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Abstract. In this paper we study non-trivial self-pairings with cyclic
domains that are compatible with isogenies between elliptic curves ori-
ented by an imaginary quadratic order O. We prove that the order m
of such a self-pairing necessarily satisfies m | ∆O (and even 2m | ∆O if
4 | ∆O and 4m | ∆O if 8 | ∆O) and is not a multiple of the field charac-
teristic. Conversely, for each m satisfying these necessary conditions, we
construct a family of non-trivial cyclic self-pairings of order m that are
compatible with oriented isogenies, based on generalized Weil and Tate
pairings.

As an application, we identify weak instances of class group actions on
elliptic curves assuming the degree of the secret isogeny is known. More
in detail, we show that if m2 | ∆O for some prime power m then given
two primitively O-oriented elliptic curves (E, ι) and (E′, ι′) = [a](E, ι)
connected by an unknown invertible ideal a ⊆ O, we can recover a essen-
tially at the cost of a discrete logarithm computation in a group of order
m2, assuming the norm of a is given and is smaller than m2. We give
concrete instances, involving ordinary elliptic curves over finite fields,
where this turns into a polynomial time attack.

Finally, we show that these self-pairings simplify known results on the
decisional Diffie–Hellman problem for class group actions on oriented
elliptic curves.
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1 Introduction

Isogeny based cryptography using class group actions was originally proposed in
the works of Couveignes [12] and Rostovtsev–Stolbunov [32] (CRS), and both
use ordinary elliptic curves. In particular, let O be an order in an imaginary
quadratic number field K, then there is a natural action of the ideal-class group
Cl(O) on the set of ordinary elliptic curves (up to isomorphism) over a finite field
Fq whose endomorphism ring is isomorphic to O. Since it is difficult to construct
ordinary elliptic curves with many small rational subgroups and large enough
Cl(O), computing the class group action in CRS is rather slow. CSIDH [3, 5]
significantly improved the efficiency of the CRS approach by considering the set
of supersingular elliptic curves over a large prime field Fp and restricting to the
Fp-rational endomorphisms. These form a subring of the full endomorphism ring
which again is isomorphic to an order O in an imaginary quadratic number field.
Since #E(Fp) = p+1 for such supersingular elliptic curves, it now becomes trivial
to force the existence of small rational subgroups by choosing p such that p+ 1
has small prime factors. The OSIDH protocol by Colò and Kohel [11] (and more
rigorously by Onuki [27]) extended this even further by using oriented elliptic
curves: here one considers elliptic curves together with an O-orientation, which
is simply an injective ring homomorphism ι : O ↪→ End(E). OSIDH provides
a convenient unifying framework for CRS and CSIDH, but also contains many
new families of potential cryptographic interest. While the original Colò–Kohel
proposal does not seem viable [14], a more recent proposal [15] looks promising.

A different approach to isogeny based cryptography is taken by SIDH [22],
which relies on random walks in the isogeny graph of supersingular elliptic curves
over Fp2 . To make the protocol work however, it needs to reveal the action of the
secret isogeny ϕ : E → E′ on a basis of E[m], where m typically is a power of 2
or 3. This extra information was recently exploited in a series of papers [4, 24, 31]
resulting in a polynomial time attack on SIDH. This attack not only showed that
SIDH is totally insecure, but also added a very powerful technique to the isogeny
toolbox: it is possible to recover a secret isogeny ϕ : E → E′ between two elliptic
curves E and E′, all defined over a finite field Fq, in polynomial time if the
following information is available:

– the action of ϕ on a basis of E[m] is given where m is sufficiently smooth,
– the degree d = deg(ϕ) is known and coprime with m,
– m2 > d.

The origins of this paper trace back to the simple question: to what extent can
the above technique be applied to the class group action setting and are there
weak instances where this results in a polynomial time attack? To illustrate
which problems need to be solved, we will focus on the CSIDH setting (the more
general oriented case is deferred to later sections). In particular, assume E and
E′ are two supersingular elliptic curves over Fp connected by a secret isogeny
ϕ : E → E′ := [a]E with ker(ϕ) = E[a] and a ⊆ O an invertible ideal. To be
able to apply the above technique to recover ϕ, we need to know the degree of
ϕ and its action on a basis of E[m] for some smooth m.
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Whether the degree of ϕ is known depends on how the class group action is
implemented, e.g. in side-channel protected implementations, the degree is some-
times fixed and thus known. For example, this may be the case for the “dummy-
free” constant-time variant of CSIDH that was proposed in [8]. In CSIDH vari-
ants that employ dummy computations to achieve constant-time, fault attacks
that skip isogeny computations could allow an attacker to determine whether an
isogeny was a dummy computation or not, and thus deduce information about
the private key. In the dummy-free approach the parity of each secret exponent
ei in CSIDH is fixed and sampled from an interval [−e, e]. For e = 1, which was
suggested both in [8] and in [9], the degree of any secret isogeny is thus fixed
to a publicly known value, i.e. the product of all the split primes used in the
CSIDH group action. In the remainder of the paper, we will assume the degree
of ϕ is known. Note that by construction, the degree is automatically smooth,
so this does not impose a further restriction.

Determining the action of the secret isogeny ϕ on a basis of E[m] for a
chosen m is a somewhat more challenging task, since we only have E, E′ and
the degree of ϕ at our disposal. To make partial progress, note that we can
choose m = ℓr for some small odd prime ℓ not dividing d = deg(ϕ) that splits
in Q(

√
−p). Then E[m] is spanned by two eigenspaces ⟨P ⟩, ⟨Q⟩ of the Frobenius

endomorphism πp corresponding to two different eigenvalues. Since ϕ commutes
with πp, E

′[m] will also be spanned by two eigenspaces ⟨P ′⟩, ⟨Q′⟩ of πp on E′

corresponding to these same eigenvalues, so we already have that ⟨P ′⟩ = ⟨ϕ(P )⟩
and ⟨Q′⟩ = ⟨ϕ(Q)⟩. In particular, there exist units λ, µ ∈ Z/mZ such that
P ′ = λϕ(P ) and Q′ = µϕ(Q). Using the independence of the points P and
Q (resp. P ′ and Q′) and compatibility of the classical Weil pairing em with
isogenies, we obtain

em(P ′, Q′) = em(λϕ(P ), µϕ(Q)) = em(P,Q)λµd .

By computing a discrete logarithm (note that ℓ is assumed small, so computing
the discrete logarithm is easy), we can therefore eliminate one variable, say µ,
since d is assumed known, so we are left with determining λ. It is tempting to
use the same trick again by pairing P ′ with itself, which would lead to

em(P ′, P ′) = em(λϕ(P ), λϕ(P )) = em(P, P )λ
2d .

Unfortunately, the classical Weil pairing em results in a trivial self-pairing, i.e.
we always have em(P, P ) = 1. What we thus require is a non-trivial self-pairing
fm compatible with isogenies, which implies fm(ϕ(P )) = fm(P )d, and thus

fm(P ′) = fm(P )λ
2d, with both sides of order m say. We thus recover λ up to

sign and as such we can recover ±ϕ. The existence of non-trivial self-pairings
therefore is crucial to the success of the attack.

Contributions

– We give a self-contained overview of generalized Weil [20] and Tate [2] pair-
ings, filling some gaps in the existing literature and relating both pairings
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by extending a result in [20]. Although these generalized pairings are more
powerful than the classical Weil and Tate pairings, they do not seem to be
well known in the cryptographic community.

– We formally define a cyclic self-pairing of order m on an elliptic curve E
to be a homogeneous degree-2 function fm : C → µm with cyclic domain
C ⊆ E such that im(fm) spans µm. We derive necessary conditions for the
existence of non-trivial cyclic self-pairings of order m on O-oriented elliptic
curves that are compatible with oriented isogenies. In particular, we show
that m cannot be a multiple of the field characteristic and that m | ∆O,
with ∆O the discriminant of O (and even 2m | ∆O if 4 | ∆O and 4m | ∆O
if 8 | ∆O). Note that our results only apply to self-pairings compatible with
isogenies, which is required to make the above attack work. This is in stark
contrast to considering an individual elliptic curve, where non-trivial cyclic
self-pairings of order m always exist (as soon as m is not a multiple of the
field characteristic), e.g. by choosing any cyclic order-m subgroup C = ⟨P ⟩
and simply defining fm(λP ) = ζλ

2

m with ζm some fixed primitive m-th root
of unity.

– For m satisfying these necessary conditions we construct cyclic self-pairings
of order m compatible with oriented isogenies, based on generalized Weil
and Tate pairings.

– Using these non-trivial cyclic self-pairings, we are the first to identify weak
instances of class group action based cryptography. In the best case, we
obtain a polynomial time attack on the vectorization problem when deg(ϕ)
is known and powersmooth, ℓ2r | q − 1, E(Fq)[ℓ∞] is cyclic of order at least
ℓ2r, and ℓ2r > deg(ϕ). This for instance would be the case if one would use a
setup like SiGamal [26], but using the group action underlying CRS instead
of CSIDH. Note however that our attack does not apply to SiGamal itself
for two major reasons: here ∆O = −4p and the degree of the secret isogeny
is not known.

– We present a more elegant version of existing results [6, 7] on the decisional
Diffie–Hellman problem for class group actions. In particular, in Remark 5.3
we give a conceptual explanation for a phenomenon observed in [6, App.A].
This also illustrates why the general framework of oriented elliptic curves can
be useful even if one is only interested in elliptic curves over Fq equipped
with the natural Frobenius orientation.

Acknowledgements We owe thanks to Luca De Feo, Damien Robert, Kather-
ine Stange and the anonymous reviewers for various helpful comments, discus-
sions and suggestions.

2 Background

Throughout this paper, k denotes a perfect field (e.g., a finite field Fq) with
algebraic closure k, and K is an imaginary quadratic number field with maximal
order OK .
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2.1 Oriented elliptic curves

Our main references are Colò–Kohel [11] and Onuki [27], although we present
matters in somewhat greater generality (in the sense that we also cover non-
supersingular elliptic curves). A K-orientation on an elliptic curve E/k is an
injective ring homomorphism

ι : K ↪→ End0(E) := End(E)⊗Z Q,

where End(E) denotes the full ring of endomorphisms of E (i.e., defined over k).
The couple (E, ι) is called a K-oriented elliptic curve.

Example 2.1. The standard example to keep in mind is that of an elliptic curve
E over a finite field Fq for which the q-th power Frobenius endomorphism πq
is not a scalar multiplication (that is, we exclude supersingular elliptic curves
E/Fp2r on which Frobenius acts as [±pr]). In that case we have an orientation

ι : Q(σ) ↪→ End0(E) : σ 7→ πq, σ =
tE +

√
t2E − 4q

2
(1)

with tE the trace of Frobenius of E over Fq. We call this the Frobenius orienta-
tion. If (and only if) E is ordinary then ι is an isomorphism. If E is supersingular
then the image of ι is the subalgebra End0q(E) = Endq(E)⊗Z Q, with Endq(E)
the ring of Fq-rational endomorphisms of E. By abuse of notation, we will occa-
sionally just identify σ with πq and refer to ι as a Q(πq)-orientation.

Example 2.2. More generally, every endomorphism α ∈ End(E) \ Z naturally
gives rise to an orientation. Indeed, such an endomorphism necessarily satisfies
α2 − tα + n = 0 where the trace t = Tr(α) and the norm n = N(α) (which we
recall is equal to the degree of α) satisfy t2 − 4n < 0. Fixing

σ =
t+
√
t2 − 4n

2
∈ C

we obtain an orientation ι : Q(σ) ↪→ End0(E), which is unique if we impose that
ι(σ) = α. Every orientation arises in this way.

For an order O ⊆ K, we say that a K-orientation ι : K ↪→ End0(E) is an
O-orientation if ι(O) ⊆ End(E). If moreover ι(O′) ̸⊆ End(E) for every strict
superorder O′ ⊋ O in K, then we say that it concerns a primitive O-orientation.
Note that any K-orientation ι is a primitive O-orientation for a unique order
O ⊆ K, namely for the order ι−1(End(E)). We call this order the primitive order
for the K-orientation. Let us also introduce the following weaker notion:

Definition 2.3. An O-orientation on an elliptic curve E/k is said to be locally
primitive at a positive integer m if the index of O inside the primitive order is
coprime to m.

The following is a convenient sufficient condition for local primitivity:

5



Lemma 2.4. Let E/k be an elliptic curve, let σ ∈ End(E) and let m be a
positive integer such that

(i) char(k) ∤ m,
(ii) E[ℓ, σ] ∼= Z/ℓZ for every prime divisor ℓ | m.

Then the natural Z[σ]-orientation on E is locally primitive at m. As a partial
converse, we have that this orientation is not locally primitive at m as soon as
E[ℓ, σ] ∼= Z/ℓZ× Z/ℓZ for some prime divisor ℓ | m.

Proof. If the orientation is not locally primitive at m, then we must have (σ −
a)/ℓ ∈ End(E) for a prime divisor ℓ | m and some a ∈ Z. Thus σ would act as
multiplication-by-a on E[ℓ]. By assumption (ii) we necessarily have a = 0, but
then E[ℓ, σ] = E[ℓ] ∼= Z/ℓZ × Z/ℓZ in view of assumption (i): a contradiction.
Conversely, if E[ℓ, σ] ∼= Z/ℓZ × Z/ℓZ then by [36, Cor. III.4.11] we know that
there exists an α ∈ End(E) such that α ◦ [ℓ] = σ, so the primitive order must
contain σ/ℓ, hence the Z[σ]-orientation is not locally primitive at m. □

Example 2.5. The Frobenius orientation on an elliptic curve E over a finite field
Fq is also a Z[πq]-orientation. If E(Fq)[ℓ] ∼= Z/ℓZ for some prime number ℓ ∤ q,
then by Lemma 2.4 applied to σ = πq − 1 this orientation is locally primitive at
ℓ. If E[ℓ] ⊆ E(Fq) then it is not.

If ϕ : E → E′ is an isogeny and if ι is a K-orientation on E, then we can
define an induced K-orientation ϕ∗(ι) on E

′ by letting

ϕ∗(ι)(α) =
1

deg(ϕ)
ϕ ◦ ι(α) ◦ ϕ̂, ∀α ∈ K,

where ϕ̂ denotes the dual isogeny of ϕ. Given two K-oriented elliptic curves
(E, ι) and (E′, ι′), we say that an isogeny ϕ : E → E′ is K-oriented if ι′ = ϕ∗(ι);
in this case, we write ϕ : (E, ι) → (E′, ι′). The dual of a K-oriented isogeny
is automatically K-oriented as well. Two K-oriented elliptic curves (E, ι) and
(E′, ι′) are called isomorphic if there exists an isomorphism ϕ : E → E′ such
that ϕ∗(ι) = ι′.

Example 2.6. Let E,E′ be elliptic curves over Fq with the same trace of Frobe-
nius, so that they can both be viewed as K-oriented elliptic curves with K =
Q(σ) as in (1). Then an isogeny ϕ : E → E′ is K-oriented if and only if it is
Fq-rational.

2.2 Class group actions

The set

Eℓℓall
k
(O) = { (E, ι) |E ell. curve over k, ι primitive O-orientation on E }/ ∼=

of primitivelyO-oriented elliptic curves over k up to isomorphism comes equipped
with an action by the ideal class group of O, which we denote by Cl(O). For ellip-
tic curves over C with complex multiplication, this is a classical result. The case
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where k is a finite field and the orientation is by Frobenius is treated in [35, 38].
This group action, which we describe below in more detail, is free, but in general
not transitive, see e.g. [35, Thm. 4.5] and [27, Prop. 3.3] for some subtleties. To
avoid issues arising from the non-transitivity, we define

Eℓℓk(O) ⊆ Eℓℓ
all
k
(O)

to be an arbitrary but fixed orbit (in practice, where we want to study a secret
relation between two primitively O-oriented elliptic curves, it will concern the
orbit containing these two curves.)

The action is defined as follows. Let (E, ι) be a primitively O-oriented elliptic
curve and let [a] ∈ Cl(O) be an ideal class, represented by an invertible ideal
a ⊆ O of norm coprime to max{1, char(k)}; every ideal class admits such a
representative by [13, Cor. 7.17]. One defines the a-torsion subgroup as

E[a] =
⋂
α∈a

ker(ι(α)),

which turns out to be finite (of order N(a) = #(O/a), to be more precise).
Thus there exists an elliptic curve E′ and a separable isogeny ϕa : E → E′ with
ker(ϕa) = E[a], which is unique up to post-composition with an isomorphism.
The isomorphism class of (E′, ϕa∗(ι)) is independent of the choice of the repre-
senting ideal a. One then lets [a](E, ι) be this isomorphism class, and this turns
out to define a free group action.

2.3 Horizontal, ascending and descending isogenies

Let ℓ ̸= char(k) be a prime number and consider an ℓ-isogeny ϕ : (E1, ι1) →
(E2, ι2) of K-oriented elliptic curves. Let O1 ⊆ K be the primitive order of ι1
and let O2 ⊆ K be the primitive order of ι2. Then one of the following is true:

– O1 ⊆ O2 and [O2 : O1] = ℓ, in which case ϕ is called ascending,
– O1 = O2, in which case ϕ is called horizontal,
– O2 ⊆ O1 and [O1 : O2] = ℓ, in which case ϕ is called descending.

It is clear that the dual of an ascending isogeny is descending and vice versa. All
horizontal isogenies are of the form ϕa for some invertible ideal a ⊆ O1 = O2

of norm ℓ, with dual ϕa. Ascending isogenies are of the form ϕa for some non-
invertible ideal a ⊆ O1 of norm ℓ, while descending isogenies are not of the form
ϕa at all.

3 Generalized Weil and Tate pairings

We review some properties of the generalized Weil and Tate pairings on elliptic
curves, with a focus on how the latter can be defined in terms of the former.
The main sources of inspiration for this section were papers by Bruin [2] and
Garefalakis [20], although now we should highlight the work by Robert [30, §4],
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which appeared near the submission time of the current article and takes this
discussion to a deeper level. Nevertheless, while the following statements may be
well-known to some experts, we did not succeed in pinpointing exact references
for all of them, so we take the opportunity to fill some apparent gaps in the
existing literature.

3.1 Weil pairing

Following [20] and [36, Ex. III.3.15], to any elliptic curve isogeny ψ : E → E′

over a perfect field k such that char(k) ∤ deg(ψ) one can associate the ψ-Weil
pairing

eψ : ker(ψ)× ker(ψ̂)→ k
∗
: (P,Q) 7→ g ◦ τP

g
,

where ψ̂ : E′ → E denotes the dual of ψ. Here, g ∈ k(E) is any function with
divisor ψ∗(Q) − ψ∗(0E′) and τP denotes the translation-by-P map. It can be
argued that (g ◦ τP )/g is indeed constant. The ψ-Weil pairing takes values in
µm, with m any positive integer such that ker(ψ) ⊆ E[m]. When applied to the
multiplication-by-m map on an elliptic curve E one recovers the classical m-Weil
pairing, as it is defined in [36, §III.8].

Lemma 3.1. The ψ-Weil pairing is bilinear, non-degenerate, Gal(k, k)-invariant
and further satisfies:

1. Skew-symmetry: for any isogeny ψ : E → E′ we have

eψ(P,Q) = eψ̂(Q,P )
−1 for all P ∈ ker(ψ), Q ∈ ker(ψ̂),

2. Compatibility Weil-I: for any chain of isogenies E
ϕ→ E′ ψ→ E′′ we have

(a) eψ◦ϕ(P,Q) = eψ(ϕ(P ), Q) for all P ∈ ker(ψ ◦ ϕ), Q ∈ ker(ψ̂),

(b) eψ◦ϕ(P,Q) = eϕ(P, ψ̂(Q)) for all P ∈ ker(ϕ), Q ∈ ker(ϕ̂ ◦ ψ̂),
3. Compatibility Weil-II: for any positive integer m and any isogeny ϕ : E →

E′ we have

em(ϕ(P ), Q) = em(P, ϕ̂(Q)) for all P ∈ E[m], Q ∈ E′[m].

Proof. We refer to [20, §2] and [36, Ex. III.3.15(c)] for bilinearity, non-degenera-
cy, Galois invariance and Compatibility Weil-I(a). Compatibility Weil-II is just a
restatement of [36, III.Prop. 8.2]. Skew-symmetry is well-known in case ψ = m.
The general case can be found in [30, §4.1], although this can also been seen
as a consequence of the case ψ = m. Indeed, write m = deg(ψ) and pick any

point R ∈ E′ such that ψ̂R = P and likewise pick any point S ∈ E such that
ψ(S) = Q. Observe that R,S are m-torsion points. Then one checks that

eψ(P,Q) = eψ(ψ̂(R), ψ(S)) = em(R,ψ(S)) = em(ψ(S), R)−1 =

em(S, ψ̂(R))−1 = eψ̂(ψ(S), ψ̂(R))
−1 = eψ̂(Q,P )

−1
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as wanted. Here the first and last equality use Compatibility Weil-I(a), the third
equality uses skew-symmetry for the classical m-Weil pairing, and the fourth
equality uses Compatibility Weil-II. Compatibility Weil-I(b) is an immediate
consequence of Compatibility Weil-I(a) and skew-symmetry. □

For ψ = m there is an equivalent definition of the Weil pairing which is more
amenable to computation via Miller’s algorithm [25].

Lemma 3.2. Let P,Q ∈ E[m]. Choose divisors

DP ∼ (P )− (0E) and DQ ∼ (Q)− (0E)

whose supports are disjoint from {(Q), (0E)} and {(P ), (0E)}, respectively. Let
fm,P , fm,Q ∈ k(E) be such that

div(fm,P ) = m(P )−m(0E), div(fm,Q) = m(Q)−m(0E).

Then em(P,Q) = (−1)mfm,P (DQ)/fm,Q(DP ).

Proof. See e.g. [17]. □

There is no known analogue of this result for the more general ψ-Weil pairing;
see [28, §3.6] for a discussion. Note that it is possible to relax the assumption on
the supports of DP , DQ by working with normalized functions, along the lines
of [21, Lem. 1].

3.2 Tate pairing

The literature describes a number of related pairings on elliptic curves that are
all being referred to as the Tate pairing. We focus on the case k = Fq. Following
Bruin [2], to any Fq-rational isogeny ψ : E → E′ such that ker(ψ) ⊆ E[m] ⊆
E[q − 1] we associate the ψ-Tate pairing

Tψ : (ker(ψ̂))(Fq)×
E′(Fq)
ψ(E(Fq))

→ µm ⊆ F∗
q

defined by Tψ(P,Q) = eψ̂(P, πq(R)−R), where R is arbitrary such that ψ(R) =
Q. This is sometimes called the reduced Tate pairing in order to distinguish it
from the Frey–Rück Tate pairing (see below); this terminology is particularly
common in case ψ = m.

Remark 3.3. Bruin instead writes eψ(πq(R) − R,P ), so in view of the skew-
symmetry we appear to have inverted the pairing value; however, this inversion
compensates for the fact that Bruin follows a different convention for the Weil
pairing [2, §4]. In particular, our two definitions of the ψ-Tate pairing match.

Lemma 3.4. The ψ-Tate pairing is bilinear, non-degenerate, Gal(Fq,Fq)-inva-
riant and moreover satisfies:
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1. Compatibility Tate-I: for any chain of Fq-rational isogenies E
ϕ→ E′ ψ→ E′′

we have

Tψ◦ϕ(P,Q) = Tψ(P,Q) for all P ∈ (ker(ψ̂))(Fq) , Q ∈ E′′(Fq),

2. Compatibility Tate-II: for any positive integerm and any Fq-rational isogeny
ϕ : E → E′ we have

Tm(ϕ(P ), Q) = Tm(P, ϕ̂(Q)) for all P ∈ E[m](Fq), Q ∈ E′(Fq).

Proof. For compatibility Tate-I we note that

Tψ◦ϕ(P,Q) = eϕ̂◦ψ̂(P, πq(R)−R) = eψ̂(P, πq(ϕ(R))− ϕ(R))

for any R such that ψ(ϕ(R)) = Q; here we used Compatibility Weil-I(b) and
the fact that ϕ is defined over Fq. But this is indeed equal to Tψ(P,Q), because
ψ(ϕ(R)) = Q. Compatibility Tate-II is an immediate consequence of Compati-
bility Weil-II. □

Notice that applying Compatibility Tate-I to E′ ϕ→ E
ψ→ E′, where ϕ is such

that [m] = ψ ◦ ϕ (e.g., ϕ = ψ̂ in case ψ is cyclic of degree m), shows that

Tψ(P,Q) = Tm(P,Q) for all P ∈ (ker(ψ̂))(Fq) , Q ∈ E′(Fq)

from which one sees that the ψ-Tate pairing is just a restriction of the m-Tate
pairing. This is in stark contrast with the ψ-Weil pairing, whose relation to the
m-Weil pairing is much more convoluted.

The following is an alternative interpretation of the ψ-Tate pairing in terms
of the Weil pairing. This generalizes Garefalakis’ main observation [20, §5].

Proposition 3.5. Consider an Fq-rational isogeny ψ : E → E′ between elliptic
curves over Fq and assume that

ker(ψ) ⊆ E[q − 1].

Then we obtain a well-defined pairing

E′(Fq)
ψ(E(Fq))

× (ker(ψ̂))(Fq)→ F∗
q

from the (πq − 1)-Weil pairing

eπq−1 : E′(Fq)× ker(π̂q − 1)→ F∗
q

on E′, by restricting the domain of the second argument to ker(π̂q − 1)∩ ker(ψ̂).
Moreover,

Tψ(P,Q) = eπq−1(Q,P )
−1

for all P ∈ (ker(ψ̂))(Fq) and Q ∈ E′(Fq).
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Proof. We first show that

ker(π̂q − 1) ∩ ker(ψ̂) = ker(πq − 1) ∩ ker(ψ̂) = (ker(ψ̂))(Fq).

Indeed, we have ker(ψ̂) ⊆ E′[q−1] and #ker(πq−1) = #ker(π̂q−1) = q− t+1,
with t the trace of Frobenius. From this it follows that

ker(πq − 1) ∩ ker(ψ̂), ker(π̂q − 1) ∩ ker(ψ̂) ⊆ E′[t− 2].

Using that (π̂q − 1) + (πq − 1) = t− 2, the desired equality follows.

Next, we observe that any point Q ∈ (ker(ψ̂))(Fq) pairs trivially with ψ(P )
for any P ∈ E(Fq):

eπq−1(ψ(P ), Q) = e(πq−1)ψ(P,Q) = eψ(πq−1)(P,Q) = eπq−1(P, ψ̂(Q)) = 1,

where the first three equalities use Compatibility Weil-I(a), the rationality of ψ,
and Compatibility Weil-I(b), respectively. So we indeed end up with a pairing
whose domain coincides with that of Tψ, up to reordering the factors.

Finally, to see that both pairings are each other’s inverses, take P ∈ (ker(ψ̂))(Fq)
and Q ∈ E′(Fq). From Compatibility Tate-I we know that

Tψ(P,Q) = Tψ(πq−1)(P,Q) = e(π̂q−1)ψ̂(P, (πq−1)(R)) = eψ̂(π̂q−1)(P, (πq−1)(R))

with R such that ψ(πq − 1)R = Q. Compatibility Weil-I(b) allows us to rewrite
this as

eπ̂q−1(P,ψ((πq − 1)(R))) = eπ̂q−1(P,Q)

which indeed equals eπq−1(Q,P )
−1 by skew-symmetry. □

We will extend this observation to a wider class of pairings in Section 5.
Following [18] and [30, §4.4–4.5] one can also consider the Frey–Rück ψ-Tate

pairing

tψ : (ker(ψ̂))(Fq)×
E′(Fq)
ψ(E(Fq))

→
F∗
q

(F∗
q)
m

: (P,Q) 7→ fm,P (DQ)

with fm,P and DQ as in Lemma 3.2.7 It allows for an efficient evaluation through
Miller’s algorithm. The Frey-Rück ψ-Tate pairing relates to the reduced ψ-Tate
pairing Tm via the rule

Tψ(P,Q) = tψ(P,Q)(q−1)/m, (2)

see [2, §4] and [30, Rmk. 4.14], which is the reason for calling the former reduced.
In particular, also Tψ can be evaluated efficiently.

Remark 3.6. It may be tempting to rephrase Lemma 3.2 as

em(P,Q) = tm(P,Q)/tm(Q,P ),

however one should be careful with this: other representatives of tm(P,Q) and
tm(Q,P ) may fail to quotient to em(P,Q). See [19, §IX.6] for a discussion.
7 It may seem suspicious, at first sight, that fm,P (DQ) does not depend on ψ. However,
here too, the Frey–Rück ψ-Tate pairing is just a restriction of the Frey–Rück m-Tate
pairing.
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4 Self-pairings

In this section we analyze self-pairings, which we formally define as follows:

Definition 4.1. A self-pairing on a finite subgroup G of an elliptic curve E/k
is a homogeneous function

f : G→ k
∗

of degree 2. In other words, for all P ∈ G and λ ∈ Z it holds that f(λP ) =

f(P )λ
2

.

As the terminology suggests, our primary examples come from the application
of a bilinear pairing to a point and itself. More generally, it is natural to consider

f : G→ k
∗
: P 7→ e(τ1(P ), τ2(P )) (3)

for endomorphisms τ1, τ2 ∈ End(E) (possibly scalar multiplications), with e a
bilinear pairing on a group that contains τ1(G)× τ2(G).

Example 4.2. Let m ≥ 2 be an integer. The skew-symmetry of the classical Weil
pairing implies that em(P, P ) = 1 for any P ∈ E[m]. More generally, the m-Weil
pairing becomes trivial whenever it is evaluated at two points belonging to the
same cyclic subgroup ⟨P ⟩ ⊆ E[m]:

em(τ1P, τ2P ) = em(P, P )τ1τ2 = 1 for any τ1, τ2 ∈ Z.

In particular, if one wants to build non-trivial self-pairings from the classical
Weil pairing, then this requires the use of at least one non-scalar τi.

Example 4.3. The following example is inspired by [19, p. 193]. Consider the
elliptic curve E : y2 = x3 + 1 over a finite field Fq with q ≡ 1 mod 3. It comes
equipped with the Fq-rational automorphism τ : (x, y) 7→ (ωx, y), with ω a
primitive 3rd root of unity. Let ℓ | #E(Fq) be a prime satisfying ℓ ≡ 2 mod 3.
Then the self-pairing

E[ℓ]→ F∗
q : P 7→ eℓ(P, τ(P ))

takes non-trivial values for any P ̸= 0E . Indeed, every non-zero P ∈ E[ℓ] is
mapped to an independent point because there are no non-trivial eigenvectors
for the action of τ on E[ℓ]: its characteristic polynomial x2 +x+1 is irreducible
mod ℓ. Since τ is defined over Fq, this reasoning also proves that E[ℓ] ⊆ E(Fq).

Example 4.4. As a more interesting example, consider an ordinary elliptic curve
E/Fq with endomorphism ring Z[πq], and assumem | q−1. The natural reduction
map E(Fq) → E(Fq)/m(E(Fq)) allows us to view the reduced m-Tate pairing
as a bilinear map

Tm : E(Fq)[m]× E(Fq)→ µm. (4)

By doing so, we may give up on the right non-degeneracy, but the pairing is still
left non-degenerate, that is, for any non-trivial point P ∈ E(Fq)[m] there exists
a point Q ∈ E(Fq) such that Tm(P,Q) ̸= 1. Since End(E) = Z[πq], the group
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E(Fq) is cyclic (see [23, Thm. 1] or apply Lemma 2.4 to σ = πq − 1). Thus, in
this case, we have an induced self-pairing

E(Fq)→ µm : P 7→ Tm(τP, P ), (5)

where τ denotes scalar multiplication by the index [E(Fq) : E(Fq)[m]]. This
self-pairing is non-trivial as soon as E(Fq)[m] is non-trivial. Note that we can
restrict the domain E(Fq) to its m-primary part E(Fq)[m∞] without affecting
this property.

Remark 4.5. By the definition of Tm, the image of (5) can be rewritten as

em

(
τP,

πq − 1

m
(P )

)
which seems to be an instance of (3) with e the m-Weil pairing. However, note
that (πq−1)/m is not an endomorphism of E. On the other hand, it does descend
(or rather ascend) to an endomorphism when considered on E/⟨P ⟩ and this is
enough for the pairing to be defined unambiguously. Recall from Proposition 3.5
that (5) can also be rewritten as eπq−1(P, τP )

−1.

Our definition of a self-pairing a priori allows for maps that do not come from
a bilinear pairing. This is indeed possible and, interestingly, a small example has
appeared in the literature. Let E be an elliptic curve over a finite field Fq with
q ≡ 1 mod 4 and #E(Fq) ≡ 2 mod 4. Then the “semi-reduced Tate pairing”

E(Fq)[2]→ µ4 : P 7→ f2,P (DR)
q2−1

4 , 2R = P (6)

from [6, Rmk. 11] maps 0E to 1 and it sends the point of order 2 to a primitive
4-th root of unity. Such an increase of order is impossible for self-pairings coming
from a bilinear pairing along the recipe (3). Yet it is easy to check that this does
concern a self-pairing.

This is essentially the oddest thing that can happen:

Lemma 4.6. Self-pairings map points of order n to gcd(n, 2)n-th roots of unity.

Proof. Let f : G → k
∗
be a self-pairing on an elliptic curve E. Let P ∈ G have

order n. Then from

f(P )n
2

= f(nP ) = f(0E) = f(0 · 0E) = f(0E)
02 = 1

and

f(P )n
2+2n =

f(P )(n+1)2

f(P )
=
f((n+ 1)P )

f(P )
= 1

it follows that the order of f(P ) divides gcd(n2, n2 + 2n) = gcd(n, 2)n. □

Let us now bring isogenies into the picture. Indeed, as discussed in the in-
troduction, self-pairings are only interesting if they are non-trivial and enjoy
compatibility with a natural class of isogenies, in the following sense:

13



Definition 4.7. Consider two elliptic curves E,E′ over k equipped with respec-
tive self-pairings f : G→ k

∗
, f ′ : G′ → k

∗
for finite subgroups G ⊆ E, G′ ⊆ E′.

Let ϕ : E → E′ be an isogeny. We say that f and f ′ are compatible with ϕ if

ϕ(G) ⊆ G′, f ′(ϕ(P )) = f(P )deg(ϕ)

for all P ∈ G.

The most powerful case is where the domains G = ⟨P ⟩, G′ = ⟨P ′⟩ are cyclic:
then we know that ϕ(P ) = λP ′ for some λ ∈ Z and we can conclude

f ′(P ) = f(P )λ
2 deg(ϕ),

leaking information about λ if deg(ϕ) is known and vice versa. We will sometimes
refer to self-pairings with cyclic domains as cyclic self-pairings. In the non-cyclic
case, extracting such information becomes more intricate, although in certain
cases it may still be possible; see Remark 6.8. We note that the self-pairing
from Example 4.4 is cyclic, and it follows from Compatibility Tate-II that it
is compatible with horizontal Fq-rational isogenies; more specifically (and more
generally), if m | q − 1 and E, E′ are elliptic curves over Fq such that the
m-primary parts of E(Fq), E′(Fq) are cyclic, then the self-pairings

E(Fq)[m∞]→ µm : P 7→ Tm(τP, P ), E′(Fq)[m∞]→ µm : P 7→ Tm(τP, P ),

with τ = [E(Fq) : E(Fq)[m]] = [E′(Fq) : E′(Fq)[m]], are compatible with any
Fq-rational isogeny ϕ : E → E′.

The focus of the current paper lies, more generally, on non-trivial cyclic self-
pairings on O-oriented elliptic curves, for some arbitrary (but fixed) imaginary
quadratic order O. If we merely impose compatibility with endomorphisms com-
ing from O, then this already imposes severe restrictions:

Proposition 4.8. Let O be an imaginary quadratic order with discriminant ∆O
and let (E, ι) be an O-oriented elliptic curve over k. Assume that there exists a
self-pairing

f : C → k
∗

on some finite cyclic subgroup C ⊆ E which is compatible with endomorphisms
in ι(O). In other words, for every σ ∈ O and every P ∈ C we have

ι(σ)(P ) ∈ C, f(ι(σ)(P )) = f(P )N(σ).

Write m = #⟨f(C)⟩. Then

(i) char(k) ∤ m,
(ii) m | ∆O,
(iii) with r the 2-valuation of ∆O, we have:

• if r = 2 then m | ∆O/2,
• if r ≥ 3 then m | ∆O/4.
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Remark 4.9. Note that the image of a self-pairing is not necessarily a group,
which is why we write ⟨f(C)⟩ rather than f(C).

Proof. Statement (i) follows immediately from the fact that k
∗
contains no ele-

ments of order char(k).
As for (ii) and (iii), let P be a generator of C. Then f(P ) has order m. For

any σ ∈ O we have that ι(σ)(P ) = λσP for some λσ ∈ Z, and via

f(P )N(σ) = f(ι(σ)(P )) = f(λσP ) = f(P )λ
2
σ

we see that N(σ) ≡ λ2σ mod m. Writing s for the 2-valuation of m, we make a
case distinction:

– If s ≤ 1 then from Lemma 4.6 we see that some multiple R of P must have
order m. Let σ be such that O = Z[σ]. From

(σ−σ̂)2R = (σ2+σ̂2−2N(σ))R = (λ2σ+λ
2
σ̂−2N(σ))R = (2N(σ)−2N(σ))R = 0

it follows that m | ∆O as wanted.
– If s ≥ 2 then Lemma 4.6 only shows the existence of a point R ∈ C of order
m/2 and we obtain the weaker conclusion m | 2∆O. But at least this implies
that ∆O is even, so we must have r ≥ 2. Write ∆O = −2rn and consider
elements in O of the form

σ =

√
∆O

2
+ 2ta a, t ∈ Z≥0,

so that N(σ) = 2r−2n+22ta2 has to be a square modulo 2s for every choice
of a, t. We distinguish further:
• If r is odd, then also r − 2 is odd and taking a = 0 immediately shows
that s ≤ r − 2, as wanted.

• If r is even, then taking t = (r−2)/2 yields that n+a2 must be a square
modulo 2s−r+2 for all a. If s ≥ r then this gives a contradiction both in
case n ≡ 1 mod 4 (take a = 1) and in case n ≡ 3 mod 4 (take a = 0). So
s ≤ r − 1.

It remains to show that if r ≥ 4 is even then in fact s ≤ r−2. But if s = r−1
then taking t = (r− 4)/2 yields that 4n+ a2 must be a square modulo 8 for
all a, which gives a contradiction (take a = 0). □

We will refer to the quantity m = #⟨f(C)⟩ as the order of the self-pairing f .
In the next section, we will show, by explicit construction, that the necessary
conditions from Proposition 4.8 are in fact sufficient for the existence of a family
of cyclic self-pairings

f(E,ι) : C(E,ι) → k
∗
, (E, ι) ∈ Eℓℓk(O),

all satisfying #⟨im(f(E,ι))⟩ = m and compatible with horizontal isogenies (the
family will also cover many non-primitively O-oriented elliptic curves and non-
horizontal isogenies; more on that in Section 5).
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Remark 4.10. One may want to relax the assumptions from Proposition 4.8 and
impose compatibility with endomorphisms whose norm is coprime to m only.
This is good enough for the applications we have in mind, and the semi-reduced
Tate pairing from (6) shows that this is a strict relaxation. Indeed, we know
from [6, Thm. 10] that it is compatible with Fq-rational isogenies of odd degree,
but there exist Fq-rational endomorphisms of even degree for which compatibility
fails: denoting the pairing by f , we see from

f(P ) = ζ4 and f((πq − 1)P ) = f(0E) = 1

that it cannot be compatible with the endomorphism πq − 1, since N(πq − 1) =
#E(Fq) ≡ 2 mod 4. This concerns a self-pairing of order 4 on a Z[πq]-oriented
elliptic curve, so it would not be allowed for by Proposition 4.8 because ∆Z[πq ] ≡
4 mod 8. In Appendix A we will prove a relaxed version of Proposition 4.8, and
we will also show (in a non-effective fashion) that the above example is part of a
larger class of self-pairings of 2-power order that are compatible with K-oriented
isogenies of odd degree only.

5 Constructing non-trivial self-pairings

Let O be an order in an imaginary quadratic number field K and let m | ∆O be
a divisor satisfying the necessary conditions from Proposition 4.8:

– char(k) ∤ m,
– if 4 | ∆O then m | ∆O/2,
– if 8 | ∆O then m | ∆O/4.

We will construct a family of cyclic self-pairings of order m, one for each (E, ι) ∈
Eℓℓk(O), which is compatible with all horizontal isogenies. More generally, the
construction will apply to all O-oriented elliptic curves (E, ι) for which the ori-
entation is locally primitive at m, in the sense of Definition 2.3. Compatibility
will hold for any K-oriented isogeny between two such curves. Our construction
is based on a natural generalization of the ψ-Tate pairing to O-oriented elliptic
curves, which we discuss first. We will actually only rely on the cases where ψ is
a scalar multiplication, but the discussion is fully general for the sake of analogy
with the ψ-Tate pairing.

5.1 A generalization of the ψ-Tate pairing

Let m ≥ 2 be any integer that is invertible in k. Consider two O-oriented elliptic
curves (E, ι), (E′, ι′) and let ψ : E → E′ be a K-oriented isogeny between them.
Assume that ker(ψ) ⊆ E[m] and let σ ∈ O be such that

Tr(σ) ≡ 0 mod gcd(m,N(σ)). (7)

We define

Tσψ : (ker(ψ̂))[σ]× E′[σ]

ψ(E[σ])
→ µm ⊆ k

∗
: (P,Q) 7→ eψ̂(P, σ(R))
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where R ∈ E is such that ψ(R) = Q and we abusingly write σ instead of
ι(σ), ι′(σ). This is well-defined: indeed,

– we have (ψσ)(R) = (σψ)(R) = σ(Q) = 0E′ , so σ(R) ∈ ker(ψ),
– making another choice for R amounts to replacing R ← R + T for some
T ∈ ker(ψ), and

eψ̂(P, σT ) = eσ̂ψ̂(P, T ) = eψ̂σ̂(P, T ) = eψ̂(σ̂(P ), T ) = eψ̂((Tr(σ)−σ)(P ), T ) = 1

where the first and third equalities use Compatibility Weil-I and the last
equality follows from

P ∈ ker(ψ̂) ∩ ker(σ) ⊆ E′[m] ∩ E′[N(σ)] = E′[gcd(m,N(σ))].

The reader should notice the analogy with the definition of the ψ-Tate pairing
from Section 3. Indeed, applying the above to elliptic curves over Fq equipped
with the natural Frobenius orientation and to σ = πq−1, we exactly recover the
ψ-Tate pairing; the assumption m | q−1 that was made there indeed implies (7),
i.e. Tr(πq − 1) ≡ 0 mod gcd(m,N(πq − 1)).

The pairing Tσψ is bilinear and non-degenerate. Possibly the easiest way to
verify this is by noting that the statement and proof of Proposition 3.5 carry
over: we have

Tσψ (P,Q) = eσ(Q,P )
−1

for all P ∈ (ker(ψ̂))[σ] and Q ∈ E′[σ], so these properties follow from those of
the generalized Weil pairing. Our pairing also satisfies the direct analogues of
Compatibilities Tate-I and Tate-II:

1. for any chain of K-oriented isogenies E
ϕ→ E′ ψ→ E′′ between O-oriented

elliptic curves we have

Tσψϕ(P,Q) = Tσψ (P,Q) for all P ∈ (ker(ψ̂))[σ], Q ∈ E′′[σ],

2. for any positive integer m and any K-oriented isogeny ϕ : E → E′ between
O-oriented elliptic curves we have

Tσm(ϕ(P ), Q) = Tσm(P, ϕ̂(Q)) for all P ∈ E[m,σ], Q ∈ E′[σ].

Again the proofs are copies of the corresponding properties of the ψ-Tate pairing.

5.2 Self-pairings from divisors of the discriminant

Now consider m ∈ Z≥2 such that m | ∆O, unless m is even in which case we
make the stronger assumptions that 2m | ∆O in case 4 | ∆O, and 4m | ∆O in
case 8 | ∆O. Furthermore assume that char(k) ∤ m. Pick any generator σ ∈ O
such that

m | Tr(σ), (8)
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except in the special case where v2(m) = 1, in which case we want

2m | Tr(σ) if 8 | ∆O, m | Tr(σ) but 2m ∤ Tr(σ) if 8 ∤ ∆O. (9)

Such a generator always exists. Indeed, if m is odd then we can choose whatever
generator σ ∈ O and replace it by σ − (Tr(σ))/2 mod m if needed. If m is even
and 8 | ∆O then we can just take σ =

√
∆O/2, whose trace is exactly zero. If m

is even and 8 ∤ ∆O then we can take σ =
√
∆O/2 +m/2, with trace m.

Conditions (8–9) trivially imply (7), so from the foregoing it follows that
to any elliptic curve E equipped with an O-orientation we can associate the
non-degenerate bilinear pairing

Tσm : E[m,σ]× E[σ]

m(E[σ])
→ µm ⊆ k

∗
,

and we know that this family of pairings is compatible withK-oriented isogenies.
As with the standard reduced Tate pairing in Example 4.4, we can also view Tσm
as a left non-degenerate bilinear pairing E[m,σ]× E[m∞, σ]→ µm.

Now assume that the orientation is locally primitive at m. Then the group
E[m∞, σ] is cyclic: if it were not cyclic, we would have E[m′] ⊆ E[m∞, σ] for
some positive divisor m′ | m, but this would mean that σ/m′ ∈ End(E), contra-
dicting that σ is a generator of O and the orientation is locally primitive. Next,
note that our assumptions (8–9) together with

∆O = (Tr(σ))2 − 4N(σ)

imply that m | N(σ). Along with the fact that E[m∞, σ] is cyclic, this in turn
yields that E[m,σ] is cyclic of order m. By the left non-degeneracy, we see that
Tσm is surjective onto µm and that, again as in Example 4.4, it can be converted
into a self-pairing

f(E,ι) : E[m∞, σ]→ µm : P 7→ Tσm(τP, P )

still satisfying #⟨im(f(E,ι))⟩ = m; here τ is the index of E[m,σ] in E[m∞, σ].
This proves the claims made at the beginning of this section.

5.3 Computing the self-pairings

For the practical applications we have in mind, our base field k will be a finite
field Fq, and then a compelling question is: what is the complexity of evaluating
the self-pairings constructed above? Concretely, for an O-oriented elliptic curve
(E, ι) such that both E and ι(O) are defined over Fq, and a divisor m | ∆O at
which the orientation is locally primitive, how efficiently can we find an appro-
priate σ ∈ O and compute

Tσm(τP, P ) = eσ(P, τP )
−1

with P a generator of E[m∞, σ] and τ the index of E[m,σ] inside E[m∞, σ]?
Here, by “appropriate” we mean that σ should satisfy conditions (8–9), but it
is not necessary that σ is a generator of O, as long as the orientation by Z[σ]
remains locally primitive at m.
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Example 5.1. The situation is particularly nice for the Frobenius orientation in
casem | q−1 andm | #E(Fq). From the identities Tr(πq−1) = (q−1)−#E(Fq),
N(πq−1) = #E(Fq) and ∆O = Tr(πq−1)2−4N(πq−1) it is easy to check that
m satisfies our necessary conditions for the existence of an order-m self-pairing.
Morover, they show that σ = πq − 1 meets conditions (8–9). If the orientation
by Z[πq] is locally primitive at m then the resulting order-m self-pairing

E(Fq)[m∞]→ F∗
q : P 7→ Tπq−1

m (τP, P ) = Tm(τP, P ), τ =
#E(Fq)[m∞]

m

becomes an instance of the reduced m-Tate pairing, so it can be computed via
the Frey–Rück Tate pairing tm as in (2). The latter can be evaluated efficiently
using Miller’s algorithm, in time O(log2m log1+ε q) using fast multiplication.

Example 5.2. An interesting case is where σ = ς/b for some integer b ≥ 2, where
ς is some easier endomorphism. Then it suffices to compute T ςm(τP,Q) for any
Q ∈ E such that bQ = P . Indeed:

T ςm(τP,Q) = em(τP, ς(R)) = em(τP,
ς

b
(bR)) = Tσm(τP, P ),

with R such that mR = Q, so that m(bR) = P . E.g., if ς = πq − 1, then this
again allows us to resort to the Frey–Rück Tate pairing.

Remark 5.3. In the previous example the group E[m∞, ς], unlike E[m∞, σ], may
not be cyclic. This sheds a new and more conceptual light on the “not walking
to the floor” appendix to [6]. There m was taken to be a prime divisor of q − 1;
for the sake of exposition, let us ignore the technical (and less interesting) case
m = 2 in what follows. It was assumed that E is an ordinary elliptic curve over
Fq not located on the crater of its m-isogeny volcano, and that

E[m∞, πq − 1] = E(Fq)[m∞] ∼=
Z

mrZ
× Z
msZ

for some r > s+1. For us, the weaker assumptions r > s andm | ∆End(E) will do.
One then simply notes that σ := (πq− 1)/ms ∈ End(E) and that, when viewing
E as a Z[σ]-oriented elliptic curve, the orientation becomes locally primitive at
m. By the assumption on ∆End(E) we still have

m | ∆Z[σ] and consequently Tr(σ) ≡ 0 mod m,

where the last congruence uses∆Z[σ] = Tr(σ)2−4N(σ) = Tr(σ)2−4·#E(Fq)/m2s.
Thus we have a self-pairing

E[m∞, (πq − 1)/ms]→ µm : P 7→ T (πq−1)/ms

m (mr−s−1P, P )

of order m, with cyclic domain E[m∞, (πq−1)/ms] ∼= Z/mr−sZ. When comput-
ing this self-pairing via the standard m-Tate pairing as in Example 5.2, using
ς = πq − 1 and b = ms, we recover the pairing discussed in [6, App.A].
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Unfortunately, for general σ we do not know of an analogue of the Frey–Rück
Tate pairing, nor of an analogue of Lemma 3.2 for the generalized Weil pairing.
The best methods we can currently think of work by embedding the pairing
into a standard Weil pairing, that is, with respect to scalar multiplication. In
this way Miller’s algorithm becomes available. The embedding is natural via the
definition:

Tσm(τP, P ) = em(τP, σ(R))

with R ∈ E such that mR = P . Alternatively, using compatibility Weil-I one
can rewrite

eσ(P, τP )
−1 = eN(σ)(P, τR)

−1

with R ∈ E a preimage of P under σ. Since m is typically a lot smaller than
N(σ), and since evaluating σ seems easier than computing a preimage, the first
method appears to be preferable in practice.

The complexity then depends heavily on the field of definition of the points
in E[m∞, σ]. In the worst case, one may need to unveil the full N(σ)-torsion
to see these points, requiring to switch to Fqa with a the order of πq acting on
E[N(σ)], which is O(N(σ)2). We must also divide P by m to get R, for which
we may need to extend further to

Fqaa′ with a′ = O(m2).

Running Miller’s algorithm for the m-Weil pairing over Fqaa′ could then cost an
atrocious

O(∆2+ε
O m2+ε log1+ε q),

where we have approximated N(σ) ≈ ∆O.
However, this is the absolute worst case: one typically expects E[m∞, σ] ⊆

E[mt] for some very small constant t, most likely t = 1, and then the estimate
becomes

O(m2t+2+ε log1+ε q).

E.g., in Proposition 6.5 this will be applied to moduli m of sub-exponential size,
leading to a sub-exponential workload. We note that the above estimates ignore
the cost of determining ι(σ) and evaluating it on R. This heavily depends on
how the orientation is given in practice, which is a separate discussion for which
we refer to [39].

6 Applications

In this section, we present two applications of the non-trivial self-pairings from Sec-
tion 5. In Section 6.1, we show how knowledge of the degree of a secret isogeny
together with a non-trivial self-pairing on a large enough subgroup allows us to
efficiently attack certain instances of class group action based cryptography. In
Section 6.2, we use the generalized view of self-pairings to conceptualize previous
results on the decisional Diffie–Hellman problem for class group actions [6, 7].
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6.1 Easy instances of class group action inversion

Using the tools developed in the previous sections, we describe a special family
of class group actions on oriented elliptic curves for which the vectorization
problem is easy, i.e., the class group action can be efficiently inverted. More
precisely, we give a high-level recipe for recovering a secret horizontal isogeny
ϕ between two primitively O-oriented elliptic curves (E, ι), (E′, ι′) whenever
d = deg(ϕ) is known and smaller than m2, where m is a prime power satisfying

m2 | ∆O if m is odd, 4m2 | ∆O if m is even.

It is also assumed that gcd(m, char(k), d) = 1. While it has been previously
pointed out that factors dividing the discriminant can cause a decrease of secu-
rity, see e.g. [3, Rmk. 2] or [6, §5.1], it was unknown that in special cases they
allow for a full break of the vectorization problem.

Attack strategy. Let σ ∈ O be such that Tr(σ) ≡ 0 mod m2 and the orienta-
tion by Z[σ] is locally primitive at m. As discussed in Section 5.2 such a σ exists
and is easy to find; we can even choose σ to be a generator of O, but in certain
cases one may want to take a non-generator for reasons of efficiency.8

Recall, again from Section 5.2, that the groups E[m∞, σ] and E′[m∞, σ] are
cyclic and we obtain self-pairings

f : E[m∞, σ]→ µm2 and f ′ : E′[m∞, σ]→ µm2

of order m2 by mapping P 7→ Tσm2(τP, P ), where

τ = [E[m∞, σ] : E[m2, σ]] = [E′[m∞, σ] : E′[m2, σ]].

Now, pick respective generators P , P ′ of E[m∞, σ], E′[m∞, σ]. Because ϕ is
K-oriented and its degree is coprime to m, we know that P ′ = µϕ(P ) for some
unit µ ∈ Z/m2Z. The compatibility of f and f ′ with K-oriented isogenies then
implies

f ′(P ′) = f(P )dµ
2

.

Knowing d, we can determine µ2 mod m2 using a discrete logarithm computation
in µm2 , which leaves at most four options for µ mod m2: two options if m is odd
and four options if m is a power of 2. Given a correct guess for µ mod m2, we
obtain knowledge of pair of points

Q = µτP and Q′ = τP ′

of order m2 that are connected via ϕ.

Remark 6.1. Guessing −µ is in fact equally fine, because it is of course good
enough to recover −ϕ = [−1] ◦ϕ. Therefore, only in the case where m is a power
of 2 there is an actual need for guessing between ±µ and ±(1 +m2/2)µ, where
we have to repeat the procedure below in the case of a wrong guess.

8 For instance, to allow for σ of the form (πq − 1)/b as in Example 5.2.
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Using a reduction by De Feo et al.,9 the problem of recovering ϕ given its
images on the cyclic subgroup ⟨Q⟩ of order m2 can be reduced to the problem of
recovering a related degree-d isogeny ϕ0 : E0 → E′

0 given its images on E0[m].
The idea is to compute the isogenies ψ : E → E0, ψ

′ : E′ → E′
0 with kernels

generated by mQ and mϕ(Q), respectively, and complete the diagram:

E0 E′
0

E E′

ϕ0

ϕ

ψ ψ′

The points Q0 := ψ(Q) and Q′
0 := ψ′(Q′) = ψ′(ϕ(Q)) are of order m and we

have ϕ0(Q0) = Q′
0. Further, by picking any generator R0 of ker(ψ̂) we obtain a

basis {Q0, R0} of E0[m]. If we choose a generator R′
0 of ker(ψ̂′) then it is easy to

argue that R′
0 = λϕ0(R0) for some λ ∈ Z that is coprime to m. The exact value

of λ mod m can be recovered via a discrete logarithm computation by comparing

em(Q′
0, R

′
0) = em(ϕ0(Q0), λϕ0(R0)) = em(Q0, R0)

λd with em(Q0, R0),

hence we can assume that λ = 1. Thus, we are given the images of ϕ0 on a basis
of E0[m]. Since m2 > d, we can use Robert’s method from [31, §2], together
with the refinement discussed in [31, §6.4], to evaluate ϕ0 on arbitrary inputs.
In particular, we can evaluate ϕ0 on a basis of E0[d] in order to determine the

kernel of ϕ0 explicitly; this kernel can then be pushed through ψ̂ to obtain the
kernel of ϕ.

Remark 6.2. In our main use cases, namely attacking special instances of CRS,
rather than evaluating ϕ0 on a basis of E0[d] (which may be defined over a huge
field extension only) we want to proceed as follows. For simplicity, let us focus on
the dummy-free set-up with e = 1 (see Section 1). Then we have d = ℓ1ℓ2 · · · ℓr
for distinct small primes ℓi that split in O. In this context, recovering ϕ amounts
to finding for each i = 1, 2, . . . , r the prime ideal li above ℓi (one out of two
options) for which E[li] is annihilated by ϕ. Then ϕ is the isogeny corresponding
to the invertible ideal l1l2 · · · lr ⊆ O. Since gcd(m, d) = 1 this can be tested
directly on E0 by evaluating ϕ0 in a generator of ψ(E[li]).

Weak instances over Fq. Whether or not the above strategy turns into an
efficient algorithm depends amongst others on the field arithmetic involved, the
cost of evaluating ι(σ), ι′(σ), and the cost of computing discrete logarithms
in µm2 . The following proposition gives instances where it indeed leads to a
polynomial-time method:

Proposition 6.3. Let E, E′ be elliptic curves defined over a finite field Fq,
equipped with their Frobenius orientations and connected by an unknown hori-
zontal isogeny ϕ of known degree d, assumed B-powersmooth and coprime to q.

9 The reduction was presented at the KU Leuven isogeny days in 2022 and an article
about this is in preparation [16].
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Let O ⊆ Q(πq) be their joint primitive order. Assume that there exists a prime
power m = ℓr satisfying ℓ ≤ B, ℓ ∤ qd, ℓ2r > d, and

ℓ2r | ∆O if ℓ is odd, ℓ2r+2 | ∆O if ℓ = 2.

Further, assume that there exists a positive integer b coprime to q such that
σ = (πq − 1)/b ∈ O, Tr(σ) ≡ 0 mod ℓ2r and ℓ ∤ [O : Z[σ]]. Then the invertible
ideal a ⊆ O for which ϕ = ϕa can be computed in time poly(log q,B).

Proof. First note that

d = O(m2) = O(|∆O|) and |∆O| = (4q − Tr(πq)
2)/[O : Z[πq]]2 = O(q)

so any subroutine which runs in time poly(d,m) also runs in time poly(q). The
orientation by Z[σ] being locally primitive at ℓ, we know that

E(Fq) ∼= E′(Fq) ∼=
Z
bb′Z

× Z
bb′cZ

for positive integers b′, c, where ℓ ∤ b′, that can be determined in time poly(log q)
using a point-counting algorithm [34]. Define κ = gcd(ℓ∞, c), where we note
that our assumptions imply that ℓ2r | κ: indeed recall from Section 5.2 that
E[ℓ2r, σ] ⊆ E[σ] ∼= Z/b′Z × Z/b′cZ has order ℓ2r. A generator P ∈ E[ℓ∞, σ]

is found by repeatedly sampling X ← E(Fq) until P = bb′c
κ X has order κ.

Following Example 5.2, the self-pairing

f(P ) = Tσℓ2r (τP, P ) = T
πq−1

b

ℓ2r (τP, P ) = Tℓ2r (τP,
b′c

κ
X), τ =

κ

ℓ2r

can then be computed in time poly(log q) via the Frey–Rück Tate pairing. Like-
wise, we can efficiently evaluate f ′ at a generator P ′ ∈ E′[ℓ∞, σ], necessar-
ily satisfying P ′ = µϕ(P ) for some µ. As outlined above, via a discrete loga-
rithm computation in µℓ2r , which can be done in time poly(log q,B), we obtain
µ2 mod ℓ2r. Assuming a correct guess for µ, from this we obtain our order-ℓ2r

points Q, Q′ = ϕ(Q) and we are all set for the torsion-point attack. Note that the
points Q,Q′ are defined over Fq, hence so are the curves E0, E

′
0 and evaluating

ϕ0 at a point in E0(Fqa) only involves arithmetic over Fqa . We then proceed as
outlined in Remark 6.2, with the difference that d need not be square-free: we
only require it to be powersmooth. This means that for each prime power ℓeii
dividing d, we have to test up to 2ei − 1 = O(B) ideals of norm ℓeii for annihi-
lation by ϕ0. All arithmetic can be done in an extension of degree a = poly(B),
from which the proposition follows. □

Example 6.4. An example application of Proposition 6.3 is where ℓ2r | q − 1 for
a small prime ℓ and r ≥ 1 and E(Fq)[ℓ∞] is cyclic of order at least ℓ2r. Then
m := ℓr and σ := πq − 1 meet the above requirements. Indeed:

– the orientation by Z[πq − 1] is locally primitive at ℓ by Lemma 2.4,
– Tr(πq − 1) = q − 1−#E(Fq) ≡ 0 mod ℓ2r,
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– ∆Z[πq−1] = Tr(πq − 1)2 − 4#E(Fq) is divisible by ℓ2r, and by ℓ2r+2 if ℓ = 2.

Here is a baby example with ℓ = 2. Let E be the ordinary elliptic curve defined
by

y2 = x3 + 106960359001385152381x+ 100704579394236675333

over Fp with p := 230 · 167133741769 + 1. So here we take σ := πp − 1 and
m := 215. One checks that E[σ] = E(Fp) is a cyclic group of order

230 · 52 · 7 · 11 · 13 · 17 · 19 · 23 · 29 · 31,

in particular its subgroup E(Fp)[2∞] is cyclic of order 230 as wanted. In this
case it is easy to check that the Z[σ]-orientation is primitive overall, i.e., not just
locally at 2. This is a minimal example for a curve one would construct for a
SiGamal-type encryption scheme [26] using the group action underlying CRS in-
stead of the CSIDH group action; see below. By Proposition 6.3, one can recover
horizontal isogenies of known powersmooth degree d < 230. We implemented the
attack in the Magma computer algebra system [1],10 only skipping the final step,
i.e. computing the actual evaluation algorithm as described in [31].

A generalization. The above recipe can be generalized to the case where
multiple squared prime powers m2

1, . . . ,m
2
r divide ∆O and the degree d of our

secret isogeny ϕ is known and smaller than m2
1 · · ·m2

r. This time we use a cyclic
self-pairing of order m2

1 · · ·m2
r to recover µ2 mod m2

1 · · ·m2
r, with µ as before.

Thus, we have 2r or 2r+1 options for µ depending on whether one of the mi is
even (or in fact 2r−1 or 2r options in case we do not care about a global sign).
The rest of the recipe follows mutatis mutandis.

Proposition 6.5 (informal). Let E,E′ be elliptic curves defined over a finite
field Fq, equipped with their Frobenius orientations and connected by an unknown
horizontal isogeny ϕ of known degree d, assumed B-powersmooth and coprime
to q. Let O ⊆ Q(πq) be their joint primitive order. Assume that there exist r ≈√
log q prime powers m1, . . . ,mr ∈ Lq(1/2) coprime to qd such that m2

1 · · ·m2
r >

d and

m2
1 · · ·m2

r | ∆O and 4m2
1 · · ·m2

r | ∆O if some mi is even.

Then it is expected that the invertible ideal a ⊆ O for which ϕ = ϕa can be
computed in time poly(B) · Lq(1/2).

Proof (sketch). Let σ ∈ O be such that Tr(σ) ≡ 0 mod m2
1 · · ·m2

r and the ori-
entation by Z[σ] is locally primitive at m1 · · ·mr. If it so happens that σ =
(πq − 1)/b for some b coprime to q then we can just mimic the previous proof:

the main difference is that, this time, there are about 2r ≈ 2
√
log q = Lq(1/2)

possible guesses for the secret scalar µ, from which the stated runtime follows.

10 See https://github.com/KULeuven-COSIC/Weak-Class-Group-Actions for the
code.
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In general however, it may not be possible to pick σ of the said form, and
then the domains E[(m1 · · ·mr)

∞, σ] and E′[(m1 · · ·mr)
∞, σ] of our self-pairings

may be defined over a field extension of degree Lq(1) only, in which case there
is no hope for a sub-exponential runtime. For this reason, the attack should be
broken up in pieces. Writing mt1

1 · · ·mtr
r for the order of E[(m1 · · ·mr)

∞, σ] ∼=
E′[(m1 · · ·mr)

∞, σ], as discussed in Section 5.3 we heuristically expect that ti =
O(1) for all i = 1, . . . , r. If this is indeed the case, then for each i we can find
generators Pi ∈ E[m∞

i , σ], P
′
i ∈ E′[m∞

i , σ] over an extension of degree Lq(1/2).
The cyclic self-pairings

Tσm2
i
(τP, P ) and Tσm2

i
(τP ′, P ′), τ = mti−2

i

can thus be computed in time Lq(1/2) and this also accounts for the subsequent
discrete logarithm computation. Assuming a correct guess for the scalar µi such
that P ′

i = µiϕ(Pi), we obtain a pair of order-m2
i points Qi, Q

′
i = ϕ(Qi). Note

that, while these points are defined over an extension of degree Lq(1/2), the
groups they generate are Fq-rational because our orientation is by Frobenius.
In particular, the isogenies ψ1, ψ

′
1 and codomains E0,1, E

′
0,1 corresponding to

Q1, Q
′
1 are defined over Fq. The idea is now to push the points Q2, Q

′
2 through

ψ1, ψ
′
1 and repeat the argument, leading to a diagram

E0,r E′
0,r

...
...

E E′

ϕ0

ψr ψ′
r

ϕ

ψ1 ψ′
1

The map ϕ0 on top comes equipped with its images on a basis of E0,r[mi] for
each i = 1, . . . , r. For the evaluation of ϕ0 on arbitrary inputs, we can then
proceed as in [29, Prop. 2.9] and conclude as before. □

Unaffected schemes. From the above propositions it follows that a CRS-
instantiation using curves whose discriminants are divisible by (large) powers of
smallish primes may be vulnerable to a sub-exponential attack. In particular,
from a security point of view, walking down the volcano to instantiate CRS is
worse than CRS close to the crater. Each descending step on the ℓ-volcano adds
a factor ℓ2 to our discriminant and thus we can recover isogenies of degree ℓ2

times larger than a level above, using the attack outlined in this section. We
examine how some proposed constructions avoid this problem already.

Schemes that use the maximal order as their orientation are not vulnerable to
our attack. We need that a prime power, not a prime, divides the discriminant,
because the De Feo et al. reduction works only for points of square order. The
maximal order has a discriminant that is square-free, at worst after dividing

25



by 4, so the above does not apply. The CSIDH variant CSURF is an example
of a scheme that uses the maximal order [3], where the discriminant is not
merely square-free but even prime. Similarly, in the original CSIDH proposal
the discriminant is four times a large prime and thus there is no factor of the
discriminant large enough to enable our attack.

Schemes that are close to the crater are also secure. For instance, the SCAL-
LOP scheme [15] uses curves one level underneath the crater in the f -volcano,
where f is a large prime. Thus the discriminant is of the form f2 · d, where d
is square-free away from 4. Theoretically, we can still use a point of order f2 to
recover an isogeny of degree at most f2. However, to actually see the f -torsion
we would need to pass to an extension of degree O(f), which is infeasible for
large enough f .

Another scheme worth mentioning is the higher-degree supersingular group
actions [10]. Here the order used is Z[

√
−dp] for some square-free d, which has

discriminant −dp or −4dp. Even if d was a square, d is chosen small relative to p,
and as such applying the attack above to these orientations, we could recover an
isogeny of degree 2d at best.

Pairing-based attack strategy on SiGamal. We end by commenting on a
strategy, proposed to us by Luca De Feo and involving self-pairings, to break
the IND-CPA security of the SiGamal public-key encryption scheme [26]. In
SiGamal, the hardness of the IND-CPA game – i.e., given the encryption of one
out of two known plaintexts, guessing which one has been encrypted – relies [26,
Thm. 8] on an ad hoc assumption called the P-CSSDDH assumption.

More precisely, let p be a prime of the form 2rℓ1 · · · ℓn − 1, where r ≥ 2 and
ℓ1, . . . , ℓn are distinct odd primes. Moreover, let E0 be the supersingular elliptic
curve over Fp of equation y2 = x3 +x, P0 a random generator of E0(Fp)[2r] and
a, b random elements of odd norm in Cl(Z[πp]). Then the P-CSSDDH assumption
is as follows: given the curves E0, [a]E0, [b]E0, [ab]E0 and the points P0, P1 =
ϕa(P0) and P2 = ϕb(P0), no efficient algorithm can distinguish P3 = ϕab(P0)
from a uniformly random 2r-torsion point P ′

3 ∈ [a][b]E0(Fp). Schematically:

(E0, P0) ([a]E0, P1 = ϕa(P0))

([ab]E0, P3 = ϕab(P0), P
′
3)([b]E0, P2 = ϕb(P0))

a

bb

a

If there existed non-trivial self-pairings fi on the subgroups ⟨Pi⟩, say of order
2s, compatible with Fp-rational isogenies of odd degree, then one could compute

f1(P1) = f1(ϕa(P0)) = f0(P0)
N(a)

f2(P2) = f2(ϕb(P0)) = f0(P0)
N(b)

f3(P3) = f3(ϕab(P0)) = f0(P0)
N(a)N(b).
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Thus, the P-CSSDDH challenge could then be reduced to a decisional Diffie–
Hellman problem on µ2s . However, the existence of such self-pairings fi is ruled
out by Propositions 4.8 and A.1. Since ∆O = −4p and p ≡ 3 mod 4 by construc-
tion, we are condemned to s = 2. This is of no use since a and b are assumed to
have odd norm.

6.2 Decisional Diffie–Hellman revisited

Genus theory [13, Ch. I§3B] attaches to every imaginary quadratic order O a list
of assigned characters, which form a set of generators for the group of quadratic
characters χ : Cl(O)→ {±1}. In detail: if

∆O = −2rmr1
1 m

r2
2 · · ·mrn

n

denotes the factorization of ∆O into prime powers, then the assigned characters
include

χmi
: [a] 7→

(
N(a)

mi

)
, i = 1, . . . , n, (10)

and this list is extended with a subset of

δ : [a] 7→
(
−1
N(a)

)
, ϵ : [a] 7→

(
2

N(a)

)
, δϵ : [a] 7→

(
−2
N(a)

)
.

Concretely, the character δ is included if r = 2 and −∆O/4 ≡ 1 mod 4, or if
r ≥ 4. The character ϵ is included if r = 3 and −∆O/8 ≡ 3 mod 4, or if r ≥ 5.
The character δϵ is included if r = 3 and −∆O/8 ≡ 1 mod 4, or if r ≥ 5. In
all this,

( ·
·
)
denotes the Legendre/Jacobi symbol and it is assumed that [a] is

represented by an invertible ideal a ⊆ O of norm coprime with ∆O.
In the context of breaking the decisional Diffie–Hellman problem for ideal

class group actions, it was observed in [6, 7] that, given two primitivelyO-oriented
elliptic curves

(E, ι), (E′, ι′) = [a](E, ι) ∈ Eℓℓk(O)
that are connected by an unknown ideal class [a], it is possible to compute χ([a])
for any assigned character χ, purely from the knowledge of (E, ι), (E′, ι′), and
at the cost of essentially one discrete logarithm computation (e.g., in the group
µm in case χ = χm for an odd prime divisor m | ∆O).

Even though we have not much to add over [6, 7] in terms of efficiency or
generality, in this section we want to make the nearly obvious remark that cyclic
self-pairings are excellently suited for accomplishing this task. Indeed, if m is an
odd prime divisor of ∆O, then we can consider the cyclic self-pairings

f : C → µm ⊆ k
∗
, f ′ : C ′ → µm ⊆ k

∗

of order m from Section 5. Taking any generators P ∈ C, P ′ ∈ C ′, we know that
P ′ = λϕa(P ) for some λ ∈ Z that is invertible mod m and then

f ′(P ′) = f(P )λ
2N(a) so that χm([a]) =

(
logf(P ) f

′(P ′)

m

)
.
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None of the methods from [6, 7] are literal applications of this simple strategy.
Indeed, in the case of [6], which focuses on ordinary elliptic curves over finite
fields, the self-pairing step is preceded by a walk to the floor of the m-isogeny
volcano truncated at Z[πq], in order to ensure cyclic rational m∞-torsion, at
which point the usual reduced m-Tate pairing can be used. The method from [7]
applies to arbitrary orientations and avoids such walks, but it does not use cyclic
self-pairings; rather, it uses self-pairings with non-cyclic domains and, as a result,
the argumentation becomes more intricate; see Remark 6.8 for a discussion. So we
hope to have convinced the reader that, at least conceptually, this new method is
simpler. It is also helpful in understanding and generalizing the “not walking to
the floor” phenomenon from [6, App.A], as was already discussed in Remark 5.3.

Remark 6.6. If r ≥ 4 then we can use the cyclic self-pairings of order 2r−2

from Section 5 for determining N(a) mod 2r−2, and this is enough for evaluating
δ, ϵ, δϵ in case they exist. The situation is more subtle if

– r = 2 and −∆O/4 ≡ 1 mod 4 (to evaluate δ),
– r = 3 (to evaluate one of ϵ, δϵ).

Both cases can be handled by descending to elliptic curves that are primitively
(Z+2O)-oriented, similar to the approach from [6, §3.1]. In the former case this
may not be needed: according to Proposition A.1, there may exist cyclic self-
pairings that allow us to compute N(a) mod 4 directly. Indeed, for k = Fp and
O = Z[

√
−p] this is handled by the semi-reduced Tate pairing from [6, Rmk. 11],

which was studied precisely for this purpose. But for arbitrary orientations we
are currently missing such a pairing.

Remark 6.7. If m = char(k) then our order-m cyclic self-pairing is not avail-
able. However, in view of the character relation [6, Eq. (1)] it is always possible
to discard one assigned character, so this concern is usually void.11 This is in
complete analogy with [6, 7].

Remark 6.8. In [7] an alternative attack to the DDH problem for oriented curves,
that applies to arbitrary orientations, is described, using the Weil pairing rather
than the Tate pairing. Here, the situation is slightly more intricate, in the sense
that the domain of the self-pairing is no longer cyclic. More specifically, the self-
pairing associated to [7, Thm. 1] may be constructed as follows. Let O be an
imaginary quadratic order, let E be an O-oriented elliptic curve, and suppose
that m | ∆O for some odd prime number m. Then we can write O = Z[σ], for
some σ of norm coprime to m [7, Lem. 1]. We define f : E[m] → µm, f(P ) :=
em(P, σ(P )). One easily checks that this is indeed a non-trivial self-pairing com-
patible with horizontal isogenies. Interestingly, the proof of [7, Thm. 1] shows
that f can still be employed to recover the norm of a connecting ideal up to
squares modulo m. A similar phenomenon occurs in [7, Prop. 1&2], where the
associated self-pairings are maps E[2]→ µ4 and E[4]→ µ8 respectively.

11 If char(k) = 2 then it seems like we may be missing more than one assigned character,
but see [7, Footnote 1] for why this is not the case.
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7 Conclusions and open problems

In this paper we have derived necessary and sufficient conditions for non-trivial
cyclic self-pairings that are compatible with oriented isogenies, to exist. We have
given examples of such pairings based on the generalized Weil and Tate pairings.

As an application, we have identified weak instances of class group actions
assuming the degree of the secret isogeny is known and sufficiently small; some
of these instances succumb to a polynomial time attack. We note that these
cases are rare, but exist nonetheless; this situation is somewhat reminiscent of
anomalous curves for which the ECDLP can be solved in polynomial time [33,
37]. These instances can be easily identified in that they require (large) square
factors of ∆O. This also shows that protocols that operate on or close to the
crater are immune to this attack. To err on the side of caution it is probably
best to limit oneself to (nearly) prime ∆O.

The following problems remain open:

– In our attack we require square factors m2 of ∆O to be able to derive the
action of the secret isogeny on the full E[m], which is required as input to
the algorithm from [31]. However, it is well known that a degree d isogeny is
uniquely determined if it is specified on more than 4d points, so knowing the
image of a single point of order m > 4d should suffice. The problem remains
to find a method akin to [31] that can handle such one-dimensional input.

– Is it possible to exploit partial information, e.g. how valuable is it to know
the action of a secret isogeny on a single point of order m < 4d?

– At the moment we have only used the generalized Weil and Tate pairings for
endomorphisms, whereas the definition also allows for more general isogenies
ψ. Can this somehow be exploited in a more powerful attack?

– Our definition of a self-pairing on cyclic groups of even order allows for in-
stances not derived from a bilinear pairing, e.g. the semi-reduced Tate pairing
given in [6, Rmk. 11]. Proposition A.1 below shows that such self-pairings
indeed exist more generally, but unfortunately the proof is not effective. It
would be interesting to find a more direct construction of these self-pairings
and thereby genuinely complete the classification from Sections 4 and 5.

– Are there efficient Miller-type algorithms for computing the generalized Weil
and Tate pairings? If not, do they exist for a larger class of endomorphisms
than just σ = πq − 1? At least, can these pairings be computed without
needlessly extending the base field?
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[35] René Schoof. Nonsingular plane cubic curves over finite fields. Journal of
Combinatorial Theory, Series A, 36(2):183–211, 1987.

[36] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Grad-
uate Texts in Mathematics. Springer, 2nd edition, 2009.

[37] Nigel P. Smart. The discrete logarithm problem on elliptic curves of trace
one. Journal of Cryptology, 12:193–196, 1999.

[38] William C. Waterhouse. Abelian varieties over finite fields. In Annales
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Appendix A Relaxing the compatibility assumption

Proposition A.1. We inherit the notation/assumptions from Proposition 4.8,
but now we only require that our cyclic self-pairing

f : C → k
∗

of order m is compatible with endomorphisms ι(σ) for which gcd(N(σ),m) = 1.
Then char(k) ∤ m, and writing ∆O = −2rn with n odd, we have:

(a) if r = 0 and n ≡ 3 mod 8 then m | ∆O,
(b) if r = 0 and n ≡ 7 mod 8 then m | 2∆O,
(c) if r = 2 and n ≡ 1 mod 4 then m | ∆O,
(d) if r = 2 and n ≡ 3 mod 4 then m | ∆O/2,
(e) if r = 3, 4 then m | ∆O/4,
(f) if r ≥ 5 then m | ∆O/2.

Conversely, if m satisfies these necessary conditions, then we can equip every O-
oriented elliptic curve (E, ι) over k for which the orientation is locally primitive
at m with a cyclic self-pairing

f(E,ι) : C(E,ι) → k
∗

of order m, such that these self-pairings are compatible with all K-oriented iso-
genies of degree coprime with m (as usual, K denotes the imaginary quadratic
number field containing O).

Proof. Write m = 2sm′ with m′ odd. Note that the statement char(k) ∤ m is
again immediate.

In order to prove the other divisibility conditions, it is easy to see that one
can always find a generator σ ∈ O of norm coprime with m′, and by mimicking
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the proof of Proposition 4.8 (see the part “If s ≤ 1 then . . . ”) we find that
m′ | ∆O. Since the self-pairing

C → k
∗
: P 7→ f(P )m

′
(11)

has order 2s, the remaining divisibility conditions just follow from the case m =
2s which is discussed below. This ignores a subtlety, namely that (11) may be
incompatible with endomorphisms σ for which gcd(N(σ), 2sm′) ̸= 1, rather than
just gcd(N(σ), 2s) ̸= 1. However, it is easy to check that the proof below does
not suffer from this.

As for the converse statement, the cyclic self-pairings

f(E,ι),m′ : C(E,ι),m′ → k
∗

of order m′ that were constructed in Section 5 are compatible with K-oriented
isogenies of any degree. So, here too, if we manage to find cyclic self-pairings

f(E,ι),2s : C(E,ι),2s → k
∗

of order 2s that are compatible with K-oriented isogenies of odd degree, then

C(E,ι),2s × C(E,ι),m′ → k
∗
: P 7→ f(E,ι),2s(P )f(E,ι),m′(P )

is a family of cyclic self-pairings of the desired kind (we can assume that C(E,ι),2s

is 2-primary, so that the domain is indeed cyclic).
Therefore, from now on we concentrate on the case m = 2s, i.e., m′ = 1. We

proceed by the case distinction from the proposition statement:

(a) If s ≥ 1 then by Lemma 4.6 we know that C[2] ∼= Z/2Z. The generator
σ = (1 +

√
∆O)/2 satisfies Tr(σ) ≡ N(σ) ≡ 1 mod 2, so when acting on

E[2] it has characteristic polynomial x2+x+1, which is irreducible. But by
compatibility with σ we know that C[2] is an eigenspace: a contradiction.

(b) If s ≥ 2 then as in the proof of Proposition 4.8 we find that n = N(
√
∆O)

must be a square modulo 4: a contradiction. If s = 1 then we can construct
the desired family of self-pairings as follows. Let C(E,ι) be the subgroup of

E[2] that is fixed by σ = (1 +
√
∆O)/2. This is a cyclic group of order 2

because the characteristic polynomial is x2 + x in this case. We then simply
define

f(E,ι) : C(E,ι) → {±1} : P 7→ −1, 0E 7→ 1

It is trivial that this family is compatible with K-oriented isogenies of odd
degree (but note, as a sanity check for Proposition 4.8, that it is not com-
patible with the even-degree endomorphism σ).

We now discuss the cases r ≥ 2. Note that the existence part is completely
covered by Section 5, so it suffices to prove the necessary conditions, except in
cases (c) and (f). We will use the notation

σa := a+
√
∆O/2

for any a ∈ Z. This is an element of O with norm a2 + 2r−2n.
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(c) If s ≥ 3 then we arrive at a contradiction because {n, n+4} = {N(σ0), N(σ2)}
must both be squares modulo 8.
For existence when s = 2, fix an O-oriented elliptic curve (E, ι) and consider
the non-zero point P ∈ E[2] annihilated by σ1. This point exists because
the characteristic polynomial of σ1 mod 2 is x2, and it is unique because
otherwise E[2] ⊆ ker(σ1) would imply that 4 divides 1 + n, a contradiction.
Consider the self-pairing

f(E,ι) : C(E,ι) → µ4 : P 7→ ζ4, 0E 7→ 1

where C(E,ι) = ⟨P ⟩ and ζ4 is some fixed primitive 4-th root of unity. This is
indeed a self-pairing of order 4: we have

f(E,ι)(λP ) = f(E,ι)(P )
λ2

for any λ ∈ Z because odd squares are congruent to 1 modulo 4. It is easy
to see that f(E,ι) is compatible with oriented endomorphisms of odd degree.
Indeed, every such endomorphism σ can be written as a + bσ0 for some
integers a and b, where exactly one among a and b is even since N(σ) =
a2 + b2n is odd. Thus

f(E,ι)(σ(P )) = f(E,ι)((a+ b)P ) = f(E,ι)(P )
a2+b2+2ab = f(E,ι)(P )

N(σ).

To turn this into a family of self-pairings compatible with odd-degree K-
oriented isogenies, with every O-oriented elliptic curve (E′, ι′) that is con-
nected to (E, ι) via a K-oriented isogeny of degree 1 mod 4, we associate
a self-pairing as above. If (E′, ι′) is connected via a K-oriented isogeny of
degree 3 mod 4, then we do the same, except we map P to −ζ4 instead of ζ4.
This is unambiguous because if (E′, ι′) was connected to (E, ι) viaK-oriented
isogenies of degrees 1 and 3 mod 4, then (E, ι) would have an oriented endo-
morphism of degree 3 mod 4: a contradiction since we have shown above that
all oriented endomorphisms have norm of the form a2 + b2n. By construc-
tion, this family of self-pairings is then indeed compatible with K-oriented
isogenies of odd degree.12

Finally, if s = 1, then we can just resort to our family of self-pairings from
Section 5.

(d) If s ≥ 2 then we find that n = N(σ0) must be a square modulo 4: a contra-
diction.

(e) If r = 3 and s ≥ 2 then 1 + 2n = N(σ1) is a square mod 4, while if r = 4
and s ≥ 3 then 1 + 4n = N(σ1) is a square mod 8: contradictions.

(f) Assume s ≥ r. By Lemma 4.6 we know that C[2s−1] ∼= Z/2s−1Z. Since f
is compatible with σa for every odd integer a, each of these endomorphisms
acts on C by scalar multiplication. But then the same must be true for σ0:

12 The construction may not reach every O-oriented elliptic curve (E′, ι′), because there
may not exist an oriented isogeny to (E, ι), e.g. in view of [27, Prop. 3.3], but we can
simply repeat the procedure inside every connected component.
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let λ ∈ Z be a corresponding scalar. Since Tr(σ0) = 0 the eigenvalues of σ0
acting on E[2s−1] are then given by ±λ and therefore

−λ2 ≡ N(σ0) = 2r−2n mod 2s−1. (12)

On the other hand, the compatibility implies that N(σa) ≡ (λ+ a)2 mod 2s

for all odd integers a. Along with the above congruence this yields a2 −
λ2 ≡ (λ + a)2 mod 2s−1. Plugging in a = ±1 we find that (λ + 1)2 ≡
(λ − 1)2 mod 2s−1, so that λ ≡ 0 mod 2s−3. This means that the left-hand
side of (12) vanishes mod 2s−1, leaving us with 2r−2n ≡ 0 mod 2s−1: a
contradiction.
For existence when s < r, it suffices to assume that s = r − 1. Fix an O-
oriented elliptic curve (E, ι) such that the orientation is locally primitive at 2.
Note that 2r−2 | N(σ2r−3), so from Lemma 2.4 we see that E[2r−2, σ2r−3 ] is
cyclic of order 2r−2. Fix a generator P and define the self-pairing

f(E,ι) : C(E,ι) → µ2r−1 : λP 7→ ζλ
2

2r−1 ,

where ζ2r−1 is some generator of µ2r−1 . As in (c), this is a well-defined self-
pairing of order 2r−1. Indeed, for any λ and t we have

f(E,ι)((λ+ 2r−2t)P ) = f(E,ι)(P )
λ2+2r−1tλ+22(r−2)t2 = f(E,ι)(λP ).

To see compatibility with odd-degree endomorphisms, similar to in (c), we
remark that every oriented endomorphism σ can be written as a + bσ0 for
some integers a and b. In particular, N(σ) = a2 + 2r−2b2, which is odd if
and only if a is. Then

f(E,ι)(σ(P )) = f(E,ι)((a− 2r−3b)P ) = f(E,ι)(P )
a2+2r−2ab = f(E,ι)(P )

N(σ),

where the last equality follows from the fact that ab ≡ b2 mod 2 because
a is odd, hence 2r−2ab ≡ 2r−2b2 mod 2r−1. To turn this into a family of
self-pairings compatible with odd-degree K-oriented isogenies, we proceed
as in (c): if (E′, ι′) is a primitively O-oriented elliptic curve (locally at 2)
connected to (E, ι) via a K-oriented isogeny ϕ : E → E′ of odd degree, then
we equip (E′, ι′) with the above self-pairing, except that we use

ζ
deg(ϕ)
2r−1 instead of ζ2r−1

as our primitive 2r−1-th root of unity, and we choose the specific generator
P ′ = ϕ(P ) of E′[2r−2, σ2r−3 ].13 To see that this self-pairing is independent
of the choice of ϕ, let

ϕ1, ϕ2 : E → E′

be twoK-oriented isogenies of odd degree, and write P ′
i for ϕi(P ). Then P

′
1 =

λP ′
2 for some odd λ, and we need to check that deg(ϕ1) ≡ λ2 deg(ϕ2) mod

13 Here again, as in Footnote 12, the construction may not reach every instance of
(E′, ι′), but we can repeat the procedure in every connected component.
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2r−1. Notice that ϕ̂2 ◦ ϕ1 is an oriented endomorphism of E sending P to
λ deg(ϕ2)P . By compatibility of f(E,ι) with oriented endomorphisms of odd
degree we have (λ deg(ϕ2))

2 ≡ deg(ϕ1) deg(ϕ2) mod 2r−1. The thesis imme-
diately follows from the fact that deg(ϕ2) is a unit modulo 2r−1. ⊓⊔

Remark A.2. The above proof naturally raises the question whether the self-
pairings in the boundary cases

– s = r = 2, n ≡ 1 mod 4,
– s = r − 1 ≥ 4,

whose existence was shown in a non-effective way, admit a more direct descrip-
tion. Such a description would be needed for these self-pairings to be of any
practical use. In the former case, we know that the answer is yes for the Frobe-
nius orientation, thanks to the semi-reduced Tate pairing from (6); see also
Remark 4.10. Unfortunately, this construction is of Frey–Rück type, i.e., in-
volving Miller functions, and we do not know if/how it generalizes to arbitary
orientations.
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