
A novel technique for optimizing the filter size of
CNNs without backpropagation

Muhammad Manzar Maqbool
Electronic Engineering Department

Royal Holloway University of London
Egham, UK

Mohammed.Manzar.2019@live.rhul.ac.uk

Clive Cheong Took
Electronic Engineering Department

Royal Holloway University of London
Egham, UK

Clive.CheongTook@rhul.ac.uk

Saeid Sanei
Computer Science Department

Nottingham Trent University
Nottingham, UK

saeid.sanei@ntu.ac.uk

Abstract—Image filters play a crucial role in the performance
of convolutional neural networks (CNNs). Yet, the optimisation
of those filters tends to focus solely on optimising their weights.
As a result, the machine learning practitioner either uses the
standard 3×3 filter size or has to select the filter size empirically,
as the optimal filter size depends on the application at hand.
There has been a lack of serious attempts to address this issue
in CNNs. To this end, we propose a novel technique to learn
the filter size without depending on either gradient descent
or backpropagation. We compare our technique with the only
serious attempt existing and show that not only our method
performs better, but also converges to an optimal solution at
a much smaller number of training iterations.

Index Terms—Back propagation, CNN, deep learning, filter
size, receptive field.

I. INTRODUCTION

Convolutional neural networks (CNNs) have become deeper
over time. For example, ResNet [1], which was the champion
of ILSVRC 2015, is around 8 times deeper than VGGNet
[2] and 20 times deeper than AlexNet [3]. Deeper networks
usually tend to improve the performances, yet increasing depth
of a network also makes it more complex and difficult to
optimize.

Among the challenges in optimizing a deep neural network
lies the selection of a suitable filter size for its convolutional
layers. In CNNs, the filter size defines the receptive field
from which the information is captured in a convolutional
layer. In traditional settings, most CNNs have a fixed and
predetermined filter size for their convolutional layers. How-
ever, such a predefined filter size is not necessarily optimal
for a given image recognition task. For example, in facial
recognition tasks AU-12 needs a larger receptive field than
AU-17 [4], thus, a larger filter size should be more suitable
for its detection. For instance, a larger filter size enhances the
reconstruction of an image as shown in Fig. 1. However, a
larger filter size can also capture more noise, which may lead
to a degradation in performance. As such, there is a need to
find an optimal filter size.

For a given input size, the optimal filter size for each
convolutional layer is often chosen experimentally or via visu-

(a) (b)

Fig. 1. An increase in filter size from 3× 3 in (a) to 9× 9 in (b) enhances
the image reconstruction.

alization [5]. For example, the recipient of the best expression
recognition performance of Emoti 2015 challenge [6] selected
the filter size for their convolutional layers experimentally.
However, due to the increasing depth of CNNs [1] [7], it is
infeasible to search for the filter size exhaustively due to vastly
expensive training costs.

In order to address these difficulties, we propose a novel
method which learns the filter size of a single convolutional
layer without relying on back propagation. This work also
evaluates Han et al.’s method [4] for regression based image
denoising, and compares its performance with the proposed
method.

The rest of this paper is organised as follows. Section II
gives details about our technique and its derivation, whereas
Section III discusses the simulation results ending with the
conclusion in Section IV.

II. SYSTEM MODEL

The Variable Tap Length Algorithm (VTLA), which was
introduced to find the optimum tap-length of adaptive filters
[8] [9], is considered to optimize filter size of CNNs in this
work. As such, the proposed method is referred to as the
Variable Filter Length Algorithm (VFLA) for CNNs. For fair
comparison, Han et al’s algorithm [4] is used as a benchmark
algorithm and is referred to as the Optimized Filter Size CNN978-1-6654-5245-8/23/$31.00 ©2023 IEEE

(OFS-CNN [4]).

Fig. 2. Visual description of VFLA.

A. Variable Filter Length Algorithm

Unlike VTLA that optimizes one-dimensional filters [8], the
proposed VFLA optimizes two-dimensional (2D) filters. Since
the VTLA computes the optimal value based on the difference
between a pair of errors, VFLA adds a parallel stream of
layers to the original CNN architecture, with each layer having
a smaller filter size. This is the tracking stream. It lets us
compute a pair of regression outputs and mean square errors
(MSE) as follows:

eL(n) =
1

P

P∑
p=1

I∑
i=1

J∑
j=1

(
T(p)
i,jL(n)− X(p)

i,jL(n)

)2

(1)

eN (n) =
1

P

P∑
p=1

I∑
i=i

J∑
j=1

(
T(p)
i,jN (n)− X(p)

i,jN (n)

)2

(2)

where, for each mini-batch of P images having I × J pixels
and at the nth iteration, T are the target and X are the predicted
images respectively. Similarly, the subscript (.)L represents
values related to the actual filter size L and the subscript (.)N
represents values related to the tracking filter size N . It should
also be noted that 1 ≤ N ≤ L and N = L−∆ where ∆ is a
small positive integer usually set to 2.

These two errors can then be used to calculate the tap length
in the form of fractional filter length f as follows:

f(n+ 1) = f(n)− λ[eL(n)− eN (n)] (3)

where λ is the learning rate. The fractional length is hard
constrained to remain unchanged if the difference between the
errors falls and remains under a threshold ζ:

f(n+ 1) ≡

{
f(n) |eL(n)− eN (n)| ≤ ζ

f(n+ 1) otherwise
(4)

The fractional length is not guaranteed to be an integer. This
is a problem since filter size of a convolution layer can not be

non-integer. In order to address this issue, the filter size L is
updated as follows:

L(n) ≡

{
floor(f(n)) |eL(n)− eN (n)| >δ

L(n) otherwise
(5)

where floor(.) is used to round down to the nearest integer
and δ is a tunable positive integer.

After the computation of filter sizes in each iteration,
the filter weights need to be updated as determined by the
mini batch Stochastic Gradient Descent (SGD) algorithm with
Adaptive Moment Estimation (ADAM) [10]. Because the
filter sizes might be greater than or less than their values
from the previous iteration, two policies namely VFLA1 and
VFLA2 are next proposed to expand or contract the 2D filters
accordingly.

For VFLA1 we simply pad zeros at the right and bottom of
the matrix to expand it as per L if L increases , and truncate
from the same sides to contract it if L decreases. The tracking
filter is updated in the same way according to the changes in
filter size N.

TABLE I
ARCHITECTURE OF THE BASELINE CNN BASED AUTO-ENCODER

Serial Name Type Activations Learnables
1 Input Image Input 32× 32× 1 -
2 Conv1 Convolution 32× 32× 16weights:3× 3× 1× 16

bias:1× 1× 16
3 Relu1 Relu 32× 32× 16 -
4 Maxpool1 Maxpool 16× 16× 16 -
5 Conv2 Convolution 16× 16× 8 weights:3× 3× 16× 8

bias:1× 1× 8
6 Relu2 Relu 16× 16× 8 -
7 Maxpool2 Maxpool 8× 8× 8 -
8 Conv3 Convolution 8× 8× 8 weights:3× 3× 8× 8

bias:1× 1× 8
9 Relu3 Relu 8× 8× 8 -
10 Maxpool3 Maxpool 4× 4× 8 -
11 Tconv1 Transposed Convolution 8× 8× 8 weights:4× 4× 8× 8

bias:1× 1× 8
12 Relu4 Relu 8× 8× 8 -
13 Tconv2 Transposed Convolution 16× 16× 8 weights:4× 4× 8× 8

bias:1× 1× 8
14 Relu5 Relu 16× 16× 8 -
15 Tconv3 Transposed Convolution32× 32× 16weights:4× 4× 16× 8

bias:1× 1× 16
16 Relu6 Relu 32× 32× 16 -
17 Conv4 Convolution 32× 32× 1 weights:3× 3× 16

bias:1× 1
18 Relu7 Relu 32× 32× 1 -
19 Reg1 Regression 32× 32× 1 -

For VFLA2 the filters are updated via zero padding or
truncation based on whether they are being changed from an
even size to odd, or vice versa. In case of an increase or
decrease in filter size L from even to even or odd to odd, the
padding/shrinking factor is calculated as follows:

Pee/oo(n) =
|L (n)− L (n− 1)|

2
(6)

If the size increases, the filter is padded with Pee/oo(n)
additional rows and columns. Similarly, if the size decreases,
Pee/oo(n) rows and columns are removed from around the
filter. This is depicted in Fig. 3a.

Likewise, when the increase or decrease is from even size to
odd, or vice versa, the padding/shrinking factor is calculated
as follows:

Peo/oe(n) =
|[L (n)− 1]− L (n− 1)|

2
(7)

(a) (b)

Fig. 3. Size update in VFLA 2. (a) From size Even-Even, Odd-Odd, (b) From size Even-Odd, Odd-Even.

Once the padding/shrinking is carried out, the inherent
asymmetry incurred due to changing size from even to odd
or vise versa is taken care of by further padding/truncating a
column and row pair from the bottom-right of the filter. This is
depicted in Fig. 3b, where this additional padding/truncation
is shown as dark green and dark red respectively.

Each policy has been applied to 1st and 2nd convolution
layer separately. These two policies are not considered for 3rd

convolution layer, as the inner-most layer usually synthesizes
the features rather than extracts useful features.

B. The OFS-CNN

The OFS-CNN [4] learns each layer’s optimum filter size
as a hyper-parameter while training. Therefore, each layer’s
filter size L(n) is learned via backpropagation like any other
weight or bias.

Each filter size L(n) always remains between two odd
numbers, L+(n) and L−(n), which are the upper bound and
lower bound filter sizes with L+(n) being the actual size of
the filter in question. When the value L(n) exceeds L+(n) as
a result of the training, L+(n) and L−(n) are updated to the
next odd numbers.

The technique expresses the output of each convolutional
layer as a function of the filter size L+(n), which makes it
possible to compute gradients of errors w.r.t the filter size
L(n).

III. SIMULATIONS AND DISCUSSION

A. Datasets

Our work considers three datasets for denoising: the digit
dataset [11] comprising of 10 000 synthetic handwritten digits,
the Hasy-V2 dataset [13] consisting of over 150,000 instances
of handwritten symbols, and the Omniglot dataset [12] con-
taining 1623 different handwritten characters from 50 different
alphabets. Each dataset was divided into training, validation
and testing datasets with 95%, 2.5% and 2.5% respectively.
All images were resized to 32 × 32 in order to simplify
padding concerns. Each minibatch P was set to 500 images

per iteration. Each image was normalized to the range [0,
1] to make convergence faster. Each image in the datasets
was augmented by randomized rotations [1◦, 90◦] to reduce
overfitting. Salt and pepper noise was added to all images to
obtain their noisy versions at the input to each CNN.

B. Experimental setup

The CNN-based denoising autoencoder described in Table
I was used as a baseline for both methods. It has sev-
eral convolution layers in the encoder, followed by several
transposed convolution layers in the decoder. Each convo-
lution layer can be described by its spatial dimensions, i.e.
length×width×channels×filters. Whereas several convolution
layers have multi-channel and multi-filter weights, we limited
ourselves with the optimization of spatial dimensions of length
and width alone, which we refer to as the filter size.

The values for filter sizes in Equation (1) were initialized
as 3× 3, whereas their values in Equation (2) were initialized
as 1 × 1. λ and f in Equation (3) were set at 1 × 10−3 and
1.5 respectively. The value of ζ in Equation (4) was set at 5
and the value of δ in Equation (5) was set at 2. Finally, The
learning rate of the training algorithm was set at 1×10−3 and
each CNN was trained for 2.5× 105 iterations.

C. Results

Table III summarizes the learned filter sizes at the end of
training for each method, whereas Table II enumerates the
final and average MSE values for training and testing. These
are evaluated at the regression layer at the end of training. For
the baseline, each layer is initialized and kept at the size 3×3
unless otherwise stated in Table II. It is evident that VFLA2
consistently outperformed both the Baseline and the OFS-
CNN [4] in terms of its training and testing MSE error giving
an average performance improvement of 28.8% from the the
minimum average Baseline MSE i.e. 2.77, and 59.8% from
OFS-CNN [4]. The white background of the HASY images
is the only difference with the other datasets which have
darker backgrounds. This may explain the outlier behaviour.
For comparison sake, this outlier behavour is experienced not

Fig. 4. Image reconstruction across all data sets

TABLE II
PERFORMANCE COMPARISON. ENTRIES IN BOLD SHOW THE BEST OVERALL PERFORMANCES. ENTRIES IN ITALICS SHOW OUTLIERS

Dataset Run Metric Baseline VFLA1 VFLA2 OFS-CNN [4]
3×3 (all layers) 5×5 7×7 9×9 conv1conv2conv1conv2conv1conv2conv1conv2conv1conv2

Digit [11]Training Final MSE 1.80 1.86 1.72 1.92 1.15 1.86 1.01 1.10 1.17 1.08 1.22 1.48
Final RMSE 1.34 1.36 1.31 1.38 1.07 1.36 1.00 1.04 1.08 1.03 1.10 1.21

Testing Average MSE 1.93 4.05 3.76 4.08 4.00 4.04 3.46 1.19 1.29 1.29 1.18 1.82
Average RMSE 1.38 2.01 1.93 2.01 2.00 2.01 1.86 1.09 1.13 1.13 1.08 1.35

Omni [12]Training Final MSE 3.95 4.20 2.30 2.60 2.05 1.95 2.95 2.45 3.78 1.45 2.15 3.20
Final RMSE 1.98 2.04 1.51 1.61 1.43 1.39 1.71 1.56 1.94 1.20 1.46 1.78

Testing Average MSE 4.26 5.12 2.68 3.02 2.49 2.43 3.45 2.61 4.12 1.60 2.28 3.13
Average RMSE 2.06 2.26 1.63 1.73 1.57 1.55 1.85 1.61 2.03 1.26 1.50 1.76

Hasy [13]Training Final MSE 5.40 13.2 8.90 13.0 8.20 1.78 6.65 9.50 13.5 4.70 6.30 17.77
Final RMSE 2.32 3.63 2.98 3.60 2.86 1.33 2.57 3.08 3.67 2.16 2.50 4.21

Testing Average MSE 5.31 13.50 9.02 13.39 8.69 10.38 8.10 8.86 12.19 4.63 6.21 17.12
Average RMSE 2.30 3.67 3.00 3.65 2.94 3.22 2.84 2.97 3.49 2.15 2.49 4.13

Average 2.83 4.74 3.39 4.33 3.20 2.77 3.12 3.08 4.15 1.97 2.45 4.91
Average without outliers 2.32 2.78 2.28 2.56 2.15 2.08 2.26 1.55 2.41 1.43 1.68 2.46

only by our proposed methods but also by the other benchmark
algorithms. As such, this outlier behaviour does not pose any
bias towards any algorithms, since they are all exposed to the
same input. If the outliers were removed, all VFLA methods
performed better on average than both the Baseline and OFS-
CNN [4] with the best being VFLA2 again. In this case, we see
improvements of 31.2% and 41.8% from the minimum average
without outliers Baseline MSE i.e. 2.08 and OFS-CNN [4]
respectively. Furthermore, VFLA was much faster as it took
an average of as little as 1800 iterations for convergence, while
OFS-CNN [4] took 4 × 104 iterations on average across all
datasets. It is also interesting to note that for the Digit Dataset,
OFS-CNN [4] learned a filter size of 9×9 that is greater than
that of the layer’s input feature map of size 8×8. Fig. 4 shows
a sample of qualitative results. Due to limit of space, only the
VFLA with the lowest MSE is included for each dataset, with
the best results highlighted in red.

IV. CONCLUSION

This work has addressed a niche yet often overlooked
problem in deep learning. In particular, we have proposed two
novel methods to optimise the filter size of a convolutional
neural network. We have shown that optimizing one layer

TABLE III
LEARNED FILTER SIZE FOR EACH METHOD. BOLD ENTRIES SHOW THE

LEARNED FILTER SIZE L FOR VFLA AND OFS-CNN [4].

Dataset Layers Method
VFLA1 VFLA2 OFS-CNN [4]conv1conv2conv1conv2

Digit [11]
conv1
conv2
conv3
conv4

7
3
3
3

3
7
3
3

9
3
3
3

3
7
3
3

7
7
9
5

Omni [12]
conv1 9 3 6 3 5
conv2 3 3 3 6 5
conv3 3 3 3 3 7
conv4 3 3 3 3 3

Hasy [13]
conv1 9 3 9 3 5
conv2 3 5 3 6 5
conv3 3 3 3 3 7
conv4 3 3 3 3 3

rather than all layers can lead to improvement in performance.
This is because optimising the weights, the biases, and the
filter sizes via backpropagation is a challenging task. Opti-
mising the filter size of only one convolutional layer has also
resulted in quicker convergence of our method. Moreover, it
has enabled us to circumvent the need to make use of back-
propagation, which is well-known to have some shortcomings
such as vanishing gradients, resource intensive and lengthy
trainings, and sensitivity to noise and other irregularities.

REFERENCES

[1] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image
recognition. Proceedings Of The IEEE Conference On Computer Vision
And Pattern Recognition. pp. 770-778 (2016)

[2] Simonyan, K. & Zisserman, A. Very deep convolutional networks for
large-scale image recognition. ArXiv Preprint ArXiv:1409.1556. (2014)

[3] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., Karpathy, A., Khosla, A., Bernstein, M. & Others Imagenet
large scale visual recognition challenge. International Journal Of Com-
puter Vision. 115, 211-252 (2015)

[4] Han, S., Meng, Z., Li, Z., O’Reilly, J., Cai, J., Wang, X. & Tong, Y.
Optimizing Filter Size in Convolutional Neural Networks for Facial
Action Unit Recognition. 2018 IEEE/CVF Conference On Computer
Vision And Pattern Recognition. pp. 5070-5078 (2018)

[5] Zeiler, M. & Fergus, R. Visualizing and understanding convolutional
networks. European Conference On Computer Vision. pp. 818-833
(2014)

[6] Dhall, A., Ramana Murthy, O., Goecke, R., Joshi, J. & Gedeon, T. Video
and image based emotion recognition challenges in the wild: Emotiw
2015. Proceedings Of The 2015 ACM On International Conference On
Multimodal Interaction. pp. 423-426 (2015)

[7] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V. & Rabinovich, A. Going deeper with convo-
lutions. Proceedings Of The IEEE Conference On Computer Vision And
Pattern Recognition. pp. 1-9 (2015)

[8] Gong, Y. & Cowan, C. An LMS style variable tap-length algorithm
for structure adaptation. IEEE Transactions On Signal Processing. 53,
2400-2407 (2005)

[9] Ibunu, S., Weller, S. & Took, C. A Variable Memory Length Auto
Encoder. 2021 International Joint Conference On Neural Networks
(IJCNN). pp. 1-4 (2021)

[10] Kingma, D. & Ba, J. Adam: A Method for Stochastic Optimization.
(2017)

[11] MATLAB Data Sets for Deep Learning. (Available at
https://www.mathworks.com/help/deeplearning/ug/data-sets-for-deep-
learning.html)

[12] Lake, B., Salakhutdinov, R. & Tenenbaum, J. The Omniglot challenge:
a 3-year progress report. Current Opinion In Behavioral Sciences. 29
pp. 97-104 (2019)

[13] Thoma, M. The hasyv2 dataset. ArXiv Preprint ArXiv:1701.08380.
(2017)

