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Summary 

 

TUMOR HETEROGENEITY IN PET/CT IMAGES 

 

Introduction and objectives  

 

Cancer is a leading cause of morbidity and mortality [1]. The most frequent cancers worldwide are 

non–small cell lung carcinoma (NSCLC) and breast cancer [2], being their management a challenging 

task [3].   Tumor diagnosis is usually made through biopsy [4]. However, medical imaging also plays 

an important role in diagnosis,   staging, response to treatment, and recurrence assessment [5]. Tumor 

heterogeneity is recognized to be involved in cancer treatment failure, with worse clinical outcomes 

for highly heterogeneous tumors [6,7]. This leads to the existence of tumor sub-regions with different 

biological behavior (some more aggressive and treatment-resistant than others) [8-10]. Which are 

characterized by a different pattern of vascularization, vessel permeability, metabolism, cell 

proliferation, cell death, and other features, that can be measured by modern medical imaging 

techniques, including positron emission tomography/computed tomography (PET/CT) [10-12]. Thus, 

the assessment of tumor heterogeneity through medical images could allow the prediction of therapy 

response and long-term outcomes of patients with cancer [13].  

 

PET/CT has become essential in oncology [14,15] and is usually evaluated through semiquantitative 

metabolic parameters, such as maximum/mean standard uptake value (SUVmax, SUVmean) or 

metabolic tumor volume (MTV), which are valuables as prognostic image-based biomarkers in 

several tumors [16-17], but these do not assess tumor heterogeneity. Likewise, fluorodeoxyglucose 

(18F-FDG) PET/CT is important to differentiate malignant from benign solitary pulmonary nodules 

(SPN), reducing so the number of patients who undergo unnecessary surgical biopsies. Several 

publications have shown that some quantitative image features, extracted from medical images, are 

suitable for diagnosis, tumor staging, the prognosis of treatment response, and long-term evolution of 

cancer patients [18-20]. The process of extracting and relating image features with clinical or 

biological variables is called “Radiomics” [9,20-24]. Radiomic parameters, such as textural features 

have been related directly to tumor heterogeneity [25]. 



This thesis investigated the relationships of the tumor heterogeneity, assessed by  18F-FDG-PET/CT 

texture analysis, with metabolic parameters and pathologic staging in patients with NSCLC, and 

explored the diagnostic performance of different metabolic, morphologic, and clinical criteria for 

classifying (malignant or not) of solitary pulmonary nodules (SPN).  Furthermore, 18F-FDG-PET/CT 

radiomic features of patients with recurrent/metastatic breast cancer were used for constructing 

predictive models of response to the chemotherapy, based on an optimal combination of several 

feature selection and machine learning (ML) methods.  

 

Materials and methods  

 

Patient medical records were reviewed, and variables such as age, gender, histopathologic features 

[26,27], tumor stage according to American Joint Committee on Cancer (AJCC) staging system [28-

32], and treatment response were registered. All had one or more 18F-FDG-PET/CT images, from 

which, target lesions were segmented through 3D-Slicer or Hermes Hybrid 3D software [33], getting 

so several volumes-of- interest (VOI) to extract the metabolic and textural information. For NSCLC 

patients, tumor size, SUVmax, SUVmean, metabolic tumor volume (MTV), total lesion glycolysis 

(TLG); were obtained. Besides, several textural features were extracted with MaZda software [34]. 

Statistical tests were performed with SPSS software [35] to establish correlations between clinical, 

metabolic, and textural features. For the SPN study, simple visual inspection (18F-FDG-uptake or not) 

and several heuristic combinations of nodule size and SUVmax were used to classify it as malignant 

or not [36-38]. Alike, a logistic predictive model of malignity, based on PET/CT and clinical variables 

was constructed [39]. The performance of each approach was evaluated through receiver operating 

characteristic (ROC) curve analysis [40]. For breast cancer patients, tumor VOIs before and after 

chemotherapeutical treatment were segmented, of which SUVmax, SUVmean, SUVpeak1, and 

SULpeak2 were obtained [41]. Patients were classified as responder or non-responder to the treatment, 

according to the PET response criteria in solid tumors (PERCIST) [42].  Also, from pre-treatment 

VOIs were extracted several radiomic features using MATLAB R2019b [43], which along with the 

clinical and pathological information were used to construct the prediction models, by using several 

cross-combinations of feature selection and ML classifiers [44-46].    The tumor lesions were 

separated into two groups with a ratio of 80:20, the bigger was used to construct the model and for 

cross-validation [47]; while the smaller dedicated only for validation. Seven feature selection methods 

[48,49]: ANOVA with F-score, mutual information (MI), least absolute shrinkage and selection 

operator (LASSO), Wilcoxon test, hierarchical clustering (HC), principal component analysis (PCA), 



and independent component analysis (IPA), were cross-combined with seven ML classifier:  support 

vector machines (SVM), random forest (RF), gaussian naive Bayes (GNB), logistic regression (LR), 

k-nearest neighborhood (KNN), adaptative boosting (AdaBoost) and neural network (NN).  Model 

predictive performances were compared via ROC curve analysis [40]. 

 

Results and conclusions 

 

Tumor heterogeneity in NSCLC assessed by texture analysis of 18F-FDG-PET/CT images is 

correlated with metabolic parameters, and both are associated with macroscopic tumor diameter and 

AJCC staging system (important prognostic factor). However, some textural features have no linear 

relationship with volume-based metabolic parameters, making them more sensitive to tumor volume 

definition. However, by an appropriated selection, textural parameters have the potential to be used 

in clinical practice but are required additional work to further validate their importance. 

 

The assessment of SPN by semiquantitative methods did not improve the sensibility of visual analysis 

(Se = 95%). There was a limited specificity for all heuristic methods. However, a predictive logistic 

model combining SUVmax and age had the best global diagnostic performance (Se = 87.5% and Sp 

= 46.7%). This model, unlike other models, used the metabolic variable SUVmax, which is shown to 

be an independent variable of malignancy. 

 

Radiomic models based on 18F-FDG-PET/CT features and ML classifiers can predict the treatment 

response in patients with recurrent or metastatic breast cancer. LASSO + RF had the highest 

performance in the validation cohort (0.91±0.05). Although, other combinations also showed 

significant diagnostic performance. This comparative investigation may be an important reference in 

identifying reliable and effective machine-learning methods for radiomics-based prognostication in 

these kinds of patients and shows the great potential of PET/CT radiomics. 

 

 
 

1SUVpeak:  calculated as the mean SUV in a VOI of 1.2 cm of diameter (volume of 1 ml), centered at the most active 

portion of the tumor [154].   
2SULpeak: the SUVpeak corrected for lean body mass. 
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General overview and motivation of this thesis 
 

Cancer is a leading cause of morbidity and mortality around the world [1, 2]. It can affect any part of 

the body and consists of malignant cells growing faster than normal cells. Cancerous cells can produce 

local destruction by the invasion of adjacent tissue, or in an advanced state; they can spread to other 

organs, which is the main cause of death. The most frequent cancers worldwide are non–small cell 

lung carcinoma (NSCLC) and breast cancer [1, 2]. 

 

Despite upgrades in medical technologies and treatment over the past two decades, the prevention, 

diagnosis, and treatment of cancer is still a challenging task [3]. In daily clinical practice, it is 

continuously observed that some patients, with the same tumor and stage of the disease, respond 

differently to the therapies received, having consequently a different prognosis [50]. This fact has 

been related to tumor heterogeneity [6, 7], where higher tumor heterogeneity implies a higher chance 

of developing metastasis, and shorter progression-free and overall survival [51]. Tumor heterogeneity 

refers to differences between tumor cells regarding cellular morphology, gene expression, 

metabolism, motility, proliferation, and metastatic potential [10, 52]. This phenomenon occurs both 

between tumors (inter-tumor heterogeneity) and within tumors (intra-tumor heterogeneity).  Tumor 

heterogeneity is amply recognized to play a major role in cancer treatment failure, with worse clinical 

outcomes in patients with highly heterogeneous tumors [7, 8]. Therefore, an accurate assessment of 

tumor heterogeneity is essential for the development of effective therapies [7, 50]. It is believed that 

it could allow the prediction of therapy response and long-term outcomes, with a better stratification 

of patients, which could be used to select the treatment on the individual patient characteristics, and 

improving so the tumor control, avoiding unnecessary toxicity in case of ineffectiveness. 

 

Intratumoral heterogeneity leads finally to the existence of tumor sub-regions, each one with different 

biological behavior (some more aggressive and treatment-resistant than others) [49, 51]. These sub-

regions are characterized at the macroscopic level by a different pattern of vascularization, vessel 

permeability, metabolism, cell proliferation, cell death, and other features, which can be measured by 

modern medical imaging techniques, including positron emission tomography/computed tomography 

(PET/CT) [8], that is routinely used for diagnosis, treatment planning and assessment of tumor 

therapy response in oncology. Medical imaging methods have the great advantage of evaluating the 

tumor as a whole, usually non-invasively, being able to appreciate the spatial heterogeneity of the 

tumor, as well as its temporal evolution, if new images are obtained after a therapeutic intervention 
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or not [8]. This advantage contrast with pathological studies, where biopsies (samples) of the tumor 

are necessaries, being these obtained from specific regions of the tumor, which may induce the loss 

of any tumor spatial heterogeneity assessment. 

 

Quantification of intratumoral heterogeneity 
 

In recent years, there has been a considerable effort in the medical imaging community to obtain 

correlations between image features and tumor heterogeneity [15-18]. An approximation to this issue 

is the texture analysis because image texture gives us information about the spatial arrangement of 

voxel intensities (i.e. the spatial distribution of radiotracer) in an image or a selected region. 

 

In this thesis, we have focused on tumor images obtained by fluorodeoxyglucose (18F-FDG) PET/CT,   

which allows to accurately localize metabolic abnormalities in the human body after the injection of 

radiopharmaceutical tracer, enabling the identification of regions with abnormally increased glucose 

uptake (i.e. high metabolic activity),  which is a central characteristic of tumor cells, because of their 

accelerated growth [53, 54]. Although some very basic quantitative or semi-quantitative parameters 

have been introduced for the assessment of PET/CT [16, 41, 42], it has historically been a qualitative 

process, based mainly on the expertise of the medical specialist. Semiquantitative metabolic 

parameters such as SUVmax, SUVpeak, metabolic tumor volume (MTV), and total lesion glycolysis 

(TLG), have shown to be valuables as prognostic image-based biomarkers in several cancers. 

However, they are not designed to assess tumor heterogeneity [16, 17]. On the other hand, in last 

years, several other advanced PET/CT image features, using texture analysis and other image features, 

have shown to be more accurate and robust to predict progression-free survival (PFS), overall survival 

(OS), and treatment response [22, 27]. Further, some textural image features assess the image 

heterogeneity of the radiotracer. As a multimodal imaging modality, PET/CT allows for noninvasive 

exploration of intratumor heterogeneity at the macroscopic scale in both the anatomical and functional 

dimensions [55]. The PET component shows the radiotracer uptake spatial distribution, which may 

reflect, depending on the radiotracer used, underlying biological processes such as metabolism, 

hypoxia, cellular proliferation, vascularization, and necrosis [56, 57]. On the other hand, the CT 

component (usually a low-dose CT without contrast enhancement) shows the tissue density 

variability, which may result from spatially varying vascularization, necrosis, or cellularity, as well 

as the proportions of fat, air, and water [58]. For example, intratumoral variations in 18F-FDG uptake 

in two patients with non-small cell lung cancer, but different histologic types, can be observed on 
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PET/CT images in Figure 1. Although not apparent, variations in tumor density on CT are also 

present.  

 

 

 

Figure 1. 18F-FDG PET/CT images in lung cancer. Upper figures: a patient with squamous cell 

carcinoma of the right lung.  Lower figures: a patient with an adenocarcinoma of the right lung. 

Adapted from [59]. 

 

Thus, the true biological intratumoral variations are translated into different spatial intensity patterns 

in medical images, which can be quantified by different image processing and analysis methods, 

including texture analysis (TA) [57], fractal analysis [58], shape models [60-63], intensity histogram 

analysis [13] and filtering combined with statistical and frequency-based methods [64]. The different 

methodologies produce several image features, which could act as a surrogate (image-based 

biomarker) of the true biological intratumoral heterogeneity, providing possibly an appraisal of the 

tumor aggressiveness, response to the treatment, or metastases capability. These imaging biomarkers, 

extracted for instance, from pre-treatment medical images, could discriminate between patients 

responding well to treatment from those who do not, information that could assist physicians in 

tailoring therapy choices for each patient (personalized medicine). 

 

The process of extracting and relating image features with clinical or biological variables is called 

“Radiomics”, a term introduced by Lambin et al. in 2012 [65].  The great potential of radiomic 

consists in its ability to capture and quantify properties of a tissue, organ, or tumor, which cannot be 

detected by a visual inspection or simple metrics [25, 66]. Radiomics is used to develop decision 

support tools by combining radiomic data (image features) with other patients’ characteristics.  The 
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general process for building a PET/CT radiomic signature with prognostic/predictive value is 

independent of the underlying disease and consists of several steps [66, 67]: image acquisition, tumor 

segmentation, and preprocessing (image resampling and discretization), image features extraction, 

feature selection, and finally model construction. More detail is given in section 2.3 of this thesis. 

The textural analysis is only a step in the radiomic process, being included among the different 

methods for image feature extraction. 

Some of the image characteristics that can be extracted are: morphological or shape-based (e.g., 

volume, eccentricity, compactness, etc.), the histogram of voxel intensity-based (e.g., variance, 

skewness, kurtosis, etc.),  and texture-based. TA is probably the most used method for the 

characterization of intratumoral heterogeneity, as it involves the quantification of the relationship 

between intensity and spatial distribution of voxel grey levels within a given ROI. The metrics most 

commonly used in TA by the medical imaging community are the Gray-Level Co-occurrence Matrix 

(GLCM) features [68], the Gray-Level Run- Length Matrix (GLRLM) features [69-71], the Gray-

Level Size Zone Matrix (GLSZM) features [72] and the Neighborhood Gray-Tone Difference Matrix 

(NGTDM) features [73]. The methodology used to extract these textural metrics is presented in 

section 2.3.3 (Appendix C provides the complete description of imaging features used in this thesis).  

 

Several studies have applied TA and other methods in PET/CT images for intratumor heterogeneity 

characterization, on different tumor types such as lung, breast, esophagus, and lymphomas [22, 74, 

75]. Applications of TA in cancer imaging include diagnosis, staging, determining tissue 

histopathological features, as well as treatment response and clinical outcome prediction. In this 

thesis, we focus on TA in lung and breast cancer. Although there is a large amount of literature 

applying TA or radiomics in various tumor entities, here we will restrict to those relevant to this 

thesis. 

 

PET/CT texture analysis in lung cancer 
 

Lung cancer usually presents as a solitary pulmonary nodule (SPN) on diagnostic imaging during the 

early stages of the disease. The early diagnosis of lung cancer is fundamental for a better prognosis 

of the patients, therefore the accurate diagnosis of SPNs has great clinical importance. The 

histopathologic study is the mainstay for the classification of lesions into benign and malignant 

categories because the accurate classification of a lung lesion is a prerequisite for adequate 

management.  However, non-invasive techniques such as CT can estimate the probability of cancer 
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in solitary pulmonary nodules (SPNs) based on nodule size, growth, and semantic features such as 

presence and distribution of calcification, fat, or ground-glass opacification (76-78). Despite its high 

sensitivity of up to 98%, CT has limited specificity (58%) in diagnosing cancer in SPNs. Metabolic 

activity measured with 18F-FDG PET/CT (e.g. SUVmax), is more discriminative of benign from 

malignant nodules (sensitivity 97%, specificity 85%), but there is a need for further analytical tools 

to improve on the accuracy of existing imaging modalities [38, 79-83] because the surgical resection 

is still needed to differentiate lung cancer from benign lesions in a significant number of cases [37].  

 

Chen et al. [84] used NGTDM features on dual time point imaging (DTPI) PET/CT to differentiate 

malignant from benign FDG-avid solitary pulmonary nodules. They found that Compared to 

SUVmax or visual interpretation, NGTDM texture features derived from DTPI PET/CT images could 

be used as good predictors of SPN malignancy. The AUCs of delayed busyness, delayed coarseness, 

early busyness, and early SUVmax were 0.87, 0.85, 0.75, and 0.75, respectively. Recently Palumbo 

et al. [85] investigated the role of shape and texture features from 18F-FDG PET/CT to discriminate 

between benign and malignant solitary pulmonary nodules. Eighteen three-dimensional imaging 

features, including conventional, texture, and shape features from PET and CT were tested for 

significant differences (Wilcoxon-Mann-Whitney-Test) between the benign and malignant groups. 

Prediction models based on different feature sets and three classification strategies (Classification 

tree, k-nearest neighbors, and naive Bayes) were also evaluated to assess the potential benefit of shape 

and texture features compared with conventional imaging features alone. They found that shape and 

texture features from 18F-FDG PET/CT could provide benefits in the discrimination between benign 

and malignant lung nodules compared with conventional imaging features alone. Zhang et al. [86] 

evaluate the diagnostic value of a support vector machine (SVM) model built with texture features 

based on standard 18F-FDG-PET in patients with solitary pulmonary nodules (SPNs) at a volume 

larger than 5 ml. Compared with the SUVmax and MTV models, the texture-based SVM model 

provided an improvement of approximately 20% in diagnostic accuracy, positive predictive value, 

negative predictive value, and the area under the operating characteristic curve. 

 

Although the use of textural analysis is a valid approach to classify SPNs, the inclusion of pulmonary 

nodules with small volumes can distort the quantification of spatial heterogeneity [87]. Likewise, a 

visual PET/CT analysis has shown great sensitivity to detect malignancy, so the construction of 

predictive models based on SUV and other clinical variables could achieve a good SPN classification 
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performance simply. Thus, one proposal of this thesis was to determine an optimum semiquantitative 

criterion that allows discriminating between malignant and benign nodules, comparing with the visual 

assessment, and derivate a model to estimate the pretest probability of malignancy of a patient with 

SPN based on clinical and metabolic 18F-FDG PET/CT variables. 

 

Likewise, PET/CT texture analysis in patients with NSCLC has been described in the literature. Cook 

et al. [74] evaluated PET textural features in NSCLC and their relationship with response and survival 

after chemoradiotherapy. They found that in baseline 18F-FDG PET scan texture as measured by 

coarseness, contrast, and busyness is associated with nonresponse to chemoradiotherapy and with 

poorer prognosis. Van Gómez et al. [88] assessed the correlation between the texture features like 

energy, entropy, contrast, correlation, and homogeneity of FDG-PET images, with metabolic 

parameters such as SUVmax, SUVmean, MTV, and TLG, and pathologic staging in 38 NSCLC 

patients. A more recent review article by Sollini et al. [89] provides a comprehensive review of the 

literature describing the state of the art of 18F-FDG-PET/CT texture analysis in NSCLC. In total 85 

studies were referenced. They summarize those publications reporting methodological investigations 

on texture analysis in NSCLC patients, which included the effect of segmentation method on tumor 

volume estimation, comparison of different discretization methods for textural features, the sensitivity 

of texture features to tumor motion, the variability of PET textural features using different 

reconstruction methods, iteration numbers, and voxel size. Likewise, the clinically relevant results of 

the publications for assessing the diagnostic, prognostic, and predictive role of 18F-FDG-PET/CT 

texture analysis were summarized, some of which are as follow: 

 

• Compared with non-malignant lesions, malignant lung nodules are characterized by higher 

SUVmax and lower morphological and density fractal dimensions 

 

• Large lesions are characterized by high heterogeneity 

 

• Each subtype of NSCLC tumor has different metabolic heterogeneity characteristics. 

Compared with adenocarcinoma, squamous cell carcinoma is characterized by higher 

SUVmax and other features that indicate more heterogeneity 
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• Tumor heterogeneity can predict recurrence in patients with adenocarcinoma tumors without 

nodal affectation, who have undergone curative surgery but not in squamous cell carcinoma 

patients (high heterogeneity is associated with a shorter disease-free survival) 

• Tumor heterogeneity identifies patients with inoperable stage III NSCLC with poor 

progression-free survival (for tumor staging, see section 1.3) 

 

• High SUVmax, large MTV, and high heterogeneity are associated with poorer overall 

survival and progression-free survival in stage I–III NSCLC 

 

• Tumor heterogeneity is associated with response to radiation therapy in NSCLC (disease-

specific survival is lower for patients with high entropy) 

 

• Lesions in responders (complete or partial response) to chemoradiotherapy are characterized 

by lower coarseness, contrast, and busyness than non-responders (stable or progressive 

disease) 

 

• High coarseness values are associated with an increased risk of progression (increased risk 

of death), whereas high contrast and busyness values are associated with a lower risk of 

progression 

• Large primary tumors more heterogeneous have a poor prognosis following 

chemoradiotherapy 

 

• Lesions in responders to erlotinib (a type of targeted cancer drug)  are characterized by lower 

heterogeneity than those in non-responders 

 

Some important pitfalls must be considered by textural analysis. A large number of features can be 

derived from a single PET/CT scan, so that problems regarding multiple testing and high false 

discovery rates can be an issue to face [90, 91]. Furthermore, the stability and reproducibility of 

textural image features can be an issue when used as prognostic markers, as was tested by Leijenaar 

et al. [92]. They used eleven patients for a test-retest comparison and 23 patients for an investigation 

of interobserver variability, with most of the tested features showing high test-retest (71%) and 

interobserver (91%) stability, based on the intraclass correlation coefficient. Another important point 

to address is the correlation that is often found between image features representing tumor 
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heterogeneity and MTV because larger tumors typically show higher levels of heterogeneity.  Hatt et 

al. [93] investigated whether MTV and features of tumor heterogeneity provided complementary 

prognostic information, or simply described the same part of the variance in patient outcome. 

Heterogeneity and MTV were both independent prognostic factors for overall survival (p = 0.009 and 

p = 0.005, respectively), but more so for larger tumors. For small tumors, there was a considerable 

correlation between MTV and heterogeneity, and the investigators suggest that there may be 

complementary prognostic information for tumors greater than 10 cm3. 

 

Texture features are of growing interest in tumor characterization in imaging. Nevertheless, based on 

results published to date on 18F-FDG PET, it is unclear which indices should be used, what they 

represent, and how they are related to conventional parameters such as SUVs, MTV, and TLG [89]. 

Therefore, in this thesis, we also investigate the relationships between tumor heterogeneity, assessed 

by texture analysis of 18F-FDG-PET images, metabolic parameters, and pathologic staging in patients 

with NSCLC. 

 

PET/CT Texture analysis in breast cancer 
 

Currently, PET/CT is usually performed in breast cancer for recurrences detection or treatment 

response assessment, both in the context of neoadjuvant therapy or metastatic cancer treatment [94]. 

Changes in tumor metabolic activity, assessed by 18F-FDG PET/CT, are an early indicator of 

treatment effectiveness for breast cancer, both neoadjuvant and metastatic setting [95-98]. Likewise, 

a significant reduction in the metabolic activity of the tumor (i.e. treatment-sensible tumors) early 

during therapy, is associated with longer overall survival and progression-free survival in patients 

with this tumor [99-101]. Even when these metabolic changes have shown to be valuable to predict 

the treatment response in breast cancer and other malignant tumors; in the last years, there is an 

increasing interest in the clinical and prognostic utility of quantitative imaging analysis through 

radiomics [16, 25]. Although the radiomic methodology has been applied to several malignant 

entities. In breast cancer specifically, most of the radiomic studies have been carried out with MR 

images and in a neoadjuvant treatment context [102, 103]. However, some studies appearing more 

recently have explored the potential of radiomics with PET/CT, but none of them metastatic patients 

[104]. 
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To build image biomarkers from radiomic features, a classical statistical approach could be used. 

However, an increasing number of radiomic studies are based on machine learning (ML) classifiers, 

which have shown great promise [105]. This approach relies on a pipeline, including extraction of 

numerous handcrafted imaging features; followed by feature selection and machine learning-based 

classification. Feature selection or reduction variable methodologies should be carried before any ML 

model construction, because these can identify redundant and irrelevant imaging features, allowing 

to remove them from further analysis and improving the ML classifier performance [106].  

 

To the best of our knowledge, no radiomic studies with ML have been carried out in recurrent or 

metastatic breast cancer. However, we hypothesized that ML models using radiomic features 

extracted can help to predict the metabolic response to the systemic treatment in this kind of patient. 

Therefore, as part of our thesis, we proposed to use radiomic metrics extracted from 18F-FDG PET 

and CT to build ML models and identify optimal feature selection and ML methods for recognizing 

precociously patients that might have a treatment-sensible or resistant tumor phenotype, which could 

help to select or adjust a particular therapy. 

 

In radiomics emerges two important questions, namely, these quantitative parameters consist of a 

very large image feature [20-25]; and above all, they don't have an intuitive interpretation or cannot 

be perceived directly by the medical imaging specialists [55], which can create confusion, avoiding 

its rapid transfer to the clinical setting. Fortunately, these problems can be overcome by incorporating 

modern decision systems, based on artificial intelligence, which can manage a large amount of 

information and do not consider the biological or clinical significance itself of the image features [44-

46]. So then, we have moved from a simple qualitative inspection of medical images to guide the 

management of oncology patients towards the use of several image features to perform standard 

statistical modeling of relevant clinical outcomes, and more recently modern methods of image 

analysis and predictive modeling by using artificial intelligence. The ultimate goal is to improve the 

medical care of patients with cancer.  Before any of these methodologies come to be routinely used 

in oncology, they should be explored in different clinical scenarios.  Alike, any potential imaging 

biomarker must be previously validated. The validation involves a demonstration of the accuracy, 

precision, and feasibility.  
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Motivation 
 

This doctoral thesis has been carried out inside the Grupo de Física Nuclear from the Universidad 

Complutense de Madrid.  The 18F-FDG-PET/CT images, as well as the clinical information, were 

collected in the Nuclear Medicine Service of the General Hospital of Ciudad Real and Division of 

Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical 

University of Vienna. 

 

Despite the great improvements in medical procedures for the diagnosis and treatment of cancer, the 

medical management of cancer patients is a great challenge. The arrival of new technologies, as well 

as methodologies for information processing, particularly the new field of “Radiomics” undoubtedly 

offers great possibilities to extend these improvements. 

 

During the development of this thesis, we explored how 18F-FDG-PET/CT textural features of 

patients with NSCLC, which are surrogated of tumor heterogeneity, are related to metabolic and 

clinical parameters (e.g. SUVmax, MTV, TLG, and tumor staging). It is a fundamental step in the 

search for adequate image-based features of clinical utility.  Also, the problem of determining whether 

an SPN is malignant or not was addressed through the construction of a multivariate logistic model, 

allowing us to confirm the importance of visual assessment, which contrasts with its enormous 

simplicity. However, the predictive model combining SUVmax and age improves diagnostic 

performance. The aforementioned work has paved the way for the implementation and use of 

radiomic and ML methodologies to predict the response to chemotherapy treatment in patients with 

recurrent or metastatic breast cancer. We compared different methods of feature selection and ML to 

look for the best combination with prediction performance. This last work has allowed us to obtain 

radiomic signatures with high predictive power, in a little-explored clinical context. 

 

Objectives 
 

Taking into account the previously exposed considerations about the application of textural analysis 

and radiomics in oncology, the major objective of this thesis has been to investigate the relation of 

the metabolic and radiomic features derived from 18F-PET/CT images, with the clinical variables of 

oncologic patients. Likewise, a central aim was using this PET/CT image-based information for the 

construction of predictive models of malignity and treatment response. 

The specific objectives can be summarized as follows: 
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• To investigate the relationships between tumor heterogeneity, assessed by texture analysis of 

18F-FDG PET, metabolic parameters, and pathologic staging in patients with non–small cell 

lung carcinoma.  

• To assess and compare different criteria, based on metabolic, morphologic, and clinical 

parameters, including a multivariate logistic model, for the correct classification as malignant 

or not of SPN. 

 

• To use a radiomic approximation, by using image features extracted from 18F-FDG PET/CT 

images of patients with recurrent or metastatic breast cancer to construct predictive models 

of the metabolic response to the chemotherapy. Aiming to find the most suitable combination 

between feature selection methods and machine learning classifiers.  

 

Structure of the thesis 
 

This thesis is divided into six chapters: 

 

Chapters 1, 2, and 3 present some fundamental concepts related to the work developed in this thesis.   

 

• In Chapter 1, the main concepts of tumor biology and medical images in oncology are 

introduced. The importance of tumor heterogeneity, and how it can be assessed through 

medical images, and used to predict treatment response is presented.   

 

• In Chapter 2, the basic concepts of image-based biomarkers, textural analysis, and radiomics 

are presented.   

 

• In Chapter 3, an overview of ML methods in the medical imaging context is shown.  

 

Chapters 4 to 6 present each of the studies developed throughout this thesis.  

 

• In Chapter 4, the relationships between tumor heterogeneity, assessed by texture analysis of 

18F-FDG PET, metabolic parameters, and pathologic staging in patients with non–small cell 

lung carcinoma are investigated. 
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• In Chapter 5, the diagnostic performance of different metabolic, morphologic are assessed, 

and clinical criteria for the correct presurgical classification of SPN is explored. 

 

• In Chapter 6, a radiomic procedure based on image features extracted from 18F-FDG 

PET/CT images of patients with recurrent or metastatic breast cancer is developed to predict 

the metabolic response to the chemotherapy. This aimed to find an optimal combination 

between feature selection methods and machine learning classifiers. 

 

At the end of the manuscript, we present the general conclusions of the thesis and the publications 

and conference proceedings derived from this work. 
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1.1 Introduction 
 

Cancer is a leading cause of morbidity and mortality around the world [1-2]. It can affect any part of 

the body and consists of malignant cells growing faster than normal cells. Cancerous cells can produce 

local destruction by the invasion of adjacent tissue, or in an advanced state; they can spread to other 

organs, which is the main cause of death. The prevention, diagnosis, and treatment of cancer is a very 

challenging task, a better understanding of the biological and clinical characteristics of cancer is 

necessary for the fight against this disease. 

  

1.2 Clinical and biological background 
 

1.2.1 Epidemiology of cancer 
 

Cancer is the second leading cause of death globally after heart disease. According to the World 

Health Organization (WHO) in 2018, there were an estimated 18 million new cases of cancer and 10 

million deaths from cancer worldwide. The predicted global burden will double to about 29–37 

million new cancer cases by 2040 [2]. 

 

The most common cancers worldwide, together with their respective mortality, are shown in Figure 

1.1. It can be seen that lung cancer together with breast cancer account for more than 20% of new 

cancers worldwide. Being lung cancer the one with the highest mortality rate (18.4%). 

 

 

Figure 1.1. Cancer incidence and mortality worldwide in 2018, according to WHO [1]. 
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The rate of 5-year overall survival greatly varies between tumor sites, stages, and subtypes [1, 2].  It 

ranges from less than 10% in pancreatic cancer to more than 90% in prostate cancer in the USA [107]. 

Well established cancer risk factors include smoking, unhealthy diet, alcohol abuse, overweight and 

lack of physical activity, human papillomavirus (HPV) and hepatitis infection, exposure to ionizing 

and ultraviolet radiation as well as urban air pollution. 

 

1.2.2 Hallmarks of cancer 
 

Carcinogenesis is a multistep process, where a cell accumulates genetic mutations, which finally 

enables it to have an uncontrolled proliferation [52, 53]. In this multistep process, a normal cell 

develops into a precancerous lesion and subsequently evolves into a malignant tumor. Figure 1.2 

shows a schematic representation of the natural progression of cancer.   

 

 

 

Figure 1.2. The natural history of progression toward cancer, evolving from dysplasia to in-situ 

carcinoma and eventually to a malignant invasive tumor [from 54]. Cells from normal tissues after 

genetic damage change to dysplastic cells, which present increased proliferation and atypical 

alterations that, affect their size, shape, and organization. After a period of latency, these cells can 

develop all the characteristics of a malignant tumor. In this transformation process, there are many 

biological factors involved. 



T U M O R  H E T E R O G E N E I T Y  I N  P E T - C T  I M A G E S  P a g e  | 17 

 

 

The hallmarks of cancer comprise several biological capabilities acquired by a normal cell to become 

cancerous. These consist of permanent proliferative signaling, evasion of growth suppressor agents, 

resistance to cell death or apoptosis; which enable the replicative immortality, induction of 

angiogenesis, and activation of local invasion of tissues and metastasis [52, 53]. Unlike normal cells, 

cancer cells are biologically resistant to the normal regulatory mechanism controlling cell 

populations. For their proliferation, cancer cells need energy. Depending on the tumor type and the 

microenvironmental conditions, energy production in cancer cells relies on a combination of 

glycolysis, oxidative phosphorylation, and other metabolic pathways. However, tumors have mainly 

an anaerobic glucose metabolism, even in the presence of normal oxygen concentration, which is 

called the “Warburg effect” [108].  

 

In presence of normal concentrations of oxygen, most differentiated cells primarily metabolize 

glucose to pyruvate via glycolysis and posteriorly to carbon dioxide (CO2) and water through the 

tricarboxylic acid (TCA) cycle inside the mitochondria. This reaction produces NADH [nicotinamide 

adenine dinucleotide (NAD+), reduced], which then fuels oxidative phosphorylation to produce 

adenosine triphosphate (ATP). The NADH formed is an energy-rich molecule because each contains 

a pair of electrons having a high transfer potential. When these electrons are used to reduce molecular 

oxygen to water, a large amount of free energy is liberated, which is used to generate ATP. By using 

the cell this metabolic pathway as the main source of energy, lactate production is minimal. It is only 

under anaerobic conditions that differentiated cells produce large amounts of lactate (Figure 1.3) 

[109].  

 

Because oxygen is required as the final electron acceptor to completely oxidize the glucose, it 

essential for this process, when it is limiting, cells can redirect the pyruvate generated by glycolysis 

away from mitochondrial oxidative phosphorylation by generating lactate (anaerobic glycolysis). 

This generation of lactate during anaerobic glycolysis results in minimal ATP production when 

compared with oxidative phosphorylation. 

 

In the 1920s, Otto Warburg showed that cultured tumor tissues have high rates of glucose uptake and 

lactate secretion, even in the presence of oxygen (aerobic glycolysis). Those three metabolic 

properties—glucose uptake, lactate secretion, and oxygen availability—constitute the Warburg effect 

as he defined it [110]. 
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Warburg originally hypothesized that cancer cells develop a defect in mitochondria that leads to 

impaired aerobic respiration and subsequent reliance on glycolytic metabolism [108]. However, 

subsequent work showed that mitochondrial function is not impaired in most cancer cells [109, 111]. 

They remain functional and some oxidative phosphorylation continues. 

 

The anaerobic glycolysis is less efficient but a faster process to obtain energy. However, cancer cells 

can incorporate more glucose and compensate for this inefficiency [112, 113]. This independence of 

oxygen allows the tumoral cells to escape from the immune system and survive [111, 112].  

 

Besides, elevated glucose metabolism decreases the pH in the microenvironment due to lactate 

secretion. An acid-mediated invasion hypothesis suggests that H+ ions secreted from cancer cells 

diffuse into the surrounding environment and alter the tumor-stroma interface allowing for enhanced 

invasiveness [111] 

 

 

Figure 1.3. Warburg effect in tumor cells and its exploitation to obtain PET image of a patient with 

lung cancer, which has increased the glucose uptake [adapted from 111].  In the presence of oxygen, 

normal cells first metabolize glucose to pyruvate via glycolysis. Then by oxidative phosphorylation 

produce ATP in the mitochondria, the lactate production is minimal.  When oxygen is limiting, cells 

use anaerobic glycolysis, with minor production of pyruvate. Cancer cells tend to convert most 

glucose to lactate regardless of whether oxygen is present (aerobic glycolysis). 



T U M O R  H E T E R O G E N E I T Y  I N  P E T - C T  I M A G E S  P a g e  | 19 

 

 

Positron emission tomography with 18F-FDG, a glucose analog, marked with the positron-emitting 

radionuclide fluorine-18, takes advantage of the “Warburg effect” to image the tumors, since it 

accumulates in several tumors, allowing it detection [113]. Figure 1.3 shows the “Warburg effect” 

and its exploitation to obtain 18F-FDG images of a patient with lung cancer. 

 

Cancer cells demonstrate the upregulation of glucose metabolism, which means that the glucose or 

glucose-analogs uptake is increased [114]. The labeling of deoxy-glucose with the positron-emitting 

radionuclide 18F to form 18F-FDG makes detectable these cells by PET.  

 

18F-FDG is transported into the cells by the same carrier as glucose, the glucose transporter 1 

(GLUT1), but at a much higher rate.  Then it is phosphorylated to 18F-FDG-6-phosphate (18F-FDG-

6-P) by the action of hexokinase or glucokinase [114, 115]. This substance does not enter the standard 

metabolic pathways, because of the presence of fluorine instead of the hydroxyl group in glucose and 

can leave the cell only slowly by the action of glucose-6-phosphatase. Therefore, it is trapped and 

accumulated in the neoplastic cells [116]. This 'metabolic trapping' of  18F-FDG-6-P forms the basis 

of the analysis of PET data. Figure 1.4 shows a schematic representation of the metabolic trapping of 

18F-FDG in tumor cells. Besides, there is an increase in glycolytic activity in cancer cells, under both 

aerobic and anaerobic conditions. The neoplastic transformation often determines an increase in the 

activity of glycolytic enzymes (e.g. hexokinase) and glucose transporters (e.g. GLUT1) [117]. 

 

 

 

Figure 1.4. Schematic for the metabolic trapping of 18F-FDG. 18F-FDG6P: 18F-2-fluoro-2-deoxy-D-

glucose-6-phosphate; GLUT1, glucose transporter 1; G6P, glucose-6-phosphate; G6Pase, glucose-6-

phosphatase; HK, hexokinase; TCA, tricarboxylic acid (from [118]) 
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A common characteristic of most tumors is a low oxygen level, which is called hypoxia. In highly 

proliferating tumor tissue, the distance between cells and the existing vasculature is constantly 

increased, which hamper the oxygen diffusion creating so a hypoxic microenvironment. At the same 

time, tumor-hypoxia leads to dysfunctional vascularization (blood vessels that are immature, tortuous, 

and hyperpermeable), cell mobility, and metastasis. Hypoxia alters cancer cell metabolism and 

contributes to therapy resistance. As tumors growing in size, distinctive regions inside them become 

apparent, each one with different metabolism, perfusion, and level of hypoxia [119, 120].  

 

It has been demonstrated in cancer cell culture and animal models of cancer that hypoxic conditions 

played a critical role in inducing high 18F-FDG accumulation [121]. Likewise, spatial co-localization 

has been found between high 18F-FDG uptake and tumor hypoxia, and such regions had low blood 

perfusion. On the other hand, non-hypoxic regions displayed low 18F-FDG uptake [122-126]; 

therefore, 18F-FDG cannot map oxic cancer cells. This finding is critically important, especially for 

assessing the anti-cancer effect with 18F-FDG PET/CT; a negative 18F-FDG PET finding does not 

necessarily mean the absence of viable cancer cells, which simply indicates the absence of hypoxic 

cells. Tumor heterogeneity, 18F-FDG metabolic parameters, and high expression of hypoxia were 

found to be prognostic factors in NSCLC patients who were candidates for surgery [127]. However, 

a more recent study showed that SUVmax of  18F-FDG PET correlated weakly with the expression of 

hypoxia-inducible factor 1-alpha (HIF-1α) both in the overall sample and in tumor subgroups. 

Therefore, 18F-FDG PET cannot be used for the prediction of hypoxia in clinical practice [128]. 

 

In Figure 1.5, spatial variation in staining for angiogenesis (CD34), pimonidazole (hypoxia), and 

glucose transporter protein expression (Glut-1) in patients with NSCLC are shown [55]. As well as 

for Hematoxylin and eosin stain (H&E): one of the principal tissue stains used in histology. The 

hematoxylin stains cell nuclei blue, and eosin stains the extracellular matrix and cytoplasm pink, with 

other structures taking on different shades, hues, and combinations of these colors. 

 

In general, hypoxia contributes to tumor aggressiveness and promotes the growth of many solid 

tumors, originating resistant to conventional therapies. To achieve successful therapeutic strategies 

targeting different cancer types, it is necessary to understand the molecular mechanisms and signaling 

pathways that are induced by hypoxia [120]. Since 18F-FDG is the most used radionuclide for 

PET/CT in daily clinical practice, an understanding between glucose metabolism and hypoxia is also 

necessary. 
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Figure 1.5. Non-small-cell lung cancer showing spatial variation in staining for angiogenesis (CD34), 

pimonidazole (hypoxia), and glucose transporter protein expression (Glut-1), (from [55]). It can be 

seen that the spatial distribution of the markers of angiogenesis, hypoxia, and glucose metabolism is 

not homogeneous, which translates into heterogeneities in the distribution of the voxel intensities in 

their respective PET images. 

 

1.2.3 Heterogeneity of cancer 
 

Tumor heterogeneity refers to differences between tumor cells regarding cellular morphology, gene 

expression, metabolism, motility, proliferation, and metastatic potential [129]. This phenomenon 

occurs both between tumors (inter-tumor heterogeneity) and within tumors (intra-tumor 

heterogeneity). In the last case, the heterogeneity might result in a non-uniform distribution of 

genetically distinct tumor-cell subpopulations across and within disease sites (spatial heterogeneity) 

or temporal variations in the molecular features of cancer cells (temporal heterogeneity). 

 

To explain the heterogeneity of tumor cells, cancer stem cell or clonal evolution model are used. The 

cancer stem cell model considers that within a tumor, there is only a small number of cells that are 

tumorigenic (tumor-forming).  These cells are termed cancer stem cells (CSC) and are marked by the 

ability to both self-renew and differentiate into non-tumorigenic progeny. The CSC model postulate 

that the heterogeneity observed between tumor cells is the consequence of differences in the stem 

cells from which they originated. These cells are hypothesized to persist in tumors as a distinct 

https://en.wikipedia.org/wiki/Tumorigenic
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3505569/figure/Fig1/
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population, causing relapse and metastasis by giving rise to new tumors [130]. The clonal evolution 

model, consider that tumors arise from a single mutated cell, accumulating successively mutations as 

it progresses. These changes give rise to additional subpopulations, and each of these subpopulations 

can divide and mutate further. This heterogeneity may give rise to sub-clones that possess an 

evolutionary advantage over the others within the tumor environment, and these sub-clones may 

become dominant in the tumor over time. 

 

While tumors are growing, their heterogeneity is also increased. This finally translates, as it was 

mentioned already, into the existence of tumor sub-regions inside the primary tumor, each one with 

different biological behavior (some more aggressive and treatment-resistant than others). At the 

macroscopic level, these sub-regions are characterized by a different pattern of vascularization, vessel 

permeability, metabolism, cell proliferation, cell death, and other features [8], which can be 

potentially captured by current medical imaging methods [8-10]. PET/CT images showing spatial 

heterogeneity of glucose metabolism and hypoxia in a patient with NSCLC are shown in Figure 1.6 

[131]. These images were obtained by using the radiotracers 18F-FDG and 18F-HX4 (a 2-

nitroimidazole nucleoside analog). 

 

 

 

Figure 1.6. Images of an NSCLC patient having both an 18F-FDG PET/CT scan (left) and a hypoxia 

18F-HX4 PET/CT scan. The spatial tumor heterogeneity in both metabolic (FDG) and hypoxic (HX4) 

PET images are easily appreciated (from [131]). It can be easily appreciated that the spatial 

distribution of voxel intensities is heterogeneous in both images, with some degree of agreement 

between areas of increased glucose metabolism and hypoxic areas (red color). 

https://en.wikipedia.org/wiki/Relapse
https://en.wikipedia.org/wiki/Metastasis
https://en.wikipedia.org/wiki/Natural_selection
https://en.wikipedia.org/wiki/Tumor_microenvironment
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The clinical importance of tumor heterogeneity is based on the fact that tumors with higher 

intratumoral heterogeneity have shown to have a poorer prognosis, which could be secondary to 

intrinsic aggressive biology or treatment resistance [132]. Tumor heterogeneity is one of its main 

resistance resources; therefore, an accurate assessment of tumor heterogeneity is essential for the 

development of effective therapies. 

 

1.3 Cancer staging 
 

Cancer staging plays a central role in cancer management. It allows us to estimate the patient 

prognosis, i.e. the likelihood of overcoming cancer once diagnosed and determine the best treatment 

approach. Besides, accurate staging is necessary to evaluate the results of treatments or clinical trials. 

The most clinically useful staging system is the tumor, node, and metastasis (TNM) staging system 

developed by the American Joint Committee on Cancer (AJCC) in collaboration with the Union for 

International Cancer Control (UICC) [30-32].  TNM classification has become the global standard 

for gathering, communicating, and exchanging cancer information worldwide and is widely used by 

clinicians and researchers. 

 

The AJCC TNM system classifies cancers by the size and extent of the primary tumor (T), the 

involvement of regional lymph nodes (N), and the presence or absence of distant metastases (M), 

Tables 1.1, 1.2, and 1.3. Additionally, some evidence-based prognostic and predictive biomarkers 

have been added recently. Patients who generally have a similar prognosis, T, N, and M are grouped 

into prognostic stage groups.  

 

TNM classification during the diagnostic workup time frame is named as the clinical stage and 

denoted as cT, cN, and cM. A clinical-stage record is important for all patients because, it is essential 

for selecting initial therapy, and comparison across patient cohorts when some have surgery as a 

component of initial treatment and others do not.  

 

TNM classification after a surgical treatment is named pathological stage and denoted as pT, pN, and 

cM0, cM1, or pM1. There is also TNM classification after posttherapy or post neoadjuvant therapy, 

they are denoted respectively as ycTNM and ypTNM. The TNM criteria are defined separately for 

cancers in different anatomic locations and/or for different histologic types. Some general 

considerations are shown in Tables 2.1, 2.2, and 2.3. 
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Table 1.1. Primary tumor (T) categories (from [32]) 

Tumor category Is assigned when there is… 

TX  No information about the T category for the 

primary tumor, or it is unknown or cannot be 

assessed. 

T0 No evidence of a primary tumor 

Tis Carcinoma in situ 

T1, T2, T3, or T4 Primary invasive tumor, for which a higher 

category generally means 

• an increasing size 

• an increasing local extension, or 

• both 

 

Table 1.2. Regional lymph node (N) categories (from [32]) 

Regional node category Is assigned when there is… 

NX  No information about the N category for the 

regional lymph nodes, or it is unknown or 

cannot be assessed 

 

N0 No regional lymph node involvement with 

cancer  

N1, T2 or N3 Evidence of regional node(s) 

containing cancer, for which a higher category 

generally means 

• involved more lymph node stations or 

• or a greater number of affected nodes 

 

Table 1.3. Distant metastasis (M) categories (from [32]) 

Distant metastasis category Is assigned when there is… 

M0 No evidence of distant metastasis 

M1 Distant metastasis 

 

 

1.4. Cancer treatment 
 

There are many different approaches for treating cancer, depending on the type of cancer, how 

advanced it is, what types of treatment are available, and which will be the goals of treatment. Some 

treatments are local or loco-regional, such as surgery and radiation therapy, which are used to treat a 

tumor in a specific corporal localization. Drug treatments (such as chemotherapy, immunotherapy, or 

targeted therapy) are known as systemic treatments because they affect the entire body.  
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Depending on the goal, cancer treatments may be performed as: 

 

• Primary treatment: the goal is to completely remove cancer from the body, pretending to 

get the cure of the patient. The most common primary cancer treatment, in several types of 

cancer, is surgery. But, if the tumor is particularly sensitive to radiation therapy or 

chemotherapy, it could be used as a primary treatment 

 

• Adjuvant treatment: the goal is to kill any cancer cells that may remain after primary 

treatment to reduce the chance of recurrence. Common adjuvant therapies include 

chemotherapy, radiation therapy, and hormone therapy 

 

• Neo-adjuvant therapy: this treatment is performed before the primary treatment, looking to 

make the primary treatment easier or more effective 

 

• Palliative treatment: it helps to relieve the side effects of a previous treatment or signs and 

symptoms caused by cancer itself. It is applied when no cure is possible 

 

The systemic treatment has evolved from the administration of non-specific cytotoxic drugs that 

damage both tumor and normal cells to more specific agents. Targeted therapies use agents that are 

directed again genes and proteins that are involved in the growth and survival of cancer cells, whereas 

immunotherapeutic treatments modulate the tumor immune response again cancer; both approaches 

aim to produce greater effectiveness with less toxicity. The development and use of such agents 

enable a more personalized cancer treatment, which the potential to reduce the side effects and 

increase the treatment effectiveness. 

 

1.5. Some specific types of cancer 
 

1.5.1 Non-Small Cell Lung Cancer (NSCLC) 

 

Lung cancer is a leading cause of cancer-related death worldwide in both men and women [1-3]. 

Despite upgrades in imaging technologies and treatment over the past two decades, the median overall 

survival is 16·9, with a 5-year global survival rate as low as 23% in the younger age group [133]. The 

5-year survival rate for stage IVA and IVB NSCLC (referred to as metastatic NSCLC, hereafter) is 

approximately 10 and <1%, respectively, whereas untreated lung cancer patients live 7.15 months 
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after diagnosis [134]. There are two main forms of lung cancer: NSCLC (85% of patients) and small 

cell lung cancer (SCLC) (15%) [135]. The WHO has classified NSCLC into three main types: 

adenocarcinoma, squamous cell carcinoma, and large cell. There are also several variants and 

combinations of clinical subtypes [29].  Adenocarcinoma is the most common type of NSCLC and 

accounts for approximately 40% of lung cancers. They arise from alveolar cells located in the smaller 

airway epithelium. Squamous cell carcinomas represent 25% to 30% of lung cancers; they tend to 

arise from cells located in the airway epithelium. Although NSCLCs are associated with cigarette 

smoke, adenocarcinomas may be found in patients who have never smoked. After the initial 

diagnosis, accurate staging of NSCLC using CT or 18F-FDG PET/CT is crucial for determining the 

appropriate therapy (see Figures 1.11 and 1.14). The TNM classification allows, not only to 

characterize a lesion according to the primary tumor (T), nodal status (N), and distant metastasis (M) 

but also to define prognostic stages (I, II, III, and IV), where higher stage mean worst prognosis [32]. 

Early-stage I tumors are small masses (less than 5 cm) contained within the lung without spread to 

the nearby lymph nodes. Cancers, which have spread to bronchial or hilar lymph nodes, are 

considered stage II. Stage III disease, or locally advanced disease, has spread to mediastinal lymph 

nodes. Tumors, which have metastasized outside of the lung, are considered stage IV disease. Figure 

1.7 shows a patient with an NSCLC in the IIB stage, existing lymph node affectation in the lung, or 

near to bronchus.  

 

 

 

Figure 1.7. Depicting a patient with an IIB stage NSCLC (from [136]). The primary tumor diameter 

is 5 cm or smaller, and there is an affectation of lymph nodes only in the lung or near the bronchus. 
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Treatment of NSCLC is stage-specific; patients with stage I or II should be treated with complete 

surgical resection when not contraindicated. Nonsurgical patients or advanced stage should be 

considered for conventional or stereotactic radiotherapy. Patients with advanced metastatic disease 

may achieve improved survival and palliation of symptoms with chemotherapy, targeted agents, and 

other supportive measures. 

 

1.5.2 Breast cancer 
 

Breast cancer is the most commonly diagnosed cancer and the second leading cause of death for 

cancer among women worldwide surpassed only by lung cancer [1-2].  Risk factors include older age, 

a personal or family history of breast or ovarian cancer, some genetic mutation for breast cancer, as 

well as some premalignant breast lesions such as atypical hyperplasia (AH) or lobular carcinoma in 

situ (LCIS). A history of radiation exposure in young women is associated with a higher prevalence 

of breast cancer. Other potentially modifiable risk factors for breast cancer include increased breast 

density, alcohol use, overweight, physical inactivity, and postmenopausal hormone therapy [135]. 

 

According to WHO classification, breast carcinomas are divided into invasive carcinomas (70–75%), 

lobular carcinomas (10–14%), and other carcinomas of special type [26]. After the initial diagnosis, 

it is important to define accurately the initial extent of the disease, because it will affect the treatment 

election. In breast cancer staging, the TNM classification is used. In the evaluation of tumor size, 

conventional techniques including mammography and ultrasound (US) give sufficient information, 

while magnetic resonance imaging (MRI) is the preferred method for the assessment of multifocal 

tumors [137]. For axillary nodal staging, in patients with clinically negative axilla, sentinel lymph 

node biopsy (SLNB) has become a standard approach, where histopathological analysis of the 

sentinel nodes is conducted intraoperatively [138]. 

 

In 2018, the AJCC [32] updated the breast cancer staging guidelines to add other cancer 

characteristics to the T, N, M system to determine the cancer stage. These include: 

 

• Histologic grade (a measurement of how much the cancer cells look like normal cells).   

 

o Grade 1 or well-differentiated: the cells are slower growing, and look more like normal 

breast tissue.  
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o Grade 2 or moderately differentiated: the cells are growing at a speed of and look like 

cells somewhere between grades 1 and 3.  

 

o Grade 3 or poorly differentiated  

 

• Hormone receptor status (estrogen receptor [ER] and progesterone receptor [PR]), positive 

or not. 

 

• Human epidermal growth factor receptor-2 status (HER2), positive or not. 

 

• A marker of cellular proliferation (such as Ki-67 or a mitotic count) 

 

• For appropriate subgroups of tumors, a genomic prognostic panel (such as Oncotype, 

Endopredict, and others).  

 

Breast cancer is categorized into three major subtypes based on the presence or absence of molecular 

markers for ER, PR, and HER2: hormone receptor-positive/HER2 negative (80% of patients), HER2 

positive (15%-20%), and triple-negative (15%). Triple-negative breast cancer is more likely to recur 

than the other two subtypes, with 85%.  The two major pillars of breast cancer management are loco-

regional treatment and systemic therapy; the histological and molecular characteristics of breast 

cancer largely influence treatment decisions. Local therapy for all patients with nonmetastatic breast 

cancer consists of surgical resection (Figure 1.8).  Systemic therapy for nonmetastatic breast cancer 

is determined by subtype:  

 

• Patients with hormone receptor-positive tumors receive endocrine therapy, and a minority 

receive additional chemotherapy.  

 

• Patients with HER2-positive tumors receive HER2-targeted antibody or small-molecule 

inhibitor therapy combined with chemotherapy. 

 

• Patients with triple-negative tumors receive chemotherapy alone.  

 

• Metastatic breast cancer is treated according to subtype, with goals of prolonging life and 

palliating symptoms.  
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Figure 1.8. Patient with no metastatic breast cancer. Breast-conserving surgery will be performed 

(only the tumor and some normal tissue around it are removed). Some lymph nodes in the axilla may 

be removed to an accurate pathological N staging.  Part of the chest wall musculature may also be 

removed if the cancer is near it. Finally, the patient will receive local adjuvant radiotherapy (from 

[139]) 

 

1.6 Medical imaging methods in Oncology 
 

Currently, medical imaging plays a central role in the management of cancer patients [140, 141]. It 

has a wide range of applications: 

 

• Screening: to detect disease in non-symptomatic patients. 

 

• Detection and diagnosis: distinguish between malignant from benign disease, tumor 

localization, and guiding of the biopsy process for a pathological assessment. 

 

• Cancer staging: determining tumor size and extent (local, loco-regional, or metastatic 

affectation). 

 

• Guiding treatment and management decisions: determining suitability for treatment 

options (for instance operable or not) and tailoring the treatments to some specific 

characteristics of the patient. 
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• Guiding and verifying precise therapies: such as stereotactic irradiation, external beam 

radiotherapy, brachytherapy, particle therapy, intraluminal treatment delivery, and tissue 

ablation therapies. 

 

• Enabling interventional placement: tumor fiducial markers, stents, catheters, and 

intravenous devices. 

 

• Assessing treatment response: including complications. 

 

Three main types of medical imaging methods and combinations of these are routinely used in clinical 

oncology: morphological, functional, and molecular methods. This section introduces the basics of 

medical imaging techniques used in this thesis: positron emission tomography and computed 

tomography, which are molecular and morphological imaging technic, respectively. 

 

1.6.1 X-ray computed tomography (CT) 
 

The most widely extended morphological imaging method is X-ray computed tomography or simply 

CT [142]. It uses X-rays to produce a cross-sectional slice of the body.  

CT is based on the calculation of attenuation coefficients of an X-beam in the volume studied. It is 

performed by acquiring multiple X-ray views of the object and performing mathematical operations 

on digital data. 

 

X-ray photons passing through the body either interact or pass unaffected. Interactions, either through 

scattering or absorption, attenuates the beam.  The attenuation of monochromatic X-rays going 

through a homogeneous object is governed by [143]: 

 

𝑁 =  𝑁0𝑒−µ𝑥            (1.1) 

 

Where N is the X-ray intensity after passing the body, N0 is the X-ray intensity before passing the 

object, x is the length of the X-ray path through the object, and µ is the linear attenuation coefficient 

of the material for the X-ray energy employed. For inhomogeneous objects like the human body, the 

attenuation of x-rays consequently can be described by [143]: 
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𝑁 =  𝑁0𝑒− ∫ 𝛼(𝑥)𝑑𝑥         (1.2) 

 

In CT scanners, the X-ray attenuation is measured along with a variety of lines within a plane 

perpendicular to the long axis of the patient to reconstruct a map of the attenuation coefficients µ for 

this plane.  

 

CT scanners use typically fan-beam projection geometries, with single or multiple detector arrays that 

are arranged in an arc relative to the x-ray tube (Figure 1.9) [144] The apex of the fan is the x-ray 

tube. 

 

 

 

Figure 1.9. Fan-beam projections and multiple detector array from a CT-scanner (from [144]). The 

X-ray source with a specific fan angle rotates around the patient. To the opposite side is a single or 

multiple detector array to collect the X-ray.  

 

The source and detector rotate around the patient, as shown in Fig. 1.9 left.  The individual rays 

correspond to each detector measurement. The collection of rays in this geometry is a fan beam 

projection. The use of multiple arrays of X-ray detectors (Fig. 1.9. Right) allows acquiring several 

slices simultaneously [144]. 
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For image reconstruction, a slice can be considered as a matrix of rectangular boxes (voxels) of 

material or tissue (Figure 1.10). Conventionally, the X and Y directions are within the plane of the 

slice, whereas the Z direction is along with the patient (slice thickness direction) [145].  

 

Thus, the objective of CT image reconstruction is to determine the attenuation of the narrow X-ray 

beam that occurs in each voxel of the reconstruction matrix. There are various algorithms used for 

CT image reconstruction, the more commonly utilized are filtered back projection and iterative 

algorithm. 

 

The calculated attenuation values are represented as gray-scale values. The grayscale values in CT 

are called Hounsfield units (HUs). The HU is defined as [145]: 

 

𝐻𝑈(𝑥, 𝑦, 𝑧) = 1000
(μ(x,y,z)− 𝑢𝑤)

𝑢𝑤
               (1.3) 

 

 

 

Figure 1.10. Reconstruction matrix (from [145]) 

 

where µ(x,y,z) is the average linear attenuation coefficient for a voxel of tissue in the patient at the 

location (x,y,z). HU(x,y,z) represents the grayscale CT images in the same (x,y,z) spatial coordinates, 

and µw is the linear attenuation coefficient of water for the X-ray spectrum used. A cross-sectional 

slice of a patient with lung cancer is shown in Figure 1.11. 

 

https://radiopaedia.org/articles/iterative-reconstruction-ct?lang=us
https://radiopaedia.org/articles/iterative-reconstruction-ct?lang=us
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Figure. 1.11. Thorax CT slice, where a lung tumor can be appreciated on the left side. In integrated 

PET/CT, a map of the attenuation coefficients of the patient can be obtained from the CT and used 

the perform attenuation correction in the PET image (personal collection). 

 

1.6.2 Positron emission tomography 
 

Positron emission tomography (PET) generates images depicting the distribution of a positron-

emitting compound. Nowadays, PET systems are manufactured mainly with a coupled x-ray CT 

system, which is referred to as PET/CT. 

 

PET imaging is based on the detection of pairs of photons resulting from the annihilation of a positron 

with an electron. It is an example of molecular imaging, where a radiopharmaceutical compound that 

emits 𝛽+ particles is administered to the patient.  After a short distance traveling, this 𝛽+ particle will 

suffer an annihilation with a patient electron, following the emission of two photons in opposite 

directions and with an energy of 511 keV each one.  Posteriorly, coincident detection of those 

photons, typically by a ring of detectors, allows defining the emission point, and thus to estimate the 

distribution of the radiopharmaceutical in the body.   

 

There are several radionuclides available for PET, such as 18F, 11C, 13N, and 15O [146].  The PET 

radiotracer most widely used in oncology is 18F-FDG, which is an analog of glucose labeled with 

radioactive 18F. It helps to identify regions of pathological increase of glucose metabolism in the body. 

The basic principles of a PET system are shown in Figure 1.12 [147]. 
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Figure. 1.12. The basic principle of a PET system: a PET detector ring detects a pair of gamma 

photons with an energy of 511 keV (red arrows) which have resulted from the annihilation of an 

electron with a positron emitted by the radiotracer (18F-FDG) (from [147]). 

 

In general terms, a typical PET scanner consists of a ring of scintillation crystals attached to the 

photocathode of a photomultiplier tube (PMT). When an incoming photon excites electrons in the 

scintillation crystal by Compton scattering or photoelectric absorption, it causes the crystal to emit 

thousands of photons (around the visible part of the spectrum), which will be converted into an 

electrical signal by the PMT. Circuitry within the scanner identifies pairs of interactions occurring 

very near in the time, which is called annihilation coincidence detection (ACD). The circuitry of the 

scanner then determines the line in space connecting the locations of the two interactions, which are 

named line of response (LOR). Thus, ACD establishes the trajectories of detected photons.  

 

Raw PET data collected in all detector pairs are used to reconstruct the image of the distribution of 

the activity concentration of PET radiotracers in the body. This can be achieved by employing 

different kinds of algorithms. However, to produce accurate and quantitative images, the acquired 

data have to be corrected for several physical processes involved in the emission, transmission, and 

detection of radiation, such as non-uniform response for a uniform source, attenuation scatters, and 

point spread function. 

 

Both annihilation photons have to escape from the patient and reach the detectors to be registered as 

a coincidence in the PET scanner. The probability of both photons going through the patient without 

interaction is the product of the probabilities of each of them non-interacting [144]: 
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(𝑒−𝜇𝑥). 𝑒−𝜇(𝑑−𝑥) = 𝑒−𝑢𝑑           (1.4) 

 

Where d is the total path length through the patient, x and (d-x) are the distances that photon must 

travel through the patient (Figure 1.13) [144]. 

 

 

 

Figure. 1.13. Attenuation in PET. The probability that both annihilation photons emitted along a 

particular LOR escape interaction in the patient is independent of location on the LOR (from [144]).  

 

As a consequence of this, the attenuation correction in PET can be easily performed by measuring the 

attenuation through different LORs passing through the patient, by using an external source, either a 

positron emitter in a PET stand-alone scanner or using the CT component of the PET/CT. From this 

attenuation information, each LOR can be corrected by attenuation [148]. Other corrections such as 

random and scatter corrections, as well as corrections by positron range, improve the final image 

quality [149, 150].  

 

The activity measured by the PET scanner depends on the patient's size and the injected activity. To 

have more comparable measurements, between patients, and for the same patient between different 

time points, the standardized uptake value (SUV) has been proposed for 18F-FDG acquisitions.  It is 

a quantitative measure of radiopharmaceutical distribution, representing the ratio between the activity 

in a certain region or volume of interest and total injected activity, divided by normalizing factor, 

most commonly body weight, and is defined as [151, 152]: 

 

𝑆𝑈𝑉 =
𝐴𝑣

𝐴𝑖.𝑤
                   (1.5) 
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Where: Av is the measured activity in voxel i, w is the bodyweight of patients and, Ai is the injected 

activity corrected for decays during the uptake time. 

 

SUV measurements can be influenced by a variety of biological and technological factors, such as 

body composition, blood glucose level, scanner variability, reconstruction parameter, use of contrast 

material, interobserver variability, and others [153]. For this reason, several other parameters have 

been proposed to quantify the tumoral lesion uptake in PET. The most commonly used metrics in the 

clinic are: 

 

• SUVmean – Average SUV in all pixels or voxels in a defined region or volume of interest. 

 

• SUVmax – Represents the highest SUV score in the same region or volume of interest.  For 

the PET-based monitoring of response to treatment, SUVmax is known to be very sensitive to 

noise, because its definition relies on a single voxel measurement within the whole volume.  

On the other hand, it is less sensitive than SUVmean, to the tumor contour delineation [154].  

 

• SUVpeak – It has been promoted as a more robust metric of less susceptibility not only to 

tumor delineation but also to noise artifacts. It is calculated as the mean SUV in a spherical 

VOI of 1.2 cm diameter (volume of 1 ml) centered at the most active portion of the tumor 

[154].   

 

Other parameters used for monitoring of treatment response are:  

 

• MTV – (Metabolic tumor volume): the sum of all voxels in a volume defined by a 

segmentation method, which represents the metabolically active tumor tissue. The 

segmentation method used to define this group of voxels affects directly the value of this 

parameter.  

 

• TLG – (Total lesion glycolysis): product of MTV and SUVmean. 

 

• SULmax – SUVmax corrected for lean body mass.  

•  

• SULpeak – SUVpeak corrected for lean body mass. 
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1.7 Clinical applications of PET/CT 
 

1.7.1 Cancer staging 
 

To perform the best treatment possible and assess accurately the prognosis of a patient with cancer, a 

determination of the tumor stage as precise as possible must be performed.   Cancer diagnosis requires 

the pathological confirmation of the tumor, whereas imaging is crucial to assess disease extension. 

As previously mentioned, the right choice of treatment depends on the correct TNM classification, 

which categorizes tumors based on the primary tumor characteristics as size and local invasion (T), 

regional lymph node involvement (N), and distant metastases (M).  The addition of molecular 

imaging, mainly with 18F-FDG PET, to anatomical imaging such as CT or MR, has improved TNM 

staging and consecutively treatment outcome [155]. 18F-FDG PET/CT is a standard of care and an 

integral part of the clinical staging of patients with lung cancer [1]. NSCLC has shown to have a 

notable relationship between the FDG uptake, measured semi-quantitatively as the standardized 

uptake value, and the tumor size, histologic subtype, biologic aggressiveness, and prognosis [156]. 

An 18F-FDG PET/CT staging study is shown in Figure 1.14. 

 

In breast cancer, whole-body 18F-FDG PET/CT imaging to assess the primary tumor characteristics 

and detect occult axillary lymph node metastases shows no benefit over the standard methods. 

However, the detection of extra-axillary lymph node involvement and distant metastases in the initial 

staging has been indicated as its major contribution [157].  18F-FDG PET/CT imaging is used mainly 

for recidive detection and treatment response evaluation after neoadjuvant or systemic chemotherapy. 

 

1.7.2 Response assessment 
 

Assessment of tumor responses and treatment results is a fundamental part of an oncology treatment 

protocol. Although there are several methods to achieve this, medical imaging plays a critical role in 

objectively characterizing tumor response to therapy, and in a research context, defining trial 

endpoints for novel therapeutical agents.   
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Figure 1.14. 18F-FDG PET/CT a 62 years old female patient with NSCLC. The tumor has 4.3 cm of 

diameter and there are no lymph nodes or distant affectation (personal collection). 

 

In radiology,  the Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1 [158], are 

routinely used. This uses unidimensional diameters of target lesions (measured in CT or MR), and 

the sum of measurements of all target lesions, as a quantitative measure of tumor burden. Changes of 

the quantitative tumor burden are assessed about the specific cutoff values to assign categorical 

response groups (complete, partial, stable, or progressive disease). These response evaluation criteria 

are limited by their dependence on only morphological changes to assess therapeutic response [159].  

It is known, that functional and metabolic changes appear early in a course of treatment, and reflex 

better the tumor response [160]. In nuclear medicine exist the European Organization for Research 

and Treatment of Cancer PET response criteria (EORTC PET) and the PET response criteria in solid 

tumors (PERCIST) 1.0, which follow the model of RECIST, and define 4 response categories with 

similar names as RECIST – complete metabolic response (CMR), partial metabolic response (PMR), 

stable metabolic disease (SMD) and progressive metabolic disease [159]. PERCIST 1.0 recommends 

using SUV corrected for lean body mass (SUL) to avoid falsely high organ SUV in obese patients. It 

also recommends computing the SULpeak and total lesion glycolysis (TLG) values as response 

metrics.  Whereas EORTC PET uses SUVmean, corrected by body surface area. A comparison 

between the three criteria mentioned above is shown in Table 1.4. 
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Table 1.4. Response evaluation criteria for RECIST, EORTC, and PERCIST 1.0 (from [159]). 

 

CR: complete response, PR: partial response, PD: progression disease, SD: stable disease, CMR: 

complete metabolic response, PMR: partial metabolic response, PMD: progression metabolic disease, 

SMD: stable metabolic disease. 

Characteristic RECIST 1.1 EORTC PERCIST 1.0 

Measurability 

of lesion at 

baseline 

Lesions: longest 

diameter≥10 mm; 

lymph nodes: short 

axis≥15 mm 

Lesions with high18F-

FDG uptake 

SUL peak of baseline 

lesions at least 1.5-fold 

greater than liver SUL 

mean + 2 × SD. If the 

liver is abnormal, the 

primary tumor should 

have uptake>2.0 × SUL 

mean of the blood pool 

Objective 

response 

CR: disappearance of 

all target lesions 

CMR: complete resolution 

of 18F-FDGuptake within 

all lesions, making them 

indistinguishable from the 

surrounding tissue 

CMR: complete 

resolution of18F-FDG 

uptake within all lesions 

to a level of less than or 

equal to that of the mean 

liver activity and 

indistinguishable from 

the background blood-

pool levels 

PR: reduction of at 

least30 % in the sum 

of diameters of target 

lesions 

 

PMR: reduction of at least 

25 % in the sum of SUV 

PMR: reduction of at 

least 30 % in SUL peak 

and an absolute drop of 

0.8 SUL peak units 

PD: increase of at 

least 20 % in the sum 

of diameters of target 

lesions or appearance 

of new lesions 

PMD: increase of at least 

25 % in the sum of SUV or 

appearance of new 18F-

FDG-avid lesions that are 

typical of cancer and not 

related to inflammation or 

infection 

PMD: increase of at least 

30 % in SUL peak and an 

absolute increase of 0.8 

SUL peak units 

OR: 75 % increase in 

TLG, with no decrease in 

SUL, or appearance of 

new 18F-FDG-avid 

lesions typical of cancer 

and not related to 

inflammation or 

infection 

SD: not CR, PR, or 

PD 

SMD: not CMR, PMR, or 

PMD 

SMD: not CMR, PMR, 

or PMD 

 



T U M O R  H E T E R O G E N E I T Y  I N  P E T - C T  I M A G E S  P a g e  | 40 

 

 

EORTC criteria and PERCIST 1.0 have shown to be more sensitive and accurate than RECIST 1.1, 

especially for the detection of an early therapeutic response to chemotherapy. Changes in tumor 

metabolic activity are an early indicator of treatment effectiveness for breast cancer, mainly in the 

neoadjuvant setting.  

 

The histopathologic response after chemotherapy has been used as the reference standard for 

assessment of the accuracy of 18F-FDG PET in predicting a response during systemic treatment. 

Figure 1.15 shows 18F-FDG PET/CT studies of a patient with locally advanced breast cancer, before 

and after completion of neoadjuvant chemotherapy [98].  A significant metabolic response can be 

appreciated. The treatment was performed with Carboplatin, Docetaxel, Trastuzumab, and 

Pertuzumab.  

 

 

 

Figure 1.15. 37-years-old woman with HER2-positive ductal breast cancer (4.9 · 3.1 cm).  (A and B) 

baseline 18F-FDG PET (A) and fused 18F-FDG PET/CT (B). (C and D) significant reduction in tumor 

18F-FDG uptake, from SUV of 16.1 to SUV of 1.6, was seen on 18F-FDG PET (C) and fused 18F-FDG 

PET/CT (D). Histopathology after treatment showed minimal residual disease in the tumor bed (from 

[98]) 

 

Likewise, 18F-FDG-PET/CT has shown high accuracy in diagnosing metastatic breast cancer, and 

PERCIST criteria have shown higher predictive values than RECIST for prediction of progression-

free survival [75, 94]. As recurrent and metastatic breast cancers are FDG-avid diseases [94], 18F-

FDG-PET/CT is a valuable tool for response monitoring. 
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Chapter 2. PET/CT image biomarkers and Radiomics 
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2.1 Introduction 
 

Cancer greatly affects our modern society. Not only because of the number of deaths but also because 

of its morbidity. Currently, sophisticated medical imaging methods, such as MR, CT, and PET/CT, 

allow the diagnosis, treatment, and follow-up of patients with cancer. Although some very basic 

quantitative or semi-quantitative parameters extracted from these images have been introduced, the 

evaluation of medical images has historically been a qualitative process, based mainly on the expertise 

of the medical specialist. 

 

However, in the last years, a large number of scientific publications have shown the value of 

quantitative parameters extracted of the medical images (image features), for diagnosis, evaluation, 

and prognosis of the response to treatment, as well as prognosis of the long-term evolution of patients 

with cancer [19-27].   So then, we are moving from a simple qualitative inspection of medical images 

towards the use of modern image-based biomarkers. In this section, we concentrate on the quantitative 

imaging biomarkers (quantifiable features from medical images), and we briefly discuss one of the 

commonly-used quantitative imaging biomarkers in PET/CT. 

 

2.2 Imaging biomarkers (IB) 
 

An imaging biomarker (IB) can be defined as a characteristic derived from a medical image and can 

be used as an indicator of normal biological processes, a pathogenic process, or of responses to an 

exposure or intervention, including therapeutic interventions [161]. IBs have the advantage to provide 

a full view of the entire extent of the tumor, capturing regional variations in it (tumor heterogeneity).  

 

They can be performed in a non-invasive way and repeatedly to monitor the development and 

progression of the disease as well as response to therapy. Besides, they have the potential to reveal 

tumor phenotypes (inside a patient population), associated with prognosis, diagnosis, therapy 

response, and risk stratification (Figure 2.1). 
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Figure 2.1. Applications of cancer biomarkers (adapted from [162]) 

 

Although several IBs have been developed in the last few years, their clinical validation is a major 

hurdle. For this reason, simple biomarkers such as tumor size or SUV are still the most commonly 

used in everyday clinical practice. Some important definitions related to quantitative IB development 

are: 

• Predictive biomarker:  a biomarker intended to forecast disease course in the presence of 

a specific treatment 

 

• Prognostic biomarker: a biomarker intended to forecast disease course in the absence of 

treatment 

 

• Quantitative imaging: extraction and use of numerical/statistical features extracted from 

medical images 

 

• Repeatability: the agreement between successive measurements made under the same 

conditions 

 

• Reproducibility: the agreement between successive measurements made with varying 

conditions, such as location or operator 

 

• Surrogate endpoint: a biomarker intended to substitute for a clinical endpoint 

 

Therapy Response 

Diagnosis Risk Group Stratification 

Prognosis 
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Before an imaging biomarker becomes routinely used in the clinic, it must be validated. The 

validation involves a demonstration of the accuracy, precision, and feasibility of biomarker 

measurement. On the other hand, if an imaging biomarker cannot be reliably measured, it will have 

little or no use as an indicator of a biological process or clinical outcome.  IBs can be generally 

classified as structural, morphological, textural, functional, or physical [66, 161]. Some factors can 

intrinsically affect the measuring of quantitative imaging biomarkers and thus reducing their 

reliability, repeatability, and reproducibility; therefore, all these questions need to be properly 

investigated.  

 

An IB routinely used in nuclear medicine, which previously was described in chapter 1, is the SUV 

of 18F-FDG PET images.  Increased accumulation of FDG in tumors, relative to normal tissue, has 

shown to be a useful marker for the detection and staging of many cancers [98, 160]. And its temporal 

changes are useful for assessing response to therapy. Nevertheless, many factors can affect the SUV 

measure, for which other IB have been introduced. Positive tumor 18F-FDG uptake on visual analysis 

and intensity of uptake expressed as SUV, are associated with prognosis in patients with malignant 

diseases [163].  Usually, diagnosticians use a semiquantitative parameter, the maximum standardized 

uptake value (SUVmax), to characterize the tumoral lesion [152]. Also, although not routinely used, 

global or volume-based semiquantitative metabolic parameters of the primary tumor, such as 

SUVmean, MTV, and TLG, can be easily obtained from post-processed images. These parameters 

provide a more accurate assessment of the tumor burden, with potentially higher predictive and 

prognostic value than SUVmax in some cancers [17]. Unlike SUVmax, which measures 18F-FDG 

concentration in a single voxel of a metabolically active tumor, global semiquantitative parameters 

take into account all voxels inside the tumoral volume, thus probing a more general view of the tumor. 

Their drawback is the lack of a standardized method for volume definition, although several 

segmentation algorithms show good performance [154]. 

 

On the other hand, the biological heterogeneity of the tumors is an important factor implicated in poor 

treatment response, a higher chance of developing metastasis, and shorter progression-free and 

overall survival [6-8]. Generally, tumor FDG uptake shows uneven spatial distribution, at least partly 

due to intratumoral heterogeneity, which was already treated in chapter 2.  Despite the clinical 

importance of tumor heterogeneity, established 18F-FDG PET/CT parameters such as SUV, MTV, 

SUVmean, and TLG do not reflect this property, raising the need for different analytic methods. 
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The conventional PET/CT analysis approach consists of the following: (1) PET/CT imaging 

acquisition and reconstruction; (2) tumor segmentation; (3) feature extraction such as SUVmax, 

SUVmean, SUVpeak, MTV, and TLG, and (4) statistical analysis. However, in recent years, there 

has been considerable effort in the medical imaging community to obtain correlations between image 

features and tumor heterogeneity, as a means to improve the clinical management of patients with 

cancer. It is thought that medical images have much more information than is directly appreciated by 

the human eye or through simple measurements [25, 98]. Through several mathematical methods, it 

is possible to extract spatio-temporal distribution patterns of the pixel/voxel intensities, as well as 

their relationship. This is the field of radiomics, which refers to the extraction and analysis of large 

amounts of advanced quantitative imaging features from medical images [25]. The hypothesis behind 

the radiomics approach is that these advanced imaging features change noticeably between different 

pathological processes or after therapeutic intervention. Therefore, radiomic features can be used to 

build descriptive and predictive models of a specific clinical outcome (“radiomic signature”). It is 

believed that radiomics has the potential to improve on traditional, manual interpretation by detecting 

features and patterns that otherwise would go unnoticed to the human eye [25]. 

 

Radiomics analysis can be performed on medical images from different modalities, allowing for an 

integrated cross-modality approach using the potential additive value of imaging information 

extracted, e.g., from magnetic resonance imaging (MRI), computed tomography (CT), and positron 

emission tomography (PET), instead of evaluating each modality by its own [67]. Radiomics has 

emerged from oncology, but can be applied to other medical problems where a disease is imaged. 

The overall objective of radiomics is to build classification and/or regression models based on some 

quantitative features extracted from the imaging data. Currently, with the emergence of radiomics, 

there is a large amount of information available, powerful AI techniques can unlock 

clinically relevant information hidden in this massive amount of information [164], that cannot be 

directly evaluated by humans. This large amount of information and the availability of more powerful 

computers has stimulated the application of artificial intelligence (AI) to perform these classifications 

and/or regression tasks.   

 

Radiomic analysis can be applied to any pathologic process, where medical images are used at any 

time along with its evolution. In oncology, the radiomic analyses are mainly performed in the tumor 

regions, however, it is possible also to perform it in normal tissues. On the other hand, this analysis 

can be carried out with PET, CT, or both images. 
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2.3 PET/CT radiomic methodology and workflow  
 

The general process for building a PET/CT radiomic signature with prognostic/predictive value is 

rather independent of the underlying disease and consists of several steps [165, 166] (Figure 2.2). It 

is similar to the conventional PET/CT analysis but needs some additional steps such as intensity 

quantization and feature extraction.  

 

 

 

Figure 2.2. The standard workflow in radiomics (adapted from [165]). 

 

2.3.1 Acquisition 
 

The radiomic workflow begins with the medical image acquisition, which can be performed in two, 

three, or four dimensions if time is taking into account. It includes both the examination itself and the 

patient preparation protocol. The output will be a medical image consist of pixels or voxels, whose 

intensity represents the physical, chemical, or biological properties of an equivalent area/volume in 

the patient.  

A wide range of parameters intervenes in the acquisition process, among them tube current and 

voltage for the CT acquisition, spatial resolution (voxel size of CT and PET), reconstruction 

algorithm, and related settings both for CT and PET.  All these parameters may have a significant 

impact on the radiomic features computed [167, 168], with certain features being affected more than 

others. Thus, robust radiomic features in reconstruction settings can be considered as good parameters 

in radiomic analysis. Additionally, the movement during the acquisition as well as respiratory 

movements influences significantly the values of the radiomic features [169]. 
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Since the images can be obtained at different scales, and there are variations across different medical 

machines and acquisition protocols, recommendations to perform radiomic analysis have been 

published [170]. 

 

2.3.2 Tumor segmentation and preprocessing 
 

The process of tumor segmentation can be categorized into two sequential phases; recognition and 

delineation [171]. In the recognition phase, a target lesion with high uptake is identified and 

distinguished from other target lesion-like entities in the PET image. In the delineation phase, the 

target lesion is precisely separated from the background and non-significant object. The nuclear 

medicine physician can perform the segmentation manually. However, it is highly subjective and 

time-consuming and has high intra- and inter-observer variability, whereby it is less reproducible 

[172]. Semiautomatic methods such as gradient-based and thresholding-based can be also used. The 

latter can use with an adaptive or fixed threshold, being a cutoff value of SUV of 2.5 commonly used 

for malignant tumor delineation, also, deviations of a reference uptake (e.g. in liver or mediastinum) 

can be used [173, 174]. Other methods are automatic, based on different algorithms such as C-Means 

(FCM) and fuzzy locally adaptive Bayesian (FLAB) [172, 175]. More recently, machine learning 

algorithms have been proposed [176]. Radiomics features are sensitive to different delineation 

methods [177]. Therefore, it is recommended to applicate multiple segmentations and assess the 

feature sensibility to them [24, 170]. 

 

Pre-processing is a crucial step in the radiomic workflow, affecting significantly the overall outcome 

of a radiomic signature [177]. It may involve spatial filtering, resampling, and intensity discretization. 

The objective of spatial filtering is either to reduce noise or emphasize features at different scales. 

Some filters commonly used are Butterworth smoothing, Gaussian filters, and Laplacian of Gaussian 

filters [165, 166]. 

 

Textural features values are sensitive to variations in voxel size [177, 178-182], which affects its 

reproducibility when images with different acquisition settings are used. There are two ways to reduce 

this effect, namely through reconstruction to the same voxel dimensions or by image interpolation. In 

most situations, re-reconstruction is not possible due to the lack of access to the original raw data, 

and image resizing is required. 
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Image resizing, which allows converting an image to another with a different voxel size, requires 

voxel interpolation. Commonly used interpolation algorithms include nearest neighbors, linear and 

cubic convolution, and cubic spline. In short, nearest-neighbor interpolation assigns the intensity of 

the most nearby voxel in the original grid to each voxel in the interpolation grid. Trilinear 

interpolation uses the intensities of the eight most nearby voxels in the original grid to calculate a 

new interpolated intensity using linear interpolation. tricubic convolution and tricubic spline 

interpolation draw upon a larger neighborhood to evaluate a smooth, continuous third-order 

polynomial at the voxel centers in the interpolation grid [183]. Since the interpolation result is an 

approximation, artifacts should be expected. These have been classified into four broad categories, 

namely ringing, aliasing, blocking, and blurring. [184].  

 

While no consensus exists concerning the optimal choice of the interpolation algorithm, trilinear 

interpolation is usually seen as a conservative choice. It does not lead to the blockiness produced by 

nearest-neighbor interpolation that introduces a bias in local textures [185], nor does it lead to out-of-

range intensities that may occur due to overshoot with tricubic and higher-order interpolations. The 

latter problem can occur in acute intensity transitions, where the local neighborhood itself is not 

sufficiently smooth to evaluate the polynomial within the allowed range. Tricubic methods, however, 

may retain tissue contrast differences better. Particularly when upsampling, trilinear interpolation 

may act as a low-pass-filter that suppresses higher spatial frequencies and cause artifacts in high-pass 

spatial-filters [186]. Interpolation algorithms and their advantages and disadvantages are treated in 

more detail in [184]. In a phantom study, Larue et al. [186]  compared the nearest neighbor, trilinear 

and tricubic interpolation, and indicated that feature reproducibility is dependent on the selected 

interpolation algorithm, i.e. some features were more reproducible using one particular algorithm.  

 

In routine clinical settings, most imaging modalities produce anisotropic voxels after scan 

reconstruction, where the thickness between axial slices is larger than the cross-sectional resolution 

(i.e. ∆z > (∆x, ∆y)). To establish conservation of scale in all three directions, and remove a directional 

bias in 3-dimensional (3D) features, it is recommended to resample images with 3D interpolation 

such that ∆z = ∆x = ∆y [178]. Texture features quantify spatial variation in voxel intensities, and 

interpolation either decreases (up-sampling) or increase (down-sampling) the spatial distance 

between voxels. Down-sampling to a larger voxel size leads to information loss, where-as up-

sampling to a smaller voxel size creates artificial information at a higher resolution. Extreme down-

sampling creates a poor-quality image, extreme up-sampling creates local homogeneity and image 

smoothing [183, 186]. 
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The main reasons to use resampling are, to allow for comparison of datasets obtained from multiple 

centers (there are variations regarding protocols and reconstruction parameters that result in different 

voxel sizes), resampling of registered multimodal imaging (such as in PET/CT) to the same voxel 

resolution, and to acquire isotropic voxel dimensions for 3D feature extraction because they require 

isotropic voxel spacing to be rotationally invariant [183, 187].  

 

Currently, there are no clear indications of whether upsampling or down-sampling schemes are 

preferable [183]. For example, Ligero et al. [182] studied the influence of voxel size for radiomic 

feature variability in CT-images.  They found that voxel size resampling increased the mean 

percentage of robust CT radiomic features. The radiomic data were extracted from images resampled 

to isometric voxels of 1 × 1 × 1 mm3. Shafiq-ul-Hassan et al. [188] assessed the impact of slice 

thickness and pixel size on features acquired on CT phantom images with different acquisition and 

reconstruction parameters. Images were resampled to one voxel size (1 × 1 × 2) mm3 using linear 

interpolation to determine if this improved robustness. 42 out of 213 features studied improved 

significantly after resampling. Twenty-one features had large variations before and after resampling.  

 

Whybra et al. [186] assessed the stability of radiomic features to interpolation processing and 

categorized features based on stable, systematic, or unstable responses in 18F-FDG-PET images of 

oesophageal cancer patients. Images were resampled by using a linear and spline method to 6 isotropic 

voxel sizes (1.5 mm, 1.8 mm, 2.0 mm, 2.2 mm, 2.5 mm, 2.7 mm) and 141 features were extracted 

from each VOI. They found that texture features are sensitive to interpolation and evaluated potential 

correction techniques for features showing a potential systematic voxel-size dependence. They also 

found large differences in many features extracted when interpolating using a linear method compared 

to spline. However, the robustness categorizations remained consistent for all features; stable features 

had stable responses for both interpolation methods. However, they did not investigate the impact of 

interpolation on predicting the performance of any clinical parameter. A feature with large variability 

between interpolation methods may still show strong predictive significance in a developed radiomic 

model. Thorough reporting of feature extraction settings including the interpolation method is a 

necessity for reproducibility and validation. They identified robust features showing stability to 

isotropic interpolation, but this does not necessarily correspond to any clinical application. However, 

clinically robust and thus relevant features are likely to be a subset of those that have a predictable 

interpolation response. Therefore, due to the abundance of features in radiomics and the need for 
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reduction techniques to limit overfitting, pruning features that have not shown required interpolation 

stability may be one of several selection steps to consider for all radiomic studies with multi-center 

datasets that requires resampling to common voxel size. Isotropic voxel size is thought to impact the 

predictive value of features [20]. Image intensities may require rounding after interpolation or the 

application of cut-off values. For example, in CT images intensities represent Hounsfield units, and 

these do not take non-integer values. Following voxel interpolation, interpolated CT intensities are 

thus rounded to the nearest integer. In this thesis, in line with some other clinical works [189, 190], 

we have preferred to resampling into an isotropic voxel size of  (1x1x1) cm3 

 

VOI voxel intensity discretization or quantization is often required for the calculation of higher-order 

texture and heterogeneity features [166]. During the discretization process, the intensities or SUVs 

voxels are discretized into new values. It reduces the effect of noise in radiomic analysis, by changing 

the continuous voxel intensity scale to one discrete. In 18F-FDG PET/CT images, two different 

methods are commonly used for intensity or SUV quantization, namely the fixed bin-number and the 

fixed bin-size method.  

 

Fixed bin-number discretization: 

 

For a VOI with N voxels, the discretization into D number of bins (e.g., 16, 32, 64, 128, 256) can be 

performed by the following formula [166]: 

 

𝐼(𝑥)𝑛𝑒𝑤 = 𝑟𝑜𝑢𝑛𝑑 (𝐷
𝐼(𝑥)−𝑆𝑈𝑉𝑚𝑎𝑥

𝑆𝑈𝑉𝑚𝑎𝑥− 𝑆𝑈𝑉𝑚𝑖𝑛+1
)      (2.1) 

 

Where, 𝐼(𝑥𝑖) is the intensity or SUV of the ith voxel, and  𝐼(𝑥)𝑛𝑒𝑤 is the resampled voxel value. 

 

An adequate number of bins is 32 or 64 because it allows having a resolution sufficiently fine of the 

SUV [20, 66]. Radiomic features are highly dependent on the number of bins. However, a fixed bin-
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number discretization enables a direct comparison of feature values across multiple VOIs or multiple 

patients. 

Fixed bin-size discretization: 

 

For a VOI with N voxels, the discretization into a fixed-bin size B (e.g., 0.1, 0.25, 0.5, or 1 of SUV), 

can be performed by the following formula [166]: 

 

𝐼(𝑥)𝑛𝑒𝑤 =  (
𝐼(𝑥)

𝐵
) − 𝑚𝑖𝑛 (𝑟𝑜𝑢𝑛𝑑 (

𝐼(𝑥)

𝐵
))  + 1               (2.2) 

 

The fixed bin-number and the fixed bin-size methods mostly result in discordant values of texture 

features to each other. However, the fixed bin-size method produces identical intensity resolution 

among different PET images, which enables direct comparison of values of texture features in 

different PET images, even in a clinical response setting that the SUV range of a tumor varies during 

treatment. It also seems to have better repeatability and lower sensitivity of texture features to the 

methods of delineation and reconstruction [166]. 

 

To be clinically useful, a radiomic feature must be robust to image processing steps, which has made 

robustness testing a necessity for many technical aspects of feature extraction. Therefore, it is 

necessary for the standardization of these methodologies for performing radiomic studies [191, 192]. 

 

2.3.3 Feature extraction 
 

From these pre-processed VOIs several radiomic features are extracted, currently is possible to obtain 

thousands of different features by applying different mathematical concepts and transformations, or 

more recently via Deep Learning (section 3.5 in this thesis). 

 

There are two big classes of features: “hand-crafted” and those based on Deep Learning. Hand-crafted 

features are obtained via some suitable mathematical functions. Most common among them are shape 

and texture features. By contrast, Deep Learning features are obtained implicitly by training on large 

datasets of images [165].  
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Without pretending to be exhaustive in definitions, below we mention some of the characteristics 

used in this thesis. For a complete definition of each feature and their formulation, please refer to the 

“Image biomarker standardization initiative” (IBSI) document [191, 192]. Some formulas and 

definitions are given in Table C1 of Appendix C. 

 

 

 

Figure 2.3. Radiomic features classification (adapted from [165]) 

 

 

Morphological or shape features describe geometric aspects of an ROI or VOI. These features are 

based on voxel representations of the volume, which can be set as coordinates of the voxel centers, 

or a surface mesh representation [191]. A list of some of them is presented in Table 2.1.  

 

              Table 2.1. Morphological features 

Volume, Approximate volume, Surface area, Surface to volume ratio, 

Compactness 1, Compactness 2, Spherical disproportion, Sphericity, Asphericity, 

Centre of mass shift, Maximum 3D diameter, Major axis length, Minor axis 

length, Least axis length, Elongation, Flatness.  
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Texture features are categorized into first, second, and higher orders by the number of voxels involved 

in their texture matrix design. The first-order texture features are calculated from the intensity 

frequency histogram, which represents the frequency distribution of one-voxel intensity in the ROI 

or VOI of the tumor. Therefore, they describe only the global characters of a tumor on PET/CT 

images. The first-order texture features include: 

 

Intensity-based statistical features, which describe how voxel values within the ROI are distributed. 

These voxel-values do not need discretization. Below is a list of these features [191]. A list of some 

of them is presented in Table 2.2.  

 

      Table 2.2. Intensity-based statistical features 

Mean, Variance, Skewness, Kurtosis, Median, Minimum, Percentile 10, Percentile 

90, Maximum, Interquartile range, Range, Mean absolute deviation, Robust mean 

absolute deviation, Median absolute deviation, Coefficient of variation, Quartile 

coefficient of dispersion, Energy, Root mean square. 

 

 

Intensity histogram features, which are calculated from a discretized histogram of the original voxel 

intensities. Below is a list of these features [191]. A list of some of them is presented in Table 2.3. 

 

             Table 2.3. Intensity histogram-based features 

Mean, Variance, Skewness, Kurtosis, Median, Minimum, Percentile 10, Percentile 

90, Maximum, Mode, Interquartile range, Range, Mean absolute deviation, 

Robust mean absolute deviation, Median absolute deviation, Coefficient of 

variation, Quartile coefficient of dispersion, Entropy, Uniformity, Maximum 

gradient, Maximum gradient grey level, Minimum gradient, Minimum gradient 

grey level. 

 

 

Intensity-volume histogram features, which use a cumulative intensity-volume histogram (IVH) of 

the voxel intensities in the ROI, which describes the relationship between discretized intensity i and 

the fraction of the volume containing at least intensity i. Below is a list of these features [191]. A list 

of some of them is presented in Table 2.4. 
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      Table 2.4. Intensity-volume histogram-based features 

Volume fraction at 0.10 intensity, Volume fraction at 0.90 intensity, Intensity at 

0.10 volume, Intensity at 0.90 volume, Difference volume fraction at 0.10 and 

0.90 intensity, Difference intensity at 0.10 and 0.90 volume, The area under the 

IVH curve. 

 

 

The second-order texture features are calculated based on grey level co-occurrence matrices.  

Grey level co-occurrence matrix (GLCM) determines how often (i.e., the probability) that a pixel 

of intensity i finds itself within a certain relationship to another pixel of intensity j. Namely, how two 

voxels “co-occur” with respect to one another; along a certain direction and with a certain distance 

[191]. GLCM with a neighboring distance of 1 has a 26-connected neighborhood in 3D and an 8-

connected neighborhood in 2D, yielding 13 unique directions in 3D and four in 2D. Thus, for a 3D 

approach with a distance of one, an ROI has 13 unique GLCMs for every 13 direction. A list of some 

of them is presented in Table 2.5. 

 

             Table 2.5. Grey level co-occurrence-based features 

Joint maximum, Joint average, Joint variance, Joint entropy, Difference average, 

Difference variance, Difference entropy, Sum average, Sum variance, Sum 

entropy, Angular second moment, Contrast, Dissimilarity, Inverse difference, 

Inverse difference normalized, Inverse difference moment, Inverse difference 

moment normalized, Inverse variance, Correlation, Autocorrelation. 

 

 

The higher-order texture features are calculated from several texture matrices computed based on 

interrelationships of 3 or more voxels [191].  

 

Grey level run length-based Matrix (GLRLM) quantifies gray level runs, which are defined as the 

length in the number of pixels, of consecutive pixels that have the same gray level value. In a gray 

level run length matrix P(i,j |Ɵ), the (i,j)th element describes the number of runs with gray level i and 

length j occur in the image along angle Ɵ [191]. A list of some of them is presented in Table 2.6. 
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             Table 2.6. Grey level run length-based features 

Short runs emphasis, Long runs emphasis, Low grey level run emphasis, High 

grey level run emphasis, Short run low grey level emphasis, Short run high grey 

level emphasis, Long run low grey level emphasis, Long run high grey level 

emphasis, Grey level non-uniformity, Grey level non-uniformity normalized, Run 

length non-uniformity, Run length non-uniformity normalized, Run percentage, 

Grey level variance, Run length variance, Run entropy. 

 

 

Gray Level Size Zone-based matrix (GLSZM) quantifies gray level zones in an image. A gray-

level zone is defined as the number of connected voxels that share the same gray level intensity. In a 

gray level size zone matrix P(i, j), the (i, j)th element equals the number of zones with gray level i and 

size j appear in the image [191]. A list of some of them is presented in Table 2.7. 

 

             Table 2.7. Gray Level Size Zone-based features 

Short runs emphasis, Long runs emphasis, Low grey level run emphasis, High 

grey level run emphasis, Short run low grey level emphasis, Short run high grey 

level emphasis, Long run low grey level emphasis, Long run high grey level 

emphasis, Grey level non-uniformity, Grey level non-uniformity normalized, Run 

length non-uniformity, Run length non-uniformity normalized, Run percentage, 

Grey level variance, Run length variance, Run entropy. 

 

 

Grey level distance zone matrix (GLDZM) counts the number of groups (or zones) of linked voxels 

that share a specific discretized grey level value and possess the same distance to the ROI edge [191]. 

The GLDZM thus captures the relation between location and grey level. A list of some of them is 

presented in Table 2.8. 

 

             Table 2.8. Grey level distance zone-based features 

Small distance emphasis, Large distance emphasis, Low grey level zone emphasis, 

High grey level zone emphasis, Small distance low grey level emphasis, Small 

distance high grey level emphasis, Large distance high grey level emphasis, Grey 

level non-uniformity, Normalized grey level non-uniformity, Zone distance non-

uniformity, Normalized zone distance non-uniformity, Zone percentage. 



T U M O R  H E T E R O G E N E I T Y  I N  P E T - C T  I M A G E S  P a g e  | 57 

 

 

Neighborhood grey tone difference matrix (NGTDM) quantifies the difference between a gray 

value and the average gray value of its neighbors within distance d. The sum of absolute differences 

for gray level i is stored in the matrix [191]. A list of some of them is presented in Table 2.9. 

 

             Table 2.9. Neighborhood grey tone difference-based features 

Contrast, Busyness, Complexity, Strength 

 

 

Neighboring grey level dependence (GLDM) quantifies gray level dependencies in an image. A 

gray level dependency is defined as the number of connected voxels within distance d that are 

dependent on the center voxel. A neighboring voxel with gray level j is considered dependent on the 

center voxel with gray level i if |i−j| ≤ α. In a gray level dependence matrix P(i,j) the (i,j)th element 

describes the number of times a voxel with gray level i with j dependent voxels in its neighborhood 

appears in the image [191]. A list of some of them is presented in Table 2.10. 

 

Table 2.10. Neighboring grey level dependence-based features 

Low dependence emphasis, High dependence emphasis, Low grey level count 

emphasis, High grey level count emphasis, Low dependence low grey level 

emphasis, Low dependence high grey level emphasis, High dependence low grey 

level emphasis, High dependence high grey level emphasis, Grey level non-

uniformity, Normalized grey level non-uniformity. 

 

 

2.3.4 Post-processing (features selection) 
 

The obtained image features can undergo further processing to reduce redundancy and/or increase 

their discrimination capability. The most common approaches to this end are feature selection and 

feature generation. Feature selection consists of retaining a subset of the original features by selecting 

the most discriminative ones. This is crucial in radiomics, for some image features tend to be strongly 

correlated with one another [165]. Approaches to feature selection come in different varieties, such 

as correlation-based selection, reduction based on mutual information gain, recursive elimination, and 

Lasso regularization. Feature generation involves obtaining new features by combining the original 

ones through some suitable transformations, such as Linear Discriminant Analysis (LDA), Principal 

Component Analysis (PCA), and Multi-Dimensional Scaling (MDS) [165]. 
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Without wishing to be exhaustive, we will now describe the methods used in this thesis, specifically 

in chapter 6: 

 

2.3.4.1 Analysis of variance (ANOVA) with F-value 

 

ANOVA is a parametric statistical hypothesis test for determining whether the means from two or 

more samples of data come from the same distribution or not [193]. The statistic parameter used in 

the ANOVA, known as the Fratio, is the ratio between the variance of the group means and the average 

of the variance within the groups. This statistic follows a distribution known as "Fisher-Snedecor's 

F". ANOVA is used when one variable is numeric and one is categorical, such as numerical input 

radiomic features and a classification target variable (treatment response or not). The results of this 

test can be used for feature selection where those features that are independent of the target variable 

can be removed from the dataset. 

 

2.3.4.2 Mutual information (MI)  

 

MI between two random variables is a non-negative value, which measures the dependency between 

the variables [194]. The concept of MI is intimately linked to that of entropy (E) of a random variable, 

a fundamental notion in information theory that quantifies the expected "amount of information" held 

in a random variable. H is a measure of the uncertainty of a random variable. The uncertainty is 

related to the probability of occurrence of an event. Thus, high entropy means that each event has 

about the same probability of occurrence, while low entropy means that each event has a different 

probability of occurrence. The MI is a measure of the amount of information that one random variable 

has about another variable. This definition is useful within the context of feature selection because it 

gives a way to quantify the relevance of a feature subset with respect to the output vector. This value 

is equal to zero if and only if two random variables are independent, and higher values mean higher 

dependency.  

 

2.3.4.3 Principal component analysis (PCA) 

 

Principal Component Analysis (PCA), is a dimensionality-reduction method that allows reducing the 

dimensionality of large data sets, by transforming the variables into a smaller one, that still contains 

https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://en.wikipedia.org/wiki/Information_content
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most of the information of the large set. The goal of the PCA is to find a correlation, maximizing 

variance. A better description is performed in section 3.4.3. 

 

2.3.4.4 Independent component analysis (ICA) 

 

ICA like PCA is a dimensionality reduction method that separates a multivariate signal into additive 

subcomponents that are maximally independent (unlike PCA, it maximizes independence among 

features). To do it, ICA finds a linear transformation of the feature space into a new feature space 

such that each of the individual new features are mutually independent, in a statistical sense. 

 

2.3.4.5 Least absolute shrinkage and selection operator (Lasso) 

 

Lasso regression like linear models tries to find the relationship between predictors (x1,x2,...xn) and 

the response variable (y) as follows: y=β0+β1x1+β2x2+⋯+βnxn, where, the coefficients β1,⋯,βn 

correspond to the amount of expected change in the response variable for a unit increase/decrease in 

the predictor variables. β0 is the intercept and it corresponds to the variation that is not captured by 

the other coefficients in the model. Lasso regression applies a mathematical penalty on the predictor 

variables that are less important for explaining the variation in the response variable. This way, the 

strongest predictors for understanding how the response variable changes can be selected. This 

method uses a different penalization approach which allows some coefficients to be exactly zero (L1 

regularization). Lasso has a regularization parameter, alpha, that controls how strongly coefficients 

are pushed toward zero. A lower alpha allowed us to fit a more complex model. The higher value of 

lambda indicates more regularization (i.e. reduction of the coefficient magnitude, or shrinkage). Log 

alpha = 0 corresponds to “no regularization” (i.e. regular linear model with a minimum residual sum 

of squares) [195]. 

 

2.3.4.6 Clustering 

 

Clustering is a Machine Learning technique that involves the grouping of data points. Given a set of 

data points, we can use a clustering algorithm to classify each data point into a specific group. Here 

we used hierarchical clustering algorithms to group the textural features. A better description is 

performed in section 3.4.2. 
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2.3.4.7 Wilcoxon test 

 

Wilcoxon signed-rank test is a non-parametric alternative to the student’s t-test. This non-parametric 

test can be used to compare two related samples, matched samples, or repeated measurements on a 

single sample to assess whether their population means ranks differ.  It can be used as an alternative 

to the paired Student's t-test [193]. The null hypothesis for this test is that the medians of the two 

samples are equal, which is rejected when p < 0.05. The results of this test can be used for feature 

selection where those features that independent of each other can be removed from the dataset. 

 

2.3.5 Analysis of radiomic data 

 

Data analysis comprises two separate steps: the first (model building), in which classification and/or 

regression model is generated; the second, where the model is used to make predictions about the 

case or cohort of patients under evaluation.  

 

Model building involves (a) establishing the type of classifier or regressor to be used, and (b) feeding 

the model with a set of pre-classified cases—i.e., arrays of features/label pairs where the label 

indicates the clinical condition of the corresponding subject. This process of presenting the model 

with pre-classified cases is usually referred to as training. Crucial to this step, of course, is the 

availability of large enough datasets of pre-classified cases (ground truth). 

 

As for the type classifier, there are several options available, which range from conceptually easy 

solutions, for instance, Linear Discriminant Analysis], K-nearest neighbors, and naive Bayes, to more 

involved ones, such as random forests and support vector machines, and logistic regression [165, 166] 

 

2.4 Some important issues in radiomic analysis 

 

A serious challenge with the calculation of radiomic features is the very large number of features and 

the different ways to calculate them. In addition, radiomic features exhibit variable sensitivity to 

differences in scanner model, acquisition protocols, quantitative corrections, reconstruction algorithm 

settings, and post-reconstruction processing. All of these affect the feature reproducibility and so, the 

integration of radiomic analysis to the daily clinic routine [177, 178, 196]. Several studies have 

explored the issues of the repeatability of texture features using test-retest data sets using the same 

https://en.wikipedia.org/wiki/Student%27s_t-test
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setting of image acquisition, reconstruction, segmentation, and quantization.  A test-retest study 

shown that most GLCM texture features including entropy, homogeneity, and dissimilarity, and some 

GLSZM texture features including intensity variability and size zone variability had comparable 

reproducibility to SUVmax [197].  Another test-retest study proved that the majority of texture 

features had a high reproducibility, although GLSZM texture features showed the overall lowest 

reproducibility compared with global and GLCM texture features [172]. The image discretization 

employing a fixed bin size method seems to produce image features with better repeatability. 

 

Most radiomic studies to date have been single-center based and retrospective in nature, in small 

cohorts of patients, and most radiomic models are not externally validated [198]. Chalkidou et al. 

[91] shown an inappropriate control of type I error in many radiomic studies that involved the 

calculation of a large number of imaging features in a small number of patients. The authors 

underlined the need for confirming observations and validating models by using independent patient 

cohorts in multicenter settings. Therefore, carrying out large multicentric studies would a very 

important step to bring the radiomic approach into the clinical setting. This requires large-scale 

radiomic data analysis, hence the need for integrating radiomic features extracted from images 

acquired in different centers. However, radiomic features values are notoriously sensitive to 

variability in scanner models, acquisition protocols, and reconstruction settings, such as the number 

of iterations or subsets, the scan duration per bed position, the post-reconstruction filter, and the voxel 

size [167, 168, 180, 199]. This variability of radiomic feature values implies that a radiomic model 

established using data from a given PET scanner might not be directly applicable to data from another 

PET scanner [200]. For this reason, harmonization strategies for obtaining compatible research results 

between different institutions have been proposed [92, 201].  

 

Orlhac et al. [202] proposed a method to standardize features measured from PET images obtained 

with different imaging protocols, removing the center effect while preserving patient-specific effects. 

This work was on ComBat method, which consists of dealing with the variability of the distribution 

parameters so that they can be pooled together.  It was initially described in genomics [203] to deal 

with the “batch effect”, which refers to technical variation or non-biological differences between 

measurements of different groups of samples [204] (e.g. different laboratories, different technicians, 

different days), which are a source of variations in measurements, that potentially can mask individual 

variations. It is conceptually similar to variations induced in radiomic features by the scanner model, 

the acquisition protocol, and/or the reconstruction settings, sometimes called “center effect”.  ComBat 

identifies a batch-specific transformation to express all data in a common space devoid of center 
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effects [205].  By using the ComBat method, Da-ano et al. [205] successfully harmonized the data of 

different reconstructions settings by removing the estimated center effect without loss of the 

pathophysiological information. 

 

The traditional approach to clinical image research is driven by standard medical statistics. Thus, in 

many radiomic studies, statistical tests are performed to find those radiomic features correlated with 

the target variable or construct predictive models. This approach gives rise to an important issue in 

radiomic analysis, it is the multiple comparison problems, which arise when multiple simultaneous 

statistical tests of the same dataset are performed. To correct the multiple comparison problems, the 

p-values of the statistical tests should be adjusted [206, 207]. Bonferroni correction is one of the 

methods most commonly used. Besides, multivariable analysis is recommended to evaluate the 

additional usefulness and independent significance of texture features [166].  

 

2.5 Examples of PET/CT radiomic applications 
 

Several studies have investigated the potential of PET/CT radiomics in lung and breast cancer for 

diagnose, prediction of treatment response, and prognosis [208, 209]. A PET/CT radiomic analysis 

can attempt to determine a specific characteristic at some point in time, for instance, benign vs. 

malignant lesions, or identify the histological subtype. But also, it can aim to predict the likely 

evolution of the disease over time, such as overall survival, disease-free survival, and/or response to 

treatment. Here we show some applications of PET/CT radiomics. Below, an example of the PET/CT 

radiomic application in breast cancer will be shown. 

 

Ou et al. [210] assessed the ability of 18F‐FDG PET/CT radiomic features to differentiate breast 

carcinoma from breast lymphoma using machine‐learning. Breast lymphoma, as a rare type of 

extranodal lymphoma, which clinical and imaging presentations mimic those of breast carcinoma, 

leading to misdiagnosis. Commonly imaging techniques as mammography and ultrasonography have 

quite hard to differentiate breast lymphoma from breast cancer based on imaging features because 

both are shown as unilateral, solitary, and a palpable mass (Figure 2.4).  In that study, sixty‐five breast 

nodules from 44 patients diagnosed as breast carcinoma or breast lymphoma were included.  SUV 

and radiomic features from CT and PET images were extracted. 

 

Following the radiomic workflow (Figure 2.5), the constructed six discriminative models, including 

PETa (based on clinical, SUV, and radiomic features from PET images), PETb (SUV and radiomic 
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features from PET images), PETc (radiomic features only from PET images), CTa (clinical and 

radiomic features from CT images), CTb (radiomic features only from CT images), and SUV model. 

To this, they used the least absolute shrinkage and selection operator method and linear discriminant 

analysis.  To evaluate the models, the areas under the receiver operating characteristic curve (AUCs), 

accuracy, sensitivity, and specificity were computed. They found that the PETa and CTa models had 

the best performance, in both training and validation groups (AUCs of 0.867 and 0.806 for the PETa 

model, AUCs of 0.891 and 0.759 for the CTa model, respectively). They concluded that models based 

on clinical, SUV, and radiomic features of 18F‐FDG PET/CT images could accurately discriminate 

breast carcinoma from breast lymphoma. 

 

 

Figure 2.4. Two cases of CT and PET/CT images from patients with breast lymphoma (A) and breast 

carcinoma (B) (from [210]).  

 

 

Figure 2.5.  The flowchart of radiomics. After images were co‐registered, spatial resampling, 

intensity rescaling, and intensity discretization were set automatically. Tumor segmentation was 

manually contoured in 3D VOI. Radiomic features from this volume were extracted, including first‐ 

and second‐order features (from [210]). 



T U M O R  H E T E R O G E N E I T Y  I N  P E T - C T  I M A G E S  P a g e  | 64 

 

 

This study exemplifies one of the main applications of radiomics, its use to assist in the differential 

diagnosis of different pathologies. From the medical imaging expert's point of view, differentiating 

between a breast tumor and a breast lymph node is challenging. However, the characteristics of 

radiomics can account for differences not observed by the human eye. 

 

Some patients with advanced breast cancer receive neoadjuvant chemotherapy (NAC) before an 

operation be performed. Subsequently, after the operation, the surgical specimen is examined to 

determine the response to the treatment received (pathologic response). If the tumor is not detected 

by the pathological study, the patient is considered to have achieved a pathologic complete response 

(pCR). This is the primary endpoint for neoadjuvant trials and a surrogate marker for disease-free 

survival (DFS) and overall survival (OS) [211]. Hence, it is important to identify those patients who 

will have a pCR after NAC so the toxicity of ineffective chemotherapy is avoided and other treatment 

options are considered. Li et al. [212] worked on predicting response to treatment, an area of great 

interest and scientific activity, especially with the emergence of personalized medicine. They used 

radiomic features from PET/CT in patients with breast cancer, as well as unsupervised and supervised 

machine learning models to identify prognostic radiomic predictors of therapeutic efficacy to NAC. 

They found that the PET/CT radiomic predictors achieved a prediction accuracy of 0.857 

(AUC = 0.844) on the training split set and 0.767 (AUC = 0.722) on the independent validation set.  

When age was incorporated, the accuracy for the split set increased to 0.857 (AUC = 0.958) and 0.8 

(AUC = 0.73) for the independent validation set and both outperformed the clinical prediction model. 

An additional step would be to apply radiomics in the context of patients receiving chemotherapy for 

recurrent or metastatic breast cancer. This is a topic treated in the last chapter of this thesis. 
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Chapter 3. Machine learning in Medical Images and model construction 
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3.1 Introduction  
 

In daily clinical routine, PET/CT images are evaluated by a nuclear medicine/radiologist specialist, 

who by using qualitative descriptor and very simple semiquantitative or quantitative measures 

perform a diagnosis, performs a classification process, often binary, where the absence or presence 

of a characteristic is determined [213]. Specialist´s skill or "acquired intelligence" is obtained through 

years of performing the same task, receiving constant feedback from colleagues and final patient´s 

evolution, making mistakes, and performing its respective corrections. After a long experience, 

his/her diagnostic accuracy stabilizes in a specific percentage range, which will depend on the quality 

of the training received, as well as the limitations of the imaging technique used in each case.  

 

On the other hand, radiomics generates a large amount of information, which along with the 

availability of more powerful computers has stimulated the application of artificial intelligence (AI) 

to perform such classification tasks [214]. AI refers to the capability of machines to emulate 

intelligent human behavior. The goals of artificial intelligence include learning, reasoning, and 

perception. AI is being applied in a great range of fields, ranging from games, automobile and aviation 

industry, economy, and health care, and biomedical research. In this thesis, we have only considered 

machine learning (ML) methods, which is the area of AI focused on computer systems and algorithms 

able to learn from the available data without explicit programming. ML allows automating the 

classification process in medical image analysis and potentially providing a significant improvement 

in the performance of this task, not only in terms of accuracy but also in reproducibility. In many 

applications, the performance of ML-based automatic detection and diagnosis systems already is 

comparable to that of a well-trained and experienced radiologist [213, 214]. In this chapter, we 

describe the main aspects of ML relevant to this thesis, including some of its applications in oncology. 

An exhaustive treatment of this subject is outside the scope of this thesis and can be found elsewhere 

[215] 

 

3.2. Machine learning methods 
 

Machine learning (ML) refers to computer systems and algorithms able to extract some knowledge, 

i.e. “learn”, from the available data (they must be trained). Usually, this is achieved by using some 

statistical analysis, so it is also known as analytics or statistical learning. The performance of most 

machine learning algorithms depends on the choice of various tuning parameters. Some of which, 
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called "hyperparameters", cannot be learned by the algorithm of ML  directly during the training, and 

rather they must be set before the training starts. 

 

ML methods are usually classified into three broad categories, depending on the type of task 

performed: supervised learning, unsupervised learning, and reinforcement learning. Each of these 

methods has its scope and applications, which are depicted in Figure 3.1.   

 

 

 

Figure 3.1. Overview of supervised and unsupervised learning paradigms and subcategories. The two 

major categories of supervised learning are classification and regression [Adapted from 216]. 

 

3.2.1 Supervised Learning  
 

Supervised ML methods are comprised of a series of algorithms, which build a mathematical model 

of the relationship between inputs (for instance, a PET image) and outputs (for instance, the diagnosis) 

based on some available data, known as "training data". The training data should contain both the 

inputs and the outputs. Once the algorithm has been trained and the model has been created, it can be 

used to estimate predictions of outputs from new input data sets. The training process of the ML 

model uses an iterative optimization procedure that minimizes the differences between the predictions 

and the actual outputs in the training data set. With proper regularization methods and using enough 

data, the model obtained can be made general enough to be applied to new data sets. 

https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Training_data
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Supervised learning methods can perform both classification and regression tasks (Figure 3.1). In 

classification tasks, outputs are restricted to a limited set of values (class), while regression may 

generate numerical values within a specific range.  

 

3.2.2 Unsupervised Learning  
 

These methods refer to a set of algorithms where the only available information are the inputs. In this 

case, the algorithms obtain outputs based on some properties found in the data. Unsupervised learning 

can be applied to obtain groups or clusters of entities with shared similarities that may be previously 

unknown. These are referred to as clustering algorithms. Some of the most common methods 

employed in this approach include k-means clustering and anomaly detection. Another application of 

unsupervised learning is dimensionality reduction, with algorithms such as principal component 

analysis able to obtain the most distinct components in the data.  

 

3.2.3 Reinforcement Learning Method  
 

Reinforcement learning methods are related to algorithms that learn how to perform a series of actions 

in certain environments to maximize some kind of reward. Reinforcement learning is often used in 

game theory, operations research, control theory, information theory, multi-agent systems, 

simulation-based optimization, statistics, swarm intelligence, and genetic algorithms. For machine 

learning, the environment is typically represented by a Markov decision process. These algorithms 

do not necessarily assume knowledge, but instead are used when exact models are infeasible.  

 

The most common use of reinforcement learning can be seen in complex and changing situations 

such as games where there are “computer players” or a player that is represented by the computer and 

plays against human opponents. In these “computer players” reinforcement learning enables them to 

respond in a way that is not exact and precise every time, but instead in a way that actually challenges 

the human. This way, games cannot be memorized and overcome, but instead feature some diversity 

and uncertainty to them.  

 

The three learning categories above mentioned, as well as they use the data to learn, are depicted in 

Figure 3.2 [44].  
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Figure 3.2.  Categories of machine learning, and how they learn from data (from [44]). 

 

 

3.3 Supervised Machine Learning Algorithms 
 

3.3.1. Logistic Regression 
 

Logistic regression (LR) is a classification method that uses a logistic function (Figure 3.3) for 

predicting a binary dependent variable (target). A variation of this method is the multinomial logistic 

regression, which can be used to classify a target with more than two outcomes. 

 

In this model, the probabilities describing the possible outcomes of a single trial are modeled using a 

logistic function. This function is useful in LR because it takes any input in the range of negative to 

positive infinity and maps it to output in the range of 0.0 to 1.0. This allows us to interpret the output 

value as a probability. 

 

 

𝑓(𝑥) =
L

1+ 𝑒−𝑘(𝑥−𝑥0)              (3.1) 
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Figure 3.3. Logistic function 

 

Where: 

e; the natural logarithm base  

Xo; the value of the sigmoid's midpoint, 

L; the curve's maximum value, and 

k; the logistic growth rate of the curve 

In the binary approach, the function yields a value of 0 or 1 which represents the negative (0) and the 

positive (1) case. 

 

The model attempts to estimate the probability, P(y = 1| x), that is the probability of a positive 

outcome (y = 1) given data x. Using the Bayes rule, P (y = 1| x) can be expressed in the form of a 

logistic function [217]: 

𝑃(𝑦 = 1 |𝑥) =
1

1+𝑒−𝛼               (3.2) 

 

where α is the log-odds ratio (the odds of a positive classification relative to the odds of a negative 

classification), which can be expressed as a linear function: 

 

𝛼 = ln
𝑃(𝑥|𝑦=1 |𝑥)𝑃(𝑦=1)

𝑃(𝑥|𝑦=0 |𝑥)𝑃(𝑦=0)
+  𝛽0 + 𝛽1

𝑇𝒙             (3.3) 

 

The weights (β0, β1) can be calculated using the maximum likelihood approach [218].  

The log-likelihood expression serves as an error function and using gradient descent, the optimal 

weights can be iteratively solved to minimize error. 

 

X 

f(X) 

L=1 
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The advantage of logistic regression is that it is fast to train and can use discrete and continuous 

variables as inputs. The disadvantages include that it is a linear model. Therefore, complex data 

problems may pose difficulties.  

 

3.3.2. Naive Bayes 

 

Naive Bayes's methods are a set of supervised learning algorithms based on applying Bayes’ theorem 

with the “naive” assumption of conditional independence between every pair of features given the 

value of the class variable [217]. Naive Bayes calculates the probability associated with each possible 

class conditional on a set of covariates, i.e., the product of the prior probability and the likelihood 

function. The classifier then selects the class with the highest probability as the “correct” class. The 

prior probability typically reflects one’s belief about the outcome, either based on the study itself or 

from other published literature. The independence assumption in naive Bayes greatly simplifies the 

calculation by decomposing the likelihood function into a product of likelihood functions, one for 

each covariate.  Even though the independence assumption is often wrong, the naive Bayesian 

classifier still performs very well in real applications, even with small training data sets. One 

advantage is that it returns not only the prediction but also the degree of certainty, which is often very 

useful. Also, it makes dealing with missing values easy. Due to its simplicity, the naive Bayes 

classifier is less prone to overfitting from artificial neural networks, for example.  

 

3.3.3. k-Nearest Neighbours Classifier 

 

The K-nearest neighbor (KNN) classifier is one of the simplest and most common classifiers, yet its 

performance competes with the most complex classifiers in the literature. The core of this classifier 

depends mainly on measuring the distance or similarity between the tested examples and the training 

examples [218]. Nearest neighbors are the foundation of many other learning methods. They can 

perform classification for data with discrete labels or regression for data continuous labels. The 

principle behind nearest neighbor methods is to find a predefined number of training samples closest 

in distance to the new point and predict the label from these. The number of samples can be a user-

defined constant (k-nearest neighbor learning) or vary based on the local density of points (radius-

based neighbor learning). The distance can, in general, be any metric measure: standard Euclidean 

distance is the most common choice.  
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3.3.4. Support Vector Machine 

 

Support vector machines (SVMs) are a set of supervised learning methods used for classification, 

regression, and outliers detection [217, 219]. They only use a subset of training points in the decision 

function “support vectors”, making they memory efficient, being often preferred over other machine 

learning algorithms, such as neural networks, because they are simpler and can achieve high accuracy 

with less computation. The algorithms work by finding a hyperplane in an n-dimensional space that 

distinctly separates the data points into two classes with the maximum marginal distance (m) to 

provide a robust decision boundary that can tolerate noisy test data. Thus, the SVM algorithm 

optimizes between maximum margin and training error to solve the ideal decision boundary.  

 

By setting m inversely proportional to decision boundary parameters, 𝑚 =
1

||𝛽|| 
, the soft margin 

SVM classifier can be formulated as a minimization problem, where x is the training data, y is the 

label, β0 and β are decision boundary parameters, N is the number of training data, ε is a slack variable 

to measure misclassification overlap and C is a penalization cost for misclassification: 

 

minimize
𝛽0,𝛽

1

2
||𝛽||

2
+   𝐶 ∑ 𝜖𝑖𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖 (𝛽0 + 𝜷. 𝒙𝒊

𝑻) ≥ 1 −  𝜖𝑖. 𝜖𝑖  ≥ 0, 𝑖 =
𝑁

𝑖=1

 1 , …   𝑁        (3.4) 

 

The minimization problem is solved by computing the Lagrange Dual and performing quadratic 

optimization. Figure 3.4 shows a graphical example of SVM. 

 

 

 

Figure 3.4. Support vector machine example (adapted from [217]). 
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The two classes to be separated are represented with different colors, the decision boundary 

(hyperplane that lies in the middle) is represented by the yellow dotted line, the margin hyperplanes 

between the class and the decision boundary are represented by the red dotted lines. The Support 

Vectors (SVs), the data closest to the decision boundary, and lying on the margins, are circled data. 

This decision boundary is then used to evaluate new data based on the position of the data with respect 

to the decision boundary.  

 

In the case of non-linearly separable data, SVM uses kernel functions to transform the data into a 

higher dimension, in which the data can be linearly separated [220],  this is depicted in Figure. 3.5.  

 

 

 

Figure 3.5. A kernel function. It takes data in low dimensional input space, which are not laniary 

separable, and transforms it into a higher-dimensional space, where they are linearly separable. 

 

The advantage of SVM is the simple mathematics behind the decision boundary and its application 

in higher dimensions. However, since SVM is essentially an optimization problem attempting to 

balance between errors in the training set with a larger margin decision boundary, it may be slow for 

large datasets, especially where the class separation is small. SVMs do not directly provide probability 

estimates, these must be calculated using cross-validation. 

 

3.3.5. Decision Tree 
 

Decision tree (DT) is also a classical ML algorithm. The DT divides the data based on features to 

determine the appropriate class. The features used to split the data are determined using the 

Information Gain provided by individual features [217]. To obtain the information gain, initially, the 
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entropy or Gini index of a dataset is computed. For a dataset (S) with two classes, the entropy would 

be calculated as: 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) = ∑ −𝑃𝑖 𝑙𝑜𝑔2 𝑃𝑖2
𝑖=1        (3.5) 

 

Individual feature-specific information gain is calculated by the difference between the entropy of the 

training set and the entropy of the feature. The information gain for feature A would be as follows: 

 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑
|𝑆𝑣|

|𝑆|
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆𝑣)      𝑣 ∈ 𝑉𝑎𝑙𝑢𝑒𝑠(𝐴) (3.6) 

 

where Values (A) is the set of all possible values for a feature A and Sv corresponds to the subset of 

S where feature A has a value v. Features providing relevant and valuable information to separate the 

classes are then selected to be used in the DT. Features that provide the highest information gain split 

the data earlier in the tree, and features that provide less information gain are at lower stages in the 

DT.  An example of a decision tree is depicted in Figure 3.6. 

 

 

 

Figure 3.6. Decision tree nodes. The root node is the first node and contains the whole dataset. It gets 

split into two or more decision nodes based on the feature value. Posteriorly, the decision node split 

into new decision nodes and leaf nodes, which are the terminal nodes, as it cannot get split further. A 

sub-Tree or branch is a subdivision of a complete tree (adapted from [313]). 
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3.3.5.1. Random Forests 
 

Random forests (RF) are a class of ensemble learners that combine several decision trees models. RF 

creates several decision trees and merges them to get a better prediction [221]. Implementation of an 

RF classifier is depicted in Figures 3.7. This is usually trained using bagging. In bagging, several 

models, in this case, decision trees, are trained on subsets of the training data where the data points 

in the subsets are selected randomly with replacement (bootstrapping).  

 

 

 

Figure 3.7. Implementation of an RF classifier.  The dataset has four features (X1, X2, X3, and X4) and 

two classes (Y = 1 and 2). RF classifier is an ensemble method that trains several decision trees in 

parallel with bootstrapping followed by aggregation. Each tree is trained on different subsets of 

training samples and features. 

 

Bagging improves prediction performance by reducing variance. Decision trees are sensitive to the 

training data. When the training data changes, the resulting decision tree can be very different and, 

hence, the result can be quite different too. Bagging improves the result by averaging the prediction 

from each model. The bagging algorithm works as follows: 
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Create random subsets of the training data set with replacement, meaning the same data can be reused. 

Train each decision tree with the random subsets. Using a new data set, calculate the average 

prediction of all decision trees. 

 

The advantage of Decision Trees is that they are both easy to visualize and understand. The 

disadvantage is that feature selection plays a dominant role in the accuracy of the algorithm. One set 

of features can provide drastically different performance than a different set of features. Large 

Random Forests can be used to alleviate this problem. 

 

3.4 Unsupervised Machine Learning Algorithms 
 

3.4.1 k-means Clustering Algorithm  
 

The k-means clustering algorithm is one of the simplest and most popular forms of an unsupervised 

machine learning algorithm that exists. The algorithm cluster data by trying to separate samples in k 

groups of equal variances, minimizing a criterion known as the inertia or within-cluster sum-of-

squares. Clusters in a dataset refer to collections of data points that are connected due to specific 

similarities. Each member of the cluster has more in common with other members of the same cluster 

than with members of the other groups. The most representative point within the group is called the 

centroid. Usually, this is the mean of the values of the points of data in the cluster. 

 

The k-means algorithm looks for centroids that minimize the inertia, or within-cluster sum-of-squares 

criterion [219]: 

 

∑  min
𝑢𝑗∈𝐶

(||𝑥𝑖 −  𝑢𝑗||)

𝑛

𝑖=0

        (3.7) 

 

k-means clustering is an iterative approach. The algorithm starts by randomly selecting k initial 

centroids from the data set, k has to be selected by the user and is not necessarily known at the 

beginning of a clustering project. Each instance of the data set is then assigned to a cluster, based on 

its distance to the centroid. Usually, the Euclidean distance is used.  After each instance has been 
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assigned to a cluster, the centroids are recomputed by calculating the mean of each instance in a 

cluster. This process is repeated until the centroids do not change anymore.  

 

3.4.2 Hierarchical clustering 
 

Hierarchical clustering or hierarchical cluster analysis (HCA) is a family of clustering algorithms that 

build hierarchies of clusters. There are two basic approaches, agglomerative and divisive clustering.  

Hierarchical clustering does not only partition the data, it also depicts the relationships among the 

clusters, creating nested cluster over a variety of scales by merging or splitting them successively. 

Hierarchy clusters are represented as a tree (or dendrogram, see Figure 3.8). The root of the tree is 

the unique cluster that gathers all the samples, the leaves being the clusters with only one sample.   

 

 

 

Figure 3.8. Agglomerative hierarchical clustering for supervolxel of PET-CT images of patients with 

breast cancer. 3 big clusters can be separated with a threshold (cophenetic distance ) near 2.4. 

 

Divisive clustering is a top-down approach and works oppositely. The clustering starts with one single 

cluster that is divided into subclusters. The subclusters are further subdivided into the next iterations 

until each data point is in its cluster. Divisive clustering does not need to go through all iterations and 

can halt once a stop criterion is met.  
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There are several ways to measure the distance between clusters to decide the rules for clustering, 

and they are often called Linkage Methods. The cophenetic distance between two observations that 

have been clustered is defined to be the intergroup dissimilarity at which the two observations are 

first combined into a single cluster. 

 

3.4.3 Principal Component Analysis 

 

Principal Component Analysis (PCA), is a dimensionality-reduction method that allows reducing the 

dimensionality of large data sets, by transforming variables into a smaller one, that still contains most 

of the information of the large set. Which makes it suitable for dimensionality reduction [136]. PCA 

reduces the dimensionality of a dataset while preserving as much variability (i.e. statistical 

information) as possible. It finds new variables that are linear functions of those in the original dataset, 

that successively maximize variance, and that are uncorrelated with each other. Finding such new 

variables, the principal components (PCs), reduces to solving an eigenvalue-eigenvector problem. 

Thus, PCA is defined as an orthogonal linear transformation that transforms the data to a new 

coordinate system such that the greatest variance by some scalar projection of the data comes to lie 

on the first coordinate (called the first principal component), the second greatest variance on the 

second coordinate, and so on. The principal components are often computed by the 

eigendecomposition of the data covariance matrix of the data. PCA is sensitive to the scaling of the 

variables. Mean subtraction is necessary for performing classical PCA to ensure that the first principal 

component describes the direction of maximum variance. If mean subtraction is not performed, the 

first principal component might instead correspond more or less to the mean of the data. A mean of 

zero is needed for finding a basis that minimizes the mean square error of the approximation of the 

data [222].  

 

3.5. Artificial Neural Networks and Deep Learning 
 

Artificial neural networks (ANN) are the area of Machine Learning that has evolved more rapidly in 

the last few years. They encompass a large number of different models and learning methods. Their 

development was inspired by the human nervous system.   

 

An ANN is composed of input, hidden, and output layers, with each layer composed of individual 

nodes [217]. An ANN is depicted in Figure 3.9. Nodes in different layers are connected by weights, 

represented by arrows in the figure. The values from each node in the previous layer are multiplied 

https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Orthogonal_transformation
https://en.wikipedia.org/wiki/Linear_transformation
https://en.wikipedia.org/wiki/Coordinate_system
https://en.wikipedia.org/wiki/Minimum_mean_square_error
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by the corresponding weights and are summed at nodes in the next layer. Furthermore, a bias node 

and activation functions are included in the hidden layer to introduce non-linearity into the ANN.  

Outputs at a hidden layer node can be calculated as: 

 

Output = 𝜑(∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑖 )   (3.8) 

 

where wi corresponds to weights connecting the inputs from the previous layer denoted as xi, b is the 

bias and φ is the activation function. 

 

The most popular activation for ANN is the sigmoid function because it outputs values between the 

range of 0 and 1 and has a simple derivative form.  

 

𝜑(𝑧) =
1

1+𝑒−𝑧           (3.9) 

 

 

𝜑1(𝑧) = 𝜑(𝑧)(1 −  𝜑(𝑧))         (3.10) 

 

After the values from the input layer are traversed forward through the hidden layer(s), at the output 

layer a SoftMax function, also known as normalized exponential function is applied to calculate the 

ANN's confidence percentage in each class.  During training, the error between the calculated class 

and the expected class is determined (typically using the sum-squared error function) and the error is 

backpropagated through the network to update the values of the weights. Backpropagation uses the 

derivative of the error to update the weights, which is why simple to derive activation functions, like 

the sigmoid function, are favorable. The algorithm iterates through all training data until the error of 

the network falls below a certain threshold to avoid overfitting. 

 

An advantage of ANN is that although the mathematics behind the algorithm is simple, the non-

linearities and weights allow the ANN to solve complex problems. Disadvantages of ANN include 

the training time required for numerous iterations over the training data, tendency to easily overfit on 

training data, and numerous tuning hyperparameters (parameter in the ANN configuration that is not 

directly learnable by training) are required for determining optimal performance. Some 

hyperparameters are the number of hidden layers, number of neurons in a layer, activation function, 
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number of epochs (i.e. number of times all training examples have been passed through the network 

during training), learning rate (i.e. step length for update the weights).  

 

Different values of hyperparameters can have a major impact on the performance of the network. By 

optimizing the hyperparameters of ANN, its performance is improved and stable predictions are 

obtained. There are several ways, ranging from manual trial and error to sophisticated algorithmic 

methods to optimize an ANN [219, 221]. 

 

 

Figure 3.9. Artificial neural network (from [314]). 

 

3.5.1. Deep Learning 
 

Although deep learning was not used in this thesis, it is an important method that is worth considering 

in future works. Deep Learning (DL) methods are based on ANN but are composed of many 

additional layers to add complexity to the algorithm to learn features and representations 

automatically. Networks with three or more layers are generally considered deep. An example of DL 

is the Convolution Neural Network (CNN) model, which is very suitable for medical image 

processing. As illustrated in Figure 3.10,  CNNs are composed of multiple convolutional and pooling 

layers with fully-connected layers for classification. In the convolutional layers, filters are convolved 

with the input to create a stack of filtered images. In the pooling layer, the stack of filtered images is 

simplified by reducing the size. CNN learns simple features such as edges and corners. These simple 

features are then used to learn more complex features at higher layers of the CNN. As in ANN, all 

weights in the CNN are randomly initialized and are updated throughout training and backpropagation 

until the error of the training set falls below a specified threshold. 
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Figure 3.10. Example of convolutional neural network (adapted from [217]) 

 

3.6 Machine learning workflows 

 

In this thesis, we have focused on classification tasks. Classification problems aim to provide models 

that can predict the class of a new sample, based on the attributes or features describing that sample. 

Supervised classification learning procedures include three phases, namely training, validation, and 

testing, for each of which different subsets of the data are used (Figure 3.11). 

 

 

 

Figure 3.11.  Supervised machine learning model design overview. Steps for the deployment of a 

supervised machine learning model. From left to right, the figure shows the initial team of 

multidisciplinary experts defining a study design to address a need. Data are then collected, processed, 

trained tested, validated, and ultimately deployed (adapted from [216]) 
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During the training phase, the parameters of the learning algorithm are tunned following different 

procedures depending, mainly cross-validation. There are algorithm-specific details to choose, for 

instance, the depth of a decision tree or the number of neighbors for the k-Nearest Neighbors. We 

already mentioned, these choices are commonly referred to as hyper-parameters, as opposed to the 

parameters used in the mathematical formula describing each model. These choices influence the 

prediction accuracy, reliability of the training procedure, interpretability of the model, computation 

time, and memory usage. It is usually not possible to know the best choice a priori. However, some 

recommended steps may be followed [216]. The goal of validation is to assess how well different 

models perform on a validation dataset. In this dataset, the true classification output (labels) of each 

sample is known, which allows us to compute the error made by the learning algorithm. Finally, the 

testing phase makes use of a test set to evaluate the performance of the model that had been chosen 

through validation. Classification models can learn with different parameter configurations, different 

input features, or from different samples, and several strategies can be implemented, depending 

mainly on data availability. However, if we expected robust and reliable results, it is necessary to 

awake about the quality of available data, data features, and type of learning method.  So, during 

model construction, there are many questions to answer, for instance, what variables and which 

classification algorithm to use for the training process.  

 

When dealing with ML algorithms, one should also be familiar with the concepts of underfitting and 

overfitting. In Figure 3.12 are shown examples of this problem. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12.   A. we see that a polynomial with degree 1 is not sufficient to fit the training samples. 

This is called underfitting.  B. A polynomial of degree 4 approximates the true function very well. C. 

a higher degree polynomial will overfit the training data [220].  

A C B 
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Overfitting refers to a modeling error where the algorithm “learns” or reflects the training data too 

closely, using even noise or random fluctuations in the training data as concepts that may not apply 

to new datasets and consequently negatively impact algorithm performance in new datasets (or 

generalization of the model). On the contrary, underfitting refers to insufficient fitting to the training 

sample.  

 

3.6.1 Data preprocessing 
 

After data are collected, they must be cleaned and preprocessed. Data cleaning includes compensation 

for missing values, through imputation methods or removal of outliers and inconsistencies [216, 217]. 

These steps are important because the performance of a classifier could be biased by a non-

representative dataset. It is known that missing or duplicate data, outliers, noise, and imbalanced class 

representation worsen the accuracy of a classifier.  

 

3.6.2 Data splitting 
 

The supervised ML model building phase usually includes splitting the data into an initial training 

and testing set that allows training of the model followed by testing for its initial validation phase 

(Figure 3.13). The training set will be used to train the model (allowing tunning of model hyper-

parameters). It means, the model observes and learns from this data and optimizes its parameters. To 

minimize the overfitting of the models, certain model adjustments and incorporating cross-validation 

(CV) processes allow the empirical build of a large number of models whose performances can be 

subsequently assessed to find the most generalizable model. It can be performed by split the training 

set, into subgroups, and take all of them, except one, to train the model, then validation is carried out 

on this last one. For doing so, we avoid reducing the available number of samples available for model 

training, because a cross-validation group is not formally created. The test set consists of data used 

to provide an unbiased evaluation of a final model fit on the training dataset. It is only used once the 

model is completely trained by using the training and cross-validation sets. Therefore, the test set is 

used to replicate the type of situation that will be encountered once the model is deployed for real-

time use. Typically, the splitting ratio is around 80:20 or 70:30, where 80% of the data will be used 

for training (and cross-validation) and the other 20-30% to test the model. 
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Figure 3.13. Different methods of data splitting 

 

3.6.3 Feature Selection and Dimensionality Reduction 

 

ML models are often characterized by a high dimensional space of features. Moreover, features used 

to construct the model are not necessarily all relevant and of benefit for the learning task.  

Additionally, a high number of features may slow down the induction process while giving similar 

results as obtained with a much smaller feature subset. By only keeping the most relevant variables 

from the original dataset (this technique is called feature selection) is possible to improve the 

performance of a model. It does not involve any feature transformation, but rather concentrates on 

selecting the better features among the existing ones.  

 

By finding a smaller set of new variables, each being a combination of the input variables, containing 

basically the same information as the input variables (this technique is called dimensionality 

reduction). The original feature space is mapped onto a new, reduced dimensionality space and the 

original examples are then represented in the new space. The mapping is usually performed either by 

selecting a subset of the original features or/and by constructing new features [48, 49, 223].  

 

There are many reasons for using feature selection or dimensionality reduction in machine learning. 

For instance, it improves prediction performance, learning efficiency, provides a faster computation 

of the ML models, reduces the complexity of the learned results, and enables a better understanding 

of the underlying process. 

 

This reduction of the number of features is invariably used in machine learning models that use 

radiomic features, because of the high dimensional space of features. Different methods and 

algorithms have been developed for feature selection or dimensionality reduction. Some of them are 

listed below. 
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• Univariate feature selection (by using a univariate statistical test) 

 

• least absolute shrinkage and selection operator (Lasso) 

 

• Cluster 

 

• Principal Component Analysis (PCA) 

 

• Independent Component Analysis (ICA) 

 

• Feature importance (e.g. with random forest) 

 

3.6.4. Model performance evaluation 

 

The assessment of the model performance is a key element of ML, not just to determine the predictive 

performance of the final model, but also to select the most suitable pre-processing and classifier meta-

parameters [39, 40, 224]. The misclassification error should be summarized by one or more 

representative metrics.  Performance is mostly described by accuracy which is usually defined as the 

area under the curve (AUC) of a ROC curve. However, it can include other quantitative measures, 

such as sensitivity, specificity, error rate, and F-scores. 

 

3.6.4.1 Confusion Matrix 

 

This matrix describes the complete performance of the model. From it, can compute the following 

metrics: 

 

• True positives (TP):   cases with prediction 1 and actual output is 1 

 

• True negatives (TN):  cases with prediction 0and actual output is 0 

 

• False positives (FP):  cases with prediction 1 and actual output is 0 

 

• False negatives (FN): cases with prediction 0 and actual output is 1 
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Some important definitions are: 

 

• The TPR (Sensitivity or recall) is defined as TP/ (FN+TP). TPR corresponds to the 

proportion of positive data points that are correctly considered as positive, with respect 

to all positive data points 

 

• True Negative Rate (TNR) or specificity is defined as TN / (FP+TN). FPR corresponds 

to the proportion of negative data points that are correctly considered as negative, with 

respect to all negative data points 

 

• FPR is defined as FP / (FP+TN). FPR corresponds to the proportion of negative data 

points that are mistakenly considered as positive, with respect to all negative data points 

 

False Positive Rate and True Positive Rate both have values in the range [0, 1]. PR and TPR both are 

computed at varying threshold values.  

 

3.6.4.2 Receiver operating characteristic curve (ROC curve) 

 

ROC curves are graphical illustrating the diagnostic ability of a binary classifier system as its 

discrimination threshold is varied (see Figure 3.14). 

 

 

Figure 3.14. Validation ROC curve and confusion matrix for RF classifier to predict treatment 

response in recurrent/metastatic breast cancer. 

https://en.wikipedia.org/wiki/Graph_of_a_function
https://en.wikipedia.org/wiki/Binary_classifier
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The ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) 

at various threshold settings [40]. The area under the ROC curve (AUC) is one of the most widely 

used metrics for evaluation.  AUC of a classifier is equal to the probability that the classifier will rank 

a randomly chosen positive example higher than a randomly chosen negative example. AUC has a 

range of [0, 1]. The greater the value, the better is the performance of our model. Figure 3.14 shows 

an example of a ROC curve and a confusion matrix.  

 

3.7. Application of ML for biomarkers development  
 

The ultimate goal of the radiomic approach is to build predictive models for treatment outcome and 

risk assessment, based on quantitative phenotypic characteristics of the tumor computed from 

radiological images and other clinically available information [216, 217]. Due to its ever-growing 

high-dimensional nature, the radiomic process needs much more powerful analytic tools, and AI 

appears to be a potential candidate for this purpose, because of its great capabilities of handling a 

massive amount of data compared with the traditional statistical methods. AI algorithms are not only 

able to analyze the numeric data provided by the predefined or hand-crafted radiomic features but 

also able to directly analyze the images,  without any need for human intervention, to automatically 

design its own radiomic features. 

 

In essence, radiomics consists of converting images into a high-dimensional feature space that can be 

studied via statistical and machine learning methods. It should be noted that the extraction of texture 

or radiomic features by itself does not necessarily require AI. However, AI (ML) is used to construct 

prediction models that can learn from existing datasets and analyze and perform predictions on related 

but new datasets. Therefore, a radiomic pipeline may be constructed by combining a computerized 

image analysis software (for image analysis and feature extraction) and an ML approach (either 

classic ML or deep learning) for constructing prediction models. Alternatively, DL may be used to 

perform both tasks (i.e. image analysis and construction of prediction models). This is a clear 

advantage of DL and highlights the great interest in this technology for applications in medical 

imaging. However, the relative disadvantage is the larger datasets required for constructing reliable 

algorithms that may be a disadvantage for early studies and pilot investigations, especially on 

uncommon disease entities or disease entities requiring significant sub-stratification resulting in small 

patient numbers, as has been alluded to earlier. 

 

https://en.wikipedia.org/wiki/True_positive_rate
https://en.wikipedia.org/wiki/False_positive_rate
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Despite the great potential of the radiomics and ML approaches discussed so far, significant 

challenges remain, which must be overcome before this methodology get to be applied routinely in 

the clinical setting. One of the main challenges is the replicability of radiomic studies, a pre-requisite 

for widespread clinical implementation. The main sources of variations are those related to the image 

acquisition and reconstruction process as well as the image segmentation method. Although the 

feature extraction process, is the easiest to standardize, there are a large number of characteristics 

available, so that feature selection or reduction variable methodologies should be carried before any 

ML model construction, because these can identify redundant and irrelevant imaging features, 

allowing to remove them from further analysis and improving the ML classifier performance [106]. 

The radiomic and ML methodologies are influenced by the feature selection method as well as the 

ML algorithm used.  Because, different combinations have different performances, and it depends 

possibly on the tumor and clinical setting, some authors have recommended performing this kind of 

study for each tumor and clinical context [225].  The identification of optimal ML methods for 

radiomic applications is a crucial step towards stable and clinically relevant radiomic biomarkers 

construction. In chapter 6 of this thesis, we have addressed this circumstance, becoming one of the 

most significant contributions of this work. 
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Chapter 4. Heterogeneity in 18F-FDG-PET/CT of Non–Small Cell Lung Carcinoma and Its Relationship to Metabolic 

Parameters and Pathologic Staging 
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A substantial portion of this chapter is written or based on the following publications: 

Heterogeneity in [18F] Fluorodeoxyglucose Positron Emission Tomography / Computed Tomography of 

Non–Small Cell Lung Carcinoma and Its Relationship to Metabolic Parameters and Pathologic Staging.  

van Gómez López O, García Vicente AM, Honguero Martínez AF, Soriano Castrejón AM, Jiménez Londoño 

GA, Udias JM, León Atance P. Mol Imaging. 2014;12. doi: 10.2210/8290.2014.00022. 
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Summary  
 

To investigate the relationships between tumor heterogeneity, assessed by texture analysis of 18F-

Fluorodeoxyglucose positron emission tomography (FDG-PET) images, metabolic parameters, and 

pathologic staging in patients with non–small cell lung carcinoma (NSCLC). A retrospective analysis 

of 38 patients with histologically confirmed NSCLC who underwent staging FDG-PET/computed 

tomography (18F-FDG-PET/CT)  was performed. Tumor images were segmented using a standardized 

uptake value (SUV) cutoff of 2.5. Five textural features, related to the heterogeneity of gray-level 

distribution, were computed (energy, entropy, contrast, homogeneity, and correlation). Additionally, 

metabolic parameters such as SUVmax, SUVmean, metabolic tumor volume (MTV), and total lesion 

glycolysis (TLG), as well as pathologic staging, histologic subtype, and tumor diameter, were 

obtained. Finally, a correlation analysis was carried out. Of 38 tumors, 63.2% were epidermoid and 

36.8% were adenocarcinomas. The mean ±standard deviation values of MTV and TLG were 30.47 ± 

25.17 mL and 197.81 ± 251.11 g, respectively. There was a positive relationship of all metabolic 

parameters (SUVmax, SUVmean, MTV, and TLG) with entropy, correlation, and homogeneity and 

a negative relationship with energy and contrast. The T component of the pathologic TNM staging 

(pT) was similarly correlated with these textural parameters. Textural features associated with tumor 

heterogeneity were shown to be related to global metabolic parameters and pathologic staging. 

 

4.1. Introduction  
 

Lung cancer is a leading cause of cancer-related death worldwide in both men and women. Most often 

lung cancer occurs as non-small cell lung carcinoma (NSCLC) [135].  After the initial diagnosis, 

accurate staging of NSCLC using CT or 18F-FDG-PET/CT  is crucial for determining the appropriate 

therapy. Despite upgrades in imaging technologies and treatment over the past two decades, the 

improvement in survival remains modest, with a five-year global survival rate as low as 16% [107], 

while untreated lung cancer patients live 7.15 months after diagnosis [226]. 

 

Because FDG is a glucose analog,  tumoral metabolism can be assessed by PET/CT. Usually, 

diagnosticians use a semi-quantitative parameter, the maximum standard uptake value (SUVmax), to 

characterize the tumoral lesion [227]. In addition, although not routinely used, global or volume-

based semi-quantitative metabolic parameters of the primary tumor such as mean standard uptake 

value (SUVmean), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) (given as MTV 

x SUVmean) can be easily obtained from post-processed images. These parameters provide a more 
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accurate assessment of the tumor burden, with potentially higher predictive and prognostic value than 

SUVmax for lung tumors [228-230]. 

 

Unlike SUVmax, which measures FDG concentration in a single voxel of a metabolically active 

tumor, global semi-quantitative parameters consider all voxels inside the tumoral volume, thus 

probing a more general view of the tumor. Their drawback is the lack of a standardized method for 

volume definition, although several segmentation algorithms show good performance [231, 232].  

 

On the other hand, the biological heterogeneity of the tumors is an important factor implicated in poor 

treatment response, a higher chance of developing metastasis, and shorter progression-free and 

overall survival [233-235]. An explanation is that tumor heterogeneity originates from several factors 

at molecular, cellular, and physiological levels. Some of these factors are cell proliferation and 

angiogenesis rates, hypoxia, receptor distribution, and metabolism, which have a non-homogeneous 

spatial distribution in tumor volume [236, 237]. In recent years, there has been a considerable effort 

in the medical imaging community to obtain correlations between image features and tumor 

heterogeneity [55, 56, 64, 65].  An approximation to this issue is the texture analysis because image 

texture gives us information about the spatial arrangement of voxel intensities (i.e. the spatial 

distribution of radiotracer) in an image or a selected region.   

 

The metrics or features obtained by texture analysis can be of first, second, or higher orders.  First-

order features are statistics calculated from the image voxel intensities distribution, like variance and 

mean, and do not consider pixel neighbor relationships. Second- and higher-order features measure 

the relationships between groups of two or more pixels in the image and reflect the underlying spatial 

variation of voxel intensities, providing a measure of the image heterogeneity.  They can be computed 

from grey-level co-occurrence matrices (GLCM). These matrices determine how often (i.e. the 

probability) a pixel of intensity i finds itself within a certain relationship to another pixel of intensity 

j.  Formally, given the image f(x,y) with a set of N discrete intensity levels, the co-occurrence matrix 

Pdθ (i,j) is defined such that its (i,j)th entry is equal to the number of times that f(x1,y2) = i  and f(x2,y2) 

= j, where (x2,y2) = (x1,y1) + (dcosθ, dSinθ) . This yields a square matrix whose dimension equals 

the square of the number of intensity levels in the image, for each distance d and orientation θ.  

Second-order features based on co-occurrence matrices include entropy, energy, contrast, 

homogeneity, and correlation [238, 239]. The parameters of energy and entropy are defined by the 

equations that follow. 
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Energy = ∑ ∑ 𝑃𝑑𝜃

N

j=1

(𝑖, 𝑗)2 

𝑁

𝑖=1

     (4.1) 

          

Entropy = − ∑ ∑ 𝑃𝑑𝜃(𝑖, 𝑗)log (𝑃𝑑𝜃

𝑁

𝑗=1

𝑁

𝑖=1

(𝑖, 𝑗))     (4.2) 

 

For instance, entropy and energy features assess the spatial heterogeneity in the radiotracer uptake. 

Entropy measures the randomness of the pixel or voxel distribution in the image; it will take a higher 

value for a more random distribution.  Energy measures the homogeneity in an image, where higher 

values mean greater uniformity of the gray-level values in the co-occurrence matrix [56].  In short, 

the higher the entropy and the lower the energy, the higher the heterogeneity of the gray-level 

distribution of tumor image. On the other hand, contrast relates to the dynamic range of intensity 

levels in an image and the level of local intensity variation; homogeneity represents the uniformity of 

the co-occurrence matrix, and correlation is a measurement of gray-tone linear dependencies [55]. 

Similarly, this procedure can be extended to three-dimensional (3D) images.  

 

In  NSCLC, researchers have described relations between texture parameters assessed in CT or PET 

images, metabolic parameters like SUVmax and SUVmean with survival and treatment response [74, 

240]. The relationship between textural features assessed in PET images with volume-based (MTV 

and TLG) analysis and tumor stage has not yet been established. However, in other tumors, such as 

esophageal carcinoma, this relationship has been shown [241]. Therefore, the objective of this study 

was to analyze the relationship between tumor heterogeneity assessed by 3D textural analysis of the 

metabolic parameters of PET images and pathologic staging in patients with NSCLC. 

 

4.2. Methods 
 

4.2.1. Patients 
 

Thirty-eight patients (34 men and 4 women) undergoing combined whole-body 18FDG-PET/CT, 

between January 2007 and December 2011 were included in the study.   Patients fasted for at least 4 

hours before the PET/CT examination and had blood glucose levels less than 160 mg/dL prior to an 

intravenous administration of approximately 370 MBq of 18F-FDG. 
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All patients had a resectable tumor up to Stage IIIA.  After surgery, tumor size (cm) according to the 

largest diameter of the specimen and pathological staging (pT, pN, and integrated TNM stage) were 

assigned according to the seventh edition of AJCC TNM classification [30]. The data analysis was 

carried out after approval by the institutional review board. 

 

4.2.2. PET/CT Image Acquisition 
 

The patients underwent 18F-FDG-PET/CT scans using an integrated PET/CT scanner (Discovery STE 

16, GE Health Care).  Prior to PET acquisition, helical CT was performed from the head to proximal 

thighs to provide attenuation correction, with acquisition parameters for the CT of 120 kV and 

modulated 80 mA. No oral or intravenous contrast agents were used. Emission scans from the head 

to the proximal thigh were acquired at 60-90 minutes after 18F-FDG administration.  Images were 

acquired in three-dimensional (3D) modes, 3 minutes per table position.  PET images were 

reconstructed using CT for attenuation correction with ordered-subset expectation maximization 

iterative reconstruction algorithm supplied by the scanner manufacturer. The PET and CT slice 

thickness was 3.8 mm. 

 

4.2.3. Lesion Segmentation 
 

The PET images in DICOM format were transferred to 3D SLICER software (Harvard University, 

Cambridge, MA) [33]. In the visualization tools of this software, a nuclear medicine specialist detects 

the primary tumoral lesion, and on the basis of this localization, the regions equal to or greater than 

SUV 2.5 were selected to automatically delineate the volume of interest (VOI). All parameters were 

subsequently extracted from this delineated volume (Figure 4.1).  

 

4.2.4. Metabolic Parameters  
 

By using the same software, semiquantitative metabolic parameters of the primary tumor, such as 

maximum SUVmax (g/mL), SUVmean (g/mL), and MTV (i.e., the tumoral volume in milliliters 

obtained by using a SUVmax cutoff of 2.5), were obtained. TLG (g), given as MTV 2 SUVmean, 

was also calculated. FDG uptake was quantified using the expression given below: 

 

𝑆𝑈𝑉 =  
Activity concentration in the tissue(

Bq

mL
)

Administered activity (Bq)/bodyweight (g)
          (4.3) 
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4.2.5. Texture Analysis 
 

VOI was transferred from 3D SLICER to DICOM format, and then second-order 3D textural features 

were extracted from the segmented VOI using MaZda software (Lodz University of Technology, 

Lodz, Poland) [34]. The MaZda software was configured to evaluate the texture at distance of one 

voxel (d = 1) at 12 different angles Ɵ; because there is a textural feature value per angle, the final 

textural feature value was an average over all directions. Using this method, we obtained five textural 

features: energy, entropy, contrast, correlation, and homogeneity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. PET/CT segmentation of the lesions. From the 18F-FDG-PET/CT study, the metabolic 

tumor volume was segmented by using a standardized uptake value (SUV) cutoff of 2.5. From these 

volumes, all second-order textural features and metabolic parameters were extracted (personal 

collection). 

 

4.2.6. Statistical Analysis 
 

We performed statistical analysis using SPSS for Windows version 19.0 (IBM, Armonk, NY) [35]. A 

Pearson correlation test assessed the relationship between the continuous variables (textural features 

of the PET images and metabolic parameters). We also performed linear regression. To analyze the 

correlation between textural parameters and categorical variables (TNM classification, histologic 
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type, and AJCC stage) [30], we used the nonparametric Spearman correlation test. All comparisons 

were two-sided, with statistical significance assessed at p < 0.05.  

 

4.3. Results 
 

Thirty-eight patients with NSCLC up to the IIIA stage were assessed (34 men and 4 women, with a 

mean age of 64.4 ± 8.3 years).  

 

4.3.1. Pathologic Characteristics and Metabolic Parameters  
 

Of the primary tumors, 24 (63.2%) were epidermoid and 14 (36.8%) were adenocarcinomas.  The 

number of patients with tumor stage IA, IB, IIA, IIB, or IIIA were 4, 16, 8, 4, and 6, respectively. 

Their demographics and pathologic stage are summarized in Table 4.1. Mean ±standard deviation 

values of tumoral size, SUVmax, SUVmean, MTV, and TLG were 3.63 ± 1.51 cm, 13.85 ± 7.25 

g/mL, 5.81 ± 1.98 g/mL, 30.47 ± 25.17 mL, and 197.81 ± 251.11 g, respectively. The distribution of 

pathologic and metabolic variables, together with the five textural features for each patient, is shown 

in Table 4.2. No statistically significant differences were found between the mean values of the tumor 

size, AJCC stage, and metabolic parameters between adenocarcinomas and epidermoid tumors. 

However, adenocarcinomas had a mean value of energy and homogeneity lower and higher (p = 

0.027 and p = 0.047, respectively) than epidermoid tumors. 

 

                       Table 4.1. Patient Characteristics and Disease Stage 

 Epidermoid 

n = 24 (63.2%) 

Adenocarcinoma 

n = 14 (36.8%) 

Age, mean ± SD 65.7 ± 7.6 61.8 ± 8.7 

Gender, n (%)   

    Male 23 (95.8) 11 (78.6) 

    Female 1 (4.2) 3 (22.4) 

AJCC stage, n (%)   

    IA 4 (20) __ 

    IB 10 (40) 6 (42.9) 

    IIA 3 (12) 5 (35.7) 

    IIB 3 (12) 1 (7.1) 

    IIIC 4 (16) 2 (14.3) 

                            

                         AJCC = American Joint Committee on Cancer [30] 
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The SUVmax and SUVmean were correlated with the MTV and TLG (r = 0.424, p = 0.008; r = 

0.640, p < .0001 and r = 0.423, p = 0.008; r = 0.643, p < 0.0001, respectively). The MTV and TLG 

were correlated (r = 0.934, p < 0.0001), as well as the SUVmax and SUVmean (r = 0.931, p <  

0.0001). 

 

4.3.2. Correlation between Texture and Metabolic Parameters  
 

There was a positive relationship between all metabolic parameters (SUVmax, SUVmean, MTV, and 

TLG) with entropy, correlation, and homogeneity and a negative relationship with energy and 

contrast. Detailed values are given in Table 4.3. Linear regression fit of the usual metabolic 

parameters (SUVmax and SUVmean) to the global metabolic (TMV and TLG) parameters, entropy, 

and energy is shown in Figure 4.2 and Figure 4.3, respectively. 

 

 

 

Figure 4.2. Linear regression for energy, entropy, and contrast with tumoral size. Linear regression 

showed a negative correlation between metabolic tumor volume, tumor size, and energy and contrast 

(r = -0.413, p = 0.009 and r = -0.461, p = 0.004, respectively). A positive correlation between tumor 

size and entropy (r = 0.570, p < 0.0001) was observed. 

 

4.3.3. Correlation between Textural Parameters and Tumor Stage 
 

Tumoral size was correlated with energy, contrast, correlation, entropy, MTV, and TLG (r = -0.418, 

p = 0.009; r = -0.461, p = 0.004; r = 0.432, p = 0.007; r = 0.573, p < 0.0001; r = 0.596, p < 0.0001; 

r =0.500, p = 0.001, respectively). The linear regressions for energy, entropy, and contrast are shown 

in Figure 4.4. 



T U M O R  H E T E R O G E N E I T Y  I N  P E T - C T  I M A G E S  P a g e  | 99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Linear regression for energy and entropy with SUVmax and SUVmean. Linear regression 

showed a positive correlation between SUVmax and SUVmean with entropy (A and B); r = 0.486, p 

= 0.002 and r = 0.492, p = 0.002, respectively. C and D show a negative correlation of the same two 

metabolic parameters with energy; r = -0.465, p = 0.003 and r = -0.479, p =0.002, respectively.  

 

A statistical correlation between the pT and energy, contrast, entropy, and MTV (r = -0.376, p = 

0.02; r = 0.319, p = 0.05; r = 0.360, p = 0.026; r = 0.376, p <0.02) was found, but not between 

remaining AJCC components and textural or metabolic parameters. 

 

However, by removing from the sample those patients with a low tumoral size but a high pT stage, 

according to the tumor location, we obtained a correlation between the AJCC stage and textural 

(energy, homogeneity, and entropy) and metabolic (MTV and TLG) parameters. On the other hand, 

pN becomes related to all five textural features, and MTV and TLG (Table 4.4 and Figure 4.5). 
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Table 4.2.  Summary of Patients’ Demographics, Global Metabolic Parameters, and Textural Features of Primary Tumor 

Patient Number Histology AJCC Stage SUVmax SUVmean MTV TLG Energy Entropy Contrast Homogeneity Correlation 

1 Ad IB 16.86 7.59 24.84 188.58 0.0032 2.50 2325.6 0.02 0.37 

2 Ad IIA 26.79 10.32 51.83 535.01 0.0016 2.82 3076.4 0.03 0.20 

3 SCC IIB 9.11 3.89 18.19 70.75 0.0054 2.28 2870.7 0.05 0.38 

4 Ad IIIA 28.82 9.81 76.38 749.54 0.0010 3.02 1625.9 0.04 0.57 

5 SCC IB 29.98 8.07 58.48 472.18 0.0016 2.86 1354.4 0.08 0.66 

6 SCC IA 24.54 8.16 25.72 209.96 0.0033 2.50 2272.4 0.03 0.44 

7 Ad IB 10.66 5.00 34.33 171.75 0.0021 2.69 1898.5 0.03 0.48 

8 Ad IIA 10.63 5.33 94.47 503.58 0.0007 3.15 1474.5 0.04 0.57 

9 Ad IIA 19.41 8.77 9.58 84.03 0.0098 2.02 3278.1 0.02 0.21 

10 SCC IIIA 16.42 7.63 68.56 523.28 0.0010 3.01 1672.3 0.04 0.53 

11 SCC IIB 10.87 5.32 64.45 343.05 0.0015 2.84 2068.8 0.04 0.39 

12 Ad IIA 4.54 3.32 3.23 10.70 0.0377 1.44 4080.3 0.01                          -0.03 

13 SCC IB 21.22 6.19 57.31 354.89 0.0014 2.89 1444.8 0.06 0.61 

14 SCC IIA 9.83 5.15 45.08 232.24 0.0015 2.82 2036.4 0.03 0.41 

15 SCC IIA 22.94 6.93 8.02 55.60 0.0110 1.96 3363.6 0.03 0.21 

16 SCC IA 8.56 4.59 7.82 35.91 0.0112 1.96 3145.6 0.02 0.20 

17 SCC IIA 11.59 5.67 59.46 337.25 0.0012 2.95 1626.7 0.04 0.53 

18 Ad IIIA 7.88 4.20 7.92 33.28 0.0116 1.94 3423.1 0.03 0.17 

19 SCC IB 7.82 4.44 21.61 95.93 0.0034 2.47 2348.1 0.03 0.34 

20 SCC IB 6.59 3.90 33.84 132.03 0.0021 2.68 2244.0 0.03 0.37 

21 SCC IIIA 16.32 6.49 88.70 575.51 0.0008 3.12 1668.4 0.04 0.54 

22 SCC IIB 12.96 5.41 26.60 143.83 0.0028 2.57 2051.4 0.03 0.46 

23 SCC IIIA 8.19 4.83 5.37 25.97 0.0221 1.68 4705.6 0.02                         -0.10 

24 Ad IB 6.56 3.76 12.91 48.51 0.0065 2.20 3230.4 0.02 0.20 

25 SCC IIIA 15.38 6.74 10.07 67.86 0.0082 2.09 3125.6 0.03 0.24 

26 SCC IB 11.89 5.30 16.53 87.61 0.0047 2.33 2922.8 0.03 0.27 

27 Ad IIB 8.53 4.26 9.68 41.25 0.0084 2.08 2683.9 0.03 0.32 

28 Ad IIA 7.38 3.86 31.39 121.29 0.0025 2.61 2563.2 0.03 0.33 

29 Ad IB 8.32 4.57 5.67 25.91 0.0171 1.77 3772.4 0.03 0.10 

30 SCC IB 13.82 6.14 20.83 127.90 0.0035 2.46 2347.5 0.03 0.39 

31 Ad IB 8.54 4.51 5.09 22.93 0.0201 1.71 3993.7 0.03 0.06 

32 SCC IA 20.38 7.26 24.64 178.84 0.0031 2.52 2593.8 0.04 0.36 

33 SCC IB 20.38 7.88 15.26 120.27 0.0050 2.31 2628.1 0.03 0.35 

34 SCC IA 7.41 3.97 12.22 48.52 0.0068 2.18 2912.6 0.03 0.27 

35 SCC IB 24.35 7.80 47.73 372.05 0.0015 2.85 2981.7 0.03 0.23 

36 SCC IB 7.62 4.02 14.47 58.18 0.0056 2.26 3189.4 0.02 0.25 

37 Ad IB 2.30 1.37 4.21 5.76 0.0246 1.62 4340.3 0.03 0.01 

38 SCC IB 20.94 8.57 35.60 305.25 0.0020 2.71 1688.2 0.04 0.53 

 

 

                             Ad =  adenocarcinoma; AJCC = American Joint Committee on Cancer; MTV =  metabolic tumor volume (cm3); SCC = squamous cell carcinoma; SUV = standardized uptake value; TLG = total lesion glycolysis (g).  
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Table 4.3.  Correlations between Global Metabolic Parameters and Textural Features of the 
Primary Tumors 

MTV = metabolic tumor volume (cm3); SUVmax = maximum standardized uptake value; SUVmean = mean 
standardized uptake value; TLG = total lesion glycolysis (g). Numbers indicate Pearson coefficient; p values 
are inside parentheses. 

 

4.4. Discussion 
 

FDG-PET/CT has been broadly used for the diagnosis and staging of malignancies and recently to 

determine early response to treatment. In daily routine, only semiquantitative measures of lesion 

activity, such as SUVs, are usually employed, even though volume-based metabolic parameters could 

be more representative of tumor characteristics and have more predictive value [228-230] because 

they consider all the voxels in the tumor image. However, spatial information about voxel intensity 

relationships, that is, about tumor heterogeneity of radiotracer uptake, is missing in volume-based 

parameters, which could limit their ability to describe the tumor characteristics and especially to 

predict therapy response or prognosis. Therefore, in this work, we explored the associations between 

metabolic parameters and textural features, which consider the spatial relationship of the image 

voxels.  

 

Parameters obtained by texture analysis of images, reflecting the underlying spatial variation and 

heterogeneity of voxel intensities in the image of the tumor, provide a measure of the tumor 

heterogeneity [22]. For example, the spatial distribution of 18F-FDG uptake has been related to the 

intratumoral distribution of hypoxia [242, 243] and textural parameters derived from CT images of 

NSCLC have been correlated to tumor hypoxia and angiogenesis [244]. Although several metrics can 

be derived from texture analysis, only a limited number of them have shown robustness in a clinical 

setting because technical and physiologic factors such as PET limited resolution, partial volume 

effect, reconstruction algorithms, movement artifacts, and noise could affect the tumor heterogeneity 

quantification utilizing textural features [175, 197, 245]. We must be sure that the textural feature 

 Energy Entropy Contrast Correlation Homogeneity 

SUVmax -0. 466 (0.003) 0.487 (0.002) -0.437 (0.006) 0.475 (0.003) 0.551 (<0.001) 

SUVmean -0.480 (0.002) 0.493 (0.002) -0.420 (0.009) 0.424 (0.008) 0.352  (0.030) 

MTV -0.627 (<0.001) 0.905 (<0.001) -0.781 (<0.001) 0.749 (<0.001) 0.574 (<0.001) 

TLG -0.578 (<0.001) 0.842 (<0.001) -0.701 (<0.001) 0.684 (<0.001) 0.588 (<0.001) 
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measures underlying tumor properties, such as tumor heterogeneity, and not inaccuracies, such as 

blurring and artifacts, so a standard procedure of measurement must be adopted.  

 

Most texture analyses have been performed on 2D CT images, although 3D analysis of the whole 

tumor seems to be more representative of tumor heterogeneity [246]. Instead of 2D analysis, we 

performed a 3D textural feature extraction of the PET component from PET/CT images, which 

allowed us to dispose of a higher number of voxels to perform a statistical textural computation.  This 

methodology is particularly important in texture analysis of PET images, where fewer voxels are 

representing the lesion to perform statistical analysis because the voxel size is larger compared with 

CT. The better resolution and more favorable image characteristics make CT more suitable for texture 

analysis; for this reason, most of the studies of tumor texture analysis have used CT. However, PET 

images have a functional meaning, showing biological aspects of the tumors not expressed in CT 

images; thus, they should be more widely used for texture analysis. 

 

Few studies have used PET images to evaluate the heterogeneity in radiotracer distribution, even 

when its distribution offers firsthand information about biological processes inside the tissues.  The 

relationships between some textural features based on CT and tumor stage in NSCLC have been 

previously reported [247]. However, similar analyses have not been performed by deriving textural 

features from the PET image of lung tumors. To date, in NSCLC, texture analyses based on PET 

images have only been compared to SUV, not considering volume-based metabolic parameters. To 

our knowledge, no association of PET textural features with volume-based metabolic parameters and 

the AJCC stage has been previously reported. Table 4.5 provides a summary of the main studies and 

their results [248-251]. 

 

In our study, we computed the textural features energy, entropy, contrast, correlation, and 

homogeneity from the 3D tumoral volume extracted from 18-FDG-PET/CT images of the patients. 

These textural features showed correlations with all metabolic parameters, especially with the global 

metabolic parameters (MTV and TLG). Tumors with higher SUVmax, SUVmean, MTV, and TLG 

were more heterogeneous in the textural analysis.  

 

The correlation between entropy and energy with MTV and TLG was not linear. The curve of the 

scatter plot might be better modeled by a nonlinear function, such as a quadratic; with such 

adjustment, an expected increase in the correlation coefficient is expected.  The previous works have 

shown that intratumor heterogeneity increases as tumors grow [65, 175, 252]. Possibly because larger 
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tumors are composed of several different types of tissues and regions with variable uptake. On the 

other hand, smaller tumors may also have heterogeneity at the cellular and tissue levels, but it may 

be blurred in PET images due to the limited spatial resolution [253]. Since TLG and MTV are volume-

based metabolic parameters, we can infer from the graph that when tumors are small (for example, 

less than 10 ml), a smaller change in tumor volume translates into a significant change in the value 

of the tumoral entropy and energy (i.e. tumor heterogeneity), while with larger tumors this change is 

less noticeable, especially with the energy. This is of great importance if we intend to establish the 

limits of application of the textural analysis of PET / CT images. So, an accurate determination of the 

tumoral volume should be performed. 

 

 

 

Figure 4.4.  Linear regression for energy and entropy with metabolic tumor volume (MTV) and total 

lesion glycolysis (TLG). Linear regression showed a positive correlation between MTV and TLG 

with entropy (A and B); r = 0.904, p < 0.0001 and r = 0.842, p <  0.0001, respectively. C and D 

show a negative correlation between both global metabolic parameters with energy; r = -0.627, p < 

0.0001 and r = -0.578, p <0.0001, respectively. 
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Figure 4.5.  Spearman correlations between AJCC stage and energy, entropy, metabolic tumor 

volume (MTV), and total lesion glycolysis (TLG). Spearman correlations: (A) AJCC stage and energy (r 

= -0.363, p = 0.038); (B) AJCC stage and entropy (r = 0.351, p = 0.038); (C) AJCC stage and MTV (r 

= 0.387, p = .022); and (D) AJCC stage and TLG (r = 0.329, p = 0.050). 

 

We found that adenocarcinomas had a lower mean value of energy and higher homogeneity than 

epidermoid tumors.  This could indicate that adenocarcinomas are more metabolically heterogeneous 

than epidermoid tumors.  Furthermore, although differences in SUVmax between adenocarcinomas 

and epidermoid tumors have been reported [254] we could not confirm such a finding in our data. 

There are several methods to assess the textural features of an image; however, there are not models 

that directly link these textural features of the image to the biological proprieties of the imaged tumor. 

It would be necessary, to formulate such models in order to be able to use texture analysis to identify 

tumor types and to differentiate benign from malignant tumors. 
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Table 4.4.  Correlation between Textural Parameters and Clinical Characteristics 

 MTV TLG Energy Entropy Contrast Correlation Homogeneity 

TD 
(cm) 

-0.59 

(<0.001) 

0.50  

(0.001) 

-0.21 

(0.188) 

0.42 

(0.007) 

-0.41  

(0.009) 

0.41  

(0.010) 

0.42  

(0.007) 

AJCC 
stage 

0.31  

(0.05) 

0.31 

 (0.057) 

-0.54  

(0.476) 

0.33  

(0.843) 

-0.10 

 (0.537) 

0.14  

(0.394) 

0.15 

 (0.341) 

pT -0.47 

(<0.001) 

-0.34  

(0.033) 

-0.27 

(0.91) 

0.37 

(0.019) 

-0.33  

(0.036) 

0.32  

(0.045) 

0.37  

(0.019) 

AJCC = American Joint Committee on Cancer; MTV = metabolic tumor volume (cm3); TLG = total lesion 
glycolysis (g). Numbers indicate Spearman coefficient; p values are inside the parentheses. 

 

Table 4.5.  Summary of Studies Investigating Textural Analysis of 18F-FDG-PET in NSCLC 

Study, Year Analysis  

Type 

Metabolic 

Parameters 

PET Features CT Features Findings 

Hatt et al, 

2011 [248] 

3D MTV CV Tumor volume Direct relationship 

between CT volume and 

MTV and heterogeneity 

 

Vaidya et 

al, 2012 

[249] 

3D TLG Energy, contrast, 

entropy, 

homogeneity 

 

Energy, 

Contrast, 

entropy, 

homogeneity 

No correlation of 

metabolic entropy, 

and textural parameters 

with recurrence 

 

Bagci et al, 

2013 [250] 

3D SUVmax Energy, contrast, 

entropy, 

homogeneity, 

correlation, and 

others 

 

Not assessed Correlation of SUVmax 

with several textural 

features 

 

van Velden 

et al, 2011 

[251] 

3D SUVmax SUV-volume 

histogram 

Not assessed SUV-volume histogram 

better index of 

heterogeneity than 

SUVmax 

 

CT = computed tomography; CV = coefficient of variation; 18F-FDG = fluorodeoxyglucose; MTV = metabolic 
tumor volume; NSCLC = non-small cell carcinoma; PET = positron emission tomography; SUVmax = 
maximum standardized uptake value; TLG = total lesion glycolysis. 

 

All of the tumoral metabolic parameters were correlated with each other. The higher correlation was 

between SUVmax and SUVmean and MTV and TLG (see Table 4.3). Thus, tumors with a higher 

SUVmax had a higher SUVmean, and as was expected, a larger MTV indicated a larger TLG. 

Tumoral size correlated with volume-based metabolic parameters (MTV and TLG).  This should be 

expected because volume depends directly on the tumor size. On the other hand, the tumoral size did 

not correlate with the SUVs, even though this relationship has been previously published when 
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assessing, unlike in our study, patients with no operable stages [255]. In addition, we found that larger 

tumors were more heterogeneous (lower energy and higher entropy) and had lower contrast and 

higher correlation. In the case of contrast, even though larger tumors appear more homogeneous in a 

visual assessment (i.e., they exhibit lower contrast) they are more heterogeneous in the FDG spatial 

distribution. This could be because low contrast images have low spatial frequencies but not 

necessarily low heterogeneity. However, because the contrast is a textural feature with large 

variability depending on the acquisition modes and reconstruction parameters [167], these results 

must be reviewed in future work. 

 

In our original series of 38 patients, we found a correlation only between the pT and tumor size, 

energy, contrast, entropy, and MTV. However, when we rejected three patients with small tumors 

and high AJCC staging (because the tumors affected the pleura or were located less than 2 cm from 

the carina), we also found a correlation with the AJCC staging. In the reduced series of 35 patients, 

the AJCC staging correlated with the tumor size, energy, homogeneity, entropy, MTV, and TLG; the 

most significant correlation was with the energy and MTV. We thought that this finding was because 

the lung cancer AJCC stage includes, in the same group, tumors with different sizes because it uses 

other prognostic features besides the tumor size. On the other hand, entropy and energy had no linear 

relationship with volume-based metabolic parameters, which finally depend on tumoral size.   

 

Another important factor is that our population mostly consisted of males. It is because lung cancer 

incidence has historically been higher in men than women. However, the magnitude of this difference 

has decreased in the last years, because cigarette smoking in women has increased. We do not know 

if this unbalanced population could have affected our results. However, due to this bias, the 

generalizability of our study may be compromised so that, additional studies must be performed with 

larger numbers of patients (a more comparable number of male and female patients) to settle this 

issue.  

 

We also found no correlation between the SUVmax and SUVmean with the AJCC stage and pT or 

pN stage or a statistically significant difference in the mean values, although these relationships have 

been reported in NSCLC [256] and other tumors [241]. One of the most important advantages of 

texture analysis is that its measurement is performed in the post-processing PET/CT image. 

Therefore, it could be easily included in the daily clinical routine. Parameters derived from texture 

analysis may have reproducibility similar to or better than that of simple SUV measurements [197] 

and be less susceptible to the noise or the reconstruction algorithms used [167]. Before performing a 
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3D texture analysis of PET/CT images, it is necessary to perform segmentation; however, there is no 

truly validated segmentation algorithm able to deal with tracer uptake heterogeneity. The threshold-

based approximation has several drawbacks, especially in heterogeneous tumors; when the tumor 

uptake is more heterogeneous, the underestimation of the PET volumes by threshold-based techniques 

is larger [248]. We decided to use a cutoff value of 2.5 given the simplicity of the threshold method 

and the fact that previous authors have shown that the tumor length seen on an FDG-PET/CT image 

with a cutoff value of 2.5 was close to the gross tumor length [257] Therefore, more sophisticated 

approximations can be considered in future work. An important drawback in the measures of any 

image-based parameter in lung tumors is respiratory movement. Given that respiratory gating permits 

better characterization of the malignant lung lesion compared to the standard acquisition [258, 259], 

the assessment of textural changes linked to the respiratory cycle seems to be the more correct option. 

The assessment of FDG uptake heterogeneity by PET and its spatial and temporal variations could 

help us understand tumor biology.  Therefore, SUV and other measurements of FDG tumor uptake 

can potentially be supplemented by additional imaging parameters derived from either the PET or the 

CT images [260]. One additional step could be the use of both CT and PET images to perform a joint 

assessment of the tumor heterogeneity. It is expected that textural metrics derived from staging 

PET/CT images can give us better information about patient survival than semiquantitative metabolic 

parameters [74, 175, 240], and also help us decide which initial therapy to adopt. By performing 

interim PET/CT (i.e., PET/CT in the middle of the treatment) and assessing the textural changes of 

the tumor after the treatment, the response can be assessed and the treatment can be adjusted. For 

instance, if we found a  lung tumor with high entropy and low energy in a staging PET/CT, it could 

need more aggressive therapy from the beginning than others with low entropy and high energy, but 

this requires additional work to be validated. 

 

4.5. Conclusion 
 

Tumor heterogeneity in NSCLC assessed by texture analysis of the PET component of 18F-PET/CT 

images is correlated with global metabolic parameters, and both are associated with macroscopic 

tumor diameter and, under special considerations (no inclusion of a small tumor with high AJCC 

stage), with the AJCC stage. Some textural features have no linear relationship with volume-based 

metabolic parameters, making them more sensitive to tumor volume definition and defaulting to 

establish relationships with AJCC staging. These textural parameters have the potential to be used in 

clinical practice but require additional work to further validate their importance. 

 



T U M O R  H E T E R O G E N E I T Y  I N  P E T - C T  I M A G E S  P a g e  | 108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



T U M O R  H E T E R O G E N E I T Y  I N  P E T - C T  I M A G E S  P a g e  | 109 

 

 

Chapter 5. 18F-FDG-PET/CT in the assessment of pulmonary solitary nodules: comparison of different analysis methods and risk 

variables in the prediction of malignancy 
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A substantial portion of this chapter is written or based on the following publications: 

18F-FDG-PET/CT in the assessment of pulmonary solitary nodules: comparison of different analysis 

methods and risk variables in the prediction of malignancy. 

Ober van Gómez López, Ana María García Vicente, Antonio Francisco Honguero Martínez, Germán Andrés 

Jiménez Londoño, Carlos Hugo Vega Caicedo, Pablo León Atance, Ángel María Soriano Castrejón. Transl 

Lung Cancer Res 2015;4(3):228-235. 
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Summary 
 

The goal of this chapter is to compare the diagnostic performance of different metabolical, 

morphological, and clinical criteria for the correct presurgical classification of the solitary pulmonary 

nodule (SPN). Fifty-five patients, with SPN, were retrospectively analyzed. All patients underwent 

preoperative 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG 

PET/CT. Maximum diameter in CT, maximum standard uptake value (SUVmax), histopathologic 

result, age, smoking history, and gender were obtained. Different criteria were established to classify 

a SPN as malignant: (I) visually detectable metabolism, (II) SUVmax > 2.5 regardless of SPN 

diameter, (III) SUVmax threshold depending on SPN diameter, and (IV) ratio SUVmax/diameter 

greater than 1. For each criterion, statistical diagnostic parameters were obtained. Receiver operating 

characteristic (ROC) analysis was performed to select the best diagnostic SUVmax and 

SUVmax/diameter cutoff. Additionally, a predictive model of malignancy of the SPN was derived by 

multivariate logistic regression. The results show that fifteen SPN (27.3%) were benign and 40 

(72.7%) malignant. The mean values ± standard deviation (SD) of SPN diameter and SUVmax were 

1.93 ± 0.57 cm and 3.93 ± 2.67 respectively. Sensitivity (Se) and specificity (Sp) of the different 

diagnostic criteria were (I): 97.5% and 13.1%; (II) 67.5% and 53.3%; (III) 70% and 53.3%; and (IV) 

85% and 33.3%, respectively. The SUVmax cut-off value with the best diagnostic performance was 

1.95 (Se: 80%; Sp: 53.3%). The predictive model had a Se of 87.5% and Sp of 46.7%. The SUVmax 

was an independent variable to predict malignancy. In conclusion, the assessment by semiquantitative 

methods did not improve the Se of visual analysis. The limited Sp was independent of the method 

used. However, the predictive model combining SUVmax and age was the best diagnostic approach. 

 

5.1.  Introduction 
 

A solitary pulmonary nodule (SPN) is defined radiologically as an intraparenchymal lung lesion of 

less than 3 cm in diameter, with no associated atelectasis or adenopathy [261, 262]. The management 

of SPN is clinically controversial and is mainly dependent on the perceived probability of malignancy 

[81]. The prevalence of lung cancer in patients with SPN varies widely, from 2-13% in screening 

studies to 46-82% in positron emission tomography (PET) studies [80, 263]. For a suspicious 

malignant SPN, percutaneous transthoracic biopsy, transbronchial needle aspiration biopsy or video-

assisted thoracoscopic surgery provides histological information. However, these are invasive 

procedures, skill dependent, and with variable accuracy to the diagnosis of cancer [80, 264, 265]. 
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PET with 18F-FDG has had an important impact on the diagnosis of benign and malignant nodules. 

Some reports have suggested that PET can reduce the number of patients with pulmonary nodules 

who undergo unnecessary surgical biopsies [36]. Therefore, PET using 18F-FDG is an accurate and 

non-invasive method for diagnosing SPNs, with an overall sensitivity (Se) of 95% and a specificity 

(Sp) of 82% [37]. However, surgical resection is still needed to differentiate lung cancer from benign 

lesions in a significant number of cases [37]. The combination of computed tomography (CT) and 

PET in the hybrid imaging, has shown an excellent performance in classifying SPN as benign or 

malignant, where the Se of CT and the Sp of PET, resulting in an overall significantly improved 

accuracy [38, 81]. 

 

To determine the management and treatment of the patient with an SPN is necessary to estimate the 

probability of malignity from clinical and imaging data. Some independent predictors of malignancy 

include age, current or past smoking history, previous extrathoracic malignancy, nodule diameter, 

spiculation, and upper lobe location [80, 266]. Although specific models exist for the calculation of 

the probability of malignancy of an SPN, they do not have enough accuracy to replace the clinician’s 

judgment. On the other hand, adding metabolic parameters derived from PET studies has been shown 

to improve the prediction of malignancy in SPN [38, 267], however, it is necessary to increase the 

evidence that supports the use of such metabolic parameters. FDG uptake on PET has been 

qualitatively and semiquantitatively evaluated. Visual assessment is usually based upon a comparison 

of FDG lesion uptake with normal mediastinal blood pool [268] and is the simplest among all the 

analyses, but nodules with similar FDG uptake to the mediastinum are difficult to evaluate visually. 

In order to have a more objective assessment, a cut-off of the maximum standard uptake value 

(SUVmax) has been used for the establishment of malignancy. However, a great number of factors 

can affect the SUV, among them, body size, the blood glucose concentration, the time after injection, 

and the lesion diameter [269]. As a result, the SUVmax of an SPN could not reflect its true nature. In 

an attempt to improve the diagnostic accuracy of the presurgical evaluation of the SPN, the integration 

of risk variables into predictive models has been carried out, because, contrary to the clinical 

judgment, quantitative predictive models might have advantages in accuracy and reproducibility [80, 

266-268, 270]. Even though, several CT derived parameters have been included in such predictive 

model, metabolic variables have been no included. The purposes of the present study were as follows: 

(I) to determine an optimum semiquantitative criterion that allows discriminating between malignant 

and benign nodules and comparing with the visual assessment and (II) to derivate a model to estimate 

the pretest probability of malignancy of a patient with SPN based on clinical and 18F-FDG PET/CT 

image variables. 
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5.2. Materials and methods 

 

A retrospective evaluation of 18F-FDG PET/CT image data, final pathological classification, and risk 

clinical and demographic variables of patients with SPN was performed. The data analysis was carried 

out after approval by the Institutional Review Board. 

 

5.2.1 Patients 

 

Between January 2007 and December 2012, patients with a suspicious SPN underwent a combined 

whole-body 18F-FDG PET/CT imaging and surgical resection of the SPN was included. After surgery, 

a final histological diagnose was assigned. Other patient’s characteristics as gender, age, and previous 

or current history of smoking were analyzed. 

 

5.2.2. PET/CT image acquisition and interpretation  

 

Patients fasted for at least 4 h and had blood glucose levels less than 160 mg/dL previous to an 

intravenous administration of 370 MBq of 18F-FDG. PET/CT scans were performed approximately 

60 min after 18F-FDG administration using an integrated PET/CT scanner (Discovery STE 16, GE 

Healthcare). PET/CT was obtained from the head to the proximal thighs. Prior to PET acquisition, 

helical CT was performed to provide attenuation correction, with acquisition parameters for the CT 

of 120 kV and modulated 120 mA. No oral or intravenous contrast agents were used. Emission images 

were acquired in three-dimensional (3D) mode, 3 min per table position. PET images were 

reconstructed using CT for attenuation correction with ordered-subset expectation maximization 

iterative reconstruction algorithm. The PET and CT section thickness was 3.8 mm. Two experienced 

nuclear medicine physicians reviewed the 18F-FDG-PET/CT studies in consensus. In the visual 

analysis of the PET data, a lesion was defined as negative (no 18F-FDG uptake visually detected) or 

positive (18F-FDG-avid SPN regardless of its intensity). For semiquantitative analysis, a circular 

region of interest was placed over the nodule location with the peak activity. 

 

The maximum intensity of 18F-FDG uptake was defined by body-weight SUVmax measurement using 

the commercially available software provided by the manufacturer. On the other hand, the nodule 

diameter (mm) was assessed in axial projection on the CT image. Four metabolic criteria were used 

to consider an SPN as positive and therefore probably malignant: 
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(I)   A visually detectable metabolism 

 

(II)  SUVmax > 2.5 regardless of nodule diameter 

 

(III) SUVmax ≥ 1 if diameter ≤ 1 cm or SUVmax > 2.5 if diameter > 1 cm 

 

(IV) Ratio SUVmax/SPN diameter >1 

 

5.2.3. Final diagnosis 

 

All patients underwent surgical resection of the SPN. A definitive pathologic diagnosis of the SPN, 

classifying the lesions as benign or malignant, was established. 

 

5.2.4. Statistical analysis 

 

Statistical analysis was performed using SPSS for windows version 19.0 (IBM, Armonk, New York, 

USA) [35]. All the comparisons were two-sided using a p-value less than 0.05 to indicate statistical 

significance. An independent t-test was used for comparing the age, diameter, and SUVmax of the 

benign and malignant nodules, while that chi-square was used for smoking history, and gender. The 

diagnostic accuracy was obtained for each of the four different diagnostic approaches. A positive 

SPN classified by any of the four criteria was considered malignant in the metabolic assessment. A 

receiver operating characteristic (ROC) curve analysis was performed to obtain the best cut-off of the 

SUVmax and SUVmax/diameter (diagnostic approaches III and IV), and the areas under curve (AUC) 

values were obtained with a confidence interval (CI) of 95%. 

 

Finally, we developed a model to estimate the probability of malignancy of patients with SPN by 

using stepwise logistic regression, with the final diagnosis as the dependent variable and the following 

independent variables: age, gender, smoking history (never vs. ever), nodule size, and SUVmax. 

Using backward selection, we achieved a final reduced model by eliminating variables that were not 

statistically significant at a level of 0.05. We used this final model to calculate the estimated 

probability of malignancy in each patient. We compared the predicted probability of malignancy with 

the final diagnosis and constructed a ROC curve. To describe the accuracy of the model for 

identifying malignancy in the patients, we reported the AUC with a CI of 95%. 
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5.3. Results 

 

Fifty-five patients with SPN (45 men and 10 women, with a mean age of 62±11 years) were studied. 

The pathologic analysis classified 40 (72.7%) of SPN as malignant and 15 (27.3%) as benign. From 

malignant SPN, the most prevalent histologies were: 65% adenocarcinoma, 17.5% epidermoid, and 

12.5% small cell carcinoma. Among the benign SPN, the most prevalent histologies were: 40% 

organizing pneumonia and 20% fibrosis. Patient demographics, smoking history, and SPN 

characteristics attending the final pathologic diagnosis of the SPN are shown in Tables 5.1 and 5.2.  

 

Mean ± standard deviation (SD) values of SPN diameter and SUVmax were 1.93 ± 0.57 cm and 3.93 

± 2.67, respectively. There were statistically significant differences between the SUVmax values and 

patient age with the final histology of the SPN (malignant or benign). The mean ± SD of the SUVmax 

for benign nodules was 2.29 ± 1.31 and 4.54 ± 2.80 for malignant nodules (p = 0.005). The mean 

patient age was 58 ± 9 and 64 ± 11 for benign and malignant SPN respectively, (p=0.045). No 

statistically significant differences were found for the rest of the variables (Table 5.3).  

 

Se, Sp and diagnostic accuracy for the different diagnostic criteria were (I): 97.5%, 13.1% and 74.5%; 

(II) 67.5%, 53.3% and 63.3%; (III) 70%, 53.3% and 64.5%; (IV) 85%, 33.3% and 70.9%, 

respectively.  ROC analysis showed an AUC for SUVmax and SUVmax/diameter of 0.75 and 0.79 

(p <0.005), respectively. The cutoff values with the best diagnostic performance were 1.95 (Se: 80%, 

Sp: 53.3%) and 1.04 (Se: 82.5%, Sp:53.3%) for SUVmax and SUVmax/diameter, respectively. Figure 

5.1 shows the ROC curves. 

 

Table 5.1 Patient’s characteristics 

Characteristic Benign, n (%) Malignant, n (%) 

Number of patients 15 (27.3) 40 (72.7) 

Age (mean ± SD) 58.0 ± 9.1 64.2 ± 11.1 

Gender  

Male 14 (25.5) 31 (56.4) 

Female 1 (1.8) 9 (16.4) 

Smoking history  

Yes 15 (27.3) 35 (63.6) 

No 0 5 (9.1) 

SPN, solitary pulmonary nodule; SD, standard deviation. 
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      Table 5.2 Pathologic results 

Characteristic/Pathologic diagnosis Number (%) 

Malignant  40 (72.7) 

Adenocarcinoma  26 (47.3) 

Squamous cell carcinoma  7 (12.7) 

Large cell carcinoma  1 (1.8) 

Small cell carcinoma  5 (9.1) 

Carcinosarcoma  1 (1.8) 

Benign  15 (27.3) 

Organizing pneumonia  5 (9.1) 

Fibrosis  3 (5.5) 

Hamartoma  2 (3.6) 

Inflammatory pseudotumor  2 (3.6) 

Granuloma  2 (3.6) 

Lung abscess  1 (1.8) 

 

 

 

 

Table 5.3 Univariate analysis of patients’ data 

Characteristic Benign, n (%) Malignant, n (%) p 

Patient age (years)  58 ± 9.1* 64.2 ± 11.1* 0.045 

Gender   0.169 

Male  14 (25.5) 31 (56.4)  

Female  1 (1.8) 9 (16.4)  

Smoking history    

No  0 5 (9.1) 0.189 

Yes  15 (27.3) 35 (63.6)  

Nodule diameter (cm)  1.93 ± 0.66* 1.92 ± 0.53* 0.960 

SUV max  2.29 ± 1.31* 4.54 ± 2.80* 0.005 

*, Values are mean ± standard deviation. SUV max, maximum standard uptake value. 
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Figure 5.1. ROC curve of SUVmax and SUVmax/diameter methodologies. ROC, receiver operating 

characteristic; SUVmax, maximum standard uptake value. 

 

By using univariate analysis, we identified that age and SUVmax were associated with malignity 

(Table 5.3). However, only SUVmax was an independent predictor in the multivariate analysis, with 

an odds ratio of 1.6 and (95% CI, 1.01 - 2.417), see Table 5.4. Although age was not an independent 

variable, it was included in the predictive model, because of its clinical importance, becoming to be 

an independent predictor in patients older than 60 years. All other variables were not predictors of 

malignity and therefore were not included in the final model. The prediction model is described by 

the following equations: 

 

Probability of malignancy of an SPN = 
𝑒𝑥

1+ 𝑒𝑥         (5.1) 

 

Where x =−3.767+ (4.89× SUVmax) + (0.052× Age), e is the base of the natural logarithm, Age is 

the age in years and SUVmax is the maximum uptake value on the PET. The accuracy of the model 

was good with an AUC of the ROC curve of 0.793 (95% CI, 0.676-0.911, p < 0.001), with Se and Sp 

of 87.5% and 46.7% respectively (Figure 5.2). 
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Table 5.4 Multivariate logistic regression analysis 

 

Factor 

 

Regression 

coefficient 

 

P-value 

 

Odds ratio 

value 

95% CI 

Lower Upper 

SUVmax  0.489 0.015 1.631 1.010 2.417 

Age 0.052 0.100 1.053 0.988 1.123 

CI, confidence interval; SUVmax, maximum standard uptake value. 

 

 

 

Figure 5.2. ROC curve of clinical data of the patients using our predictive model. ROC, receiver 

operating characteristic. 

 

5.4. Discussion 
 

The diagnosis of SPN remains a major challenge in medical practice. Detecting and diagnosing SPN 

is critical, as early identification of malignant nodules improves the chance for successful treatment. 

 

With regard to the FDG PET/CT imaging, some interpretation approaches have been assessed. 

Attending to visual assessment, a broad range of Se and Sp have been reported with values ranging 

from 69% to 100% and 63% to 85%, respectively [38, 81, 267, 271]. We found for the visual 

assessment (criterion I), a Se of 97.5%, which is in accordance with previously reported results, 

although the Sp (13.1%) was very limited, which is probably explained by the high prevalence of 
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malignancy in our sample of patients. It is well known that higher the prevalence is, lower the risk of 

false-positive results, and the prevalence will be higher as the inclusion of individuals in the screening 

program becomes more selective, focusing on higher clinical risk.  

 

Abnormal 18F-FDG uptake is not specific for malignancy; some benign lesions such as bacterial 

pneumonia, active sarcoidosis, infectious granulomas, acute pyogenic abscesses, cryptogenic 

fibrosing alveolitis, and so forth have been known to produce false-positive readings on PET [272]. 

In our sample of patients, 27.3% of lesions were finally classified as benign, and from them, the most 

prevalent were organizing pneumonia (40%), fibrosis (20%), and granulomas (13.3%). The median 

SUVmax for the benign lesions were 2.29 ± 1.31, while that for malignant lesions were 4.54 ± 2.80 

(p < 0.001). 

 

In an attempt to improve the accuracy of the metabolic assessment some semiquantitative procedures 

have been developed. For instance, the uptake of the SPN (i.e., the glucose utilization) can be 

semiquantitatively assessed by the SUVmax and the uptake relative to the background activity in the 

uninvolved adjacent lung parenchyma and the mediastinum [273]. 

 

When we used a semiquantitative method, the Sp increased with a decrease in sensibility and 

accuracy. The criterion (II), using a SUV cut-off of 2.5 regardless of the nodule size, had a sensibility, 

accuracy, and Sp of 67.5%, 63.3%, and 53.3% respectively. However, these parameters have been 

reported to be higher. A meta-analysis reported pooled Se of 95% (95% CI, 0.93-0.98) and Sp of 82% 

(95% CI, 0.77-0.88) to malignant nodules [37]. Partial volume effect and motion during the scan 

acquisition affects the uptake values measurement, especially for lesions smaller than about three 

times the spatial resolutions of the equipment, so partial volume and motion corrections factors for 

standardized PET uptake values may significantly change the differential diagnosis of small 

pulmonary nodules [274]. In order to consider volume partial effect, we used two different 

approximations to consider a SPN as malign, (criterion III): a variable threshold of SUVmax 

depending on the SPN diameter, and (criterion IV): the value obtained by dividing the SUVmax 

between the diameter of the nodule. This approach is justified, because the SUVmax measure is 

affected by the nodule size, and although it is possible to use a recovery coefficient to have a more 

accurate measurement [275], we use the nodule size since it is proportional to the recovery coefficient. 

The respiratory movement reduces the Se to detect pulmonary lesions; however, the synchronized 

acquisition of PET with respiratory movement (4D PET) can reduce this inconvenient. When the 4D 

PET is used to evaluate faint pulmonary lesions there is an increase of SUVmax with respect to 3D 
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[258, 259]. Even when this modality of acquisition was not used in our patient group, we expect to 

apply it to develop future works. 

 

We aimed to assess the diagnostic accuracy of 18F-FDG PET/CT, as well as to identify predictive 

factors of malignancy in SPN. With respect to the ROC analysis, the best cut-off for the SUVmax 

was 1.95 vs. 1.04 for the index SUVmax/diameter. Both values showed a Se of 80% and 82.5% 

respectively, with the same Sp (53.3%). There was an improvement in the diagnostic parameters, 

especially for the Sp. Our values of Se and Sp were similar to others published. For instance, Kim et 

al. [275] found that a SUVmax value of 2.5 had a Se and Sp of 89% and 51%, respectively, for all 

lesion sizes. Also, Grgic et al. [267] obtained a Se and Sp of 96% and 55%, respectively. 

 

Age has been reported to be one important risk factor for SPN malignancy [80, 268]. In our study, 

we found a statistically significant association between age and malignancy, as has been described. 

However, it was not an independent predictor of malignity. Pulmonary nodules size is a very 

important predictor of malignancy, so it has to be measured as accurately as possible. To measure 

pulmonary nodules, the largest diameter, the mean diameter, or the volume can be used. The 

Fleischner Society states that the mean diameter is better for risk estimation [276]. Numerous studies 

have confirmed this finding, always associating lesion growth with its malignant potential. Nodules 

of more than 20 mm in diameter have a greater than 50% chance of being diagnosed as malignant 

[274, 277, 278]. However, we did not find a significant association between lesion diameter and 

malignancy. We believe that the nodule size of our patient sample strongly depended on the 

institutional dataset from which the investigated nodules have been collected. This sample consisted 

mainly of patients referred to our PET/CT service from thoracic surgeons and the nodules were sent 

to invasive diagnosis (surgery resection). Therefore, we had a very homogeneous group of pulmonary 

nodules with a diameter close to 20 mm, which represents a potential selection bias in this study, 

preventing reaching the statistical significance. Additionally, we performed only the measurement of 

the largest diameter of the node. We believe that the small size of the sample might also have 

influenced this result. Smoking has been found as an independent predictor of malignancy [80, 268]. 

In our population, the majority of patients (50 from 55) had a smoking history. Because of the low 

percentage of non-smokers, our population was biased. It might have influenced the results since we 

did not find a relation between smoking history with the SPN malignancy. An interesting fact is that 

even when the principal histological types related to smoking are squamous cell carcinoma and small 

cell carcinoma [279], we had a low prevalence of these histologic types. 
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The retrospective nature of the study and the selection criteria could affect our results especially the 

latter. The fact that all the included patients with 18F-FDG PET/CT were undergone surgery implied 

a high pre-test probability of malignancy that biases the PET/CT Sp. However, that warrantied the 

final histopathological confirmation of all lesions. Concerning our results, a significant statistical 

difference between the SUVmax and patient age with the final histology of SPN (benign and 

malignant) was found. This is in accordance with other studies [267, 274]. However, we found no 

statistically significant relation between malignancy and factors previously described as predictors of 

malignancy, such as smoking status, gender, and nodule diameter. Predictive models of SPN 

malignancy is of major interest to clinicians. We derived a model to predict the probability of 

malignancy by multivariate regression analysis and identified the SUVmax as the only independent 

predictor of malignancy of SPN. Our model had a Se and an Sp of 92.5% and 66.7%, respectively. 

Unlike other models [266, 268, 274], in which only clinical and morphological variables have been 

used, our model includes the SUVmax as a metabolic variable. The results obtained in this 

preliminary study allow us to conclude that the SUVmax is a good predictor of malignancy in an SPN 

and can be used in the diagnostic setting whenever available. 

 

On the other hand, it will be necessary to develop new predictor models of malignancy based on 

clinical, morphological, and metabolic variables, and test their validity. The use of invasive diagnostic 

methods, such as fine-needle puncture, has risks to the patients, such as pneumothorax, bleeding, and 

dissemination of the tumor along the trajectory of the needle [280]. On the other hand, surgical lung 

biopsy has a mortality rate of around 0.6% [281]. An accurate, robust, and efficient predictive model 

for SPN malignity, could provide clinicians with reliable information to avoid the need for an invasive 

diagnostic method, allowing to limit the management of an SPN with safe clinical monitoring. Our 

predictive model of the SPN malignancy, unlike other models, used the metabolic variable SUVmax, 

showing that it is an independent variable to predict malignancy. The diagnostic performance of this 

model was higher than the visual and semiquantitative methodologies. 

 

5.5. Conclusions 
 

The assessment of SPN by semiquantitative methods did not improve the sensibility of visual 

analysis. The limited specificity was independent of the method used. However, the predictive model 

combining SUVmax and age was the best diagnostic approach, showing the SUVmax to be an 

independent variable to predict the malignancy of an SPN. 

 



T U M O R  H E T E R O G E N E I T Y  I N  P E T - C T  I M A G E S  P a g e  | 121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



T U M O R  H E T E R O G E N E I T Y  I N  P E T - C T  I M A G E S  P a g e  | 122 

 

 

Chapter 6. Comparison of cross-combinations between feature selection and machine-learning classifier methods based on 18F-

PET/CT radiomic features for prediction of the metabolic response in metastatic breast cancer 
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Summary 
 

The goal of this chapter is to identify an optimal combination between feature selection methods and 

machine learning classifiers based on 18F-PET/CT radiomic features, to predict metabolic response 

to the systemic treatment, in patients with recurrent or metastatic breast cancer.  In this study, 48 

patients with histologically confirmed recurrent or metastatic breast cancer, who received systemic 

treatment between 2010 and 2015 were enrolled.  All patients had an 18F-FDG PET/CT before and 

after the systemic therapy administration. A total of 228 tumor lesions were identified in the pre-

treatment PET/CT; from these 127 were classified as responders (complete or partial metabolic 

response) and 101 as non-responders (stable or progressive metabolic response), by using PERCIST 

criteria.  For each lesion, 101 image features from PET and CT were extracted (a total of 202 features 

per lesion). These features along with clinical and pathological information were used to construct 

several prediction models of metabolic response by using several combinations of feature selection 

and classification methods. However, before building the models, the lesions were randomly divided 

into two groups with a ratio of 80:20. The bigger group was used to create the models and 6-fold 

cross-validation, and the other to validate. To this, seven feature selection methods: ANOVA with F-

score, mutual information (MI), least absolute shrinkage and selection operator (LASSO), Wilcoxon 

test, hierarchical clustering (HC), principal component analysis (PCA), and independent component 

analysis (IPA); in cross-combination with other seven classification methods: support vector 

machines (SVM), random forest (RF), gaussian naive Bayes (GNB), logistic regression (LR), k-

nearest Neighborhood (KNN),  adaptative boosting (AdaBoost) and neural network (NN); were 

compared for their performance in predict the metabolic response to the treatment.  the model 

performances were investigated via area under the receiver-operating characteristic curve (AUC) and 

accuracy (ACC) analysis. The validation cohort was used to validate our models in terms of AUC 

and ACC. The results show that the selection method LASSO + classifier SVM or RF, ICA + SVM 

had the highest AUC in the cross-validation, with 0.91±0.05, 0.90±0.02, 0.90±0.05 respectively. The 

selection method LASSO + classifier RF had the highest AUC and ACC in the validating set, with 

0.83 and 0.80 respectively, followed by LASSO + KNN (AUC = 0.83, ACC = 0.71).  MI + NB or 

AdaBoost, as well as Wilcoxon + NB or RF, had good performance with an AUC of 0.80. SVM  had 

the best mean performance in the cross-validation and validation cohort (only accuracy). RF had the 

best mean of AUC in the validation cohort. In conclusion, this study showed that image features 

obtained from a pre-treatment 18F-FDG PET/CT could predict the metabolic response in recurrent or 

metastatic breast cancer, by their incorporation in a machine learning model (ML), which 

performance depends largely on the feature selection and ML classifier methods selected. 
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6.1. Introduction 
 

Breast cancer is the most commonly diagnosed cancer and the second leading cause of death for 

cancer among women worldwide surpassed only by lung cancer [1, 282]. After the initial diagnosis, 

it is important to define accurately the initial extent of the disease, because it will affect the treatment 

election. For instance, patients with locally advanced stages could receive neoadjuvant chemotherapy, 

followed by a breast operation and adjuvant radiotherapy, and depending on the hormonal receptor 

status of the tumor, they could receive posteriorly an adjuvant targeted-therapy or hormonotherapy 

[283].  However, after the primary treatment, some percentage of patients will have a recidive, 

months, or years after the initial diagnosis and treatment. This recidive could be loco-regional or 

distant (metastatic disease). The metastatic disease is largely responsible for the majority of cancer 

patient deaths [284], and its treatment implies usually to use of systemic therapies such as 

chemotherapy, hormonal therapy if the cancer is hormone-receptor-positive, and targeted therapy 

[283, 285]. Usually, systemic therapies have several side effects, which should be avoided by 

considering changing or discontinue the therapeutic regimen. In this context, the prediction of 

response to treatment or depiction of treatment-resistant phenotypes is essential in clinical practice, 

especially in the new era of precision medicine [285, 286].    

 

Currently, positron emission tomography/ computer tomography (PET/CT) is widely used in 

oncology, it is usually performed in breast cancer for recurrences detection or treatment response 

assessment, both in the context of neoadjuvant therapy or metastatic cancer treatment [94].  Changes 

in tumor metabolic activity, assessed by 18F-fluorodeoxyglucose positron emission 

tomography/computed tomography (18F-FDG PET/CT), is an early indicator of treatment 

effectiveness for breast cancer, both neoadjuvant and metastatic setting [95-98].  Likewise, a 

significant reduction in the metabolic activity of the tumor (i.e. treatment-sensible tumors), early 

during therapy, is associated with longer overall survival and progression-free survival in this tumor 

[99-101]. Even when these metabolic changes have shown to be valuable to predict the treatment 

response in breast cancer and other malignant tumors; in the last years, there is an increasing interest 

in the clinical and prognostic utility of quantitative imaging analysis through radiomics [25, 286].  

Radiomics refers to the extraction and analysis of quantitative imaging features from medical images, 

such as CT, PET, magnetic resonance (MR), and several others. It has been shown that these features 

reflect mechanisms occurring at genetic and molecular levels [58, 287]. From this point of view, 

radiomic features could find patterns in medical images, which could help to detected disease, 

understand the pathological process, or predict the medical evolution of patients. Specifically, in 
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oncology, radiomic features relating to tumor size, shape, voxel intensities, and texture, allow the 

tumor characterization, which has been called the radiomic signature of the tumor [58], and have 

shown their ability for diagnosing and predicting in several cancers [288, 289]. The radiomic process 

begins with the medical image acquisition, followed by the identification and segmentation of regions 

of interest (ROIs), which can include the whole tumor or only some parts of it. From these ROIs, 

several quantitative image features are extracted [290], which together with clinical variables, 

genomic profiles, serum markers, and/or histology data, can be used to build image-based biomarkers 

for diagnose, treatment response, recurrence prediction, or survival. Although the radiomic 

methodology has been applied to several malignant entities.  

 

In breast cancer specifically, most of the radiomic studies have been carried out with MR images and 

in a neoadjuvant treatment context [102, 103, 291]. This could be justified by the fact that MRI of the 

breast is widely applied in screening of high-risk women, staging, evaluating treatment response, 

monitoring recurrence, and especially providing complementary information for uncertain findings 

on mammography and ultrasonography. Likewise, MRI has a higher resolution of soft tissues, 

different sequences of MRI could provide functional information of tumors, such as blood flow and 

breast density, and find the heterogeneity of tumor microenvironments [292-294]. However, some 

studies appearing more recently have explored the potential of radiomics with PET/CT, but none of 

them in patients with recurrent or metastatic breast cancer [104], which makes this study much more 

relevant, because the ability of PET/CT to early assess the treatment response.  

 

To build image biomarkers from radiomic features, a classical statistical approach could be used. 

However, an increasing number of radiomic studies are based on machine learning (ML) classifiers, 

which have shown great promise [105]. This approach relies on a pipeline, including extraction of 

numerous handcrafted imaging features; followed by feature selection and machine learning-based 

classification.  Feature selection or reduction variable methodologies should be carried before any 

ML model construction, because these can identify redundant and irrelevant imaging features, 

allowing to remove them from further analysis and improving the ML classifier performance [106].   

To the best of our knowledge, no radiomic studies with ML have been carried out in recurrent or 

metastatic breast cancer. However, we hypothesized that ML models using radiomic features 

extracted can help to predict the metabolic response to the systemic treatment in this kind of patient. 

Therefore, this work proposes to use radiomic metrics extracted from 18F-FDG PET and CT to build  
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ML models and identify optimal feature selection and ML methods for recognizing precociously 

patients that might have a treatment-sensible or resistant tumor phenotype, which could help to select 

or adjust a particular therapy.  

 

6.2. Methods  
 

6.2.1 Patient Cohort  
 

This was a retrospective per-lesion study. A chart review of 136 patients with a locoregional or distant 

recidive of breast cancer, who were diagnosed and treated at “Vienna General Hospital” (AKH-

Vienna) between 2010 and 2015, was performed.  Medical records, as well as pathologic and 

radiologic reports, were reviewed to identify a set of patients who met eligibility criteria: female 

gender, a biopsy-proved recurrent/metastatic breast cancer, to have received chemotherapeutic 

treatment and to have an 18F-PET/CT study, before and during/after completion of the full course of 

chemotherapy. Exclusion criteria included patients with incomplete information, very small tumor 

lesions, image artifacts, which would have precluded accurate texture analysis. Approval from the 

local institution was obtained. The collected histopathologic parameters for the primary and 

metastatic tumor were: histologic type and grade, status for estrogen receptor (ER), progesterone 

receptor (PR), and human epidermal growth factor receptor (HER2), as well as Ki-67 proliferation 

index. All pathology and histopathology analyses were performed using standard procedures in AKH.  

Besides, clinical variables at initial diagnostic, such as age, breast side affectation, and TNM 

classification [32] were recorded. Clinical and demographic information of patients can be found in 

Table 6.1. All patients received chemotherapy or target therapy. The treatment protocol and schedule 

followed the standard oncology treatment and procedures in AKH-Vienna.   

 

6.2.2 PET/CT image acquisition 
 

18F-FDG PET-CT images were performed according to the standard PET/CT image protocol of the 

nuclear medicine division of AKH-Vienna. A whole-body 18F-PET/CT from mid cranium to the upper 

thigh was performed using a 64-row multi-detector PET/CT system (Biograph TruePoint 64; 

Siemens, Erlangen, Germany) with an axial field-of-view of 216 mm, a PET sensitivity of 

7.6 cps/kBq, and a transaxial PET resolution of 4–5 mm (full-width at half-maximum, FWHM). 

Finally, most of the images had a voxel size of 4.07 × 4.07 ×3.00 mm3 or 0.7 × 0.7 × 2.0 mm3 for PET 

and CT respectively. 
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         Table 6.1. Demographic and clinical information of patients at initial diagnose 

 

Characteristic                                                                        n(%)     

 

Total patients  48 

Mean age (years)  48.1 

Affected side   

right  26 (54.2%) 

left  22 (45.8.2%) 

Histologic type   

ductal  42 (87.5%) 

lobular  5 (10.4%) 

other  1 (2.1%) 

Tumor size1 (T)   

T1a-b  12 (25%) 

T1c  15 (31.3%) 

T2  11 (22.9%) 

T3  5 (10.4%) 

Nodal affectation1 (N)   

N0  14 (29.2%) 

N1  22 (45.8%) 

N2a-b  4 (8.3%) 

N3a  2 (4.2%) 

N3b  1 (2.1%) 

Mestatase1 (M)   

M0  20 (39.6%) 

       M1  1 (2.1%) 

       Mx  22 (43.8%) 

Estrogen receptor positivity   

negative  17 (54.2%) 

low  4 (54.2%) 

moderate  11 (54.2%) 

strong  16 (54.2%) 

Progesterone receptor 

positivity 

  

negative  24 (50%) 

low  8 (16.7%) 

moderate  7 (14.62%) 

strong  9 (18.8%) 

Her2-new2 positivity   

0  33 (68.8%) 

1  15 (31.3%) 

Histologic Grade3   

well  1 (2.1%) 

moderate  20 (41.7%) 

        poor  26 (54.2%) 
             1For 5 patients were not available information; 2human epidermal growth factor receptor 2; 

             3For 1 patient was not available information 
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6.2.3 ROI Delineation 
 

For each patient, one or several tumor volumes of interest (VOI) were included. The delineation 

process was performed using the Hermes Hybrid 3D software, version 2.0 (Hermes Medical 

Solutions, Stockholm, Sweden).  First, a cuboid volume of interest (VOI, 5 × 5 × 5 voxels) was 

defined in the background area of each PET image. Then, the tumor lesions were delineated using a 

semiautomatic region-growing tool to generate corresponding PET-VOIs. By using a mask on the CT 

component, CT-VOIs were also obtained. To perform a posterior analysis, all VOIs were saved as a 

comma-separated values (CSV) file, each one with spatial coordinates and intensity, as well as several 

metabolic parameters and other basic image information. 

 

6.2.4 Image Preprocessing 
 

PET image intensity was converted to SUVs.  To remove individual acquisition differences, and in-

line with other radiomic studies [189, 190], the images were normalized and resampled into a voxel 

size of 1 × 1 × 1 mm3. Further image preprocessing was not performed. See section 2.3.2 of this thesis 

for a better description of the resampling process. 

 

6.2.5 Metabolic parameters extraction 
 

From the VOIs of each lesion, metabolic parameters of 18F-FDG uptake such as maximum, mean, 

minimum, and peak standardized uptake value (SUVmax), (SUVmean), (SUVmin) and (SUVpeak) 

respectively, as well as metabolic tumor volume (MTV), total lesion glycolysis (TLG) and SUL (lean 

body mass corrected SUV) peak were obtained. 

 

6.2.6 PET/CT response assessment 
 

PET/CT scans were reviewed for a trained nuclear medicine physician. FDG-avid target lesions were 

identified in each patient on initial PET and were followed on follow-up PET. All target lesions on 

initial PET were confirmed to be metastatic by morphological imaging. Semiquantitative analysis 

was performed by using the maximum standardized uptake value (SUVmax) calculated for each 

target lesion. The changes in SUVmax between initial and follow-up PET were recorded for the 

highest SUVmax targets. The percentage of change in SULpeak (defined as the average SUV within 

a 1 cm3 spheric ROI, centering around the hottest point in the tumor, and corrected by lean body mass  
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of the patient) allowed the patient´s classification according to PET response criteria in solid tumors 

(PERCIST) criteria [42, 295] into the following groups: 

 

• Complete metabolic response (CMR) 

 

• Partial metabolic response (PMR) 

 

• Stable metabolic disease (SMD) 

 

• Progressive metabolic disease (PMD) 

 

Then patients with CMR and PMR were considered as responders and patients with SMD and PMD 

as no-responders. For some patients, the SULpeak was not available, in these cases a subjective and 

SUVmax based response was obtained. 

 

6.2.7 Radiomic features extraction 
 

From the PET and CT delineated lesions radiomic features radiomic features were extracted. The 

features were extracted in the platform MATLAB by adapting an open-source radiomic analysis 

package with its several MATLAB functions [189]. This package follows the definitions of features 

from the Imaging Biomarker Standardization Initiative (IBSI) [192]. The radiomic features are 

summarized in Table B1 of Appendix B. 

 

6.2.7.1 Texture Features 
 

A total of 101 textural features were extracted for each contoured tumor on 18F-FDG-PET and CT 

images, respectively, i.e. 202 textural features in total.  From these 110 features, 13 were intensity 

histogram features and 88 textural features ( of which 31  explore intratumoral heterogeneity). These 

features were then used to construct an ML model to classify the desired binary groups (responders 

versus non-responders) [27, 296-298]. A general vision of the radiomic procedure implemented in 

this work can be appreciated in Figure 6.1. 
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Figure 6.1. Radiomic pipeline process 

 

6.2.8 Univariate statistical analysis 
 

Univariate analysis was performed to investigate associations of single features with the outcome 

(metabolic response). Firstly, all features were normalized via Z-score normalization to zero mean 

and unit variance. Then, for each clinical variable or image feature, a chi-squared or Mann-Whitney 

U statistic test was calculated. The significance level was set a p < 0.005. A Bonferroni test was 

applied to avoid overestimation due to multiple testing. Also, the Spearman correlation test was 

performed for each pair of image features or clinical variables. This statistical analysis was performed 

by using IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp [35]. 
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6.2.9 Machine Learning Model  
 

6.2.9.1 Feature selection 
 

Not all 202 features were included in the machine learning models implemented later in this article. 

Radiomics studies have hundreds of features, many of which are highly correlated with one another; 

this makes necessary feature selection methods to avoid collinearity, reduce dimensionality, minimize 

noise and so to minimize overfitting problems [106, 217, 299, 300]. Hence initially a data-

preprocessing methodology was implemented to reduce the large set of features to a subset of the 

most significant features. A pairwise Spearman correlation matrix was used to identify pairs of highly 

correlated features (|r| ≥ 0.90). Finally, from each pair, only those with the best association to the 

target variable (responders or not) were retained. This association was measured through a chi-

squared or Mann-Whitney test between each variable and the response target variable.   After this 

data-preprocessing step, seven popular feature selection methods were used to further reduce the 

number of features: ANOVA F-score, mutual information (MI), least absolute shrinkage and selection 

operator (LASSO), Wilcoxon test (WT), hierarchical clustering (HC), principal component analysis 

(PCA) and independent component analysis (IPA). These methods were chosen because of their 

popularity in several publications about radiomics and machine learning [301-304].  

 

6.2.9.2 Classification methods 
 

In order to classify tumor lesions into responders and non-responder (0 or 1), we investigated seven 

popular machine-learning classifiers:  support vector machines (SVM), Random Forest (RF), 

Gaussian Naives-Bayes (GNB), logistic regression (LR), k-nearest neighborhood (KNN), adaptative 

boosting (AdaBoost) and neural network (NN) [305, 306]. The acronym for each feature selection 

method and ML classification method are listed in Table 6.2.  The feature selection and classification 

methods were implemented by using SciKit Learn package in python (scikit-learn version 0.21, 

python version 3.6.3), and using the open platform Google Colaboratory [220]. Each of the seven 

feature selection methods was combined with all the seven classification methods, and each 

classification method was combined with all the seven feature selection methods, yielding 48 cross-

combinations of evaluated methods. 
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Table 6.2. Feature selection and classification methods 

Feature selection method ML Classifier 

AFV (ANOVA F-value) SVM (support vector machine) 

MI (mutual information) GNB (Gaussian naive Bayes) 

PCA (principal component analysis) RF (random forest) 

ICA (independent component analysis) LR (logistic regression) 

Lasso (least absolute shrinkage and selection operator KNN (k-nearest neighborhood) 

CL (clustering) AdaBoost (adaptive boosting) 

WT (Wilcoxon test) NN (neural network) 

 

 

6.2.9.3 Model construction  
 

To create the radiomic-based model, we followed the next steps, which are recommended to perform 

a suitable model [225]:  

 

1. Data imputation, by filling the empty data with the most frequent strategy. 

 

2. Splitting of the data (80:20) into X_train, X_test, y_train, y_test, where X and y are predictive 

features (clinical and radiomic features) and target variable (responders or non-responders) 

respectively. Only the training set was used to construct the models, and the test set for 

validation purposes. 

 

3. A synthetic minority over-sampling technique (SMOTE) [307] was performed for over-

sampling the non-responder to have the same number of instances as the responder in the 

training procedure. Initially, the training dataset was unbalanced, with the non-responder and 

responder groups with 101 and 81 samples respectively, which might skew the model 

performance. 

 

4. Data standardization, all variables are obligated to have mean zero and standard deviation of 

one.    

 

5. Feature selection methods as the Wilcoxon test and hierarchical clustering were applied 

directly after the data-preprocessing methodology to obtain a smaller number of features. 
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However, ANOVA F-score, MI, LASSO, PCA, and IPA were accoupled to the seven 

different classifier methods, then an iterative process was implemented to find a group of 

features with the best performance in terms of ACC and AUC. Therefore, curves of the 

number of features selected versus model performance were obtained. 

 

6. Hyperparameters tuning. The model performance in most machine learning algorithms are 

dependent upon the choice of various tuning parameters and selected feature number. Also, 

some tuning parameters take into account the number of predictors after feature selection.  

We performed parameter tuning for SVM, RF, KNN through cross-validation, and by using 

the class GridSearchCV of SciKit Learn. For GNB, LR, AdaBoost, and NN the default 

hyperparameter setting was used. 

 

7. Finally, the 49 cross-combinations (each one with a specific subset of features, and an ML 

classifier with specific hyperparameters) were trained by using the training cohort. 

 

6.2.9.4 Model Performance Metrics and validation 
 

The model performances were assessed with ACC and AUC metrics. A 6-fold cross-validation was 

done in the training group; it splits the data into six equal parts and used 5 parts for training and the 

rest for testing. The feature selection methods are included in the cross-validation algorithm so that 

their contribution to the final model is reflected in the performance metrics. Posteriorly, model 

validation was performed by applying the trained models to the test group. Receiver operating 

characteristic (ROC) curves were produced for each model.  

 

6.3. Results 

 

6.3.1 Clinical characteristics 

 

Finally, forty-eight patients were identified to have a biopsy-proven recidive as well as available 

pretreatment and follow-up 18F-FDG PET-CT. A total of 228 tumor lesions were visualized on the 

pretreatment PET/CT and follow-up on the subsequent PET/CT.  Patient and tumor characteristics 

are summarized in Table 6.1. The mean time elapsed between the initial and response PET/CT was 

of 149 days. A description of the treatment of each patient and places of affectation is giving in Table 

B2 of Appendix B.  
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Seventy-two lesions showed a complete metabolic response, 55 partial response, 7 stable disease, and 

94 progression. By considering as responder those lesions with CMR or PMR, and as no-responder 

lesions with SMD or PMD; 127 were considered as responders and 101 as no-responders, 

respectively.  

 

6.3.2 Feature extraction and correlation 
 

A total of 202 radiomic features (101 for each imaging modality), as well as 20 clinical and metabolic 

variables, were obtained and investigated in terms of their association with the metabolic response of 

the patients. The data-preprocessing filter removed 116 highly correlated features, leaving a set of 

only 106 predictors. Figure 6.2 shows the heatmap of the feature and clinical variable correlations, 

before and after the pre-processing filter application. From this, it is appreciated that clinical variables 

have low Spearman correlation between them. The results of the univariate analysis are presented in 

Table B3 of Appendix B. However, clinical variables as tumor size, estrogen and progesterone 

receptor positivity, human epidermal growth factor receptor 2, and tumor grade, as well as some 

metabolic variables as SUVpeak, SUVmean, SUVmax had a statistically significant association with 

the target variable (metabolic response).   

 

6.3.3 Feature reduction 
 

After applying feature reduction with HC and WT to the original 222 features and clinical variables, 

only 58 and 106 parameters were maintained respectively.  The relationship between selected feature 

number and performance of the models, for each combination between ANOVA F-score, MI, 

LASSO, PCA, and ML classifiers. More specifically, for each combination we iteratively 

incrementally the number of selected features or components (for PCA and ICA) that finally fed the 

ML classifier, which is subsequently trained and its performance assessed in each step through cross-

validation. Figure 6.3 shows an example of how the classification performance for LASSO + SVM 

changes according to the number of selected features. Maximal AUC and ACC are found with 22 and 

25 features respectively. Besides, hyperparameters for SVM, RF, and KNN were tuned during the 

iterative cross-validation. For LR, GNB, AdaBoost, and NN, the defect parameters of SciKit Learn 

were used.  
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Figure 6.2. Spearman correlation heatmap for the feature and clinical parameters; left: before 

preprocessing and right: after pre-processing 

 

 

 

Figure 6.3. Number of selected features and ML prediction performance (ACC and AUC) 
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6.3.4 Performance of feature selection methods and classifiers 

 

The diagnostic performance of feature selection and classification methods were evaluated by 

repeated 6-fold cross-validation in the training group and validation in the test group. In this study, 

the diagnostic performance was quantified by the area under the curve (AUC) and accuracy (ACC). 

Additionally, the calibration of the best model found was assessed by comparing the probabilities as 

observed in the data and the model-based expected. It can be found in Figure B1 of Appendix B. 

 

6.3.5. Cross-validation 
 

We examined 49 combinations of feature selection and classification methods. Table 6.2 reports the 

performance values, in terms of mean AUC and its standard deviation for the 6-fold cross-validation, 

for each pair feature selection (in rows) and ML classifier method (in columns). The combination of 

LASSO + SVM had the highest AUC of 0.91 ± 0.05; follow by Lasso + RF and ICA + SVM, with 

0.9 ± 0.02 and 0.9 ± 0.5 respectively. On average, both the GNB classifier and the F-Score feature 

selection method had each one individually, the lower performance. 

 

  Table 6.3. Model performances in the cross-validation (AUC ± SD) 

  Classifier 

 Model SVM 
Naive 

Bayes 
RF LR KNN AdaBoost NN 

F
ea

tu
re

 s
el

e
ct

io
n

 

F-Score 
0.84 

±0.06 
0.71±0.09 0.85±0.07 0.75±0.05 0.79±0.07 0.71±0.12 0.85±0.08 

Mutual 

information 
0.85±0.08 0.68±0.08 0.86±0.06 0.74±0.06 0.82±0.08 0.80±0.07 0.76±0.07 

PCA 0.86±0.05 0.76±0.14 0.85±0.06 0.73±0.06 0.79±0.07 0.71±0.11 0.85±0.08 

ICA 0.90±0.05 0.70±0.07 0.85±0.07 0.77±0.06 0.86±0.04 0.77±0.05 0.74±0.07 

Lasso 0.91±0.05 0.80±0.06 0.90±0.02 0.74±0.04 0.89±0.04 0.68±0.05 0.73±0.10 

Clustering 0.80±0.07 0.65±0.07 0.80±0.05 0.76±0.06 0.68±0.07 0.74±0.07 0.85±0.06 

Wilcoxon 0.86±0.06 0.70±0.08 0.87±0.06 0.72±0.5 0.78±0.07 0.75±0.14 0.845±0.04 

Mean 0,86±0.06 0,71±0.08 0,85±0.06 0,74±0.12 0,80±0.06 0,74±0.09 0,80±0.07 
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The ROC curves of the 6-fold cross-validation for LASSO + SVM and Lasso + RF are plotted in 

Figure 6.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4. ROC curves for cross-validation of Lasso + SVM and RF 

 

6.3.6. Prediction performance (validation) 
 

Tables 6.3 and 6.4 show respectively the AUC and ACC for the pair feature selection (in rows) and 

ML classifier method (in columns). Regarding AUC, the highest predictive performance was gotten 

by selection method LASSO + classifier RF or KNN with 0.83 each one.  On average, any feature 

selection methods + KNN had the worst performance.  When taking into account the ACC, the highest 

predictive performance was got by LASSO + KNN with 0.8, followed by Clustering + GNB with 

0.74.  The ROC curve and confusion matrix for the model LASSO + RF are showed in Figure 6.5.  

 

6.4. Discussion 
 

Currently, several therapeutic alternatives are available to treat metastatic breast cancer [283, 285]. 

But the existence of multiple possibilities also requires a judicious assessment of the response to the 

treatment administered, to avoid unnecessary side effects, especially when it is not working 

adequately, allowing so an early change to other potentially better therapeutic options. Even better 
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would be to have a method available to perform a pre-therapeutic prediction of the tumor response to 

a specific treatment. In this study, we demonstrated that such prediction is possible by using radiomic 

and machine learning. It is tempting to think of a method that allows predicting the probability of 

tumor response to each of the available treatments in patients with recurrent or metastatic breast 

cancer. This will allow starting treatment with that therapeutic regimen with a greater probability of 

success and fewer adverse effects. 

 

 

  Table 6.4. Model performances in the validation (AUC) 

  Classifier 

 Model SVM Naive Bayes RF LR KNN AdaBoost NN 

F
ea

tu
re

 s
el

e
ct

io
n

 

F-Score 0.67 0.77 0.72 0.70 0.73 0.73 0.76 

Mutual 

information 
0.74 0.80 0.79 0.66 0.78 0.80 0.78 

PCA 0.74 0.59 0.72 0.71 0.66 0.67 0.77 

ICA 0.78 0.78 0.77 0.73 0.71 0.59 0.61 

Lasso 0.75 0.73 0.83 0.66 0.83 0.64 0.65 

Clustering 0.74 0.78 0.74 0.79 0.63 0.75 0.72 

Wilcoxon 0.72 0.80 0.80 0.76 0.68 0.70 0.70 

Mean 0,73 0,75 0,77 0,72 0,72 0,70 0,71 

 

  
 

Table 6.5. Model performances in the validation (ACC) 

  Classifier 

 Model SVM Naive Bayes RF LR KNN AdaBoost NN 

F
ea

tu
re

 s
el

e
ct

io
n

 

F-Score 0.67 0.65 0.65 0.65 0.65 0.74 0.65 

Mutual 

information 
0.72 0.59 0.74 0.67 0.72 0.70 0.76 

PCA 0.72 0.61 0.67 0.65 0.54 0.65 0.71 

ICA 0.76 0.70 0.71 0.76 0.65 0.61 0.58 

Lasso 0.67 0.70 0.71 0.65 0.80 0.63 0.67 

Clustering 0.72 0.74 0.63 0.70 0.61 0.72 0.71 

Wilcoxon 0.70 0.72 0.74 0.67 0.61 0.70 0.58 

Mean 0,71 0,67 0,69 0,68 0,65 0,68 0,67 
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Figure 6.5. Validation ROC curve and confusion matrix for model Lasso-RF 

 

The emerging field of radiomics quantifies the phenotypic characteristics of tumor tissues on medical 

image features. Since 18F-FDG PET/CT is a valuable image method in oncology, and commonly used 

to assess the tumor response to the treatment in breast cancer, we investigated the ability of radiomic 

features of 18F-FDG PET/CT along ML algorithms to predict the metabolic response of tumor lesions 

to the systemic treatment in patients with recurrent or metastatic breast cancer.  

 

To this aim, we developed and validated 49 predictive models, each one with different combinations 

of feature selection and ML methods. The most relevant set of features of each selection method, as 

well as the best hyperparameters of each ML classifier, were used for each particular model. Finally, 

the model performances were assessed by 6-fold cross-validation and validation in the testing group, 

by using AUC and ACC as metrics. This type of study tries to find an optimal configuration of feature 

selection and ML method, for a specific clinical setting. 

 

The combination with the highest performance was the LASSO features selection method + RF as an 

ML classifier. For this combination, the AUC in the cross-validation was 0.91 ± 0.05, while in the 

validation; AUC and ACC were 0.83 and 0.71 respectively. However, other combinations also 

showed a good performance, so that they should not be simply discarded.  These results show that a 

radiomic approach, by using ML models, might be able to predict the tumor metabolic response to 
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the systemic treatment in patients with recurrent or metastatic breast cancer. Most of the PET/CT 

studies for prediction of the treatment response in breast cancer not include radiomic analysis, and 

the have been performed in a neoadjuvant context [95, 308, 309]; only a few studies consider the 

treatment response in patients with metastatic cancer [99, 100, 310].  On the other hand, concerning 

the existing PET/CT radiomic studies in breast cancer, they have only considered a neoadjuvant 

context [23, 208, 311, 312].   To our best knowledge, there are not radiomic studies to predict the 

treatment response in metastatic breast cancer. 

 

The radiomic and ML methodologies are influenced by the feature selection method as well as the 

ML algorithm used. Because, different combinations have different performances, and it depends 

possibly on the tumor and clinical setting, some authors have recommended performing this kind of 

study for each tumor and clinical context [225].  The identification of optimal ML methods for 

radiomic applications is a crucial step towards stable and clinically relevant radiomic biomarkers 

construction. We consider the importance of our study because of the lack of an ML-based radiomic 

approach to the assessment of metabolic response in patients with metastatic cancer. 

 

In other pathologies and clinical contexts, several combinations of selection methods and ML 

classifiers are suitable for classification or prognostic purposes.  For example, Dongyanh et al. [303] 

found the cross-combination fisher score (FSCR) plus KNN, SVM, or RF as suitable for 

differentiation between recurrence and inflammation (AUC 0.883, 0.867, and 0.892 respectively) by 

using PET/CT images of patients treated of nasopharyngeal carcinoma. In addition to FSCR, they 

used other feature selection methods as mutual information maximization, Fischer score, Relief-F, 

conditional mutual information maximization, Minimum redundancy maximum relevance, and Joint 

mutual information. Parmar et al. [306] investigated fourteen feature selection and twelve 

classification methods in terms of their performance for predicting overall survival in patients with 

non-small cell lung cancer (NSCLC). They used CT images and founded that the Wilcoxon test-based 

feature selection method and RF classification had the highest performance (AUC of 0.65 ± 0.02 and 

0.66 ± 0.03 respectively).  Yin et al. [302] aimed to identify optimal machine-learning methods for 

preoperative differentiation of sacral chordoma and sacral giant cell tumors based on 3D non-

enhanced computed tomography (CT) and CT-enhanced (CTE) features.  The selection method 

LASSO + classifier generalized linear models (GLM) had the highest AUC of 0.984 and ACC of 

0.897 in the validating set. Three selection methods were used: Relief, LASSO, and RF. Moreover, 

SVM, GLM, and RF performed the classification. 
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There are some limitations to this study. Firstly, it is a retrospective study with a small cohort and 

heterogeneous group of patients, regarding clinical and pathological features as well as administered 

treatment, which was obtained from one institution. A prospective multicenter study with a larger 

cohort is necessary to confirm our results and improve the reliability and clinical application of this 

radiomic study. To improve the reproducibility and generalizability of this study, we used IBSI-based 

standardized radiomic features, which were normalized with the z-score method. We only compared 

seven commonly used feature selection methods and seven classification methods regarding their 

performance to predict metabolic response in patients with recurrent or metastatic breast cancer. Since 

there are many other methods, and therefore possible combinations, we cannot be sure that we have 

found the most suitable combination. Hyperparameters cannot be learned by the algorithm directly 

during the training, and rather they must be set before the training starts. In this study, four ML 

methods (LR, GNB, AdaBoost, and NN) were used with their default settings, whereas a 

hyperparameter tuning was performed for SVM, RF, and KNN, which might have resulted in 

enhanced performance of these last three methods. 

 

The patients included in this work received different chemotherapy regimens, according to their 

clinical and pathological characteristics. This implies that there are many variables involved, 

depending on the patient, tumor, as well as of administered treatment. All of this affects the final 

metabolic response of the metastatic lesion. Despite everything, we have been able to predict the 

metabolic response to the treatment in these metastatic lesions, with an important AUC and ACC. We 

believe that, by recruiting a more homogeneous group of patients, with similar tumor biology and 

receiving more homogeneous therapeutic regimes, the performance of a radiomic ML-based model 

would be improved. On the other hand, by doing a long-term follow-up of the patients, such models 

could be expanded to predict outcomes as time-free of disease and survival. 

 

6.5. Conclusion 
 

In conclusion, we constructed models based on radiomic 18F-FDG PET/CT features and ML 

classifiers to predict the metabolic response to systemic therapy in patients with recurrent or 

metastatic breast cancer. The selection method LASSO + classifier RF had the highest performance 

in the validation cohort. Although, other combinations also showed high diagnostic performance. 

This comparative investigation may be an important reference in identifying reliable and effective 

machine-learning methods for radiomic-based prognostication in these kinds of patients. 
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Conclusions of this thesis 

 

 

The main contributions and conclusions of the thesis are summarized in this section. 

 

Lung cancer 
 

In this thesis, we have used metabolic and textural features to investigate their clinical relevance in 

patients with lung and breast cancer.  

 

We found that the tumor heterogeneity in NSCLC assessed by texture analysis of the PET component 

of 18F-FDG PET/CT images is correlated with metabolic parameters, and both are associated with 

macroscopic tumor diameter and, under special considerations AJCC-TNM stage.  

Textural features, related to the heterogeneity such as  (energy, entropy, contrast, homogeneity, and 

correlation, and metabolic parameters such as SUVmax, SUVmean, metabolic tumor volume (MTV), 

and total lesion glycolysis (TLG), as well as pathologic staging, histologic subtype, and tumor 

diameter, were correlated. 

There was a positive relationship between all metabolic parameters (SUVmax, SUVmean, MTV, and 

TLG) with entropy, correlation, and homogeneity and a negative relationship with energy and 

contrast. The T component of the pathologic TNM staging (pT) was similarly correlated with these 

textural parameters. Textural features associated with tumor heterogeneity were shown to be related 

to global metabolic parameters and pathologic staging. 

 

Therefore, SUV and other measurements of FDG tumor uptake can potentially be supplemented by 

additional imaging parameters derived from either the PET or the CT images.  It is expected that such 

imaging parameters can be more suitable to guide and predict therapy response, as well as survival.  

For instance, if we found a lung tumor with high entropy and low energy in a staging PET/CT, it 

could need more aggressive therapy from the beginning than others with low entropy and high energy, 

but this requires additional work to be validated. However, some textural features have no linear 

relationship with volume-based metabolic parameters, making them more sensitive to tumor volume 

definition and defaulting to establish relationships with AJCC staging.  Then, additional work is 

necessary to get to establish those image features with potential usability in the clinical practice. 
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Solitary pulmonary nodules (SPN) 
 

We investigated the diagnostic performance of different metabolic, morphologic, and clinical criteria 

for the correct presurgical classification of solitary pulmonary nodules (SPN).  The assessment of 

SPN by semiquantitative methods did not improve the sensibility of visual analysis. However, a 

predictive logistic model combining SUVmax and age had the best diagnostic performance.    

 

The different criteria of classification: (I) visually detectable metabolism, (II) SUVmax >2.5 

regardless of SPN diameter, (III) SUVmax threshold depending of SPN diameter,  (IV) ratio 

SUVmax/diameter greater than , had a sensibility/ specificity of  (I): 97.5% and 13.1%; (II) 67.5% 

and 53.3%; (III) 70% and 53.3%; and (IV) 85% and 33.3%, respectively. However, the logistic 

predictive model had 87.5% and  46.7%. The results obtained in this study allow us to conclude that 

the SUVmax is a good predictor of malignancy in an SPN and can be used in the diagnostic setting 

whenever available. However, the specificity is improved by a logistic predictive. This gain in 

specificity is of great clinical importance, because the use of invasive diagnostic methods, such as 

fine-needle puncture, pretending an accurate diagnosis, has risks to the patients, such as 

pneumothorax, bleeding, and dissemination of the tumor along the trajectory of the needle. On the 

other hand, surgical lung biopsy has a mortality rate of around 0.6%. An accurate, robust, and efficient 

predictive model for SPN malignity, could provide clinicians with reliable information to avoid the 

need for an invasive diagnostic method, allowing to limit the management of an SPN with safe clinical 

monitoring.  

 

Breast cancer 
 

The prognostic performance ML models, based on radiomic features, to predict the response the 

systemic therapy in patients with recurrent or metastatic breast The LASSO selection method + 

classifier RF had the highest performance. With an AUC of 0.90±0.02 in the cross-validation and  

83% in the validation cohort. Although, other combinations also showed high diagnostic 

performance. This comparative investigation may be an important reference in identifying reliable 

and effective machine-learning methods for radiomic-based prognostication in these kinds of patients. 

0.90±0.02 in the cross-validation with an AUC of 83% in the validation. The patients included in this 

work received different chemotherapy regimens, according to their clinical and pathological 

characteristics. This implies that there are many variables involved, depending on the patient, tumor, 

as well as of administered treatment. All of this affects the final metabolic response of the metastatic 
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lesion. Despite everything, we have been able to predict the metabolic response to the treatment in 

these metastatic lesions, with an important AUC and ACC. We believe that, by recruiting a more 

homogeneous group of patients, with similar tumor biology and receiving more homogeneous 

therapeutic regimes, the performance of a radiomic ML-based model would be improved.  

 

An important contribution of this work is its novelty in predicting the response to systemic therapy 

in patients with breast cancer. Most of the PET/CT studies for prediction of the treatment response in 

breast cancer not include radiomic analysis, and they have been performed only in a neoadjuvant 

context. On the other hand, very few numbers of studies consider the treatment response in patients 

with metastatic cancer, by using only metabolic parameters.  To our best knowledge, there are not 

radiomic studies to predict the treatment response in metastatic breast cancer. A systematic review of 

the use of radiomic in breast cancer has recently been published, but nothing has appeared regarding 

the use of it in patients with recurrent or metastatic breast cancer [208]. 

 

We are currently developing a study on the same group of patients to determine whether radiomic 

characteristics extracted from the sub-volume of the tumor are better predictors of response to 

therapy. 
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Appendix A 
 

Publications derived from this thesis 
 

A.1 Published articles 
 

 

18F-FDG-PET/CT in the assessment of pulmonary solitary nodules: comparison of different 

analysis methods and risk variables in the prediction of malignancy. 

Ober van Gómez López, Ana María García Vicente, Antonio Francisco Honguero Martínez, Germán 

Andrés Jiménez Londoño, Carlos Hugo Vega Caicedo, Pablo León Atance, Ángel María Soriano 

Castrejón. Transl Lung Cancer Res 2015;4(3):228-235. 

 

 

P257 Tumour Heterogeneity in Non-small Cell Lung Carcinoma and 

its Relation with Metabolic Parameters in 18F-FDG PET/CT 

EANM Abstracts 2013. Eur J Nucl Med Mol Imaging 40, 1–477 (2013). 

https://doi.org/10.1007/s00259-013-2535-3:S362-63 

 

Heterogeneity in [18F] Fluorodeoxyglucose Positron Emission Tomography / Computed 

Tomography of Non–Small Cell Lung Carcinoma and Its Relationship to Metabolic Parameters 

and Pathologic Staging.  

van Gómez López O, García Vicente AM, Honguero Martínez AF, Soriano Castrejón AM, Jiménez 

Londoño GA, Udias JM, León Atance P. Mol Imaging. 2014;12. doi: 10.2210/8290.2014.00022. 

 

 

A.2 Articles pending to be published 
 

Comparison of cross-combinations between feature selection and machine-learning classifier 

methods based on 18F-PET/CT radiomic features for prediction of the metabolic response in 

metastatic breast cancer. 

Gómez López OV, López Herraiz J, Haug A, Udías Moileno JM, 
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Appendix B 
 

Table B1. Summary of the radiomics features. 

 
Category feature (number) 

 

Name 

Intensity (13) 

 

SUVmax, SUVpeak, SUVmean, SUVstd, SUVvar, 

SUVenergy, AUC_CSH, Mean, Variance, 

Skewness, Kurtosis, Energy, Entropy-histogram 

 

Textural (88) 

 

GLCM 

 

Energy, Entropy, Difference entropy, Sum entropy, 

Variance1, Variance2, Sum variance, Max 

Possibility, Contrast, Dissimilarity, Homogeneity1, 

Homogeneity2, Correlation, DiffVar, 

Autocorrelation, Cluster prominence, Cluster shade, 

Cluster tendency, ICM1, ICM2, InVar, IDMN, 

IDN, Sum Average1, Sum Average2, Agreement 

 

GLRLM 

 

SRE, LRE, GLN, RLN, RP, LGRE, HGRE, SRLGE, 

SRHGE, LRLGE, LRHGE, GLV, RLV 

 

GLSZM 

 

SZE, LZE, GLN, ZSN, ZP, LGZE, HGZE, SZLGE, 

SZHGE, LZLGE, LZHGE, GLV, ZSV 

 

NGTDM Coarseness, Contrast, Busyness, Complexity, 

Strength 

 

GLGLM 

 

SGE, LGE, GLF, GaLN, GP, LGGE, HGGE, 

SGLGE, SGHGE, LGLGE, LGHGE, GrLV, GaLV 

 

NGLDM 

 

Entropy, Energy, SNE, LNE, NNU 

 

TS 

 

BWS, MasSpe 

 

TFC 

 

Coarseness, Mean Convergence, Variance 

TFCM 

 

Code Entropy, Code Similarity, Contrast, SAM, 

IDM, Homogeneity, Intensity, Entropy 

 

Abbreviation:  

 

Intensity 

• SUV: standard uptake value 

• AUC_CSH: Area under the curve of the cumulative SUV-volume histogram 
GLCM (gray level co-occurrence matrix) 

• DiffVar: difference variance 
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Table B1. Summary of the radiomics features (continuation) 

• ICM1: informational measure of correlation1 

• ICM2: informational measure of correlation2 

• InVar: inverse variance 

• IDMN: inverse difference moment normalized 

• IDN: inverse difference normalized 

GLRLM (gray level run length matrix) 

• SRE: short run emphasis 

• LRE: long run emphasis 

• GLN:  gray-level non-uniformity 

• RLN: run-length nonuniformity 

• RP: run percentage 

• LGRE: low gray-level run emphasis 

• HGRE: high gray-level run emphasis 

• SRLGE: short run low gray-level emphasis 

• SRHGE: short run high gray-level emphasis 

• LRHGE: long run high gray-level emphasis 

• GLV: gray-level variance 

• RLV: run-length variance  

GLSZM (gray level size zone matrix):  

• SZE: small zone emphasis 

• LZE: large zone emphasis 

• GLN: gray-level non-uniformity 

• ZSN: zone-size nonuniformity 

• ZP: zone percentage 

• LGZE: low gray-level zone emphasis 

• HGZE: high gray-level zone emphasis 

• SZLGE: small zone low gray-level emphasis 

• SZHGE: small zone high gray-level emphasis 

• LZLGE: large zone low gray-level emphasis 

• LZHGE: large zone high gray-level emphasis 

• GLV: gray-level variance 

• ZSV: zone-size variance  
NGTDN (neighborhood gray tone difference matrix)  

GLGLM (gray-level run-length matrix)  

• SGE: short gap emphasis 

• LGE: long gaps emphasis 

• GLF: gray level fluctuation 

• GaLN: gap length nonuniformity 

• GP: gap percentage 

• LGGE: Low Gray-Level Gap Emphasis 

• HGGE: High Gray-Level Gap Emphasis 

• SGLGE: Short Gap Low Gray-Level Emphasis 

• SGHGE: Short Gap High Gray-Level Emphasis  

• LGLGE: Long Gap Low Gray-Level Emphasis 

• LGHGE: Long Gap High Gray-Level Emphasis 

• GrLV: Gray-Level Variance 

• GaLV: Gap- Length Variance 
NGLDM (neighboring gray level dependence matrix) 

• SNE: Small number emphasis 

• LNE: Large number emphasis 

• NNU: number nonuniformity 

TS (texture spectrum) 

• BWS: black white symmetry 

• MasSpe: Max spectrum  

TFC (texture feature coding) 

TFCM (texture feature coding method)  

• SAM: Second angular moment 

• IDM: inverse difference moment 
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         Table B2. Patient´s treatment and affectation places 

 
Patient  Treatment Metastatic Lesions 

1 CHT Liver (1) 
2 RT LWK1-3 + CHT + XGEVA + Zoladex Bone (1), 
3 RADIATION Liver (1), Lung (3), LN (3) 

4 CHT. Bone (1), LN (3) 
5 TAXOTERE and Parjeta Liver (1), LN (3) 
6 Taxol/Herceptin Breast (1), LN (2) 
7 Taxotere + Herceptin + Perjeta, Xgeva Breast (1), Bone (3), Liver (3), LN (3) 
8 Navelbine Bone (1), LN (6) 
9 Taxol  LN (4) 
10 CHT Bone (1), Liver (7) 
11 Taxotere + Herceptin + Perjeta Liver (3), LN (5) 
12 Paclitaxel/Bevacizumab LN (7) 
13 QT Bone (8), LN (4) 
14 Navelbine LN (9) 
15 CHT Bone (1), Liver (2), Pleura (8) 
16 RT + Aromasin, Afinitor + Xgeva Bone (6), LN (3) 
17 RT + Xeloda, Avastin und Bortezomib Bone (4), LN (4) 
18 Radiation and CHT LN (2) 
19 Liver Meta Excision/Xgeva + Zometa Bone (7), Liver (3) 
20 Taxotere, Herceptin and Perjeta Bone (14), Liver (2), LN (1) 
21 AHT (Letrozol - change to Fulvestrant) Bone (3), LN (2) 
22 Paclitaxel-Albumin Bone (3), Liver (2) 
23 Arimidex + Herceptin -1 new LK LN (1) 
24 Lipidox - lung meta excision LN (1) 
25 Vinorelbine + Trastuzumab  Liver (1) 
26 Hormonthera: Arimidex/lung Meta excision Bone (1), LN (2) 
27 Immun-CHT (multiple) (Trastuzumab + 

CHT) 

LN (2) 

28 bone core biopsy/Radiation Bone (1), LN (2) 
29 Avastin + Abraxane Bone (1), Suprarenal (1) 
30 CHT Bone (3) 
31 CHT LN (1) 
32 CHT/Liver Meta Excision Liver (3) 
33 Epirubicin und Docetaxel Liver (1) 
34 Radiation (L2-4) Bone (2) 
35 Radiation Bone (1) 
36 XVEGA Bone (6) 
37 ZOMETA Bone (4) 
38 Excision lesion cervical right/Radiation LN (1) 
39 CHT  Bone (2) 
40 RADIATION, Chemotherapy Bone (1), Liver (1), Lung (1), LN (1) 
41 Radioembolization  Liver (1), Spleen (1) 
42 Taxotere in Combination with Avastin LN (2) 
43 TAXOTERE + AVASTATINA Bone (6), LN (2) 
44 Gemzar/Cisplatin/Avastin LN (3) 
45 Taxol, Xgeva therapy Breast (1), Bone (6) 
46 Trastuzumab + Xgeva Bone (3), Spleen (4) 
47 Xeloda + Radiation Liver (2) 
48 Methotrexate +, Xgeva Bone (1), LN (4) 

 
             CHT = Chemotherapy 

             ADH = Antihormontherapy 

             LN =  Lymph node  
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              Table B3. Univariate Analysis  

 
No. Variable p-value (2-side) 

Clinical variables 

1 Age  0,472 

2 T 0,005 

3 N 0,039 

4 Histology  0,531 

5 ER 0,000 

6 PR 0,000 

7 Her2-new 0,003 

8 Grading 0,024 

9 Ki-67 0,005 

Metabolic variables 

10 SUV_peak 0,001 

11 SUV_mean 0,018 

12 SUV_min 0,262 

13 SUV_max 0,017 

14 SUV_StdDev 0,083 

Image features 

15 Mean_PET 0,042 

16 Min_PET 0,838 

17 Max_PET 0,041 

18 Sum_PET 0,000 

19 Std_Dev_PET 0,121 

20 Variance_PET 0,256 

21 Skewness_PET 0,668 

22 Kurtosis_PET 0,057 

23 Energy_PET 0,009 

24 Energy_PET.1 0,985 

25 Correlation_PET 0,000 

26 Clusterprominence_PET 0,776 

27 ICM1_PET 0,001 

28 Variance_PET.1 0,911 

29 C.MaxPossibility_PET 0,056 

30 SGE_PET 0,000 

31 GLF_PET 0,000 

32 SGLGE_PET 0,809 

33 LGHGE_PET 0,000 

34 GrLV_PET 0,000 

35 GaLV_PET 0,000 

36 Energy_PET.2 0,000 

37 GLV_PET 0,004 

38 RLV_PET 0,000 

39 ZP_PET 0,000 

40 SZHGE_PET 0,005 

41 LZLGE_PET 0,001 

42 LZHGE_PET 0,001 

43 GLV_PET.1 0,000 

44 Contrast_PET.1 0,000 

45 Complexity_PET 0,209 

46 Coarseness_PET 0,000 

47 Variance_PET.2 0,001 
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Table B3. Univariate Analysis (continuation) 

 

No. Variable p-value (2-side) 

48 CodeEntropy_PET 0,027 

49 Contrast_PET.2 0,000 

50 IDM_PET 0,106 

51 Entropy_PET.3 0,027 

52 BWS_PET 0,000 

53 MaxSpe_PET 0,043 

54 Skewness_CT 0,193 

55 Kurtosis_CT 0,243 

56 Entropy_CT.1 0,191 

57 Correlation_CT 0,156 

58 Clusterprominence_CT 0,084 

59 Clustershade_CT 0,015 

60 Sumentropy_CT 0,063 

61 ICM1_CT 0,812 

62 ICM2_CT 0,307 

63 Variance_CT.1 0,029 

64 C.MaxPossibility_CT 0,109 

65 IDN_CT 0,003 

66 GLF_CT 0,309 

67 GaLN_CT 0,000 

68 SGLGE_CT 0,020 

69 SGHGE_CT 0,933 

70 LGLGE_CT 0,299 

71 LGHGE_CT 0,000 

72 GrLV_CT 0,238 

73 GaLV_CT 0,137 

74 Energy_CT.2 0,246 

75 GLN_CT 0,000 

76 SRLGE_CT 0,001 

77 RLV_CT 0,493 

78 SZE_CT 0,004 

79 ZSNv_CT 0,000 

80 ZP_CT 0,005 

81 SZLGE_CT 0,000 

82 LZLGE_CT 0,390 

83 LZHGE_CT 0,000 

84 GLV_CT.1 0,147 

85 ZSV_CT 0,000 

86 Strength_CT 0,000 

87 Contrast_CT.1 0,001 

88 Busyness_CT 0,002 

89 Complexity_CT 0,329 

90 Variance_CT.2 0,000 

91 CodeSimilarity_CT 0,086 

92 Contrast_CT.2 0,008 

93 IDM_CT 0,039 

94 BWS_CT 0,003 

96 MaxSpe_CT 0,115 
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Figure B1. Calibration of the best model (Random Forest) 
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Appendix C 
 

Table C1. Formulas and Description of some image features 

 

Morphological Features 

S
h

a
p

e
 a

n
d

 S
iz

e
 b

a
se

d
 f

ea
tu

re
s 

Parameter Formula Description 

Compactness 

𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =
𝑉

√𝜋𝐴
3
2

 

Where  𝑉 denote the volume and 𝐴 denote the 

surface area of the volume of interest (VOI) 

Quantifies how close 
an object to the 

smoothest shape, the 

circle 

Surface area 
𝑆𝐴 = ∑

1

2
|𝑎𝑖𝑏𝑖 × 𝑎𝑖𝑐𝑖|

𝑁

𝑖=1

 

Where 𝑁 is the total number triangle (coved surface 

area) and 𝑎, 𝑏, 𝑐 are edge vectors 

The surface area of 
the ROI 

Convexity 

𝐶𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦 =
𝑉

𝑉′
 

Where 𝑉 denote tumor volume and 𝑉′ denote convex 

hull volume 

Measures ratio of the 
ROI volume 

contained within the 

tumor to the 

calculated convex 
hull volume 

Sphericity 𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =
36𝜋 × (𝑉2)

1
3

𝐴
 

Where 𝐴 denote area and 𝑉 denote tumor volume 

Measures of the 
roundness of the ROI 

Maximum 3D 

diameter 

See description in the next column Measures of the 

maximum 3D ROI 

diameter. It is 
measured as the 

largest pairwise 

Euclidean distance, 

between surface 
voxels of the ROI 

Spherical 

disproportion 

𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =
𝐴

4𝜋𝑅2 

Where 𝑅 is the radius of a sphere with the same 

volume as the ROI 

The ratio of the 
surface area of the 

ROI to the surface 

area of a sphere with 

the same volume as 
the ROI 

Surface to volume 

ratio (SVR) 

𝑆𝑉𝑅 =
𝐴

𝑉
 

Where 𝐴 is area and 𝑉 is volume 

 

Surface to volume 
ratio 

P
h

y
si

ca
l 

b
a

se
d

 

fe
a

tu
re

s 

Volume 

𝑉𝑜𝑙𝑢𝑚𝑒 = 𝑅 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑜𝑥𝑒𝑙𝑠 

Where 𝑅 denote the 3d image resolution 

Volume of tumor 

(ROI) 
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Textural Features 

 Parameter Formula Description 
F

ir
st

 o
r
d

er
 f

e
a
tu

r
es

 (
H

is
to

g
ra

m
 b

as
ed

 f
ea

tu
re

s)
 

Maximum 𝑀𝑎𝑥 = 𝑚𝑎𝑥(𝑋(𝑖)) 

Where 𝑋 denote the 3d image matrix 

Measures maximum 
intensity value of a 

histogram 

Minimum 𝑀𝑖𝑛 = 𝑚𝑖𝑛(𝑋(𝑖)) 

Where 𝑋 denote the 3d image matrix 

Measures minimum 

intensity value of a 

histogram 

Median 
𝑀𝑒𝑑𝑖𝑎𝑛 =

𝑋(𝑖)

2
 

Where 𝑋 denote the 3d image matrix 

Measures median 

intensity value of a 

histogram 

Mean 

𝑀𝑒𝑎𝑛 =
1

𝑁
∑ 𝑋(𝑖)

𝑁

𝑖

 

Where 𝑋 denote the 3d image matrix with 𝑁 voxel. 

Measures mean 
intensity value of a 

histogram 

Variance 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
1

𝑁 − 1
∑  (𝑋(𝑖) − �̅�)2

𝑁

𝑖=1

 

 

Measures squared 

distances of each 

value of a histogram 

from the mean  

Energy 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑋(𝑖)2

𝑁

𝑖

 

Where 𝑋 denote the 3d image matrix with 𝑁 voxel. 

Measures squared 

magnitude value of a 
histogram 

Standard 

deviation 𝑆𝑡𝑑 = (
1

𝑁 − 1
∑  (𝑋(𝑖) − �̅�)2

𝑁

𝑖=1

)

1/2

 

Where 𝑋 denote the 3d image matrix with 𝑁 voxel. 

Measures amount of 
variation of a 

histogram. 

Skewness 
𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =

𝐸(𝑥 − 𝜇)3

𝜎3  

Where 𝜇 is the mean of 𝑥, 𝜎 is the standard 

deviation of 𝑥, 𝐸 is the expectation operator. 

Measures asymmetry 
of a histogram. 

Kurtosis 
𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =

𝐸(𝑥 − 𝜇)4

𝜎4
 

Where 𝜇 is the mean of 𝑥, 𝜎 is the standard 

deviation of 𝑥, 𝐸 is the expectation operator. 

Measures 

“peakedeness” of a 

histogram (flatness of 
histogram) 

Root mean 

square (RMS) 
𝑅𝑀𝑆 = √

1

𝑁
∑|𝑋𝑛|2

𝑁

𝑛=1

 

Where 𝑋 denote the 3d image matrix with 𝑁 voxel. 

Measures the square-

root of the mean of 

the squares of the 

values of the 
histogram. This 

feature is another 

measure of the 

magnitude of a 
histogram 

Inter quartile 

range 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1 

Where 𝑄3 denote the 3rd quartile of histogram, 𝑄1 

denote the 1st  quartile of histogram 

Measures of 
variability, based on 

dividing a histogram 

into quartiles 

Range 𝑅𝑎𝑛𝑔𝑒 = 𝑟𝑎𝑛𝑔𝑒(𝑋(𝑖)) Measures difference 

between the highest 
and lowest voxel 

values of a histogram 
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Entropy 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑃(𝑖) 𝑙𝑜𝑔2 𝑃(𝑖)

𝑁𝑙

𝑖=1

 

Where 𝑃 denote the first order histogram with 𝑁𝑙 

discrete intensity levels. 

Measures irregularity 

of a histogram. 

Uniformity 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 = ∑ 𝑃(𝑖)2

𝑁𝑙

𝑖=1

 

Where 𝑃 denote the first order histogram with 𝑁𝑙 

discrete intensity levels. 

Measures uniformity 

of a histogram. 

Percentile 
𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 = (

𝑛𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒

100
)  𝑋(𝑖) 

Measures intensity 

value at the 2.5th , 25th 

,50th ,75th , and 97.5th 

percentile on 
histogram 

S
e
co

n
d

 o
r
d

er
 t

ex
tu

ra
l 

fe
a

tu
re

s 

(G
L

C
M

 b
as

ed
 f

ea
tu

re
s)

 

Autocorrelation 

𝐴𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ ∑ 𝑖𝑗𝑷(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Measures of the 
magnitude of the 

fineness and 

coarseness of texture 

Cluster tendency 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑡𝑒𝑛𝑑𝑒𝑛𝑐𝑦 = 

∑ ∑[𝑖 + 𝑗 − 𝜇𝑥  − 𝜇𝑦]
2

𝑷(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Measures of the 

homogeneity of 

GLCM 

Maximum 

probability 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑚𝑎𝑥 {𝑃(𝑖, 𝑗)} Measures maximum 

value of GLCM 

matrix 

Contrast 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ ∑|𝑖 − 𝑗|2𝑷(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Measures of the local 
intensity variation of 

GLCM 

Difference 

entropy 
𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑒𝑛𝑡𝑟𝑜𝑝𝑦

= ∑ 𝑷𝑥−𝑦(𝑖) 𝑙𝑜𝑔2[𝑃𝑥−𝑦(𝑖)

𝑁𝑔−1

𝑖=0

] 

Measures entropy of 

processed GLCM 
matrix Px-y 

Dissimilarity 

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑ ∑|𝑖 − 𝑗|𝑷(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Measures differences 
of entries in GLCM 

Energy 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ ∑[𝑷(𝑖, 𝑗)]2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Measures of the 

homogeneity of 
GLCM 

Entropy 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ ∑ 𝑷(𝑖, 𝑗) 𝑙𝑜𝑔2[𝑷(𝑖, 𝑗)]

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Measures irregularity 

of GLCM 

Homogeneity1 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦1 = ∑ ∑
𝑷(𝑖, 𝑗)

1 + |𝑖 − 𝑗|

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Measures closeness of 

GLCM 

Informational 

measure of 

correlation 1 

(IMC1) 

𝐼𝑀𝐶1 =
𝐻𝑋𝑌 − 𝐻𝑋𝑌1

𝑚𝑎𝑥 {𝐻𝑋, 𝐻𝑌}
 

Secondary measure of 

Homogeneity1 

Sum entropy 

𝑆𝑢𝑚 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑃𝑥+𝑦(𝑖) 𝑙𝑜𝑔2[𝑃𝑥+𝑦(𝑖)]

2𝑁𝑔

𝑖=2

 

Sum of neighborhood 

intensity value 

differences 



T U M O R  H E T E R O G E N E I T Y  I N  P E T - C T  I M A G E S  P a g e  | 184 

 

 

Variance 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑ ∑(𝑖 − 𝜇𝑥)2𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Measures dispersion 

of the parameter 

values around the 

mean of the 
combinations of 

reference and 

neighborhood pixels 

Sum average 

𝑆𝑢𝑚 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = ∑[𝑖𝑃𝑥+𝑦(𝑖)]

2𝑁𝑔

𝑖=2

 

Measures the 

relationship between 

occurrences of pairs 
with lower and higher 

intensity values 

   

Sum variance 

𝑆𝑢𝑚 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑(𝑖 − 𝑆𝐴)2𝑃𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=2

 

 

Inverse variance 

𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑ ∑
𝑃(𝑖, 𝑗)

|𝑖 − 𝑗|2
, 𝑖 ≠ 𝑗

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

 

Inverse 

Difference 

Moment 

Normalized 

(IDMN) 

𝐼𝐷𝑀𝑁 = ∑ ∑
𝑃(𝑖, 𝑗)

1 + (
|𝑖 − 𝑗|2

𝑁2 )

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Measures the local 
homogeneity of an 

image 

Where 𝑷(𝑖, 𝑗) is the gray level co-occurrence matrix for (𝛿 = 1, 𝛼 = 0), 

𝑁𝑔 is the number of discrete intensity value in the image, 

𝑁 is the number of voxels in the ROI, 

𝜇 is the mean of 𝑷(𝑖, 𝑗), 

𝑝𝑥(𝑖) = ∑ 𝑷(𝑖, 𝑗)
𝑁𝑔

𝑗=1  are the marginal row probabilities, 

𝑝𝑦(𝑖) = ∑ 𝑷(𝑖, 𝑗)
𝑁𝑔

𝑖=1  are the marginal column probabilities, 

𝜇𝑥 is the expected value of marginal row probability, 

𝜇𝑦 is the expected value of marginal column probability, 

𝜎𝑥 is the standard deviation of 𝑝𝑥, 

𝜎𝑦 is the standard deviation of 𝑝𝑦, 

𝑝𝑥+𝑦(𝑘) = ∑ ∑ 𝑷(𝑖, 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1  , 𝑖 + 𝑗 = 𝑘, 𝑘 = 2,3, … ,2𝑁𝑔, 

𝑝𝑥−𝑦(𝑘) = ∑ ∑ 𝑷(𝑖, 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1  , | 𝑖 − 𝑗| = 𝑘, 𝑘 = 0,1, … , 𝑁𝑔 − 1, 

𝐻𝑋 = − ∑ 𝑷𝑥(𝑖) 𝑙𝑜𝑔2[𝑝𝑥(𝑖)]
𝑁𝑔

𝑖=1
 is the entropy of 𝑷𝑥, 

𝐻𝑌 = − ∑ 𝑷𝑦(𝑖) 𝑙𝑜𝑔2[𝑝𝑦(𝑖)]
𝑁𝑔

𝑖=1  is the entropy of 𝑷𝑦, 

𝐻𝑋𝑌 = − ∑ ∑ 𝑷(𝑖, 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
𝑙𝑜𝑔2[𝑷(𝑖, 𝑗)] is the entropy of 𝑷(𝑖, 𝑗) 

𝐻𝑋𝑌1 = − ∑ ∑ 𝑷(𝑖, 𝑗) 𝑙𝑜𝑔(𝑝𝑥(𝑖)𝑝𝑦(𝑗))
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
. 

Higher order features 
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Parameter Formula Description 

Size-zone 

variability 
1

𝛩
∑ [∑ 𝑷(𝑚, 𝑛)

𝑁

𝑛=1

]

𝑀

𝑚=1

2

 

Variability in the size 

Intensity 

variability 
1

𝛩
∑ [ ∑ 𝑷(𝑚, 𝑛)

𝑀

𝑚=1

]

𝑁

𝑛=1

2

 

Variability in the 
intensity 

Where 𝑷(𝑚, 𝑛) is the intensity size zone matrix  

𝛩 represents the number of homogeneous areas in tumor, 

𝑀 is the number of distinct intensity values, 

𝑁 is the size of homogeneous area in the matrix 𝑷(𝑚, 𝑛) 
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Appendix D 
 

 

Resumen en castellano 
 

 

HETEROGENEIDAD TUMORAL EN IMÁGENES PET-CT 
 

 

Introducción y objetivos 
 

El cáncer es una de las principales causas de morbilidad y mortalidad. Los más frecuentes son el 

carcinoma de pulmón de células no pequeñas (NSCLC) y el cáncer de mama, siendo su tratamiento 

un reto. El diagnóstico se suele realizar mediante biopsia. La heterogeneidad tumoral (HT) está 

implicada en el fracaso del tratamiento del cáncer, con peores resultados clínicos para tumores muy 

heterogéneos. Esta conduce a la existencia de subregiones tumorales con diferente comportamiento 

biológico (algunas más agresivas y resistentes al tratamiento); las cuales se caracterizan por diferentes 

patrones de vascularización, permeabilidad de los vasos sanguíneos, metabolismo, proliferación y 

muerte celular, que se pueden medir mediante imágenes médicas, incluida la tomografía por emisión 

de positrones/tomografía computarizada con fluorodesoxiglucosa (18F-FDG-PET/CT). La evaluación 

de la HT a través de imágenes médicas, podría mejorar la predicción de la respuesta al tratamiento y 

de los resultados a largo plazo, en pacientes con cáncer. La 18F-FDG-PET/CT es esencial en 

oncología, generalmente se evalúa con parámetros metabólicos semicuantitativos, como el valor de 

captación estándar máximo/medio (SUVmáx, SUVmedio) o el volumen tumoral metabólico (MTV), 

que tienen un gran valor pronóstico en varios tumores, pero no evalúan la HT. Asimismo, es 

importante para diferenciar los nódulos pulmonares solitarios (NPS) malignos de los benignos, 

reduciendo el número de pacientes que van a biopsias quirúrgicas innecesarias. Publicaciones 

recientes muestran que algunas características cuantitativas, extraídas de las imágenes médicas, son 

robustas para diagnóstico, estadificación, pronóstico de la respuesta al tratamiento y la evolución, de 

pacientes con cáncer. El proceso de extraer y relacionar estas características con variables clínicas o 

biológicas se denomina “Radiomica”. Algunos parámetros radiómicos, como la textura, se han 

relacionado directamente con la HT. 
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Esta tesis investigó las relaciones entre HT, evaluada mediante análisis de textura (AT) de imágenes 

18F-FDG-PET/CT, con parámetros metabólicos y estadificación patológica en pacientes con NSCLC, 

y exploró el rendimiento diagnóstico de diferentes criterios metabólicos, morfológicos y clínicos para 

la clasificación de NPS. Además, se usaron características radiómicas de imágenes 18F-FDG-PET/CT 

de pacientes con cáncer de mama recurrente/metastásico, para construir modelos predictivos de la 

respuesta a la quimioterapia, combinándose varios métodos de selección de características y 

aprendizaje automático (ML). 

 

Materiales y Métodos 
 

Se registraron variables como edad, sexo, características histopatológicas, estadio tumoral según el 

Joint Committee on Cancer (AJCC) y la respuesta al tratamiento. Los pacientes tenían uno o más 18F-

FDG-PET/CT, de los cuales se segmentaron las lesiones, obteniéndose varios volúmenes de interés 

(VOI) para extraer el metabolismo y la textura. En los pacientes con NSCLC se obtuvieron: tamaño 

del tumor, SUVmáx, SUVmedio, volumen tumoral metabólico (MTV), glucólisis total de la lesión 

(TLG) y se extrajeron varias características texturales. Se realizaron pruebas estadísticas para 

establecer correlaciones entre características clínicas, metabólicas y texturales. Para los NPS, se 

utilizó una inspección visual (captación de 18F-FDG o no) y varias combinaciones heurísticas de 

tamaño del nódulo y SUVmáx para clasificarlo como maligno o no. Asimismo, se construyó un 

modelo logístico predictivo de malignidad, basado en variables del PET/TC y clínicas. El rendimiento 

de cada enfoque se evaluó mediante análisis de la curva de características operativas del receptor 

(ROC). Para las pacientes con cáncer de mama, se obtuvieron VOIs tumorales antes y después del 

tratamiento quimioterapéutico, obteniéndose así SUVmax, SUVmean, SUVpeak1 y SULpeak2. Las 

pacientes se clasificaron como respondedoras o no al tratamiento; de acuerdo con los criterios PET 

de respuesta en tumores sólidos (PERCIST). De los VOIs previos al tratamiento se extrajeron varias 

características radiómicas que junto con la información clínica y patológica se utilizaron para 

construir los modelos de predicción, mediante el uso de combinaciones cruzadas entre métodos de 

selección de características y clasificadores ML. Las lesiones tumorales se separaron en dos grupos 

con una ratio 80:20, el mayor se utilizó para construir el modelo y validación cruzada; y el menor 

para validación. Siete métodos de selección de características: ANOVA con puntuación F, 

información mutua, operador de selección y contracción mínima absoluta (LASSO),  prueba de 

Wilcoxon, agrupación jerárquica, análisis de componentes principales y análisis de componentes 

independientes se combinaron de forma cruzada con siete clasificadores ML: máquinas de vectores 

de soporte (SVM), random forest (RF), naives Bayes gaussiano, regresión logística, vecindario más 
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cercano, impulso adaptativo) y redes de neuronas artificiales. Los rendimientos predictivos del 

modelo se compararon mediante el análisis de la curva ROC. 

 

Resultados y conclusiones 

 

La HT en el NSCLC evaluada mediante el TA de imágenes 18F-FDG-PET/CT se correlaciona con los 

parámetros metabólicos, y ambos se asocian con el diámetro macroscópico del tumor y la 

estadificación AJCC (factor pronóstico importante). Algunas características de textura no tienen una 

relación lineal con los parámetros metabólicos basados en el volumen, lo que los hace más sensibles 

a la definición del volumen tumoral. Sin embargo, una selección adecuada de estos parámetros, podría 

permitir su uso en la práctica clínica, aunque se requieren estudios adicionales para validar su uso. La 

evaluación de SPN por métodos semicuantitativos no mejoró la sensibilidad del análisis visual 

(Se=95%). Los métodos heurísticos tuvieron una especificidad muy limitada. Sin embargo, el modelo 

logístico tuvo el mejor rendimiento diagnóstico global (Se=87,5% y Sp=46,7%), usando SUVmáx y 

edad. Este modelo, a diferencia de otros, utilizó la variable metabólica SUVmáx, que a su vez resulto 

ser una variable independiente para predecir la malignidad. Los modelos radiómicos basados en 

características de 18F-FDG-PET/CT y ML pudieron predecir la respuesta al tratamiento en pacientes 

con cáncer de mama recurrente o metastásico. La combinación LASSO + RF tuvo el rendimiento más 

alto en la cohorte de validación (0,91±0,05). Otras combinaciones también mostraron valores 

significativos. Esta investigación comparativa puede ser una referencia importante en la 

identificación de métodos de aprendizaje automático confiables y efectivos para el pronóstico basado 

en radiómica en estos pacientes, y mostrando el gran potencial de la radiómica con PET/TC. 

 

 

 

 

 

1 SUVpico: se calcula como el SUVpromedio en un VOI esférico de 1,2 cm de diámetro (volumen de 1 ml) 

centrado en la porción más activa del tumor [154]. 
2 SULpeak: SUVpico corregido por la masa corporal magra. 
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