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Abstract

In this paper, the stability and Bautin bifurcation of a four-wheel-steering(4WS) vehicle
system, by considering driver steering control, are investigated. By using the central manifold
theory and projection method, the first and second Lyapunov coefficients are calculated
to predict the type of Hopf bifurcation of the vehicle system. The topological structure
of the Bautin bifurcation, a degenerate Hopf bifurcations of the 4WS vehicle system is
presented in the parameter space and it reveals the dynamics of the vehicle system of different
choices of the control parameters. The influences of system parameters on critical values
of the bifurcation parameter are also analyzed. It is shown that with the increase of the
frontal visibility distance of the driver control strategy coefficient and the cornering stiffness
coefficients of the rear wheels, the critical speed increases. Nevertheless, the critical speed
decreases with the increase of the distance from the center of gravity of the vehicle to the
front axles, Driver’s perceptual time delay, and cornering stiffness coefficients of the front
wheels.

Keywords: 4WS vehicle; stability analysis; Bautin bifurcation; center manifold; projec-
tion method.

Lead Paragraph

The four-wheel-steering (4WS) technique can improve the flexibility, stability

and safety of the vehicle’s steering. Thus, it has been developed rapidly in the

past decades. In this work, we analyze the stability and bifurcation of a 4WS vehi-

cle/driver closed-loop system. The topological structure of the Bautin bifurcation

of the 4WS vehicle system is presented in the parameter space. The study of the

lateral dynamics for the system allowed a prediction of the 4WS vehicle behav-

ior after the loss of linear stability and reveal the transition mechanism between

supercritical and subcritical Hopf bifurcation of the 4WS vehicle system.
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1 Introduction

As an important means of transportation, the automobile plays an crucial role in a country’s

economy and in our way of life. With the development of modern highway network and ad-

vancement of vehicle running speed, the investigation of vehicle system lateral dynamics has

attracted more and more attention by researchers [1, 2]. The nonlinear dynamics, being at core

in the study of stability of vehicle systems, is a very significant topic. In the research of lat-

eral dynamics of vehicle system, the nonlinearity mainly comes from geometric nonlinearity and

tyre force nonlinearity. The research on lateral stability, bifurcation and chaotic dynamics of

two-wheel-steering (2WS) vehicle system has been extensive and in-depth [3, 4]. However, when

the high-speed vehicle with only two front wheels steering turns, the rear of the vehicle body

often produces a large tail swing and sideslip, which seriously affects the safety of the vehicle.

Compared with the traditional front-wheel-steering vehicle, the 4WS vehicle has the advantages

of excellent stability at high speed and high sensitivity at low speed. In order to meet the

driver’s requirements for flexibility, comfort and safety of the automobile, the 4WS system has

been studied since the 1980s [5, 6, 7]. Dai and Han [8] established a two-degrees of freedom 4WS

vehicle/driver closed-loop system, studied the stability and Hopf bifurcation of the system by

using bifurcation analysis, and discussed the influence of driver parameters on vehicle stability.

Hu [9] presented a 4WS vehicle system with delay in driver’s response and analyzed the asymp-

totic stability and Hopf bifurcation of the system. It was shown that the 4WS vehicle has better

performance stability than the 2WS vehicle, and the bilinear control strategy works better than

the linear control strategy when considering time delay in the driver’s response. Shen et al. [10]

investigated the nonlinear dynamics of the 4WS vehicle system without considering the driver’s

response by using joint-point locus geometric approach. It was found that the difference between

the front and the rear steering angles plays a key role in 4WS vehicle system dynamics and the

system exhibits complex dynamical behavior for extremely large steering angles. Nguyen et al.

[11] studied the lateral load transfer effects on dynamics of 4WS vehicle system. It was shown

that the adjusting of the roll moment distribution can alter the bifurcation locations for over-

steering vehicles. Rossa at al. [12] presented a simple mathematical model describing a vehicle

with driver’s response, and performed a three-parameter bifurcation analysis.

Numerous research works on the stability and Hopf bifurcation of 4WS vehicle system have

been carried out since the first 4WS vehicle system was reported [8, 9]. However, the degenerate

Hopf bifurcation, named Bautin bifurcation, which is a codimension-two bifurcation, has lacked

attention for the 4WS vehicle system. In this work, we focus on the stability and Bautin

bifurcation analysis for a 4WS vehicle/driver closed-loop system with the nonlinearity from

lateral tyre force and geometric nonlinearity.

The remainder of this paper is organized as follows. In Section 2, the dynamical model of

the vehicle/driver system is described and the steady state motion of the system is analyzed. In

Section 3, the stability and Bautin bifurcation of the 4WS vehicle system are analyzed. In Section

4, numerical calculation and simulations are carried out to validate the theoretical analysis, and

the effects on parameter changes in the dynamics of the vehicle system are investigated. In
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Section 5, the main conclusions drawn in this work are provided.

2 Dynamics of vehicle/driver model

 

(a) The vehicle in a frame of coordinate

 
(b) Zoom view of a front wheel

Fig. 1 Model of 4WS vehicle system and the coordinate system.

We consider the nonlinear dynamics of vehicle/driver model shown in Fig. 1. It is assumed

that the 4WS vehicle system is a rigid body with mass m, and the mass is symmetrically

distributed on the four wheels. The forward speed along the tangent direction of the vehicle

trace is denoted as U . In this work, the effects of roll motion and vertical motion are ignored

and only lateral dynamics are considered. Therefore, the system has two degrees of freedom,

lateral motion and yaw motion. Two coordinate system is established as shown in Fig. 1(a),

where ( η, ξ) represents the body coordinate system; the origin of the coordinate G is the center

of mass of the vehicle and (x, y) represents the fixed coordinate system. The motion equations

of the vehicle system are as follows [8]:

m(v̇ + rU) = 2Ff cos δf + 2Fr cos δr,

Iz ṙ = 2aFf cos δf − 2bFr cos δr,
(2.1)

where v and r are the lateral and yaw velocities in the local coordinate system, respectively, m is

the mass of the vehicle, Iz is the inertia moment of rotation of the vehicle body with respect to

the vertical axis z, a and b are the distances from the center of mass to the front and rear axles,

respectively, δf and δr are the steering angles applied on the front and rear wheels, respectively.

The terms Ff and Fr represent the lateral forces acting on the front and rear wheels of the

vehicle due to the contact between the tyres and the road surface. The lateral force is a function

of the physical properties of the tyres and of the sideslip angles (αf , αr) proposed by Sachs and

Chou [13]. The sideslip angles can be obtained from simple geometric relations shown in Fig.1
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(b) as follows:

αf = arctan(
v + ar

U
)− δf ,

αr = arctan(
v − br
U

)− δr.
(2.2)

A large number of works have been made on tyre force modelling [14] which affects the lateral

dynamics of vehicle system. One of the better known is the Magic Formula proposed in [15].

In order to facilitate the application of nonlinear dynamics theory to analyze the dynamics of

vehicle system, the cubic polynomials tyre force model is used in this paper. Its mathematical

model is described as follows:

Ff = −C1αf + C3α
3
f ,

Fr = −D1αr +D3α
3
r ,

(2.3)

whereC1, C2, D1 and D2 are the parameters, cornering stiffness coefficients, determined by the

experiments as described in [4].

In order to ensure the stability of the car at high speed, much research on the control strategy

has been carried out [7, 16]. In this work, the linear control strategy is being used, which is

mathematically expressed as

δr = KLδf , (2.4)

where KL is the control strategy proportionality coefficient.

In the fixed frame, the position of the mass center G of the vehicle is denoted by (x(t), y(t))

and the heading angle of the vehicle is represented by ψ. Then, we can obtain the following

relation,

ψ̇ = r, ẏ = U sinψ + v cosψ. (2.5)

In the 4WS vehicle system, the driver’s control behaviour is another important factor that affects

the dynamics of the closed-loop vehicle system. The influence of the driver on the motion state

of the vehicle is achieved by controlling the steering angle δf (t) that changes the sideslip angles

of the wheels, and thus adjusts the lateral force exerted by the ground on the tyre. However, it

is not easy to accurately model the driver behavior quantitatively. Because the driver’s behavior

is not only affected by objective factors, such as the vehicle, weather, road conditions, and so

forth, but also by the driver’s own factors, such as experience and physiological state. Different

models of driver’s behavior have been proposed [17, 18, 19]. In the present work, a simplified

pilot model proposed by Legouis et al. [20] is used. When the driver perceives a lateral deviation

of the vehicle with respect to the center line of the road at a visibility distance Ld, the driver

tries to control the vehicle with a steering angle of δf (t) in order to adjust the vehicle to reduce

the lateral deviation, by introducing a loop gain K, the frontal visibility of the driver Ld, and a

perceptual time delay Tr, the pilot model can be expressed as the following differential equation

[4, 20] with no time delay:

δ̇f (t) = − 1

Tr

[
K

(
y +

Ld
U
ẏ

)
+ δf (t)

]
. (2.6)

4

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

01
58

86
9



Combining the equations (2.1)-(2.6), we obtain the following governing equation of the vehi-

cle/driver system:

ẋ = f(x,µ), x ∈ R5, (2.7)

where

x =(v, r, y, ψ, δf )T = (x1, x2, x3, x4, x5)T ,

f =(f1, f2, f3, f4, f5)T ,

f1 =
2

m
[Ff cosx5 + Fr cosKLx5]− Ux2,

f2 =
2

Iz
[aFf cosx5 − bFr cosKLx5],

f3 =x1 cosx4 + U sinx4,

f4 =x2,

f5 =− 1

Tr

[
Kx3 +

(
KLd
U

)
x1 cosx4 +KLd sinx4 + x5

]
.

µ = (a, b, Iz, ...) represents the set of all physical parameters. The sideslip angles given by (2.2)

are rewritten as follows:

αf = arctan(
x1 + ax2

U
)− x5,

αf = arctan(
x1 − bx2

U
)−KLx5.

It is worth noting that the vector field f(x,µ) has symmetric property, that is, f(−x,µ) =

−f(x,µ) .

2.1 Steady state motion

Let the right-hand side of the equation (2.7) equal to zero, we obtain a set of nonlinear algebraic

equations for governing the equilibrium points of the vehicle system (2.7) as follows:
Ff cosx5 + Fr cosKLx5 = 0,
aFf cosx5 − bFr cosKLx5 = 0,
x1 cosx4 + U sinx4 = 0,
x2 = 0,
x5 +Kx3 = 0.

(2.8)

The system (2.7) has a trivial equilibrium point, xe = 0 . According to the geometric constrains

of |δf | < π/2, |KLδf | < π/2, and since a > 0, b > 0, the first two equations of (2.8) are reduced

to the following:

{
Ff (x1, 0, x5) = 0,
Fr(x1, 0, x5) = 0.

(2.9)
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When |ψ| < π/2, Eq. (2.8) is further simplified as follows:
C1(x4 + x5)− C3(x4 + x5)3 = 0,
D1(x4 +KLx5)−D3(x4 +KLx5)3 = 0,
x1 = −U tanx4,
x2 = 0,
x5 +Kx3 = 0.

(2.10)

If KL 6= 1 , we obtain eight non-trivial solutions [8] from Eq. (2.10) as follows:

X1 =

(
±U tan(

T

1−KL
), 0,∓ T

K(1−KL)
,∓ T

1−KL
,± T

1−KL

)T
,

X2 =

(
±U tan(

KLS

1−KL
), 0,∓ S

K(1−KL)
,∓ KLS

1−KL
,± S

1−KL

)T
,

X3 =

(
U tan

( 1

1−KL
[KLS ∓ T ]

)
, 0,

1

K(1−KL)
[S ± T ],

1

1−KL
[−KLS ± T ],

1

1−KL
[S ∓ T ]

)T
,

X4 =

(
U tan

( 1

1−KL
[−KLS ∓ T ]

)
, 0,

1

K(1−KL)
[−S ± T ],

1

1−KL
[KLS ± T ],

1

1−KL
[−S ∓ T ]

)T
,

where S =
√

C1
C3
, T =

√
D1
D3

.

3 Stability analysis and Bautin bifurcation of the trivial equi-
librium point

3.1 Stability and Hopf bifurcation analysis

Expanding Eq.(2.7) into a multidimensional Taylor series in xi about the trivial equilibrium

pointxe up to order five, it yields,

ẋ = A(µ)x+ g(x,µ) + h(x,µ) +O(|x|7), (3.1)

where Aµ is the Jacobian matrix of the vector field f(x,µ) computed at the trivial equilibrium

point xe , g(x,µ) = (g1, g2, g3, g4, g5)T represents the nonlinear terms of order three in xi, and

h(x,µ) = (h1, h2, h3, h4, h5)T is the nonlinear terms of order five in xi. Because the vector

field f(x,µ) for the system(2.7) has the symmetry f(−x,µ) = −f(x,µ), the expansion (3.1)

has only odd order terms the xi. The expressions for the matrix A(µ), and the functions

gi(i = 1, · · · , 5), hi(i = 1, · · · , 5) are given as in the Appendix.

The characteristic equation of the matrix A(µ) can be expressed as follows:

a0λ
5 + a1λ

4 + a2λ
3 + a3λ

2 + a4λ+ a5 = 0, (3.2)

where the items ai(i = 0, · · · , 5) can be seen in the Appendix.

As the physical parameters are changed, the roots of Eq. (3.2) move in the complex plane

in a complicated way, which affects the stability of the vehicle system. The trivial equilibrium

6

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

01
58

86
9



point xe = 0 is stable if all the roots of Eq.(3.2) have negative real parts. None of the roots of

Eq. (3.2) is zero since a5 6= 0 and KL 6= 0. Therefore, the trivial equilibrium point loses stability

only if Eq.(3.2) has a pair of imaginary roots λ = ±iω. The Hurwitz mtrix of the characteristic

Eq. (3.2) is

H =


−2(C1+D1)

mU −U − 2(aC1−bD1)
mU 0 0 2

m(C1 +KLD1)

−2(aC1−bD1)
IzU

−2(a2C1+b2D1)
IzU

0 0 2
Iz

(aC1 − bKLD1)

1 0 0 U 0
0 1 0 0 0

−KLd
TrU

0 −K
Tr

−KLd
Tr

− 1
Tr

 .

The forward speedU of the vehicle is taken as the control parameter, which plays a key role

in the stability of the 4WS vehicle system. According to the criterion for the Hopf bifurcation

proposed in [21], the sufficient conditions for the Hopf bifurcation are as follows:

(H1) a5 > 0,∆1(Uc) > 0,∆2(Uc) > 0,∆3(Uc) > 0,∆4(Uc) = 0,

(H2)
d∆4(U)

dU

∣∣∣∣
U=Uc

6= 0,

where ∆1(U) = a1,∆2(U) = a1a2 − a3,∆3(U) = a1(a2a3 − a1a4) − a2
3 + a1a5, and ∆4(U) =

a1(a2a3a4 − a2
2a5 − a1a

2
4 + a4a5)− a2

3a4 + a2a3a5 + a1a4a5 − a2
5.

Note that the critical speed Uc can be obtained from the equation ∆4(Uc) = 0. The condition

H1 implies that the Jacobian matrix A(Uc) of the system has a simple pair of purely complex

imaginary eigenvalues, and other eigenvalues have negative real parts. The condition H2 is

equivalent to the transversality condition. We rewrite Eq. (3.1) in the following general form,

ẋ = A(µ)x+ F (x), x ∈ R5, (3.3)

where F (x) = O(‖ x ‖2) is a smooth vector function representing the nonlinear terms. Write

its Taylor expansion near the trivial equilibrium point xe = 0 as

F (x) =
1

3!
C(x,x,x) +

1

5!
E(x,x,x,x,x) +O(‖ x ‖7), (3.4)

where C(x,x,x) and E(x,x,x,x,x) are symmetric multilinear vector functions. They have the

following form in the coordinates (γ, δ, ...),

Ci(ξ,η, ζ) =

5∑
j,k,l=1

∂3Fi(x)

∂xjxkxl

∣∣∣∣
x=0

ξjηkζl, (i = 1, 2, 3, 4, 5),

Ei(γ, δ, ξ,η, ζ) =
5∑

j,k,l,m,s=1

∂5Fi(x)

∂xjxkxlxmxs

∣∣∣∣
x=0

γjδkξlηmζs, (i = 1, 2, 3, 4, 5).

According to [22], the type of Hopf bifurcation that occurs in the 4WS vehicle system can

be deduced by calculating the first Lyapunov coefficient l1(0) at the critical speed Uc. Introduce

a complex eigenvector q ∈ C5 of A(Uc) corresponding to the eigenvalue λ1 = iω0, ω0 > 0 and a
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complex eigenvector p ∈ C5 of AT (Uc) corresponding to the eigenvalue λ2 = −iω0. Then the

two complex eigenvectors satisfy

A(Uc)q = iω0q,A
Tp = −iω0p. (3.5)

Then normalize p with respect to q :
〈
p, q

〉
= 1, where

〈
p, q

〉
=
∑5

i=1 p̄iqi.

Following [22] and imposing the symmetry of the vehicle system (3.3), the first Lyapunov

coefficient l1(0) can be calculated by the formula

l1(0) =
1

2ω0
Re(

〈
p,C(q, q, q̄)

〉
) (3.6)

If l1(0) < 0, the 4WS vehicle system undergoes supercritical Hopf bifurcation, as the speed

U increases to exceed the critical speed Uc, the stable equilibrium point becomes unstable, and

a stable limit cycle is present after the Hopf bifurcation. If l1(0) > 0, the 4WS vehicle system

undergoes subcritical Hopf bifurcation, having a unstable limit cycle and stable equilibrium point

coexisting before the bifurcation. As the the speed U increases exceeding the critical speed Uc,

the stable equilibrium point loses stability and the unstable limit cycle disappears. However,

when l1(0) = 0, the 4WS vehicle system may have a degenerate Hopf bifurcation, called Bautin

bifurcation, which belongs to codimension-two bifurcations.

3.2 The Bautin bifurcation analysis

Theorem 3.1. (Bautin) [22] Suppose that a planar system,

ẋ = f(x,α), x ∈ R2, α ∈ R2, (3.7)

with smooth f , has the equilibrium x = 0 with eigenvalues

λ1,2 = µ(α)± iω(α),

for all ‖α‖ sufficiently small, where ω(0) = ω0 > 0. For α = 0, let the Bautin bifurcation

conditions hold:

µ(0) = 0, and l1(0) = 0,

where l1(α) is the first Lyapunov coefficient. Assume that the following genericity conditions

are satisfied:

(B1) l2(0) 6= 0, where l2(0) is the second Lyapunov coefficient;

(B2) the map α 7−→ (µ(α), l1(α))T is regular at α = 0.

Then, by the introduction of a complex variable, applying smooth invertible coordinate transfor-

mations that depend smoothly on the parameters, and performing smooth parameter and time

changes, the system (3.7)can be reduced to the complex form

ż = (β1 + i)z + β2z|z|2 + sz|z|4 +O(|z|6), (3.8)

where s = sign(l2(0)) = ±1.
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Set s = −1 and rewrite system (3.8) without the O(|z|6) terms in polar coordinates (ρ, ϕ),

where z = ρiϕ, {
ρ̇ = ρ(β1 + β2ρ

2 − ρ4),
ϕ̇ = 1,

(3.9)

where β1 = µ(U,a)
ω(U,a) , β2 = l1(U,a)√

|l2(α(µ))|
, T = {(β1, β2) : β2

2 + 4β1 = 0, β2 > 0}. The bifurcation

diagram of system (3.9) is shown in Fig. 2.

Following reference [22] and according to the symmetry of the vehicle system (3.3), the

second Lyapunov coefficient l2(0) is calculated by the formula,

l2(0) =
1

12ω0
Re(

〈
p,E(q, q, q, q̄, q̄) +C(q̄, q̄, h30) + 3C(q, q, h̄21) + 6C(q, q̄, h21)

〉
), (3.10)

where

h30 = (3iω0I −A)−1C(q, q, q), and h21 = (iω0I −A)−1[C(q, q, q̄)−
〈
p,C(q, q, q̄)

〉
q].

Fig. 2 Bautin bifurcation for s = −1.

4 Numerical results, analysis and discussions

4.1 Numerical analysis of stability and Hopf bifurcation

Take the parameters as shown in Table 1, which are given in [8] . Taking the critical speed as

the evaluation index, the linear stability boundary in the three-dimensional space is shown in

Fig. 3. At those surfaces, the Jacobian matrix A(Uc) has a pair of purely imaginary eigenvalues

λ1,2 = ±iω. Below the values of U of the stability boundary surface, the 4WS vehicle system is
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Table 1: Values of parameters

Parameter Comments Value
m Mass of the vehicle 1830kg
Iz Inertia moment of the vehicle body about vertical axis 2500kg ·m2

a Distance from the center of gravity of the vehicle to front axles 1.2m
b Distance from the center of gravity of the vehicle to rear axles 1.4m
Tr Driver’s perceptual time delay 0.2s
Ld Frontal visibility of the driver 15m
K Loop gain in the driver model 0.02
KL Control strategy coefficient 0.5
U Vehicle forward speed −
C1 Cornering stiffness coefficients 44400N/rad
C3 Cornering stiffness coefficients 44400N/rad
D1 Cornering stiffness coefficients 43600N/rad
D3 Cornering stiffness coefficients 43600N/rad

(a) Ld − a− U (b) Tr − a− U

(c) C1 −D1 − U (d) KL − a− U

Fig. 3 Linear stability surface

stable under moderate perturbations. However, the system is unstable above the surface values

of U .

Take the speed U as the control parameter and the other parameters kept fixed as shown

in Table 1. The critical speed Uc at the Hopf bifurcation point, calculated by ∆4(Uc) = 0,
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is Uc = 29.4915m/s. d∆4(U)
dU

∣∣∣∣
U=Uc

= −3.7803 × 105 6= 0, which means that the transversality

condition is held. The Jacobian matrix at the critical speed is

A(Uc) =


−3.2611 −29.2039 0 0 72.3497
0.2105 −4.0525 0 0 18.2080

1 0 0 29.4915 0
0 1 0 0 0

−0.0508 0 −0.1000 −1.5000 −5

 .
The corresponding eigenvalues are

λ1 = 1.5752i, λ2 = −1.5752i, λ3 = −4.6007 + 2.7068i, λ4 = −4.6007− 2.7068i, and λ5 = −3.1122.

The normalized eigenvectors satisfying Eq. (3.5) are

p =


−2.5056− 2.7050i
−0.0730 + 1.1124i
−0.8492− 11.6307i

0.7062 + 0.0464i
−0.0835 + 0.2725i

 , q =


−2.5056− 2.7050i
−0.0730 + 1.1124i
−0.8492− 11.6307i

0.7062 + 0.0464i
−0.0835 + 0.2725i

 ,
and

C(q, q, q̄) =


−0.5509− 20.6272i

1.4577− 3.6873i
−6.4996 + 0.8457i
0.0000 + 0.0000i
0.3306− 0.0430i

 .
By Eq. (3.6), we calculate the first Lyapunov coefficient as

l1(0) =
1

2ω0
Re(

〈
p,C(q, q, q̄)

〉
) = −0.0209 < 0.

Therefore, the 4WS vehicle system (2.7) undergoes a supercritical Hopf bifurcation, the trivial

equilibrium bifurcates into a limit cycle via the supercritical Hopf bifurcation for U > Uc.

The Hopf bifurcation diagram is shown in Fig. 4, where the solid red line represents stable

equilibrium point, dashed red line represents unstable equilibrium point, and solid blue line

represents the amplitude of limit cycle. If the speed of the 4WS vehicle system is lower than

the critical speed Uc, the equilibrium of the system is stable. As the speed of the vehicle

system increases exceeding the critical speed Uc, the equilibrium of the system loses stability

and bifurcates into a stable limit cycle. And the amplitude of the limit cycle increases as the

4WS vehicle speed increases.

Figure 5 shows the time history of the vehicle system movement at different speeds. It aims

to better understanding the Hopf bifurcation process of the system (2.7), where Fig. 5(a) is

at 29m/s , below of the critical speed Uc, Fig. 5(b) is at U = 29.4915m/s , about the critical

speed, and Fig. 5(c) is at 29.52m/s, above the critical speed. It is shown that, when the speed

is lower than the critical speed, the system converges to a stable equilibrium position. It means

the motion of the 4WS vehicle system will always return to the center line of the road under an

initial perturbation. While if the speed is higher than the critical speed, the system converges

to a stable periodic motion, which means the vehicle oscillate with a constant amplitude. It

indicates that a supercritical Hopf bifurcation occurs in the 4WS vehicle system.
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Fig. 4 Supercritical Hopf bifurcation of the 4WS vehicle system (2.7)
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Fig. 5 Time history diagram of the system motion at different speeds
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4.2 Effect of system parameters

In this section, the effect of the system parameters on the Hopf bifurcation is analyzed. Fig. 6

shows the effect of different parameters of the system on the Hopf bifurcation point, the type

of Hopf bifurcation and the amplitude of the limit cycle. Where dashed red lines represent the

amplitude of the unstable limit cycle and solid blue lines represent the amplitude of the stable

limit cycle. The points at each line intersects the horizontal coordinate represent the critical

speed of the Hopf bifurcation. It can be seen that when the first Lyapunov coefficient l1(0) < 0,

a supercritical Hopf bifurcation is present in the system by numerical simulation, while, if the

first Lyapunov coefficient l1(0) > 0, a subcritical Hopf bifurcation is present in the system by

numerical simulation, validating the theoretical analysis. From Fig. 3 and Fig. 6, we see that

with the increase of the frontal visibility distance of the driver Ld, control strategy coefficient

KL and cornering stiffness coefficients of the rear wheels D1, the critical speed increases. Never-

theless, the critical speed decreases with the increase of the distance from the center of gravity

of the vehicle to the front axles a, Driver’s perceptual time delay Tr, and cornering stiffness

coefficients of the front wheels C1.

The effect of single and two parameters on the first Lyapunov coefficient l1(0) are shown in

Fig. 7 and Fig. 8, respectively. It is shown that the first Lyapunov coefficient l1(0) does not

change the sign with the increase of control strategy coefficient KL and Driver’s perceptual time

delay Tr within a certain range. It means that the type of Hopf bifurcation is unchanged, which

can be verified from the Fig. 6(b) and Fig. 6(c). However, the first Lyapunov coefficient changes

from a positive to a negative value with the increase of the distance from the center of gravity

of the vehicle to the front axles a, and cornering stiffness coefficients of the front wheels C1. In

other words, the subcritical Hopf bifurcation transforms into a supercritical Hopf bifurcation of

the 4WS vehicle system, which can be verified from Fig. 6(a) and Fig. 6(e). With the increase

of control strategy coefficient KL, and cornering stiffness coefficients of the rear wheels D1, the

first Lyapunov coefficient changes from a negative to a positive value, and the 4WS vehicle

system transitions from supercritical Hopf bifurcation to subcritical Hopf bifurcation, which can

be verified from Fig. 6(d) and Fig. 6(f). The influence of two parameters on the first Lyapunov

coefficient l1(0) is depicted in Fig. 8.

4.3 Numerical analysis of the Bautin bifurcation

In this Section, a numerical analysis of the Bautin bifurcation is performed. The forward

speedU and the distance from the center of gravity of the vehicle to the front axles a of the

4WS vehicle system are taken as control parameters, and the other parameters are kept fixed

as shown in Table 1.

As discussed in the previous section, the sign of the first Lyapunov coefficient l1(0) may

change as the system parameters changes. When the first Lyapunov coefficient l1(0) changes

from positive to negative value, the vehicle system transforms from subcritical Hopf bifurcation

into supercritical Hopf bifurcation, and vice-versa, the system transitions from supercritical Hopf
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Fig. 6 Effect of the system parameters on the Hopf bifurcation

bifurcation to subcritical Hopf bifurcation. When the sign of the first Lyapunov coefficient l1(0)

changes, it crosses the zero point. If the first Lyapunov coefficient l1(0) is equal to 0, the

4WS vehicle system may undergoes the Bautin bifurcation. Since the 4WS vehicle system is

five dimensional system, the analytical expressions for the critical parameters could not be

obtained. Therefore, it is necessary to use numerical calculation methods to determine the
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Fig. 7 Effect of single parameter on the first Lyapunov coefficient l1(0)

critical parameters. By equation ∆4(Uc) = 0 and the formula for the calculation of the first

Lyapunov coefficient in Eq. (3.6), the relationship between the a, U and l1(0) is obtained as

shown in the Fig. 9. The plane in Fig. 9 represents l1(0) = 0 and the intersection of the curve

with the plane indicates the values of the critical parameters, which can be computed numerically

by bisection method as ac = 1.2222m, and Uc = 28.1860m/s. At the critical values, by a simple

15

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

01
58

86
9



(a) (b)

(c)

Fig. 8 Effect of two parameters on the first Lyapunov coefficient l1(0)

calculation, we obtain λ1,2 = ±1.5902 and l2(0) = −0.0640. By numerical computation, it yields

detA =

( ∂µ
∂a

∂µ
∂U

∂l1
∂a

∂l1
∂U

) ∣∣∣∣
µ=µc

= −0.0259 6= 0.

Therefore, all conditions of Bautin bifurcation in Theorem 3.1 are held, which means that the

Bautin bifurcation occurs for the 4WS vehicle system. Figure 10 shows the Bautin bifurcation

diagram of the 4WS vehicle system. Since l2(0) = −0.0640 < 0, so the topological structure

of the Bautin bifurcation diagram for the 4WS vehicle system corresponds to the case shown

in Fig. 2. The line H corresponds to the Hopf bifurcation curve, H+ and H− correspond to a

Hopf bifurcation with positive and negative first Lyapunov coefficients, respectively. If a point

in the parameter plane crosses H− from region 1 to region 2, the vehicle system undergoes a

supercritical Hopf bifurcation, while a subcritical Hopf bifurcation occurs if a point crosses H+

from region 3 to region 2.

To better understand the Bautin bifurcation diagram of the 4WS vehicle system in the

parameter plane (U, a) shown in Fig. 10, start with a point in region 1 in the parameter plane and

make an excursion counterclockwise around the Bautin bifurcation point of the vehicle system.
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In region 1, the vehicle system has only a stable equilibrium point. Then, the point crosses the

Hopf bifurcation boundary H− to reach region 2, the vehicle system undergoes a supercritical

Hopf bifurcation creating a unique stable limit cycle while the equilibrium point loses its stability.

When the point crosses the Hopf bifurcation boundary H+ from region 2 to region 3, the stable

limit cycle survives. Simultaneously, the vehicle system undergoes a subcritical Hopf bifurcation

creating an extra unstable limit cycle and the equilibrium point regains its stability. The stable

and the unstable limit cycles coexist in the region 3 and disappear when the point crosses the

curve T. The point eventually returns to region 1, leaving only a stable equilibrium point.

In order to better understand the local dynamics around the Bautin bifurcation point of the

4WS vehicle system, the phase portraits of three pairs of parameters corresponding to three

different regions on the parameters plane (U, a) are depicted in Fig. 11. Fig. 11(a) shows a

phase portrait when the parameter (U, a) is in the region 1, it can be seen that the vehicle system

converges to a stable equilibrium point for an initial perturbation. If the parameter (U, a) is

in the region 2, the vehicle system oscillates periodically whose phase portrait is shown in Fig.

11(b). It can be seen from Fig. 11(c) that when the parameter (U, a) is in the region 3, a

stable equilibrium point and a stable limit cycle coexist for the vehicle system. The 4WS vehicle

system returns to the centerline of the road or oscillates periodically depend on the initial state.

Fig. 9 The relationship of U, a and l1(0)

5 Conclusions

In this work, the stability and Bautin bifurcation of a 4WS vehicle/driver closed-loop system

with the nonlinearity from lateral tyre force and geometric relationship are investigated. The

application of the bifurcation theory to the 4WS vehicle system allows a prediction of the
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Fig. 10 Bautin bifurcation diagram of the 4WS vehicle system
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Fig. 11 Phase portraits of the 4WS vehicle system in different regions
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dynamic behavior for the system beyond linear instability. The centre manifold theory and

projection method are used to calculate the first and second Lyapunov coefficients. The first

Lyapunov coefficient is used to identify the system undergoing a supercritical or a subcritical

Hopf bifurcation. When the first Lyapunov coefficient is equal to zero, the second Lyapunov

coefficient is needed for computation in order to better understand the local dynamics of the

4WS vehicle system near the equilibrium.

The forward speed and the distance from the center of gravity of the vehicle to the front

axles of the 4WS vehicle system are chosen as the two bifurcation parameters. The Bautin

bifurcation diagram of the 4WS vehicle system is plotted in the parameter space to reveals the

dynamics of the vehicle system when the control parameters are chosen in different regions. It

is shown that the vehicle system convergences to its equilibrium when the parameters are in

the region 1 and oscillates periodically when the parameters are in the region 2, while in region

3, the vehicle system returns to its equilibrium for a small system perturbation and oscillates

periodically with constant amplitude after a large system perturbation.

The influence of vehicle system parameters on the stability, critical speed, and the type of

Hopf bifurcation are also investigated. The results show that with the increase of the frontal

visibility distance of the driver control strategy coefficient and the cornering stiffness coefficients

of the rear wheels, the critical speed increases. Nevertheless, the critical speed decreases with

the increase of the distance from the center of gravity of the vehicle to the front axles, Driver’s

perceptual time delay, and the cornering stiffness coefficients of the front wheels, which provides

a guideline for the vehicle design.
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Appendix.

(1) Expression of the matrix A(µ),and the functions gi(i = 1, · · · , 5), hi(i = 1, · · · , 5) in Sect.3.1

A(µ) =


−2(C1+D1)

mU −U − 2(aC1−bD1)
mU 0 0 2

m(C1 +KLD1)

−2(aC1−bD1)
IzU

−2(a2C1+b2D1)
IzU

0 0 2
Iz

(aC1 − bKLD1)

1 0 0 U 0
0 1 0 0 0

−KLd
TrU

0 −K
Tr

−KLd
Tr

− 1
Tr

 ,

g1 =
2

m

{
C1

[
1

2

(
x1 + ax2

U
− x5

)
x2

5 +
1

3
· (x1 + ax2)3

U3

]
+ C3

(
x1 + ax2

U
− x5

)3

+D1

[
1

2

(
x1 − bx2

U
−KLx5

)
K2
Lx

2
5 +

1

3
· (x1 − bx2)3

U3

]
+D3

(
x1 − bx2

U
−KLx5

)3
}
,

g2 =
2

Iz

{
aC1

[
1

2

(
x1 + ax2

U
− x5

)
x2

5 +
1

3
· (x1 + ax2)3

U3

]
+ aC3

(
x1 + ax2

U
− x5

)3

−bD1

[
1

2

(
x1 − bx2

U
−KLx5

)
K2
Lx

2
5 +

1

3
· (x1 − bx2)3

U3

]
−bD3

(
x1 − bx2

U
−KLx5

)3
}
,

g3 =− 1

2
x1x

2
4 −

1

6
Ux3

4,

g4 =0,

g5 =
KLd
2Tr

(
1

U
x1x

2
4 +

1

3
x3

4

)
,

h1 =
2

m

{
− C1

5
· (x1 + ax2)5

U5
− C1

24

(
x1 + ax2

U
− x5

)
x4

5 − C3

(
x1 + ax2

U
− x5

)2 (x1 + ax2)3

U3

−1

2

[
C1

3
· (x1 + ax2)3

U3
+ C3

(
x1 + ax2

U
− x5

)3
]
x2

5

−D1

5
· (x1 − bx2)5

U5
− D1

24

(
x1 − bx2

U
−KLx5

)
K4
Lx

4
5 −D3

(
x1 − bx2

U
−KLx5

)2 (x1 − bx2)3

U3

−1

2

[
D1

3
· (x1 − bx2)3

U3
+D3

(
x1 − bx2

U
−KLx5

)3
]
K2
Lx

2
5

}
,

h2 =
2

Iz

{
− aC1

5
· (x1 + ax2)5

U5
− aC1

24

(
x1 + ax2

U
− x5

)
x4

5 − aC3

(
x1 + ax2

U
− x5

)2 (x1 + ax2)3

U3

−a
2

[
C1

3
· (x1 + ax2)3

U3
+ C3

(
x1 + ax2

U
− x5

)3
]
x2

5

+
bD1

5
· (x1 − bx2)5

U5
+
bD1

24

(
x1 − bx2

U
−KLx5

)
K4
Lx

4
5 + bD3

(
x1 − bx2

U
−KLx5

)2 (x1 − bx2)3

U3

+
b

2

[
D1

3
· (x1 − bx2)3

U3
+D3

(
x1 − bx2

U
−KLx5

)3
]
K2
Lx

2
5

}
,
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h3 =
x1x

4
4

24
+
Ux5

4

120
,

h4 =0,

h5 =− KLd
24Tr

(
x1x

4
4

U
+
x5

4

5

)
.

(2) Coefficients of characteristic equation for the matrix A(µ) in Sect.3.1

a0 =1

a1 =
1

Tr
+

2(C1 +D1)

mU
+

2(a2C1 + b2D1)

IzU
,

a2 =
2

TrmU
[(1 +KLd)C1 + (1 +KKLLd)D1] +

2(a2C1 + b2D1)

TrIzU
+

4L2C1D1

mIzU2
− 2(aC1 − bD1)

Iz
,

a3 =
4LC1D1

TrIzmU2
[L+KLd(aKL + b)] +

2K

Trm
(C1 +KLD1)− 2(aC1 − bD1)

TrIz
,

a4 =
4KLC1D1

TrIzmU
(aKL + b) +

4KLLdC1D1

TrIzmU
(1−KL),

a5 =
4K(1−KL)LC1D1

TrIzm
.
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