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Symmetry-breaking instabilities

of convection in squares

By A. M. Rucklidge

Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Cambridge CB3 9EW, UK

Convection in an infinite fluid layer is often modelled by considering a finite box
with periodic boundary conditions in the two horizontal directions. The translational
invariance of the problem implies that any solution can be translated horizontally by
an arbitrary amount. Some solutions travel, but those solutions that are invariant
under reflections in both horizontal directions cannot travel, since motion in any
horizontal direction is balanced by an equal and opposite motion elsewhere. Equi-
variant bifurcation theory allows us to understand the steady and time-dependent
ways in which a pattern can travel when a mirror symmetry of the pattern is broken
in a bifurcation. Here we study symmetry-breaking instabilities of convection with a
square planform. A pitchfork bifurcation leads to squares that travel uniformly, while
a Hopf bifurcation leads to a new class of oscillations in which squares drift to and fro
but with no net motion of the pattern. Two types of travelling squares are possible
after a pitchfork bifurcation, and three or more oscillatory solutions are created in
a Hopf bifurcation. One of the three oscillations, alternating pulsating waves, has
been observed in recent numerical simulations of convection in the presence of a
magnetic field. We also present a low-order model of three-dimensional compressible
convection that contains these symmetry-breaking instabilities. Our analysis clarifies
the relationship between several types of time-dependent patterns that have been
observed in numerical simulations of convection.

1. Introduction

Symmetries play a central role in the analysis of the dynamics of convection. Often
an infinite layer is modelled by a periodic box, and the range of allowed behaviour is
influenced by the symmetries of the box. This approach is justified by the experimen-
tal observation of convection in periodic patterns: rolls, squares (Le Gal & Croquette
1988) and hexagons. The presence of the underlying translational invariance of the
layer implies that periodic spatial patterns are not isolated fixed points of the dynam-
ical system, but that there are continuous families (or group orbits) of fixed points
generated by translations. When the spatial pattern of convection is invariant under
a reflection symmetry, the pattern cannot drift, but symmetry-breaking bifurcations
lead to patterns that drift slowly along their group orbit.

A two-dimensional periodic box has the symmetry O(2) = Z2 × SO(2), where
× denotes the semi-direct product; two-dimensional convection initially takes the
form of Z2-symmetric rolls, which are invariant under reflection in the vertical plane
between pairs of counter-rotating rolls. The SO(2) translational invariance of the
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periodic box implies that there is a continuous group orbit of rolls parametrized by
their position in the box. A pitchfork bifurcation that breaks the mirror symmetry
of the rolls leads to patterns that travel steadily in one direction along the group
orbit, while a symmetry-breaking Hopf bifurcation leads to patterns that travel to
and fro with no net motion (Landsberg & Knobloch 1991; Proctor & Weiss 1993;
Matthews et al. 1993). These solutions are known as travelling waves and pulsating
waves, respectively. In numerical simulations, the instability that breaks the mirror
symmetry is associated with the generation of a horizontal shear across the layer.

We consider three-dimensional convection in a plane layer of unit depth with
periodic boundary conditions with equal wave numbers k in the horizontal directions
x and y, in the presence of an imposed vertical magnetic field. The system has
the symmetry group Γ = D4 × T 2, where D4 is the symmetry group of a square
and T 2 is the two-torus of translations in the two horizontal directions. There is a
trivial solution that is invariant under Γ ; in the prescribed periodic box, the trivial
solution loses stability to rolls and squares, which break the translation invariance
but preserve some of the symmetries in D4. There are two circles of Z2 × O(2)-
invariant rolls, related to each other by a reflection in the diagonal, and there is a
two-torus of D4-invariant squares, parametrized by their position in the box.

We confine ourselves to spatially periodic behaviour with the same period as the
basic pattern; long-wavelength instabilities of squares have already been examined
(Hoyle 1993). Our work is complementary to that of McKenzie (1988), who consid-
ered instabilities of square and hexagonal patterns that preserve a mirror symmetry
and thus do not lead to travelling patterns. McKenzie also considered steady spatial
period-doubling transitions.

In §2 we discuss symmetry-breaking pitchfork and Hopf bifurcations from squares.
In section three, we present a model of three-dimensional convection; in this model,
it is a spontaneously generated shear across the convecting layer that is responsible
for driving the underlying square pattern. We discuss the relevance of our analysis
to other problems in the final section.

2. Normal forms for secondary instabilities of squares

The presentation will be couched in the language of convection, but the analysis in
this section is applicable more generally. The state of the convecting system is spec-
ified by the velocities, temperature, density and magnetic field; these are collected
into a single vector U(x, y, z, t). The dynamics of the system is governed by a set of
partial differential equations (PDEs) that we write symbolically as

dU

dt
= F(U ;λ). (2.1)

The parameter λ represents the Rayleigh number, proportional to the temperature
difference across the layer.

The full symmetry group of the system is Γ = D4 × T 2. The group D4 (the
point symmetries of a square) is generated by reflections in two vertical planes:
mx, which sends x to −x, and md, which exchanges x and y. We define rq, a rotation
by one quarter turn, by rq = mdmx, my, the reflection that sends y to −y, by
my = mdmxmd, and md′ , the reflection in the other diagonal, by md′ = mxmdmx.
The translation τ(δx, δy), an element of the two-torus T 2, shifts x and y by δx and δy,
respectively. The dynamics specified by F is equivariant under the action of these
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Symmetry-breaking instabilities of convection in squares 109

symmetries, so

F(γU ;λ) = γF(U ;λ), (2.2)

where γ ∈ Γ . The symmetry operation γ acts on a given solution U to generate a
new (or perhaps the same) solution.

We consider a steady solution U0(x, y, z) that describes convection with a square
planform. This solution is invariant under the D4 spatial group, so

mxU0 = mdU0 = U0, (2.3)

and the translations τ(δx, δy) generate a continuous family of square solutions
parametrized by the shifts δx and δy. This two-torus of solutions is known as the
group orbit through U0. Since U0 is an equilibrium point, as are all states on the
group orbit,

F(U0;λ) = 0 = F(τ(δx, δy)U0;λ), (2.4)

for any (δx, δy) ∈ [0, 2π/k)2.
The eigenvalues of the Jacobian matrix evaluated at U0 determine the stability

of the square equilibrium point. Because the group orbit is continuous, the square
pattern is neutrally stable with respect to translations in the x and y-directions; this
implies that the Jacobian matrix always has a pair of zero eigenvalues corresponding
to the two horizontal directions. We assume that the square pattern undergoes a
simple symmetry-breaking instability at λ = 0, at which point there will be additional
zero or pure imaginary eigenvalues. By simple, we mean that the eigenvalues that
cross the imaginary axis are no more degenerate than required by the symmetry of
the problem. By symmetry-breaking, we mean that the bifurcating solutions have
less symmetry than the original square pattern. We do not consider instabilities that
break the initial spatial periodicity.

In order to study the behaviour near the instability, we expand the solution U
near the square equilibrium U0:

U(x, y, z, t) = τ(φx(t), φy(t)){U0(x, y, z) + V (x, y, z, t)}. (2.5)

Here we are following an approach used to study instabilities of vortices in the Taylor–
Couette problem (Iooss 1986). The idea is that we require an expansion that is valid
in the neighbourhood of the full group orbit of U0; when V is small in (2.5), the
system will be near a steady solution that is a translation of the original square
pattern. The two variables φx and φy are scalar functions of time that represent the
phase of the square pattern in the periodic domain; these are not required to be
small. The function V is a small vector function of space and time that describes
how the system differs from squares, but V does not contain any translations. With
this expansion, the symmetries act in the following way:

mx(φx, φy, V ) = (−φx, φy, mxV ), (2.6)

md(φx, φy, V ) = (φy, φx, mdV ), (2.7)

τ(δx, δy)(φx, φy, V ) = (φx + δx, φy + δy, V ). (2.8)

Substituting the expansion (2.5) into the PDE (2.1), we recover two ordinary differ-
ential equations (ODEs) for the translation variables φx and φy and a PDE for V :

φ̇x = fx(V ), φ̇y = fy(V ),
dV

dt
= F̃(V ;λ), (2.9)

where fx and fy are real functions and F̃ represents the projection of the original PDE
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onto the space with all translations factored out. The dot indicates differentiation
with respect to time in the two ODEs. The variables φx and φy do not appear on
the right-hand sides of (2.9) since the dynamics must be invariant under the action
of translations. The mirror symmetries mx and md impose restrictions on the form
of (2.9):

fx(mxV ) = −fx(V ), fy(mxV ) = fy(V ), fx(mdV ) = fy(V ). (2.10)

In addition, F̃ must be D4-equivariant. Thus we have reduced the PDE for U , with
D4 × T 2 symmetry, to a PDE for V with D4 symmetry along with a pair of ODEs
that describe how the square pattern drifts. The T 2 torus of translations now acts
in a simple way on the variables φx and φy.

The original square pattern, with V = 0 and φx and φy constant, is neutrally
stable with respect to translations; the two zero eigenvalues forced by this appear
in the two ODEs in (2.9). Squares lose stability when eigenvalues of the Jacobian
matrix of F̃ cross the imaginary axis. We assume that there is a simple symmetry-
breaking bifurcation at λ = 0. This could be either a pitchfork bifurcation (zero
eigenvalues) or a Hopf bifurcation (pure imaginary eigenvalues). These eigenvalues
will have multiplicity two, because of the D4 symmetry.

At the bifurcation point, a centre manifold reduction of the reduced PDEs yields
the normal forms for the pitchfork and the Hopf bifurcations with D4 symmetry,
augmented by two ODEs for φx and φy (Chossat & Iooss 1994). In both cases, let
vx(t) and vy(t) be the amplitudes of the critical modes; on the centre manifold, V will
be a function of these amplitudes. The amplitudes vx and vy will be real in the steady
case and complex in the oscillatory case. The translations act trivially on vx and vy.
The modes can be chosen so that the mirror symmetries act on vx and vy in the
following way:

mx(vx, vy) = (−vx, vy), md(vx, vy) = (vy, vx). (2.11)

Together with the action of the reflections on φx and φy, this further restricts the
form of the functions fx and fy in the ODEs:

fx(vx, vy) = Re f(v2
x, v2

y)vx, fy(vx, vy) = Re f(v2
y, v

2
x)vy, (2.12)

with f a smooth function that may be complex in the case of a Hopf bifurcation.
The form of the functions fx and fy implies that the original squares will drift in the
x-direction when vx 6= 0 and in the y-direction when vy 6= 0.

Thus when squares lose stability in a pitchfork bifurcation at λ = 0, the behaviour
near the bifurcation is governed by

v̇x = λvx + Av3
x + Bv2

yvx, φ̇x = Dvx, (2.13)

v̇y = λvy + Av3
y + Bv2

xvy, φ̇y = Dvy, (2.14)

which is the normal form for a pitchfork bifurcation with D4 symmetry, augmented
by two equations for the drift along the group orbit of the original square solution.
The real constants A, B and D = f(0, 0) will depend on λ and U0, and can in
principle be computed from the original PDEs.

There are two types of equilibria created in this pitchfork bifurcation. Travelling
squares (TSq) travel in, say, the x-direction, with vy = φ̇y = 0, vx 6= 0 and φ̇x =
const.; these are invariant under my and drift uniformly along the group orbit of
squares induced by x translations. Diagonally travelling squares (DTSq) have vx = vy
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and φ̇x = φ̇y = constant; these are invariant under md and drift diagonally. The
properties of these travelling solutions are summarised below (isotropy subgroups,
up to a conjugacy, are also indicated):

TSq : vx 6= 0, vy = 0, 〈my〉,

DTSq : vx = vy 6= 0, 〈md〉,

where angle brackets denote the subgroup of D4 generated by the given elements, iso-
morphic to Z2 in each case. Conjugate solutions are generated by the D4 symmetries.
The stability of these solutions is determined by the parameters A and B.

The other possibility is that squares lose stability in a Hopf bifurcation with fre-
quency ω at λ = 0. Here the behaviour is governed by

v̇x =
(

(λ + iω) + A(|vx|2 + |vy|
2) + B|vx|2

)

vx + Cv̄xv2
y, (2.15)

v̇y =
(

(λ + iω) + A(|vx|2 + |vy|
2) + B|vy|

2
)

vy + Cv̄yv
2
x, (2.16)

φ̇x = Re Dvx, (2.17)

φ̇y = Re Dvy, (2.18)

which is the normal form for a Hopf bifurcation with D4 symmetry (Swift 1988),
augmented by two equations for the drift of the pattern. Here A, B, C and D are
complex constants that will again depend on λ and U0.

This normal form is D4 × T 2 equivariant, but it is also equivariant under increasing
the phases of the complex amplitudes vx and vy by the same amount. This additional
S1 phase symmetry of the normal form is not a symmetry of the full convection
problem: solutions of the Hopf normal form (2.15)–(2.18) make up a continuous
family generated by multiplying vx and vy by complex numbers on the unit circle,
while solutions of the convection problem do not share this property. The additional
symmetry arises because non-S1 equivariant nonlinear terms can be eliminated from
the normal form by near-identity transformations (see Swift (1988) for more details).

However, some elements of S1, which we interpret as discrete temporal phase shifts,
are important in describing the symmetry properties of periodic orbits in the full
convection problem. Consider the effect of a symmetry operation γ ∈ D4 on a periodic
orbit v(t) with period T , where v = (vx, vy). Suppose γn is the identity (n = 2 for
reflections and n = 4 for rotations by 90◦). There are two possible outcomes: v(t) and
γv(t) are either disjoint or identical periodic orbits, with possibly a phase shift in
time (Golubitsky et al. 1988). In the latter case, we must have γv(t) = v(t+(m/n)T ),
where m is an integer; then γn

v(t) = v(t + mT ) = v(t). Therefore we define two
symmetry operations th, tq ∈ S1, which advance time by one half or one quarter
of the period, respectively. The other elements of S1 do not carry over to the full
problem, but the discrete time shifts form part of the spatio-temporal symmetries
that describe the periodic orbits created in the Hopf bifurcation in the full problem.

The D4-Hopf normal form (2.15)–(2.16) without the auxiliary drift equations has
been studied in the context of bifurcations from the trivial solution (Swift 1988).
Three periodic orbits are always created in this Hopf bifurcation, and there is the
additional possibility of two other types of solution, one periodic and the second dou-
bly periodic, for some parameter values. Demonstrating the existence of the doubly
periodic torus requires the S1 symmetry of the Hopf normal form, so the torus may
not persist in the full problem. In the case of a D4-Hopf bifurcation from the trivial
solution, the three types of periodic orbit are named standing rolls, standing squares
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and alternating rolls (Silber & Knobloch 1991). The fourth periodic solution, which
does not exist for all parameter values, is called standing cross rolls, and is always
unstable near the bifurcation point. In our context, where the Hopf bifurcation is
from a nontrivial solution with D4 symmetry, we name the periodic orbits pulsat-
ing squares (PSq), diagonally pulsating squares (DPSq) and alternating pulsating
waves (APW). The names are chosen to describe solutions that have been observed
in numerical simulations of compressible magnetoconvection (Matthews et al. 1994;
Matthews et al. 1995). The periodic orbits are characterised by the following relations
between their amplitudes and isotropy subgroups:

PSq : vx 6= 0, vy = 0, 〈my, thmx〉,

DPSq : vx = vy 6= 0, 〈md, thmd′〉,

APW : vx = ivy 6= 0, 〈tqrq〉,

where angle brackets denote the subgroup of D4×S1 generated by the given elements.
The isotropy subgroups in each case have four elements and are isomorphic to D2,
D2 and Z4, respectively. The stability of the three periodic orbits as the parameters
in the normal form are varied has been computed (Silber & Knobloch 1991); the
orbits may bifurcate subcritically or supercritically, and none, one or two may be
stable. In particular, all three may bifurcate supercritically with all three unstable.

Since these periodic orbits all satisfy thv = −v, the translation variables φx and φy

will be driven in one direction in the first half of the oscillation and in the other
direction in the second half, resulting in the underlying square pattern drifting to
and fro but returning exactly to its original location after one period. This oscillating
drift is along the coordinate axes for the pulsating squares and along the diagonals
for the diagonally pulsating squares. In the case of alternating pulsating waves, the
pattern drifts first in the positive x-direction (say), then in the positive y-direction,
then in the negative x-direction, and finally back in the negative y-direction; there is
another alternating pulsating wave that circulates in the other direction. In all three
cases, in common with the situation in two-dimensional convection (Landsberg &
Knobloch 1991; Proctor & Weiss 1993), there is no net drift over the course of the
oscillation. Using the symmetries of the other two oscillatory solutions, we can also
deduce that there will be no net drift in the case of the oscillation corresponding
to standing cross rolls (though the drift will have different amplitudes in the two
horizontal directions), and that on average, there will be no net drift in the case of
torus.

3. Example: a model of compressible magnetoconvection

We present as an example a set of ODEs that is equivariant under Γ and that
exhibits the bifurcations we have been discussing. The ODEs are based on a model
of three-dimensional incompressible convection in an imposed vertical magnetic field
(Rucklidge & Matthews 1995), extended to include the effects of compressibility by
including terms suggested by work on the corresponding two-dimensional problem
(Proctor et al. 1994). The modes used in the model are shown in figure 1. The
variables ax and ay are complex and represent the amplitudes and positions of the
x- and y-rolls in the periodic box (figure 1a, b); squares are represented by an equal
sum of x- and y-rolls. The real variables cx and cy represent shearing modes: the
horizontal averages of the two components of the velocity are in opposite directions
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(a)

x

y

z

(b)

(c) (d)

Figure 1. The four modes used to represent convection: (a) x-rolls (ax); (b) y-rolls (ay);
(c) x-shear (cx); (d) y-shear (cy). Arrows with solid heads represent fluid motion parallel to
the sides or tops of the cubes, and arrows with open heads indicate fluid motion that crosses
the boundary of the cube. In (a) and (b), the solid lines represent clockwise circulations and
the broken lines counter-clockwise circulations, while the dotted lines show the vertical mirror
planes of symmetry.

at the top and bottom of the layer (figure 1c, d). Rolls and squares formed in the
initial bifurcation have cx = cy = 0. We also include real variables dx and dy to
represent the x and y components of a magnetic field imposed across the layer;
the magnetic field is stretched out horizontally by the shear. Other modes, with
horizontal dependence, are also involved in these symmetry-breaking bifurcations,
but the analysis in terms of horizontally averaged modes is more transparent and
more natural since the shearing modes decay the slowest.

The action of the elements of Γ on the mode amplitudes is given by

mx(ax, cx, dx, ay, cy, dy) = (āx,−cx,−dx, ay, cy, dy), (3.1)

md(ax, cx, dx, ay, cy, dy) = (ay, cy, dy, ax, cx, dx), (3.2)

τ(δx, δy)(ax, cx, dx, ay, cy, dy) = (axeikδx , cx, dx, aye
ikδy , cy, dy). (3.3)

Thus the mx reflection changes the sign of the phase of ax, the direction of the
x shear and the direction of the x component of the magnetic field; the md reflection
exchanges x and y; and translations change the phases of ax and ay.

In the convection problem, the trivial conducting state loses stability as the con-
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trolling parameter, the Rayleigh number R, increases above a critical value RC.
Above this critical value, convection takes the form of rolls or squares. This behaviour
is represented by the normal form for the Γ -symmetric pitchfork bifurcation:

ȧx = µax − |ax|2ax − (1 + β)|ay|
2ax, (3.4)

ȧy = µay − |ay|
2ay − (1 + β)|ax|2ay. (3.5)

Here, µ and β are real parameters, with µ proportional to R − RC. Rolls (|ax|2 =
µ, ay = 0) and squares (|ax|2 = |ay|

2 = µ/(2 + β)) are created in the pitchfork
bifurcation at µ = 0, which is assumed to be supercritical. Rolls are stable if β > 0
while squares are stable if −2 < β < 0. The two-torus of D4-invariant squares is
parametrized by the phases of ax and ay.

Rolls and squares subsequently lose stability to a symmetry-breaking shearing
mode, which is modelled by including cx, dx, cy and dy in the above ODEs:

ȧx = µax − |ax|2ax − (1 + β)|ay|
2ax − γc2

xax + iDaxcx, (3.6)

ċx = −cx − Qdx + |ax|2cx, (3.7)

ḋx = ζcx − ζdx, (3.8)

ȧy = µay − |ay|
2ay − (1 + β)|ax|2ay − γc2

yay + iDaycy, (3.9)

ċy = −cy − Qdy + |ay|
2cy, (3.10)

ḋy = ζcy − ζdy. (3.11)

These ODEs are equivariant under the action of Γ given by (3.1)–(3.3). All the
parameters are required by the symmetry to be real. The strength of the imposed
magnetic field, which acts to oppose the shear, is given by Q, ζ is the Ohmic diffusivity
divided by the viscosity, γ describes how the shear damps the vigour of convection,
and D determines how the rolls and squares will drift once the D4 symmetry is
broken.

The phases of ax and ay decouple and the model can be rewritten in the form

ṙx = µrx − r3
x − (1 + β)r2

yrx − γc2
xrx, θ̇x = Dcx, (3.12)

ċx = −cx − Qdx + r2
xcx, (3.13)

ḋx = ζcx − ζdx, (3.14)

ṙy = µry − r3
y − (1 + β)r2

xry − γc2
yry, θ̇y = Dcy, (3.15)

ċy = −cy − Qdy + r2
ycy, (3.16)

ḋy = ζcy − ζdy, (3.17)

where ax = rxeiθx and ay = rye
iθy . Comparing the equations for the phases of ax

and ay above, with the equations for the displacements along the group orbit in
the normal forms (2.13)–(2.14) and (2.17)–(2.18), it is clear how the shearing mode
drives the drift of the square pattern: the rate of drift in the x-direction (θ̇x) is
proportional to the shear amplitude cx. The connection between this model and the
general theory in the previous section is also apparent. The underlying square pattern
(U0) is described by rx and ry; the perturbation from squares (V ) is given by cx, cy,
dx and dy, and these perturbations drive the square pattern along its group orbit in
the same way as in (2.9).

In the model, squares undergo a pitchfork bifurcation when µ = (1 + Q)(2 + β)
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(a)
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(b)
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Figure 2. Examples of the three periodic orbits created in the Hopf bifurcation in (3.6)–(3.11)
with µ = 1.0, Q = 1.0, ζ = 0.2, β = −1.5 and γ = 1.0. For these parameter values, the Hopf
bifurcation occurs at µ = 0.6. Also shown (dotted lines) are conjugate orbits. (a) Pulsating
squares (PSq), invariant under my and thmx. (b) Diagonally pulsating squares (DPSq), invariant
under md and thmd′ . (c) Alternating pulsating waves (APW), invariant under tqrq. The first
two orbits are unstable and the last one (APW) is stable. The cross represents the original
square fixed point, with cx = cy = 0.

and a Hopf bifurcation when µ = (1 + ζ)(2 + β) with Q > ζ. The pitchfork bifur-
cation leads to uniformly drifting TSq and DTSq, while the Hopf bifurcation leads
to time-dependent patterns that drift to and fro with no net drift. With illustrative
parameter values, two of the three periodic orbits created in this Hopf bifurcation
are unstable and one (APW) is stable (see figure 2). Other possibilities exist for
other parameter values; an exhaustive study of the behaviour in different parame-
ter regimes is beyond the scope of this paper. Note how the APW (figure 2c) are
not circles (and so not invariant under the S1 symmetry of the Hopf normal form),
but are unchanged under tqrq. There is also a codimension-two Takens–Bogdanov
bifurcation with D4 symmetry when (µ, Q) = ((1 + ζ)(2 + β), ζ), at which point the
pitchfork and Hopf bifurcations coincide.

4. Discussion

We have considered the symmetry-breaking bifurcations from convection in a
square planform. The overall symmetry group is Γ = D4 × T 2, but the D4-invariant
squares break the T 2 symmetry, so the symmetry group relevant to the secondary
bifurcations is just D4. However, the presence of the T 2 symmetry implies that the
bifurcating solutions will drift along the group orbit of the underlying squares. Thus
in a pitchfork bifurcation, the squares will travel along the coordinates axes or diag-
onally, and in a Hopf bifurcation, squares will travel to and fro, along the coordinate
axes, diagonally or alternating between the two coordinate directions. There is the
possibility of additional bifurcating solutions in the oscillatory case: an additional
periodic solution with a smaller symmetry group (equivalent to the standing cross
rolls of the bifurcation from the trivial solution) and a doubly periodic solution,
which may be attracting but whose existence relies on the S1 symmetry introduced
by the Hopf normal form (2.15)–(2.18). The full convection problem does not have
this S1 symmetry (nor do the model ODEs (3.6)–(3.11)), so it is likely that if a torus
is created in the Hopf bifurcation then there will be phase locking far enough away
from the bifurcation. There will be further complications (for example, homoclinic
tangencies) if the torus is involved in global bifurcations (Swift 1988).

Boussinesq convection with the same boundary condition at the top and bottom
of the layer differs from compressible convection in that there is an additional mirror
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symmetry of reflections in the horizontal midplane. This implies that there will be
two types of vertical shear eigenfunction, distinguished by being even (velocities in
the same direction at the top and bottom of the layer) or odd (velocities in the
opposite direction) under reflection in the horizontal midplane. Both parities have
been used in models of two-dimensional magnetoconvection (Matthews et al. 1993;
Landsbeg & Knobloch 1993), and the odd parity has been used in the model of
three-dimensional magnetoconvection (Rucklidge & Matthews 1995) that forms the
basis of the ODE model presented in § 3. The interactions between the roll and shear
modes in the two cases are different: in the even case, rolls and shear interact directly,
but in the odd case, they interact through a third mode that represents the tilting of
the original rolls or squares. The analysis in this paper applies to the even and odd
cases separately, but there are complications if both even and odd modes are excited.
In addition, in the odd case, velocities at the top and bottom of the layer will be
equal and opposite, implying that the patterns will not travel; the coefficient D in
(2.13)–(2.14) and (2.17)–(2.18) must therefore be zero in this case.

Steady squares are the preferred planform at the onset of compressible convection
in a strong magnetic field with Ohmic diffusivity greater than the thermal diffusivity,
and some shearing instabilities of squares have been observed but not explored in
detail (Matthews et al. 1995); our analysis is likely to be relevant in this case. In
addition, clear examples of alternating pulsating waves have been reported in nu-
merical simulations of convection in a weak magnetic field (Matthews et al. 1994;
Matthews et al. 1995), though these were created not in a Hopf bifurcation but after
a complicated sequence of local and global bifurcations.

In the two-dimensional problem, pulsating waves (rolls that travel to and fro,
with a spatio-temporal symmetry thmx) can be created in a symmetry-breaking
Hopf bifurcation from rolls, or after a sequence of bifurcations. Rolls can undergo a
symmetry-breaking pitchfork bifurcation to travelling rolls, which subsequently lose
stability to modulated travelling rolls in a Hopf bifurcation; finally, the thmx sym-
metry is restored when pulsating waves are created in a global bifurcation. These
two routes to pulsating waves are brought together at a codimension-two Takens–
Bogdanov bifurcation point, where the Hopf and pitchfork bifurcations coincide
(Matthews et al. 1993). The use of normal forms and low-order models has proved
essential in this two-dimensional analysis (Rucklidge & Matthews 1996).

The situation in three dimensions is more complicated for two reasons. First, near
the Takens–Bogdanov point, there are two types of travelling squares and at least
three types of oscillating squares to be fitted into a coherent picture. A preliminary
investigation has revealed that there is also chaotic dynamics near the codimension-
two point (Armbruster et al. 1989), and a detailed study will be necessary to elucidate
the many routes from travelling solutions to solutions that oscillate to and fro. A
study of the Takens–Bogdanov bifurcation with D4 symmetry is also of interest as
it is an important subcase of Takens–Bogdanov with D4 × T 2, which arises in the
context of the initial instability in magnetoconvection at parameter values where the
pitchfork bifurcation to steady convection and the Hopf bifurcation to oscillatory
convection coincide (Clune & Knobloch 1994; Matthews et al. 1995).

The second complication in three dimensions is that alternating pulsating waves
have been observed in numerical simulations of convection in the presence of a ver-
tical magnetic field at parameter values for which rolls, not squares, are preferred at
onset (Matthews et al. 1994; Matthews et al. 1995). The route from rolls to APW
is a very involved sequence of local and global bifurcations that depends in detail
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on the parameter values. For example, in the numerical simulations of magneto-
convection, steady rolls lose their mirror symmetry, become time dependent then
three dimensional, and finally gain the tqrq symmetry in a global bifurcation to form
APW (Matthews et al. 1995). A similar sequence (but including structurally stable
heteroclinic cycles) also occurs in (3.6)–(3.11) and in the model of Boussinesq mag-
netoconvection on which those equations are based (Rucklidge & Matthews 1995),
and a sequence of bifurcations leading from rolls to modulated diagonally travelling
squares has been described in simulations of non-magnetic convection (Matthews et
al. 1996). In all cases, low-order models have clarified the global bifurcations and the
changes in symmetry that occur in the numerical simulations.
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