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Abstract. Dielectric elastomer actuators (DEAs) usually suffer from rate-dependent

viscoelastic nonlinearity, which manifests as hysteresis in their deformation cycles,

leading to huge challenges in their modeling and control. In this work, we

propose a model-free, proxy-based, sliding-mode tracking control approach to mitigate

viscoelastic nonlinearity, achieving high-precision tracking control of DEAs. To this

end, we first investigate the viscoelastic nonlinearity of DEAs, revealing its asymmetric

and rate-dependent characteristics. Then, by combining the benefits of the PID

control for small positioning errors and sliding-mode control for large errors, a

proxy-based, sliding-mode tracking controller (PBSMC) is established. Finally, the

stability of the controller is analyzed. To verify the effectiveness of the controller,

several experiments are conducted to demonstrate the performance of DEAs in

tracking sinusoidal trajectories under different frequencies. The experimental results

demonstrate that with the PBSMC, the DEA can precisely track sinusoidal trajectories

within a frequency range of 0.1 Hz to 4.0 Hz by effectively minimizing the effect of

inherent viscoelastic nonlinearity. Compared with open-loop tracking performance, the

proxy-based, sliding-mode controlled DEA performance shows a significant reduction

in maximum tracking error from 45.87% to 8.72% and in root-mean-square (RMS)

error from 24.46% to 3.88%. The main advantages of the proxy-based, sliding-mode

control are: i) it adopts a model-free approach, avoiding the need for complex dynamic

modeling; ii) it can achieve high-precision tracking control of DEAs, thereby paving

the way for the adoption of DEAs in several emerging applications.

1. Introduction

Dielectric elastomer actuators (DEAs) have shown huge potential applications in the

field of soft robotics, owing to their large deformation, high energy density and fast
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response characteristic [1, 2]. In general, DEAs mainly consist of a dielectric elastomer

membrane coated with compliant electrodes with special pattern. When a high voltage

is applied, the electrostatic force between the electrodes leads to an expansion in the

area and a decrease in the thickness of DEAs [3, 4]. Based on this working principle,

DEAs with different configurations have been developed to generate various actuations,

such as elongation, bending, twisting, contraction and so on [5, 6]. During the last

two decades, several exciting applications of DEA-based soft robots have been reported,

such as climbing robots [7], swimming robots [8], flying robots [9], gripping robots [10],

crawling robots [11, 12] and wearable robots [13], showcasing the remarkable advantage

of DEAs in term of mimicking biological movements and functions. To further advance

the adoption of DEAs in future applications, a significant improvement in their tracking

performance has been highlighted as being extremely desirable. However, due to their

inherent viscoelastic nonlinearity, the dynamic responses of DEAs usually suffer from

complex nonlinear dynamics, including creep and hysteresis nonlinearity [14]. Of the

two, hysteresis is an asymmetric and rate-dependent nonlinearity that presents a huge

challenge in the dynamic modeling of DEAs and also, severely limits the actuator’s

trajectory tracking precision [15].

In general, viscoelastic nonlinearity is described as a type of dissipative phenomenon

[16]. Based on the non-equilibrium thermodynamics theory, a general framework

to describe dynamic responses of DEAs including viscoelastic nonlinearity has been

proposed in [17]. According to the framework, number of physical models have

been proposed for DEAs. However, most of those models are too complicated to

be adopted for any applicable control design [18]. Different from physical models,

some phenomenological models (such as rate-dependent or rate-independent Prandtl-

Ishlinskii model) have also been introduced for DEAs. These models are based

on the experimentally measured actuator responses and dont take into account the

physical properties dimensions of DEAs. The main advantage of the phenomenological

models is that they can be used to eliminate the viscoelastic nonlinearity by applying

direct inverse hysteresis compensation approaches [19, 15, 20]. However, these models

usually are effective within a specific frequency range and require a complex parameter

identification process, thereby limiting their wide applications. Simplified models

that overcome the complex geometric shapes of the DEAs by formulating the DEA

dynamics as a combination of a 1-DOF mass-spring-damper system combined with

suitable rheological dynamics, have also been developed in [21, 22, 23]. Based on these

simplified dynamic models, nonlinear controllers, such as nonlinear PID [24], adaptive

sliding mode controller [25, 26], a cerebellum model articulation nonlinear controller

[27], etc, have been proposed to remove the nonlinearity of DEAs. However, their

performance is limited to viscoelastic compensation at a single frequency or for small

deformations. Therefore, it is still lack of effective approach to quantitatively describe

the rate-dependent viscoelastic responses of DEAs. However, most of existed control

approaches usually rely on the dynamic models, increasing the difficulty to eliminate

such kinds of nonlinearity. A model-free tracking control provide a strategy to overcome
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the drawback of existed control approaches, but is still not achieved for mitigating the

rate-dependent viscoelastic nonlinearity of DEAs.

In [28, 29, 30], the PBSMC has been proposed. It is a model-free approach that

combines the error suppression benefits of the PID control with the fast, responsive

nature of the sliding mode control (SMC), thereby demonstrating the potential to be

adaptable of eliminating the viscoelastic nonlinearity (hysteresis) in DEAs. This work

starts by analyzing the experimentally recorded dynamic responses of the DEA and

characterizing the inherent rate-dependent viscoelastic nonlinearity (hysteresis). In an

attempt to demonstrate the effectiveness of a model-free control approach (the first

such endeavor to the best of our knowledge), the PBSMC is designed, simulated and

experimentally validated on the DEA. A full stability analysis of the closed-loop system

is also presented. Sinusoidal as well as triangular trajectories are used as reference.

Tracking errors are quantified. It is shown that the designed controller is capable of

accurately tracking sinusoids within a frequency range of 0.1 Hz and 4.0 Hz with RMS

errors as low as 3.88%. It is further shown that complex, broad-spectrum trajectories

such as triangular trajectories in the range of 0.08 Hz to 0.8 Hz can also be tracked

accurately with RMS errors as low as 1.59%. This rigorous validation of a model-free

control scheme opens up a wide range of applications for the DEAs.

The main advantages of the PBSMC for DEAs depend on the facts that:

i) The PBSMC is one kind of model-free control approaches. Although lots of

models (physical-based or phenomenological based) have been developed to describe the

viscoelastic responses of DEAs, they usually are difficult to be converted into control

model or limited to special frequency range. Hence, the PBSMC avoids the challenge

on dynamic modeling in DEAs.

ii) The stability of the PBSMC is proved for DEAs. As it is the first time to employ

the PBSMC to remove the rate-dependent viscoelastic nonlinearity in DEA, its stability

is analytically proved by combining with a dynamic model, which pave the way for

further application in the field of DEAs.

iii) With the PBSMC, DEAs can achieve high-precision tracking control. Different

from existed control approaches, which mainly are valid for tracking static trajectories

or effective for specifical frequency, the PBSMC can eliminate the rate-dependent

viscoelastic nonlinearity in DEAs.

The remainder of this work is organized as follows. Section II introduces the planar

DEAs, the experimental setup and the features of their dynamic responses. Section

III presents the design and stability analysis of the PBSMC. Section IV shows the

experimental results demonstrating the effectiveness of the designed controller. Section

V concludes this paper.
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Figure 1. A) A simplified planar view of the geometric structure of the planar DEA;

B) A graphical representation of the planar DEA deformation when excitation voltage

is applied.

2. System description

2.1. Actuator fabrication

In this section, a planar DEA with one degree-of-freedom is designed and fabricated

for proof-of-concept testing. Fig. 1A shows the structure and geometric size of the

planar DEA. It mainly contains a single layer of dielectric elastomer membrane (Wacker

ELASTOSIL Film 2030, undeformed thickness 0.1 mm) with an equiaxial pre-stretch

ratio of 1.5. A stiff frame made of a laser-cut polymethyl methacrylate (PMMA) board

(thickness 3 mm) is adopted to support the pre-stretched silicone membrane. The

silicone membrane is separated into two regions: passive region and active region. In the

active region, carbon grease (MG Chemical 846-80G) working as compliant electrodes

is used to coat both sides (There is an interval of 1 mm between the electrodes and

the edges of the active region to avoid the electric breakdown). The passive region is

utilized as a nonlinear spring. A baffle is adhered to the middle of the silicone membrane,

providing convenience for displacement measurement. The working principle of the

planar DEA is shown in Fig. 1B. When a high voltage is applied to the electrodes,

the static force between the electrodes squeezes the active region, leading to expand of

the active region and shrink of the passive region. As a result, the baffle generates an

output displacement. The breakdown voltage for the DEA employed in the experiments

is approximately 4.5 kV and consequently, the exciting voltage applied during the

experiments is kept below 4.0 kV.
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Figure 2. The layout of the experimental setup clearly showing the planar DEA, the

laser-based displacement sensor, the high-voltage amplifier used to supply excitation

voltage and the dSPACE Microlab box used as the control interface.

2.2. Experimental setup

Fig. 2 shows the experimental platform utilized to investigate the viscoelastic

nonlinearity of the planar DEA and verify the effectiveness of our control approach.

It mainly consists of a high voltage amplifier (Trek 10/10B-HS), a laser sensor (Keyence

LK-H085), a control module (dSPACE Microlab 1020) and a planar DEA. The high

voltage amplifier with a gain of 1000 is used to generate exciting voltage for the planar

DEA. The laser sensor is used to capture the output displacement and convert the

displacement (in the range of -20 mm to 20 mm) into analog signal (in the range of

-10 V to 10 V). The control module with 16-bit analog-to-digital converter and 16-

bit digital-to-analog converter is used to generate control signal for the high voltage

amplifier and record the displacement from the laser sensor. The sampling time is set

as 0.1 ms in this work.

2.3. Open-loop dynamics

Based on the experimental platform, we investigate the dynamic responses of the planar

DEAs to reveal its rate-dependent viscoelastic nonlinearity. We should mention that the

bandwidth of the planar DEAs generally is limited to several Hz [31]. Considering this

is the early attempt to develop PBSMC for DEAs, the maximum working frequency of

the planar DEA is selected as 4.0 Hz. The experimental results are illustrated in Fig.

3. Fig. 3A shows one example of the output displacement when the frequency equals to

1.0 Hz. It is evident from Fig 3A that the dynamic response of the planar DEA shows

a slow drift in position for the first few cycles and then settles down (an effect of the

intrinsic creep nonlinearity) [15, 19]. In Figure 3B, one cycle of the periodic displacement

trajectory after creep is plotted as a function of the exciting voltage at 0.1 Hz, 0.5 Hz,

1.0 Hz and 4.0 Hz, respectively. It can be observed that as the hysteresis nonlinearity

of the planar DEA usually is asymmetric and rate-dependent [14, 16, 17], the width of
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Figure 3. The dynamic responses of the planar DEA. A) Creep nonlinearity; B)

Rate-dependent hysteresis nonlinearity.
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Figure 4. Block-diagram representing the working principle of the PBSMC.

the hysteresis loops rapidly increases with increase in frequency of the exciting voltages.

As we discussed above, existed control methods usually fail to remove such kind of

nonlinearity of DEAs. In addition, they belong to model-based approaches, increasing

the difficulty for controller design. To overcome the drawback of existed control methods,

this work is motivated to develop a model-free control approach to remove the rate-

dependent viscoelastic nonlinearity of DEAs, achieving high-precision tracking control.

To this end, a PBSMC for the planar DEA is designed and its stability is also proved.

Further, different tracking experiments are conducted to verify the effectiveness of the

controller.

3. Design of the PBSMC

In this section, the PBSMC is designed. To perform simulations and ascertain closed-

loop stability, a dynamic model for the DEA is then established. Note that the control

design is independent of the established DEA model. The model is only used to ascertain

closed-loop performance in simulations and further prove closed-loop stability.
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Figure 5. The equivalent block-diagram of the PBSMC.

3.1. Working principle of the PBSMC

Fig. 4 shows the working principle of the PBSMC. We should mention that: for the

convenience of description, the planar DEA is equivalent to a single degree-of-freedom

spring-damping-mass system combining with a few rheological models (See the next

subsection for the detail of the equivalent system). The key of the PBSMC depends on

the fact that a virtual object, referred as a proxy, is introduced into the control system

[29, 30]. The proxy mass side of the controller is controlled by extended sliding-mode

controller which quickly reaches the user defined manifold of interest. As this happens,

the PID control portion follows where the proxys manifold is and eliminates the error

between the proxys manifold and the actual position of the planar DEA. Once the control

system is reduced to only small position errors, PBSMC behaves like an extended PID

control in this instance eliminating small position errors with great effect. As a result,

the planar DEA can achieve high-precision tracking control. As shown in Fig. 4, the

interaction force of the PID controller and the SMC are defined as FPID and FSMC ,

respectively. The position of the planar DEA, the proxy and the desired trajectory

are defined as x, xp and xd, respectively. Their corresponding speeds are ẋp and ẋd,

respectively. The SMC law is defined as:

FSMC = F sgn (σ1) , (1)

where σ1 = xd − xp + λ (ẋd − ẋp) is the sliding surface. sgn represents the signum

function. The F and λ are two positive gains. Based on the sliding surface, it can be

seen that when proxy is within the sliding surface, the error dynamics is determined by:

σ1 = xd − xp + λ (ẋd − ẋp)=0. (2)

Therefore xd − xp = ρe−t/λ , where ρ is a constant ratio. It can be seen that the

position error and velocity error of the proxy will exponentially decay to zero with a

time constant λ. As a result, the proxy can track the desired trajectory.

The FPID can be described as:
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FPID = kp (xp − x) + ki

∫ t

0

(xp − x) dτ + kd (ẋp − ẋ) , (3)

where kp, ki and kd represent three constant gains of the PID controller. Further, we

define:

a =

∫ t

0

(xp − x) dτ , (4)

and

σ = xd − x+ λ (ẋd − ẋ) . (5)

Then, (2) can be rewritten as:

σ1 = σ − ȧ− λä. (6)

which results in

FSMC = F sgn(σ − ȧ− λä), (7)

and

FPID = kpȧ+ kia+ kdä. (8)

According to the force analysis of the proxy, the following holds

mpẍp = FSMC − FPID. (9)

Further, by setting the mp as zero:

FSMC = FPID = f, (10)

therefore, the proxy-based sliding-mode tracking control law is obtained by

f = kpȧ+ kia+ kdä = F sgn(σ − ȧ− λä). (11)

Thus, ä can be solved as [30]:

ä = −kpȧ+ kia

kd
+

F

kd
sat

[
kd
F

(
σ − ȧ

λ
+

kpȧ+ kia

kd

)]
, (12)

where sat represents the saturation function. Thus, (11) can be rewritten as:

f = Fsat

[
kd
F

(
σ − ȧ

λ
+

kpȧ+ kia

kd

)]
. (13)

Based on (11-13), the block-diagram in Fig. 4 can be further equivalent to a new

block-diagram in Fig. 5. To employ the PBSMC, its stability must first be proven.
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3.2. Dynamic modeling

To prove the stability of the PBSMC, a proper dynamic model is necessary. We should

mention that the PBSMC is one kind of model-free control approach. The dynamic

model is only applied to prove its stability. To describe the dynamic responses of

the planar DEA, it is required to simplify its non-uniform deformation because it is

very difficult to take every point into consideration. Therefore, the planar DEA is

approximated to be that of a one-degree-of-freedom spring-damping-mass system, as

shown in Fig. 4. The spring stiffness k represents the stretch force caused by the

deformation of the dielectric elastomer membrane. η0 is the damping ration due to

the air drags. m is the equivalent mass of the planar DEA. When a high voltage U is

applied, the DEA generates an actuation force F (x, U). Based on the working principle

of the DEA, it is assumed that

F (x, U) = U2(bx2 + cx+ d), (14)

where b, c and d represent three constant ratios. Thus, the dynamic model of the planar

DEA can be expressed as:

mẍ = −kx−
4∑

i=1

kizi + F (x, U)− η0ẋ,

kizi = ηi(ẋ− żi),

(15)

where ki and ηi represent the stiffness and damping ratio of each rheological model.

And i equals to 1, 2, 3 and 4, respectively. In (15), there are 14 unknown parameter

that need to be identified based on the experimental data. To this end, we first need to

define a loss function. Based on the trial-and-error method, we select a loss function to

balance the predicted errors for different frequencies. The loss function can be expressed

as::

Jθ=ω1 ×
1

n

3∑
i=1

(yia − yir)
2 +ω2 ×max ([y1a − y1r, y2a − y2r, y3a − y3r])(16)

where ω1 and ω2 represent two positive constants. yia and yir are the ith experimental

data and predicted results, respectively. n represents the length of the experimental

data. θ represents the 14 unknown parameters. Then, the dynamics responses with

different frequencies (0.1 Hz, 1.0 Hz and 4.0 Hz) are selected as experimental data for

identification. Lastly, a Bayesian optimization based parameters identification approach

is adopted to identify those unknown parameters [32, 33]. The identified parameters are

listed in Table I. Fig. 6A-C shows the comparison between experimental data (used to

identify the model) and model predicted results. The rest experimental data are used

to further verify the identified model (such as Fig. 6D). The predicted errors are also

illustrated in Fig. 7. It can be seen that the identified dynamic model can precisely

describe the rate-dependent viscoelastic nonlinearity of the planar DEA under different
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Figure 6. The comparison between the experimental data and predicted results under

different frequencies. A-C) Experimental data with frequency of 0.1 Hz, 1.0 Hz and

4.0 Hz are used to identify the unknown parameters; D) One example of experimental

data (0.5 Hz) are utilized to verify the effectiveness of the identified parameters.

frequency. To quantitatively characterize the predicted error, the max error em and

root-mean-square error erms are defined as:

em =
max |ya − yr|

max (yr)−min (yr)
× 100%,

erms =

√
1
N

N∑
i=1

(ya − yr)
2

max (yr)−min (yr)
× 100%,

(17)

where ya and yr represent the experimental data and predicted results, respectively, and

N is the length of the ya or yr. Based on the definition, the em and erms listed in Table II

are obtained from the dynamic model when the frequency is in the range of 0.1 Hz to 4.0

Hz.It clearly demonstrates the accuracy of the dynamic model and the em and erms are

limited to 5% and 2% under different frequencies, respectively. Based on the dynamic

model, we theoretically analyze the stability of the PBSMC. It demonstrates that when

the λ, F , ki, kp and kd are positive real, the PBSMC is stable (see more details in the

Appendix A). To valid the effectiveness of the controller, we further conduct several

experiments next.
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Table 1. The identified parameters in the dynamic model.

Parameters Value Parameters Value

k1 570.825 (N/m) η1 0.077

k2 129.208 (N/m) η2 0.225

k3 4.417 (N/m) η3 3.448

k3 0.162 (N/m) η4 17.101

b 0.0083 m 1.3 (g)

c 0.190 k 32.196 (N/m)

d 0.626 η0 0.136

Table 2. The predicted errors with trajectories of different frequencies.

Fre/Hz em/% erms/% Fre/Hz em/% erms/%

0.1 7.38 2.54 1.0 7.78 4.12

0.5 4.98 2.17 4.0 4.21 2.21
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Figure 7. The comparisons of sinusoidal tracking experimental results with different

controllers when the frequency equals to 0.1 Hz, 0.5 Hz, 1.0 Hz and 4.0 Hz, respectively.
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4. Experimental results

In this section, a series of trajectory tracking experiments are conducted to characterize

the performance of the PBSMC. In addition, we adopted a PID controller for

comparative experiments. Based on the stability condition, we firstly determine the

λ, F , ki, kp and kd for the PBSMC. Without loss of generality, λ, F , ki, kp and kd are

selected via a trial-and-error approach and the resulting values are 0.0001, 0.4, 220, 0.5

and 0.0001, respectively. For the PID controller, the ki, kp and kd are selected as 50, 1.2

and 0.0001, respectively. Then, we investigate the tracking performance of the PBSMC

and the PID controller by tracking different sinusoidal trajectories, when the frequency

is in the range of 0.1 Hz to 4. 0 Hz. As an example, Fig. 7 shows the experimental

results with the frequency of 0.1 Hz, 0.5 Hz, 1.0 Hz and 4.0 Hz. The corresponding

tracking errors of the PBSMC and the PID controller are illustrated in Fig. 8. We

can see that: with the PBSMC, the planar DEA can precisely track different sinusoidal

trajectories while the PID controller is effective for the relative low frequency (such as

0.1 Hz in this work). Further, the output displacements are plotted as a function of

reference displacement under different frequency (Fig. 9A for PBSMC and Fig. 9B

for PID controller). The results clearly demonstrate that the PBSMC can remove the

asymmetric and rate-dependent viscoelastic hysteresis nonlinearity (Fig. 3C). For the

PID controller, there are obvious hysteresis loops that are still rate-dependent. The
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Figure 10. The experimental results of tracking different triangle trajectories.

main reason depends on the fact that the PID controller generally can not hand the

viscoelastic hysteresis nonlinearity [19]. In addition, Table III lists the tracking errors

with different control strategy. We can see that when the frequency is in a range of

0.1 Hz to 4.0 Hz, the PBSMC can reduce the em and erms from 45.87% and 24.46% to

8.72% to 3.88%, respectively, comparing with no controller. For the PID controller, it

only can decrease the em and erms to 15.95% and 10.50%, respectively. Additionally,

it should be noted that the amplitude of the displacement slowly decreases (Fig. 3B)

when the frequency is in the range of 0.1 Hz to 4.0Hz. This indicates that the natural

frequency of the planar DEA is very low (about few Hz), thereby limiting the working

bandwidth of the PBSMC. As a result, the tracking errors also increase with increase in

trajectory frequency (Fig. 6). Future work will focus on devising new methods aimed

at improving the working bandwidth of the planar DEA.

In addition, the planar DEAs with the PBSMC can track different triangle



Proxy-based sliding-mode tracking control of DEAs 14

Table 3. The tracking errors with different controllers.

Controller None PID PBSMC

Fre/Hz em/% erms/% em/% erms/% em/% erms/%

0.1 36.26 22.73 4.25 0.62 3.55 0.56

0.5 37.21 23.11 5.76 1.75 4.26 0.86

1.0 34.30 19.81 7.12 3.43 4.81 1.24

4.0 45.87 24.46 15.95 10.50 8.72 3.88

trajectories with different period. For example, Fig. 10 shows the time domain output

trajectory, tracking errors and hysteresis loops of experimental results when the period

equals to 12 s and 1.2 s. We can see that the planar DEA can accurately track different

triangle trajectories with em and erms of 6.08% and 1.59%, respectively, which further

valid the effectiveness of the PBSMC.

5. Conclusions

In this work, we propose a new tracking control approach for DEAs by removing

the rate-dependent viscoelastic hysteresis nonlinearity with PBSMC. To this end, we

thoroughly investigate the viscoelastic nonlinearity of the planar DEA by the dynamic

tests. The experimental results reveal the properties of the viscoelastic hysteresis

nonlinearity, including rate-dependence and asymmetry. To remove this nonlinearity,

the PBSMC is firstly formulated. Then, the stability of the controller is proved based

on a dynamic model that can accurately describe the viscoelastic nonlinearity of the

DEA. Lastly, different comparative tracking experiments are conducted to characterize

the performance of the PBSMC. The experimental results demonstrate that with the

PBSMC, the planar DEAs can precisely track a range of sinusoidal trajectories within

a frequency range of 0.1 Hz and 4.0 Hz with the em and erms of 8.72% and 3.88%,

respectively. Compared to open-loop trajectory tracking, the em and erms are decreased

by 80.99% and 84.14%, verifying the effectiveness of the control approach.

The mechanism by which the PBSMC effectively suppresses the rate-dependent

viscoelastic nonlinearity of DEAs is as follows: When PBSMC first acts on the DEA, it

acts primarily as an extended sliding-mode controller for the initial stages of tracking,

in order to bring DEA onto the sliding manifold of interest, as quickly as possible. This

has the effect of eliminating the large force effects of the rate-dependent hysteresis. Once

this occurs and DEA dynamics are on the manifold of interest, the extended PID part of

PBSMC acts to reduce the relatively small position errors that occur due to the general

viscoelastic nonlinearity of DEA.

As detailed earlier, although some interesting control approaches have been

proposed to eliminate the nonlinearity of DEAs, most of them rely on dynamic
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models which remain elusive for DEAs with the rate-dependent viscoelastic nonlinearity.

Moreover, these control approaches are effective within specific frequency ranges or small

deformation; limiting their wider application. As a significant improvement over these

control schemes, our control approach provides a model-free control method to minimize

rate-dependent viscoelastic nonlinearity of DEAs. The main advantages of the method

reported in this paper are i) it eliminates the necessity for establishing a dynamic model

for DEAs C a significantly difficult task and ii) it is independent of the geometry and

electrode configuration of the DEAs. Consequently, our control approach can be easily

be extended to other DEAs with wide applications.
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Appendix A: stability analysis

To prove the stability of the PBSMC, we firstly define the following state variables:

z = [z1, z2, z3, z4, z5, z6] = [z1, z2, z3, z4, x, ẋ] . (A.1)

Then, (15) can be rewritten as:

ż1 = z6 − k1
η1
z1,

ż2 = z6 − k2
η2
z2,

ż3 = z6 − k3
η3
z3,

ż4 = z6 − k4
η4
z4,

ż5 = z6,

ż6 =
F (z5,U)

m
− η0

m
z6 − k

m
z5 − 1

m

4∑
i=1

kizi,

(A.2)

and

F (z5, U) = U2
(
bz25 + cz5 + d

)
. (A.3)

It should be mentioned that F (z5, U) is replaced with fin when put in closed-

loop control. In addition, the goal of this work is to achieve high-precision tracking

control of DEAs by removing the rate-dependent viscoelastic nonlinearity. To verify the

effectiveness of the controller, sinusoidal waves with different frequencies are used as

desired trajectories. Therefore, the desired trajectory, its first and second derivatives,

respectively, can be expressed as:

r = A sin
(
2πft− π

2

)
+B, (A.4)

ṙ = 2πfA cos
(
2πft− π

2

)
, (A.5)

r̈ = −4π2f 2A sin
(
2πft− π

2

)
, (A.6)

where A, B, f and t represent the amplitude, offset, frequency and time of the desired

trajectory, respectively. The error dynamics of (A.1) can be determined as follows:

e = r − z5, (A.7)

Next, its first and second derivatives are defined as

ė = ṙ − z6,

ë = r̈ − ż6,
(A.8)

Substituting (A.7-A.8) into (A.2), we can obtain

më+ η0ė+ ke = −fin + φ, (A.9)

where

φ
∆
= mr̈ + η0ṙ + kr +

4∑
i=1

kizi. (A.10)
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In order to prove the stability of the PBSMC in this work, the method in [30, 31]

are used to formulate the stability analysis. Given that ∥r∥ is upper bounded and since

it is the desired trajectory, ∥ṙ∥ and ∥r̈∥ are also bounded. As a result, the φ must be

bounded {
∥φ∥ ≤ ε0, ε0 ∈ R+

}
. (A.11)

Thus, there exists a positive definite function proving stability of the closed-loop

system. In order to prove the stability of the overall controller, firstly consider the

stability of the sliding mode control portion that can be expressed as:

żp5 = zp6 , (A.12)

żp6 = −FPID

mp

+ Feq, (A.13)

where zp5 and zp6 represent the xp and ẋp in (2). Feq is the equivalent control input for

the proxy mass that consists of the inverting input Finv and the switching law FSMC :

Feq = Finv + FSMC . (A.14)

To obtain Finv and for derivation purpose, FSMC is set as zero as FSMC is purely

for keeping the system on the desired trajectory once reaching phase of the sliding-mode

control is over, in short Feq = Finv. Begin by differentiating:

σ̇1 = ṙ − zp6 + λ (r̈ − żp6) . (A.15)

To impose the sliding condition in which tracking is achieved and hence solve for

Finv, consider σ̇1 = 0 and substitute (A.13) into (A.15) and equals to zero:

σ̇1=ṙ − zp6 + λ

(
r̈ +

FPID

mp

− Finv

)
= 0. (A.16)

Thus

Finv =
ṙ − zp6

λ
+ r̈ +

FPID

mp

. (A.17)

Therefore, the combined control input to provide tracking and staying on the sliding

surface is given as:

Feq =

Finv︷ ︸︸ ︷
ṙ − zp6

λ
+ r̈ +

FPID

mp

+

FSMC︷ ︸︸ ︷
F sgn (σ1) . (A.18)

To prove the stability of the sliding-mode control of the proxy mass, we define

Z = [zp5 , z
p
6 ] ∈ R2 and select the Lyapunov function as:

V (Z) =
1

2
σ2
1. (A.19)

Such a function satisfies the following conditions of: V (Z) = 0 iff Z = 0, V (Z) > 0

iff Z ̸= 0. By differentiating (A.19) with respect to time:

V̇ (Z) = σ1σ̇1. (A.20)
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Here, (A.18) is substituted into (A.13) which is then resubstituted into (A.15). When

expanding and cancelling terms, this leaves:

σ̇1 = −λF sgn (σ1) . (A.21)

Then, substitute (A.21) into (A.20):

V̇ (Z) = −σ1λF sgn (σ1) = −λF ∥σ1∥ . (A.22)

We should note that σ1sgn (σ1) ≡ ∥σ1∥ is used here. For closed-loop stability, V̇ (Z) ≤ 0

is required. Providing {F ∈ R,F > 0} and {λ ∈ R, λ > 0}, this satisfies the condition

V̇ (Z) ≤ 0 and V̇ (Z) < 0∀Z ̸= 0, thereby providing stability of the SMC on the proxy

mass equations. This leaves providing the stability of the PID portion of the closed-loop

system. It should be mentioned that the stability of the PID controller relies on the

stability derivation for the sliding mode control just derived. The error dynamic model

(A.9) can be used to prove the conditions necessary for stability. Let following system

of equations based (A.9) be defined along with extra states for the PID controller:

ṗ1 = p2,

ṗ2 =
1
m
[φ− fin (p3, p4, p5)− η0p2 − kp1] ,

ṗ3 = ȧ,

ṗ4 = p̈3,

ṗ5 = p̈4,

fin = kip3 + kpp4 + kdp5.

(A.23)

Then, we define a Lyapunov function as:

Vp (P ) =
1

2

(
kp21 +mp22

)
. (A.24)

By differentiating (A.24), we can get:

V̇p (P ) = kp1ṗ1 +mp2ṗ2. (A.25)

Substitute (A.23) into (A.25):

V̇p (p) = −η0p
2
2 + [φ− (kip3 + kpp4 + kdp5)] p2. (A.26)

Based on (A.26), if the V̇p (P ) ≤ 0, the φ − (kip3 + kpp4 + kdp5) ≤ 0 has to be

satisfied. Considering φ is upper bounded by the constant ε0 and the PID state variables

p3, p4 and p5 must be bounded, the condition of φ − (kip3 + kpp4 + kdp5) ≤ 0 can be

equivalent to:

∥φ∥− (ki ∥p3∥+ kp ∥p4∥+ kd ∥p5∥) < 0. (A.27)

It can be seen, if ki > 0, kp > 0 and kd > 0, the V̇p (P ) ≤ 0. Combing with (A.22)

and (A.27), it demonstrates that when the λ, F , ki, kp and kd are positive real, the

PBSMC is stable.


