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Chaos inmagnetoconvection

A M Rucklidge

Department of Applied Mathematics and Theoretical Physics�
University of Cambridge� Cambridge CB� �EW� UK

Abstract� The partial di�erential equations �PDEs� for two�dimensional
incompressible convection in a strong vertical magnetic 	eld have a codimension�
three bifurcation when the parameters are chosen so that the bifurcations to steady
and oscillatory convection coincide and the limit of narrow rolls is taken
 The third�
order set of ordinary di�erential equations �ODEs� that govern the behaviour of
the PDEs near this bifurcation are derived using perturbation theory
 These ODEs
are the normal form of the codimension�three bifurcation� as such� they prove to
be an excellent predictor of the behaviour of the PDEs
 This is the 	rst time that
a detailed comparison has been made between the chaotic behaviour of a set of
PDEs and that of the corresponding set of model ODEs� in a parameter regime
where the ODEs are expected to provide accurate approximations to solutions of
the PDEs
 Most signi	cantly� the transition from periodic orbits to a chaotic Lorenz
attractor predicted by the ODEs is recovered in the PDEs� making this one of the few
situations in which the nature of chaotic oscillations observed numerically in PDEs
can be established 	rmly
 Including correction terms obtained from the perturbation
calculation enables the ODEs to track accurately the bifurcations in the PDEs over
an appreciable range of parameter values
 Numerical calculations suggest that the
T�point �where there are heteroclinic connections between a saddle point and a pair
of saddle�foci�� which is associated with the transition from a Lorenz attractor to a
quasi�attractor in the normal form� is also found in the PDEs
 Further numerical
simulations of the PDEs with square rolls con	rm the existence of chaotic oscillations
associated with a heteroclinic connection between a pair of saddle�foci


�� Introduction

It is not often that it is possible to establish analytically the nature of chaotic
solutions observed numerically in partial di�erential equations �PDEs�
 Rucklidge
����� ����� showed how the PDEs for two�dimensional Boussinesq convection in a
vertical magnetic �eld could be reduced for a particular range of parameters �rst
to a third�order set of ordinary di�erential equations �ODEs� and then to a one�
dimensional map
 The analysis of the map shows an abrupt transition from periodic
to chaotic behaviour
 In this paper we present systematic and accurate numerical
solutions of the same PDEs and compare them with the predictions of the third�order
model and the one�dimensional map demonstrating a remarkably good quantitative
agreement between the chaotic behaviour of the map the PDEs and the corresponding
set of model ODEs
 The main points of this paper are twofold� �rst this is the
�rst time that apparently chaotic numerical solutions of a set of PDEs can genuinely
be demonstrated to be chaotic and second low�order models constructed by centre
manifold or by perturbation techniques can �and do in this case� provide a quantitative
description of the PDE behaviour over an appreciable range of parameter values


�



In other studies low�order models of the behaviour of sets of PDEs are often
derived by a truncation procedure perhaps the best�known example being the Lorenz
������ equations
 This celebrated third�order set of ODEs was �rst derived for B�enard
convection in rolls and its chaotic solutions aroused much interest
 The Lorenz system
correctly describes the transition to steady convection but its chaotic solutions do
not appear in the PDEs �Moore � Weiss �����
 In other cases there is qualitative
agreement between the chaotic behaviour of PDEs and truncated ODE models �for
example Knobloch et al ����� but one cannot tell a prioriwhether or not the intricate
behaviour observed in a truncated model will carry over to the PDEs from which it
was derived
 The approach adopted in this paper is to identify high�codimension
bifurcation points where models constructed using the centre manifold technique will
faithfully reproduce the behaviour of the PDEs arbitrarily well for parameters close
enough to the bifurcation point
 The numerical study of the PDEs presented here
demonstrates that such carefully constructed models will also be a robust guide to
the PDE behaviour even for parameter values not particularly close to the bifurcation
point and that the range of validity of the models can be extended by including
higher�order terms
 We focus on comparing two�parameter studies of the PDEs and
the ODEs rather than comparing the behaviour at single parameter values or along
one�parameter slices


Perturbation theory is used to reduce the PDEs to a third�order set of ODEs but
the choice of small parameters is inspired by centre manifold theory� the PDEs are
expanded about a point that is known to have multiple zero eigenvalues
 The �rst
two zero eigenvalues are achieved by starting at a Takens	Bogdanov point at which
the pitchfork bifurcation to steady convection coincides with the Hopf bifurcation to
oscillatory convection
 Further zero eigenvalues are brought onto the centre manifold
by considering the limit of narrow rolls� as L the width of the rolls goes to zero
the PDEs have eigenvalues that go to zero as �L� ��L� ��L� etc
 A centre
manifold calculation would include all corresponding eigenmodes �this would result
in a PDE for the vertical structure� but the perturbation calculation reveals that
only one mode is required as all the others come in at higher order and can be
ignored
 The perturbation calculation also provides the O�L�� corrections to the
ODE model� including these dramatically improves the ability of the ODE model to
make quantitative predictions of the locations of bifurcations over a wider range of
parameter values


That the model derived by perturbation theory from the PDEs should describe
their behaviour so well is not surprising in the light of the recent calculations of
Shil�nikov et al ������ who showed that this third�order set of ODEs is the normal
form of the particular codimension�three bifurcation that occurs in the PDEs at
the Takens	Bogdanov point in the limit of narrow rolls
 The normal forms for
most codimension�one and two bifurcation have been analysed �Guckenheimer �
Holmes ������ the analysis of the normal forms of codimension�three bifurcations
is complicated by the fact that such sets of ODEs often exhibit chaotic behaviour

However the presence of this codimension�three bifurcation in a physical problem
makes the e�ort of its analysis worthwhile


The chaotic behaviour of the ODE model �and the PDEs� begins with the creation
of a Lorenz attractor which contains a countable in�nity of unstable periodic orbits
an uncountable in�nity of aperiodic trajectories and an orbit that is dense
 Lorenz
attractors are persistent over a range of parameter values so the fact that one exists
in the PDEs will not be a�ected by numerical errors or by the small terms discarded



from the ODE model
 In subsequent bifurcations there is a transition from a Lorenz
attractor to a quasi�attractor �Shil�nikov ����� a much more complicated object that
can contain an in�nite number of stable periodic orbits
 Gonchenko et al ������
proved that in a quasi�attractor the details of the behaviour depend sensitively on
the parameters in the problem implying that it is pointless to continue the detailed
comparison between the PDEs and the ODE model beyond the point of appearance
of the quasi�attractor


By considering the same limit of narrow rolls Proctor � Weiss ������ derived
a fourth�order set of ODEs describing small�amplitude convection near the Takens	
Bogdanov point for thermosolutal convection and simpli�ed the model to third�order
in the limit of small solutal di�usivity
 Their model equations have chaotic solutions
associated with heteroclinic trajectories between saddle�foci agreeing qualitatively
with the numerical solutions of the PDEs for two�dimensional thermosolutal
convection in rolls with aspect ratio of order one �Knobloch et al �����
 In a related
study of triple convection �thermosolutal convection in a layer of �uid rotating about
a vertical axis� Arn�eodo et al ����� ����a� expanded about a codimension�three
bifurcation point and obtained an asymptotically exact third�order model that has
chaotic solutions and that is in quantitative agreement with at least the steady
behaviour of the PDEs �Arn�eodo � Thual �����


The PDEs for two�dimensional Boussinesq convection in a vertical magnetic �eld
are described in section �� the derivation of the third�order model ODEs is in the
Appendix with the analysis of their bifurcation structure recalled in section �
 The
numerical techniques used to solve the PDEs are outlined in section �
 The PDEs and
the ODE model are compared for parameter values near the Takens	Bogdanov point
in section � and in section � the development of chaotic solutions in the PDEs and
ODEs as the roll width increases �up to the limit of validity of the ODE model� is
described
 We report numerical simulations of the PDEs in wider rolls in section �
and discuss the origin of the chaotic solutions that were hinted at by Weiss ������

We conclude in section �


�� Magnetoconvection in narrow rolls

The PDEs for two�dimensional convection in a Boussinesq �uid in the presence of a
vertical magnetic �eld are �Proctor � Weiss ������
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where � is the vorticity � is the stream�function with the velocity u � r� ���y� � is
the deviation from the static temperature pro�le so the temperature is �� z � � and
A is the deviation from the uniform vertical magnetic �eld so the total magnetic
�eld is B � ���A��z� �� � � �A��x�
 The horizontal coordinate x and vertical
coordinate z are scaled by the height h of the box
 Time t is scaled by the thermal



di�usion time h��	 where 	 is the thermal di�usivity
 The viscous Prandtl number
� � 
�	 and the magnetic di�usivity ratio � � ��	 �where 
 and � are the viscous
and magnetic di�usivities�
 Temperatures and magnetic �elds are scaled by the
temperature di�erence �T and the vertical magnetic �eld B

�
� B

�
�z imposed across

the box
 The other parameters are the Rayleigh number
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where g is the acceleration due to gravity �acting in the negative z direction�
� is the thermal expansion coe�cient �

�
is the reference density and 

�
is the

magnetic permeability of the �uid
 The nonlinearities contained in the Jacobian

J�f� g� � ��f��x���g��z����f��z���g��x� represent the transport of vorticity heat
and magnetic �ux� in addition the �uid is driven by the nonlinear Lorentz force


The �uid is con�ned to a box of �xed width L
 It is convenient to adopt illustrative
stress�free boundary conditions� � � � � � on the boundary
 The temperature is �xed
at the top and bottom boundaries �� � � on z � �� �� with no heat �ux across the
sides �����x � � on x � �� L�
 The magnetic �eld is required to be vertical at the top
and bottom boundaries ��A��z � � on z � �� �� with no loss of magnetic �ux across
the sides �A � � on x � �� L�
 Thus the �ve nondimensional parameters specifying
the problem are � � R Q and the �aspect ratio� � � �L�����L�� with � � � � �

Since � and � will be �xed while � will vary it is useful to scale R and Q�

�R�Q� �

�
����

���� ���
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��
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�
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��

Two�dimensional Boussinesq magnetoconvection has been reviewed by Proctor �
Weiss ������ see also Weiss ���� and Proctor �����
 If the temperature di�erence
across the layer is small then all �uid motion will decay due to viscous damping
leaving a uniform vertical magnetic �eld and a linear vertical temperature gradient

If the magnetic �eld is small then the initial bifurcation as r increases is a pitchfork
bifurcation from this state of no motion �the trivial solution� to one of steady
convection
 The two nontrivial steady solutions �one with the roll turning clockwise
and the other with the roll turning counter�clockwise� are related by the re�ection
symmetry of the problem
 As q increases the tension in the magnetic lines of force
opposes the convective motion until q exceeds a critical value q

C
 beyond which the

initial bifurcation is a Hopf �oscillatory� bifurcation
 At the bifurcation point C where

�r� q� � �r
C
� q

C
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�
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�
��� � ��

���� ��

�
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the Hopf and pitchfork bifurcations coincide and the problem has a pair of zero
eigenvalues
 This point C is a codimension�two Takens	Bogdanov �Takens �����
Arnol�d ����� Guckenheimer � Holmes ����� or �� �Arn�eodo et al ����b� bifurcation
point with re�ection symmetry
 Near this point the PDEs can be reduced to



the second�order normal form �Knobloch � Proctor ����� Coullet � Spiegel �����
Rucklidge ������

 v � 	 !v � �v � v� � v� !v� ��
��

where v represents the amplitude of convection and 	 and � are linear combinations
of r � r

C
and q � q

C

 The invariance of the normal form under changes of sign of v

is a consequence of the re�ection symmetry of the original problem
 The signs of the
cubic coe�cients depend on the parameters of the problem


By considering the limit of narrow rolls �Hughes � Proctor ����� additional
zero eigenvalues are introduced and the dimension of the centre manifold increases
implying an increase in the order of the normal formdescribing the problem
 Rucklidge
������ derived a low�order ODE model of magnetoconvection using as an intermediate
stage the �fth�order truncation of the PDEs due to Knobloch et al ������ obtaining
ODEs that describe the system in this limit�

 v � 	 !v � �v � vw �O�L��� !w � �w � v� � O�L��� ��
���

where w represents the horizontally averaged temperature
 The same ODEs can be
obtained using standard perturbation techniques �following Proctor � Weiss �����
using the width of the rolls as the small parameter
 The details of the derivation
are given in the Appendix but essentially in the limit of arbitrarily narrow rolls
arbitrarily accurate solutions of the PDEs can be constructed from the solutions of the
ODE model
 The important consequence is that all the bifurcation structure observed
in the ODEs ��
��� must be reproduced by the PDEs� in particular homoclinic
bifurcations leading to chaos in the ODEs must also exist and lead to chaos in the
PDEs
 Using the perturbation method it is possible to proceed beyond leading order
to obtain corrected model ODEs�

 v � 	 !v � �v � vw � L��M
�
!vw �M

�
vw �M

�
v�� �O�L���

!w � �w � v� � L��v� � �v !v� � O�L���
��
���

where M
�
 M

�
and M

�
are constants �given in the Appendix� that depend on � �

and 	
 Expressions relating �	� �� to �R�Q� are also given in the Appendix
 The
leading order model ��
��� gives accurate predictions of the behaviour of the PDEs in
the limit of narrow rolls but the prediction of behaviour at small but �nite roll width
is markedly improved by including the O�L�� corrections in ��
���
 In addition the
corrected ODEs ��
��� are required when discussing the larger�amplitude behaviour
of the PDEs


The same approach was used by Proctor � Weiss ������ and by Knobloch et al

������ to derive a third�order model of thermosolutal convection in the limit of narrow
rolls� at leading order their model di�ers from the one considered here only in the
sign of the nonlinearity in the  v equation leading to completely di�erent behaviour
from that discussed in this paper


�� Dynamics of the model ODEs

The uncorrected model ODEs ��
��� introduced by Shimizu � Morioka ������ as an
ad hoc model of the Lorenz equations in a regime where j�j � � have been analysed
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Figure �� Schematic bifurcation diagrams for the Takens�Bogdanov normal
form �
�� and for the model ODEs �
���� for two values of q and increasing r�
�a� q � qC� �b� q � qC� corresponding to the two dotted lines in Figure 
 The
Rayleigh number r is on the horizontal axis and the amplitude of the solution is on
the vertical axis
 Solid lines represent stable solutions� dashed lines represent unstable
solutions
 Filled circles represent local bifurcations and open circles represent global
�homoclinic or gluing� bifurcations


by Rucklidge ������ and Shil�nikov ����� ���� ������ the analysis is brie�y recalled
here
 The ODEs have three equilibrium points� the trivial solution �v� w� � ��� ��
and a symmetric pair of equilibrium points �v� w� � ��p������ which exist only
for � � �
 These two non�trivial solutions correspond to steady convection in the
original problem and are related by the re�ection symmetry
 The bifurcations from
the trivial solution are a supercritical pitchfork bifurcation at � � � and a subcritical
Hopf bifurcation at 	 � � with � � �


Periodic orbits will be described by symbol sequences of x�s and y�s indicating how
the orbit loops around the right �v � �� or the left �v � �� equilibrium points following
the notation that Sparrow ������ used for the Lorenz equations
 The simplest orbits
are the x� and y�orbits created in a Hopf bifurcation from the nontrivial equilibrium
points
 These two orbits which are related by the symmetry of the model are jointly
referred to as the x�orbits
 Asymmetric orbits will be pre�xed with an A unless there
is an odd number of symbols in the sequence �in which case the orbit is bound to
be asymmetric�
 Bifurcations will be pre�xed with the simplest orbit involved in
the bifurcation� for example the Hopf bifurcation from the nontrivial equilibrium
points at which the x�orbits are created is the x�Hopf bifurcation
 Similarly the
kneading invariant is de�ned by computing the one�dimensional unstable manifold
of the trivial solution and recording an x �y� for each maximum of w with v � �
�v � ��
 The kneading invariant changes at homoclinic bifurcations� for instance in
the x�homoclinic bifurcation the �rst two symbols of the kneading invariant change
from xx to xy
 Unfortunately as in the case of the Lorenz equations this naming
scheme is not a proper global description of trajectories in that it is possible for the
description of a periodic orbit to change even though there has been no bifurcation�
however the scheme is useful and will su�ce for the purposes of this paper


If 	 and � are assumed to be small �order �� ��
��� can be reduced to ��
�� the
normal form of the Takens	Bogdanov bifurcation with re�ection symmetry by scaling
�v� w� t� 	� ��� ��v� ��w� t��� �	� ���� and rewriting the !w equation as w � v� � � !w �
v� � ��v !v � O����
 When this is substituted into the  v equation ��
�� is recovered

Two bifurcation diagrams �see Figure �� taken with q �xed and r increasing illustrate
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Figure �� Numerically computed unfolding diagram of �
��� near the points C
and B
 The attracting solutions in di�erent regions of the ������plane are indicated
in italics� the bifurcation lines are labelled in roman
 At B� the x�gluing bifurcation
splits into an x�homoclinic bifurcation �x�h�� an x�saddle�node �x�sn� bifurcation� an
xy�symmetry�breaking �xy�sb� bifurcation and an Axy�homoclinic bifurcation �Axy�
h�
 At D� the Axy�h bifurcation combines with an Axyyx�h bifurcation� producing
an Axy�period�doubling �Axy�pd� bifurcation
 Schematic bifurcation diagrams taken
along the two dotted lines labelled �a� and �b� are shown in Figure �


the behaviour of the system in this r�egime
 In Figure ��a� with q � q
C
 there is a

subcritical Hopf bifurcation� beyond this point all trajectories escape to in�nity
 In
Figure ��b� with q � q

C
 there is a supercritical pitchfork �pf� bifurcation in which

the non�trivial equilibrium points are created
 These undergo a supercritical x�Hopf
bifurcation and a pair of x�orbits is created
 As r increases further these asymmetric
orbits �glue� together to form a symmetric xy�orbit at a double homoclinic �x�gluing�
bifurcation� this new orbit is destroyed at an xy�saddle�node �xy�sn� bifurcation


The unfolding diagram of ��
��� is presented in Figure �
 Here 	 and � are more
convenient unfolding parameters than r and q� bifurcation diagrams �for example
Figure �� taken at constant q correspond to the indicated diagonal slices through
the unfolding diagram sloping downwards to the right
 Near the Takens	Bogdanov
point C there are two bifurcations from the trivial solution� the Hopf bifurcation and
the pitchfork �pf� bifurcation
 The three bifurcation lines emerging from the point C
towards negative 	 and � are �from top to bottom� the x�Hopf the x�gluing and
the xy�saddle�node �xy�sn� bifurcations
 The xy�saddle�node bifurcation line stops
when it reaches the vertical dashed line along which trajectories of the ODEs become
unbounded� this is discussed in more detail in section �




The nature of the homoclinic bifurcation depends on the dominant eigenvalues
�those eigenvalues positive or negative that are closest to zero� of the trivial solution
and on the geometry of the homoclinic trajectories
 Near the point C in the
�	� �� plane the orbits involved in the x�gluing bifurcation are in the �gure�of�eight
con�guration� the homoclinic trajectories approach and leave the trivial solution in
the �v� !v� plane
 As the homoclinic bifurcation is followed away from the point C
the two negative eigenvalues of the trivial solution change order �at the point A
in Figure �� and the homoclinic trajectories switch to the butter�y con�guration�
they approach the trivial solution downwards along the w�axis and leave it in the
�v� !v��plane
 Next at the point B the positive eigenvalue in the �v� !v� plane becomes
larger in magnitude than the negative eigenvalue corresponding to the w�axis so
that beyond the point B orbits approaching the homoclinic bifurcation must be
unstable
 The homoclinic bifurcation is no longer a gluing bifurcation but it splits
�or �explodes�� into many bifurcations� the four principal ones are shown in Figure ��
an x�homoclinic bifurcation �x�h� an x�saddle�node �x�sn� bifurcation a subcritical
xy�symmetry�breaking �xy�sb� bifurcation and an Axy�homoclinic bifurcation �Axy�
h�
 Chaotic trajectories are found between the two homoclinic bifurcations� this wedge
is narrow at �rst but broadens as � decreases
 The xy�symmetry�breaking bifurcation
becomes supercritical �forming stable Axy�orbits� and the Axy�homoclinic bifurcation
is involved in another codimension�two global bifurcation at the point labelled D which
involves more complicated homoclinic bifurcations and the creation of the �rst of a
cascade of period�doubling �pd� bifurcations
 For more details see Rucklidge ������
and Shil�nikov ������


The transition at the point B for symmetric systems in the butter�y con�guration
such as the PDEs ��
��	��
�� or ODEs ��
��� is well understood �Lyubimov � Zaks
����� Glendinning ���� ����� Shil�nikov ����� Rucklidge �����
 Near this point the
�ow can be reduced to a one�dimensional Poincar�e map�

f � x� sign�x�
�
� � a jxj�

�
� ��
��

where x is the coordinate along the unstable eigenvector of the trivial solution � is the
ratio of the dominant negative eigenvalue to the dominant positive eigenvalue �� � �
at B� � is the x�coordinate of the intersection of the unstable manifold of the origin
with the Poincar�e plane � � � at the homoclinic bifurcation� and a is a parameter
that depends on the global properties of the �ow
 In the region of interest in ��
���
� � ���	�

p
	� � ��� and � � a � �
 With � � � and x and  small �that is near

enough to the point B� there is a correspondence between periodic orbits of the map
and the �ow and bifurcations in the map correspond to bifurcations in the ODEs

The correspondence is made using symbol sequences where the symbol x is used when
x � � and y for x � � in the map


The map ��
�� is constructed by considering points at which a trajectory of the
ODEs successively intersects a Poincar�e plane w � constant so that the �ow de�nes
a two�dimensional map from that plane back to itself
 The coordinates on the plane
are x and y along and transverse to the unstable direction
 The usual approach is to
assume that since the transverse direction is strongly contracting y quickly becomes
small and the x coordinate decouples resulting in ��
��
 The reduction can be made
rigorous if there is a strong stable foliation which essentially provides a new set of
coordinates �"x� "y� of the Poincar�e plane that has the property that lines of constant "x
are mapped to each other under iterations of the two�dimensional map
 In these
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homoclinic bifurcations �x�h and Axy�h�� with an interval of stable chaos in between


circumstances the "y coordinate decouples exactly and "x is governed by a map close
to ��
��
 While generically there is a stable foliation when � � � and  is small
�Gambaudo et al ����� and if there is one for � � � it is persistent �Robinson �����
unfortunately there is no guarantee of a stable foliation when � is near one
 However
Robinson ����� ����� has shown that there are examples of �ows similar to ��
���
and ��
��� that do possess a strong stable foliation near � � �
 Numerical simulations
of the ODEs ��
��� �Rucklidge ����� and of the PDEs �section �� suggest that the
map ��
�� is an excellent model of the behaviour near the point B


An analysis of the map leads to the bifurcation diagram in Figure �� the x�gluing
bifurcation in Figure ��a� splits into an in�nite number of homoclinic bifurcations
only two of which are indicated in Figure ��b�
 The stable x�orbit turns around in
an x�saddle�node �x�sn� bifurcation and is destroyed in the x�homoclinic bifurcation
�x�h�
 The xy�orbit created in the same homoclinic bifurcation gains stability
in the xy�symmetry breaking �xy�sb� bifurcation� the unstable Axy�orbits created
there are destroyed in the Axy�homoclinic �Axy�h� bifurcation
 In between the two
homoclinic bifurcations there is a parameter interval in which there are attracting
chaotic trajectories �a Lorenz attractor�
 At the point D in Figure � the map
parameter a passes through zero and a similar analysis is possible
 This point is
associated with the conversion of the Lorenz attractor into a quasi�attractor �Shil�nikov
�����


�� Numerical solution of the PDEs

The PDEs ��
��	��
�� were solved numerically using the spectral method with
harmonic basis functions
 This method was chosen for two reasons� �rst because
the mildly nonlinear solutions of interest here are approximated well by the linear
eigenfunction and second because of the similarity between the spectral method and
the approach used in constructing the model ODEs


For this application the spectral method consists of expanding the �uid variables
� � � and A using the harmonic functions that satisfy the boundary conditions�

��x� z� t� �
nX

i��

nX
j��

�ij�t� sin kix sinkjz� ��
��



with similar expressions for � � and A except that the x basis functions for � and
the z basis functions for A are cosines and the corresponding sums start from zero

The amplitudes �ij etc
 are functions only of time
 The wavenumbers are given
by ki � �i�L and kj � �j
 For the range of parameter values of interest in this
paper the amplitudes of all modes with i � j equal to an odd integer decay to zero
so these modes were dropped from the sum ��
��
 Retaining only those terms with
i � j � n �following Veronis ����� results in a more accurate solution
 The spectral
expansions were substituted into the PDEs ��
��	��
�� and the ODE for each mode
amplitude was determined resulting in a set of equations of the form !x � f �x�
where the mode amplitudes make up the elements of the vector x
 The linear terms
and derivatives are easy to calculate in spectral space
 The nonlinear terms were
calculated either spectrally by an analytic convolution in spectral space or pseudo�
spectrally by fast Fourier transforms and multiplication in physical space
 The two
methods agree to within machine accuracy but the second approach is the more
e�cient for larger n especially on vector computers
 At least �n�� modes were used in
the Fourier transforms which is su�cient for complete dealiasing as the nonlinearities
are quadratic


The relative truncation error �RTE� is de�ned to be the maximum of the ratio
of the amplitude of the modes with i � j � n to the amplitude of the primary ����
mode and is a measure of the importance of the modes that have been discarded

This quantity was monitored to ensure accurate numerical solutions� it was found that
n � �� was su�cient for the mildly�supercritical calculations reported here
 Thus in
e�ect the PDEs are approximated by a high�order set of ODEs� with n � �� there
are ��� independent mode amplitudes


The ODEs for the mode amplitudes are sti� in the limit of narrow rolls �the
modulus of the largest negative eigenvalue is O�n����� so the equations were solved
using a semi�implicit extrapolation integrator known as �Metan�� �Bader � Deu�hard
�����
 This integrator breaks each timestep down into a progressively larger number
of substeps and extrapolates to zero stepsize until the local relative truncation error
estimate is less than a speci�ed tolerance� ����� was used throughout
 Steady
solutions were computed using the Newton	Raphson method �Press et al ����� to
solve f �x� � � and their stability was determined by computing the eigenvalues
of the Jacobian matrix
 In this way steady�state bifurcations could be followed as
the parameters were varied
 The kneading invariant was computed by taking as the
initial condition a small step along the unstable eigenvector of the trivial solution and
recording the sign of v at the maxima of w where v and w were computed from the
PDE variables �

��
and �

��
using the expressions in the Appendix
 For the parameter

range of interest in this paper homoclinic bifurcations occur where the kneading
invariant changes and could be followed as the parameters were varied


	� Dynamics of the PDEs
 near the point C

In the Takens	Bogdanov normal form ��
�� and the uncorrected model ��
��� the
large�amplitude behaviour is unbounded for �	� �� near zero and the unstable branch
of xy�orbits in Figure ��a� and �b� tends to in�nity as 	 tends to ����� from above

Including the O�L�� correction terms in ��
��� results in the unstable branch turning
around in an xy�saddle�node bifurcation creating a large�amplitude stable periodic
orbit
 Table � shows how the agreement between the corrected model ODEs and the



Table �� The xy�orbit at the point C in the corrected model ODEs �
��� and in
the PDEs
 For each value �� the maximum of v for the ODEs and for the PDEs
is given� along with their ratio and the maximum RTE around the periodic orbit

These data were calculated with 	 � �� 
 � ���
 The PDEs were integrated with
n � � modes in each direction � repeating the calculation with n � � modes yields
the same results to three 	gures� with an RTE about ��� times higher


� L v �ODEs� v �PDEs� ratio Max RTE

�
��� �
�� �
��� �
��� �
���� ��� � �����

�
���� �
���� 
��� 
��� �
���� ��� � �����

�
���� �
��� �
��� �
��� �
���� �� � �����

�
���� �
���� �
��� �
��� �
���� ��� � �����

�
���� �
���� �
��� �
�� �
���� �� � �����

PDEs improves as the width of the rolls is decreased� the ratio between the maxima
of v around the orbit goes to one as � � �
 A similar agreement is found between
the maxima of w around the orbit
 It is interesting to note that v is O�L��� which
implies that the amplitude of the oscillation of the vertical component of the �uid
velocity goes to a constant as the width of the rolls goes to zero
 The stability of these
oscillatory �elevator modes� to disturbances that break the imposed re�ecting side
boundary conditions has not been investigated although Proctor � Hughes ������
have shown that steady narrow rolls can develop a horizontal shearing instability


The unfolding diagrams of ��
��� and of ��
��� for � � ���� are shown in Figure �

The saddle�node and gluing bifurcations in the ODE models were computed using
AUTO �Doedel � Kern�evez ������ in the latter case the homoclinic bifurcation was
followed by continuing orbits of very high period
 The lines of x�Hopf and x�gluing
bifurcations �here computed by approximating the unstable manifold of the origin�
were also calculated for the PDEs with � � ����� these lines are indistinguishable
from the results for the corrected ODEs
 Figure � shows three bifurcation diagrams
taken along the three dotted lines marked in Figure ��b�
 In Figure ��a� �with q � q

C
�

the xy�orbits created in the subcritical xy�Hopf bifurcation from the trivial solution
gain stability in an xy�saddle�node bifurcation 	 stable xy�orbits are found to the
right of this bifurcation line labelled xy�sn in Figure �
 As q decreases through q

C

�Figure �b� the xy�Hopf bifurcation climbs onto the branch of steady solutions as
before but now the unstable branch of xy�orbits regains stability in a second xy�
saddle�node bifurcation
 In Figure ��c� for even smaller q these two xy�saddle�node
bifurcations have coalesced in a cusp


The primary Hopf bifurcation to xy�orbits is subcritical just above the Takens	
Bogdanov point but becomes supercritical �in the corrected ODEs� for � 	 O�L���

As the width of the rolls increases the point at which the primary Hopf bifurcation
becomes supercritical moves towards the Takens	Bogdanov point and the parameter
range over which there are subcritical xy�orbits diminishes
 Even in the uncorrected
model �Figure �a� unstable xy�orbits only exist when ����� � 	 � ���� the line of
xy�saddle�node bifurcations terminates in that case at �	� �� � �������������
 In
subsequent unfolding diagrams the small region of subcritical xy�orbits will not be
mentioned
 The saddle�node bifurcation was not computed in the PDEs


The values of the two di�usivity ratios � and � were �xed at �
� and �
� respectively
for all the narrow roll calculations �section ��
 These values were chosen so as to
maximise the range of roll widths over which the bifurcation diagrams in Figure � are
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Figure �� Unfolding diagrams of �a� the uncorrectedmodel ODEs �
��� and �b� the
corrected model ODEs �
��� with � � ����� 	 � ��� and 
 � ���
 The attracting
solutions in di�erent regions of the ��� ���plane are indicated in italics� the bifurcation
lines are labelled in roman
 In �a�� all trajectories become unbounded as �� ����
�the dashed line�
 If � � ������ it is the unstable xy�orbit created in the primaryHopf
bifurcation that becomes unbounded� while for � � ������ it is the stable xy�orbit
created in the x�gluing bifurcation that becomes unbounded
 In �b�� all trajectories
remain bounded� and the xy�saddle�node bifurcation line has a cusp
 Schematic
bifurcation diagrams taken along the three slices in �b�� indicated by dotted lines�
are shown in Figure �
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Figure �� Schematic bifurcationdiagrams taken along the three dotted lines marked
in Figure ��b�
 �a� q � qC� �b� q just below qC� �c� beyond the cusp of saddle�node
bifurcations


at least qualitatively correct� with these parameter values and L �
�
����� �� �

�
������

the three bifurcation lines �x�Hopf x�gluing and xy�saddle�node� emerge from the
Takens	Bogdanov point into the third quadrant in the �	� ���plane and the primary
Hopf bifurcation is subcritical
 An additional constraint is that the system must not
be unstable to rolls narrower than the imposed box width
 With these values of �
and � the Takens	Bogdanov point occurs at �r

C
� q
C
� � ��� ��
 The behaviour of the
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Figure �� Unfolding diagrams of the corrected model ODEs �
��� �solid lines� and
the PDEs �dashed lines�� with 	 � ��� and 
 � ���
 �a� � � ����� �b� � � �����
�c� � � ����� �d� � � ���
 The dotted line indicates where � � � in the ODEs


system with wider rolls is discussed in section �




�� Dynamics of the PDEs
 chaos in narrow rolls

The ODE model ��
��� makes quantitative predictions of the locations of bifurcations
in the PDEs
 The pitchfork and Hopf bifurcations from the trivial solution are given
exactly by the relations between �R�Q� and �	� ��
 The predictions of the other
bifurcations are given by ��
��� but are improved by including the O�L�� terms
in ��
���
 Figure � shows the �	� ���unfolding plane of ��
��� for four roll widths�
� � ���� �
�� �
�� and �
�� using the illustrative parameters � � ��� and � � ���

In addition to the x�Hopf x�homoclinic �or gluing� and xy�saddle�node bifurcations
that begin at the Takens	Bogdanov point the Axy�homoclinic bifurcation line was
computed� this line begins where the x�gluing bifurcation crosses the dotted line
where � � �
 The unfolding diagram of ��
��� �Figure �� is essentially the same as
that for � � ���� shown in Figure ��a�
 The locations of the x�Hopf x�homoclinic
and Axy�homoclinic bifurcations in the PDEs were also computed 	 these are shown
as dashed lines in Figure �
 The lines of higher homoclinic bifurcations proved to
be too laborious to compute for more than short sections though the calculations
are in principle possible
 The agreement between the ODEs ��
��� and the PDEs is
remarkably good� for � � ���� �Figure �a� the PDE bifurcations lie on top of the
ODE bifurcations to within the width of the line
 For � � ���� and �
�� �b	c� the
corresponding lines only begin to diverge for � � �� while for � � ���� �d� there is
still qualitative agreement� in the PDEs the Axy�homoclinic bifurcation begins where
the x�gluing bifurcation crosses � � � and in the ODEs and PDEs the lines of x�Hopf
and x�homoclinic bifurcations cross near � � ����
 The region of agreement between
the PDEs and the ODEs can be translated from �	� �� to �r� q�� for example with
� � ���� the region depicted in Figure ��c� translates �approximately� to � � q � �
and r less than �# above its critical value


The most interesting bifurcation from the point of view of discovering chaotic
solutions in the PDEs is the x�homoclinic bifurcation
 When this line crosses the line
where � � � the conditions necessary for the one�dimensional map ��
�� to be a good
model of the �ow are ful�lled provided the crossing occurs with 	 � �
 Just beyond
the crossing points there must be an interval of chaotic trajectories between the x�
and Axy�homoclinic bifurcations
 This chaotic behaviour is demonstrated in Figure �
for � � ���� and q �xed at q � ��� for two parameter values on either edge of the
chaotic interval
 These data show convincingly how well the chaotic PDE behaviour
is captured by the one�dimensional map ��
��
 The behaviour of the PDEs matches
Figure ��b� exactly� for ��� � r � ��������� all trajectories tend either to the stable
steady solutions or to a stable x�orbit� this is followed by a chaotic interval then for
r � �������� all trajectories tend to a stable xy�orbit


Figure ��a�	�d� are at r � ��������� just beyond the x�homoclinic bifurcation
showing the chaotic manner in which the system alternates between clockwise and
counter�clockwise �v positive and negative respectively� rolls
 Note that the kneading
invariant may be read from �b�
 Even though the trajectory in �a� does not appear
to be chaotic its true nature is revealed in �c� which shows an enlargement near
the origin
 The value of v is recorded each time the trajectory intersects the plane
w � ������ this value of v is plotted against the subsequent value of v resulting in
a one�dimensional return map from the integration of the PDEs shown as crosses
in Figure ��d�
 These data are �tted to the predicted form of the map ��
�� using
the value of � computed from the eigenvalues of the trivial solution of the PDEs
the resulting map being the �scarcely visible� solid line in �d�
 The �tting was a
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Figure 	� Examples of chaotic trajectories in the PDEs with 	 � ���� 
 � ��� and
q � ���
 �a���d� are for r � ��������� near the x�homoclinic bifurcation� and �e���h�
are for r � �������� near the Axy�homoclinic bifurcation
 �a�e� Phase portraits�
w plotted against v
 �b�f� Time series� v against time
 �c�g� Details of the phase
portraits near the origin
 �d�h� Return maps� the crosses indicate the values of v at
which the trajectory in the PDEs intersects a plane w � const� and the solid line
indicates the map ��
�� with 	tted map parameters
 In �d�� w � ������ � � �������
and 	tted map parameters � � �������� and a � ����
 In �h�� the return plane is
w � ����� and the map parameters are � � �������� � � ����� a � ����� also
shown in �h� is the renormalized return map �the inner graph� expanded by a factor
of twenty�� using a return plane w � ������ with 	tted map parameters � � ��������
and a � �����
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Figure 
� Examples of trajectories of �a���b� the PDEs and �c���d� the corrected
ODEs with 	 � ���� 
 � ��� and � � ����� and the parameters ����� chosen
close to the T�point in the ODEs� ��� �� � �������������
 The corresponding PDE
parameters are �r� q� � ����������������
 Phase portraits are shown in �a� and �c��
time series are shown in �b� and �d�


linear least�squares �t of ��
�� plotting f�x� against jxj�
 Similarly Figure ��e�	�g�
are at r � �������� just before the Axy�homoclinic bifurcation
 The wide lacuna
�gap� is evident in the chaotic attractor �Figure �g� indicating that the dynamics is
renormalizable �Glendinning � Sparrow �����
 The map obtained using w � �����
as the return plane is shown in �h�� renormalizing is e�ected by dropping every
other return to this plane or by using w � ����� within the lacuna 	 the resulting
renormalized map is also shown in �h� enlarged by a factor of twenty
 In fact the
renormalized map also has a narrow lacuna �a gap in the distribution of crosses�
indicating that a second renormalization is possible
 This implies that the sequence
of x�s and y�s in the kneading invariant �see Figure �f� can be grouped into a chaotic
sequence of xyyx�s and yxxy�s
 For r � �������� trajectories tend to an xy�orbit


As r continues to increase there is a second interval of chaotic solutions that
begins with an xy�symmetry�breaking and an Axy�homoclinic bifurcation �r � �����
corresponding to the line q � ��� entering the upward lobe of the Axy�homoclinic
bifurcation in Figure ��c�
 As r increases beyond this point one must be careful about
the numerics� the RTE has so far remained below ���� for the n � �� truncation �recall
that r is only �
�# above its critical value of �
�� but this second interval of chaotic
oscillations persists to r � ���� where the RTE is �
��
 We have not attempted to
follow accurately the PDEs in this r�egime but merely state that with the truncation
�xed at n � �� the steady solution regains stability in a Hopf bifurcation at r � ����




The model ODEs ��
��� are capable of much more complicated behaviour
 At
�	� �� � ��������������������� there is a T�point at which there are heteroclinic
connections between all three �xed points and the two non�trivial �xed points are
saddle�foci �Glendinning � Sparrow ����� Bykov ���� �����
 In the corrected
ODEs ��
��� with � � ���� the T�point occurs at �	� �� � ����������������������

Figure � shows solutions of the PDEs and of ��
��� at parameter values near the
T�point in the ODEs
 In the ODEs one heteroclinic connection is evident as the
unstable manifold of the origin comes very close to the unstable nontrivial �xed point�
trajectories close to the one computed will return to a neighbourhood of the origin

The PDEs are clearly near but not at their T�point �the unstable manifold of the
origin misses the nontrivial �xed point� but this is not surprising considering the
magnitude of�
 No doubt there is a T�point in the PDEs for nearby parameter values

Similar calculations done with smaller values of� show a much closer agreement but it
interesting to see the narrow�roll predictions for individual parameter values persisting
up to rolls about one sixth as wide as they are high


The chaotic dynamics observed near � � � �Figure �� is due to the existence of a
Lorenz attractor which may be modelled reliably by the one�dimensional map ��
��

On the other hand the chaotic dynamics observed near the T�point �Figure �� is due
to the existence of a quasi�attractor which cannot in principle be modelled reliably
�Gonchenko et al �����
 This implies that the details of the dynamics near the T�
point will be sensitive to the terms that were discarded from the model as well as to
truncation and numerical errors introduced when solving the PDEs so it is pointless
to continue the comparison between the PDEs and the ODEs any further


As the x�homoclinic bifurcation is followed further from the origin it eventually
swings into the 	 � � half�plane �see for example Figure �d�
 Moreover for wider rolls
the point at which the x�gluing bifurcation crosses the line � � � �which corresponds
to � � 	 � � in the model ODEs� occurs at values of 	 closer to zero
 Eventually
the x�gluing bifurcation must cross the line � � � exactly at 	 � � at which point
there is a codimension�three homoclinic bifurcation� all three eigenvalues of the origin
are equal in magnitude
 This occurs when � � ����� in the corrected ODEs but for
narrower rolls in the PDEs
 As long as the rolls are narrower than this the prediction
of the existence of the Lorenz attractor in the PDEs remains good
 In wider rolls
when the line of x�gluing bifurcations crosses into the 	 � � half�plane before crossing
the line � � � the gluing bifurcation must occur on an unstable portion of the branch
of x� and xy�orbits since when 	 � � the unstable eigenvalue of the origin is greater
in magnitude than the stable eigenvalues
 There is thus a codimension�two gluing
bifurcation �of the type analysed by Rodr�$guez�Luis et al ����� at which a pair
of saddle�node bifurcations are created in essentially the same way as discussed by
Rucklidge et al ������
 Unlike in the case of narrower rolls discussed above this
unstable gluing bifurcation does not involve chaotic trajectories since the orbits are
in the �gure�of�eight �not the butter�y� con�guration and the dynamics near the
gluing bifurcation is essentially two�dimensional
 The codimension�three homoclinic
bifurcation could be analysed in terms of the map of Lyubimov � Byelousova ������
but this is beyond the scope of this paper


�� Dynamics of the PDEs
 wider rolls

The ODEs ��
��� used in the previous sections to model the behaviour of the PDEs
in the limit of narrow rolls fail as the roll width becomes larger
 When the rolls are
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Figure �� Schematic bifurcations diagrams of ��
�� with q 	xed above �a�c� and
below �d�f� qC
 �a�d� Narrow rolls� M � � and N � �
 �b�e� Medium rolls� M � �
and N � �
 �c�f� Wide rolls� M � � and N � �


wider than L � ����� �� � ������ using the illustrative parameter values � � ���
and � � ��� even the qualitative description of the behaviour of the PDEs near the
Takens	Bogdanov point �Figure �� is incorrect
 The reason for this failure is that the
coe�cients of the cubic terms in the Takens	Bogdanov normal form ��
�� change sign
as the width of the rolls increases


The behaviour of the PDEs as the cubic coe�cients change sign is captured by the
model of Rucklidge et al ������ who considered compressible convection in a vertical
magnetic �eld with similar values of all the physical parameters
 They modi�ed ��
��
to include appropriate quintic terms�

 v � 	 !v � �v �Mv� � Nv� !v � v� � v� !v� ��
��

The quintic terms are those that would appear in a problem with re�ection symmetry
if the coe�cients of the cubic terms �M and N � were zero
 The signs of the quintic
terms were chosen to prevent trajectories going to in�nity regardless of the values ofM
and N 
 The signs of M and N give the behaviour at the primary pitchfork and Hopf
bifurcations respectively� if the coe�cient is positive the corresponding bifurcation is
supercritical
 The cubic coe�cients were calculated by Knobloch � Proctor �������
M is negative and N is positive in the limit of narrow rolls and as the roll width
increases �rst N changes sign �at L � ����� when � � ��� and � � ���� then
M changes sign �at L � ��� regardless of the values of � and ��
 In the model ��
���
N changes sign at L � ����� �� � ����� and M does not change sign


The behaviour of ��
�� in the three parameter r�egimes is given in Figure �� the
behaviour in the limit of narrow rolls �a and d� has been discussed in section �



�Figure ��
 In medium�width rolls with q � q
C
�Figure �b� the xy�orbit is created

in a supercritical Hopf bifurcation and rejoins the steady branch in a saddle�node
ungluing and subcritical Hopf bifurcation sequence
 Rucklidge et al ������ suggest
that the xy�orbit in the narrow�roll case �Figure �ad� will rejoin the steady branch
in the same manner in the medium roll case �Figure �b�
 With q � q

C
in the medium

and wide cases �Figure �ef� there is only the primary pitchfork bifurcation though
there may subsequently be a bubble of unsteady behaviour
 Finally in the case of
wide rolls with q � q

C
�Figure �c� the xy�orbit is destroyed in an xy�heteroclinic

bifurcation when it collides with the branch of unstable steady solutions which gains
stability in a saddle�node bifurcation
 The transition between the medium and wide
roll cases is discussed by Dangelmayr et al ������ who included only the v� term in
��
��
 Here the v� !v term is required to allow the subcritical oscillatory branch to gain
stability in a saddle�node bifurcation and so model the narrow	medium transition


Weiss ������ solved the PDEs numerically for a variety of parameter values near
the Takens	Bogdanov point and found behaviour consistent with Figure ��b� and �c�
familiar from the work of Knobloch et al ������ who studied a �fth�order truncation
of the PDEs for convection in a vertical magnetic �eld
 The bifurcation structure of
that truncation has been explored by Knobloch � Weiss ������ who reported the
development of chaotic solutions associated with a heteroclinic connection between a
pair of saddle�foci �the unstable steady solutions� with a real positive eigenvalue larger
in magnitude than the real part of a pair of stable complex eigenvalues


The starting point of a search for chaotic oscillations in the PDEs must be in
parameter r�egimes where it can be established that there are global connections
that is at the Takens	Bogdanov point
 In the earlier part of this paper the gluing
bifurcation in Figure ��d� was successfully followed into a parameter r�egime where the
eigenvalues were ordered in the manner necessary for chaotic oscillations
 In the case
of rolls of medium width the global bifurcation occurs on the unstable branch so any
associated chaotic oscillations will not be attracting
 The wide roll case o�ers more
hope� up to the heteroclinic bifurcation in Figure ��c� the xy�orbit is attracting so
any chaotic trajectories associated with this global bifurcation ought to be attracting
for at least some parameter values
 Beyond the global bifurcation all trajectories are
attracted to the large�amplitude steady solution


As yet the only suggestion that the chaos that Knobloch � Weiss ������ found
in the �fth�order truncated model may also be found in the PDEs was made by
Weiss ������ who found at one set of parameter values aperiodic behaviour that
did not settle down to regular oscillations after ten cycles
 We have repeated Weiss�s
calculations and �nd chaotic trajectories at and near his parameter values
 In the
remainder of this section Weiss�s parameter values are used� � � ��� � � ��� and
� � ��� �L � ��
 For these values the cubic coe�cients in ��
�� satisfy M � � and
N � � so near the Takens	Bogdanov point the appropriate bifurcation diagrams are
Figure ��b� and �e�
 However numerical experiments on the truncated model suggest
that it is only for values of q extremely close to �and just above� the codimension�
two value q

C
that the system behaves as in Figure ��b� 	 the steady branch almost

immediately goes through a saddle�node bifurcation and descends to smaller r before
regaining stability in a second saddle�node bifurcation
 Additionally the xy�orbit
created in the primary Hopf bifurcation is destroyed in a heteroclinic bifurcation when
it collides with the unstable steady branch �Knobloch et al �����
 Therefore the most
useful bifurcation diagram to consider is Figure ��c� which describes the essentials
of the behaviour of the truncated model for q �

�
q
C

�with the addition of a minor
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Figure ��� Solutions of the PDEs with 	 � ���� 
 � ���� � � �� and q � ���
�a� r � ���� �b� r � ���� �c� r � ���� �d� r � ��� showing the development of
chaos through a symmetry�breaking�period�doubling sequence


supercritical detour of the steady branch�


We investigate the possible chaotic behaviour of the PDEs with rolls of square
cross�section by beginning with the global bifurcation that emerges from the Takens	
Bogdanov point at �r

C
� q
C
� � ������ �����
 We do not attempt a complete study of this

problem but only calculate three slices through the �r� q��plane following the periodic
orbit created in the Hopf bifurcation until it is destroyed in a heteroclinic bifurcation
with the unstable steady solutions
 A �xed truncation was used for solving the PDEs
�n � ��� which kept the RTE below ����
 Some of the calculations were redone
with n � �� with no signi�cant change in the observed behaviour and an RTE less
than ����


With q � ��� the Hopf bifurcation occurs at r � ������ the periodic orbit is
destroyed at r � ����� when it collides with the unstable �xed point created in the
pitchfork bifurcation at r � ��� �as in Figure �c�
 At the heteroclinic bifurcation the
relevant eigenvalues of the �xed point have ratio � � ���� where � is the absolute
ratio of the real part of the dominant negative eigenvalue to the positive eigenvalue

The steady solution persists down to r � ����� before turning around in a saddle�node
bifurcation
 Further from the Takens	Bogdanov point with q � ��� there is a bubble
of symmetry�broken oscillations around r � ��� and the periodic orbit is destroyed in
a heteroclinic bifurcation at r � ����� this time with � � ����
 The steady solution
turns around in a saddle�node bifurcation at r � �����
 Finally with q � ��� the
symmetric periodic orbit �Figure ��a� undergoes a symmetry�breaking bifurcation �b�



followed by a period�doubling bifurcation �c� leading to chaotic oscillations �d� at
r � ����
 This is followed by an inverse period�doubling cascade and for r �

�
�����

�� � ����� trajectories tend to the large�amplitude steady solution created in a
saddle�node bifurcation at r � �����


In the chaotic intervals described above the eigenvalue ratio � of the unstable
steady solution does not satisfy Shil�nikov�s ������ criterion for the existence of chaotic
solutions at the heteroclinic bifurcation �� � �� even though apparently chaotic
trajectories are observed numerically� in fact chaotic trajectories are observed before
the steady solution has even been created in its saddle�node bifurcation �as in for
example Figure ��d�
 However Glendinning � Sparrow ������ point out that when
� is not much greater than � chaotic behaviour is often found even though the
asymptotic behaviour as the heteroclinic bifurcation is approached is not chaotic

The aperiodic solution that Weiss ������ found was at r � ���� and q � ����� our
calculations support Weiss�s suggestion that the PDEs for convection in a vertical
magnetic �eld have chaotic trajectories and vindicate prediction of chaotic solutions
made by the �fth�order truncated model of Knobloch et al ������


This route to chaos associated with a Shil�nikov bifurcation has been observed in
the PDEs for two�dimensional thermosolutal convection �Knobloch et al ����� and
investigated in detail in an asymptotically exact model �Proctor � Weiss ����� and a
truncated model �Knobloch et al ����� of the same system
 In that case as in this
there is a codimension�two bifurcation where the eigenvalue ratio satis�es � � � at the
heteroclinic bifurcation when it is followed away from the Takens	Bogdanov point

This codimension�two global bifurcation with complex eigenvalues has been studied
by Healey et al ������ and by Freire et al ������ but a complete analysis has not yet
been carried out


�� Conclusion

We have studied the transition to chaos in the PDEs ��
��	��
�� for two�dimensional
Boussinesq magnetoconvection using a combination of analytical and numerical
techniques
 In the limit of narrow rolls the ODE model ��
��� provides an
asymptotically exact description of the behaviour of the PDEs near the Takens	
Bogdanov point
 The transition to chaos occurs in this model at a codimension�
two global bifurcation near which point the dynamics is well described by the one�
dimensional Lorenz map ��
��
 In this limit the bifurcations of the PDEs must be
the same as those of the ODEs� independently the arguments that lead to the Lorenz
map in the ODEs apply to the situation in the PDEs as well demonstrating that
the PDEs have chaotic trajectories originating in the same codimension�two global
bifurcation
 Near this bifurcation point numerically computed solutions of the PDEs
are well described by the Lorenz map
 This is the �rst time that the nature of chaotic
oscillations observed numerically in PDEs has been established �rmly


The ability of the ODE model ��
��� to describe accurately the behaviour of the
PDEs in rolls of �nite width is markedly improved by including �rst�order corrections
in ��
���
 Calculations of trajectories at the Takens	Bogdanov point in the PDEs and
in the corrected model ODEs agree in the limit of narrow rolls and the corrected ODEs
are able to track the locations of the bifurcations in the PDEs over a considerable
region of parameter space
 The locations of the principal bifurcation lines vary
smoothly with the width of the rolls and the PDEs have a T�point at parameter values



near the T�point in the ODEs
 Since the T�point is associated with the transition from
a Lorenz attractor to a quasi�attractor in ��
��� �Shil�nikov ����� Bykov � Shil�nikov
����� and since Gonchenko et al ������ have proved that the existence of a quasi�
attractor in a system implies that the details of the bifurcation sequences will depend
sensitively on the parameters in the problem �and on the terms that were discarded
in ��
���� it is pointless to pursue the comparison between the PDEs and the model
ODEs any further
 The only exception to this would be to work out how the Lorenz
attractor vanishes as the width of the rolls increases but this is not attempted in this
paper


The global bifurcation that leads to chaotic dynamics is on the stable part of the
oscillatory branch in the case of narrow rolls
 With rolls of medium width this global
bifurcation moves onto the unstable part of the oscillatory branch �Rucklidge et al

����� while in the case of wide rolls the stable oscillatory branch collides with the
unstable steady branch in a heteroclinic bifurcation
 In that case attracting chaotic
trajectories arise once the eigenvalues are ordered appropriately or even before
 It may
be that this heteroclinic connection between the unstable steady solutions in the wide�
roll case is related to the heteroclinic connection between the same unstable steady
solutions that is created at the T�point but more calculations would be required to
elucidate this relationship


In this paper we have considered the behaviour of the PDEs for two�dimensional
Boussinesq convection in the presence of a vertical magnetic �eld assuming
no instabilities to modes that break the imposed spatial symmetries and two�
dimensionality
 If the �uid is con�ned to a box with re�ecting side boundary
conditions then the only possible two�dimensional symmetry�breaking instability is
to asymmetric rolls which could be modelled by including terms proportional to
sin���x�L� sin�z in the stream�function �Nagata et al �����
 If periodic side boundary
conditions had been used instead there are two other two�dimensional instabilities� to
sheared%tilted rolls if a term like cos���x�L� sin�z is included in the stream�function
�Matthews et al ����� and to travelling waves if a term like cos��x�L� sin�z is
included �Dangelmayr � Knobloch �����
 In the �rst two of these three instabilities
the linear instability boundary is far away from the Takens	Bogdanov point in the limit
of narrow rolls
 Rucklidge � Matthews ����� ����� have used the same technique of
taking the limit of narrow rolls �but with small magnetic �eld� with periodic boundary
conditions and obtained a �fth�order truncation of magnetoconvection that exhibits a
variety of complicated global bifurcations� their model is in qualitative agreement with
PDE simulations
 The instability to travelling waves has been analysed by Matthews
� Rucklidge ������ who show that near the Takens	Bogdanov point in the limit of
narrow rolls travelling waves are unstable to standing waves
 Thus we expect to
observe the chaotic trajectories described in this paper even if the imposed spatial
symmetries are relaxed


The three�dimensional instabilities pose a greater problem
 Clune � Knobloch
������ have calculated the preferred form of three�dimensional convection at onset

Steady convection always sets in as rolls so the instabilities of rolls that lead to
chaos are not excluded but as the analysis of the Takens	Bogdanov bifurcation in
the three�dimensional case has yet to be performed it may be that three�dimensional
instabilities occur before the bifurcations described in this paper
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Appendix� Derivation of the model ODEs

The model ODEs ��
��� may be derived directly from the PDEs for Boussinesq
convection in a vertical magnetic �eld ��
��	��
�� using standard perturbation
techniques �Malkus � Veronis �����
 The width of the rolls L is taken as the
small parameter� �R�Q� are required to be near the codimension�two bifurcation point
�R

C
� Q

C
��

R � R
C
�� � L�r

�
� L�r

�
� L	r

	
� � � ��� Q � Q

C
�� � L�q

�
� L�q

�
� L	q

	
� � � ����A
��

where

�R
C
� Q
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� �
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L����� ��
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����� � ���� � L���

L���� � ��

�
� �A
��

The horizontal coordinate x is scaled to Lx and time t is scaled by a factor of �����

An examination of the balance between the terms in the PDEs leads to the expansions�
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where �
�
etc
 are functions of x z and t
 Substituting these expansions into the PDEs

and equating powers of L results in the leading�order linear equation�
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where �R
�
� Q

�
� are the leading�order terms in �R

C
� Q
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De�ne L to be the linear di�erential operator de�ned by equations �A
��	�A
�� which
have two independent solutions that satisfy the boundary conditions�
�
��

�

�
�

A
�

	
A �

�
� a

�
�t� sin �x sin�z

�a
�
�t���� cos �x sin�z
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where a
�
�t� and C

�
�z� t� are as yet undetermined functions
 The existence of the �rst

solution requires that R
�
� ��Q

�
� ��
 The general solution at leading order is then

the sum of these two independent solutions
 At �rst order the equation
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where a
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�
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included in a
�
 so a

�
is set to �
 At second order the equation
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�
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x�independent terms to drive it
 The solution at this order is�
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At third order the nonlinear terms start to appear�
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No sin�x sin�z term is necessary at this order but now C
�
is forced by the sin ��z

term� the equation is solved by writing

C
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 At fourth order the equation
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is solved by writing C
�
� � and
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In these expressions the parameter q
�
is speci�ed by higher�order terms
 If only

the leading�order model ��
��� is required the choice q
�
� ������ is convenient as

the bifurcations from the trivial solutions of the PDEs ��
��	��
�� and the �nal ODEs
coincide exactly� the pitchfork bifurcation occurs when � � � and the Hopf bifurcation
from the trivial solution occurs when 	 � � and � � �
 Equations �A
��� and �A
���
are the ODE model ��
��� to within a rescaling of the variables


In order to compute the corrections to the ODEs �A
��� and �A
��� it is necessary
to go to �fth and sixth order
 The equations at �fth order are solved by writing
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At sixth order a second�order ODE for a
�
is obtained
 By this stage the harmonics

that appear the the expressions for �
	
 �

	
and A

	
are the ���� ���� ���� ���� and

���� modes

The two second�order ODEs for a

�
�A
��� and for a

�
and the two �rst�order ODEs

for c
�
�A
��� and for c

�
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��� may be combined to give a corrected ODE model
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in order to eliminate linear terms at order L� the corrected ODEs ��
��� are obtained�

 v � 	 !v � �v � vw � L��M
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The leading�order terms in these corrected ODEs comprise the model ��
��� discussed
in the main body of the paper
 The parameters R and Q in the PDEs are calculated
from 	 and � using �A
��� conversely 	 and � can be found uniquely from R and Q
when L is small by inverting �A
�� and requiring that they be of order one
 Using the
scaled variables v and w the �rst few terms in the asymptotic series for � � and A
are�
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Thus solutions to the model ODEs ��
��� provide asymptotically correct solutions to
the PDEs ��
��	��
��


The calculation in this Appendix was performed with the aid of the symbolic
algebra package Reduce �Hearne �����
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