traits are used to diagnose and

monitor type 2 diabetes (T2D) and cardiometabolic health. A recent

machine learning approach could predict the risk of cardiovascular

disease in patients with T2D with approximately 80% accuracy

using the administrative data. Furthermore, a 1-year incident

hypertension risk model using electronic health records achieved

an accuracy of approximately 90% (62).

Machine learning techniques are of high value if integrated

properly in maternal and perinatal care. There is a demographic

trend towards more and more women requiring medically assisted

birth partly due to increasing maternal age and maternal BMI.

Though machine learning shows promise to build predictive

models, there have been limited efforts in this area (Table 2).

There is a huge potential in these predictive models to the

healthcare system for the hospital management as well as for

developing preventive care. A recent retrospective cohort study

used machine learning on electronic medical record data from

303,678 deliveries to successfully predict approximately 52% of

obstetrical complications (89). Low- and middle-income countries

contribute to most fetal and neonatal deaths. Using machine

learning on the cohort data for over 500,000 pregnancies in the

low-resource setting, the predictive models achieved predictive

accuracy for both intrapartum stillbirth and neonatal mortality

with an AUC value of 0.71 and found that birth weight was the most
TABLE 1 A representative list of studies on pregnancy complications using omics data.

Prediction trait Variables Sample size Publication

GDM Proteomics 1,779 (39)

Preeclampsia Metallomics 40 (44)

GDM, DM Type II Genetic data (GWAS) 5,485 (58)

Preeclampsia Transcriptomics, physiological and clinical 157 (45)

Gestational age Multi-omics 51 (59)

Preeclampsia Epigenetic modifications 12 (38)

Postpartum metabolic syndrome Biochemical data 847 (60)

Preeclampsia Genomics 43 (61)
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important predictor for neonatal mortality (88). Preterm birth is the

single most important contributor of neonatal and perinatal deaths,

and the causal factors behind most cases remain unexplained.

Machine learning from transcriptomics and proteomics profiling

of plasma and metabolomic analysis of urine allowed accurate

predictions of preterm birth, with an AUC of 0.83 (87). Despite

decades of research into preeclampsia, clinicians have not been able

to predict the medical condition prior to onset of symptoms. Some

predictive markers are identified and tested such as prediction of

early and late preeclampsia from maternal characteristics, uterine

artery Doppler, and markers of vasculogenesis during the first

trimester of pregnancy (90). Changes in maternal plasma soluble

Flt-1, soluble endoglin, and placenta growth factor between the first

and early second trimester combined with clinical characteristics

also showed promise for predicting early-onset preeclampsia (91).

Recently, a machine learning-based multiomics model for
Frontiers in Endocrinology 06
preeclampsia risk by analyzing six -omics datasets from a

longitudinal cohort of pregnant women reached high accuracy

with an AUC of 0.94 (92).

Similar to PCOS, endometriosis, and pregnancy-related

complications discussed above, we summarize below the

utilization of large-scale data analysis and omics techniques

towards diagnosis, prognosis, and management of other prevalent

female reproductive disorders, such as premature ovarian

insufficiency, uterine fibroids, and sexual dysfunction.
5.1 Premature ovarian insufficiency

Premature ovarian insufficiency (POI) is pathogenic depletion

of follicles before the age of 40 (93). POI is associated with fragile X

premutation and X chromosome genomic abnormalities. To rule
TABLE 2 Overview of predictive models of female reproductive health complications using machine learning approaches.

Prediction trait Variables Sample size Publication

PCOS Clinical, metabolic, and hormonal >100 (63)

PCOS Physical and psychological parameters >500 (64)

PCOS Body composition <100 (65)

PCOS Scleral images >500 (66)

PCOS Gene expression >100 (67)

Deep endometriosis Blood plasma markers >100 (68)

Endometriosis Serum miRNA 100 (69)

Deep endometriosis Transvaginal sonography, MRI >100 (70)

Preeclampsia Physiological parameters >500 (71)

Pregnancy hypertension Physiological parameters >1,000 (72)

Preeclampsia Angiogenic biomarkers >5,000 (73)

Preeclampsia Angiogenic factors >5,000 (74)

Preeclampsia Maternal characteristics >500 (75)

Preeclampsia Maternal characteristics >10,000 (76)

GDM Electronic health records >40,000 (77)

GDM Clinical data and biomarkers <1,000 (78)

GDM Genetic data >1,000 (79)

GDM Clinical and biochemical biomarkers >200 (80)

GDM Clinical and biochemical data >1,000 (81)

GDM Maternal characteristics >3,000 (82)

Stillbirth Maternal demographic and clinical data >100,000 (83)

Stillbirth Birth registry data >1 million (84)

Stillbirth and preterm birth Maternal demographic and clinical data >10 million (85)

Perinatal death Birth cohort >40,000 (86)

Preterm birth Multi-omics data <100 (87)

Perinatal mortality Registry data >500,000 (88)

Birth complications Electronic health record >300,000 (89)
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out premutation carrier status, FMR1 gene testing for the CGG

repeat in the gene’s 5’ untranslated region is currently the sole gene

recommended for clinical testing in women with POI (94). Also,

many genes implicated in early menopause such as the aspartate/

glutamate solute carrier family 25 member 13 (SLC25A13), the

mini-chromosome maintenance complex component 6 (MCM6),

the corticotropin-releasing hormone receptor 1 (CRHR1), and the

MB21D1 or C6ORF150 substantially correlated with age at early

menopause (95). In order to assess the customized risk of POI

following chemotherapy, Chung et al. constructed a machine

learning-based model that had an accuracy of 88% (area under

the ROC 0.87, 95% CI: 0.77–0.96; p < 0.001) (96). An enhanced

mean shift algorithm based on artificial intelligence (AI) technology

was used to process ultrasound images in women with idiopathic

POI, where the functional condition and hemodynamics of patients’

ovaries were clearly visible on the transvaginal color Doppler

ultrasonography (97). Another study demonstrated that building

diagnostic methods for POI prediction may be accomplished using

artificial neural networks, where the generalization ability of the

train set, validation set, and test set was validated, with a prediction

accuracy of over 90% in the test, train, and validation sets (98).
5.2 Uterine fibroids

Fibroids are non-cancer growths in or near the uterus, also called

uterinemyomas or leiomyomas (LM) (99). A pathogenomics study of

the development of uterine fibroids led to the identification of several

new gene networks and biological processes, as well as information

about the inter-cell matrix’s effect on LM growth and the role of

microRNAs in its control. The side population of female reproductive

system embryonic myoblasts, which eventually gave rise to numerous

tiny and medium fibroids, is thought to be caused by MED12 gene

alterations, whereas HMGA2 gene hypomethylation and, thereby,

overexpression, which is facilitated by hypoxia, muscular stress, or

chromosomal instability/aberrations, were the primary causes of the

solitary and often large-sized fibroids in LM SC (100). To distinguish

between a normal and disordered uterus from the TCGA-UCEC

dataset, an automated technique based on VGG 16 of deep learning

classification models was used. The model’s accuracy in predicting

the kind of uterine fibrosis from image data is 98.5% (101). Using

neural networks, the Fibroid Disease Prediction System (FDPS) was

created. The chance that a patient will develop fibroid disease was

predicted using the FDPS method based on 10 medical characteristics

for prediction, including age, excessive bleeding, marital status, being

single or married, and pelvic discomfort. The neural network

accurately predicted fibroid illness in approximately 98% of

cases (102).
5.3 Female sexual dysfunctions

Female sexual dysfunction (FSD) is characterized as a disturbance

of sexual desire, arousal, or orgasm, and/or sexual pain, which causes

emotional suffering and has an effect on quality of life and interpersonal

interactions (103). Despite recent efforts, e.g., the most current version
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of the Diagnostic and Statistical Manual of Mental Disorders, edition 5,

abandoning the outdated linear model of diagnostic categories and

collapsing previous classifications of female sexual disorders, FSD

remains largely understudied (104). In the epigenome-wide analysis

of DNA methylation in whole blood samples, two differentially

methylated CpG sites (cg09580409 and cg14734994), corresponding

to MGC45800 and the threonine synthase-like 2 gene (THNSL2),

respectively, were detected for general sexual functioning. Additionally,

putative physiologically relevant candidates for sexual pleasure (solute

carrier family 6 member 19, SLC6A19) and desire (CUB and zona

pellucida-like domains 1, CUZD1) were found. THNSL2 and

SLC6A19, which have been connected to obesity and weight gain,

may be new options for FSD (105).
6 Current opportunities, challenges,
and future prospects

Gene, protein, and metabolite networks have heightened

importance as individual molecules have a limited effect on disease

analysis (1%–10%) compared with panels of multiple markers. In

conjunction with other omics data types, such multiple marker panels

could lead to new diagnostic and prognostic tests, and are relevant to

assessing novel therapeutic approaches. Important knowledge gaps in

practice to successfully implement multi-omics approaches include

incompleteness of the molecular interactome, challenges in identifying

key genes within genetic association regions, and limited applications

to human diseases (106). Researchers have utilized a variety of AI-

based techniques (machine and deep learning models) for diagnosing

diseases, including the K nearest neighbor (kNN), support vector

machine (SVM), decision tree, logistic regression, fuzzy logic, and

artificial neural network (107). Deep learning for illness diagnoses

needs more research, both to process vast amounts of medical data

more quickly and to increase the likelihood of producing results that

are satisfactory (108). A crucial part of precision medicine is measuring

the stability of molecular profiles over time. A study of 100 healthy

individuals analyzed blood-based molecular profiles, including

proteomics, transcriptomics, lipidomics, and metabolomics, which

found high variation between individuals across different molecular

readouts, while the intra-individual baseline variation was low (109). In

summary, there is support for the personalization of health, and

comprehensive omics profiling in a longitudinal fashion is needed

for precision medicine.

Not many AI or machine learning applications to improve

women’s health are in clinical practice as yet, particularly during

pregnancy (110). AI tools are promising for researchers and

clinicians alike in terms of producing sound results and enhancing

care at every stage of pregnancy (111). AI, machine learning, and data

mining could be of immense help in personalizedmanagement, follow-

up of pregnant women, and handling their clinical and epidemiological

data, computational resources, scalability, privacy, and ethical concerns.

These prospective technological advances in remote monitoring of

pregnant women would provide conceptual and analytical framework

to analyze the complex interplay between various biological modalities

that govern preterm birth and other pregnancy-related pathologies. A

recent literature review of the use of AI in medicine noted very little
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identifying and optimizing strategies for engagement, essential for AI to

meaningfully benefit patients and other end users (112). In medicine,

artificial neural networks (ANNs) (113) are widely used to learn and

analyze imprecise pieces of information, and analyze nonlinear data

and past examples for the assessment of pregnancy risk and prediction

of APOs (114). Digital technology offers hope and allows pregnant

women to stay away from hospitals and improves antenatal care for

those who can get access; e-diagnostics will be promising for them

during the COVID-19 pandemic. The development of direct-to-

consumer platforms supports gestational disease management (115),

remote health monitoring (116), low-resource prenatal care (117), text

messaging, antenatal risk assessment (118), fetal health status

prediction (119), preeclampsia prediction, and perinatal depression

(120). Genetic testing helps identify a woman’s likelihood of passing on

a genetic disorder. Traditionally, genetic testing is typically carried out

under the supervision of a genetic healthcare professional in a clinical

setting. Due to the genetic curiosity, a brand-new category of genetic

testing services has emerged, recently known as “direct-to-consumer

genetic testing” or DTC-GT. DTC-GT will allow expectant mothers to

learn whether there is a chance that their children may have a genetic

issue without the use of genetic health professionals or lengthy wait

times for hospital consultations (121).

The COVID-19 pandemic profoundly affected the lives of the

global population. It is known that stress and psychological distress can

affect women’s menstrual cycles. Observational studies have

demonstrated that many have experienced reproductive health

disturbance as a result of the COVID-19 pandemic. During the

epidemic, a large number of maternal mental health problems along

with social issues such as domestic violence and loss of income have
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been documented. There was also a significant increase in suffering

from mental health symptoms, as well as weight gain, longer working

hours, and an unhealthier diet. On the other hand, a minority of

women have described improvement in their reproductive health and

lifestyle over the course of the pandemic. Thus, the COVID-19

pandemic provides a unique chance for epidemiological studies on

maternal mental health, and social services for pregnant women

and mothers.
7 Concluding remarks

Integration of epidemiology, genomics, epigenomics,

transcriptomics, proteomics, metabolomics, metagenomics, and

imaging data through bioinformatics will thus enable the

identification of disease markers at different body organizational

levels from cells, tissues, and organs to the individual level

(Figure 1). Furthermore, in the era of smart digital mHealth

technology during pregnancy, remote monitoring and early

prediction of onset of many major pregnancy complications is

feasible. WHO and Harvard have developed the Open Smart

Register Platform allowing health workers to electronically

register and track population health. It helps to deliver a powerful

and dependable application to frontline health workers,

empowering them to more effectively deliver and account for the

care they provide to their clients (https://smartregister.org/). Many

mobile applications are now available to track maternal health, with

a global women’s health device market size of over US$25 billion in

2020. Telemonitoring of pregnancy using a digital health platform
FIGURE 1

Machine learning approaches using various data to understand genetic and environmental factors towards prevention and management of disorders
through the family reproductive life cycle.
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will be of help in enhancing antenatal care and will be a cost-saving

approach to antenatal care. Telemedicine gained pace during the

pandemic out of necessity, but the technology for affordable e-

devices (e-Diagnostics) and point-of-care medical testing is still in

infancy. Thus, despite the huge potential, we are still a long way to

go from utilizing the full potential of omics and digital technologies

in the health sector including women’s health.
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et al. Body composition and its impact on the hormonal disturbances in women with
polycystic ovary syndrome. Nutrients (2021) 13:4217. doi: 10.3390/nu13124217

66. Lv W, Song Y, Fu R, Lin X, Su Y, Jin X, et al. Deep learning algorithm for
automated detection of polycystic ovary syndrome using scleral images. Front
Endocrinol (2022) 12:789878. doi: 10.3389/fendo.2021.789878

67. Xie N-N, Wang F-F, Zhou J, Liu C, Qu F. Establishment and analysis of a
combined diagnostic model of polycystic ovary syndrome with random forest and
artificial neural network. BioMed Res Int (2020) 2020:1–13. doi: 10.1155/2020/2613091

68. Chen Z-Y, Zhang L-F, Zhang Y-Q, Zhou Y, Li X-Y, Huang X-F. Blood tests for
prediction of deep endometriosis: A case-control study. World J Clin cases (2021)
9:10805–15. doi: 10.12998/wjcc.v9.i35.10805

69. Moustafa S, Burn M, Mamillapalli R, Nematian S, Flores V, Taylor HS. Accurate
diagnosis of endometriosis using serum microRNAs. Am J Obstet Gynecol (2020)
223:557.e1–557.e11. doi: 10.1016/j.ajog.2020.02.050

70. Bazot M, Daraï E. Diagnosis of deep endometriosis: clinical examination,
ultrasonography, magnetic resonance imaging, and other techniques. Fertil Steril
(2017) 108:886–94. doi: 10.1016/j.fertnstert.2017.10.026

71. Yücel B, Gedikbasi A, Dündar O, Olgac Y, Yildirim D, Yildirim G, et al. The
utility of first trimester uterine artery Doppler, placental volume and PAPP-a levels
alone and in combination to predict preeclampsia. Pregnancy Hypertension (2016)
6:269–73. doi: 10.1016/j.preghy.2016.04.007

72. Kumar M, Gupta U, Bhattacharjee J, Singh R, Singh S, Goel M, et al. Early
prediction of hypertension during pregnancy in a low-resource setting. Int J Gynaecol
Obstet (2016) 132:159–64. doi: 10.1016/j.ijgo.2015.07.021

73. Widmer M, Cuesta C, Khan KS, Conde-Agudelo A, Carroli G, Fusey S, et al.
Accuracy of angiogenic biomarkers at 20weeks’ gestation in predicting the risk of pre-
eclampsia: A WHO multicentre study. Pregnancy Hypertension (2015) 5:330–8.
doi: 10.1016/j.preghy.2015.09.004

74. Crovetto F, Figueras F, Triunfo S, Crispi F, Rodriguez-Sureda V, Peguero A,
et al. Added value of angiogenic factors for the prediction of early and late preeclampsia
in the first trimester of pregnancy. Fetal Diagn Ther (2014) 35:258–66. doi: 10.1159/
000358302

75. Lobo GAR, Nowak PM, Panigassi AP, Lima AIF, Araujo JÃ°nior E, Nardozza
LMM, et al. Validation of fetal medicine foundation algorithm for prediction of pre-
eclampsia in the first trimester in an unselected Brazilian population. J Maternal-Fetal
Neonatal Med (2019) 32:286–92. doi: 10.1080/14767058.2017.1378332

76. Jhee JH, Lee S, Park Y, Lee SE, Kim YA, Kang S-W, et al. Prediction model
development of late-onset preeclampsia using machine learning-based methods. PloS
One (2019) 14:e0221202. doi: 10.1371/journal.pone.0221202

77. Wu Y-T, Zhang C-J, Mol BW, Kawai A, Li C, Chen L, et al. Early prediction of
gestational diabetes mellitus in the Chinese population via advanced machine learning.
J Clin Endocrinol Metab (2021) 106:e1191–205. doi: 10.1210/clinem/dgaa899
frontiersin.org

https://doi.org/10.1016/j.psyneuen.2017.02.012
https://doi.org/10.1080/14767058.2019.1623195
https://doi.org/10.1038/s41588-021-00852-9
https://doi.org/10.1038/ng.732
https://doi.org/10.1038/ng.2384
https://doi.org/10.1177/0963721414547736
https://doi.org/10.3389/fpsyt.2021.620371
https://doi.org/10.1373/clinchem.2013.212274
https://doi.org/10.1038/npp.2015.333
https://doi.org/10.3389/fcell.2019.00032
https://doi.org/10.3390/jcm11102737
https://doi.org/10.1016/j.xcrm.2021.100323
https://doi.org/10.1002/pd.2822
https://doi.org/10.3389/fnins.2019.00833
https://doi.org/10.1155/2019/4264803
https://doi.org/10.3389/fmed.2022.857529
https://doi.org/10.1038/s41598-020-74100-1
https://doi.org/10.4161/viru.27864
https://doi.org/10.1038/s41591-019-0450-2
https://doi.org/10.1038/s41591-019-0450-2
https://doi.org/10.1016/j.rbms.2021.10.002
https://doi.org/10.1097/01.AOG.0000100153.24061.45
https://doi.org/10.1093/hropen/hoac005
https://doi.org/10.1038/s41586-021-03779-7
https://doi.org/10.3238/arztebl.2016.0317
https://doi.org/10.1111/acel.13366
https://doi.org/10.1161/CIRCULATIONAHA.120.051775
https://doi.org/10.1161/CIRCULATIONAHA.120.051775
https://doi.org/10.1161/JAHA.120.018789
https://doi.org/10.1001/jamacardio.2021.1678
https://doi.org/10.1001/jamacardio.2021.1678
https://doi.org/10.1093/hmg/ddac050
https://doi.org/10.1093/bioinformatics/bty537
https://doi.org/10.1210/jc.2009-1990
https://doi.org/10.1080/14767058.2018.1449204
https://doi.org/10.2196/jmir.9268
https://doi.org/10.4103/ijem.IJEM_30_19
https://doi.org/10.4103/ijem.IJEM_30_19
https://doi.org/10.3389/fpubh.2021.789569
https://doi.org/10.3390/nu13124217
https://doi.org/10.3389/fendo.2021.789878
https://doi.org/10.1155/2020/2613091
https://doi.org/10.12998/wjcc.v9.i35.10805
https://doi.org/10.1016/j.ajog.2020.02.050
https://doi.org/10.1016/j.fertnstert.2017.10.026
https://doi.org/10.1016/j.preghy.2016.04.007
https://doi.org/10.1016/j.ijgo.2015.07.021
https://doi.org/10.1016/j.preghy.2015.09.004
https://doi.org/10.1159/000358302
https://doi.org/10.1159/000358302
https://doi.org/10.1080/14767058.2017.1378332
https://doi.org/10.1371/journal.pone.0221202
https://doi.org/10.1210/clinem/dgaa899
https://doi.org/10.3389/fendo.2023.1081667
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Kharb and Joshi 10.3389/fendo.2023.1081667
78. Sweeting AN, Wong J, Appelblom H, Ross GP, Kouru H, Williams PF, et al. A
novel early pregnancy risk prediction model for gestational diabetes mellitus. Fetal
Diagn Ther (2019) 45:76–84. doi: 10.1159/000486853

79. Popova PV, Klyushina AA, Vasilyeva LB, Tkachuk AS, Vasukova EA, Anopova
AD, et al. Association of common genetic risk variants with gestational diabetes
mellitus and their role in GDM prediction. Front Endocrinol (2021) 12:628582.
doi: 10.3389/fendo.2021.628582

80. Tenenbaum-Gavish K, Sharabi-Nov A, Binyamin D, Møller HJ, Danon D,
Rothman L, et al. First trimester biomarkers for prediction of gestational diabetes
mellitus. Placenta (2020) 101:80–9. doi: 10.1016/j.placenta.2020.08.020

81. Wang Y, Ge Z, Chen L, Hu J, Zhou W, Shen S, et al. Risk prediction model of
gestational diabetes mellitus in a Chinese population based on a risk scoring system.
Diabetes Ther: Res Treat Educ Diabetes Related Disord (2021) 12:1721–34. doi: 10.1007/
s13300-021-01066-2

82. Guo F, Yang S, Zhang Y, Yang X, Zhang C, Fan J. Nomogram for prediction of
gestational diabetes mellitus in urban, Chinese, pregnant women. BMC Pregnancy
Childbirth (2020) 20:43. doi: 10.1186/s12884-019-2703-y

83. Malacova E, Tippaya S, Bailey HD, Chai K, Farrant BM, Gebremedhin AT, et al.
Stillbirth risk prediction using machine learning for a large cohort of births from
Western Australia 1980-2015. Sci Rep (2020) 10:5354. doi: 10.1038/s41598-020-
62210-9

84. Khatibi T, Hanifi E, Sepehri MM, Allahqoli L. Proposing a machine-learning
based method to predict stillbirth before and during delivery and ranking the features:
nationwide retrospective cross-sectional study. BMC Pregnancy Childbirth (2021)
21:202. doi: 10.1186/s12884-021-03658-z

85. Koivu A, Sairanen M. Predicting risk of stillbirth and preterm pregnancies with
machine learning. Health Inf Sci Syst (2020) 8:14. doi: 10.1007/s13755-020-00105-9

86. Mboya IB, Mahande MJ, Mohammed M, Obure J, Mwambi HG. Prediction of
perinatal death using machine learning models: a birth registry-based cohort study in
northern Tanzania. BMJ Open (2020) 10:e040132. doi: 10.1136/bmjopen-2020-040132

87. Jehan F, Sazawal S, Baqui AH, Nisar MI, Dhingra U, Khanam R, et al.
Multiomics characterization of preterm birth in low- and middle-income countries.
JAMA Network Open (2020) 3:e2029655. doi: 10.1001/jamanetworkopen.2020.29655

88. Shukla VV, Eggleston B, Ambalavanan N, McClure EM, Mwenechanya M,
Chomba E, et al. Predictive modeling for perinatal mortality in resource-limited
settings. JAMA Network Open (2020) 3:e2026750. doi: 10.1001/jamanetworkopen.
2020.26750

89. Escobar GJ, Soltesz L, Schuler A, Niki H, Malenica I, Lee C. Prediction of
obstetrical and fetal complications using automated electronic health record data. Am J
Obstet Gynecol (2021) 224:137–147.e7. doi: 10.1016/j.ajog.2020.10.030

90. Parra-Cordero M, Rodrigo R, Barja P, Bosco C, Rencoret G, Sepúlveda-Martinez
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