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Abstract—Constraining a group of taps of an adaptive filter
to a single value may seem like a futile task, as weight sharing
reduces the degree of freedom of the algorithm, and there are no
obvious advantages for implementing such an update scheme. On
the other hand, weight sharing is popular in deep learning and
underpins the success of convolutional neural networks (CNNs) in
numerous applications. To this end, we investigate the advantages
of weight sharing in single-channel least mean square (LMS),
and propose weight sharing LMS (WSLMS) and partial weight
sharing LMS (PWS). In particular, we illustrate how weight
sharing can lead to numerous benefits such as an enhanced
robustness to noise and a computational cost that is independent
of the filter length. Simulations support the analysis.

I. INTRODUCTION

Weight sharing is a common practice in machine learning
due to its numerous benefits such as minimising the risk of
overfitting to the data and easier hyperparameter tuning due
to a reduction in the number of parameters. However, this low
computational complexity advantage is not the main objective
for weight sharing. The main motivation for weight sharing
is that it enforces the algorithm to detect common features
scattered across the data [1]. As such, this particular property
is not exhibited by LMS-type algorithms designed to have
low computational complexities such as [2], the partial update
LMS [3], and the online censoring algorithms [4], [5].

In fact, properties such as robustness to noise, convergence
and stability are usually of high interest to the signal pro-
cessing community including adaptive filtering algorithms.
As such, the main aim for reducing the degrees of freedom
of algorithms is to alleviate the computational cost at the
expense of these benefits. Weight sharing (WS) goes beyond
the issue of computational complexity. It was introduced for
multichannel least mean square (MLMS) algorithms and the
desirable properties of WS were also investigated in our work
in [6]. In particular, weight sharing has been shown to lead to
i) an improved stability of the adaptive algorithms especially
for high condition numbers; ii) an enhanced robustness to
noise; and iii) its ability to cope with large number of channels
such as in massive multiple inputs multiple outputs (MIMO)
applications.

Our previous work implemented weight sharing across
different channels as shown in Section II-A. This present
work, instead, considers weight sharing across time for sin-
gle channel processing. Moreover, partial weight sharing is
also considered to enhance the learning ‘capacity’ for more

complex signals/systems by relaxing the strict requirements
of full weight sharing [6].

II. WEIGHT SHARING FOR ADAPTIVE FILTERING

A. Weight Sharing for Multichannel LMS

The weight sharing multichannel least mean square (WS-
MLMS) algorithm was introduced to illustrate how weight
sharing can be incorporated into the class of LMS algorithms.
In the context of multichannel adaptive processing, weights
w(n) can be shared across data channels as [6]

yq(n) = wT(n)xq(n) q = 1, . . . , Q (1)

where xq(n) and yq(n) represent the qth input and output
channel respectively and (·)T is the transpose operator. Weight
sharing mechanism can be expressed as

y1(n)
y2(n)

...
yQ(n)

 =

L∑
ℓ=1

wℓ(n)


x1(n− ℓ+ 1)
x2(n− ℓ+ 1)

...
xQ(n− ℓ+ 1)

 (2)

where wℓ(n) denotes the weight for the ℓth lag of the tap
input. This work addresses weight sharing across time and
introduces the weight sharing LMS (WSLMS) and the partial
weight sharing (PWS) LMS.

B. Proposed Weight Sharing LMS (WSLMS)

In weight sharing LMS (WSLMS), a single coefficient
filtering w(n) can be shared amongst all taps as

y(n) = w(n)

L∑
ℓ=1

x(n− ℓ+ 1) (3)

Based on the instantaneous quadratic error e2(n), it can be
shown that the weight update for WSLMS is given by

w(n+ 1) = w(n) + µe(n)

L∑
ℓ=1

x(n− ℓ+ 1) (4)

Eq. (3), however, imposes a strict form of weight sharing
in WSLMS, and may not be appropriate in models where
the coefficients are significantly different from each other. To
address this shortcoming, a more flexible model of weight
sharing is proposed in the subsequent algorithm referred as
partial weight sharing (PWS). PWS allows some taps to



share the same coefficient, whilst also enabling the other
taps to have different values. In this way, PWS can benefit
from the additional degrees of freedom, whilst exhibiting the
advantageous properties of weight sharing as mentioned in the
introduction.

C. Proposed Partial Weight Sharing LMS (PWS)

In PWS, the first K taps are allowed to have different weight
coefficients, whilst the last L−K taps share the same weight.
As such, the output y(n) can be computed as

y(n) =

K∑
ℓ=1

wℓ(n)x(n−ℓ+1)+w(n)

L∑
ℓ=K+1

x(n−ℓ+1) (5)

For the first K taps, the ℓth coefficient wℓ(n) can updated
as

wℓ(n+1) = wℓ(n)+µPartial1[e(n)x(n−ℓ+1)] ℓ = 1, ...,K
(6)

The last L − K taps share the same weight w(n), which
can be updated as

w(n+ 1) = w(n) + µPartial2[e(n)

L∑
ℓ=K+1

x(n− ℓ+ 1)] (7)

Observe that (6) and (7) requires two different stepsizes,
µPartial1 and µPartial2 which is discussed in the next section.

III. COMPARATIVE ANALYSES

This section analyses and compares the proposed algorithms
WSLMS and PWS with LMS from a practical perspective. In
particular, their robustness against noise, together with their
computational and convergence properties are next analysed.

A. Robustness against noise

While LMS is known to be robust against noise compared
to the recursive least squares at low signal-noise-ratio (SNR)
values [7], its weight update relies on the raw values of
the input x(n). Its weight update does not have any inbuilt
mechanism to combat the effect of the noise. Unlike the LMS,
the update for WSLMS (4) averages/smoothes its input as:

w(n+ 1) = w(n) + µe(n)

L∑
ℓ=1

x(n− ℓ+ 1)

= w(n) + ηe(n)
1

L

L∑
ℓ=1

x(n− ℓ+ 1)︸ ︷︷ ︸
Moving average of inputs

(8)

Similarly, PWS benefits from the moving average mecha-
nism in (7), which mitigates the effects of noise (albeit to a
lesser extent). As such, it is expected that PWS performs better
than LMS in noisy settings, yet worse than WSLMS.

Step Algorithm Addition Multiplication
Estimate LMS L− 1 L
y(n) WSLMS (3) L− 1 1

PWS (5) L− 1 K + 1
Error LMS 1 0
e(n) WSLMS 1 0

PWS 1 0
Update LMS L L+ 1

w(n+ 1) WSLMS (4) L+ 1 2
PWS (6) and (7) L K + 2

Total LMS O(L) O(L)
WSLMS O(L) O(1)

PWS O(L) O(K)
TABLE I

COMPUTATIONAL COMPLEXITIES OF LMS, WSLMS, AND PWS
ALGORITHMS, WHERE L REPRESENTS THE FILTER LENGTH, AND

K THE NUMBER OF NON-SHARED COEFFICIENTS IN PWS.

B. Computational Complexities

Table II compares the computational cost of each algorith-
mic step of LMS, WSLMS, and PWS. They all have the same
computational cost in terms of additions.

However, the computational cost for multiplication is sig-
nificantly different for each algorithm. For WSLMS, the
computational cost is constant, and does not depend on the
filter length. For PWS, the computational cost is dependent
on the number of non-shared weights. For example, if only
50% of the weights are updated, the computational cost is
reduced by half - a non-trivial benefit for long filters.

C. Convergence issues

An optimal stepsize plays a fundamental role in ensuring
the convergence of an adaptive algorithm. To this end, opti-
mal stepsizes are derived based on the one-step ahead error
prediction e(n + 1). A first order approximation of a Taylor
series expansion of a function f(n) can be expressed as

f(n+∆n) ≈ f(n) + ∆nf ′(n) (9)

where f ′(n) denotes the first order derivative. Thus, the one-
step ahead error prediction e(n+ 1) can be approximated as

e(n+ 1) ≈ e(n) +

L∑
ℓ=1

∂e(n)

∂wℓ(n)
∆wℓ(n) (10)

which provides the basis for deriving optimal stepsizes.
1) Optimal Stepsize for LMS: For the LMS algorithm, ob-

serve that both ∂e(n)
∂wℓ(n)

and ∆wℓ(n) depends on the individual
input x(n− ℓ+ 1), i.e.

∂e(n)

∂wℓ(n)
= −x(n− ℓ+ 1) (11)

∆wℓ(n) = µx(n− ℓ+ 1)e(n) (12)

Replacing (11)-(12) into (10) yields the one-step ahead error
prediction, given by

e(n+ 1) ≈ e(n)− µe(n)

L∑
ℓ=1

x2(n− ℓ+ 1) (13)
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Fig. 1. Evaluation the robustness of LMS, WSLMS, and PWS over a range
of signal-to-noise ratio values.

Factorising the common terms in (13) leads to

e(n+ 1) ≈ e(n)

[
1− µ

L∑
ℓ=1

x2(n− ℓ+ 1)

]
(14)

For the one-step ahead quadratic error to go to zero, we have[
1− µ

L∑
ℓ=1

x2(n− ℓ+ 1)

]
= 0 (15)

which leads to the well-known normalised stepsize

µLMS =
1∑L

ℓ=1 x
2(n− ℓ+ 1)

(16)

2) Optimal Stepsize for WSLMS: Observe that both ∂e(n)
∂wκ(n)

and ∆wκ(n) depend on the sum of inputs, i.e.

∂e(n)

∂wκ(n)
= −

L∑
κ=1

x(n− κ+ 1) (17)

∆wκ(n) = µ

L∑
κ=1

x(n− κ+ 1)e(n) (18)

Replacing (17)-(18) into (10) yields the one-step ahead error:

e(n+ 1) ≈ e(n)−
L∑

ℓ=1

µe(n)

[ L∑
κ=1

x(n− κ+ 1)

]2
≈ e(n)− µe(n)L

[ L∑
κ=1

x(n− κ+ 1)

]2
(19)

Factorising the common error term in (19) leads to

e(n+ 1) ≈ e(n)

[
1− µL

( L∑
κ=1

x(n− κ+ 1)

)2]
(20)

∴ µWSLMS =
1

L

(∑L
κ=1 x(n− κ+ 1)

)2 (21)
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Fig. 2. Transient performance of algorithms considered for the identification
a time-varying system.

Algorithms LMS µLMS
Weight Sharing (4) µWS 1/L

Partial Weight Sharing (6) µPartial1 L/K
Partial Weight Sharing (7) µPartial2 L/(L−K)2

TABLE II
COMPARATIVE ANALYSIS IN TERMS OF OPTIMAL STEPSIZES.

Remark: The normalising factor in the stepsize depends on
the sum of squares in LMS in (16), whereas it is the square of
the sum in WSLMS in (21). These two differing normalising
factors converges to the same value for independent and
identically distributed (i.i.d.) samples.

3) Optimal Stepsize for PWS: Unlike WSLMS and LMS,
PWS requires two optimal stepsizes for its updates in (6) and
(7). Based on Section III-C1, the optimal stepsize for (6) can
be obtained as

µPartial1 =
1∑K

ℓ=1 x
2(n− ℓ+ 1)

(22)

The optimal stepsize for (7) can be similarly derived as

µPartial2 =
1

(L−K)

(∑L
κ=K+1 x(n− κ+ 1)

)2 (23)

Table II summarises all stepsizes in terms of that of the LMS
algorithm for optimal performances of the adaptive algorithms
for i.i.d samples.

IV. SIMULATIONS

The aim of the simulations is twofold. First, the robustness
of the adaptive algorithms against noise was investigated.
Second, the adaptive capability of the proposed algorithms
to track time-varying systems/signals in noise-free settings.
The filter length of L = 50 and the number of non-shared
coefficients of K = 25 in PWS were set in all experiments.
The validity of the optimal sizes in Table II was verified in
Table III.
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Fig. 3. Transient performances of algorithms considered in a one-step ahead prediction of three chaotic signals. The left panels show the estimated signals,
with artifacts highlighted by arrows. The right panel shows the learning curves of WSLMS, PWS, and LMS.

A. Simulation 1: Robustness against noise in signal prediction

Additive white Gaussian noise was added to the Mackey-
Glass signal [8] to vary the signal-to-noise ratio (SNR) from
-20 dB to 20 dB. For each SNR value, 100 trials were run and
averaged to yield the performance curves in mean-squared-
error (MSE) sense, as shown in Fig. 1. Observe that WSLMS
exhibited the lowest MSE performance consistently. On the
other hand, PWS was superior to LMS only at very low
SNRs, but performed similarly to LMS. K (the number of
non-shared coefficients) was reduced to zero, its performance
would approach that of WSLMS.

B. Simulation 2: Modelling more complex systems or signals

Sim 2a on time varying system identification: The
finite impulse response h(n) of the system was changed
every 2000 samples as follows: h1 = [0.9, 0.3, 0.5,−0.1],
h2 = [0.4, 0.1, 0.2,−0.6], and h3 = [0.7, 0.4, 0.3, 0.1]. The
synthetic input was generated as x(n) = 0.8x(n− 1) + ω(n),
where ω(n) a unit variance white Gaussian noise. Fig. 2 shows
that PWS which outperformed both LMS and WSLMS. This
was confirmed by its lowest MSE of -3.52 dB compared to
-2.12 dB (LMS) and 3.61 dB (WSLMS).

Sim 2b on time-varying signal prediction: To assess the
ability of the considered algorithms to track a time-varying
signal, we used a synthetic signal made up of 3 different
signals: Mackey-Glass [8], Saito [9] , Lorenz [10] - each of
length 1000 samples as shown in top left panel of Fig. 3. The
learning curves are shown in the right panel of Fig. 3. Observe
that PWS and LMS performed similarly and outperformed
WSLMS. The artifacts of the estimate by WSLMS were more
pronounced than those of PWS and LMS in the left panels.

Stepsizes µLMS µWSLMS µPartial1 µPartial2
Sim 1 (×10−3) 5 0.2 (0.1) 6 (10) 0.3 (0.4)
Sim 2a (×10−3) 1 0.04 (0.02) 2 (2) 0.08 (0.08)
Sim 2b (×10−2) 1 0.02 (0.02) 1 (2) 0.04 (0.08)

TABLE III
COMPARISON BETWEEN EXPERIMENTAL AND THEORETICAL OPTIMAL

STEPSIZES. THE THEORETICAL VALUES IN (·) WERE DERIVED FROM
TABLE II.

C. On the validation of the optimal stepsizes

Table III compares the experimental values with the theo-
retical values. Observe that the theoretical values for µWSLMS
are more accurate than those of µPartial1 and µPartial2. This is
because the two updates in (6) and (7) of PWS affect each
other, although their optimal stepsizes were derived as if they
were independent of each other. Yet, these theoretical stepsizes
provide useful indicative values to initialise the stepsizes, given
they were derived based on an i.i.d assumption.

V. CONCLUSION

We have proposed two novel adaptive algorithms to intro-
duce weight sharing across time rather than across channels
into the LMS family of algorithms [6]. In particular, it was
shown that weight sharing provides an additional degree of
robustness against noise in the form of a moving average in
(8). On the other hand, weight sharing constrains the modelling
capability. To leverage the advantages of both weight sharing
and the standard LMS, the partial weight sharing algorithm
has been introduced and shown to offer a good trade-off to
implement weight sharing in adaptive filtering algorithms.
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