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Abstract 

In the United Kingdom, as with other European countries, land-based emissions of NOX and SO2 have 

fallen significantly over the last few decades. SO2 emissions fell from a peak of 3185 Gg S in 1970 to 344 Gg S 

in 2005 and are forecast by business-as-usual emissions scenarios to fall to 172 Gg by 2020. NOX emissions 

were at a maximum of 951 Gg N in 1970 and fell to 378 by 2005 with a further decrease to 243 Gg N forecast 

by 2020. These large changes in emissions have not been matched by emissions changes for NH3 which 

decreased from 315 Gg N in 1990 to 259 in 2005 and are forecast to fall to 222 by 2020. The Fine Resolution 

Atmospheric Multi-pollutant Exchange model (FRAME) has been applied to model the spatial distribution of 

sulphur and nitrogen deposition over the United Kingdom during a 15 year time period (1990-2005) and 

compared with measured deposition of sulphate, nitrate and ammonium from the national monitoring network. 

Wet deposition of nitrogen and sulphur was found to decrease more slowly than the emissions reductions rate. 

This is attributed to a number of factors including increases in emissions from international shipping and 

changing rates of atmospheric oxidation. The modelled time series was extended to a 50 year period from 1970 

to 2020. The modelled deposition of SOx, NOy and NHx to the UK was found to fall by 87%, 52% and 25% 

during this period. The percentage of the United Kingdom surface area for which critical loads are exceeded is 

estimated to fall from 85% in 1970 to 37% in 2020 for acidic deposition and from 73% to 49% for nutrient 

nitrogen deposition. The significant reduction in land emissions of SO2 and NOX focuses further attention in 

controlling emissions from international shipping. Future policies to control emissions of ammonia from 

agriculture will be required to effect further significant reductions in nitrogen deposition. 
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1. Introduction  

Acid deposition, originating mainly from man made emissions of SO2, NOx and NH3 

has had significant ecological and economic consequences, especially during the last two 

decades of the 20th century, affecting forests, soil and freshwater ecosystems in large areas of 

Europe (Posch et al., 1997; EEA, 1998; Berge et al., 1999; Davies et al., 2004; Vuorenmaa, 

2004; Błaś et al., 2008; Fagerli et al., 2008). The total area affected by exceedance of 

acidifying sulphur and nitrogen on a European scale was about 20% in the mid eighties 

(Posch et al., 1997; Berge et al., 1999; Mill et al., 2003). 

In many countries depositions and concentrations to a large extent originate from 

sources outside the countries themselves and it is necessary to assess the changes on a larger 

scale, taking into account the trans-boundary fluxes (Fowler et al., 2007). Hence the problems 

of acidification have been addressed internationally by the 1979 Geneva Convention on Long 

Range Trans-boundary Air Pollution (CLRTAP) and two protocols targeting sulphur emission 

reductions have been signed in Europe (Berge et al., 1999). As a result of international 

pollutant abatement policy and structural changes in industrial sector, substantial reductions in 

gaseous emissions have been observed, with SO2 being reduced most significantly. Land 

based sulphur emissions from 1970 to 2005 declined by between 90 and 70% depending on 

the region of Europe (Fowler et al., 2007). Larger reductions were found in the area of the 

former Soviet Union and western Europe than in central eastern Europe (Berge et al., 1999; 

Mitosek et al., 2004). For oxidized and reduced nitrogen the overall European reductions from 

1980 to 2003 were between 20 and 50%. Both oxidized and reduced nitrogen emissions fell 

more in eastern Europe than in western Europe (Fowler et al., 2005; Fagerli et al., 2008). 

Air pollution emissions of SO2 and NOx have decreased in the UK significantly during recent 

decades due to active control measures and economic changes. There were large changes in 

the power industry sector where coal was changed for gas and abatement facilities were 
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installed. The deposition of sulphur and nitrogen in the UK has declined since the peak in 

emission in 1970 by 50% and 16%, respectively (NEGTAP, 2001; Fowler et al., 2005). 

Emissions of NH3 have changed little since the peak emissions in the mid 1980’s, but a 

decline of 12% relative to 1990 is expected by 2010 (EMEP, 2006). 

Here attention is focused on non-linearities in the relationship between the emission 

and deposition changes. The national reduction in deposition is clearly smaller than the 

reduction in emission and it also leads to slower reductions in critical loads exceedance in 

remote areas than may be expected (NEGTAP, 2001; Irwin et al., 2002; Fournier et al., 2004). 

Non-linearities for sulphur emission-deposition patterns in the UK can be explained by 

increases in emissions from international shipping, changes in atmospheric oxidation rates 

and complex interactions between the different pollutants which can influence deposition 

rates (i.e. the co-deposition of NH3 and SO2 ; Fowler et al., 2007). Mayerhofer et al. (2002) 

concluded that for regional air pollution the development of the air pollutant emissions is 

more important than the effect of climate change on the dispersion and chemical 

transformation of air pollutants. Fagerli and Aas (2008) investigated the role of sulphur in the 

emission-deposition relationship of oxidized and reduced nitrogen and to what extent the 

reductions of SO2 emissions have influenced the trends of the nitrogen compounds.  

The UK Lagrangian trajectory models such as HARM (Metcalfe et al., 2001), TRACK (Lee 

et al., 2000) and FRAME (the Fine Resolution Atmospheric Multi-pollutants Exchange 

model; Singles et al., 1998) have been developed to asses acid deposition to sensitive areas. 

These models use a spatial emissions inventory and give deposition at grid squares throughout 

the UK at a 5km x 5 km resolution.  

In this paper we consider recent trends in emissions of SO2, NOx and NH3 and 

compare the model with measurements from the UK national monitoring network for wet 

deposition of sulphate, nitrate and ammonium during the period 1990-2005. A longer time 
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series covering a 50 year period from 1970, the earliest year for which a detailed emissions 

inventory for the UK is available, to year 2020, based on detailed emissions projections, is 

considered and an assessment of the associated changes in nitrogen and sulphur deposition 

and exceedance of acid and nitrogen critical loads for acid deposition and nutrient nitrogen 

deposition.  

2. Data & methods 

2.1 FRAME model description 

A detailed description of the Fine Resolution Atmospheric Multi-pollutant Exchange 

model is provided by Singles et al. (1998), Fournier et al. (2005) and Dore et al. (2007). 

FRAME is a statistical atmospheric transport model that can be used to estimate the spatial 

distribution of sulphur and nitrogen deposited to the United Kingdom. FRAME simulates the 

main atmospheric processes (emission, diffusion, chemical transformations and deposition) 

taking place in a column of air moving along straight-line trajectories following specified 

wind directions. The column is divided into 33 separate layers of varying thickness ranging 

from 1 m at the surface and increasing to 100 m at the top of the domain (ApSimon et al., 

1994). Vertical mixing is described using K-theory eddy diffusivity and solved with a finite 

volume method (Vieno, 2005). 

The FRAME domain covers the UK and the Republic of Ireland with a grid resolution 

of 5 km x 5 km and grid dimension of 172 x 244. Input gas and aerosol concentrations at the 

edge of the model domain are calculated with FRAME-Europe, a large scale European 

version of FRAME-UK which runs on the EMEP grid at a 50 km resolution. Trajectories are 

advected across the domain, with different starting angles at a 1 degree resolution, using 

directionally dependent wind speed and wind frequency roses. The wind speed rose employed 

in FRAME uses radiosonde data (Dore et al., 2006) but the wind frequency rose is based on 
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the Jenkinson objective classification of circulation type which has superseded the Lamb 

weather classification (Lamb, 1972; www.cru.uea.ac.uk/cru/data/lwt.htm).  

As the air column moves along the trajectory, chemical interactions between 

ammonia, sulphur dioxide and nitrogen oxides take place. The chemical scheme applied in the 

model includes gas and aqueous phase reactions and is similar to that applied in the EMEP 

Lagrangian model (Barret and Seland, 1995). Dry deposition is calculated by determining a 

vegetation-dependent deposition velocity (Vd) to each chemical species derived from a dry 

deposition model (Smith et al., 2000). The following land classes are considered: forest, 

grassland, moorland, arable, urban and water. Values of Vd are calculated for each land use 

category using a canopy resistance model (Singles et al., 1998). Wet deposition is determined 

with scavenging coefficients and a constant drizzle approach. An increased washout rate is 

assumed over hill areas due to the seeder-feeder effect. It is assumed that the washout rate for 

the orographic component of rainfall is twice that used for the non-orographic components 

(Dore et al., 1992).  

To take into account changes in chemical climate, the concentration ratio SO2:NH3 is 

used to calculate the canopy resistance for deposition of SO2. Long term measurements of the 

deposition velocity of SO2 at Auchencorth Moss in Scotland and Speulder Forest in the 

Netherlands show a generally increasing trend as the acidity of the environment has declined 

due to reductions in SO2 emissions during the last decade (Fowler et al, 2007). 

 A simple linear correlation is assumed in the FRAME: 

Rc = 50 * ([SO2]/[NH3]) 

Where [SO2] and [NH3] are the concentrations of SO2 and NH3 in air by mass respectively 

The deposition velocity of SO2 was calculated according to the equation: 

Vd(SO2) = (Ra + Rb + Rc)
-1 
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Ra – aerodynamic resistance, due to turbulent diffusion of material to the roughness elements 

of the surface 

Rb – laminar boundary layer resistance, describes the transfer due to molecular diffusion 

through the quasi-laminar layer around the roughness elements 

Rc – surface resistance, describes the ability of the surface itself to capture airborne material 

and is dependant on the nature of the surface 

The decrease of the [SO2]: [NH3] ratio is responsible for the increase of the SO2 deposition 

velocity. Due to emissions reductions, the depletion of atmospheric oxidants became less of a 

controlling factor in determining the rate of conversion of pre-cursor gases to sulphate and 

nitrate aerosol (which make a major contribution to wet deposition).  

2.2 Meteorological model inputs (1990-2005) 

Precipitation data used in the modelling is generated by interpolation of measurements 

from the tipping bucket rain gauges gathered at the Meteorological Office national network 

on approximately 5000 stations. The data are in the form of annual rainfall fields for the UK 

and Ireland on a 5km x 5km grid. The national mean annual precipitation was 1130 mm for 

the period 1990-2005 and ranged from 880 mm in 2003 to 1330 mm in 2000. The years 1998, 

2000 and 2002 were wet years while 1996 and 2003 were dry, relative to the mean for the 

period.  

A higher precipitation amount is noticed at the western coastal and at higher altitude 

sites. However, during the wet year (2000), areas of hilly regions with precipitation above 

2000 mm year-1 are considerably larger. The substantial enhancement in rainfall with altitude 

can be partially explained with the seeder–feeder enhancement mechanism, whereby rain 

falling from a higher level cloud (seeder cloud) layer passes through an orographically formed 
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“cap cloud” (feeder cloud) over high terrain (Carruthers and Choularton 1983, Błaś et al., 

1999). As it passes through the cap cloud, the rain scavenges cloud droplets, adding to the 

rainfall amount and ion content. The concentration is enhanced since cloud droplets are much 

smaller than rain drops and are thus far more concentrated for a given aerosol loading (e.g. 

Choularton et al. 1988, Dore et al. 1992, Inglis and Choularton 2000). 

Wind direction frequency information was taken from the classification of Lamb-

Jenkinson weather types (Lamb, 1972; Hulme & Barrow, 1997). The classification consists of 

two parts: wind direction (N, NE, E, SE, S, SW, W, NW, N and unclassified) and circulation 

type (cyclonic, anti-cyclonic & unclassified). In Fig. 1, three wind frequency roses are 

plotted: average for the period 1990-2005, and individual for 1996 and 2004.  

 

Fig. 1. The 1990-2005 average wind frequency rose compared to 1996 and 2004 wind frequency roses. Radial 

units are percent per 15o direction band (%) 

 

The years 1996 and 2004 were selected for presentation because they are 

representative for low and high wind frequency from E+SE+S directions within the 

considered period, respectively. The average wind rose illustrates that predominant wind 
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directions are from the SW-W. The individual wind roses show a greater incidence of 

easterlies in 1996 and westerlies in 2004.  

To prepare the wind speed rose radiosonde data has been used.  In order to sample 

data from different geographical locations, four stations were selected in the British Isles. The 

selection criteria for data were based upon: the existence of a complete ten year data set, 

Geographical representation of the northern, southern, western and eastern limits of the 

British Isles. These were: Camborne (south-west England); Hemsby (east coast of England); 

Stornoway (north-west Scotland) and Valentia (on the west coast of the Republic of Ireland). 

As suggested by Dore et al., 2006, one wind speed rose – a harmonic mean for the period has 

been used in the model. 

2.3 Emission inventory used in modelling 

In order to calculate past and future deposition of sulphur and nitrogen to the UK, it is 

necessary to generate historical and forecast emissions maps. Although some historical 

emissions maps are available (i.e. for the year 1990), much of these data are incompatible 

with more recent emissions data as they are gridded at a coarser resolution (10 km for 1990 

and 1 km for 2005) and are lacking in separate information on point source emissions. In 

estimating the temporal trends in deposition to the UK, it is important for input emissions data 

for different years to be identically formatted otherwise artificial changes in modelled 

deposition may be generated. The background and point source emissions files for the year 

2002 were taken to be the baseline year. The data for total emissions were used to scale 

emissions backwards in time and generate new emissions files for the years 1970, 1980, 1990-

2001. Emissions from the National Atmospheric Emissions Inventory (NAEI, www.naei.org) 

were used for 2003, 2004 and 2005. Future emissions for the years 2010 and 2020 were 

obtained by scaling the 2005 emissions data forward in time. The future emissions projections 

for the UK for the years 2010 and 2020 were based on those from the Air Quality Strategy 
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(Grice et al., 2005). Area emissions data were divided into eight different SNAP codes 

(Selected Nomenclature for Air Pollution). Year-dependent scaling factors were assigned to 

each SNAP emission sector. The UK NH3 emissions for the years 1970 and 1980 were set at 

the 1990 level. Emissions from the Republic of Ireland are also included explicitly in the 

FRAME domain and these were scaled backwards in time in a similar manner to the UK 

emissions. Future emissions for the years 2010 and 2020 for the Republic of Ireland were set 

at the levels defined by the National Emissions Ceiling Directive (NECD). Emissions of SO2 

and NOx from international shipping were also included in the domain. These were scaled 

forwards and backwards in time from the baseline year 2000 according to estimates from the 

NAEI. Globally, shipping emissions of SO2 are estimated to be increasing at a rate of between 

2.5% and 1.5% per year (Endressen et al., 2003; Corbett et al, 2003). Here we have adopted 

the figure of 2.5%. Considerable uncertainty however remains both in the spatial distribution 

of shipping emissions and in their magnitude and regional rate of change. The emissions 

(ENTEC 2002) were gridded on the EMEP 50 km grid. Future work will focus on 

implementation of higher resolution shipping emissions data at a 5 km resolution in the 

model. The relative contribution of shipping emissions within the FRAME-UK domain to 

total sulphur and nitrogen deposition in the UK has increased from 5% to 23% and from 11% 

to 21% respectively over the period 1990-2005. However the imposition of Annex VI of the 

MARPOL convention will restrict the sulphur content of bunker fuel to 0.1% in the North Sea 

resulting in major reductions in SO2 emissions by the year 2020. 

Future emissions were generated assuming that shipping emissions in the UK waters 

are compliant with the IMO directive to reduce the sulphur content of bunker fuel to 0.5% in 

the North Sea by the year 2020 as well as the gradual introduction of low NOx emitting 

engines. The contribution of shipping emissions to sulphur deposition in the UK is discussed 

in detail in Dore et al. (2007).  
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2.4 Model evaluation 

As the aim of the paper is related with the deposition trends, the model results are 

evaluated in two ways. First, the results are compared with the available measurements. 

Second, FRAME modelled data are compared against the CBED (Concentration Based 

Estimated Deposition; Smith et al. (2000, 2001)) wet deposition data which is generated from 

measurements from the national monitoring networks of gas concentrations in air and ion 

concentrations in precipitation. CBED dry and wet deposition forms the official UK data set 

for estimation of exceedance of critical loads for acid deposition and nitrogen deposition. 

Unfortunately, long term dry deposition is only measured directly at a very few sites in the 

UK, which means a direct model-measurement comparison of dry deposition is not feasible. 

Modelled gas concentrations (SO2, NO2, NH3, HNO3) have been compared with 

measurements in Dore et al. (2006) and were shown to give satisfactory agreement. 

Continuous monitoring of these compounds was started in the late 1990s and forms a shorter 

data series than that for wet deposition. In this paper we focus on comparison with 

measurements of wet deposition during the period 1990-2005. For this period, the wet 

deposition network contains 32 stations, which are located away from major local sources of 

contamination and are in rural locations. 

Two error measures are used for the evaluation of the FRAME modelled wet 

deposition: mean bias (MB) and mean absolute error (MAE). MB is commonly used to 

describe the general over or underestimation by the model, while MAE gives information on 

average error (Chang and Hanna, 2004; Yu et al., 2006). The MB and MAE statistics are 

supported by the correlation coefficient (R) and regression analysis between modelled and 

measured wet deposition, which are performed for each year of the 1990 – 2005 period. 

3. Results and discussion 
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 Modelled wet deposition results were compared against measured values. All the 

correlations are statistically significant (p-value < 0.05) as well as slopes and intercept value 

for linear regression are reasonable. The results for SO4
2-, give a correlation coefficient in the 

range of 0.60 to 0.83. Similar correlation coefficients are obtained for NH4
+

 and NO3
- but with 

better results for intercept values.  

 For SO4
2- and NO3

- Mean Bias and Mean Absolute Error are higher at the beginning of 

the analyzed period and after these values clearly go down. MB goes down from 4.16 in 1990 

to 0.70 in 2004 for SO4
2-, from 1.08 to (-0.43) for NO3

-, and MAE from 5.20 to 1.8, 1.62 to 

1.54, respectively. The improvement of these statistics during the second part of the period 

can be attributed to the improvement in emissions inventory. In case of NH4
+, the downward 

trend is not clear, despite the fact that MB is the smallest for year 2005. MAE amounts to 

about 1.80 – 2.00 and MB is close to 1. 

Fig. 2(a)-(c) illustrate the correlation with measurements of modelled NH4
+, NO3

-, 

SO4
2- wet deposition for 2005. For SO4

2- the model performs particularly well against 

measurements for low deposition and somewhat overestimates higher values (which usually 

occurs in hilly regions). For NO3
- and NH4

+  lower deposition is also represented better, with 

the number of points above/below 2:1 and 1:2 reference lines being lower than for higher 

deposition values, which appears both as overestimations and underestimations.  

Overestimation usually occurs in hilly regions and might be due to the simple 

parameterization of the seeder-feeder effects, which is currently based on the long term 

precipitation data. For mountainous stations accurate estimates of precipitation amount are 

especially crucial for determination of pollutant deposition. Underestimations are especially 

evident for stations situated close to coastal zone. This could be a consequence of a limitation 

of the FRAME-Europe model which is used to generate conditions at the edge of FRAME 

domain by considering straight-line trajectories. This approach does not allow air from 
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emission sources to be trapped in cyclonic conditions and so to come back to the precipitation 

part of the depression (Fournier et al., 2004). 

 

Fig. 2. Correlation of modelled wet deposition with measurements from the national monitoring network for 

2005: a) SO4
2-, b) NO3

-
,c) NH4

+,. Solid line is the best fit line produced by a regression analysis, dashed lines are 

for reference: 2:1, 1:2 and 1:1 division 

 

Comparison of the model with measurements shows that FRAME gives reasonable 

agreement with measurements. The second part of the validation is the country deposition 

budget comparison. The FRAME wet deposition budgets for the UK show reductions of 132 

Gg S-SOx yr-1, 15 Gg N-NOy yr-1 and 19 Gg N-NHx yr-1 over the period 1990-2005 (Fig. 3). 
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There is a very good fit between modelled and measured lines, especially for the second part 

of the period, for which emission data are more precise. FRAME tends to constantly give 

higher values for SOx deposition, and lower for NOy in comparison to measurements. There is 

no general rule for NHx, which can be over and underestimated in different years. The highest 

differences between modelled and measured data are for NOy, and the lowest for NHx. 

Fig. 3. Modelled and measured UK national wet deposition budget for: S-SOx, N-NOy, N-NHx (Gg) 

 

3.1 Trends in emissions 

UK emissions of S-SO2, N-NOx and N-NH3 are presented in Fig. 4. There have been 

significant reductions in S-SO2 emissions since 1970, the emission in 2005 representing 89% 

reduction on the 1970 value. These have been caused by fuel switching from coal to gas, and 

the installation of abatement equipment (flue gas desulphurisation) at power stations. 
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Measures to abate emissions of SO2 have proved to be highly effective. Significant reductions 

are also evident from other sources, most notably Industrial and Residential Combustion . 

This is caused by the increased use of gas in place of coal. 

Emission projections are available for selected years to 2020, and are expected to be 

driven by the extent to which coal is used in public electricity generation. The current 

projection for 2010 shows that the UK is expected to achieve the ceiling of 293 Gg S-SO2 

required by the European Commissions National Emissions Ceilings Directive (NECD). 

Estimates for 2020 indicate a 50% reduction on the 2005 emission total. Emission estimates 

of SO2 are considered to be relatively low in uncertainty (±4%). This is because the most 

important datasets for making the emissions estimates (mass of fuel, and the corresponding 

sulphur content) are considered to be well characterised.  

 

Fig. 4. Trend in UK emissions of S-SO2, N-NOx, N-NH3 (Gg) 
 

There have been significant reductions in emissions of N-NOx (as N-NO2) from a number of 

sources, the decrease from 1970 to 2005 representing a reduction of 48%. The largest 
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emission reduction has been from Passenger Cars. This is due to the introduction of three-

way-catalysts in the late 1990’s and subsequently a number of increasingly stringent emission 

standards. More recently emission standards have also been introduced for heavy duty 

vehicles. Emissions from power generation have also reduced, primarily due to the increased 

use of gas over coal fired stations. Gas fired power stations emit less NOx, and are typically 

more efficient. Recent years have shown a slight increase in NOx emissions from power 

generation. This is because coal has been used in favour of gas, driven by a more attractive 

fuel price.  

Until recently emission projections had indicated that the UK was on target to meet 

the NECD of  346 Gg N-NOx. However, current emission projections for 2010 show that this 

is not the case. This change has been caused by the re-evaluation of emissions from new cars 

entering the vehicle fleet which complied with a particular emissions standard. Originally 

emission estimates were based on studies undertaken on rolling roads in the laboratory. 

However more recent real world testing has shown that these vehicles do not provide the 

reductions previously thought. As a result the emission estimate for 2010 was revised and 

increased, taking it above the NECD target for 2010. Emission estimates for 2020 indicate a 

51% reduction on the 2005 UK emissions total.  

 Emissions are presented as NOx (as NO2 equivalent), and as such do not provide a true 

indication of the NO2 emissions. It is known that the NO2:NOx ratio of emissions has 

increased in recent years for a number of reasons. The most important reasons in recent years 

that could affect the NO2/NOx emissions ratio have been the programme of fitting diesel 

particulate filters (DPSs) to buses. It was reported that emission of NO2: NOx increased from 

5% without a CDPF to 15-20% (DRSTA, 2002). Another factor is the increased use of diesel 

cars. It is known that diesel vehicles tend to have a higher NO2:NOx emission ratio, 

particularly under low engine load conditions (Carslaw, 2005; AQEG, 2004). This has meant 
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that measures taken to reduce NOx emissions have not resulted in the reduction in NO2 

concentrations which were anticipated. Levels of NOx from combustion sources are heavily 

dependent on a range of combustion parameters. As a result uncertainties are higher. The UK 

NOx emission totals are quoted with an uncertainty of ±10%.  

Emission estimates of N-NH3 are only presented for 1990 onwards as data is incomplete prior 

to this. Emissions of NH3 are dominated by agricultural activities, and cattle manure 

management in particular. There are numerous national policies in place to manage nitrogen 

emissions from the agricultural sector. However, it has proved difficult to have any significant 

impact on NH3 emissions from this politically sensitive source sector. Whilst the reduction in 

emissions of N-NH3 observed in Fig. 4, is not as large as that for S-SO2 or N-NOx, there was 

an 18% reduction from 1990 to 2006. This has primarily been driven by a decrease in 

livestock numbers, changes to animal diet and improvements to manure management. 

Emissions of NH3 are high in uncertainty, the UK emissions total being quoted as ±20%. So, 

whilst the current best estimate for 2010 (242 Gg N-NH3) does give a total which is lower 

than the 2010 NECD target (245 Gg N-NH3), the uncertainty range does extend above the 

ceiling. 

The FRAME model was run for the year 2005 firstly with all emissions sources, secondly 

with European emissions removed, and thirdly with shipping emissions removed (in both the 

European and UK simulations). These simulations allowed assessment of the relative 

contribution of UK emissions, shipping emissions and European emissions to deposition of 

sulphur and nitrogen in the UK. The FRAME results have been compared with the EMEP 

source-receptor matrices for the year 2005.  

These calculations showed that with FRAME 22% of sulphur deposition was attributed to 

European sources and 19% to international shipping. This showed good agreement with 

EMEP figures of 25% and 19% respectively. For NOy deposition FRAME attributed 15% of 
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deposition to shipping and 27% to European sources (EMEP 18% and 40% respectively). For 

NHx, FRAME attributed 30% of deposition to European sources compared with 27% for 

EMEP. 

3.2 Recent trends in deposition of sulphur and nitrogen (1990-2005) 

Over the period 1990-2005 modelled total (wet + dry) deposition in the UK decreased 

from 413 to 157 Gg S-SOx yr-1. For nitrogen, annual total deposition decreased from 176 to 

148 Gg for N-NOy and from 193 to 169 Gg if reduced nitrogen is considered. These figures 

account for 62%, 16% and 12% decreases in total deposition of SOx, NOy and NHx 

respectively. Dry deposition declined more than wet for SOx but for NOy and NHx the 

percentage changes of wet and dry deposition were almost the same. During the early nineties 

wet deposition comprised 57%, 54%, 63% of total deposition of SOx, NOy, and NHx, 

respectively, in 2005 the value increased by some 10% for SOx and has not changed 

significantly for NOy and NHx. 

Fig. 5, 6, 7 show percentage change in UK average annual precipitation, national 

emissions and wet deposition of SOx, NOy, NHx normalised against a 1990 baseline. The 

results suggest that wet deposition has decreased less quickly than emissions. Wet deposition 

decreased between 1990 and 2005 by 55% for SOx and by about 16% for NOy and NHx, 

whereas the reduction in emission for SOx and NOy was significantly higher (by 77%, 47%, 

respectively) and by 18% for NHx. The changes in emission and deposition are not closely 

correlated. There are some years, especially for NOy and NHx, where emissions have 

decreased but wet deposition increases. Comparing the years 1993-1997, emissions of NOy 

decreased by about 15 to 30% relative to 1990, while wet deposition is higher on average by 

10% than in 1990. A similar situation is observed for NHx. If the two driest years (1996 and 

2003) are compared, there is a good agreement between emission and deposition for 2003 but 

not for 1996. This can be explained by inter-annual variation of meteorology conditions. As 
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discussed above, the period 1993-1997 was characterized by a high frequency of E-SE-S wind 

directions (the most polluted sector). The lack of linearity in changing of emission and 

deposition has been explained by other authors (Irwin et al., 2002; Fournier et al., 2004; Hall 

et al., 2006). This was attributed to a number of factors including increases in emissions from 

international shipping, changing in European emission and changing rates of atmospheric 

oxidation. During the years 1990-2005, when the larges changes of emission occurred, when 

UK emission of SOx, NOx, NHx decreased by 77%, 47% and 18% respectively, European 

emissions showed similar trends, with decreases of 66%, 30% and 21%, respectively. These 

changes influence the ratio of pollutants imported to national emissions but indicate that the 

relative contribution of imported pollutants from Europe to the UK has not been subject to 

large changes. 

 

Fig. 5. Percentage change in average network precipitation, national SO2 emissions and SOx wet deposition 

normalised against 1990 baseline 
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Fig. 6. Percentage change in average network precipitation, national NOx emissions and NOy wet deposition 

normalised against 1990 baseline 

 

 

Fig. 7. Percentage change in average network precipitation, national NH3 emissions and NHx wet deposition 

normalised against 1990 baseline 

 

3.3. Long term trends in deposition and exceedances of critical loads of sulphur and 

nitrogen (1970-2020) 

The deposition of sulphur, oxidised and reduced nitrogen calculated by FRAME for 

the year 1970 is illustrated in Fig. 8(a) – (f). These can be compared with deposition maps for 
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a future year (2020, Fig. 9 (a) – (f)). A striking change in deposition is apparent during the 50 

year time period. For sulphur, both dry and wet deposition in 1970 exceeded 20 kg S ha-1 yr-1 

in much of the country. By the year 2005, dry deposition exceeds 5 kg S ha-1 yr-1 only in some 

industrial areas of northern England and in the south-east although many areas have wet 

deposition of sulphur in excess of 5 kg S ha-1 yr-1. By 2020, only a restricted region receives 

annual deposition in excess of 5 kg S ha-1 yr-1, corresponding to the high rainfall areas of the 

Pennines and the some coastal regions which are strongly influenced by shipping emissions. 

A similar pattern is apparent for NOy deposition. Upland regions and areas influenced by 

vehicle emissions are subject to deposition (both wet and dry) in excess of 10 kg N ha-1 yr-1. 

By 2020 the regions where deposition exceeds 5 kg N ha-1 yr-1 are restricted to a small 

number of coastal sites, urban regions and some upland sites. For NHx deposition, the changes 

are generally smaller during the 50 year time period due to much smaller reductions in 

emissions. 
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Fig. 8. FRAME 1970 deposition: a) SOx dry; b) SOx wet; c) NOy dry; d) NOy wet; e) NHx dry f) NHx wet (kg S 

or N ha-1 yr-1) 
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Fig. 9. FRAME 2020 deposition: a) SOx dry; b) SOx wet; c) NOy dry; d) NOy wet; e) NHx dry f) NHx wet (kg S 

or N ha-1 yr-1) 
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A description of the methods used to derive and calculate critical loads is given in Hall et al. 

(2003). The exceedances of critical loads of acidity and nutrient nitrogen across the UK were 

calculated using the FRAME data for 1970, 2005 and 2020. The significant reduction in the 

areas with exceedance is mapped in Fig. 10 (a) and (b). The larges changes are noticed close 

to the emission sources, whereas in hilly regions there are large exceedances also in 2020. For 

acidity, the habitat areas with deposition exceeding critical loads are seen to fall significantly 

between 1970 and 2020 (from 94% to 22% for dwarf shrub heath). However, for nutrient 

nitrogen, the percentage area of unmanaged forest exceeded falls only marginally, from 99% 

to 95% between 1970 and 2020 (Fig. 11). This is due to the dominant role of dry deposition of 

ammonia to tall vegetation. The total area of sensitive UK habitats exceeded fell from 85% to 

37% for acidity and from 73% to 49% for nutrient nitrogen. 

Reductions in acid deposition and total nitrogen deposition may provide the conditions 

in which chemical and biological recovery of sensitive habitats can begin, but the timescales 

of these processes are often very long relative to the timescales for reductions in emissions. 

The study demonstrates the increasing relative importance of ammonia emissions in 

contributing to eutrophication and acidification. Efforts to further reduce deposition of 

sulphur and nitrogen to the natural environment must include measures to control emissions 

of ammonia.  
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Fig. 10. Exceedance of 5th-percentile acidity critical loads by a) acid deposition b) nitrogen deposition (keq/ha) 
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Fig. 11. The percentage of system area in the UK with exceedance of critical loads for deposition of acidity and 

nitrogen during 1970 to 2020 (AG: Acid Grassland, DSH: Dwarf Shrub Heath, BOG: bog, UMW: unmanaged 

woodland, FW: freshwater) 

4. Conclusion 

An atmospheric transport model has been applied to assess the influence of reductions 

in emissions of pollutant gases (SO2, NOx, NH3) on sulphur and nitrogen deposition in the UK 

during a 50 year time period (1970-2020). The results of the model were compared with 

measurements of wet deposition (SO4
2-, NO3

-, NH4
+) from the UK national monitoring 

network covering the period 1990 to 2005. Both the model and the measurements showed that 

reductions in deposition during this 15 year period were less significant than the reductions in 

emissions. For the period 1990-2005 emissions decreased by 77% for SOx, 47% for NOy and 

18% for NHx, whereas the reduction in modelled wet deposition amounted to 55%, 16% and 

12%, respectively. This was attributed partly to the effect of import of pollutants to the UK 

from international shipping emissions which have increased significantly during recent years. 
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The large decrease in SO2 concentrations in the UK during recent decades has resulted in an 

increase in the oxidising capacity of the atmosphere with the result that precursor gases (SO2 

and NOx) can be more rapidly oxidised and converted to sulphate and nitrate aerosol. These 

particulates play an important role in the long range transport of pollutants and deposition of 

sulphur and nitrogen, particularly in high rainfall upland areas. 

Analysis of meteorological data showed that inter-annual variation of circulation 

patterns and precipitation played a significant role in causing year to year fluctuations in 

deposition, such that deposition could increase in years with high annual precipitation or 

enhanced circulation from the polluted south-easterly sector. Such inter-annual variation in 

meteorology can confound attempts to detect trends in deposition through measurement. Long 

term data series of wet deposition of approximately two decades are required to measure 

deposition trends. One advantage with a modelling approach is that it is possible to separate 

the influence of emissions and meteorology on deposition by running simulations either with 

fixed meteorology and inter-annual variation in emissions or with inter-annual variation in 

both emissions and meteorology. Future application of complex Eulerian atmospheric 

transport models using detailed meteorological drivers and sophisticated photo-oxidation 

schemes is recommended for further studies in deposition trends. 

Long term trends in deposition modelled from 1970 to 2020 show that the large 

decrease (95%) in emissions of SO2 from the UK during this period have resulted in 

significant decreases (87%) in total sulphur deposition and corresponding decreases to 

exceedance of critical loads (from 85% to 37% of area) to many vegetation types. Reductions 

in nitrogen deposition are smaller during this time period, in part due to relatively small 

reductions of ammonia emissions. Whilst the area of vegetation in the UK with exceedance of 

critical loads for deposition to acid grassland, dwarf shrub heath and bog has shown 

improvement, exceedance of deposition to unmanaged woodland remains high. Future 
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reductions in exceedance of critical loads for nitrogen deposition will require application of 

focused policy to abate emissions of ammonia from agricultural sources. 
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