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A B S T R A C T

Ground-penetrating radar (GPR) is becoming a mainstream tool in planetary exploration, and one of the few
in-situ planetary geophysical methods. There are currently three missions (Perseverance, Tianwen-1, Chang’E-
4) with GPR-equipped rovers, and two future missions (Chang’E-7, ExoMars) that will include GPR in their
scientific payload. The large number of GPR data, combined with the novel setup of the measurements, creates
the need for new data processing and interpretation techniques to address the unique challenges of in-situ
planetary radar. The current paper proposes an interpretation pipeline that starts with a novel stochastic
hyperbola fitting that estimates the probability kernel density of the bulk permittivity at different depths.
Subsequently, the bulk permittivity distribution is transformed via a novel probabilistic inversion to a 1-
dimensional (1D) permittivity profile. The inverted 1D permittivity profile is then used as an input to a
bespoke reverse-time migration (RTM) using the finite-difference time-domain (FDTD) method. RTM using
FDTD does not assume a clinical homogeneous half-space; instead, it accounts for the expected layered structure
of the investigated medium. Lastly, the migrated radargram is clustered in order to identify subsurface targets
and distinguish them from the background medium. Each of the processing steps has never been reported in
planetary radar; and together act as a complete processing toolbox tuned for planetary science. The suggested
interpretation pipeline is validated numerically in a 1D case study with a complex layered structure and
multiple subsurface targets. The proposed processing scheme is then applied to the GPR data from the Chang’E-
4 mission at the Von Kármán crater, revealing a previously unseen layered structure and a complex distribution
of rocks/boulders.
1. Introduction

Ground-penetrating radar (GPR) is a near-surface geophysical
method with a uniquely diverse set of applications, ranging from
glaciology (Schroeder et al., 2020) and environmental science (Sonkam-
ble and Chandra, 2021; Giannakis et al., 2019b) to landmine de-
tection (Daniels, 2005; Giannakis et al., 2016) and non-destructive
testing (Giannakis et al., 2021a). GPR is becoming a mainstream tool
for planetary exploration — orbiter sounders have been employed
both for Martian (Orosei et al., 2018) and Lunar (Kaku et al., 2017)
exploration since the early 1970s, and during the last decade in-situ
GPR has become a standard part of the scientific payload of planetary
rovers (Lai et al., 2020).

∗ Corresponding author.
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There are currently four active planetary rovers, three on Mars
(Curiosity, Perseverance, Zhurong) and one on the Moon (Yutu-2). A
further three will be deployed by 2028, one on Mars (Rosalind Franklin)
and two on the Moon (Chang’E-7, VIPER). The operational lifespan
and distances surveyed by the rovers mean that large volumes of
scientific data are being generated. Sojourner, Spirit, and Opportunity
(Opportunity holds the record for the longest distance driven off-earth
– 40 km) were fully operational throughout their nominal missions
and beyond, and Curiosity is still operating after its nominal two-year
mission ended in 2012 (Ellery, 2015). Yutu-2 is still fully operational,
and has covered >1000 m on the Lunar surface (Li et al., 2021).
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Of the eight active/planned rovers, five (Yutu-2 Ding et al., 2022,
Perseverance Eide et al., 2021, Zhurong Zou et al., 2021, Rosalind
Franklin Hervé et al., 2020, Chang’E-7 Zou et al., 2020) include GPR
as part of their scientific instrumentation. Rover-coupled GPR was also
used on the Yutu-1 rover and was part of the payload of the Chang’E-
5 lander (Xiao et al., 2019; Su et al., 2022). GPR is, therefore, one
of the most widely used scientific instruments on planetary rovers
and space missions in general, and is pivotal for future planetary
exploration. In particular, radar is critical for exploring Mars, as it
allows to unveil in real-time the structure and properties underneath
the moving spacecraft. Also, it may be used to assess regions of interest
for drilling; interpret the surface layers and the timing of events;
distinguish buried materials that may point to past depositional events;
and even find reservoirs of water ice, which can be used for In-Situ
Resource Utilization (ISRU).

In-situ planetary GPR was first used in 2013 as part of the scientific
payload of Yutu-1, the planetary rover of the Chang’E-3 mission on the
near side of the Moon (Su et al., 2014; Fa et al., 2015; Yuan et al.,
2017; Feng et al., 2017; Lai et al., 2019; Ding et al., 2020). The same
antenna systems, mounted on a similar rover named Yutu-2 were also
employed in the Chang’E-4 mission in 2019 (Li et al., 2020), the first
human object ever landed on the far side of the Moon (Li et al., 2019;
Tang et al., 2020). A year after, Perseverance was successfully landed
at the Jezero crater on Mars, equipped with RIMFAX, a GPR system
with 675 MHz central frequency (Hamran et al., 2020). On May 2021,
the Chinese mission Tianwen-1 landed on Utopia Planitia on Mars.
Zhurong, the rover of the mission, is equipped with two antennas, one
low frequency with range 35–75 MHz, and a high frequency system
with range 0.8–1.8 GHz (Zhou et al., 2016). Data from the Martian mis-
sions have recently become publicly accessible. Consequently, papers
for these missions are scarce and focus primarily on preliminary results
and observations (Casademont et al., 2022; Hamran et al., 2022). Due
to that, the current paper focuses on the radar data from the Lunar
Chang’E-4 mission, a well-researched area with numerous papers and
various suggested processing and interpretation pipelines (Giannakis
et al., 2021b).

Both Yutu-1 and 2 have two antennas with 500 MHz central
frequency placed at the bottom of the rovers, and one 60 MHz antenna
mounted at the back of the rovers (Li et al., 2020). Due to the close
proximity of the un-shielded 60 MHz antennas and the metallic parts
of the Yutu rovers, the low frequency data from both missions are
corrupted with ringing noise that makes interpretation unreliable (Li
et al., 2018; Zhang et al., 2020). On the other hand, good quality
data were collected from the 500 MHz antennas in both missions (Lai
et al., 2019; Dong et al., 2020a), and especially in Chang’E-4 due to
the low electromagnetic losses on the landing site (Dong et al., 2020a)
(attributed to the low ilmenite content Giannakis et al., 2021b).

The processing applied to the Yutu-2 radagrams is a typical scheme
that was initially developed for utility detection and non-destructive
testing (Cassidy, 2009; Daniels, 2004). In particular, cross-coupling and
ringing noise are removed using background removal, static noise is
reduced using zero-offset filter, and the late reflections are enhanced us-
ing time-varying gain (Giannakis et al., 2021b). For the interpretation,
linear inversion and conventional migration are applied to increase the
overall signal to clutter ratio, and map the subsurface reflectors (Zhang
et al., 2020; Li et al., 2020). For both inversion and migration, the
electric permittivity is considered homogeneous, and is estimated using
hyperbola fitting (Zhang et al., 2020; Li et al., 2020). More advanced
approaches use multiple hyperbolas to approximate the 1D permittivity
profile of the investigated medium (Dong et al., 2020a; Giannakis et al.,
2021b). The estimated permittivity is then used to infer the mechanical
and mineralogical properties of Lunar soils (Dong et al., 2020a,b) based
on semi-empirical formulas derived from shallow samples collected
during the Apollo missions (Olhoeft and Strangway, 1975; Carrier et al.,
2

1991; Hickson et al., 2018). Full-Waveform Inversion -applied to
extracted hyperbolas- also shown promising results in Earth applica-
tions (Jazayeri et al., 2018; Liu et al., 2018). Its applicability however
is compromised by its computational requirements and the need for a
realistic numerical equivalent of the antenna-rover system.

The current paper suggests a novel interpretation scheme capable
of mapping subsurface targets and estimating the velocity structure of
the host medium (Giannakis et al., 2022a). The scheme consists of a
stochastic hyperbola fitting; a 1D probabilistic permittivity inversion; a
reverse-time migration (RTM) using the finite-difference time-domain
(FDTD) method (Leuschen and Plumb, 2001; Lu et al., 2016; Bradford,
2015; Bradford et al., 2018); and unsupervised clustering (Otsu, 1979).
The novel stochastic hyperbola fitting addresses the non-unique nature
of the problem, and instead of finding a set of parameters that fit the
measured arrival times, it estimates a statistical range of parameters
that equally fit the measured hyperbola. The statistical range of the
bulk permittivities is subsequently used in a novel 1D probabilistic
inversion that improves upon (Giannakis et al., 2021b) by estimating
not only the permittivity profile but also its uncertainty as well. The
estimated 1D permittivity profile is then used as an input to a bespoke
RTM coupled with FDTD, which is no longer constrained to homoge-
neous velocity structures as in Zhang et al. (2020) and Li et al. (2020).
This increases the overall accuracy of the migrated radargram, which
is subsequently clustered (Otsu, 1979) into two classes, rocks/boulders
and background Lunar soil. Due to lack of ground truth in real data
from planetary radar, the proposed scheme is validated via a coherent
numerical case study, indicating its effectiveness on estimating 1D
permittivity profiles and locating distinct subsurface targets such as
rocks/boulders. Lastly, the proposed processing pipeline is applied to
GPR data from the first two Lunar days of the Chang’E-4 mission. The
results reveal a layered structure and a detailed stochastic distribution
of rocks/boulders within the top-most 10 m of the Lunar soil.

2. Methodology

The novel interpretation pipeline consists of four distinct and
sequential steps: (A) stochastic hyperbola fitting; (B) probabilistic 1D
velocity inversion; (C) RTM using FDTD; and (D) post-migration pro-
cessing and clustering. Each of these steps will be described in detail
in the following subsections. Numerical examples will also be given to
showcase the effectiveness and applicability of the proposed scheme
in cases that resemble Lunar soils where multiple targets are buried in
layered media with gradational variations between layers.

2.1. Stochastic hyperbola fitting

Conventional hyperbola fitting assumes that GPR operates on top
of a point target buried in a non-magnetic half-space with uniform
permittivity distribution (Daniels, 2004). This configuration has been
widely applied in both Chang’E-3 and E-4 missions (Li et al., 2020;
Fa, 2020; Dong et al., 2020a,b; Lai et al., 2019) for estimating the
bulk permittivity of the Lunar soil. From the estimated permittivity,
the velocity of the medium is inferred, which is then used as an input
in linear inversion or migration (Li et al., 2020). Although there are
automatic ways for picking hyperbolas (Lei et al., 2019), nonetheless,
these approaches are applicable to clear hyperbolas in applications
with high signal to clutter ratio such as concrete inspection and utility
detection. In planetary radar, hyperbolas are not easy to pick, and an
experienced GPR user is needed to reduce subjectivity. The manually
picked arrival times are the raw data for the subsequent processing
steps, and therefore special care should be taken to correctly pick
and map them. Moreover, the selected hyperbola should be selected
throughout the investigated range of depth to reduce the uncertainty
in the final estimations.

As stated in Giannakis et al. (2021b), the underlying assumptions

of hyperbola fitting constrain its applicability, especially in areas with
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Fig. 1. The generic scenario under consideration in stochastic hyperbola fitting. A
common-offset GPR system operates on top of a spherical target with radius 𝑅 buried
at depth 𝑑 inside a layered medium with varying permittivity with respect to depth 𝜖(𝑧).
In planetary environments, the conductivity (𝜎) is low, with negligible affects to the
overall electromagnetic velocity (and consequently to the arrival times and hyperbola
fitting).

non-uniform permittivity, and in the presence of relatively large tar-
gets. To address that, hyperbola fitting can be easily modified to
include vertical variations of the permittivity (Giannakis et al., 2021b),
and targets with arbitrary sizes (see Fig. 1). Despite these modifica-
tions, hyperbola fitting still suffers from non-uniqueness that greatly
compromises the accuracy of the resulting permittivity estimation (Gi-
annakis et al., 2022a). In this section we propose a novel scheme
that takes non-uniqueness into account and calculates the probability
density of permittivity and depth instead of specific values based on
the point-target assumption (Giannakis et al., 2022a).

From Fig. 1, for a small offset, the arrival times of the reflec-
tions from a spherical target, with relatively small radius, buried in
a half-space with smooth vertical permittivity variations 𝜖(𝑧) can be
approximated by:

𝑡 =

(

𝐷𝑇 +𝐷𝑅 − 2𝑅
)

𝑐0

√

𝜖𝑏 (1)

𝐷𝑇 =
√

(𝑥 +𝑤 − 𝑥0)2 + (𝑑 + 𝑅)2 (2)

𝐷𝑅 =
√

(𝑥 −𝑤 − 𝑥0)2 + (𝑑 + 𝑅)2 (3)

𝜖𝑏 =
(

1
𝑑 ∫

𝑑

0

√

𝜖(𝑧)𝑑𝑧
)2

(4)

where 𝑡 is the arrival time (s); 𝑥 is the position of the centre of the
bi-static antenna (m); 2𝑤 is the offset between the transmitter and the
receiver (m); 𝑑 is the cover depth of the target (m); 𝑥0 is the projection
of the target to the surface (m); 𝜖𝑏 is the square of the averaged squared
root of the permittivity 𝜖(𝑧) over 𝑧 ∈ [0, 𝑑] (Giannakis et al., 2021b); 𝑅
is the radius of the buried target (m), 𝑐0 = 2.99 ⋅ 108 m∕s is the velocity
of light in free space; and 𝐷𝑇 and 𝐷𝑅 are the distances (m) from
the centre of the target to the transmitter and receiver respectively.
Eqs. (1)–(4) can sufficiently represent the arrival times of non-shallow
point-like targets, regardless of the radiation pattern of the antenna
system. For very shallow targets, the first arrivals originate from the
surface waves. Therefore Eqs. (1)–(4) should be used with cautious for
shallow targets. Moreover, in the presence of a high permittivity surface
layer, significant refractions are expected between the free-space and
the top-soil surface. In this case, hyperbola fitting should be modified
to address this and incorporate the refractions in the calculations (Wang
et al., 2021).

Hyperbola fitting can be expressed as an optimisation problem, in
which the parameters {𝑥0, 𝑑, 𝑅, 𝜖𝑏} are tuned in order to minimise the
norm-2 error between 𝑛 number of measured 𝐭 = [𝑡1, 𝑡2, 𝑡3...𝑡𝑛] ∈ R𝑛

and simulated 𝐓 = [𝑇1, 𝑇2, 𝑇3...𝑇𝑛] ∈ R𝑛 arrival times:

argmin
𝑛
∑

(

𝑡𝑖 − 𝑇𝑖
)2 (5)
3

𝑥0 ,𝑑,𝑅,𝜖𝑏 𝑖=1
The minimisation in (5) is realised using a hybrid approach, where the
results from particle swarm optimisation (PSO) (Kennedy and Eberhart,
1995) are used as initial points to a convex optimiser, in this case
the simplex method. Via this approach we overcome potential local
minima, and ensure that (5) will always converge. PSO and simplex
method are arbitrarily chosen, similar results are achieved using any
global optimiser (genetic algorithms, ant colony optimisation) coupled
with any convex optimiser (non-linear least squares, gradient descent
etc.).

Notice that the apex of the hyperbola 𝑥0 is part of the unknown
parameters to be tuned, since we investigate the whole profile instead
of isolated sections. The minimisation in (5) has unique solutions only
in clinical noise-free environments (Giannakis et al., 2022a,b). In the
presence of noise the problem becomes ill posed with non-unique
solutions, and a range of {𝑥0, 𝑑, 𝑅, 𝜖𝑏} that gives rise to an equally good
fit (Giannakis et al., 2019b, 2022a; Mertens et al., 2016). This is clearly
illustrated in Giannakis et al. (2022b) and also shown in Fig. 2, where
(5) is applied to a typical scenario encountered in in-situ planetary
radar. A target with 𝑅 = 0.2 m is buried at 𝑑 = 1.5 m in a homogeneous
half-space with 𝜖𝑏 = 5. The arrival times of the simulated hyperbola
were calculated using Eqs. (1)–(4) for homogeneous half-space. In
clinical noise-free data, the minimisation in (5) always converges to
the correct {𝑥0, 𝑑, 𝑅, 𝜖𝑏}. In the presence of just 2% of Gaussian noise,
the problem becomes unstable. Executing (5) 120 times, with different
Gaussian noise each time, the results vary as illustrated in Fig. 2. This
is more apparent in Fig. 3 where a noisy set of data from the scenario
mentioned above, is fitted equally well with numerous hyperbolas, with
permittivity ranging from 𝜖𝑏 = 4.6 − 7.

To overcome non-uniqueness, conventional hyperbola fitting as ap-
plied in planetary science (Li et al., 2020; Fa, 2020; Dong et al.,
2020a,b; Lai et al., 2019), assumes a point target 𝑅 = 0. This is a
simplification, since the rock/boulders on the Moon are expected to
have varying sizes from 𝑅 = 0 − 5 m (Bart and Melosh, 2010; Li et al.,
2017). This can result in errors when estimating the bulk permittivity,
as shown in Fig. 3, where the permittivity can vary from 𝜖 = 4.6 − 7
depending on the size of the target.

To overcome the inherent non-uniqueness of hyperbola fitting, we
propose a novel technique that we call stochastic hyperbola fitting
(SHF). In SHF, instead of calculating a specific set of {𝑥0, 𝑑, 𝜖𝑏} based on
a given 𝑅 (conventional hyperbola fitting), we estimate the probability
of {𝑥0, 𝑑, 𝑅, 𝜖𝑏} to be true subject to the measured hyperbola, without
making any assumptions regarding the radii of the targets.

SHF first executes (5), and subsequently calculates the mean 𝜇 =
𝐸[𝐓 − 𝐭] and the standard deviation 𝜎 =

√

𝐸[(𝐓 − 𝐭 − 𝜇])2 of the
differences between the real (𝐭) and the synthetic (𝐓) observations.
Then we assume that the measurements are corrupted with Gaussian
noise, and that 𝐭 can be expressed as 𝐭 = 𝐓+ (𝜇, 𝜎2). Based on that, we
can derive a sufficient number of different sets of noisy measurements
𝐭, and then execute the minimisation in (5) multiple times to estimate
the range of {𝑥0, 𝑑, 𝑅, 𝜖𝑏} that can satisfy (4) in the presence of different
sets of noise  (𝜇, 𝜎2).

Regarding 𝑥0, the uncertainty of the estimation is low due to the
fact that 𝑥0 can be trivially calculated from the apex of the hyperbola.
Furthermore, 𝑅 is irrelevant, since SHF is used to estimate the bulk
permittivity at a given depth regardless of 𝑅. Moreover, the subse-
quent processing steps are radius-agnostic and they do not require any
prior information regarding the radii of the targets. Lastly, as stated
in Giannakis et al. (2022b), the uncertainty of radius estimation using
hyperbola fitting is high, making any estimation (even probabilistic)
unreliable. For the reasons above, 𝑥0 and 𝑅 are omitted from the final
output, which is now the multivariate kernel density estimation (KDE)
(via diffusion Botev et al., 2010) with respect to 𝜖𝑏 and 𝑑.

Fig. 4 shows the KDE with respect to 𝜖𝑏 and 𝑑 using SHF on
a hyperbola measured for 𝑅 = 0.2 m, 𝑑 = 1.5 m and 𝜖𝑏 = 6. The
measurements are taken every 5 cm and the measuring line is 5 m long
symmetrically around the centre of the target. The data are corrupted
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Fig. 2. 120 realisations of hyperbola fitting (5) for different sets of Gaussian noise in each execution. The level of noise is 2%. The real {𝑑,𝑅, 𝜖𝑏} are shown on the titles of the
subplots. The 𝑥0 is omitted because it can be easily estimated from the apex of the hyperbola.
Fig. 3. Markers indicate the noisy data for 𝑑 = 1.5 m, 𝑅 = 0.2 m, and 𝜖𝑏 = 5. Red colour indicates the range of fitting hyperbolas for 𝜖𝑏 = 4.6 − 7.1, 𝑑 = 1.56 − 1.28 m and 𝑅 = 0− 1
. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ith 1% Gaussian noise. The actual KDE is calculated by executing
he minimisation in (5) a sufficient number of times using different
oisy measurements with the same standard deviation. This is possible
ecause both the noise-free hyperbola and the noise level are known.
n real measurements we cannot separate the noise-free measurements
nd the noise, and therefore we can only estimate the KDE using SHF
ia the procedure described in the previous paragraphs. From Fig. 4
t is evident that SHF manages to approximate the multivariate KDE
nd provide a range of 𝜖𝑏 and 𝑑, instead of specific uncertain values
ased on the clinical assumptions of conventional hyperbola fitting
i.e. 𝑅 = 0). The computational time needed for fitting one hyperbola
sing SHF is approximately 1–2 min using 1.6 GHz Intel Core i5.

.2. Probabilistic 1D permittivity inversion

The main mechanism of deposition in Lunar soils is via cratering,
hich results in layered ejecta-blankets around impact craters (Melosh,
989). Consequently, the proposed probabilistic inversion is based on
4

he assumption that the permittivity in Lunar soils, for small scales, c
aries only with respect to depth (i.e. 1D model). Similar to any 1D
eophysical method (vertical electrical sounding, 1D magnetotellurics
tc.), if the investigated Lunar soil cannot be approximated by a 1D
rofile, the validity and reliability of the proposed scheme will be
ompromised.

SHF estimates the KDE with respect to 𝜖𝑏 and 𝑑, which can be
xpressed as 𝑓 (𝜖𝑏, 𝑑|𝐭) i.e. the conditional probability of (𝜖𝑏, 𝑑) subject
o the measured hyperbola 𝐭. KDE can also be used to estimate the
ncertainty for 𝑥0 and 𝑅, nonetheless (as described in 2.1) these
re omitted from the final KDE, primarily due to the fact that the
ubsequent processing steps only require knowledge regarding the bulk
ermittivity with respect to depth. The novel 1D probabilistic inver-
ion utilises multiple KDEs from different targets in order to infer the
D permittivity distribution in layered media, where the permittivity
aries with respect to depth 𝜖(𝑧). Similar to Giannakis et al. (2021b),
he novel 1D probabilistic permittivity inversion can handle smooth
elocity variations in contrast to conventional approaches based on Dix

onversion (Giannakis et al., 2021b; Dix, 1955).
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Fig. 4. The novel Stochastic hyperbola fitting (SHF) is used to calculate the kernel
density estimation (KDE) of 𝜖𝑏 and 𝑑. The parameters of the investigated case study
are 𝑅 = 0.2 m, 𝑑 = 1.5 m and 𝜖𝑏 = 6. The arrival times are corrupted with 1% Gaussian
noise. Up: Actual normalised KDE. Down: Estimated normalised KDE using SHF. SHF
estimates the range of permittivities that can equally fit the measured data, subject
to noise and the inherent non-uniqueness of the problem. Notice that in contrast to
conventional hyperbola fitting, SHF makes no assumptions regarding the radius of the
target.

As with any inversion scheme, before anything, we first need to
parameterise our model, in this case the permittivity profile 𝜖(𝑧). There
are different ways to parameterise models prior to inversion, from
typical grid-based discretisation to generic mathematical models. The
novel 1D probabilistic inversion that we propose assumes that the
5

permittivity can be described as a spline interpolation between 𝑚
equidistant depths. This model allows for smooth gradational layers;
reduces the number of the parameters that need to be optimised; and
greatly decreases the overall computational time.

Therefore, the first step of the probabilistic inversion is to dis-
cretise the permittivity in 𝑚 equidistant depths {𝜖𝑧1 , 𝜖𝑧2 ...𝜖𝑧𝑚}. Spline
interpolation is then applied to the discretised points resulting in a
continuous and analytic representation of permittivity with respect to
depth 𝜖(𝑧, {𝜖𝑧1 , 𝜖𝑧2 ...𝜖𝑧𝑚}). A large 𝑚 allows for more complex profiles
but increases the chances of over-fitting, while a small 𝑚 generates
conservative low resolution models that can potentially under-fit the
measurements.

The 1D probabilistic inversion tries to find the best set of
{𝜖𝑧1 , 𝜖𝑧2 ...𝜖𝑧𝑚} that minimises the error between the measured bulk
permittivities using SHF and the bulk permittivity of 𝜖(𝑧, {𝜖𝑧1 , 𝜖𝑧2 ...𝜖𝑧𝑚})
(see Eq. (4))

argmin
𝜖𝑧𝑖∀𝑖∈[1,𝑚]

𝑁
∑

𝑗=1

(

√

𝜖𝑏,𝑗 −
1
𝑑𝑗 ∫

𝑑𝑗

0

√

𝜖(𝑧, {𝜖𝑧1 , 𝜖𝑧2 ...𝜖𝑧𝑚})𝑑𝑧
)2

(6)

where {𝜖𝑧1 , 𝜖𝑧2 ...𝜖𝑧𝑚} are the discretised permittivities used in spline
interpolation; 𝜖(𝑧, {𝜖𝑧1 , 𝜖𝑧2 ...𝜖𝑧𝑚}) is the analytic formula for the permit-
tivity derived from spline interpolation; 𝜖𝑏,𝑗 and 𝑑𝑗 are random real
numbers selected based on the KDE 𝑓 (𝜖𝑏,𝑗 , 𝑑𝑗 |𝐭𝑗 ) estimated using SHF
for the 𝑗th hyperbola; and 𝑁 is the number of hyperbolas used in the
inversion. In other words, we are trying to find the optimum set of
{𝜖𝑧1 , 𝜖𝑧2 ...𝜖𝑧𝑚}, which when used in spline interpolation gives rise to
a continuous function 𝜖(𝑧, {𝜖𝑧1 , 𝜖𝑧2 ...𝜖𝑧𝑚}) that minimises the squared
error between the actual and the estimated bulk permittivities using
SHF. Similar to (5), a hybrid optimisation approach is employed to
solve (6), where the results from PSO (Kennedy and Eberhart, 1995)
are used as initial points to the simplex method.

In (6) a random set of {𝜖𝑏,𝑗 , 𝑑𝑗} is used based on the KDE 𝑓 (𝜖𝑏,𝑗 , 𝑑𝑗 |𝐭𝑗 )
calculated using SHF. Executing (6) multiple times, with a different set
of {𝜖𝑏,𝑗 , 𝑑𝑗} each time (based on 𝑓 (𝜖𝑏,𝑗 , 𝑑𝑗 |𝐭𝑗 )), will result in a set of per-
mittivity profiles. All of them will equally satisfy our data, subject to the
uncertainty due to noise and the inherent non-uniqueness of hyperbola
fitting. Via this approach we get an insight into the uncertainty of the
results and provide a range of acceptable solutions. This is in contrast
to Giannakis et al. (2021b) where a single permittivity profile is derived
based on the unrealistic assumption of conventional hyperbola fitting
i.e. that the subsurface rocks/boulders are point targets (𝑅 = 0) .

A case study is examined next to investigate the accuracy of the
proposed probabilistic inversion. The model is shown in Fig. 5. The
open-source electromagnetic simulator gprMax (Warren et al., 2016)
was used for the simulations. The dimensions of the model are 2 × 1
Fig. 5. The investigated scaled numerical case study. Ten targets are buried in a non-magnetic and non-conductive medium with varying permittivity with respect to depth. The
shapes and sizes of the targets are not consistent, introducing uncertainty and non-uniqueness to hyperbola fitting.
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Fig. 6. The processed radagram from the case study shown in Fig. 5. Notice that the
reflections from the layers are absent, due to the smooth variation of permittivity that
decreases the reflection coefficients of the layers.

m, with 2.5 mm spatial step. The time-step is 0.99 times the Courant
limit (Taflove and Hagness, 2000). The host medium is non-magnetic
and non-conductive with varying permittivity with respect to depth.
Ten targets, nine cylinders and one box, are buried at different depths.
The radii of the cylinders vary in order to add to the overall uncertainty
of the estimated bulk permittivities. The model is excited by a mono-
static Hertzian dipole with a Ricker pulse with 1 GHz central frequency
. The measurements are taken every 2 cm from left to right (see
Fig. 5). The resulting radagram is shown in Fig. 6. Only time-zero
correction and time-varying gain were applied to the raw numerical
data. Notice that there are no reflections from the horizontal layers due
to the gradational transition between them (Diamanti et al., 2014). This
means, that layers with smooth interfaces might go undetected using
conventional reflection-based GPR interpretation techniques (Giannakis
et al., 2021b). This is very important in planetary radar, since grada-
tional layers are expected in ejecta blankets, especially at the transition
between the weathered top soil and the underlying ejecta.

The hyperbolas were fitted using SHF, and the KDE 𝑓 (𝜖𝑏,𝑗 , 𝑑𝑗 |𝐭𝑗 )
was derived for every target. Subsequently, the 1D probabilistic inver-
sion was executed 200 times, and each time different sets of {𝜖𝑏, 𝑑}
were chosen subject to their KDE 𝑓 (𝜖𝑏,𝑗 , 𝑑𝑗 |𝐭𝑗 ). The 200 different 1D
profiles were then used to estimate the range (95% confidence interval)
of acceptable solutions, the results are shown in Fig. 7. Despite using
hyperbolas from non-clinical targets with various shapes and sizes,
the real permittivity profile is within the estimated range. The mean
permittivity profile (red line in Fig. 7) is then used to calculate the
bulk permittivity 𝜖𝑏 with respect to depth, which is then compared with
the estimated distribution of bulk permittivities using SHF. From Fig. 8
it is apparent that the estimated permittivity profile 𝜖(𝑧) results in a
bulk permittivity variation 𝜖𝑏 that is aligned with the measurements,
indicating the reliability of the estimated permittivity profile. The
computational time needed for the investigated numerical study was
approximately 5 min using 1.6 GHz Intel Core i5.

2.3. Reverse-time migration using FDTD

RTM coupled with FDTD can effectively focus the signal subject to
any arbitrary permittivity distribution (Giannakis et al., 2020). This is
an improvement compared to conventional migration that is typically
applied in planetary radar, where the medium is assumed to be a
homogeneous half-space; a clinical assumption that most often deviates
from the truth. To our knowledge, there is no commercial software that
6

Fig. 7. The real and estimated permittivity profile of the numerical case study shown in
Fig. 5. The real 1D profile is within the estimated range, which indicates the reliability
of the proposed probabilistic inversion.

Fig. 8. The distribution of the bulk permittivities with respect to depth, calculated
using SHF, for the case study shown in Fig. 5. With solid black line, is the bulk
permittivity 𝜖𝑏 of the mean permittivity profile as estimated using the proposed 1D
probabilistic inversion (see Fig. 7). With solid red line is the actual bulk permittivity.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

can perform RTM for GPR using numerical solvers such as FDTD. Due
to that, we have developed our own bespoke FDTD solver (Taflove and
Hagness, 2000) coupled with RTM as described in Leuschen and Plumb
(2001). Similar to Giannakis et al. (2022a), a TM-FDTD with second
order accuracy in both space and time is used in the current paper.

RTM requires the execution of FDTD, a time-consuming and com-
plex algorithm with high computational requirements. Moreover, RTM
uses 4 times the actual permittivity as input (to account for the two-
way travel time in RTM), which leads to large numerical errors (Taflove
and Hagness, 2000). In order to mitigate that, small discretisation
steps need to be selected (Taflove and Hagness, 2000), which further
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Fig. 9. Applying Kirchhoff migration to the radagram shown in Fig. 6. The permittivity is assumed to be homogeneous and it is equal to 𝜖 = 3, 5, 7. Due to the layered structure
of the medium (see Fig. 6), using low permittivity over-migrates deeper targets while using high permittivity under-migrates the shallow ones.
increases the overall computational requirements of RTM, making it
unattainable for large radagrams measured in high permittivity me-
dia. Nonetheless, for Lunar applications, the investigated media are
low dielectric targets (depending on their ilmenite content), with no
high dielectric contrasts nor high permittivity regions (Dong et al.,
2020a) that could compromise the accuracy and overall computational
efficiency of RTM.

Fig. 9 illustrates the migrated radagram - from here on denoted
as 𝑄(𝑥, 𝑧) - of Fig. 6, using Kirchhoff migration with three different
uniform permittivity values 𝜖 = 3, 5, 7. It is apparent that for 𝜖 < 5
the shallow targets are focused correctly while deeper targets are over-
migrated. Increasing the permittivity results in under-migrating shallow
targets while correctly migrating deeper ones. This is due to the smooth
variation of permittivity with depth (as shown in Fig. 5) that deviates
from the underlying assumption of conventional migration i.e. that the
host medium is a homogeneous half-space. In Fig. 10, our bespoke
RTM coupled with FDTD is applied to the same radagram (Fig. 6)
subject to the 1D permittivity profile estimated using the probabilistic
inversion (see Fig. 7). It is apparent, that using a good approximation
7

of the actual permittivity profile, results in a more detailed migration,
where all targets are equally focused regardless of their depth. The
computational time for RTM varies greatly with the dimensions of the
problem. In the absence of sufficient computational resources, large
measuring lines should be divided and migrated separately.

2.4. Unsupervised clustering

The last stage of the novel processing pipeline consists of a series of
post-migration steps followed by an un-supervised clustering. The main
goal of this stage is to separate the rocks/boulders from the Lunar soil
and map the rock distribution of the investigated area.

Firstly, the absolute value of the Hilbert transform is calculated for
every trace, in order to extract its envelope 𝐻(𝑥, 𝑧) = |�̂�(𝑥, 𝑧)|(Daniels,
2004), where �̂�(𝑥, 𝑧) is the Hilbert transform of 𝑄(𝑥, 𝑧). Subsequently,
𝐻(𝑥, 𝑧) is raised to the power 𝑁(𝑥, 𝑧) = 𝐻(𝑥, 𝑧)1.5 to enhance the
signal over migration artefacts and increase the compactness of the
results. Raising 𝐻(𝑥, 𝑧) to a higher power could potentially suppress
meaningful signal alongside artefacts and noise. Notice that in Lunar
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Fig. 10. The post-migration processing steps. From the migrated image (A) (using RTM
coupled with FDTD) 𝑄(𝑥, 𝑧) to the final clustering 𝐶(𝑥, 𝑧) (E).

soil, the targets (rocks and boulders) are weak scatterers due to their
low dielectric contrast with the background soil, resulting in weak
secondary reflections that could otherwise give rise to artefacts in the
migrated image. The processed image 𝑁(𝑥, 𝑧) is then convolved with
a 2D Gaussian filter 𝐹 (𝑥, 𝑧) = 𝑁(𝑥, 𝑧) ∗ 𝐺(𝑥, 𝑦) to remove spikes and
leftover artefacts from the Hilbert transform. Lastly, a threshold is
8

Fig. 11. The processed radagram collected by channel 2 during the first two Lunar
days of the Chang’E-4 mission. The shadowed areas highlight the hyperbolas used for
the inversion.

selected that maximises the discriminant measure or the separability
between the two classes as described in Otsu (1979). Based on this
unsupervised threshold (Otsu, 1979), the image is clustered 𝐶(𝑥, 𝑧) into
two classes i.e. targets and background medium. The clustering method
described in Otsu (1979), otherwise known as Otsus’ threshold, has
never been reported in the GPR literature, but has been successfully
applied in numerous two-class computer vision problems trying to sep-
arate the foreground from the background (Lee et al., 1990; Sezgin and
Sankur, 2004). Otsu’s method is equivalent to K-means clustering for
image segmentation (Liu and Yu, 2009), and it produces a conservative
threshold that minimises intra-class intensity variance .

Fig. 10(A–E) illustrates the aforementioned steps, where the initial
migrated image 𝑄(𝑥, 𝑧) (Fig. 10A) is transformed to the clustered 𝐶(𝑥, 𝑧)
(Fig. 10E) . Every step in Fig. 10 is fully automatic and requires minimal
computational resources. Comparing the results to the synthetic test-
case problem (Fig. 5), it is apparent that the proposed processing
framework can reliably estimate both the 1D velocity profile and
the distribution of subsurface targets. Notice that although the pres-
ence and coordinates of the targets are correctly derived, nonetheless,
the estimated sizes are not in good agreement with the actual sizes
shown in Fig. 5. This is a known issue in migration/linear-inversion
problems (Giannakis et al., 2021a, 2019a). To accurately and reliably
estimate the size of the investigated targets, more advanced approaches
like FWI and machine learning should be considered (Giannakis et al.,
2021a, 2019a). To that extent, the proposed processing scheme, similar
to all the previous approaches suggested for planetary radar, cannot be
used for estimating the size of subsurface targets. .

3. Results from the Chang’E-4 radar data

The suggested interpretation pipeline is now applied to the data
collected at the Von Kármán (VK) crater by the channel 2 (500 MHz)
of the Yutu-2 rover. The underlying 1D assumption of the proposed
scheme is not violated, since a plethora of evidence suggest that the
investigated area is a layered medium (Huang et al., 2018; Li et al.,
2020; Zhang et al., 2020; Dong et al., 2020a). The data consist of
∼ 106 m radagram collected over an irregular path during the first
two Lunar days of the Chang’E-4 mission (Li et al., 2020). Similar
to Giannakis et al. (2021b), we focus on the first 150 ns of the scan, to
find any hidden gradational layers within the Lunar regolith that were
not detected using conventional GPR interpretation. Based on the lack
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Fig. 12. The estimated permittivity profile of the landing site using the 14 hyperbolas
hown in Fig. 11. (For interpretation of the references to colour in this figure legend,
he reader is referred to the web version of this article.)

f reflections within the first 150 ns, this layer was considered to be the
egolith i.e. a relative homogeneous weathered layered. Nonetheless, as
t is shown in Giannakis et al. (2021b) and in Fig. 6, layers with smooth
radational boundaries are transparent to electromagnetic waves, with
ractically zero reflection coefficients and no visible reflections. Con-
equently, lack of reflections does not exclude the presence of layers
ithin the Lunar soil.

Typical processing was applied to the radargram prior to our scheme
.e. zero-time correction, dewow, exponential gain, and background
emoval (Li et al., 2020; Giannakis et al., 2021b). Left-over artefacts
rom background removal can corrupt the results especially in the shal-
ow layers, where cross-coupling and ringing noise are most dominant.
onetheless, that is not the case here as shown in Fig. 11. Subsequently,
HF was applied to 14 manually picked hyperbolas along the scan.
he processed radagram and the selected hyperbolas are illustrated

n Fig. 11. These hyperbolas were chosen because they are regularly
istributed along the measuring line, and they extend throughout the
nvestigated depth.

The 1D probabilistic inversion was executed using 𝑚 = 5 equidistant
iscretisation points from 𝑑 = 0−11 m. As discussed in Section 2.2, the
alue of 𝑚 dictates the complexity of the resulting permittivity profile.
large 𝑚 allows for more complex layered structures while a small 𝑚

results to simple conservative models. The choice of 𝑚 = 5 was done
ia a trial and error process where it was observed that increasing the
iscretisation points 𝑚 > 5 had minor effects on the estimated mean
ermittivity profile, while reducing 𝑚 < 5 led to simplified permittivity
tructures that under-fit the KDEs. The results are shown in Fig. 12.
n the presence of more hyperbolas the uncertainty range in Fig. 12
ill be reduced. The KDEs 𝑓 (𝜖𝑏,𝑗 , 𝑑𝑗 |𝐭𝑗 ) for the 14 hyperbolas, and

the fitted bulk permittivity for the mean estimated profile (red line
in Fig. 12) are shown in Fig. 13, which is also in good agreement
with recently published data on the bulk permittivity at the landing
site (Feng, Jianqing et al., 2022).

From Fig. 12, it is apparent that there is a low permittivity layer
down to 𝑧 ≈ 3 m, followed by a relatively high permittivity layer
until 𝑧 ≈ 6 − 7 m, followed by another low permittivity layer until
𝑧 ≈ 11 m. At 𝑧 ≈ 11 m, there are indications supporting the presence
of another high permittivity layer, which is consistent with the strong
radar reflections observed around 150 ns as shown in Li et al. (2020),
Zhang et al. (2020), and remote sensing reflectance data that suggest
9

the presence of a layer at around 𝑧 ≈ 8−13 m (Huang et al., 2018). The b
Fig. 13. The distribution of the bulk permittivities with respect to depth for the 14
hyperbolas shown in Fig. 11. The solid line is the bulk permittivity 𝜖𝑏 of the mean
permittivity profile shown in Fig. 12. The scattered bulk permittivity is due to the
ill-posed nature of hyperbola fitting, where in the presence of minimum noise it gives
rise to non-unique solutions that satisfy equally well the measured hyperbola.

permittivity profile shown in Fig. 12 is also in good agreement with Gi-
annakis et al. (2021b) and Giannakis et al. (2022a) that estimated a
similar layered structure in this area. The main difference between
the current approach with Giannakis et al. (2021b), is the fact that the
current processing pipeline takes into account the ill-posed nature of
hyperbola fitting by mapping the uncertainty range, and plotting the
plethora of permittivity profiles that can equally satisfy the measured
hyperbolas.

The mean permittivity profile shown in Fig. 12, is then used as
an input to our bespoke RTM coupled with TM-FDTD. The spatial
step of FDTD grid was 𝛥𝑥 = 𝛥𝑧 = 1 cm, and the time-step was 0.99
times the Courant limit (Taflove and Hagness, 2000). The migrated
image 𝑄(𝑥, 𝑧) is then transformed to 𝐻(𝑥, 𝑧) by taking the absolute
value of the Hilbert transform of 𝑄(𝑥, 𝑧). Subsequently, 𝐻(𝑥, 𝑧) is raised
o the power of 1.5 and convolved using a Gaussian filter resulting in
(𝑥, 𝑧). Lastly, 𝐹 (𝑥, 𝑧) is clustered in two classes (rocks/boulders and
ost medium) using Otsus’ method, a threshold that maximises the
eparability between the two classes (Otsu, 1979).

The post-processed migration processing steps and the final clus-
ered image 𝐶(𝑥, 𝑧) are shown in Fig. 14. It is apparent that there is
stochastic distribution of rocks/boulders with some areas exhibiting

ery low rock abundance at 𝑥 ≈ 50 and 𝑥 ≈ 85 meters. Such
reas could be potential targets for future drilling missions (similar to
hang’E-5 (Qian et al., 2021; Su et al., 2022)), where an optimised area
ith the least amount of rocks/boulders could be selected in order to

educe the energy requirements by avoiding drilling through potential
arge boulders. This approach can also be followed to detect buried
iscontinuous patches of water ice, permafrost or brines in the top
eters of the soil.

Notice that the distribution of rocks follows a layered structure
hat is approximately aligned with the layered structure estimated
y the 1D probabilistic inversion (Fig. 12). This is more apparent
n Fig. 15. For every depth instance, all the pixels in Fig. 14 (E)
lassified as ‘‘rock/boulder’’ are summed and then normalised with
espect to the depth with the maximum rock abundance. The layered
tructure of the rock distribution is aligned with the results from the
D probabilistic inversion (Fig. 12), pointing to layered structure in
he previously-assumed homogeneous regolith. Lunar rocks (primarily

asalts, anorthosites and breccia) have higher permittivity than Lunar
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Fig. 14. The post migration processing pipeline as applied to the processed radagram for the first two Lunar days of the Chang’E-4 mission (Fig. 11). Green and blue colours in
𝐶(𝑥, 𝑧) (E) correspond to rock/boulders and host medium respectively. RTM coupled with TM-FDTD is used to migrate the data subject to the mean estimated permittivity profile
shown in Fig. 12. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
soil (Olhoeft and Strangway, 1975). Consequently, the presence of
rocks within a layer can raise its overall bulk permittivity. Therefore,
the changes in permittivity with depth as observed in Fig. 12 might be
due to the changes in rock abundance rather than dielectric differences
in the Lunar soil. In other words, the first 10 m of the landing site could
be composed of varying rock distributions from different ejecta buried
in weathered soils with similar low dielectric properties.

4. Conclusions

A novel set of interpretation tools for in-situ planetary radar is
described. The proposed framework consists of a novel stochastic
hyperbola fitting that estimates the range of permittivities that fit a
given hyperbola. Stochastic hyperbola fitting considers the inherent
non-uniqueness of the problem when the subsurface targets have vary-
ing sizes. Subsequently, a novel probabilistic inversion is applied that
utilises multiple hyperbolas to infer the 1D permittivity profile of the
area. The estimated permittivity profile is then used as input to our
bespoke reverse-time migration coupled with finite-differences time-
domain method, capable of migrating the processed radagram subject
10
to any arbitrary permittivity structure. Lastly, a post-migration process-
ing is applied, which effectively clusters the data into rocks/boulders
and Lunar soil. The proposed scheme has been numerically validated
and subsequently applied to the radar data from the first two Lunar
days of the Chang’E-4 mission. A layered structure is detected within
the first 10 m of the regolith, with a stochastic rock distribution,
exhibiting areas with low rock densities, that can be potential targets
for future drilling missions. This approach can be equivalently applied
to radar data from Zhurong and Perseverance, which are currently
exploring the surface of Mars.
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𝐶

Fig. 15. The normalised rock abundance with respect to depth as estimated from
(𝑥, 𝑧) in Fig. 14 (E). It is apparent that there are 3 clearly seen layers within the

first 10 m of the regolith. Notice that the results from the migration are in good
agreement with the independent results obtained using the 1D inversion (see Fig. 13).
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