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Abstract. We compute the motive of the variety of representations of the torus knot of

type (m,n) into the affine groups AGL1(C) and AGL2(C). For this, we stratify the varieties

and show that the motives lie in the subring generated by the Lefschetz motive q = [C].

1. Introduction

Since the foundational work of Culler and Shalen [1], the varieties of SL2(C)-characters

have been extensively studied. Given a manifold M , the variety of representations of π1(M)

into SL2(C) and the variety of characters of such representations both contain information

on the topology of M . It is especially interesting for 3-dimensional manifolds, where the

fundamental group and the geometrical properties of the manifold are strongly related. This

can be used to study knots K ⊂ S3, by analysing the SL2(C)-character variety of the

fundamental group of the knot complement S3 −K (these are called knot groups).

For a very different reason, the case of fundamental groups of surfaces has also been ex-

tensively analysed [7, 8, 10, 13, 14], in this situation focusing more on geometrical properties

of the moduli space in itself (cf. non-abelian Hodge theory).

Much less is known of the character varieties for other groups. The character varieties

for SL3(C) for free groups have been described in [9]. In the case of 3-manifolds, little has

been done. In this paper, we focus in the case of the torus knots Km,n for coprime m,n,

which are the first family of knots where the computations are rather feasible. The case of

SL2(C)-character varieties of torus knots was carried out in [12, 15]. For SL3(C), it has been

carried out by Muñoz and Porti in [16]. The case of SL4(C) has been computed by two of

the authors of the current paper through a computer-assisted proof in [6].

The group SLr(C) is reductive, which allows to use Geometric Invariant Theory (GIT) to

define the moduli of representations, the so-called character variety. In [5] we started the

analysis of character varieties for the first non-reductive groups, notably computing by three

different methods (geometric, arithmetic and through a Topological Quantum Field Theory)

the motive of the variety of representations for a surface group into the rank one affine group

AGL1(C).

In the current work, we study the variety of representations of the torus knot Km,n into

the affine groups AGL1(C) and AGL2(C). We prove the following result:

Theorem 1.1. Let m,n ∈ N with gcd(m,n) = 1. The motives of the AGL1(C) and

AGL2(C)-representation variety of the (m,n)-torus knot in the Grothendieck ring of complex
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algebraic varieties are:
[

Xm,n(AGL1(C))
]

= (mn−m− n+ 2)(q2 − q).
[

Xm,n(AGL2(C))
]

= q6 − 2q4 + q3 +
[

X
irr
m,n(GL2(C))

]

q2

+ (m− 1)(n− 1)

(

(q − 1)(q − 2)
(m− 2)(n− 2)q +mn− 4

4
+ (q + 1)− 2

)

(q5 − q3)

+
(m− 1)(n− 1)(mn−m− n)

2
(q − 1) (q5 − q3).

Here, q = [C] ∈ KVarC denotes the Lefschetz motive, and
[

X
irr
m,n(GL2(C))

]

=

=







(q3 − q)1
4
(m− 1)(n− 1)(q − 2)(q − 1), m, n both odd,

(q3 − q)
(

1
4
(n− 2)(m− 1)(q − 2) + 1

2
(m− 1)(q − 1)

)

(q − 1), m odd, n even,

(q3 − q)
(

1
4
(n− 1)(m− 2)(q − 2) + 1

2
(n− 1)(q − 1)

)

(q − 1), m even, n odd.
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2. Basic notions

2.1. Representation varieties of torus knots. Let Γ be a finitely presented group, and let

G be a complex algebraic group. A representation of Γ in G is a homomorphism ρ : Γ → G.

Consider a presentation Γ = 〈x1, . . . , xk | r1, . . . , rs〉. Then ρ is completely determined by

the k-tuple (A1, . . . , Ak) = (ρ(x1), . . . , ρ(xk)) subject to the relations rj(A1, . . . , Ak) = Id,

1 ≤ j ≤ s. The representation variety is

XΓ(G) = Hom(Γ, G)

= {(A1, . . . , Ak) ∈ Gk | rj(A1, . . . , Ak) = Id, 1 ≤ j ≤ s} ⊂ Gk .

Therefore XΓ(G) is an affine algebraic set.

Suppose in addition that G is a linear group, say G ⊂ GLr(C). A representation ρ is

reducible if there exists some proper subspace V ⊂ Cr such that for all g ∈ G we have

ρ(g)(V ) ⊂ V ; otherwise ρ is irreducible. This distinction induces a natural stratification of

the representation variety into its irreducible and reducible parts XΓ(G) = X
irr
Γ (G)⊔X

red
Γ (G).

Let T 2 = S1 × S1 be the 2-torus and consider the standard embedding T 2 ⊂ S3. Let m,n

be a pair of coprime positive integers. Identifying T 2 with the quotient R2/Z2, the image of

the straight line y = m
n
x in T 2 defines the torus knot of type (m,n), which we shall denote

as Km,n ⊂ S3 (see Chapter 3 in [19]). For a knot K ⊂ S3, we denote by ΓK the fundamental

group of the exterior S3 −K of the knot. It is known that

Γm,n = ΓKm,n

∼= 〈x, y | xn = ym 〉 .

Therefore the variety of representations of the torus knot of type (m,n) is described as

Xm,n(G) = XΓm,n
(G) = {(A,B) ∈ G2 |An = Bm}.

In this work, we shall focus on the case G = AGLr(C), the group of affine automorphisms

of the complex r-dimensional affine space.
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2.2. The Grothendieck ring of algebraic varieties. Take the category of complex al-

gebraic varieties with regular morphisms VarC. We can construct its Grothendieck group,

KVarC, as the abelian group generated by isomorphism classes of algebraic varieties with the

relation that [X ] = [Y ] + [U ] if X = Y ⊔ U , with Y ⊂ X a closed subvariety. The cartesian

product of varieties also provides KVarC with a ring structure, as [X ] · [Y ] = [X × Y ]. The

elements of KVarC are usually referred to as virtual classes. A very important element of

KVarC is the class of the affine line, q = [C], the so-called Lefschetz motive.

Virtual classes are well-behaved with respect to two typical geometric situations that we

will encounter in the upcoming sections. A proof of the following facts can be found for

instance in Section 4.1 of [4].

• Let E → B be a regular morphism that is a locally trivial bundle in the Zariski

topology with fiber F . In this situation, we have that in KVarC

[E] = [F ] · [B].

• Suppose that X is an algebraic variety with an action of Z2. Setting [X ]+ = [X/Z2]

and [X ]− = [X ]− [X ]+, we have the formula

[X × Y ]+ = [X ]+[Y ]+ + [X ]−[Y ]− (1)

for two varieties X, Y with Z2-actions.

Example 2.1. Consider the fibration C
2 −C → GL2(C) → C

2 −{(0, 0)}, f 7→ f(1, 0). It is

locally trivial in the Zariski topology, and therefore [GL2(C)] = [C2 − C] · [C2 − {(0, 0)}] =

(q2 − q)(q2 − 1) = q4 − q3 − q2 + q. Analogously, the quotient map defines a locally trivial

fibration C∗ = C− {0} → GL2(C) → PGL2(C), so [PGL2(C)] = q3 − q.

We have the following computation that we will need later.

Lemma 2.2. Let Z2 act on C2 by exchange of coordinates. Then [(C∗)2 −∆]+ = (q − 1)2,

[(C∗)2 −∆]− = −q + 1, where ∆ denotes the diagonal.

Also let X = GL2(C)/GL1(C)×GL1(C), and Z2 acting by exchange of columns in GL2(C).

Then [X ]+ = q2 and [X ]− = q.

Proof. The quotient C2/Z2 is parametrized by s = x + y, p = xy, where (x, y) are the

coordinates of C2. Then ((C∗)2 −∆)/Z2 is given by the equations p 6= 0, 4p 6= s2. Therefore

[(C∗)2 − ∆]+ = [((C∗)2 − ∆)/Z2] = q2 − q − (q − 1) = (q − 1)2, and [(C∗)2 − ∆]− =

[(C∗)2 −∆]− [(C∗)2 −∆]+ = (q − 1)2 − (q − 1)− (q − 1)2 = −q + 1.

For the second case, note that X = P1 × P1 −∆, and Z2 acts by exchange of coordinates.

The whole quotient is (P1 × P
1)/Z2 = Sym2(P1) = P

2. The diagonal goes down to a

smooth conic (the completion of 4p = s2), hence [X ]+ = [X/Z2] = [(P1 × P1 − ∆)/Z2] =

q2 + q + 1− (q + 1) = q2. Also [X ] = (q + 1)2 − (q + 1) = q2 + q, hence [X ]− = q. �

3. AGL1(C)-representation varieties of torus knots

In this section we shall compute the motive of the AGL1(C)-representation variety of the

(m,n)-torus knot by describing it explicitly. Suppose that we have an element (A,B) ∈
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Xm,n(AGL1(C)) with matrices of the form

A =

(

1 0

α a0

)

, B =

(

1 0

β b0

)

.

A straightforward computation shows that

An =

(

1 0

(1 + a0 + . . .+ an−1
0 )α an0

)

, Bm =

(

1 0

(1 + b0 + . . .+ bm−1
0 )β bm0

)

.

Notice that, since gcd(m,n) = 1, for any pair (a0, b0) ∈ C2 with an0 = bm0 and a0, b0 6= 0,

there exists a unique t ∈ C∗ = C− {0} such that tm = a0 and tn = b0. This means that the

representation variety can be explicitly described as

Xm,n(AGL1(C)) =
{

(t, α, β) ∈ C
∗ × C

2 |Φn(t
m)α = Φm(t

n)β
}

,

where Φl is the polynomial

Φl(x) = 1 + x+ . . .+ xl−1 =
xl − 1

x− 1
∈ C[x].

Written in a more geometric fashion, the morphism (t, α, β) 7→ t defines a regular map

Xm,n(AGL1(C)) −→ C
∗. (2)

The fiber over t ∈ C∗ is the annihilator of the vector (Φn(t
m),Φm(t

n)) ∈ C2 (in other words,

the orthogonal complement respect to the standard euclidean metric). This annihilator is C

if (Φn(t
m),Φm(t

n)) 6= (0, 0) and is C2 otherwise.

Denote by µl the group of l-th roots of units. Recall that the roots of the polynomial Φl

are the elements of µ∗

l = µl − {1}. Hence (Φn(t
m),Φm(t

n)) = (0, 0) if and only if

t ∈ Ωm,n = µmn − (µm ∪ µn) .

The number of elements of Ωm,n is

|Ωm,n| = mn−m− n + 1 = (m− 1)(n− 1).

The space (2) decomposes into the two Zariski locally trivial fibrations

C −→ X
(1)
m,n(AGL1(C)) −→ C

∗ − Ωm,n,

C
2 −→ X

(2)
m,n(AGL1(C)) −→ Ωm,n,

with Xm,n(AGL1(C)) = X
(1)
m,n(AGL1(C)) ⊔ X

(2)
m,n(AGL1(C)). This implies that the motive of

the whole representation variety is

[Xm,n(AGL1(C))] =
[

X
(1)
m,n(AGL1(C))

]

+
[

X
(2)
m,n(AGL1(C))

]

= [C∗ − Ωm,n] [C] + [Ωm,n]
[

C
2
]

= (q − 1− |Ωm,n|)q + |Ωm,n|q
2

= (mn−m− n+ 2)(q2 − q).

This proves the first assertion of Theorem 1.1.
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4. AGL2(C)-representation varieties of torus knots

In this section, we compute the motive of the AGL2(C)-representation variety of the

(m,n)-torus knot. Suppose that we have an element (A,B) ∈ Xm,n(AGL2(C)) with matrices

of the form

A =

(

1 0

α A0

)

, B =

(

1 0

β B0

)

.

Notice that in this setting A0, B0 ∈ GL2(C) while α, β ∈ C
2. Computing the powers we

obtain

An =

(

1 0

Φn(A0)α An
0

)

, Bm =

(

1 0

Φm(B0)β Bm
0

)

.

Therefore, the AGL2(C)-representation variety is explicitly given by

Xm,n(AGL2(C)) =

{

(A0, B0, α, β) ∈ GL2(C)
2 × C

2

∣

∣

∣

∣

An
0 = Bm

0

Φn(A0)α = Φm(B0)β

}

, (3)

In particular, these conditions imply that (A0, B0) ∈ Xm,n(GL2(C)). Let us decompose

Xm,n(AGL2(C)) = X
irr
m,n(AGL2(C)) ⊔ X

red
m,n(AGL2(C)),

where X
irr
m,n(AGL2(C)) (resp. X

red
m,n(AGL2(C))) are the representations (A,B) with (A0, B0)

an irreducible (resp. reducible) representation of Xm,n(GL2(C)).

Remark 4.1. Beware of the notation: the superscripts refer to the reducibility/irreducibility

of the vectorial part of the representation, not to the representation itself.

4.1. The irreducible stratum. First of all, let us analyze the case where (A0, B0) is an

irreducible representation. In that case, the eigenvalues are restricted as the following result

shows.

Lemma 4.2. Let ρ = (A0, B0) ∈ X
irr
m,n(GLr(C)) be an irreducible representation. Then

An
0 = Bm

0 = ω Id, for some ω ∈ C∗.

Proof. Notice that An
0 is a linear map that is equivariant with respect to the representation

ρ. By Schur’s lemma, this implies that An
0 must be a multiple of the identity, say An

0 = ω Id

and, since Bm
0 = An

0 , the result follows. �

Corollary 4.3. Let ρ = (A0, B0) ∈ X
irr
m,n(GLr(C)) be an irreducible representation and let

λ1, . . . , λr and η1, . . . , ηr be the eigenvalues of A0 and B0, respectively. Then A0 and B0 are

diagonalizable and λn
1 = . . . = λn

r = ηm1 = . . . = ηmr .

In order to analyze the conditions of (3), observe that (A,B) 7→ (A0, B0) defines a mor-

phism

X
irr
m,n(AGL2(C)) −→ X

irr
m,n(GL2(C)). (4)

The fiber of this morphism at (A0, B0) is the kernel of the map

Λ : C2 × C
2 → C

2, Λ(α, β) = Φn(A0)α− Φm(B0)β. (5)

The following appears in Proposition 7.3 in [16]. Recall from Example 2.1 that [PGL2(C)] =

q3 − q.

Proposition 4.4. For the torus knot of type (m,n), we have:
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• If m,n are both odd then [Xirr
m,n(GL2(C))] = [PGL2(C)]

1
4
(m− 1)(n− 1)(q− 2)(q− 1).

• If n is even and m is odd, then

[Xirr
m,n(GL2(C))] = [PGL2(C)]

(

1
4
(n− 2)(m− 1)(q − 2) + 1

2
(m− 1)(q − 1)

)

(q − 1).

• If m is even and n is odd, then

[Xirr
m,n(GL2(C))] = [PGL2(C)]

(

1
4
(n− 1)(m− 2)(q − 2) + 1

2
(n− 1)(q − 1)

)

(q − 1).

To understand the kernel of (5), we use the following lemma.

Lemma 4.5. Let A be a diagonalizable matrix and let p(x) ∈ C[x] a polynomial. Then, the

dimension of the kernel of the matrix p(A) is the number of eigenvalues of A that are roots

of p(x).

Proof. Write A = QDQ−1 with D = diag(λ1, . . . , λr) a diagonal matrix. Then p(A) =

Qp(D)Q−1 and, since p(D) = diag(p(λ1), . . . , p(λr)), the dimension of its kernel is the number

of eigenvalues that are also roots of p. �

Using the previous lemma for r = 2, we get that the dimension of the kernel of Φn(A0) is

the number of eigenvalues of A0 that belong to µ∗

n, and analogously for Φm(B0). Let λ1, λ2

be the eigenvalues of A0 and η1, η2 the eigenvalues of B0. Recall that λ1 6= λ2 and η1 6= η2
since otherwise (A0, B0) is not irreducible. Then, we have the following options:

(1) Case λ1, λ2 ∈ µ∗

n and η1, η2 ∈ µ∗

m. In this situation, Λ ≡ 0 so KerΛ = C4. Hence, if

we denote by X
irr,(1)
m,n (AGL2(C)) and X

irr,(1)
m,n (GL2(C)) the corresponding strata in (4)

of the total and base space, respectively, we have that
[

X
irr,(1)
m,n (AGL2(C))

]

=
[

X
irr,(1)
m,n (GL2(C))

]

[C4].

To get the motive of X
irr,(1)
m,n (GL2(C)), the eigenvalues define a fibration

X
irr,(1)
m,n (GL2(C)) −→ ((µ∗

n)
2 −∆)/Z2 × ((µ∗

m)
2 −∆)/Z2, (6)

where ∆ is the diagonal and Z2 acts by permutation of the entries. The fiber of this

map is the collection of representations (A0, B0) ∈ X
irr
m,n(GL2) with fixed eigenvalues,

denoted by X
irr
m,n(GL2(C))0. An element of Xirr

m,n(GL2(C))0 is completely determined

by the two pairs of eigenspaces of (A0, B0) up to conjugation. Since the representation

(A0, B0) must be irreducible, these eigenspaces must be pairwise distinct. Hence, this

variety is Xirr
m,n(GL2(C))0 = (P1)4 −∆c, where ∆c ⊂ (P1)4 is the ‘coarse diagonal’ of

tuples with two repeated entries. There is a free and closed action of PGL2(C) on

(P1)4 with quotient

(P1)4 −∆c

PGL2(C)
= P

1 − {0, 1,∞}.

To see this, note that there is a PGL2(C)-equivariant map that sends the first

three entries to 0, 1,∞ ∈ P
1 respectively, so the orbit is completely determined by

the image of the fourth point under this map. Hence, [Xirr
m,n(GL2(C))0] = [P1 −

{0, 1,∞}] [PGL2(C)] = (q − 2)(q3 − q).

Coming back to the fibration (6), we have that the basis is a set of
(

n−1
2

)(

m−1
2

)

=
(n−1)(n−2)(m−1)(m−2)

4
points, so

[

X
irr,(1)
m,n (GL2(C))

]

=
(n− 1)(n− 2)(m− 1)(m− 2)

4
(q − 2)(q3 − q),
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and thus,

[

X
irr,(1)
m,n (AGL2(C))

]

=
(n− 1)(n− 2)(m− 1)(m− 2)

4
(q5 − 2q4)(q3 − q).

(2) Case λ1, λ2 ∈ µ∗

n, η1 ∈ µ∗

m and η2 = 1. In this case, Ker Λ = C3 and the base space

is made of
(

n−1
2

)

(m− 1) copies of Xirr
m,n(GL2(C))0. Hence, this stratum contributes

[

X
irr,(2)
m,n (AGL2(C))

]

=
(n− 1)(n− 2)(m− 1)

2

[

P
1 − {0, 1,∞}

]

[PGL2(C)] [C
3]

=
(n− 1)(n− 2)(m− 1)

2
(q4 − 2q3)(q3 − q).

(3) Case λ1 ∈ µ∗

n, λ2 = 1 and η1, η2 ∈ µ∗

m. This is analogous to the previous stratum and

contributes

[

X
irr,(3)
m,n (AGL2(C))

]

=
(m− 1)(n− 1)(m− 2)

2

[

P
1 − {0, 1,∞}

]

[PGL2(C)] [C
3]

=
(m− 1)(n− 1)(m− 2)

2
(q4 − 2q3)(q3 − q).

(4) Case λ1 ∈ µ∗

n, λ2 = 1 and η1 ∈ µ∗

m, η2 = 1. Now, Ker Λ = C2 and this stratum

contributes

[

X
irr,(4)
m,n (AGL2(C))

]

= (m− 1)(n− 1)
[

P
1 − {0, 1,∞}

]

[PGL2(C)] [C
2]

= (m− 1)(n− 1)(q3 − 2q2)(q3 − q).

(5) Case λ1 6∈ µ∗

n, λ2 6∈ µ∗

n, η1 6∈ µ∗

m and η2 6∈ µ∗

m. Recall that by Corollary 4.3, these

conditions are all equivalent. In this situation, Λ is surjective so Ker Λ = C2. The

motive
[

X
irr
m,n(GL2(C))

]

is given in Proposition 4.4. To this space, we have to remove

the orbits corresponding to the forbidden eigenvalues, which are

ℓm,n =
(n− 1)(n− 2)(m− 1)(m− 2)

4
+

(n− 1)(n− 2)(m− 1)

2

+
(m− 1)(n− 1)(m− 2)

2
+ (m− 1)(n− 1) =

1

4
mn(m− 1)(n− 1)

copies of [Xirr
m,n(GL2(C))0] = [P1 − {0, 1,∞}] [PGL2(C)]. Hence this stratum con-

tributes

[

X
irr,(5)
m,n (AGL2(C))

]

=
([

X
irr
m,n(GL2(C))

]

− ℓm,n(q − 2)(q3 − q)
) [

C
2
]

=
[

X
irr
m,n(GL2(C))

]

q2 −
1

4
mn(m− 1)(n− 1)(q3 − 2q2)(q3 − q).

Adding up all the contributions, we get

[

X
irr
m,n(AGL2(C))

]

=
[

X
irr,(1)
m,n (AGL2(C))

]

+
[

X
irr,(2)
m,n (AGL2(C))

]

+
[

X
irr,(3)
m,n (AGL2(C))

]

+
[

X
irr,(4)
m,n (AGL2(C))

]

+
[

X
irr,(5)
m,n (AGL2(C))

]

=
(m− 1)(n− 1)(q3 − 2q2)(q − 1)(q3 − q)

4
((m− 2)(n− 2)q +mn− 4)

+
[

X
irr
m,n(GL2(C))

]

q2.
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4.2. The reducible stratum. In this section, we shall consider the case in which (A0, B0) ∈

X
red
m,n(GL2(C)) is a reducible representation. After a change the basis, since An

0 = Bm
0 , we

can suppose that (A0, B0) has exactly one of the following three forms:

(A)

((

tm1 0

0 tm2

)

,

(

tn1 0

0 tn2

))

, (B)

((

tm 0

0 tm

)

,

(

tn 0

0 tn

))

, (C)

((

tm 0

x tm

)

,

(

tn 0

y tn

))

,

with t1, t2, t ∈ C∗, x, y ∈ C and satisfying t1 6= t2 and (x, y) 6= (0, 0).

Restricting to the representations of each stratum S = (A), (B), (C), we have a morphism

X
S
m,n(AGL2(C)) −→ X

S
m,n(GL2(C)), (7)

whose fiber is the kernel of the linear map (5).

4.2.1. Case (A). In this case, as for the irreducible part of Section 4.1, the kernel of Λ

depends on whether t1, t2 are roots of the polynomial Φl. In this case the base space is

X
(A)
m,n(GL2(C)) =

(

(

(C∗)2 −∆
)

×
GL2(C)

GL1(C)×GL1(C)

)

/Z2,

with the action of Z2 given by exchange of eigenvalues and eigenvectors. Using Lemma 2.2

and (1), we have

[

X
(A)
m,n(GL2)

]

= [(C∗)2 −∆]+
[

GL2(C)

GL1(C)×GL1(C)

]+

+ [(C∗)2 −∆]−
[

GL2(C)

GL1(C)×GL1(C)

]

−

= q2(q − 1)2 − q(q − 1).

On the other hand, if we fix the eigenvalues of (A0, B0) as in Section 4.1, the corresponding

fiber X
(A)
m,n(GL2(C))0 is

[

X
(A)
m,n(GL2(C))0

]

=

[

GL2(C)

GL1(C)×GL1(C)

]

= q2 + q.

As in Section 3, set Ωm,n = µmn − (µm ∪ µn) for those t ∈ C∗ such that Φn(t
m) = 0 and

Φm(t
n) = 0. With this information at hand, we compute for each stratum:

(1) Case t1, t2 ∈ Ωm,n. In this situation, Λ ≡ 0 so Ker Λ = C4. The eigenvalues yield a

fibration

X
(A),(1)
m,n (GL2(C)) −→

(

Ω2
m,n −∆

)

/Z2

whose fiber is X
(A)
m,n(GL2(C))0. Observe that

(

Ω2
m,n −∆

)

/Z2 is a finite set of (m −

1)(n− 1)((m− 1)(n− 1)− 1)/2 points, so we have
[

X
(A),(1)
m,n (AGL2(C))

]

=
[

X
(A),(1)
m,n (GL2(C))

]

[C4]

=
[

X
(A)
m,n(GL2(C))0

]

[C4]
[(

Ω2
m,n −∆

)

/Z2

]

=
(m− 1)(n− 1)(mn−m− n)

2
q4(q2 + q).

(2) Case t1 ∈ Ωm,n but t2 6∈ Ωm,n (or vice-versa, the order is not important here). Now,

we have a locally trivial fibration

X
(A),(2)
m,n (GL2(C)) −→ Ωm,n × (C∗ − Ωm,n) ,

with fiber X
(A)
m,n(GL2(C))0. The kernel of Λ is C3, so this stratum contributes

[

X
(A),(2)
m,n (AGL2(C))

]

= (m− 1)(n− 1)(q −mn+ n +m− 2)q3(q2 + q).



REPRESENTATION VARIETY OF TORUS KNOTS FOR AFFINE GROUPS 9

(3) Case t1, t2 6∈ Ωm,n. The kernel is now C2 and we have a fibration

X
(A),(3)
m,n (GL2(C)) −→ B,

where the motive of the base space B is

[B] = [(C∗)2 −∆]+ −
[

Ω2
m,n −∆

]+
− [Ωm,n] (q − 1− [Ωm,n]) =

= (q − 1)2 −
(m− 1)(n− 1)(mn−m− n)

2
− (m− 1)(n− 1)(q −mn + n+m− 2)

= q2 − (mn−m− n+ 3)q −
1

4
(m− 1)(n− 1)(mn− 8).

Therefore, this space contributes

[

X
(A),(3)
m,n (AGL2(C))

]

=
[

X
(A),(3)
m,n (GL2(C))

]

[C2]

= q2(q2 + q)
(

q2 − (mn−m− n + 3)q + (m− 1)(n− 1)(mn− 8)/4
)

.

Adding up all the contributions, we get that

[

X
(A)
m,n(AGL2(C))

]

= (q2 + q)q2
(

(m− 1)(n− 1)(mn−m− n)

2
(q2 − 1)

+ (m− 1)(n− 1)(q −mn + n+m− 2)(q − 1) + (q − 1)2
)

.

4.2.2. Case (B). In this setting, this situation is simpler. Observe that the adjoint action of

GL2(C) on the vectorial part is trivial, so the corresponding GL2(C)-representation variety

is just

X
(B)
m,n(GL2(C)) = C

∗.

Analogously, the variety with fixed eigenvalues, X
(B)
m,n(GL2(C))0 is just a point. With these,

we obtain that:

(1) If t ∈ Ωm,n, then Ker Λ = C4. We have a fibration

X
(B),(1)
m,n (GL2(C)) −→ Ωm,n

whose fiber is X
(B)
m,n(GL2(C))0. Hence, this stratum contributes

[

X
(B),(1)
m,n (AGL2(C))

]

=
[

X
(B),(1)
m,n (GL2(C))

]

[C4] = (m− 1)(n− 1)q4 .

(2) If t 6∈ Ωm,n, then Ker Λ = C2. We have a fibration

X
(B),(2)
m,n (GL2(C)) −→ C

∗ − Ωm,n.

Thus, the contribution of this stratum is

[

X
(B),(2)
m,n (AGL2(C))

]

= (q − 1− (m− 1)(n− 1))q2.

The total contribution is

[

X
(B)
m,n(AGL2(C))

]

= (m− 1)(n− 1)(q4 − q2) + (q − 1)q2.
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4.2.3. Case (C). In this case, an extra calculation must be done to control the off-diagonal

entry. If (A0, B0) has the form
((

tm 0

x tm

)

,

(

tn 0

y tn

))

,

then the condition An
0 = Bm

0 reads as
(

tmn 0

ntm(n−1)x tmn

)

=

(

tmn 0

mtn(m−1)y tmn

)

.

The later conditions reduce to ntm(n−1)x = mtn(m−1)y and, since t 6= 0, this means that (x, y)

should lie in a line minus (0, 0). The stabilizer of a Jordan type matrix in GL2(C) is the

subgroup U = (C∗)2 × C ⊂ GL2(C) of upper triangular matrices. Hence, the corresponding

GL2(C)-representation variety is

X
(C)
m,n(GL2(C)) = (C∗)2 ×GL2(C)/U.

In particular,
[

X
(C)
m,n(GL2(C))

]

= (q−1)2(q4−q3−q2+q)/q(q−1)2 = (q−1)2(q+1). Moreover,

if we fix the eigenvalues we get that
[

X
(C)
m,n(GL2(C))0

]

= [C∗ ×GL2(C)/U ] = (q − 1)(q + 1).

To analyze the condition Φn(A0) = Φm(B0), a straightforward computation reduces it to






Φn(t
m) 0

x
n−1
∑

i=1

itm(i−1) Φn(t
m)






=







Φm(t
n) 0

y
m−1
∑

i=1

itn(i−1) Φm(t
n)






.

The off-diagonal entries can be recognized as xΦ′

n(t
m) and yΦ′

m(t
n) respectively, where Φ′

l(x)

denotes the formal derivative of Φl(x). Since Φl has no repeated roots, we have that Φ′

n(t
m)

and Φn(t
m) (resp. Φ′

m(t
n) and Φm(t

n)) cannot vanish simultaneously. Therefore, stratifying

according to the kernel of Λ we get the following two possibilities:

(1) If t ∈ Ωm,n, then Ker Λ = C3. We have a fibration

X
(C),(1)
m,n (GL2(C)) −→ Ωm,n

whose fiber is X
(C)
m,n(GL2(C))0. Hence, this stratum contributes

[

X
(C),(1)
m,n (AGL2(C))

]

=
[

X
(C),(1)
m,n (GL2(C))

]

[C3] = (m− 1)(n− 1)q3(q − 1)(q + 1).

(2) If t ∈ C∗ − Ωm,n, then Ker Λ = C2. The fibration we get is now

X
(C),(2)
m,n (GL2(C)) −→ C

∗ − Ωm,n .

Therefore, this stratum contributes
[

X
(C),(2)
m,n (AGL2(C))

]

=
[

X
(C),(2)
m,n (GL2(C))

]

[C2]

=
[

X
(C)
m,n(GL2(C))− (m− 1)(n− 1)X(C),(2)

m,n (GL2(C))0
]

[C2]

=
(

(q − 1)2(q + 1)− (m− 1)(n− 1)(q − 1)(q + 1)
)

q2.

Adding up all the contributions, we get that
[

X
(C)
m,n(AGL2(C))

]

= (q − 1)2(q + 1)q2 + (m− 1)(n− 1)(q − 1)(q + 1)(q3 − q2).

Putting the results of Sections 4.1, 4.2.1, 4.2.2 and 4.2.3 together, we prove the second

formula in Theorem 1.1.
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5. Character varieties of torus knots

As we have said in Section 2.1, the G-representation variety of a (m,n)-torus knot Xm,n(G)

parametrizes all the representations ρ : π1(R
3 −Km,n) → G. However, this space does not

take into account the fact that two representations might be isomorphic. To remove this

redundancy, consider the adjoint action of G on Xm,n(G) given by (P · ρ)(γ) = Pρ(γ)P−1

for P ∈ G, ρ ∈ Xm,n(G) and γ ∈ π1(R
3 −Km,n).

Ideally, we would like to take the quotient space Xm,n(G)/G as the moduli space of iso-

morphism classes of representations. However, typically this orbit space is not an algebraic

variety, and we need to consider instead the Geometric Invariant Theory (GIT) quotient [18]

Rm,n(G) = Xm,n(G) � G,

usually known as the character variety. Roughly speaking, the character variety is obtained

by collapsing those orbits of isomorphism classes of representations of the representation

variety whose Zariski closures intersect. This collapsing can be justified intuitively since

those orbits are indistinguishable from the point of their structure sheaf.

In the case that G is affine (so that Xm,n(G) is also an affine variety), there is a very

simple description of the GIT quotient. Let O(Xm,n(G)) be the ring of regular functions on

Xm,n(G) (the global sections of its structure sheaf). The action of G on Xm,n(G) induces

an action on O(Xm,n(G)). Set O(Xm,n(G))G for the collection of G-invariant functions. By

Nagata’s theorem [17], if G is a reductive group then this is a finitely generated algebra so

we can take as the GIT quotient the algebraic variety

Rm,n(G) = Xm,n(G) � G = Spec
(

O(Xm,n(G))G
)

.

This is the construction of character varieties that is customarily developed in the literature

for the classical groups G = GLr(C), SLr(C). However, the affine case G = AGLr(C) is

problematic since AGLr(C) is not a reductive group. Roughly speaking, the underlying

reason is that we have a description as semi-direct product AGLr(C) = Cr ⋊ GLr(C) and

the factor Cr is the canonical example of a non-reductive group.

For this reason, it is not guaranteed by Nagata’s theorem that O(Xm,n(AGLr(C)))
AGLr(C)

is a finitely generated algebra so the GIT quotient may not be defined as an algebraic variety.

However, in this situation we have the following result.

Proposition 5.1. For any r ≥ 1 we have that

O(Xm,n(AGLr(C)))
AGLr(C) = O(Xm,n(GLr(C)))

GLr(C).

Proof. We shall explode the natural description of Xm,n(GLr(C)) as a subvariety of the whole

representation variety Xm,n(AGLr(C)). By restriction, there is a natural homomorphism

ϕ : O(Xm,n(AGLr(C)))
AGLr(C) −→ O(Xm,n(GLr(C)))

GLr(C).

Notice that the action of AGLr(C) on the subvariety Xm,n(GLr(C)) agrees with the GLr(C)-

action. Hence, given an invariant function f ∈ O(Xm,n(GLr(C)))
GLr(C) we can consider the

lifting f̃ ∈ O(Xm,n(AGLr(C)))
AGLr(C) given by f̃(A,B) = f(A0, B0) where (A0, B0) is the

vectorial part of the representation (A,B) ∈ Xm,n(AGLr(C)). The map f 7→ f̃ gives a right

inverse to ϕ.
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To show that this morphism is also a left inverse, let (A,B) ∈ Xm,n(AGLr(C)), say

(A,B) =

((

1 0

α A0

)

,

(

1 0

β B0

))

,

with A0, B0 ∈ GLr(C) and α, β ∈ Cr. Consider the homothety

P =

(

1 0

0 λ Id

)

∈ AGLr(C).

Then, we have that

P · (A,B) =

((

1 0

λα A0

)

,

(

1 0

λβ B0

))

.

By letting λ → 0, this implies that the Zariski closure of the orbit contains the representation
((

1 0

0 A0

)

,

(

1 0

0 B0

))

∈ Xm,n(GLr(C)).

Now, observe that any AGLr(C)-invariant function f : Xm,n(AGLr(C)) → C must take

the same value on the closure of an orbit, so for any (A,B) ∈ Xm,n(AGLr(C)) we have that

f(A,B) = f(A0, B0). In particular, this shows that f 7→ f̃ is also a left inverse of ϕ, so ϕ is

an isomorphism. �

Remark 5.2. In fact, there is nothing special in considering torus knots in the previous

proof. Exactly the same argument actually proves that we have O(XΓ(AGLr(C)))
AGLr(C) =

O(XΓ(AGLr(C)))
AGLr(C) for the representation variety of representations ρ : Γ → AGLr(C)

for any finitely presented group Γ.

In particular, the previous proof shows that O(Xm,n(AGLr(C)))
AGLr(C) is a finitely gener-

ated algebra, so we can harmlessly define the AGLr(C)-character variety and it satisfies

Rm,n(AGLr(C)) = Rm,n(GLr(C)).

The motive of the GLr(C)-character variety has been previously computed in the literature

for low rank r, for instance in [15] for r = 2 (cf. Proposition 4.4) and in [16] for r = 3.
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