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Resumen

Introduccion

Esta tesis trata sobre aproximaciones de espacios métricos compactos. La aprox-
imacién y reconstruccion de espacios topoldgicos mediante otros mas sencillos
es un tema antiglio en topologla geométrica. La idea es construir un espacio
muy sencillo lo mas parecido posible al espacio original. Como es muy dificil
(o incluso no tiene sentido) intentar obtener una copia homeomorfa, el obje-
tivo serd encontrar un espacio que preserve algunas propriedades topolégicas
(algebraicas o no) como compacidad, conexidn, axiomas de separacidn, tipo de

homotopla, grupos de homotopta y homologta, etc.

Los primeros candidatos como espacios sencillos con propiedades del espacio
original son los poliedros. Ver el articulo [45] para los resultados principales.
En el germen de esta idea, destacamos los estudios de Alexandroff en los afos
20, relacionando la dimensidn del compacto métrico con la dimensién de cier-
tos poliedros a través de aplicaciones con imdgenes o preimagenes controladas
(en términos de distancias). En un contexto mas moderno, la idea de aprox-
imacion puede ser realizada construyendo un complejo simplicial basado en
el espacio original, como el complejo de Vietoris-Rips o el complejo de Cech
y comparar su realizacién con él. En este sentido, tenemos el cldsico lema
del nervio [12, 21] el cual establece que para un recubrimiento por abiertos
‘suficientemente bueno” del espacio (es decir, un recubrimiento con miembros e
intersecciones contractibles o vactas), el nervio del recubrimiento tiene el tipo de
homotopla del espacio original. ELl problema es encontrar estos recubrimientos

(st es que existen). Para variedades Riemannianas, existen algunos resultados
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en este sentido, utilizando los complejos de Vietoris-Rips. Hausmann demostrd
[35] que la realizacién del complejo de Vietoris-Rips de la variedad, para val-
ores suficientemente bajos del pardmetro, tiene el tipo de homotopla de dicha
variedad. En [40], Latschev demostré una conjetura establecida por Hausmann:
El tipo de homotopia de la variedad se puede recuperar utilizando un conjunto
finito de puntos (suficientemente denso) para el complejo de Vietoris-Rips. Los
resultados de Petersen [58] comparando la distancia Gromov-Hausdorff de los
compactos métricos con su tipo de homotopla, son también interesantes. Aqui,

los poliedros salen a relucir en las demostraciones, no en los resultados.

Otro punto importante en este tema son los espacios topoldgicos finitos. Se
podria pensar que los espacios topoldgicos finitos son demasiado sencillos para
detectar propiedades topoldgicas complejas, pero esto no es asi y corresponde
a la errénea identificacion de los espacios finitos como discretos. Otro inconve-
niente al uso de espacios finitos es que tienen unas propiedades de separacién
muy deficientes. Cualquier espacio topoldgico finito que tenga la propiedad
T es directamente un espacio discreto. Como los espacios no-Hausdorff pare-
cen poco manejables, los espacios finitos podrian presentar mas dificultades en
st mismos que los espacios que queremos aproximar. Los articulos de Stong
[64] y McCord [50] significaron un gran avance en el estudio de los espacios
topoldgicos finitos. Stong estudid los tipos de homotopila y homeomorficos de
los espacios finitos. Entre otros resultados, demostré que los tipos homeomdr-
ficos estdn en correspondencia biyectiva con ciertas clases de matrices y que
todo espacio finito tiene un ndcleo(core), con el mismo tipo de homotopia. Mc-
Cord definié un functor de los espacios finitos 7y a los poliedros que conserva
los grupos de homotopia y homologia (mediante una equivalencia débil de ho-
motopla entre ellos). Este es un resultado de gran relevancia ya que podemos
representar todos los grupos de homotop(a y homologia de un poliedro compacto
como los grupos de un espacio finito. La propiedad esencial de los espacios
finitos, que hace posible este resultado, es que la interseccidn arbitraria de
abiertos es abierta (los espacios con esta propiedad son llamados Alexandroff)
y, por lo tanto, tienen una base minimal. St el espacio finito es 7o, la base
minimal propociona una estructura de conjunto parcialmente ordenado (este he-

cho es observado en [2]| por primera vez) y este hecho se usa extensivamente
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en la prueba del resultado. Ambos articulos fueron recuperados en una serie
de notas de May [49, 48] muy instructivas donde estos resultados son puestos
en valor. Basdndose en los resultados probados en esos articulos, Barmak y
Minian [10, 11, 8] introdujeron recientemente una teoria de topologia algebraica
para espacios topoldgicos finitos.

También podemos hacer uso de la construccion del limite inverso. Si no es
posible obtener la aproximacién buscada usando un Unico espacio, podemos
intentar alcanzarla mediante el limite de un proceso de refinamiento por espa-
clos con buenas propiedades. Esta idea se puede llevar a cabo utilizando los
limites inversos. Podemos pensar en una aproximacion similar a la que obten-
emos mediante las series de Tailor para las funciones. ELl origen del uso de
los Llimites inversos para la aproximacion de espacios compactos nos remonta de
nuevo a los trabajos de Alexandroff [1], donde demuestra que para todo espacio
métrico compacto hay una sucesion inversa de espacios finitos 7y tal que hay un
subespacio del limite inverso homeomorfo al espacio original. También debemos
citar el trabajo de Freudenthal, que demostrd [31] que todo métrico compacto
es el limite inverso de una sucesion inversa de poliedros. Mds recientes son
los trabajos de Kopperman y sus colaboradores [37, 38] que demuestran que
todo compacto Hausdorff reflexicn Hausdorff del limite inverso de una sucesién
inversa de espacios finitos y 7o. Ellos, definen y usan el concepto aplicacion
calmante (calming map) para demostrar que si las aplicaciones de esta suce-
sidn inversa son calmantes, entonces se puede asociar una sucesidn inversa
de poliedros cuyo limite es homeomorfo al espacio original. Estos resultados
son muy interesantes desde un punto de vista tedrico, pero las nociones de
reflexidn Hausdorff y aplicacién calmante hacen que el calculo efectivo pueda
resultar dificil (o imposible). Otro resultado importante es el de Clader [19],
que demuestra que todo poliedro compacto tiene el tipo de homotopia del limite

inverso de una sucesidn inversa de espacios finitos 7.

La teor(a de la forma explota esta idea de aproximacién de los limites inver-
sos. Esta teor{a nacié en 1968 con el articulo de Borsuk [13]. Es una teor(a
desarrollada para extender la teorla de homotopla a espacios donde no fun-

clona bien, debido a sus patologias (por ejemplo, malas propiedades locales).
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Aunque la teor{a de la forma definida por Borsuk no hace uso explicito de los
limites inversos, es claro que estdn presentes en la base de dicha teor{a. La
idea de Borsuk fue extender el conjunto de morfismos entre compactos métricos
sumergiéndolos en el cubo de Hilbert y definiendo morfismos entre los abiertos
de las copias de los espacios. Mas tarde Mardesic y Segal iniciaron en [46]
el uso de sistemas inversos para la teorla de la forma. Aqui, el sentido aprox-
imativo de esta teor{a estd claro: Todo espacio compacto Hausdorff se puede
escribir como un limite inverso de un sistema inverso de ANR's compactos, que
actlian como espacios sencillos. Asi(, los nuevos morfismos se pueden definir es-
encialmente como aplicaciones entre los sistemas inversos. Este punto de vista
para la teor(a de la forma es desarrollado extensamente en [47] para espacios
topoldgicos mds generales y para ellos se introducen nuevos conceptos, como las
expansiones y las resoluciones, para generalizar el concepto de limite inverso
cuestiones técnicas, aunque la idea es la misma. Es evidente que la aproxi-
macidon de espacios topoldgicos mediante limites inversos estda estrechamente
relacionada con la teoria de la forma. Existen varios invariantes para la forma
de un espacio. Destaca, entre otros, la homologia de Cech que se puede definir
como el limite inverso de los grupos de homologia sinqular y de homomorfismos

inducidos del sistema inverso que define la forma del espacio.

En los dltimos afios ha habido un gran interés en la aproximacién y re-
construccidn de espacios topoldgicos, en parte por el desarrollo de la topologia
computacional y concretamente el andlisis topoldgico de datos (leer el excelente
articulo de Carlsson [17] como introduccién a este tema). La idea es recuperar
las propiedades topoldgicas de alguin espacio usando solo una informacién par-
cial o defectuosa (también llamada ruidosa). Normalmente, se conoce solo un
conjunto finito de puntos y las distancias entre ellos (esto es conocido como nube
de puntos), que constituye una muestra de un espacio topoldgico desconocido, y
el objetivo es reconstruir la topologla del espacio o, al menos, encontrar algunas
propiedades topoldgicas suyas. Ademds de los ya mencionados complejos de
Vietoris-Rips y Cech, se pueden definir otros muchos, como los complejos tes-
tigo (witness), Delaunay o las alfa formas (alpha shapes) [26]. En este contexto,
destacan los resultados de Niyogi et al [57, 56|, en las que se establecen condi-

clones para reconstruir el tipo de homotopia y la homologia de una variedad
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con un conjunto finito de puntos (posiblemente con ruido) pertenecientes a una
subvariedad de un espacio euclideo. Para estos resultados se usan distribu-
clones de probabilidad. Hay una ran cantidad de articulos recientes dedicados
a este problema de reconstruccién. Por ejemplo, Attali et al [7], desde una per-
spectiva mas computacional, establecen condiciones para las que el complejo de
Vietoris-Rips de una nube de puntos en un espacio euclideo detecta el tipo de
homotopia del espacio del cual son muestra. De entre todos los procedimientos,
hemos de destacar homologia persistente. La idea es facil y muy efectiva: En
lugar de considerar un Unico poliedro basado en la nube de puntas para repre-
sentar la topologia del espacio desconocido, consideramos toda una familia de
poliedros construidos mediante los datos y las aplicaciones naturales inducidas
por la inclusién entre ellos. Asi(, no seleccionamos una resolucién concreta para
analizar la nube de puntos, sino que consideramos todos los posibles valores del
pardmetro y sus conexiones a la vez y los usamos conjuntamente para determinar

la evolucién de la topologla seguin la variacion de dicho parametro.

El vinculo entre la teorla de la forma y la homologla persistente fue sefal-
ado por primera vez en 1999 por Vanessa Robins [60]. En este articulo, ella
propone utilizar la teorla de la forma para aproximar compactos métricos uti-
lizando tan solo un cojnunto finito de datos. Introdujo el concepto ndmero de
Betti persistente, como la evolucién de los niimeros de Betti en la sucesion in-
versa de poliedros en diferentes escalas (o resoluciones) de la aproximacion. Su
propuesta es la siguiente: Dada una muestra (conjunto finito de puntos, posi-
blemente con ruido) de un espacio topoldgico desconocido, construir un sistema
inverso de e-entornos del conjunto finito de puntos junto con las correspondi-
entes inclusiones. Hecho esto, triangular los e-entornos utilizando a-formas y
asl obtenemos una sucesion inversa de poliedros basados en la muestra. Pode-
mos entonces considerar la evolucion de los numeros de Betti a lo largo de
este sistema inverso. En el caso de algunos ejemplos concretos (con origen en
sistemas dindmicos) determina cotas para la evolucidn de los nimeros de Betti,
cuando la resolucién crece y tiende a infinito y por tanto la muestra es mds
ajustada. Robins predice que cuanto mds ajustada sea la muestra, mds exacta
serd la reconstruccion y es en este punto donde sugiere la teoria de la forma

como una teor{a que de soporte tedrico a este y otros métodos similares.
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Con esta intencidn, Morén et al [3] definen lo que llaman la construccién prin-
cipal’. Esta consiste en una sucesién inversa de espacios topolégicos finitos
construidos a partir de aproximaciones finitas cada vez mds densas del com-
pacto métrico. Los espacios finitos no son exactamente las aproximaciones sino
subespacios del hiperespacio de cada aproximacién con la topologia semifinita
superior. Este paso técnico es necesario para poder definir aplicaciones contin-
uas entre las aproximaciones. Estas aplicaciones estdn definidas en términos
de proximidad entre los puntos de aproximaciones consecutivas. Por tanto, no
son inclusiones (porque los espacios finitos no estdn necesariamente anidados).
Entonces, se aplica la correspondencia de Alexandroff-McCord, el functor que
asigna un poliedro a cada espacio finito 7y. La functorialidad sirve para poder
definir aplicaciones continuas entre los poliedros inducidos y asl obtenemos una
sucesion inversa de poliedros. El proceso por el que esta sucesidn inversa esta
definida, utilizando aproximaciones finitas, les induce a conjeturar que su limite
inverso estd, de alguna forma, relacionado con la topologia del compacto métrico
original. Esta conjetura se establece como el principio general, en el que se
propone esta sucesidn para detectar las propiedades shape (que conciernen a
la teor{a de la forma) como, por ejemplo y en especial, la homologia de Cech.
Este trabajo comienza aqui, comprendiendo y profundizando en las propiedades

de la construccion principal.

Objetivos

La intencién inicial de este trabajo era demostrar que la construccidn principal de
[3] es un proceso adecuado para determinar la topologia de cualquier compacto

métrico. En particular, los objetivos planteados son:

1. Determinar qué propiedades o invariantes shape es posible recuperar me-
diante la sucesidn inversa de poliedros definida en la construccién prin-

cipal de [3] Demostrar o negar el principio general.

2. Estudiar el limite inverso de la sucesion inversa de espacios finitos Ty y

encontrar la informacién topoldgica disponible en el. Relacionar las dos

"Este no fue el primer articulo de este grupo de investigacién en estas cuestiones. También
es tratado, desde otra perspectiva, en [34].
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sucesiones.

3. Considerar posibles modificaciones o particularizaciones de la construc-
clon para obtener mas propiedades sobre el espacio original, afadiendo

st es necesario, condiciones topoldgicas sobre el.

4. Construir ejemplos de la construccién principal explicitamente en los que
se traten los problemas de aproximacion y reconstruccién planteados.

Adaptar este método en contextos de problemas con datos reales.

5. Generalizar el contexto donde se realizan estas construcciones y determi-
nar algunas propiedades de la topologla semifinita superior en hiperespa-
clos con la topologla discreta, inmersiones de espacios finitos o el calculo
de la homologia de Cech de compactos métricos utilizando sucesiones in-
versas de poliedros determinados por subespacios finitosde dicho hiperes-

pacto.

Resultados

En el primer capitulo se redactan la teorla y resultados necesarios para la
comprension y seguimiento del resto del texto. Por tanto, los resultados de este

cap(tulo no son originales.

En el capltulo dos comenzamos demostrando el principio general. La suce-
sion inversa de poliedros definida en [3] es una HPol expansién del compacto
métrico de la cual es construida. Por tanto, esta sucesion representa el shape
del espacio y, por tanto, el limite inverso tiene el shape del espacio original.
Ademas, constrimos mds sucesiones inversas de poliedros, todas ellas inducidas
por la sucesién inversa de finitos y utilizando diferentes poliedros basados en
las aproximaciones finitas: Cech, Witness y Dowker. Probamos que todas es-
tas sucesiones son HPol expansiones del espacio. Definimos algunos tipos de
error en las sucesiones inversas de grupos inducidas en homologia (de hecho,
definidos para cualquier sucesién inversa de grupos abelianos) para medir lo
apropiado que son los trozos finitos de las sucesiones inversas para determinar

la homologia de Cech del espacio y lo relacionamos con la movilidad del espacio.
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Finalmente, exhibimos ejemplos concretos en los que hacemos la construccion (a
mano) para compactos métricos paradigmaticos en teoria de la forma: El circulo

polaco y el anillo hawatiano.

El capitulo tres contiene el resultado mds importante y sorprendente (para
nosotros) de este trabajo. El limite inverso de toda sucesién inversa de espacios
finitos definida por la construccién principal tiene el tipo de homotopla del es-
pacio original y contiene una copia homeomorfa del espacio original como sube-
spacio. Ademads, identificamos explicitamente este subespacio. Posteriormente,
analizamos algunas propiedades de la construccidn principal y el resultado de
aplicar la construccidn principal a algunas clases particulares de espacios como
en espacios densos, numerables y ultramétricos. En el caso de estos ultimos,
encontramos que podemos hacer la construccién de modo que el limite inverso
del sistema inverso de finitos es homeomorfo al espacio ultramétrico. Com-
paramos nuestros resultados con los de Clader y Kopperman y colaboradores
previamente citados. Podemos obtener el resultado de Clader como un corolario
de nuestro teorema principal. En el otro caso, observamos que sus resulta-
dos de aproximaciones son para espacios compactos Hausdorff y nosotros no
alcanzamos ese nivel de generalizacién. Sin embargo, para compactos métri-
cos, obtenemos consecuencias similares y obtenemos ademds que todo compacto
métrico tiene el tipo de homotopia de un limite inverso de espacios finitos 7y, el
cual, parece ser un resultado novedoso. Ademds, demostramos que la reflexién
Hausdorff preserva el shape y, por lo tanto, de los resultados de Kopperman et
al se deduce que todo compacto Hausdorff tiene el mismo shape que un limite
inverso de espacios finitos 7y. Finalmente, generalizamos el resultado princi-
pal de esta seccién para el hiperespacio del compacto métrico original con la
topologla semifinita superior (el cual no es un espacio métrico) demostrando que
es, salvo tipo de homotoplia, el limite inverso de espacios finitos 7y (realmente,

hiperespacios de espacios finitos con la topologia discreta).

El capitulo cuarto estd dedicado al estudio y desarrollo del uso de hiperes-
pacios con la topologla semifinita superior, especialmente de espacios con la
topologla discreta. Primero, probamos algunas propiedades bdsicas de estos es-

pacios. Después, demostramos que son universales (en términos de inmersidn)
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para espacios de Alexandorff Ty. Finalmente, la simple observacidon de que un
complejo simplicial se puede interpretar como un abierto de un hiperespacio de
un espacio discreto con la topologia semifinita superior que contiene a la copia
canonica del espacio, construimos la categoria de entornos simpliciales, como un
nuevo punto de vista para tratar con complejos simplicales. Esta perspectiva nos
permite demostrar que ciertos hiperespacios pueden actuar como contenedores
universales para todas las homologias de Cech de todas las posibles métricas

que hacen a un conjunto ser un espacio compacto métrico.

Conclusiones

El estudio en profundidad de la construccién principal revela que es un pro-
ceso constructivo que recupera toda la informacién topolégica de un compacto
métrico. Esto significa que las aproximaciones y las aplicaciones construidas
estdn definidas de manera coherente con la topologia del espacio. Ademas, la
topologia semifinita superior para los hiperespacios resulta facilmente manipu-

lable para tratar espacios no-Hausdorff con cierta comodidad.

El capitulo cinco contiene solo resultados parciales o direcciones y obser-
vaciones para un trabajo futuro. Se propone la construccién principal como el
origen de una nueva perspectiva para un futuro trabajo. Establecemos las bases
para la implementacién de estos resultados en un contexto mds practico. La
construccidn principal nos permite esbozar un algoritmo para obtener mddu-
los persistentes como sucesiones finitas extraldas de una sucesion inversa de
poliedros. Estos modulos persistentes se obtienen de un modo esencialmente
distinto de los habituales por loque bautizamos este punto de vista como persis-
tencia inversa. Proponemos la implementacién de este proceso y la comparacidn
con el habitual en términos de estabilidad. Finalizamos definiendo algunos con-
ceptos relacionados con la estabilidad de las sucesiones inversas de poliedros
obtenidos en el capitulo dos. Definimos el concepto de ser homotépicamente
(o shape) estable y exhibimos algin ejemplo de espacios que satisfacen esta
propiedad. Dejamos algunas conjeturas y preguntas abiertas relacionadas con

estos conceptos.
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Introduction

This thesis is about approximations of metric compacta. The approximation
and reconstruction of topological spaces using simpler ones is an old theme in
geometric topology. One would like to construct a very simple space as similar as
possible to the original space. Since it is very difficult (or does not make sense)
to obtain a homeomorphic copy, the goal will be to find an space preserving
some (algebraic) topological properties such as compactness, connectedness,

separation axioms, homotopy type, homotopy and homology groups, etc.

The first candidates to act as the simple spaces reproducing some properties
of the original space are polyhedra. See the survey [45] for the main results.
In the very beginnings of this idea, we must recall the studies of Alexandroff
around 1920, relating the dimension of compact metric spaces with dimension
of polyhedra by means of maps with controlled (in terms of distance) images
or preimages. In a more modern framework, the idea of approximation can be
carried out constructing a simplicial complex, based on our space, such as the
Vietoris-Rips complex or the Cech complex, and compare its realization with
it. In this direction, for example, we find the classical Nerve Lemma [12, 21]
which claims that for a “good enough’ open cover of the space (meaning an open
covering with contractible or empty members and intersections), the nerve of the
cover has the homotopy type of our original space. The problem is to find those
good covers (if they exist). For Riemannian manifolds, there are some results
concerning its approximation by means of the Vietoris-Rips complex. Hausmann

showed [35] that the realization of the Vietoris-Rips complex of the manifold, for
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a small enough parameter choice, has the homotopy type of the manifold. In
[40], Latschev proved a conjecture made by Hausmann: The homotopy type of
the manifold can be recovered using only a (dense enough) finite set of points
of it, for the Vietoris-Rips complex. The results of Petersen [58] comparing the
CGromov-Hausdorff distance of metric compacta with their homotopy types, are

also interesting. Here, polyhedra are just used in the proofs, not in the results.

Another important point, concerning this topic, are finite topological spaces.
It could be expected that finite topological spaces are too simple to capture any
topological property, but this is far from reality and comes from thinking about
finite spaces as discrete ones. Another obstruction to the use of finite spaces
is that a very basic observation reveals that they have very poor separation
properties. Any finite topological space satisfying just the T; axiom of sepa-
ration is really a discrete space. Since non-Hausdorff spaces seem to be less
manageable, finite spaces could represent themselves a more difficult problem
to study that the spaces we want to approximate with. There were two papers
of Stong [64] and McCord [50] that were a breakthrough in finite topological
spaces. Stong studied the homeomorphism and homotopy type of finite spaces.
Among other results, he showed that the homeomorphism types are in bijective
correspondence with certain equivalence classes of matrices and that every fi-
nite space has a core, which is homotopy equivalent to it. McCord defined a
functor from finite 7Ty spaces to polyhedra preserving the homotopy and homol-
ogy groups (defining a weak homotopy equivalence between them). This is a
very important result, since we obtain that the homotopy and homology groups
of every compact polyhedron can be obtained as the groups of a finite space.
The essential property of finite spaces, making possible this result, is that the
arbitrary intersection of open sets is open (every space satisfying this property is
called Alexandroff space) and hence they have minimal basis. If the finite space
is 1o, the minimal basis gives the space a structure of a poset (first noticed in
[2]) which is used in the cited result. Both papers were retrieved in a series
of very instructive notes by May [49, 48], where these results are adequately
valued. Based on the theorems and relations proved in those papers, Barmak
and Minian [10, 11, 8] introduced a whole algebraic topology theory over finite

spaces.
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One step further is to make use of the inverse limit construction. If we cannot
obtain the desired approximation using only one simple space, we can try to
obtain it as some kind of limit of an infinite process of refinement by good spaces.
That idea is accomplished by the notion of inverse limit. It is similar in spirit
to the use of the Taylor series to approximate a function. For the origins of
using inverse limits to approximate compacta, we should go back, again, to the
work of Alexandroff [1], where it is shown that every compact metric space has
an associate inverse sequence of finite 7y spaces such that there is a subspace
of the inverse limit homeomorphic to the original one. We also have to mention
Freudenthal, who showed [31] that every compact metric space is the inverse
limit of an inverse sequence of polyhedra. More recent results were obtained
by Kopperman et al [37, 38]. They showed that every compact Hausdorff space
is the Hausdorff reflection of the inverse limit of an inverse sequence of finite
Ty spaces. Also they define the concept of calming map and show that if the
maps in this sequence are calming, then an inverse sequence of polyhedra can
be associated and its limit is homeomorphic to the original space. Those are
good results, although the technical concepts of Hausdorff reflection and calming
map, make its real computation hard to achieve. Another important result is the
one obtained by Clader [19] who proved that every compact polyhedron has the

homotopy type of the inverse limit of an inverse sequence of Ty finite spaces.

Shape theory makes use of this notion of approximation by inverse limits. This
theory was founded in 1968 with Borsuk’s paper [13] It is a theory developed
to extend homotopy theory for spaces where it does not work well, because of
its pathologies (for example, bad local properties). Although Borsuk’s original
approach does not make explicit use of inverse limits, they are in the underlying
machinery. The idea of Borsuk was to enlarge the set of morphisms between
metric compacta by embedding the spaces into the Hilbert cube and define
some kind of morphisms between the open neighborhoods of those embedded
spaces. Later, Mardesic and Segal initiated in [46] the inverse system approach
to Shape Theory. Here, the approximative sense of Shape Theory is clear:
Every compact Hausdorff space can be written as the inverse limit of an inverse
system (or an inverse sequence if the space is metric) of compact ANR's, which

act as the good spaces. Then, the new morphisms are essentially defined as
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maps between the systems. Shape theory, in its invese system approach, is
then defined and developed [47] for more general topological spaces and new
concepts, as expansions and resolutions, have to take the role of the inverse
limit for technical reasons, but the point of view is similar. It is evident that
the inverse limit approximation point of view for spaces is closely related with
Shape Theory. There are several shape invariants. Among others, we have the
Cech homology, which is the inverse limit of the singular homology groups and
the induced maps in homology of the inverse system defining the shape of the

space.

In the last years, there has been a renewed interest in the approximation
and reconstruction of topological spaces, in part because the development of
the Computational Topology and more concretely the Topological Data Analy-
sis (read the excellent survey of Carlsson [17] as an introduction for this topic).
Here, the idea is to recapture the topological properties of some space using
partial or defective (sometimes called noisy) information about it. Usually we
only know a finite set of points and the distances between them (this is known
as point cloud) which is a sample of an unknown topological space, and the
goal is to reconstruct the topology of the space or, at least, be able to de-
tect some topological properties. Besides the classical Vietoris-Rips and Cech
complexes, several other complexes (as the witness, Delaunay complexes or the
alpha shapes [26]) are defined with this purpose. Some important results in this
setting were obtained by Niyogi et al [57, 56], where they give conditions to
reconstruct the homotopy type and the homology of the manifold when only a
finite set of points (possibly with noise) lying in a submanifold of some euclidean
space, is known. They also use probability distributions in their results. There
are a large amount of recent papers devoted to this kind of reconstructions. For
instance, Attali et al [7], in a more computational approach, give conditions in
which a Vietoris-Rips complex of a point cloud in an euclidean space recovers
the homotopy type of the sampled space. Among other techniques, we have to
highlight the persistent homology. The idea here is as easy as effective: Instead
of considering only one polyhedron based on the point cloud to recover the
topology of the hidden space, consider a family of polyhedra constructed from

the data and natural maps induced by the inclusion connecting them. Then,
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we do not choose one concrete resolution to analyze the point cloud, but we
consider all possible values of the parameter and their connections at once and
use them together to determine the evolution of the topology of the point cloud

along the parameter changes.

The first link between Shape Theory and Persistent Homology was made
in 1999 by Vanessa Robins [60] There, she propose to use the machinery of
Shape Theory to approximate compact metric spaces from finite data sets. She
introduced the concept of persistent Betti number, which is the evolution of the
Bettt numbers in the inverse sequence of polyhedra at different scales (or reso-
lution) of approximation. Her approach is the following: Given a sample (finite
set of points, possibly with noise) of an unknown topological space, construct an
inverse system of e-neighborhoods of the finite set and inclusion maps. Then,
triangulate the e-neighborhoods using the a-shapes and we obtain an inverse
system of polyhedra based on the sample. Then, track the Betti numbers over
this system. For some examples arising from dynamical systems, she is able to
give bounds for the behavior of the Betti numbers, when the resolution param-
eter tends to infinity, and hence the sample is more accurate. Her quess is that
the more accurate the sample is, the more exactness in the prediction can be
made, and is here where shape theory is proposed as a theory to support this

and other similar methods.

In this direction, Moron et al [3] introduced what they called the main con-
struction’. This is an inverse sequence of finite topological spaces constructed
from more and more tight approximations of a given compact metric space. The
finite spaces are not exactly the approximations but some subspaces of the hyper-
space of the approximations with the upper semifite topology. This is necessary
in order to define continuous maps between these approximations. These maps
are defined in terms of proximity between points of consecutive approximations.
Hence, they are not the inclusion (because the finite spaces are not necesarilly
nested). At this point, they make use of the so called Alexandroff-McCord corre-
spondence, which is the functor assigning a polyhedron to every 7y finite space,

’This was not the first paper of this research group in this topic. From another point of view,
this theme is treated in [34].
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mentioned above. The functoriality is used to define maps between the induced
polyhedra and hence we obtain an inverse sequence of polyhedra. The way
that this sequence is constructed, using finite approximations, induces them to
conjeture that the inverse limit of the inverse sequence of polyhedra is somehow
related with the topology of the original compact metric space. This conjecture
is stated as the general principle, proposing this sequence to detect the shape
properties of the space such as the Cech homology. Our work is placed here,

understanding and expanding the properties of the main construction.

Objectives

The aim of this work was to show that the setting of the main construction,
defined in [3], is a good framework to determine the topology of any compact

metric space. In particular, the goals raised can be enumerated as follows:

1. Determine what shape properties or invariants are recovered by the inverse
sequence of polyhedra defined in the main construction of [3] Prove (or

disprove) the general principle.

2. Find what information about the original space is contained in the inverse
limit of finite 7Ty spaces defined in the main construction and relate the

two sequences.

3. Study suitable modifications of the construction to obtain more properties
about the original space, adding if necessary, topological conditions over
it.

4. Since the main construction is really computable at hand (or by a com-
puter), construct explicit examples in which the reconstruction and the
approximation problem is treated. Try to adapt this method for computa-

tlonal purposes in real data problems.

5. Generalize the framework where these constructions are defined and de-
termine some properties of the upper semifinite topology of hyperspaces
with the discrete topology, embeddability of finite spaces or the computa-
tion of Cech homology of compact metric spaces using inverse sequences

of polyhedra determined by finite subspaces of this hyperspace.
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Results

Chapter 1 contains the necessary theory and results to follow the rest of the

text. So, the results contained there are not original.

In chapter 2 we begin by showing the general principle. The inverse sequence
of polyhedra defined in [3] is a HPol expansion of the compact metric space over
they are constructed. Hence this sequence represents the shape type of the
space and, hence, the inverse limit of the sequence has the shape type of the
original space. Moreover, we construct more induced sequences of polyhedra,
all of them based on the inverse sequence of finite spaces, using different simpli-
cial complexes based on the finite approximations: Cech, Witness and Dowker.
We prove that all of these sequences are HPol expansions of the space. We
define some kind of errors in the induced homology inverse sequences of these
sequences of polyhedra (actually, they are defined for every inverse sequence
of abelian groups) to measure the suitability of finite portions of the inverse
sequences to determine the Cech homology of the space and we relate it with
the movability of the space. Finally, we show some explicit and constructible
(by hand) examples of how this main construction can be carried out in some
metric compacta intimately related with shape theory: The Warsaw circle and

the Hawaiian earring.

Chapter 3 contains the more surprising (for us) and more important result of
this work. The inverse limit of every inverse sequence of finite spaces defined
by the main construction has the homotopy type of the original space, and
it contains an homeomorphic copy of the original space as a subspace. We
identify explicitly this subspace. After that, we study some properties of the main
construction and the result of performing the main construction to some specific
classes of spaces as dense subspaces, countable and ultrametric spaces. For the
last, we obtain that in this case we can choose a suitable construction such that
the inverse limit of the finite spaces is homeomorphic to the ultrametric space.
We compare our results with that of Clader and Kopperman et al (previously
cited). We can obtain Clader’s result as a corollary of our main theorem. In the

other case, their approximations are made for Hausdorff compact spaces, and we
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do not obtain their generality. In contrast, for the case of metric compacta, we
obtain the same consecuences, and we also deduce that every compact metric
space has the homotopy type of an inverse sequence of finite 7y spaces, which
seems to be an unknown result until now. Also, we show that the Hausdorff
reflection preserves the shape type and hence the results of Kopperman et al
implies that every Hausdorff compact space has the same shape as an inverse
sequence of finite 7y spaces. Finally, we generalize the main result of this
section for the hyperspace of the compact metric space with the upper semifinite
topology (which is not a metric space) proving that it is the inverse limit of finite
Ty spaces (actually, hyperspaces of finite spaces with the discrete topology), up

to homotopy type.

The fourth chapter is devoted to the study and development of the use of
the hyperspaces with the upper semifinite topology, specially of spaces with
the discrete topology. First, we prove some basic properties of these spaces.
Next, we show that they are universal spaces (in terms of embeddability) for 7y
Alexandroff spaces. Finally, under the observation that every simplicial complex
is just an open subset of some hyperspace of a discrete space with the upper
semifinite topology containing the canonical copy of the space, we construct the
simplicial neighborhood category, as a new point of view to deal with simplicial
complexes. This perspective allows us to show that certain hyperspaces acts
as universal containers for all the Cech homologies corresponding to all the

possible metrics making a set a compact metric space.

Conclusions

The deep study of the main construction reveals that it is a constructive process
that is able to recover the whole topological information about a compact metric
space. That means that the approximations and the maps constructed are defined
coherently with the topology of the space. Also, the upper semifinite topology
for the hyperspaces is very tractable and enables to deal with non-Hausdorff

spaces with some convenience.
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Chapter five contains only partial results or just new directions or observations
for future work. We propose the main construction as the origin of a new
perspective for future work. There, we set the basis for the implementation
of these results in a more practical framework. The main construction allows
us to outline an algorithm to obtain persistence modules as finite sequences
extracted from an inverse sequence of polyhedra. These persistence modules
are obtained in a different way from the usual ones so we call this new point
of view inverse persistence. We propose the implementation of this process and
its comparison with the usual in terms of stability. We finish by defining some
concepts regarding the stability of the inverse sequences of polyhedra obtained
in chapter 2. We define the concept of being homotopically (or shape) stable
and show some examples of known spaces satisfying this property. Some results

concerning this properties are posed as conjectures and open questions.






Chapter 1

Preliminaries

1.1 Hyperspaces

This is an old theme in topology. It is a natural way of constructing a new space
from a topological space, and use the properties of the original space to deduce
some of the hyperspace. These relations will depend on the topology given to
the hyperspace. As a general reference for Hyperspaces, we recommend the
paper [51] and the book [55].

Given a topological space X we define the hyperspace of X as the set of its
non-empty closed subsets

2 ={C c X:Cisclosed }.

We can endow 2% with several topologies. Before that, we can consider two
distinguished elements of 2%, The subset X is always a closed subspace of X,
so it is a point of 2% that will be called the fat point. If X is T, then every point
is closed, so we can consider every singleton {x}, with x € X, as a point of 2%,
The subset

[{x}:x € X} c 2%,

is the canonical copy of X in 2%.

If (X,d) is a compact metric space (one of the best situations we can have),

we can define a metric in the hyperspace which is the most used. For two points

1
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C, D of 2%, the Hausdorff distance of C and D is
duy(C,D)=inf{e >0:CC D, DcCC},

where

Ce={xe X :dx, C) < e}

is the generalized ball of radius . With this metric, 2% = (2X,dy) is a compact

metric space. Moreover, it is shown that the inclusion map

¢ X — 24

x — {x},

with image the canonical copy of X in 2%, is an isometry. That means, in
particular, that the canonical copy ¢(X) is homeomorphic to the original space
X, which seems to be a very desirable feature. In other words, X is embedded in
27%. More results about hyperspaces with the Hausdorff metric and its relations

with the base space can be seen in [5]

1.1.1  Upper semifinite topology

We next define a topology for hyperspaces that will be used widely along the
text. The advantage of using it is that it has a very easy handling, with the cost
that the hyperspace has very poor topological properties. The general references
for hyperspaces contain the definition and some properties for this topology. We
add two more references [4, 6] about this topology and some of its properties,
that will be used here. In general, this is a non-Hausdorff topology.

Let X be a topological space. For every open set U C X define
BU)y={Cce2":CcuU}c2"

The family
B ={B(U):UcC X open}

is a base for the upper semifinite topology for the hyperspace 22*. The closure

operator of this topology is very easy to describe. Given a 74 space X, and
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C € 2%, then, the closure of the set constisting of just this point is
{C}={De2":CcD}.
We have the following properties from [4]

Proposition 1. Let X, Y be Tychonoff spaces. We have the following.

i) The set X is the unique closed point in 2.\

i

iii) X is homeomorphic to Y if and only if 2\ is homeomorphic to 2}

)
) The space 2\ is a compact connected space.
)
iv)

If X is non-degenerate', 2% is a Ty but not T; space.
In this context, we also have that, if X is a Ty space the inclusion map

p: X — Zf,(

x — {x},

is a topological embedding.

In the case of metric compacta, we have some extra properties. Let (X,d) be
a compact metric space. Consider for every € > 0 the subspace of 2* consisting
of the closed subsets of X

Ue = {C e 2X : diam(C) < s}.

The following result is key in the use of the upper semifinite topology for hy-
perspaces in this text.

Proposition 2. /6] The family U = {U.}.-o is a base of open neighborhoods
of the canonical copy ¢(X) inside 27'.

Remark 1. Note that if we consider any decreasing and tending to zero sequence

of positive real numbers {&,},en, we have that {U, },en is a nested countable
base of 2.

TActually, X just need to be a non-degenerate T; space to satisfy this property.
“This result is also shown [5] for the hyperspace 2% with the Hausdorff metric.
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Now consider we have a continuous map of compact metric spaces f : X — Y.
We define the elevation induced by f as the function 2/ : 2% — 2" defined in
the natural way: For C € 25, 2/(C) = U, f(c). This is a continuous® map.
Moreover, for every map from a topological space to a hyperspace (of the same
space or a different one), we can consider an extension to the whole hyperspace.
Let X, Y be compact metric spaces. If f : X — 2! is a continuous map, its

extension is the function F : 2} — 2 given by

xeC

It is an extension in the sense that we can consider that f is actually a continuous
map from the canonical copy of X in 2¥. That is, strictly speaking, F would
be the extension of the map f* : ¢(X) — 27, with f*({x}) = f(x), which is
continuous because f is. This is Lemma 3 in [6]

Lemma 1 (Continuity of the extension map). The extension of every continuous

map f: X — 2" is well defined and continuous.

1.2 Polyhedra

Polyhedra are topological spaces that can be triangulated. As a consecuence,
they are well behaved in terms of homotopy theory. They play a very important

role in shape theory and as approximations of metric compacta. We recommend
(63, 48] and appendix 1 of [47]

1.2.1 Abstract and geometric simplicial complexes

Before defining polyhedra, we define the abstract and geometric concepts of
triangulation. An abstract simplicial complex K is a set of vertices V(K) and
a set K of non-empty finite subsets of V/(K), called simplices, satisfying this
condition: if o € K and t C o, then T € K. In this case, we say that 7 is
a face of 0. We will denote the simplices as 0 = (w, ... vs), sometimes. The
abstract simplicial complex K is said to be finite if so is V/(K). The dimension of a

3In weaker topological assumptions for the spaces X and Y, this is not always true.
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simplex 0 = {xo, ..., xs} is s. A simplicial map g : K — L of abstract simplicial
complexes is a function g : V(K) — V(L) sending simplices to simplices. We
say K is a subcomplex of L if every vertex and simplex of K is in L. Moreover,
it is called a full subcomplex, if every simplex of L with vertices in K is indeed
a simplex of K.

Now, we turn into the geometric translation of this concept. We say that
a set of points {v, ..., v,} C R" is geometrically independent if the vectors
vi — v, with 1 < @ < n, are linearly independent. We define an n-simplex o

spanned by {w, ..., v,} as the set of points

n n
{XGR”:X=ZW,0<&<1, a:w}.
i=0

i=0

The numbers t; are the barycentric coordinates of the point x. In the case
t; = ,71? for every i =0, ..., n, the point x is called the barycenter of o. A
(proper) face of o is a simplex spanned by a (proper) subset of the vertices of o.
The n-simplex A, spanned by the standard basis of R" is called the standard
n-simplex. A geometric simplicial complex K is a collection of simplices in
RV (for some finite or infinite cardinal N), such that, every face of a simplex
in K is a simplex and the intersection of two simplices of K is a simplex.
The notions of vertices, (full) subcomplex and map of simplicial complexes are
straightforward. Note that we do not require the whole set of vertices to be

geometrically independent.

It is evident that every abstract simplicial complex K gives us a geometric
simplicial complex (and vice versa), that we will denote also as K, considering
any bijection between the vertices V(K) and a geometrically independent subset
of points of RN, for some N (for instance, we can use the standard basis of RV,
where N is the number of vertices V/(K)). Then, a geometric simplex is spanned
if it is the image under the bijection of a simplex of K. Also, a simplicial map
determines a map of simplicial complexes. With this correspondence, we will

not distinguish between abstract or geometric complexes unless necessary.
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Some simplicial complexes

Given any topological space X and a covering of it U = {U,}sea we can
construct the nerve of the covering Ny(X), whose vertices are the elements of
the covering and a finite set of members of the covering {Uj, ..., Ust is a s-
simplex if Up N ... Us # @. If we consider the case where X is a metric space,
and the covering B, = {B(x, &) : x € X}, for € > 0, the nerve C.(X) of this
covering is sometimes called the Cech complex.

Another well known simplicial complex is the following. Given a metric
space X, we define the Vietoris (or Rips) complex V(X), for € > 0, as the
simplicial complex having as vertices the points of X and as simplices the finite
sets {xo, ..., xs} such that diam{xo, ..., xs} < e

1.2.2 Geometric realizations

Given a simplicial complex K, its geometric realization |K| is the union of
simplices of K, as a subspace of R", and topologized defining as closed sets,
the sets meeting each simplex in a closed subset. If K is finite, then this
topology is inherited as a subspace of RN and, in this case, |K| becomes a
compact metric space. A topological space X is a called a polyhedron if there
exists a simplicial complex K such that X = |K|. If we have a simplicial map
g : K — L, the realization of the map g is the continuous map |g| : |K| — |L]
defined sending ) t;v; to > t;g(v). If g is an isomorphism (that is, a bijection
on vertices and simplices) then |g| is an homeomorphism. One important result
concerning simplicial maps and realizations is that we have a combinatorial
way of showing if two maps are homotopic. We say that two continuous maps
f,g : X — |K] are contiguous if, for every x € X, f(x) U g(x) belongs to the
closure of a simplex o of K. The claimed result is the following.

Proposition 3. Contiguous maps are homotopic.

1.2.3 Subdivisions

A subdivision L of a simplicial complex K is a simplicial complex such that every
simplex of L is a subset of a simplex of K" and every simplex of K is the union of

finitely many simplices of L (we can think of it as a kind of refinement). It can
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be shown that this new simplicial complex does not change the corresponding
topological space. That is, if L is a subdivision of K, then |K| = |L|. Among
subdivisions, there is an outstanding one. The barycentric subdivision of a
simplicial complex K is the simplicial complex whose vertices are the simplices
of K and its simplices are finite chains of simplices {ap, ..., 0.} satisfying
0 C ... C os. It is clear that we can repeat this process sequentially, say
n times, obtaining the corresponding n-th barycentric subdivision K" of K.

Concerning barycentric subdivisions, we have the following two results.

Proposition 4. There exists a simplicial map & : K" — K such that its realization

(s contiguous (hence homotopic) to the identity.
Proof. Any simplicial map sending o to any vertex of ¢ satisfies it v/

Proposition 5. Any simplicial map g : K — L induces a subdivided simplicial

map g': K" — " whose realization is contiguous (hence homotopic) to |g|.

Proof. Define g'(0) = g(0) v

1.2.4 The homotopy type of polyhedra

We recall here two important and useful theorems concerning the homotopy type
of polyhedra. The first says that, homotopically, polyhedra are the same thing
as ANRs.

Theorem 1 (West [66], Mardesic¢ [42]). For every topological space it is equivalent
to have the homotopy type of a polyhedron or an ANR. Moreover, every CW-
complex has the homotopy type of a polyhedron.

The second one is about the reconstruction of topological spaces in terms of
the nerves of their coverings.

Theorem 2 (Nerve Lemma [12, 21)). Let X be a topological space and U =
{U,}nen @ numerable open covering. Suppose that, for every S C N, we have

that mnES
is homotopically equivalent to X.

U, is empty or contractible. Then, the realization of the nerve |INy(X)|
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1.3 Shape theory

1.3.1 Origins of shape

Shape theory is a suitable extension of homotopy theory for topological spaces
with bad local properties, where this theory does not give any information about
the space. The paradigmatic example is the Warsaw circle W: It is the graph of
the function
sin (1) in the interval (0, £] adding
its closure (that is, the segment join-
ing (0, —1) and (0, 1)) and closing the
space by any simple (not intersect-
ing itself or the rest of the space) arc
joining the points (0, —1) and (3, 1).
See figure 1.1. It is readily seen that

the fundamental group of W is trivial.

Moreover, so are all its homology and

homotopy groups. But it is also easy

to see that WW has not the homotopy Figure 1.1: The Warsaw circle.
type of a point (for example, it decom-
poses the plane in two connected components), so it has some homotopy type
information that the homotopy and homology groups are not able to capture. It
is then evident that homotopy theory does not work well for W. Shape theory
was initiated by Karol Borsuk in 1968 to overcome these limitations, defining
a new category, containing the same information about well behaved topologi-
cal spaces, but giving some information about spaces with bad local properties.
The idea is that, no matter how bad the space is, its neighborhoods when it
is embedded into a larger space (for example the Hilbert cube Q) are not too
bad. In our example, it is easy to see that the neighborhoods of W are annuli,
having then the homotopy type of S'. The space W share some global properties
with S'. There are no non-trivial maps from S' to W, so the method will be to

compare them in terms of maps between its neighborhoods.

Specifically, Borsuk defined a new class of morphism between metric com-

pacta embedded in the Hilbert cube, called fundamental sequences, as sequences
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of continuous maps f, : QO — Q satisfying some homotopy conditions on the
neighborhoods of the spaces embedded in the Hilbert cube. He introduced a
notion of homotopy among fundamental sequences, setting the shape category
of metric compacta as the homotopy classes for this homotopy relation. It is
shown that the new category differs only formally from the homotopy category
when the space under consideration is an ANR. For the details, see the original
source [13], or the books [15, 14]

After Borsuk's description of the shape category for metric compacta, there
was a lot of work in shape theory, such as different descriptions of shape,
extensions to more general spaces (for instance, Fox's extension of shape for
metric spaces [30]), classifications of shape types or shape invariants. As general
references, we recommend the books [15, 14, 47, 24] and the surveys [43, 44].

1.3.2 Inverse system approach to Shape

In this text, we will use the inverse system approach to shape theory, initiated by
Mardesic and Segal for compact Hausdorff spaces in [46], and further developed
by them and some other authors. The best reference for this approach, is the
book by the same authors [47], where all the details and proofs of this section

can be found.

Inverse systems and expansions

In this section, we recall inverse systems and expansions, the main technical
tools for the inverse system approach to shape theory. We will use generic
categories and, later, we will focus in our concrete case.

Let C be any category and A be a directed set (called the index set). An
inverse system in C consists of a triple X = (X}, pav, \), where X} is an object
(term) of C, for every A € A, and p,r : X)y — X, is a morphism (bonding
morphisms or maps) of C, for every pair A < A" of indices, satisfiying p,, = idx,
and pyupyy = pu, for every triple A < A < A”. If the index set of an inverse
system is A = N, then it is called inverse sequence, and it is written X =
(Xh, Pan+1), since the rest of bonding maps are determined by the composition of
those. Given two inverse systems X = (X3, pov, N, Y = (Y, gy, M), @ morphism
of inverse systems (f,, ¢) : X — Y is a function ¢ : M — A and a collection
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of morphisms of C, for every y € M, f, : Xg,) — Y}, such that, for every pair
u < 1, there exists a A € A satisfying A > ¢(u), ¢(1') for which the following

diagram? is commutative.

KXoty < X —— Xoqw)

ful lfw
Yﬂ

Yy

This morphism of systems will be called a level morphism of systems if A = M,

¢ = idp and, for every A < X, the following diagram is commutative.

X/\ D XA/

fAl jﬂ,

Y,\ -~ Y,\/

The composition of these morphisms is defined straightforward. Then, an equiv-
alence relation ~ between morphisms (f,, ¢), (], ¢') : X — Y is defined as
follows: (f,, ¢) ~ (f,, ¢') if and only if, for every y € M, there is a A € A, with
A= (i), ¢'(1) such that the following diagram is commutative.

o) ~— Xo— Xoun)

\/

Define the category pro-C to be the category with objects inverse systems X
(over all directed sets) in C and morphisms f : X — Y, equivalence classes
of morphisms of systems under the relation ~. Next, we state a very useful

characterization about isomorphisms in pro-C.

Theorem 3 (Morita’s lemma [52]). A level morphism of systems
f:-X=X,pw, N —Y=(Y0quN

in pro-C, is an isomorphism if and only if every A € N\ admits a X' > A and a

*We do not write the morphisms p and g, since its subindices are evident.
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morphism g, : Y, — X, in C making the following diagram commutative.

X)\/

Y)\ -~ YA/

Let 7 be a category and P a subcategory of 7. Let X be an object of 7,
a T -expansion of X is a morphism in pro-7 p : X — X (consider X as an
inverse system in which every term is X and the bonding maps are the identity)
to an inverse system X = (X}, pav,/\) in T satisfying the following universal
condition: For every inverse system Y = (Y, g,,v, M) in P and any morphism
h: X — Y in pro-7, there exists a unique morphism f : X — Y in pro-7 closing
the following diagram.

XX

| A

Y

Moreover, p is called a P-expansion of X whenever X and f are in pro-P. It is
straightforward to show that two expansions of the same space are isomorphic.
Moreover, the isomorphism is unique. Also, a composition of an expansion with

an isomophism is again an expansion.

Given a category 7 and a subcategory P, we say that P is dense in T if

every object of 7 admits a P-expansion.

The Shape category

Let 7 be a category and P a dense subcategory. Consider two objects X, Y of
T and two P-expansions p : X — X and p’ : X — X’ of X and another two
q:Y —=>Yandq :Y — Y for Y. Let us set that two morphisms f : X =Y,

f': X’ — Y’ in pro-P are equivalent, denoted f ~ f, when the following diagram®

°The horizontal arrows stand for the unique isomorphisms quoted before.
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is commutative in pro-P.
X—X

1

Y—Y

Define the shape category Sh for (T, P) as the one having as objects the objects
of T, and, for X, Y € T, the morphisms X — Y are the equivalence classes for
~ of morphisms f : X — Y in pro-P.

Usually, the shape cateqory is used for (T = HTop, P = HPol). The
term H T op stands for the homotopy category of topological spaces: Objects are
homotopy classes of topological spaces and morphisms are homotopy classes
of maps between topological spaces, called Hmaps. So, in this category, two
homotopically equivalent topological spaces are considered isomorphic and two
homotopic maps are considered the same map. Similarly, HPol is the homotopy
category of polyhedra (with similar considerations). We will call these spaces
and maps up to homotopy and there are two reasons of using this condition. On
one hand, because of technical reasons, there are some diagrams that need to
be commutative up to homotopy. On the other hand, shape is an extension of
homotopy, so two spaces homotopically equivalent must have the same shape.
Two isomorphic spaces X, Y in Sh are said to have the same shape (type),
written Sh(X) = Sh(Y).

Polyhedra is then considered as the “good’ spaces to be used for the expan-
sions. Theorem 1, shows that we can use indistinctly polyhedra, CW-complexes
or ANRs for it.

We have an extension of the homotopy category, enlarging the set of mor-
phisms. Thus not every shape morphism is represented by a continuous function,
but we have that every continuous function induces a shape morphism. From
[41], we have the following useful characterization for a function to induce an

isomorphism in the shape category.

Theorem 4. Let X and Y be topological spaces and f : X — Y a continuous
map. Then f is a shape equivalence (that is, the shape morphism induced by f

is an isomorphism in the shape category) if and only if, for every CW-complex
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P, the function®

fY.P] — [X,P|
[h] — [h-1]

is a bijection.

Cech and Vietoris expansions

We describe two concrete HPol expansions that can be defined for every topo-
logical space X, that will be used later. First, we define the Cech system,
é(X) = (Xi, pawv,\). The indexes A are all the normal coverings of X ordered
by refinement (that is, A < A" if A" refines A. The term X is the nerve of the
covering A. The bonding morphism p, is the homotopy class of any simplicial
projection: Every vertex V'’ of the covering A’ is sent to a vertex V of A satisfying
V' C V. This projections are not well defined maps, but they are well defined
(and uniquely determined) Hmaps. It can be shown that there are canonical
maps producing a unique homotpy class p, : X — X, in such a way that the
morphism p : X — (VZ(X) is an HPol expansion, the Cech expansion of X.
Similarly, we have the Vietoris expansion q : X — V(X) = (K, g, N),
where A is exactly the same as in the Cech system. The polyhedron K; is the
realization of the following simplicial complex: {xo, ..., Xs} is a simplex in K
if there is a member U of the covering A containing {xo, ..., xs}. The bonding
morphism g,y is the homotopy class of the realization of the simplicial map
Ky — K, defined by the identity in the vertex set of K,. It was shown in [22]
that, for every topological space X, the Cech and Vietoris systems are isomorphic

in pro-HPol, so the Vietoris system V(X) and q form an HPol expansion of X.

Inverse limits and shape

Inverse limits of inverse systems are a good source of expansions. Actually, the
beginning of the inverse system approach of shape for compact Hausdorff spaces

was to use inverse systems of ANRs [46] instead the more general concept of

®Notation: For topological spaces Z, R, [Z, R] is the set of homotopy classes of continuous
functions from Z to R. For a map h : Z — R, we represent by [h] its homotopy class.
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expansion.

We can define inverse limits for inverse systems in every category by an
universal property that reminds us the definition of expansion. But we will only
introduce the equivalent definition for topological spaces, because it will be the
one used. Let X = (X}, pav,/\) be an inverse system of topological spaces (i.e.
in the Top category). Let [ | X, be the topological product of all terms, and

consider the projection onto the term X},

JTAZ|_|X,\%X/\.

The inverse limit of X is the subspace
X = limX = {x e[1X: mlx) = pumalx), VA< /\’} ,

together with the projections p, = 7, | X, for every A € A. Our spaces, can be

always obtained as inverse limits:

Theorem 5. Every compact Hausdorff (metric) space is the inverse limit of an

inverse system (sequence) of compact polyhedra and PL-bonding maps.

In order to obtain expansions from inverse limits, we need to define the
homotopy functor H: Top — Top, that keeps the objects fixed and sends every
map f to its homotopy class Hf = [f]. Obviously, H assigns to every pro-Top
system a system in pro-HTop. Then, we have that expansions are obtained

applying the homotopy functor to inverse limits.

Theorem 6. Let X be an inverse system of compact ANRs and supposep : X — X
is an inverse limit of X. Then Hp : X — HX is an HPol-expansion of X.

In the case of the Warsaw circle, it could be written as the infinite intersection
a decreasing sequence {W,} of nested annulus containing W. That s, it is the
inverse limit of that sequence of annulus with the inclusion as bonding maps. But
that inverse sequence gives us, using the previous theorem, an HPol-expansion
which is also an HPol-expansion for a circle S', so Sh(W) = Sh(S"), as was
wanted, because they share their global properties.
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Shape invariants

In the same way homology and homotopy groups are homotopy invariants, we
will define some shape invariants. Let X be any topological space and X =
(Xy, pox, \) an HPol expansion of X. For every abelian group G, we can consider
the k-th homology group Hi(X); G) of each term and the induced homology maps
Hi(pv; G) of the bonding maps. Then we obtain an inverse system of abelian
groups

H (X; G) = (He(X3; G), Helpaw; G), N)

called the k-th homology pro-group of X. We define the k-th Cech homology

group of X as the inverse limit of this inverse system of groups,
He(X) = Lim He(X; G).

Similarly, we can take the k-th homotopy group” of each term and the induced

homotopy maps to obtain an inverse system of groups
7 (X) = lim e (X),

(the k-th homotopy pro-group) whose inverse limit is called the K-th shape
group of X,
7 (X) = Llim i (X).

It is shown that the Cech homology and shape groups are well defined, that is,
they do not depend on the HPol expansion we use to compute them. Moreover,

they are shape invariants.

Theorem 7. Let X, Y be topological spaces and G an abelian group. If Sh(X) =
Sh(Y), then Hk(X; G) =~ Hk(Y; G) and 71.(X) = 7. (Y).

The last shape invariant we want to recall is movability, introduced by Borsuk
for metric compacta, trying to generalize the concept of spaces having the shape
of ANRs. This property allows us to use the inverse limit instead of the whole
inverse system to proof some theorems. We can define movability for arbitrary

inverse systems. An inverse system X = (X, pav,/\) in pro-C is movable provided

"With the corresponding considerations about the base point that we do not include here.
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every A € A\ admits A" > A, called movability index of A, such that, for every

A" > A there exists a morphism r: X;; — X)» of C making the following diagram

commutative.
Xy
P r
Pyt
X)\ <~ X)\//

Movability is well defined, since, if X and Y are isomorphic in pro-C, then X
is movable if and only if so is Y. A topological space X is movable if it has

movable HPol-expansions. It is a shape invariant property.

An inverse system X in pro-C is stable provided it is isomorphic in pro-C
to an object X € C. It is evident that if X is stable, then it is movable. A
topological space is said to be stable provided its Hpol-expansions are stable.
It is equivalent to have the same shape as a polyhedron (or ANR) and it is
obviously a shape invariant property. Then, an stable space is movable, but the
converse is not always true. An example of a movable but not stable space is
the Hawaiian earring, another important space in shape theory. It is an infinite

union of circles in R? intersecting only in the point (0,0). Specifically, it is the

U o lz0)2)

neNu{0}

subspace of R?,

where S(a, b) stands for the 1-sphere of center a and radius b in R%. See figure
1.2. The Hawaiian earring can be described as an inverse limit of the inverse
sequence (G, rhni1), where C, =
Us S ((21—”0) %) and the bonding
maps are the retractions 1,41
Coi1 — G, sending S ((2% 0) 2%)
to (0,0) and being the identity else-
where. This inverse limit gives us an
HPol-expansion of ‘H which is mov-
able. For instance, its first homol-
Figure 1.2: The Hawaiian earring. 099 Pro=group has the Mittag-Leffler
property with index 1 as can be easily

computed. This space has not the shape of any polyhedron, so it is not stable.
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We will introduce one more concerning movability. An inverse system of
groups G = (G,, pyv, ) has the Mittag-Leffler (ML) property if every A € A
admits a A > A (called an ML index for A) such that, for every A” > X', we have
pur(Xor) = par(X)). Using that every movable inverse system of groups has the
Mittag-Leffler property and that every functor preserves the property of being
movable, we have that the homology and homotopy pro-groups Hi(X; G), mr(X)
are movable and hence have the Mittag-Leffler property.

The last example of this section is the dyadic solenoid S. It is a very suitable
space for shape theory, because it is defined as an inverse limit. There is a more
geometric definition as the intersection of an infinite sequence of nested solid

tori, but we will use the follovvlng8. Consider
S'={ze€C:|z|=1}

as the unit circle in the complex plane, and define a map p : S' — S' sending
an element z = e to p(z) = e*?. It is a fairly complicated space, arising in
some dynamical systems as an atractor. It is a non-movable metric continuum,

since its induced first homology pro-group
L — 72— ...,

where the bonding maps are the multiplication by 2, has not the Mittag-Leffler

property. Moreover, the first Cech homology group is the trivial one.

1.3.3 Multivalued maps and hyperspaces

In this section, we will recall the multivalued theory of shape for metric compacta,
initiated by Sanjurjo in [61] and the reinterpretation of this theory in terms of
hyperspaces with the upper semifinite topology.

The key and acute idea of multivalued shape theory is to replace the shape
morphisms by sequences of multivalued maps with decreasing diameters of their
images, which is, in some sense, a very natural way of defining them, but hard
to formalize. By defining a non-trivial sort of homotopic classes in this maps, it

is possible to establish a category isomorphic to the shape category of metric

8The equivalence between these two definitions of the dyadic solenoid can be found in [36]
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compacta. We describe the multivalued theory here, but it is recommended to
read the original source. Let X, Y be metric compacta. A multivalued function
F : X — Y is afunction that sends each x € X to a closed subset F(x) C Y. Itis
said to be upper semicontinuous if, for every x € X and every open neighborhood
V of F(x) in Y, there is an open neighborhood of x &€ U such that F(U) C V.
Moreover, a multivalued map F : X — Y is e-small if, for every x € X,
diam(F(x)) < €. Now, given two e-small upper semicontinuous multivalued
functions F, G : X — Y, they are said to be e-multihomotopic, written F ~. G,
if there is an e-small upper semicontinuous multivalued function H: X x [ — Y
with H(x,0) = F(x) and H(x,1) = G(x), for x € X. Now, we define a multi-
net from X to Y as a sequence of upper semicontinuous multivalued functions
F — {F,: X = Y}, _y such that, for every € > 0, there exists np € N such
that F, ~. F,.4 for every n > ny. Finally, two multi-nets /t_ G are homotopic,
written F ~ G if. given € > 0, there is an index ng € N such that F, =, G, for
every n = ng. Then, it is defined a notion of composition for multinets, and it is

possible to prove the following

Theorem 8 (Sanjurjo [61]). The class of metric compacta with homotopy classes
of multi-nets (with the quoted composition) is a category isomorphic with the

shape category of metric compacta.

The importance of this theory lies on the fact that it is internal. That is, we
do not make use of external elements (such as the Hilbert cube or polyhedra) to
describe the morphisms, as in other shape theories. We just use maps between
the metric compacta to define the morphisms.

This multivalued theory of shape was reinterpreted later by Alonso-Mordn
and Gonzalez Gomez in [6]. It is based on the observation that multivalued func-
tlons are just maps into hyperspaces. Moreover, the upper semifinite topology
in the hyperspace is equivalent to the upper semicontinuity in the multivalued

maps. We need to define two concepts here.

Definition 1. Let X and Y be two compact metric spaces. Consider 2) the
hyperspace of Y with the upper semifinite topology. An approximative map from
X to Y is a sequence of continuous maps = {f,}hen, with £, - X — ZE, such

that, for every neighborhood U of the canonical copy of Y in 2!, there exists
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no € N such that f, is homotopic to f, .1 in U (written f, =~ g,, meaning there

exists a homotopy H: X x | — U C 25 between f, and f,.1) for every n > ny.

Definition 2. We say that two approximative maps f = {fo}ren and g =
{gn}nen from X to Y are homotopic = g when, for each open neighbor-
hood U of the canonial copy of Y in 2/, there exists ng € N such that f, is

homotopic to g, in U for every n > ny.

These concepts are related in a very simple way. The following statements

are proved in [6].

Proposition 6. Let X, Y be metric compacta. A sequence F = {Fo}oen is a
multi-net from X to Y if and only if the sequence f= {f,}oen, given by f,(x) =
Fn(x) for every n € N and x € X, is an approximative map. Moreover, given
two multi-nets F, G and two approximative maps ?ﬁ such that f,(x) = F,(x)
and g,(x) = Gpy(x), F and G are homotopic if and only i f and g are homotopic.

The multivalued theory of shape can be reformulated as follows:

Corollary 1. Let X, Y be metric compacta. There is a bijective correspondence
between the set of homotopy classes of approximative maps from X to Y and
the set of homotopy classes of multi-nets from X to Y. Hence there is also a

bijection with the set of shape morphisms from X to Y.

1.4 Alexandroff spaces

Alexandroff spaces are topological spaces satisfying a topological condition that
makes them very special spaces. The notion was introduced by Alexandroff
[2]  We wil use them along the text because of its simplicity. Many of the
hyperspaces considered will be Alexandroff. A good reference for Alexandroff
and finite topological spaces are the notes of May [49, 48] We also recommend
two papers about Alexandroff and finite spaces [64, 50| that were essential in its
development. Finite topological spaces have captured a lot of attention in the last
years because of the developments of digital and computational topology. In a
series of papers, Barmak and Minian have shown very interesting theorems about

the algebraic topology of finite topological spaces (for example, generalizating
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notions such as collapsibility and simple homotopy type to finite topological
spaces). See, for instance, [10, 9, 11] or Barmak's book [8]. A topological space
X is said to be Alexandroff provided arbitrary intersections of open sets are
open. A special case of Alexandroff spaces are the finite topological spaces.
One could have the intuition that a topological space with a finite set of points
cannot contain a deep geometric information, but this will be shown to be not the
case. Concerning Alexandroff spaces, is good to have in mind finite topological
spaces, for simplicity. We can not require too strong separation properties to
Alexandroff spaces, because they will turn trivial: An Alexandroff 7, space is
discrete. But, on the other hand, finite 7y spaces have some geometric interest,
since they have, at least, one closed point. Moreover, in terms of algebraic
topology, we can consider only Alexandroff 7y spaces because of the following
theorem.

Theorem 9 (McCord [50]). Let X be an Alexandroff space. There exists a quo-
tient Ty space gx : X — Xy homotopically equivalent to X (q is a homotopy
equivalence). Moreover, for every map between Alexandroff spaces, f : X — Y

there is a unique map fo : Xo — Yo, between Ty Alexandroff spaces, such that

C]yf = fqu.

1.4.1 Alexandroff spaces and posets

The most important property of an Alexandroff space X is that it has a distin-

guished basis. For every x € X, we can consider the intersection

szﬂu

xelU open

of all the open sets containing x, which is open and it is called the minimal
neighborhood of x, because, by definition, it is contained in every open set con-
taining x. It can be shown, that the set of minimal neighborhoods, {B, : x € X}
is a base for the topology of X, called the minimal basis of X. This minimal
basis defines a reflexive and transitive relation on the space X. For x,y € X,
say x < y if B, C B,. This relation is a partial order if and only if X is 7p. On

the other hand, every reflexive and transitive relation on a set X determines an
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Alexandroff topology, with basis the sets U, = {y € X : y < x}. So, we have

the following correspondence.

Proposition 7. for every set its Alexandroff topologies are in bijective corre-
spondence with its reflexive and transitive relations. The topology is Ty if and

only if the relation is a partial order.

We call a set with a partial order a poset. Last proposition tells us that
Alexandroff Ty spaces (sometimes called A-spaces) and posets are the same
thing. In what follows we will use both points of view without distinction. With
this notation, continuous maps are easily characterized. A function f : X — Y of
Alexandroff spaces is continuous if and only if is order preserving, that is, x < y
implies f(x) < f(y).

1.4.2 Alexandroff-McCord correspondence

We recall the correspondence proved by McCord [50] (we call it the Alexandroff-
McCord correspondence because it was Alexandroff who first worked in it) in
which simplicial complexes are related with Alexandroff 7y spaces. Given an
A-space space X, define KC(X) as the abstract simplicial complex having has
vertex set X and as simplices the finite totally ordered subsets xp < ... < X,
of the poset X. A continuous map f : X — Y of A-spaces defines a simplicial
map K(f) : I(X) — K(Y), since it is order preserving. Now, we can define the
following map ¢ = ¢y : |IC(X)| — X as follows. Every point z € [IC(X)] is
contained in the interior of a unique simplex o spanned by a strictly increasing
finite sequence xo < x; < ... < x; of points of X. We define ()(z) = x¢, and the
following theorem holds.

Theorem 10 (McCord [50]). The map (x is a weak homotopy equivalence. More-
over, given amap f : X — Y of A-spaces, the induced simplicial map K(f) makes

the following diagram commutative.

X ! 4
N s
K(X)] (V)]
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Example 1. Consider the finite space X = {a, b, ¢, d} with proper open sets

t={{a} {c} {a,c} {a b c} {a c d}}.

lts mintmal basis is
{B, ={a}, By ={a,b,c},B. ={c}, By ={a,c d}}.

Hence, X is a poset with a < b,d, ¢ < b,d. The corresponding simplicial
complex KC(X) has vertices a, b, ¢, d and simplices (a, b), (a,d),{c, b),(c, d),
whose realization is homeomorphic to a sphere S'. Hence X has the homotopy

and singular homology groups of S,

On the other direction, given a simplicial complex K, we can define an A-
space X(K) whose points are the simplices of K and the relation is given as
o < tifandonly if o C 7 as simplices. Also, from any simplicial map g : K — L
it is evident that we obtain a continuous map X(g) : K — L of A-spaces. Now,
since X(K) in an A-space, we can apply the previous theorem to obtain the

simplicial complex K(X(K)) = K" and the weak homotopy equivalence
b = Y - |K] = [K'] = IK(X(K))| — X(K).

Again, for every simplicial map g : X — Y we have that the following diagram

commutes up to homotopy.

K] . L]
¢Kl l@
X(K) g X(L)

So, there is a mutual correspondence of simplicial complexes and A-spaces (or
posets) preserving homotopy and singular homology groups. Note that this
means that there are A-spaces with the same homotopy and singular homology
groups as every possible simplicial complex. Concretely, there are finite Ty
spaces with the same homotopy and singular homology groups as any compact
polyhedron.

Note that given a simplicial complex K, we can apply the correspondences



15. Persistent homology 23

sequentially to obtain IC(X(-7~IC(X(K)))) = K the n-th barycentric subdi-
vision of K. Similarly, given any A-space X, we can apply the correspon-

dences n times to obtain what we will call the n-th barycentric subdivision

n

X = K(X(--K(X(K)))) of the A-space X,

1.5 Persistent homology

In the recent years, the fields of Computational Topology and Applied Algebraic
Topology have had a great and successful development. The deep and abstract
mathematical concepts and theorems of (Algebraic) Topology have been shown
as a very useful tool in real world problems, so the interest of other areas of
science in them, is becoming bigger and bigger. As general references for these
topics we give the books, [68, 26, 33] We are interested in the more specific
field of Topological Data Analysis. This consists of the study and management
of (maybe belonging to real world) data sets using topological constructions
and techniques. The excellent surveys [17] by Carlsson and [32] by R. Ghrist are
strongly recommended for this topic.

In particular, we recall the powefull tool of persistent homology. Persistence
is an algebraic topological tool used to detect topological features in contexts
where we have not all the information about the space or the information we
have is somehow noisy. We recommend, besides the general references quoted,
the surveys [25, 65] It is usually agreed that the concept of persistence born
in three different ways: Frosini and Ferri's group, studying the persistence
of 0-dimensional homology of functions (using the concept os size function)
[29], Vanessa Robins introducing the concept of persistent Betti numbers in a
shape theory context to understand the evolution of homology in fractals [60]

and Edelsbrunner group [27].

1.5.1 The idea of persistence

We illustrate the notion of persistent homology through a very schematic ex-
ample. Consider we have a finite set of points X (and we know the distances
between them), possibly as a noisy sample of an unknown topological space

X. If we want to detect some topological properties of X from X, one way
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could be to construct a simplicial complex based on this set of points and study

its topologicalproperties. For example, in figure 1.3, we have the Vietoris-Rips

Ve (X) Ve(X)

Figure 1.3: The Vietoris-Rips complexes of a point cloud with two parameters.

complexes of a finite set of points X, which is a noisy sample of an underlying
space X = S' with two different real parameters 0 < &’ < e. Both detect the
main feature of X, the central hole or 1-cycle. But we have that none of them

really determine the first homology group of X, because
HiVe(X),Z) = Hi(VX), Z) = ZDZ 27 = Hi(X, Z).

The persistent homology idea is just to consider the inclusion V(X)) — V. (X)

and the image of the induced maps on the first homology groups, that is,
Im(Fh (VoK) Z) = Hh(V.(X); ) = Z = Hh(X; Z)

which really captures the desired feature.

1.5.2 Filtrations

In general, suppose we have a filtration, i.e., a finite sequence of nested simplicial

complexes
0=Ky— Kj — ... = K..

We are interested in the topological evolution of the sequence of the homology

groups, so, for every p € N and every abelian group G, we can consider the
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induced p-th homology finite sequence
{0} = Hy(Ko; G) = H,o(Ky; G) — ... — H,(K,; G).

As we move forward in the sequence, new homology classes can appear and
some could merge or vanish. We collect the homology classes as follows. The
p-th persistent homology groups are the images of the homomorphisms induced
by inclusion

HY = Im(Hy(K; G) < Hy(K;; G))

for 0 < i < j < s Similarly, the p-th persistent Betti numbers are the ranks
of these groups BY = rkH,. We can do the same definitions with reduced
homology. The collection of persistent Betti numbers can be visualized in a
persistence diagram. Given a filtration of simplicial complexes, there are several
algorithms determining these numbers and the evolution of the homology classes.
See references for more details.

There are several ways of arriving to a filtration of simplicial complexes. We

mention the main two of them.

e A finite set of points and its distances. Given any finite metric space
X (as in the previous example), called a point cloud, we can produce
filtrations of simplicial complexes taking the Vietoris-Rips, Cech or other
complexes of X for every € > 0. There will be only a finite number of
different complexes since X is finite, so we obtain a filtration of simplicial

complexes.

e Consider a simplicial complex K and a real valued function f : X - R
which is monotonic (meaning that if 7 is a face of g, then f(7) < f(0). Then,
supposing the different values of the function are —co = ap < a1 < ... <
a,, if we set K; = f~'(—o0, aj fori=0,1,..., s, we have that K; are
subcomplexes of K, K; is a subcomplex of Ki; 1, forevery i = 0,1, ..., s—1,
and K, = K. Thus we have a filtration called the filtration of the function
f.
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1.5.3 Structure of persistence

One step further in the study of persistence is to find some structure in the
evolution of the homology classes in a given filtration. In this direction, we
recall the Structure Theorem by Carlsson and Zomorodian [67]. For the alge-
braic definitions see the cited article or the book [23]. Let F be a field. We
define a persistence module M as a family of vector spaces  M; over F and
homomorphisms ¢; : M; — M4, for i € N. For example, the induced homology
finite sequence of a filtration, where the maps ¢ send a homology class to the
one containing it. We will say that M is of finite type if M; is a finitely gen-
erated R-module and there exists an integer m such that ¢; is an isomorphism
for i > m. Now we define the elements for the classification which, in some
sense, represents the beginning and end of an homology class. A persistence
interval is an ordered pair (i, j), with 0 < i < j, i,j € Z U {+00}. A finite set
of persistence intervals is called a barcode. The following correspondence is
stablished.

Theorem 11 (Correspondence). The isomorphism classes of persistence modules

of finite type over a field are in bijective correspondence with barcodes.

The proof of this theorem uses some advanced algebra, including the structure
theorem of finitely generated modules and graded modules over PIDs, which we
do not include here for simplicity. For the algebraic machinery used in the proof,
see [23] The importance of this result, which gives a structure to the persistence
modules, is that we know that the barcodes, a very intuitive way of representing
the evolution of the homology classes, really determines the persistence module,
up to isomorphism. So they are a good way to represent persistence. On
the other hand, this result enables to modify the standard reduction algorithm
for homology using the properties of the persistence module to derive a rather
simple algorithm to compute the barcodes. This is implemented in the Matlab

routine Plex.

9The definition still holds if we replace F by a commutative ring with unity, obtaining then
R modules M, but we need this stronger condition for the structure theorem.



Chapter 2
Shape approximations of compacta

In this chapter, we recall the construction over compact metric spaces, done in
[3] to obtain an inverse sequence of finite approximations, closer to our space in
each step. We can define some sequences of polyhedra associated with it. This
construction is based in the multivalued shape theory and we will show how it

describes the shape of the original space.

2.1 Main construction

We begin by recalling the main construction done in section 6 of [3]. There,
given a compact metric space, it is obtained an inverse sequence of finite ap-
proximations of our space and some sequences of real numbers that allow us to
define continuous maps between the approximations. Since the space is com-
pact, we can find finite approximations as small as wanted. The naive idea
would be to connect them in terms of proximity. That is, we would send a point
in one approximation to its closest point in the previous one. The problem is
that it is possible for one point of one approximation to be exactly at the same
distance from two points of another approximation. Hence, we would not have
a well defined map and, even if we have it, the approximations are just discrete
spaces and the map is trivial. By making use of hyperspaces and the upper
semifinite topology, we can define more suitable finite topological spaces and
continuous maps between them. Moreover, this inverse sequence will lead to

inverse sequences of polyhedra, which will be shown to recover the shape of the

27
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original space.

Let us start with the kind of approximations that we will use.

Definition 3. Let (X, d) be a compact metric space and € > 0 a real number. A
finite subset A C X is said to be an e-approximation of X if, for every x € X,

there is at least one point a € A such that d(x, a) < €.

Remark 2. It is straighforward to see that, for a compact metric space, there are

e-approximations for every € > 0.

Given a non-empty finite subset A C X of a compact metric space (X, d), we

consider, for each point x € X, the set of closest points of A as
Alx) ={a € A:d(x,a) =d(x, A)}.

It is natural, then, to define a function from the space to its closest sets. We will

call the nearby map from X to A to the function
ga: X — 240 c 2y,

defined by ga(x) = A(x). The extension of the nearby map will be usually
written as

fAIfo—)ZZ(.

Moreover, we can define the distance map ds : X — R, with da(x) = d(x, A).

Both will be shown to be continuous maps because of the following lemma.

Lemma 2. Let (X, d) be a compact metric space and A C X a finite subset. For
every x € X there exists 0 > 0 such that, for every y € B(x, 9), Aly) C A(x).

Proof. Let x € X and consider the distances 0~ = d(x,A) > 0 and 0% =
d(x, A\ A(x)) > 0 (if A\ Ax) = @, then A(x) = A, so we will assume that it is

not empty). Now, fix
0 —0o~
2
If a € A(x) and b € A\ A(x), we see that, for every y € B(x, 9),

0= > 0.

0T+ 0~

dly,a) <d(y,x) +d(x,a) <o+0 = >

0" < d(x, b) < d(x,y) +d(y, b) < d+d(y, b).
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Whence

so Aly) C Alx) v
As an immediate corollary, we obtain the continuity of the nearby map.

Corollary 2. Let (X, d) be a compact metric space and A C X a finite subset.
The nearby map qs : X — 2 is continuous. Hence its extension ry is also

continuous.

Proof. The map g4 satisfies that, for every x € X, there exists 0 > 0 such that

qa(B(x, 9)) C galx),

hence g4 is continuous v

Remark 3. If A'is a finite e-approximation of a compact metric space (X, d), the
images of the points x € X are sent to the subespace U,.(A) because of the

triangle inequality. That is, the nearby map is ga : X — U (A).

This result is the more important one concerning the main construction. It
says that given an approximation, we always can find a more accurate approx-
imation and define finite spaces based on them and connected by a nearby

map.

Lemma 3. Let (X, d) be a compact metric space and consider a real number
€ > 0 and a finite e-approximation A of X. There exists 0 < € < € such that,
for every finite € -approximation A, the map p : U, (A') — U, (A), defined by
p(C) = ra(C), is well defined and continuous. Moreover, we can select ' < 5*

where y > d(x, A), for every x € X.

Proof. Since the map ry : fo -2 C fo is continuous and {U, }4s0 is a base of
open neighborhoods of the canonical copy of X in 2%, we have that there exist
0 > 0 such that ra(Us(X)) C Ue(A). In words, two points of X that are 0-close,
are sent by gu to subsets of A whose points are e-close. Now, pick a real
number 0 < &' < g and any &’-approximation A" of X. Then, U,o(A) C Us(X),
so ra(Ure(A)) C Use(A). Hence, the map p : Use(A') — Use(A), defined as the



30 Chapter 2. Shape approximations of compacta

restriction of ra to Uy (A’) (that is, p(C) = ra(C), for every C € U,o(A')), is well
defined and continuous.

For the second part, let us consider the distance funcion to A, ds: X — R
which is a continuous map. Since A is an e-approximation, d(x, A) < ¢ for every

x € X. Moreover, for being X compact, there exists a supremum
y =sup{d(x,A):x € X} < ¢,

so it is enough to select

, , E—y 0
0 z rZz
<5<mm{ > ]»

and we are done VvV

The reason of the second part is that we want the described approximation
to be tight enough. It will be seen to be useful to derive some properties in
what follows.

Definition 4. Let (X, d) be a compact metric space. Given two real numbers
0 < € < g, two finite subsets A, A" C X, € and €'-approximations respectively,
we will say that A" is adjusted to A if € and ¢ satisfy the conditions of the
previous result.

Remark 4. In these terms, lemma 3 simply says that for every approximation of

a compact metric space, there exists another adjusted to it.

Finally, by induction, we can repeat the process indefinitely, to obtain se-

quences of approximations.

Proposition 8 (Main construction). For every compact metric space (X, d), there
exists a decreasing sequence of positive real numbers {e,},en tending to zero,
and a sequence {A,},en of finite €,-approximations of X, such that A,.1 is
adjusted to A,, for every n € N.

Proof. Let (X, d) be a compact metric space. The construction is done inductively.
Consider the diameter diam (X) = M and any &; > M. Consider the subset A,
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consisting of one point of X. It is clear that Ay is an & approximation of X. In

the next step, we consider

M M
0<sz<m'm{61 —}

2 2

and a finite e,-approximation A,. The finite subsets A;, A, C X inherit the
metric. Consider the finite spaces U, (A1), Use,(A2) C 25 with the subsepace
topology and the constant (and hence continuous) map p1, : Us, (A2) = Use, (A1).
For the next step, apply lemma 3 to the e,-approximation A, to obtain an adjusted
e3-approximation. In general, apply lemma 3 to the g,-approximation A, to

obtain a €, 1-approximation A,4, adjusted to A, v

Remark 5. Note that, given a compact metric space, this process is completely
constructive. We can compute all the real numbers and select finite approxima-
tions that satisfy the quoted properties. It is an inductive process, so we compute
the numbers and approximations in this strictly necessary order:

/\/Ir 8‘],/4’], 521/42! V2: 62 rrrr SHIAHI yn: 5ﬂ' €ﬂ+11Aﬂ+1l Vn+1: 5ﬂ+1r e

Given a compact metric space (X, d), from this construction we obtain a se-
quence of finite spaces { U, (An) }nen and continuous maps pp, 11 : Use, ., (A1) —

Use, (An), for every n € N. We thus obtain an inverse sequence of finite spaces
Uza (A1) (ﬂ UZEZ (AZ) <,02_3 o Pn—1.n Uzgn (A,,) Pn.n+1 U25n+1 (An+1) Pn+1.n+2 o

We will give a name to every inverse sequence of finite spaces obtained in this

way.

Definition 5. Let (X, d) be a compact metric space. An inverse sequence of finite

spaces
{UZEN (An)’ pn,n+1}

obtained as indicated from a sequence of adjusted €, approximations {A,},en,
where {&,},en is decreasing and tending to zero, is said to be a finite approx-

imative sequence (usually written FAS) of X.
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Remark 6. Strictly speaking, a FAS will be the inverse sequence of finite spaces
quoted above. But we will use FAS to make reference also to the approximations
and the numbers obtained, {€,, A,, va, 0, }nen, because they determine uniquely

the finite spaces and maps.

Remark 7. Theorem 8 implies that every compact metric space has a FAS. In

general, FASs are not unique.

Moreover, we can use the Alexandroff-McCord correspondence (Theorem 10)
to obtain a sequence of polyhedra. For every n € N and finite Ty space
Use, (An), there exists a simplicial complex K(U,, (A,)) with vertex set the points
D € Uy, (A,) and simplexes (Do, Dy, . . ., Ds) with Dy € Dy C ... C Ds such
that there is a weak homotopy equivalence between the finite space and the

geometric realization of the simplicial complex
fo - [K(Uze, (An))| = Use, (An),

defined as follows. Every point x € |K(Uae, (An))| is contained in the interior of
a unique simplex 0 = (Do, Dy, . . ., D.) and f,(x) = Dy.
We also have simplicial maps' between the polyhedra, defined on the vertices

and extended as usual to simplices:

Pnn+ - ’C(UZg,m (A1) — KUz, (An))
D | — pn,n+1(D)
<DO: D1 ----- Ds> — <pn,n+1(DO)r,Dn,n+1(D1) ----- pn,n+1(Ds)>

where, if
Doc DyC...CD,

then
pn,n+1(DO) C pn,n+1(D1) C...C pn,n+1(Ds)~

The realizations of these simplicial maps satisfy that, for every n € N, the

"Following McCords paper’s notation we should write K(p, ,+1) for the simplicial maps but
we will omit this notation, using the same as for the maps between the finite spaces, p, 41, for
the sake of simplicity.
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diagram

‘ n,n+1|
K (Une, (An)| =5 1K (Une, (A1)

fnj Lfn+1

UZe:” (An) U28n+1 (An+1 )

Pn.n+1

commutes. So we obtain an inverse sequence of polyhedra and a map (actually

a level map) between the inverse sequences of finite spaces and polyhedra.

|p1.2] (P01l
KUz, (A))| =—— [K(Uze, ()| =—— - = [K(Uze, (An))| =—— [K(Uae, . (Ani)) | =— - ..
fwl le f,,l lf”1
Uae, (A1) 0 Uae, (A2) o Uae, (An) ~ UZCHM (A1) =— ...

The analysis of these two inverse sequences, their limits and their relations with

the original space, will play a fundamental role in the following.

2.2 Approximative maps

In this section we will analyze the shape properties of the main construction in
terms of the shape theory for compact metric spaces with multivalued maps (see
section 1.3.3). We will prove some propositions concerning this relationship as
well as two results proposed in [3] The purpose of this relationship is to reflect
that the main construction captures the shape properties of the space in which
is done.

We will need two technical lemmas about homotopies in hyperspaces with
the upper semifinite topology in order to prove some results. The upper semifinite
topology is shown here to be very useful, because it easily gives us homotopies

between those kind of maps.

Lemma 4. Let X, Y be metric compacta and f,g : X — 25 two continuous maps.
The map fU g : X — 2!, defined by (f U g) (x) = f(x) U g(x), is continuous.

Proof. For every x € X, the application f U g is well defined because f(x) and
g(x) are closed subsets of Y, and so is f(x) U g(x). Let us take a neighborhood
B(V) of f(x) U g(x) in 2, where B(V) = {C € 2 : C Cc V} with V an
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open subset of Y which contains f(x) U g(x). The applications f and g are
continuous, so there are two neighborhoods of x, namely U; and U5, such that
f(Uy), g(Uy) € V. Then U = U;NU; is a neighborhood of x such that fUg(U) =
f(lU)ug(U) C f(Uy)Ug(lh) C V,so fUg(U) C B(V), hence fUg is continuous
atx v

Lemma 5. Consider two compact metric spaces X, Y. Letf,g,h: X — ZZ be
continuous maps such that, for every x € X, f(x), g(x) C h(x) C 2}. Then, f and
g are homotopic.

Proof. The map

H:X x| — 2%
defined by
fix) iftelo,d),
Hix,t) =1 h(x) ift=1,

—_

glx) ifte(d,

]
is continuous and hence a homotopy between the two maps. Indeed, H is
obviously continuous in every point (x, t) with t % Consider (x, %) e X x %
and an open neighborhood B(V/) of it. Because of the continuity of h we have that
there is an open neighborhood U of x such that h(U) C B(V). But f(U), g(U) C
h(U), so U x | is an open neighborhood of (x, %) such that H(U x [) C B(V),

and the continuity is proved v’

Remark 8. From the previous two lemmas we can derive the following result:
For X, Y compact metric spaces, every two maps f,g : X — 2! are homotopic.
Despite it seems to be a disappointing result, we will be usually interested not
in homotopies in the whole space 2! but in subespaces of it. Note that we are

considering sequences of this kind of map with smaller and smaller diameters.

We can show now, the following result, proposed in [3](Proposition 21), re-

lating the main construction with the multivalued shape theory.

Proposition 9. Let X be a compact metric space. Consider we obtain the se-
quences {&,, Ay, Vn, On tnen by performing the main construction to X. The se-
quence of maps {qa,},en (S an approximative map representing the identity
shape morphism on X.
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Proof. Let us first prove that {ga, },en is indeed an approximative map. For each

n € N the map ga, : X — 27 is continuous, because of lemma 2. The family

{U,} is a base of open neighborhoods of the canonical copy of X inside 2, so

there exists an € > 0 such that X C U, C U. Recall that {€,} is a decreasing

sequence of positive real numbers tending to cero, so we can choose ny such

that 2e,, < . We claim that, for every n > ng, the map H: X x | — U C 2
defined by

ga,(x) if t €]0,

Hix,t) =1 qa,(X)Uqga,,,(x) ift= %

ga,..(x) Ute (%

No—
-

—_

]

is an homotopy between g, and gu,, in U. The map is continuous and well

n+1

defined because, for every x € X,

qAn+1 (X) C B(X’ 6ﬂ+1 )’
qa,(x) C Blx, &),

and then
diam (ga,(x) U ga,.,(x)) < 2¢, < €,

so the images of the applications are in U. C U

It is clear that the approximative map id : X — 2 with id(x) = {x},
corresponds to the identity shape morphism of X. To prove that {ga, }nen it is
homotopic to the identity, we just choose ng such that 2g,, < €, and use the
homotopy H : X x | — U C 2 defined by

ga,(x) if t €10,
Hix, t) =1 qax)u{x} ift=1,
Ix} ite(d

Nl—
—

—_

| v

Note that, in the previous result, we obtain an equivalent approximative map
with finite images. We can generalize this to any class of approximative maps
in order to describe a shape theory for metric compacta in simpler terms.

Definition 6. Let X, Y be compact metric spaces. An approximative map {f, },en
from X to Y is said to be of finite type if, for every n € N and every x € X, the
image f,(x) is a finite set.
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Now, we prove that for every homotopy class of approximative maps, we can

allways find a representative of finite type.

Proposition 10. Let X, Y be compact metric spaces and {f,},en an approxima-
tive map from X to Y. There exists an approximative map {f,},en of finite type
from X to Y homotopic to {f,},en.

Proof. Consider a decreasing sequence of positive real numbers {B,},en con-
verging to zero and a sequence of finite B,-approximations® B, of Y. Define,

" is the extension

u’

for every n € N, the map §, = rg, o f,, where rg : 2" — 2
of the map gg, : ¥ — 2V, It is clear that f is continuous. Now, we need to
show that {f,},en is an approximative map and it is homotopic to {f,},en. We
are going to prove both statements as consecuences of the following claim: For
every open set U C 2! containing the canonical copy of Y, there exists ngy such
that, for every n > no, f, =y g,. Indeed, let U C 25 such an open set. Consider,
for every n € N, the diameter D, of the map f,. Since f, is an approximative
map, it is clear that the sequence {D,},en converges to zero. The diameter of
g, depends on D,, for each n € N. For every x € X, and for every two points

Y1, Y2 € f,(x), consider z1 € B,(y1), 22 € B,(y2). Then, we have
d(z1, 22) < d(z1, y1) + d(y1, y2) + d(y2, 22) < 2B, + D,

hence diam(g,) < B, + D,. Now, let € > 0 be a real number such that
Us C U, and select ng such that 28, + D, < € for every n > ng. Then, the map
H: X x| — U, defined by

fa(x) ift €[0,3),
H(x,t) = 1 f(x)Ugn(x) ift= %
galx) if t € (3,1]

is continuous by lemma 5, and hence a homotopy between f, and g, in U.
Moreover, being {f,},en an approximative map, there exists mq such that, for

every n = my, f, is homotopic to f,1 in U. Finally, for n > max ng, my, we have

dn =U fn Zu fn-H ZU gn+1,

’In this case, we do not need the sequences to be as in the main construction, with the
quoted properties is enough.
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which shows the two statements which finish the proof v

We finish this section by showing this result, also proposed in [3] (Proposition
20), which establishes a deeper connection of the main construction with the
shape of the space, because it takes into account the maps p, .1 between the
finite spaces.

Proposition 11. Let X be a compact metric space and consider the sequences
obtained with the main construction over X. The following diagram is commu-
tative, up to homotopy, for every n € N:

X id X

qAn+1 j j qAn

UZ&,M (An+1 ) Uan (An)~

Pn+1.n

Proof. To prove this commutativity we need a homotopy between the maps
Pnnt+1 © Ga,., and ga,. Such a homotopy is given by H : X x [ — U, (A)),
with
ga,(x) Htelo ),
H(x,t) =1 qa,(X)Upnnt10qa,.,(x) ft= %
Pnnt1 ©qa,,(x) ifte (% 1].
This is @ homotopy because of Lemmas 4 and 5, and the following fact: If x € X,

Yy € ga,(x) and z € p, p+1(y) we have that

dix,z) < dx,y)+dy, z) <
En — Vn

< 2Vps1+¥n < > T ¥ <én
Then
Pnnt10qa,.,(x) C Blx &),
ga,(x) C Blx &),
SO

diam (C]A”(X) U Pnin+1 9 qA, ., (X)) < 28”

and the homotopy is well defined and continuous v/
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2.3 Polyhedral approximative sequences and the Gen-

eral Principle

From the main construction we obtain a sequence of finite spaces and maps
between them related with the notion of proximity between points of contigu-
ous approximations. This reminds the concept of shape theory of an expansion
associated to a space X. In this section we would construct several sequences
of polyhedra, all of them based on the main construction. They will provide all
the shape information of the space. We will call any of the sequences of this

section a polyhedral approximative sequence of X.

2.3.1  The Alexandroff-McCord approximative sequence

We begin by considering the inverse sequence of polyhedra we mentioned above,
AM(X) = {[K(Use, (Al [pnnsa] N}

We will call this inverse sequence, the Alexandroff-McCord approximative se-
quence. The polyhedra involved in this sequence are actually realizations of

another well known simplicial complex.

Definition 7. Let (X, d) a metric space, and consider a real number € > 0, The
Vietoris-Rips complex R¢(X) is the simplicial complex with vertex set X and a

g-simplex is a subset {xo, ..., Xq} C X such that diam{xo, ..., xq} < €.

The relation between the Vietoris-Rips complexes and the McCord complexes
asociated to our finite spaces is stated in corollary 7 of [3]. Basically, the McCord

complex is the barycentric subdivision of the Vietoris Rips complex.

Proposition 12. Let (A, d) a finite metric space and consider € > 0. Then
K(U:(A) = R(A).

The main result we want to prove here is the so called “general principle’ of
[3]. It says that this sequence reconstructs the shape properties of the space X.

Namely, we are going to prove
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Theorem 12 (General principle). The inverse system AM(X) is an HPol-expansion
of X.

Proof. We are going to see that AM(X) is isomorphic to the Vietoris system

V(X) = {|Re(X)], icer, € > 0},

where, for every € < &/,

leer  [Re(X)] — [Re(X)]

is just the inclusion induced by the simplicial inclusion. This is a well known an
HPol-expansion of X (see [47]). The main differences between the two systems,
that make harder their comparison, are that they are defined over different index
sets, and that the polyhedra of the former are the barycentric subdivisions of the
polyhedra of the latter. So, we are going to see the isomorphism with a chain
of isomorpisms between the two sequences.

First of all, we can consider the sequence
Vi(X) = {|R2£n(X)|r i8n6n+wN}

which is cofinal with V(X) (and then, isomorphic), because {g,} is decreasing
and tending to zero.
Now, the system AM(X) induces a sequence with maps defined over the

Vietoris Rips complexes as follows: We define, for all n € N, the simplicial map

p:,n+1 : RZg” (An+1) - RZg” (An)

a +— b€ qala)=pnna{a})

We have to see that the realization of this map on the corresponding polyhedra

is well defined up to homotopy type’: If b, b’ € ga,(a), then
d(b,b") < d(b, a) + d(a, b') < 2¢,,

so the two posible definitions of the map, b and b’, are homotopic. And it is

3Meaning that, although we do not define a map, we define a homotopy class of maps
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simplicial: If the simplex (ag, a1, .. ., as), where diam({ao, a4, . . ., as}) < 2e,41,

the image (bg, by, . . ., bs), with b; € ga,(a;) is a simplex of Ry, (A,) because

d(b;, b;) < d(b;, a;) +d(a;, a;) + d(a;, by) <

8 _
< Vn+25n+1+yn<2yn+2 . Vo

=Vnté& < 28,7.
So, we can define inductively the HPol inverse sequence of polyhedra

MX) = {IRae, (Anl. |prnyal N}

We need to prove that this sequence is equivalent to the previous one, i.e, the
inverse system M*(X) is isomorphic to AM(X). In order to define a morphism
between the systems we are going to use the simplicial map that always exists
between a simplicial complex K an its barycentric subdivision p : K/ — K.
The vertex x = {xp, x1,. .., xs} of K’ (and simplex of K) has image the vertex
xs of K. For example, the image of a simplex 0 = ({xo}, {x0, X1}, {x0, X1, X2})
of K" will be p(g) = (xo, X1, x2) a simplex of K. The realization of this map
lp| - |K’| = |K] — |K]| is homotopic to the identity *. This map, component by
component, induces a morphism of systems p : AM(X) — M*(X). We have to

see that for all n € N, the following diagram is commutative up to homotopy.

|pn,n ’\‘
[Roe, Aa)| =————IR5., , (Ans1)|

pl Lp

|R25n (An)| |R25n+1 (An+1)|

|p;,n+1 ‘

Letx € |R/2SM (Ans1)], x belongs to a simplex o = (Dy, Dy, . . ., D) € ’R;SW (Ani1).

We need to calculate he images of o by the simplicial maps p o p,,+1 and

*We could have defined the simplicial map choosing any vertex as image and the realization
would have the same homotopic properties (see [48]).
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Py a41 © P We have to describe explicitly some elements. We denote:

D, =ab al, .. ., a?o, ag, aj, ..., a; ag ai, ..., a,,
Do
Dy
Ds—

pn,n+1(Ds) = qAn(Gg) U t U qA/7(090) UqAn(Gg)) U t U qAn(O;I’1) U T UqAn(OS)U : .UQA”(GZ),

Pn,n+1(Do)
p/7,n+1(D1)
pn,n+1(Dsf1)

0 0 (0 0
qAn(al'o) = {bO’b1 """ bfo}’

1 1 41 1
qAn(al’1) = {bO'b ""’bfo}’
ga(ay) = A{bg, bj. ... bi}.

Or, alternatively, for k =0,1...,s,

kT rk
0. = UUel =0 uJot
jo =0 i=0

k 7 Tk
ponia(D) = (U aalal) = posir(Dia) Ul ga,(a)),

Jo =0 i=0
t

N J
(=0

Then, we have

(Do, D1, ..., D) " (pyni1(Do), Prnsa(D1), o pania(Ds)y 2= (B2, b1, b2) = oy,
(Do, Dy, ... D) = (afal, o an) = (B0, bl b)) = 0o

But 0y and o lie in a common simplex, say onUog, = (b?o,

bl .. be, b0, bl D).

' 1!
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Indeed, it is a simplex of 72/28”(/4,7) because

d(bi, bl) < d(b}.a})+d(al, a])+d(a,b)
< Vn + 25n+1 + Vn < 2517'

So, p: AM(X) — M*(X) is a morphism of systems. Moreover, p is equivalent
to the identity as morphism of systems (see [47] page 6) because the equivalent

condition is trivially satisfied because, for all n € N,
poid [Roe, (An)] — [Rae, (A

are homotopic maps as we pointed out. Then AM(X) and M*(X) are isomorphic.

It just remains to prove that the inverse systems V*(X) and M*(X) are iso-
morphic. Now both systems deal with Vietoris Rips complexes (without any
barycentric subdivision). We will just write some inclusions between the sys-
tems and see that it works. So, if we consider, for each n &€ N, the obvious
inclusion j, : Roe, (An) = Rae, (X), which is a simplicial map, it defines (with its
realizations on the polyhedra) a morphism of systems j : M*(X) — V*(X). To
see this, we check that, for every n € N, the diagram

%
Pn,n+1

’R25n+1 (An +1 )

/.nl lUﬂH ‘

Rae, (X))

i25,7,25n+1

commutes, up to homotopy. Indeed, every x € |Ry, (A,)| belongs to a simplex

o= {(ap,ay,..., as) € Roe,(Ay). The images of the simplex are
p:;,nJr .n
(ag, a1, ..., as) — (bg, by,.. ., bs) = (bg,b1,..., b)) =01, b € qala),
Jn+1 {
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forevery i,j € {0,1,..., s} we have

d(a;, b)) < d(a;, a;) +d(a;, b)) <
En — Vn

< 28n+1 + Vn < 2 P

+ vn = &,

which means 01 U 0, € Ry, (X), so the two maps are homotopic. This morphism
of systems is, in fact, an isomorphism. To see this, we need to use Morita's lemma
(Theorem 3). Roughly speaking, all we need is a diagonal map making the last

diagram factorizing through it. So, we define, for every n € N, a simplicial map

gn : R25n+1 (X) B R2517 (An)

X = a&qax),
which is well defined because a, a’ € g4, (x) implies that
d(a, ') < d(a, x) +d(x, d') < 2¢,,

and simplicial because if g,({(xo, X1, ..., xs)) = (ap, ay, ..., as), then, for every
Lje{0,1,..., s}, we have

d(a;, aj) < d(a;, x) +d(x, x;) +d(x;, a)) <
< Yn 28001+ vn < 26,

The realization of this simplicial map is our diagonal that makes the diagram

conmutative up to homotopy:

P+
|R25n (An)| 1 |R26n+1 (AHH )|
ml & lj”” |
|R25n (X) | [2£/7,2£ " ’stn-H (X)‘

The up-right subdiagram commutes because if

Phn
(ag, ay, ..., a;) —=Ls (bg, by, ..., bs), bi € qa (ay),
(ag, ay, ..., a;) 2 (ag,ay, .., a.) = (b}, b, ..., b)), bl e qal(ay),



44 Chapter 2. Shape approximations of compacta

then d(b;, b}) < 2¢,, and the two maps are homotopic. Finally, the down-left
subdiagram commutes because if we write

(X0, %1, ..., Xs ) LN (ag, aq, ..., as) BEIEN (ag, aq, ..., as), a; € qa,(x),

izgn'25n+1

(X0, X1, .-, Xs),

then, d(x;, a;) < ... < &, and we are done Vv

So, as conjetured in [3] the inverse sequence AM(X) represents the shape
of X so we can compute all the shape invariants using it. For example, if we
apply the singular homology functor to our sequence, we obtain that the inverse
limit of the resulting sequence is the Cech homology of X. We will formalize this

later. First, let us define more inverse sequences with other kinds of polyhedra.

The Alexandrov-McCord sequence provides a completely constructible pro-
cess to compute the Cech homology or any other shape invariant of X. But it is
done using Vietoris Rips complexes, which are very easy to define, but whose
homology is very hard to compute. We want to find different kinds of simplicial
complexes and use the main construction to find sequences of these polyhedra
which also represent shape properties of our space, with better computational
behavior. We have seen that we can use the main construction to define maps
between the corresponding Vietoris Rips complexes, giving us M*(X). Now, we

can adapt this to different kind of complexes.

2.3.2 The Cech approximative sequence

We construct an Hpol-expansion of X with nerves of coverings based on our
finite approximations. Let us consider the main construction on the compact

metric space X. For every n € N, consider the set of open balls

B, ={B.(a) =B(a,&,) :a € A}
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which is a covering of X since A, is a €, approximation. We can consider the

nerves of these coverings N'(B,) and define the maps

P8, B N(Bri1) — N(B,)
Bnyi(a) = B,(b), b€ qa,la)

This is a simplicial map. Let (B,.1(ao), Byyi(ar), ..., B,i1(as)) be a simplex of
N (B,11), so Byi1(ag) N Bayi(ar) N ... N Buyi(as) #+ @. Let x € X be a point of
this intersection, that means d(x, a;) < €,41 forall i =0,1,...,s. Let us write

the image of this simplex as (B, (bo), B,(b1), .. ., B, (bs)), with b; € ga,(a;) for
alli=0,1,...,s. Then, since

d(X,b[) < d(X,U,‘)‘{‘d(G[,b,‘) <

€, — €, +
SR Rk (VAP I 4,

2 2

< ‘Snr

we obtain x € B, (bo)NB,(b1)N...NB,(bs) # @ therefore (B, (bo), B, (b1), . . ., B.(bs))

is a simplex of N'(B,). The realization of these maps
1P8,.8,1 | - N (Bosa)| — IN(By)]

are up to homotopy well defined maps, since if b, b € ga, (a), with a € A, .,
then a € B,(b) N B,(b) so the two different images are contiguous, and then
homotopic, hence, define an Hmap. So, we obtain the inverse sequence of
polyhedra

ACIX) = {IN'(B)]. Ips, 5,.. I}

which will be called the Cech approximative sequence. As the Alexandrov-
McCord sequence, we see that

Proposition 13. The Cech approximative sequence Aé(X) is an HPol expansion
of X.

Proof. To prove this, we need to see an isomorphism with another Hpol expan-
sion. We will use the well known Cech expansion. This is the inverse system
in HPol,

ACX) = {IN(U)]. lguvl A}
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where A is the set of all open coverings of X, ordered by refinement, and for
every pair of coverings U, V € A, such that V refines U, the Hmaps |gy,v| are
the (up to homotopy) realizations of the simplicial maps

V, — U,

with V, C U, To see the isomorphism with our sequence we will find a
cofinal sequence of this system more similar to our sequence. First of all, we
observe that the set of open coverings of X consisting of {B,},cn are a cofinal
directed subset of A. Indeed, if @ € A,41, for every b € ga,(a) we have that
B,+1(a) C B,(b), since for every c € B,1(a),

d(b,c) < d(b,a)+d(a,c) <
En — Vn o En + Vn
2 N 2

< Vot & < VY < &p.

That means B, refines B, for every n € N. So, we can use this new set of

indexes to define the inverse sequence
Aé*(X) = {|N(Bn)|’ |an,Bn+1 |}'

which is isomorphic to Aé(X) and then an Hpol expansion of X. Now, for every
n € N, the maps

ananJA’an:BnJﬂ : |N(B/7+1)| —_— |N(B”+1)|'

are homotopic: If x € |N(B,.1)| then x is in contained in a unique simplex

g = <Bn+1(00)' Bn+1(01) ,,,,, Bn+1(05)>

with

Let us write
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where, for every i =0, ...s, b; C ga,(a;) and then B,1(a;) C B,(b;), and

98,81 (0) = (Ba(co), Balca), -, By (cs))

where for every i = 0,...s, Byy1(a;) C By(c). It is clear now that pg, 5,,,(0) U

gs,.8,.,(0) is simplex of N'(B,;1) because

i=0 i=0 i=0

So the maps pg, 8,.,. 95,.8,., are contiguous and hence homotopic. Then the
identity is a morphism between the inverse sequences Aé(X) and C*(X), so they

are isomorphic, and we are done Vv

2.3.3 The witness approximative sequence

The witness complex is a simplicial complex constructed over a finite set of points
with nice computational properties. Its simplices are sets of points which are
close enough to a point that acts as a witness for them. They do not depend on
the 1-skeleton (as the Vietoris Rips complexes) and they do not produce so high
dimensional simplexes as Vietoris Rips or Cech complexes. To see the definition
and some properties of these complexes, see [17]. Now, we define them in our
context. Let us consider the main construction over the compact metric space
X. For every n € N, consider the simplicial complex W, whose vertex set
are the points of the ,-approximation A, and the simplices are sets of points
{a@o, a1, ..., a;} C A, such that every subset {a,, ..., a;} satisfies that there

exists an x € X, the witness, such that
Z dix,a;) < (r+1)e,.
j=0

It is clear from the definition that this is indeed a simplicial complex. Now,
we want to define maps between the witness complexes asociated to different
approximations in order to define a sequence of polyhedra based on witness

complexes. The idea here is that these maps are defined in a way that they
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‘preserve’ the witness for each set of points. Let us define,

wn,n+1 :Wn+1 B— Wn

It is a simplicial map: Let us suppose that the simplex 0 = (ag, ay, ..., as) is
mapped to (bg, by, ..., bs). Consider the subset {b;, ..., b; }. There exists a
witness x € X for the corresponding subset {a;,, ..., a; } of the simplex ¢ and

we claim that it is also a witness for its image. So, we estimate the sum

Zd(X:b[/) < Z(d(X' Uij)"‘d(ai,,bi,)) <(r+1)€n+1+zyn<
j=0 j=0 j=0
n~— ¥Vn n+ n
< NI iy = EEY g )e,

and conclude that the map is simplicial. As in previous cases, the realization
of this simplicial map is a well defined map: If b, b’ € ga,(a) then d(b, a) +
d(b’, a) < 2¢, (here a is acting as a witness to prove that (b, b’) is a simplex
in W,) so the two possible definitions are contiguous maps so they are in the
same homotopic class of maps. We obtain then an inverse sequence of polyhedra

called the witness approximative sequence:
AW(X) = {IWal, |wp i}

As before, we will prove
Proposition 14. The sequence AW(X) is an HPol expansion of X.

Proof. We will see that it is isomorphic to M*(X). For every n € N, the identitity
map defined on the vertices of the witness complex

fo W, — R, (An)

a — a,

is a simplicial map. Indeed, if 0 = (ag, a1, .. ., as) then f,(0) = o is a simplex

in Roe, (An) since diam{ag, a1, ..., as} < 2g, because for every pair a;,a; € 0
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there exists a point x € X such that
d(a,-, aj) < d(a[,X) + d(X, G/) < 25,,.

The realizations of these maps are a map between the sequences AW(X) and
M*(X) since the diagram

|Wn,n+1‘

|Wn+1|

fnll lfn+1|

|R26,7+1 (An—H )|

‘pﬁ,n+1|

is commutative up to homotopy. Let x be a point of |W,.+|, then it belongs to
a unique simplex o = (ag, ay, ..., as) of Wy,q. Let us write the images of this
simplex as

fno Wnnt1(0) = <bo, by, ..., bs>

and

p:,n+1 o fn+1(0) = <Co, C1, ..., Cs>

where b;, ¢; C ga,(a;) for i =0,1,..., s. Then

is a simplex of R, (A,) because it has diameter less than 2¢,. Indeed, for every

pair of vertexes b;, ¢; we have that

d(b[‘, Cj) < d(bl‘, Ul‘) + d(a[, Gj) + d(aj, b]) <
< Zyn + Zyn+1 <&+ Y < 26n~

So, the two compositions are contiguous, hence its realizations homotopic. Now,

in order to apply Morita's lemma, we define the following simplicial maps:

Gn R, (Any1) — W,
a —> beqala)
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whose realizations make the following diagram commutes for every n € N:

‘Wn| ‘wn,n+1| |Wn+1 |
[gn]
|f,7‘ |fn+1 ‘
’Rzen (An) ’ * ’RZSHJH (A’7+1 ) |
|pr7,n+1 ‘

We have to prove several facts. First of all, the map just defined is simpli-

cial: Let 0 = (ap, a4, ..., as) be a simplex of Ry, (A1), and write g,(0) =
(bo, by, ..., bs). Consider any subset {by, ..., bi }. In this case, we will not
use the witness for the corresponding subset {ag, a1, ..., as}. We will just use

X = ap as witness. So, we evaluate the sum

r r

Y dibi, a0) <Y (dlao, a) +d(ai, b)) <Y e+ va) < (r+1)e,
j=0 j=0 j=0

and conclude that g,(o) is a simplex of the witness complex. Again, the real-
ization of this simplicial map is a well defined up to homotopy map, because
for two different b, b’ € qa,(a), (b,b") is a simplex of W,. It only remains
to prove that, in fact, the two triangular diagrams abobe commute up to ho-
motopy. For the upper-right one, consider the simplex o = (ag, a1, ..., as) of
W, .1 and write for its images w,, ,.1(0) = (bo, by, .. ., bs) and g, o f,11(0) =
(by, b}, ..., b%). The union of the images, (bg, b1, ..., bs, by, b, ..., bl), is a
simplex of W,. The subset {b;,, ..., b,

{ai, ..., ai, A, a;,} with x € X as witness, so

/ / H
bl bjfz} has a corresponding one

mn
d(ai, %)+ dla,,x) < (r+n+2e,
k=0
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Then,

n n n n

Y dibi X)) diby,x) < ) diby, i)+ dlag, x)+ ) diby,a;)+d(a,x) <
k=0 k=0 j=0 j=0

< (m+n+em+(n+n+2y, < (n+n+2e,.

SO Wyt and g, o f,4q are contiguous maps and their realizations homotopic.
To prove the lower-left commutativity we consider a simplex 0 = (ag, a1, ..., as)
and observe that the images f,0g,(0) = {bo, ..., bs} and p; . .1(0) = {by, ..., b}
are in the same simplex (their union). This is so, because for any b;, b in that

union, we have,
d(b[, b;) < d(b[, C][) + d(CI,‘, C]/) + (G/', b;) < 2)/n + 26,7_;,_1 < 26,7,

and that means that the diameter of the union makes it a simplex and then the

maps f, 0 g, and p} . are contiguous v’

From this proof, it is readily seen that every simplex of the witness complex
is indeed a simplex of the Vietoris Rips complex. But the converse is not true,
so the witness complex allways will have less simplexes (and simplexes of less
or equal dimension) than the Vietoris Rips one. Moreover, with the idea of
approximation of compact metric spaces in mind, it makes sense to consider a
set of points a simplex only if there is a point close enough to all of them. This
make its use better for simplicity and computational purposes.

2.3.4 The Dowker approximative sequence

Let us recall the simplicial complexes defined by Dowker in [22] for a given
relation on two sets. Given two sets X and Y and a relation between the two
sets R, L.e,, a subset of the cartesian product R C X x Y, we define two simplicial
complexes KX and L": A finite subset o of elements of X is a simplex of KX if
there exists an element y € Y related with every element x € . On the other
hand, a finite subset T of elements of Y is a simplex of L if there exists an
element x € X related with every element of y € 0. Note that there is a kind

of duality in these definitions. It is readily seen that KX and K" are simplicial
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complexes. In that paper it is shown that this two complexes have the same

homology. Moreover it is proven the following

Theorem 13 (Dowker). The realizations of the simplicial complexes |[K*| and

|LY| have the same homotopy type.

In [22] this is used to prove that the Cech and Vietoris homology for general
topological spaces are isomorphic. Moreover, in shape theory, it is used to show
that the standard Cech and Vietoris systems for any topological space are iso-
morphic. The power of Dowker Theorem lies in the generality of its formulation.
We only need two sets and a relation and we obtain two homotopical simplicial
complexes. We can reformulate it in the context of Alexandrov spaces as follows.
Consider an Alexandrov Ty space given by the poset (X, <). Let us consider
the relation R C X x X given by xRy < x < y. Then, we have the following
simplicial complexes:

Recall that, for every Alexandrov T space, we can construct the McCord complex,

which, with the same notation, we can write as
p={z,..., z,) e K(X) = 20 < ... < 2.

Remark 9. As simplicial complexes, K(X) c K*, LX.

Now, we adapt this to our special context. Let X be a compact metric space
and suppose the main construction done. Consider, for every n € N, the finite
Ty spaces X, = Uy, (A,) and the relation defined above with the order given by

the upper semifinite topology, e,
CRD < CCD.
So, the simplicial complexes KX, [ are

o=1{(C,..., CYe K" «— dADeX,: C,..., C,cD
t={(Dy, ..., D)el®™ «— 3ICeX,:CcDy,..., D..
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With the same notation, the McCord complex KC(X) is defined by
p={(Fo, ..., Fo)e K(X) = FhCF C...CF,.

We would like to define inverse sequences based on this simplicial complexes.
To do so, we observe that the continuous maps p, ,+1: X,41 — X, can be used

to define simplicial maps:

This allows us to define the inverse sequences of polyhedra:

ADX) = {IK* | 1pg il AD(X) = {IL*], P ial}

called respectively the upper and lower Dowker approximative sequences.

Proposition 15. The upper and lower approximative Dowker sequences are Hpol

expansions of X.

Proof We will just prove that KX is an HPol expansion. The proof for [* is
completely dual (in the sense that the proof is exactly the same but using de
dual property that defines the simplices for the complexes in this case). In order
to prove this, we will see that KX is isomorphic, as HPol sequence, to the
approximative McCord sequence. First of all, we see that, for every n € N, the
inclusion map i, of K(X,) in KX give us a morphism between the corresponding

sequences. Indeed, for every n € N, it is easy to see that the following diagram
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commutes®

| n,n+ ‘
(X | = (X))
‘[ﬂ‘ ‘[nﬂ‘

|/<Xn |KXN+1 |

K
|pn,n+1 ‘

In order to apply Morita’'s lemma, we would like to define a (diagonal) map from
KX+ to K(X,) but it seems there is no (appropiate) simplicial map between
these spaces. Alternatively, we can define a simplicial map from the barycentric

subdivision,
g (K — K(Xo41)

{CO: S Cs} = Upn,n+1(Cz’)r

i=0
where there exists C € X, such that, {C, ..., (s} C C, so we have that

S

U Pn,n+1 (Cl) - Pn.n+1 (C),

i=0

hence the map is well defined. To see that it is simplicial, let us write some
notation. Let C/ = {C}, C{, ..., C/-S’} be a set of points C/ € X1, we can write
a simplex of (K*+1)" as

(c’.c®uct,...,c’uctuc).
The image of this simplex by g, is

S0 Sj roS

1
U pn,n+1(C[O)r U Upn,n+1(C[/)l SR U Up/7,n+1(C[O) )
i=0 j=0 i=0

- j=0i=0

°Note that we just need them to commute up to homotopy but actually both compositions
are exactly the same map.
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which is a simplex of k(X)) since, for every k =0, ..., r—1,
k Sj ‘ k+1 5) ’
U U Pn.n+1 (Clj) C U U Pn,n+1 (Czj)
j=0i=0 j=0 i=0

Now we are going to prove that the realization of this map satisfies the Morita's

lemma making the following diagram commutative:

‘ n,n+1|
C(X) | = 1 (X )|

\

K
‘pn,n+1|

‘[/7‘ ‘in+1‘

|KXN| |/<Xn+1|

In order to prove this we need to use the barycentric subdivision of our simplicial
complexes. For every simplicial complex K there is a simplicial map from its

barycentric subdivision

p K — K

whose realization is homotopic to the identity. Moreover, every simplicial map
f : K — L induces a simplicial map between its barycentric subdivisions f’ :
K" — ['. See [48] for details. Using this, we define the following maps:

(inne1) s K/ (Xpir) — (KH=1Y
is the simplicial map induced in the barycentric subdivisions by i, ;1.
(o) - K (Xer) — K(X)
is the composition p, ,+1 o p. And finally,
(K )« (KXY — KX

is the composition p} ., o p. Now, we just need to show that the following
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diagrams of simplicial maps are contiguous:

(pn,n+1 )/

]C(Xn) K:/(Xn+1)
i/7 \ (in-H),
KX” KXn+1 /

(an,nM), ( )

The upper right diagram is not only contiguous but commutative. With the
..... CoOu...UC") € K(X,41)
for every j =0,..., rand i =0,..., s;— 1, is a simplex of

notation on simplexes above, if 0 = (C?, COU (!
with ¢/ ¢ C/,

K'(X,41), then

{no P:7,n+1(0) = <Pn,n+1(Cs(3))r Pn,n+1(Cs11) ~~~~~ Pn,n+1(C5r,> = (pﬁ,nﬂ)/(g)-

The lower left diagram is contiguous because if T = (CO, couct, .., C'u...uU
C") is a simplex of (KXY, then

inogu(T) = <p,,,n+1(cfo),pn,n+1(cfo U C;) ..... pn,m(cfo U...ua)).

and
(Pl 1) (1) = (Pans1(CL) pansr(CL), Poni(CL)).

The union of both images is a simplex of KX since every vertex is contained in
pn,n+1(C5% U...UC!). Thus the maps i,0g, and (p}y, ) are contiguous hence
its realizations homotopic, and we are done v

All these inverse approximative sequences share the property that they are
defined in terms of a sequence of adjusted finite approximations obtained by
the main construction. Given a compact metric space (X, d) , we will say that
an inverse sequence of polyhedra {K,, ppni1} is an polyhedral approximative
sequence of X, if it is any of the inverse sequences defined on this section. Now,

we formalize the idea that these inverse sequences

Corollary 3. Let (X,d) be a compact metric space and K = {K,,ppni1} a
polyhedral approximative sequence of X. Consider the induced inverse sequence
of groups F(K) = {F(K,), F(pnni1)}, where F is the singular n-th homology
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or homotopy functor. Then, the inverse limit of F(K) is the n-th Cech homology

or shape group, respectively.

2.4 Persistent errors

Given an inverse sequence of polyhedra, we want to measure the “error’ of each
term respect the inverse limit, at least in terms of homology. The idea is to infer
some information about the Cech homology of some compact metric space using
finite cuts of the inverse sequence that defines it (in terms of inverse limit), in
the same way that Taylor polynomials approximate non linear functions up to
some error. Here, polyhedra will play the role of polynomials that approximate
any compact metric space.

Let us consider any inverse sequence of polyhedra,

Po P12 Pn-1, Pn.n+1
KO(—K«I% n n Kn n,n+

with inverse limit X = Uﬁ{&,p[,[+1}. We write the n-proyection of the limit
as p, - K — K. Let us take, in each polyhedron K; the p-th homology group
H,(K;) and the induced maps p; . 4. We will write the groups as H; :== H,(K})
and the maps as i1 = p;, 1 and q;; with i < j by composition. We obtain

therefore an inverse sequence of finitely generated abelian groups

qo,1 q1,2
/_/0 — /_/1 — ...

dn—1,n /_/ dn,n+1
n e

whose inverse limit is the p-th Cech homology group of X, written H = HP(X).
In these conditions, fix p > 0 (which will be omited from notation from now
on) and n € N, and define, for every n < m, the (n, m) — th group of persistent
homology as
Hom = i0(Gnm) = Gom(Hm).

The inclusion allows us to obtain an inverse sequence of persistent homology
groups:

[ i i i
/‘/0,1%/‘/1,2<—---F/‘/n,n+1%---

As an inverse sequence defined by inclusion maps, the inverse limit is the
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intersection of all of them,
() Hom = qn(H).
m=n+1

The persistent group H, ,, is a normal subgroup of H, for every n < m. So,

we can take the quotient of groups £, , = HH—” that we will call the (n, m)-th
persistent error. The idea of this group is that it measures the validity of H,
seen from the H,, perspective. Moreover, as H, .1 is also a normal subgroup

of H, »,we therefore obtain a natural homomorphism between the quotients

gm,m+1 : En,m+1 — En,m
h + Hn,m+1 — h + Hn,m-

(Or, using a different notation, [hly, ., = [h]y,,). By composition, we obtain an
inverse sequence of errors

9n+1,n+2 Gn+m+1,n+m+2

Gn+2,n+3 Gn+m—1,n+m

En,n+1 En,n+2 En+m,n+m+1

with an inverse limit, denoted by F! and called the inductive n-error. In an

ideal of understanding this error in the infinity we define the n-th real error,

E, = %. In general, these two errors in the limit we have just defined, Ef

and E,, are different, but we can do some comparations.
Proposition 16. There is an injective homomorphism of groups ¢ : E, — E!.
Proof. We define the map with

h+qn(H)— (h+ Hym, h+ Hy g, ).

It is well defined, because if h — h" € q,(H) = [ H,n then h — h" represents

the null class in every group E, ,. It is injective because if
(h1 + Hn,mv h1 + Hn,m+1: - ) = (hZ + Hn,m: hZ + Hn,m+1v .. )

then hy — hy € Hym, hi —hy € Hymyr, ... s0 hy — hy € (VH,m and hy +
qn(H) = h2 + qn(H) v
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Moreover, for some kind of spaces, this two errors are actually the same

group.
Proposition 17. Consider an inverse sequence of polyhedra

P01 P12 Pn—1, Pn,n+1
KObK«I(— n n Kn n,n+

with inverse limit X. If X (s movable (see section 1.3.2) then, for every n € N

we have E} = E,,.

Proof. If X is movable, then, the inverse sequence that defines it as inverse limit
is also movable, so it is its induced homology sequence. So, the last has the
Mittag-Leffer property, that is: For every n € N there exists m > n such that
for every r > m we have that g, ,(H;) = q,.m(Hn), L.e, expressed with persistent
homology groups, H,, = H, . So, from m, all the persistent groups are the
same, so G,(H) = (Hpm = Ham- So, the inverse sequence of errors, from m is

constant and equal to £,, = E, =FE! v

Sometimes we can define a third kind of error. If there exists a homomorphism

of groups f : H, — H, such that f(H, ) C H, n+1, we can define the map

lm,n7+1 : En,m > n,m+1

h + Hn,m — f(h) + Hn,m+1-

This map is well defined because if h — h" € H,,, we get f(h) — f(h') =
f(h —h) € H, my1. By composition, we can form the direct sequence

E [n+m+1,n+m+2
%
n+m,n+m+1 ey

E ln+1,n+2 E [n+2,n+3 [n+mf1,n+m
n,n+1 > n,n+2 cee

and then, a direct limit, denoted by £9. But not every inverse sequence satisfies

this property.

Remark 10. For inverse sequences of type
XEXE D EXxE

there exists the limit £9. In this particular case, the map p* : H, — H, induced
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in the homology groups plays the role of f, because
p (Ham) = P*Pﬁ,m(l_/m) = p*p:+1,m+1(l_/m+1) = P:,m+1(/_/m+1) = Hymi1-

Example 2. The dyadic solenoid. This space can be defined as the inverse limit
of the inverse sequence
stést &

where, considering S' as the complex unit circle, the map 2" means the expo-

nential map e*#. The induced homology sequence of order 1 is

7E7 &

with inverse limit {0}. That means that the Cech homology of the dyadic solenoid
is trivial. If we consider here our errors, we obtain that for every n < m, the
persistent homology groups are H,, = (2""")Z (integer multiples of 2"~").
If we consider the quotients to obtain the (n, m)-errors, we obtain the finite
groups E,, = ﬁ = Zn—_,. The natural map between these errors sends
each element to its class in the image group. So, for example, the first map will

be

Ly —> Do
0 — 0
1T — 1
2 — 0
3 — 1

With these maps, we can define the inverse sequence
Z2<—Z4<—Z8<—...<—Z2” — ...

which inverse limit £/ = D, is the dyadic integers group. In this case, we can
also obtain the direct sequence construction. Here, the maps will send each
element to the class of this element multiplyed by two. Then, the first map will

be
ZZ E— Z4

0 — O

1T — 2
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So, the direct sequence has
Lo ——> gy —> g —> ... —>Lp —> ...

has direct limit the Priffer 2-group £9 = 7Z(2*°) (the set of roots of the unity
of some power of two). It turns out that the Prifer group (with the discrete

topology) is the Pontryagin dual of the compact group of the dyadic integers.
Question 1. For what class of spaces can we obtain this duality of the errors?

Example 3. The computational Warsaw circle (see next section).

2.5 Example: The computational Warsaw circle

In this section we will perform the main construction on the Warsaw circle
in order to apply the theory previously developed. The Warsaw circle is the
paradigmatic example of shape theory. It is can be defined as the image in R?
of the map f(x) = sin ( ) between 0 and 2 =, together with its closure (with the
topology as subespace of R?), that is, the segment jotning (0, —1) and (0, 1), and
any simple arc (meaning not intersecting itself or the rest of the space) joining
the point (0, —1) with (— —1). See figure 2.1. For computational purposes,
we are going to define and work with the following homeomorphic copy of the

Warsaw circle. Consider, in R?, the following segmentsG:

1 1
Un = (22/1—2'1) - (22/7—1'1) !

1T 1
bm = ( 202" j) ( 5202

1
an:(22n1’1) ( 20—

_

)
1)-

®The notation for the segments is (a, b) — (c, d), meaning the segment joining these two
points.
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Then, the computational Warsaw circle is

W=1,00-00-10-10NJa |J bml]Jbnl]en

neN  npeN\{1} neN neN

Despite of this complex definition, this subespace of R? is very easy and intuitive
to understand: See figure 2.1. We can think about it as a one piece drawing:
Starting from the point (0, 1), go one unit south, one unit east and one unit north.

And now, approximate to the segment (0, 1) — (0, %), alternating from hight 1 and
1
2
point we were, go half unit west, half unit south, quarter unit west, half unit

1
' 16
75 unit west, half unit north, = unit west, half unit south,.. and so on.

, and reducing the approximation to the half of the previous one. l.e, from the

north, % unit west, half unit south unit west, half unit north,...half unit south,

Figure 2.1: The Warsaw circle and the computational Warsaw circle.

We now perform the general construction on W. The diameter of W is
M = /2. Then, we can select &1 = 2v/2 > M, and A, = {(0,0)}, so yy =
V2. In the second step, we take &, = § < min{%,%} = g To get
an &, approximation of W, we explain the process better than giving just the
coordinates of the points. Consider the intersection of a grid of side 231—,1 G, =
{(23%1, ) € R? [, m € Z} with W. See figure 2.2. Every point of W, not in
the upper left square of the grid, and the one just below it, are at distance less
or equal to % < &. Concerning the two mentioned squares, we see that every
point of W inside them are at distance less than &;, except the two centers of

the squares, which are exactly at this distance. So, we add these two points
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Figure 2.2: The intersection of the grid G, with WW and the &, approximation of
W.

and then have an &, approximation of W,

1 1 1 3

From the picture, we can easily see that y, = % and that we can select
0 = g—? Then, we pick’ & = \2/—? < mln{%,% = @4_1, To obtain an

€3 approximation of W, we proceed as before. Consider the grid of side 261—_1
(s = {(26% 57) € R?:[,m¢& Z} and its intersection with W. Then add the
centers of the upper left square of the grid, and the 15 = 2* — 1 below it (16
points of W in total), to obtain an &3 approximation of W (see figure 2.3),

] ] 1 3 ] 31
Agz(cmvv)u{(ﬁ,w—?) | (%,1—?) ..... (%,1—$”.

Now, it is again clear from the picture, that y3 = % and 03 = % We can

continue this process to the infinity in the same way. In general, let g, = ZT\{Z

Consider the grid of side # G, = {(23% 23’%) ceR:,me Z}. Then, its

"We want some reqularity on the epsilon approximations. All of them will be of the form §

In this case, there is no k lower than 6 the inequality. This will be proven for the general case,
later.
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Figure 2.3: The intersection of the grid Gs with VW and the 3 approximation of
W.

intersection with W and the following 2°"~ points, form an &, approximation,

1 2k -1\ -
Anz(GnﬂW)U{(z3n3,1—23n3)./<=1,...,2 }

It is clear that, again, y, = # and 9, = 23% So, writing8 m = 3n — 3, we
need

En — Vn 5n]>_\/§_/I

B 2m+1

5n+1<mm{ 55

We want g,,1 to be of the form ‘Z/E so we are looking for k € N, such that,

Y2 < Y2l e, 26 5 2 4 /2 We can estimate 25 (") > 2 4 1/2 > 2 s0

k > m + 2. But, actually, kK = m + 2 does not satisfy the first inequality, so we

can take any k > m + 3, and hence, we choose €,,1 = 2{% = 2@ = W@H [t

is clear, that we can consider an €,,1 approximation as before, intersecting the
grid of Stde ,M — 231—4 Gpi1 = {(Zgnl Ty 53T ) eR’:,me Z} with W and
add 23175 = 2372 points:

1 2k — 1 B
An+1=(cn+mW)u{(ﬁ,1— 55 ) k=127 2}.

8The term 3n — 3 relates the exponent of the denominator with the subindex of each . We
use the m notatin for a moment to understand how the denominator is increased in each step
without perturbations of another notations.
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1 1 V2 V2 ;
Then, yoy1 = 5555 = 55, Ont1 = 5w = 33, and the process is proved to

work by induction.

Now, we focus on the Alexandrov-McCord sequence related to this finite
approximative sequence. The finite space A; is just a point, so its associated
simplicial complex is just a vertex. In the second step, we have a more interesting
case. In figure 2.4, we have depicted the polyhedron R, (A;) in two different

Figure 2.4: The realization of the simplicial complex R, (Az) in two perspec-
tives: Lateral and Aerial.

perspectives. The barycentric subdivision of this polyhedron is exactly the re-

alization of the simplical complex K(Uae,(A2)) = R/

2e»
that are not depicted but belong to the subdivision are the points of the space

(Az). Actually, the vertices

Use,\A2. The 1-simplices of this polyhedron are clear from the picture. But there
is more structure. First of all there are two empty squares. At their left, there
are two piramids whose cusps represent the points added to the intersection
of the grid and W. Between the two piramids, there is a tetrahedron sharing
one face with each one of them. The four points of the tetrahedron are the two
points added and the two points in common of the two squares (the base of
each piramid), which, in the approximation, have diameter less than 2¢;, so this
tetrahedron is filled’. We have to point out that the piramids are empty, that is,
their four faces are simplices that are in the polyhedron, but there is no ‘solid"
base. For the third step, we also depicted the polyhedron R, (A3) (figure 2.5),
whose barycentric subdivision is IC(Us,(A3)) = R5,(A3). The structure of this
polyhedron is the same as the previous one. The diference is that it has more

1-simplices, more empty squares (2*) more piramids (2*) and more tetrahedrons
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Figure 2.5: The realization of the simplicial complex R,.,(A3) in two perspec-
tives: Lateral and Aerial.

(2* —1). In general, for any &, approximation we will have the same structure,

with 237> squares and piramids and 23"~>

— 1 tetrahedrons. Concerning the
maps, we can use pictures to see where they send the points of the approxima-
tions, and the sets of those points, but we will focus our attention on the induced
maps in homology which actually will tell us the behavior of the maps.

We now study the previous sequence at the homological level. We will
compute the first homology group with coefficients in Z (with notation H;(K) :=
H,(K; Z)) of each polyhedron of the sequence and how the induced homology
maps work. For the first approximation, everything is trivial. For the second one,
we know that R, (A;) (in the figure) has the same homotopy type as (U, (A2)).
It has three T-cycles: The 'big" one and the two little squares. There is no more
1-homology on this complex. This is clear from the aerial perspective in figure
2.4. So, the homology group of this polyhedron is just three copies of Z, which
we denote H;(K(Use,(A2)) =~ Z°. In the third step, as we can see in picture
2.5, there is again one 'big" 1-cycle, and 2% small squares. l.e, a total of 2 + 1
copies of Z, so H; (K(Uze,(A3))) = 721 We are interested in the map induced
in homology by the map

P23 K(Uaes (A3)) — K(Uae, (A2)).

We need to study, for each 1-cycle, where the vertices are sent by the map? An

9We can visualize the performance of the map by overlying the pictures of the two consecutive
approximations, since the map acts in terms of proximity.
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easy reasoning shows that every vertex (included the non drawn ones) in the
small T1-cycles of KC(U-,(A3)) are sent to null homologous cycles in K(Uae,(A2))
(let us say, they fall” into the shaded part which is the contratible part). However,
the big 1-cicle of KC(U,,(A3)) is mapped into the 'big” one of K(U,,, (A2)) (actually,
it is mapped into something bigger which retracts into this cycle). So, it is clear,
that the induced map in homology,

(P23)« - Hh(K(Uzes (A3))) — Hh(K(Uze, (A2))),

sends the 2% generators corresponding to the little squares to zero, and the
generator of the 'big" 1-cycle to the generator of the "big" one of the target.
So, we get that Im((p23)«) = Z. It is readily seen that, if we consider the
next step, it will happen the same. In general, the realization of K(U,,,(A,))
has 23"~ 1-cycles corresponding to little squares and one 'big" 1-cycle. So,
Hy(K(Use, (An))) = Z2"+1. The map induced by

Pont1 - KU, (Ani1)) — K(Use, (An))
in homology,
(Prn1)e : FiK(Use, . (Ani1))) —> Hh(K(Uae, (An))),

sends the 23"~ 1-cycles corresponding to little squares of K(Use, (A1) to
zero and the 1-cycle corresponding to the 'big" one to the 'big’ one in the image
K(Uze, (An))- So, again, the image of the map is im((pyn+1)<) = Z. So, we see
that in each step, the 'big" 1-cycle is the only non-trivial homology that comes
from the image of the previous polyhedron. We could say that the 'big" cycle is
the only one that survives (or persists -see the relation with persistent homology
later) in the whole sequence. In terms of the inverse limit, it is clear that the

inverse limit of the inverse sequence induced on homology'

/_/1 (}C']) M /_/1 (}CZ) (p1,2)+ o (Pn—1,n)x H1 (Kn) M /_/1 (’C”+1) M o

1%Notation:kC,, := K(Uae, (An))
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(s
[En {’Cn: (pn,n—H)*]’ ~ 7.

As shown in Theorem 12, this sequence can be used to obtain the Cech homology
of the space W, that is, H, W) = Z.

2.5.1 Persistent errors in the computational Warsaw circle

We know that the Warsaw circle is a movable space (see section 1.3.2). Con-
sequently its first homology induced sequence has the Mittag-Leffler property:
For every n € N there exists m > n such that for every r > m we have that
(Pn.r)(H1(KCr)) = (pn.m)«(H1(IKCp)). This means, roughly speaking, that avery step
n, there exists a further step m, such that all the homology at step n coming
from homology at step further than m is equal to the homology coming from m.
Or, in other words, all the homology in the step n comes from homology in the
step m. We will say that m is the M-L index of n. In our example, it is clear
that, for every n € N, the M-L index is n + 1, because

(pn,n+1)*(/_/1 (ICn—H)) = (pn,m)*(/_h (’Cm)) ~ 7

for every m > n + 1. So, in our sequence, all the homology at any step can be
founded just going one step further. And, moreover, we now that this is all the
homology of the space. This is related with the persistent homology as we will
see later.

Concerning the persistent errors in homology, let us fix some p > 1. We
adopt the notation from section 2.4. Then, in this case, for every n < m, the
(n, m)-th persistent homology group is H, , = Z. So, the (n, m)-th persistent

error is s
n—

Il_/n ZZ +1 23n=5

Epm= ~ ~ 75 .
Hom Z

This means, that the error of the polyhedron IC,, estimating W, seen from IC,,,
consists of 23" little squares. Or, in other words, KC,, only certifies as proper
1-cycle of IC,, the so called big one (and we know that this is correct from the

point of view of the inverse limit). As shown in that section, there is a natural
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map between the quotients (errors)

gm,m+1 : En,m+1 B— En,rn
h + Hn,m+1 = h + Hn,m~

In this example, the 1-cycles in E, .1, ie, the T-cycles of H, not killed by
H, m+1 are sent to the 1-cycles of H, not killed by H, ,. These 1-cycles are
the same: The corresponding to the little squares. This is so because there is
only one 1-cycle in H, 41 and H, ,: The 'big" one. That means this map is the
identity
Gt = id: Z3n75 SN Z3I775
and hence the inverse limit of the inverse sequence
Gn+1,n+2

9n+2,n+3 Gn+m—1,n+m Gn+m+1,n+m+2

En,n+1 En,n+2 En+m,n+m+1

23/775

s EL ~ 7

coincide with the n-th real error,

. As we pointed out before, since W is movable, this error must
3n-5
E,= —"2  ~77"".

2.6 Example: The computational Hawaiian Earring

For computational reasons, in this case, we are going to use not an homeomor-
phic copy of the Hawaiian Earring but an homotopic (and, hence, with the same

shape) one. In this case, we consider the space (see figure 2.6)

1 11 1
HE = U (0,?)—(?,?)—(Z—H,O)U(O,O)—(1,O)U(O,O)—(O,1)

neNuU{0}
or . 1
HE=| O (?, 5) ,
neN

where [((a, b) stands for the square in R?

(0,0) — (2a,0) — (2a, 2b) — (0, 2b) — (0, 0).



70 Chapter 2. Shape approximations of compacta

The idea to obtain the approximations for this space is the same as in the

=1

Figure 2.6: The Hawatian Earring and the computational Hawaiian Earring.

Warsaw circle. Take as points of each approximation the intersection of a grid
of corresponding side with the space, and add points where necessary. Moreover,
we see that the concrete numbers of the approximation are exactly the same.
As in the Warsaw circle, the diameter of HE is M = /2 so we can take
e = 2v/2 > M and A, = {(0,0)}. OvaouSlg yi = V2. So, we select
£ = ‘F f We intersect a grid G, of side & with HE (see figure 2.7), and

o | =

Figure 2.7: The intersection of the grid G, with ‘HE and the &, approximation
of HE.

adding the point (% 55), we obtain A, an &, approximation of HE. From the
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picture, it is very easy to see that y, = 21—3 and 0, = § So, exactly as in the
case of the Warsaw circle, we just need to pick €3 = ‘2/—2 Intersecting a grid Gs
of side % with ‘HE and adding the point (21—6 21—6) we obtain (see figure 2.8) the

€3 approximation Az of HE. Again, by induction, we see that this process can

Figure 2.8: The intersection of the grid Gs with HE and the &3 approximation
of HE.

be done indefinitely, with exactly the same numbers as in the Warsaw circle

example. So, for every n > 1, the finite approximations are defined by:

V2

En = 533

On

Yn =553 O T 55

We therefore obtain the sequence of finite spaces from these approxima-
tions. Concerning the McCord sequence associated to that sequence, we have
the following. In the first step we have only a point as finite space, so the
associated polyhedron is just a vertex. For the second and third step, we have
depicted in figure 2.9 the realization of the simplicial complexes R,.,(A;) and
R2e,(A3). Then, the corresponding associated simplicial complexes are exactly
the barycentric subdivisons of these complexes, that is, K (Uz, (A2)) = R5,, (A2)
and K (Uz,(A3)) = R

5e,(A3), respectively. We see that they consist of -from
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. et
Figure 2.9: The realization of the simplicial complexes R, (A2) and Roe,(A3).

north east to south west- a series of, let us say,"inverted” L's (one in K (U, (A2))
and four in IC (Uae,(A3))), one more "inverted” L formed by three squares and one
more square, filled. It is easy to see that, in each step, we just insert three more
"inverted” L's and reduce the size of the three squares forming the "inverted”
L and of the filled one. So, we can infer that, in general, the associated Mc-
Cord polyhedron IC (Ua, (As)) has 3n — 5 "inverted” L's, three squares forming
an "inverted” L and one filled square. As before, the maps can be known just
overlapping the polyhedra to see where each vertex is sent. But this will be

better understood studying the homological situation.

We study homology where it makes sense, so here we just focus in homol-
ogy of dimension 1. So, first of all, we give names to the generators: In the
simplicial complex associated to the &; approximation, KC(Ua, (A:)), let us call
p{ to the homology generator representing the j-th “inverted” L, counting from
north east to south west, and A;, p;, v; to the three squares, counted clockwise.
Now, in the first non trivial case, the homology is H; (K(Use, (A7) =~ Z* with
generators pJ, Ay, 1, vo. The next one is Hy (K(Use,(43)) = Z7 with generators
Py, with i=1,..., 4, A3, 3, v3. The induced map

(P23)« + Fh(K(Uzes (A3))) — Hh(K(Uze, (A2))),
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sends

1 1
P33 P2
p5 A+ + v

,O;,Oé‘,)g. 3, v3 — 0.

Interpreting this, we see that, in the third approximation, three “new” cycles are
created, one is sent to the sum of the three squares, and the other two are
sent to zero. This is repeated along all the sequence. For any n € N, we
have that the first homology group is H; (K(Uxe, (A4))) = Z>"~2, with generators
ph, with i=1,.. ., 3n —5, Ay, tp, Vo The map

(Ponsr)e - FHKR(Uze, . (An))) — Fi(K(Uze, (An))),
acts sending

1 1
Pns1 7/ Pn

3n—5 3n—5
pn+1 Pn

921?4 > Ayl + vy

3n—3 3n-2
Pn+1 1 Pp+i ,/\n+1 v Hp+1, Vpp1 /> 0.

It is easy to understand the beaviour of the sequence. In each step, 3 "new’
cycles are created, and they have an unique preimage in every further step. So
the inverse limit of the sequence is

[E_m {’Cn: (pn,n+1)*]’ ~ 7>

and, by Theorem 12, the Cech homology of the space HE is, Hi(HE) = Z, as

we already knew.
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2.6.1 Persistent errors in the computational Hawaiian Earring

The Hawaiian earring is also a movable space, but, in contrast with the Warsaw
circle, it is not stable. Moreover the latter has the shape of a finite polyhedron
(namely S'), while the former has not. As a movable space, the inverse sequence
{K, (Pn.ns1)«} has the M-L property. An easy induction tells us that, for every
m > n,im(pym), = 2", so, the M-L index for every n € N is, again, n + 1.
Let us compute the persistent errors. Using the notation from that section, the
(n, m)-th persistent homology group, for 1 < n < m, is H,,, ~ Z*"~*, so we can

compute the (n, m)-th persistent error

/_/n Zanz

~ 772
Hnm inEE Z

En,m =

This two copies of Z represent the fact that, for every n € N, all the generators
of the group H;(IC,), but two, have one (and only one) preimage in every H;(kC,).

Considering
{pl """ p2n75’/\ﬂ+uﬂ+vﬂruﬂlvﬂ}

as generators, the last two are the ones without preimage. The map induced in

E,m is clearly the identity map,
gmm+1 = id : ZZ — ZZ

and the inverse limit of the inverse sequence {E,.m, Gnimnimi1} is E) = Z7.

Since 'HE is movable, this error is equal to the n-th real error,

E, = # ~ 7’
(Pn)«(Fh(HE))



Chapter 3

Homotopical and homeomorphic

reconstruction

It is clear from the previous chapter that our construction is good to represent the
shape invariants of the space. For instance, the Cech homology: We just compute
the sinqular (or simplicial) homology groups of all the terms of the sequence
and the inverse limit will be the Cech homology, which is also the sinqular
homology in the case of the space being an ANR. It turns out that according
to the McCord correspondence we can just compute the homology of the finite
spaces, because they are weakly homotopic to the polyhedra associated to them.
Here, we restrict our attention to the sequence of finite spaces. Surprisingly,
the inverse limit of this sequence, contains all the topological and homotopical

information.

3.1 Finite approximative sequences: Main result

In this section, we prove the main result of this chapter.

Theorem 14. Let X be a compact metric space. Suppose we perform the main
construction of Theorem 8, on X, obtaining a FAS {Us¢, (An), Pn.ni1 } with inverse
limit X = UFm{Uzsn(An),pn,nH}, Then, there exists a subspace X* C X such

that X* is homeomorphic to X and it is a strong deformation retract of X.

In order to do this, we will need some technical lemmas about the above

construction. Suppose we do the main construction on X and we obtain the

75
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inverse sequence of finite spaces and the sequences of numbers with usual
notation {&,, A,, Vn, On}nen. For every n € N, we write €, = @ and g, =

2 They clearly satisfy €,, ¢, < €, and €, + &, = €.

Lemma 6. For every n < m, we have

m
Z Vi< &,
[=n

Proof. For every n € N, we have that £,,1 < 5,50 v, + €541 < Vp+ 26051 <
&p.
Now, let n < m be natural numbers, if we write m = n + k, k > 0, we can

apply the previous observation inductively to obtain

m k k—1 k—2
Z Vi = Z Yoti < Z Vovi | T Entk < Z Vori | + Enpk—1 < ... <
[=n i=0 i=0 i=0
En — En +
< Vot i < Yot n : Vn _ &n . Vn v

Remark 11. The previous lemma gives us a bound in terms of the lower term,
so it is readily seen that the infinite sum converges, and

00
Z Vi < Ep.
[=n

Lemma 7. Foreveryn > 1, g, < 2% where M = diam(X).

Proof. We proceed by induction over n. The first case is clear, £, < min {61;M, Ml <

%. Now, let us suppose that €, < % Then €,14 < s”gy” <2< ZM v

Proposition 18. Let n < m be a pair of natural numbers. Leta, € A,, a, € An
be two points of X such that a, € p,n({an}). Then d(a,, a,) < &,

Proof. Let us write m = n + k, k > 0. The relation between the points
means that there exists a chain of points between them. That is, there exist

Up+1 € An+1r s Ok € An+k71 such that a, € ,Dn,n+1({an+1]’): o Upgpk—1 €
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Prik—1.nik({anik}). Using the previous proposition, we can now estimate

k k
Gnr E d an—Hr an+[+1 § Vi < &y
i=0 i=0

Before starting the proof of the theorem, let us reinterpret this inverse limit
as sequences of points in 2%, with the Haussdorff distance, that is, as sequences
of points in 2. We consider the inverse limit of the finite spaces. We will write
the points of this limit as sequences {C,},en € X ({G,} for short), where, for
every n € N, G, € Uy, (A,), and, for every pair n < m, p,n(C,) = C,. We have
to think about this sequences as sets of points of each e-approximation, related
by a notion of proximity. It turns out that these sequences converge to points of
X. To have a notion of measure and see this, we will use the Hausdorff distance
of the hyperspace 2% of non-empty closed subsets of X. It can by defined in the
following way: For C, D € 2% closed sets of X, we will say that the Hausdorff
distance of C and D is dy(C, D) < € if C € B(D, €) and D C B(C, €)'. We are

going to prove the following

Proposition 19. Every point of the inverse limit {C,} € X is a Cauchy sequence
in 2% that converges to a singleton {x}, with x € X,

Proof. First of all, we see that, in terms of the Hausdorff metric, the diference
between two elements of the sequence can be bounded in terms of the lower
index. Let {C,} € X be a point of the inverse limit. Then, the Hausdorff distance
between terms of the sequence C, and C,, with n < m, is dy(C,, C,) < &,.
For the first condition, given ¢, € C,, there exists ¢, € C, such that ¢, €
Pom({cn}), and then d(c,, ¢) < €, by the previous lemma. Analogously, for
cn € G, we can take ¢, € p,n(Gy,) and the distance satisfies the second
condition.

Now, the sequence of closed sets {C,} € X is a Cauchy sequence in 2.
For any € > 0, it suffices to consider ng € N such that g,, < € and then, for

every n, m > ng, we have dy(C,, G,) < &,, < €.

"Here, B(C, €) is the generalized ball of radius €, i.e., the set of points x € X for which there
exists a point ¢ of C at distance d(x, ¢) < € or, equivalently, is the union of balls of radius €
and center any point of C, that is, B(C, €) = [, Bl(c, €).
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It remains to prove that every sequence {C,} € X converges to a singleton
{x} of X in the Hausdorff metric. The sequence is Cauchy in the compact metric
(and hence complete) space 27, so there exists a unique limit C € 2% The

diameter of this point of the hyperspace is
diam(C) = diam(lim C,;) = limdiam(C,) < lim2¢, =0

because of the continuity of the diameter function regarding to the Hausdorff
metric (see [55]). So C = {x}, withx e XV

Remark 12. The meaning of {C,} € X converging to a set with only one point
{x} € X is that for every € > 0 there exists ng € N, such that, for every
n > no, dy({x}, C,) < g, te, G, C B({x}, ¢€) and x € B(G,, €). But, the first
condition, meaning x € ﬂcecn B(c, €), implies the second one, x € UCECH B(c, €).
Henceforth, we will say that {C,} converges to x (written {C,} - x) for the
convergence of {C,} to {x} with the Hausdorff metric and we will write dy(x, G,)
for dy({x}, G,), for simplicity.

We have the following trivial facts relating the Hausdorff distance on the
hyperspace of a metric space and the original distance on the space, for distances

between points and closed sets.

Proposition 20. Let X be a metric space, for every pair of points x,y € X and

pair of closed subsets D C C C X, we have:
i) dnlx,y) = dx. y).
ii) dy(x, C) =sup{d(x,c): c € C} = inf{dx,c): c € C} =d(x, C).
iii) dy(x, D) < dy(x, C) but d(x, D) = d(x, C).

The last property can be interpreted in some sense as a better behaviour of
the Hausdorff distance with respect to the upper semifinite topology.
Remark 13. We can even bound the distances to the limit. If {C,} € X is a
point of the inverse limit converging to a point x € X in the Hausdorff metric,
then, for every n € N, dy(x, C,) < €,. This is so because, if we consider an

m > n such that dy(x, C,) < &,, then we can write

du(x, Gy) < du(x, Gp) +du(Gy, G) < &, + €, = €,.
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This measure allows us to understand this sequences from another point of view:
If {C,} € X is such a sequence, then we know there exists an x € X such that
{C,} converges to {x} in the Hausdorff metric. But, from the previous remark,

we see that, for every n € N, x € () B(c, €,). So, we can see x as the

ceC,
infinite intersection over all natural numbers:

x=) (ﬂ B(c,en)).

neN \ ceC,

Proof of Theorem 14. Now, we can define a map ¢ : X — X from the inverse
limit X to the original space X. We do this assigning to every sequence {C,} €
X the unique point x in the limit {x} = lim{C,} with the Hausdorff metric.
The map ¢ : X — X, sending {C,} to x is continuous. We will see that it is
continuous at every point. Let {C,} € X such that x = lim{C,} in the Hausdorff
metric. Then, consider a neighborhood U of x inside X. Now we want to find a
neighborhood of {C,} in X with image contained in U. There exists an € > 0
such that x € B(x, €) C U. Let us consider ng € N such that, for every n > no,
€, < 5. We claim that the basic open neighborhood

V= (29 % 2% x ... x 250 x Use, | (Angs1) X ) nx

is the desired neighborhood of {C,} in X. So, let {D,} € V with {D,} =y
Then we have

dr(x, y) < dulx, Dyg) 4 du(Dng, y) < dulx, Cog) + dr(Dag, y) < 260,

soy=@({D,}) € B(x,¢) C U.

Moreover, the map ¢ : X — X (s surjective. For every x € X, we shall
construct an element of the inverse limit explicitly. To do so, let x € X and
consider, for every n € N, the sets X" = B(x, €,) N A,. These sets are finite and
non-empty, because, for every n € N, A, is a finite €,-approximation. Now we
define, for every n € N,

X: = ﬂ Pn,m(Xm)r

m>n

which are non-empty sets, as an intersection of a nested collection of finite
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(hence closed) sets in a compact space. To show that it is indeed a nested
sequence, we need to prove that, for every x € X and n < m, p, i1 (X" C
pom(X™). We first show that, for every m € N, py it (X™ 1) C X" Let d €
Pams1(X™1), then, there is an element ¢ € X™*" such that d € p, ne1({c}),
so d(x, ¢) < €,41 and d(c, d) < €, and we get

d(x, d) < d(x, c) +d(c, d) < g, +E5 = €n,
meaning that d € X". Now, it follows directly that

Pn.m+1 (Xm+1) = Pn,m(pm,m+1 (Xn7+1)) C ,Dn,m(Xm)-

The sequence X* = { X'} is an element of the inverse limit X'. This is so because,
for every n € N, diamX < 2¢, (by construction, X C X") and, for every pair
n < m, we have p,,(Xr) = X*. We just need to prove it for two consecutive
terms, Le, we want to prove that, for every n € N, p, ,.1(X 1) = X}, and the
result follows inductively. The last assertion relies on the following fact?: For
every n € N there exist an integer x(n) > n such that, for every m > x(n),
X* = p,n(X™). The proof goes by construction. For every z € X"\ X* there
exists n, € N such that, for every m > n,, z & p, »(X™). Considering (because
X" is finite set)

x(n) =max{n,:ze€ X"\ X'} =min{m e N:p, ,(X") = X"},

we have the desired result. The function * : N — N is a non decreasing function.

Considering any m = x(n 4+ 1) is elementary to see that

Pn.n+1 (X;+1) = Pn,n+1(pn+1,m(Xm)) = ,Dn,m(Xm) = Xn*'

as wanted. We claim that ¢(X*) = x. For every € > 0, consider ng such that
€n, < €. Then, for every n > ng, we have that dy(x, XJ) < €, < ¢, because, for
every x* € X, d(x, x*) < g,, and then, X C B(x, €,) and x € B(X7, &,).

The proof of the surjectivity gives us an important element of the inverse limit

related with each x € X. By construction, this element of the inverse limit is

“This is a kind of Mittag-Leffer property for these elements of the inverse limit.
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maximal in the following sense: For every {C,} € X, such that x = ¢({C,}), we
have that C, C X, for every n € N. Indeed, for every m € N, dy(x, ;) < €, so
Cn C B(x, €,) C X™. Now, given n € N, for every m > x(n), C, = ppn(Cy) C
Pnm(X™ = X Actually, we can alternatively define X just with this property

= U 6

{Gilee™(x)

as

because of the maximal property and that ¢({X’}) = x.

The previous construction allows us to define a map on the other direction,
¢ X — X with ¢(x) = {X}. To prove that this map is continuous in every
point, let us consider a neighborhood V' of {X*} in X. We know that there
exists a neighborhood of the form

W= (2 x2% x ... x 2% x U, (A1) x ... )N X

such that W C V. We need to find points close enought to x, that is, an
open neighborhood U C X such that ¢(U) C W. We do this by the following
construction. First of all, consider s = x(r). We use the following notation, not
to be confused with the usual topological notation:

X5 = B(x, &) N A, (where B(x, &) = {y € X :d(x,y) < &}),
0X* = (B(x, &) \ B(x, &)) N A,
X5 :=B(x, e+ 0), for 0 € (—&,, ).

Let us consider the distance from x to the closest point of A that is not in X5,

ef(x) =min{d(x,a) : a € A\ X°} = d(x, A, \ X*) > ..

S

If there is not such a point, the proof is easier, just consider €f(x) = 2e.. In

general, we claim the following (see figure 3.1):

i) Forevery o < ef(x)—e, X* = X35: If c € X3 thend(x, c) < e,+0 < &F(x),
so c e X5,

ii) For every 0 < &, we have that, for every y € B(x, ), pss(Y*T") C
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Figure 3.1: For points y, close enough to x, we do not add exterior points of X*,
when we consider its e,-neighborhoods. Possibly, some points of the boundary
z € 0X® are included, but they are not the image of any point in the next step.

Y=\ dX*: Consider z € dX* and b € Y**!. Then,
g, =d(x,z) <d(x,y) +d(y, b) +d(b,z) < 2&, + d(b, 2),

sod(b, z) > ys, and then z & p. o1(Ysy1). That means ps o1 (Y°T)NOX® =
@, hence ps o (Yo C Yo\ aXe.

The desired neighborhood of x is U = B(x, 0) with & < min {&] (x) — &, &}
For y € B(x, 0), we have that Y* C X5 = Xs and that

YrC pr,S-H(YSH) = pr.S(ps,sH(YSH)) C prs(V® \ 0X®) C p,o(X°) = X

Forn<r, Yi=p, (V) Cpo(X)=X: Then {Y*} C W and hence the map
¢ : X — X is continuous.

This map is clearly injective. Suppose we have two diferent points x, y of
X. Then, they are at distance, let us say, € = d(x,y). Consider s € N such
that e, < 5. Then, for every n > s, we have that B(x, €,) N B(y, €,) = @, that
is X, NY, =0 So, necesarilly, we have that X* N Y* = @, which implies that
{X*} # {Y*} being the map injective.

If we consider the restriction to the image X* = ¢(X), then ¢ : X — X" is
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bijective. But, it is easy to see that X* is Hausdorff. If we consider two different
points { X}, {Y} € X* then there exist x # y such that {X} = ¢(x) and
{Y*} = ¢(y). Repeating the last proof, we obtain an s € N such that, for every
n > s we have XN Y =0 So, we claim that the neighborhoods

(ZXi* X % 2% x 2500 X Uge,,(Asia) ¥ )N

and
(2" % % 2% % 2% x Une (Asia) X .. ) N XY

of { X} and { Y/} respectively in X*, are disjoint. Hence X* is Hausdorff. Then,
as a bijective and continuous map between a compact Hausdorff space and a

Hausdorff space, we get that the map ¢ : X — X* is a homeomorphism.

So, we have that X* is a homeomorphic copy of X inside X. Now, we
will see that X* is a strong deformation retract of X. To do so, we consider the
compositions of the maps defined above. It is very easy to see that p- ¢ : X — X
is the identity map. It is not that easy to see that the map ¢ - ¢ : X — X is
homotopic to the identity 1x. We will write the homotopy explicitly: It is the
map H : X x[0,1] — X given by

1) i tel01),

H({Cn},f)z‘[ ¢ o{CH i t=1.

We only need to show the continuity at the points ({G,},1) € X x[0,1]. Let us
write ¢ - ({C,}) = ¢(x) = {X’}. Consider any neighborhhod V' of {X*} in X.
We can obtain a neighborhood of {X*} of the form

W= (2 x ... x 2% x Upy  (Ar) x .. ) N X
such that W C V. As we have done in a previous proof, we consider s = *(r),
ef(x) = d(x,A; \ X®), and & < min {er(x) — &, &} Select t > s such that
& < g. We claim that the neighborhood

U= (29 %x2%x ... %2 x Upe [ (Asr) X ...) N X

of ({G,},1) in X x [0, 1] satisfies H(U x [0,1]) € W. Let ({D,},t) € U x[0,1]
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where D, € C, forn =1,..., t. Then, if t <1, H{D,}.t) = {D,} C W,
because r < s < tand D, C G, C X forn=1,..., s. On the other hand,
if t =1, then H{D,},1) = ¢ - o({D,}) = é(y) = {Y'}. This implies that
{Y:} € W. To see why, first observe that, for every d € Dy C G C X,
d(x, y) < d(x, d)+d(d, y) < 2¢; < 9. Then, again as before, Y C X'UadX" and
Y C X7, s0{Y} € W, and the homotopy is then continuous. The space X* is

a strong deformation retract of X and the proof of the theorem is finished v
This theorem lead us easily to the following

Corollary 4. For every compact metric space, there exists a sequence of finite
spaces whose limit has the same homotopy type.

Let us see an example of the main construction and the theorem. Also,

observe that the map ¢ : X — X, defined in the previous proof, is not injective:

Example 4. Let X =0, 1] be the unit interval with the usual metric d. We will
do our construction in a way that it will be easy to find more than one point of
the inverse limit converging to the points of X. Concretely, we are going to use,
as finite approximations of the unit interval, subdivisions of it in powers of %
The conditions of the construction will force us to take, for each subdivision, an
small enough subdivision of the next step. But we will be able to compute how
small it has to be. The diameter of X is M = 1. Let &1 =2 > M and A; = {0}.
Obviously Use, (A1) = {0}. Then, it is easy to see that y; = 1.

&=V1 M} 1

For the next step, we need €, < mm{ 5. Let us pick & = %

and Ay = {5, k=0,..., 3} Then U, (A2) —AZU{{g,%},kzO ..... 2},
because, for k < k' we have d(%%) < % if and only if K — k < 2, that is,
k"—kis0or 1. Nowy, = % (the worst thing it could happen is to be exactly in

the middle of two points of the approximation which gives the quoted distance).

Also, we can claim that 0, < % If a set C of points of X has diameter less

than % it is contained in an interval [cy, ¢;] of length less than this quantity.
Now, if c1 = ¢ = C then A,(C) is one point or two consecutive points of A,. If
1 < ¢ it is clear from the construction that d(c;, A;) < y» for i = 1,2. Then
diam(A;(C)) < d(Az, 1) + d(c1, @) + d(cp, A) < 2 + lyl=2

We have to pick an €3 < min {82 VZ, 522 = 3 Let us select e5 = 33 and

As = {?kﬂ k=0,..., 33}. Then Uy (A AgU{ % 3i , k=0,..., 33—1}
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because, for k < k’ we have d(45, 33) % if and only 'Lf k—k" < 2, that is k and

k' are the same or consecutive integers. Now, y; = the middle of interval

el
argument holds again), and o5 < % because if diam([¢y, ¢3]) < 3—3 then

1 1

1
dLam(A3(q)UA3((:2)) d(Ag(Q) C1)+C|(Cq, Cz)—f—d(Cz,Ag(Cz)) < 2-—33—’_?_{—2’—33

4 _ A

N
Now, we will select &5 < min {252, 2} = mm{ EERIPE LR - L} So,

2 2 T P2

a

we can take &4 = 5.

Following this process, we can take, for an arbitrary n € N, ¢, = % and
Av={3= k=0, 3%} is an g,-approximation of [0, 1]. Observe that

ko k41 s
UZEH(A,,):AntuM,W},k: ..... 3 —1}.

We can calculate, as in the previous steps, the numbers to continue the pro-

cess.l'he maximum distance of a point of the unit interval to one of the ap-
proximation is reached in the middle of any interval formed by tvvo consecutive
Again, 0, <

points of the approxlmatlon, SOy, = because ,if

diam([cy, ¢7]) <

1
2.32n-3" 32/7

32” -, then
diam(A,(c1) UA(c2)) < d(As(cr), ¢1) +d(cq, o) + d(c2, An(c2))
1 ] 1

5 305 T35 T 5 3 — 26

Next step will consist of taking

1 1 1
. 32/1—3 - 2,32/7—3 32n—3
Ep1 < MmN '
2 2

So we are allowed to choose €,,1 = 32,713+z = 32(n11)—3 and

k 2(n+1)-3
An+1:{w,kzo ..... 3(+) ]»

is an &,,1-approximation of [0, 1] and then this construction can be done in this
way for every n € N.

= 263.
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Considering this construction done, we observe that there are points of the
interval with only one point in the preimage by ¢, t.e, there is only one point of
the inverse limit X' converging to it in the Hausdorff metric. To clarify this, let
us see what happens at x = 0 € [0, 1]. It is obvious that the point (0,0,...) € X
converges to 0 in the Hausdorff metric. If we want a different element of the
inverse limit converging to 0, it is natural to think that we could use the fact

that lim,_ e 32% = 0 to obtain it, but it turns out that

11 1 1
ST ST , X
333 3203 32(0+1)-3
because, for every n € N, p, 41 (W) = 0. If we try to construct the

‘maximal’ element X* of the inverse limit with image x = 0 we obtain that, for
every n € N,
X, =B(0,¢&,)NnA, ={0}

and p, ,(0) = 0 for every n < m. So Xy = (,.,, Pom(Xn) = 0 for every
n &€ N. Then, X* =(0,0,...). Then, every element of X converging to 0 should
be ‘contained” in this one, in the way we explained before. But there is no
possibility appart from X*.

Actually, every point in A, for some n € N has this property. For any of
them, let us say x = 32% we have

k 1 k
)(” =B (32n1 " 3201 ) n A” - {32171 }

and p,n(x) = x for n < m and p,,-1(x) = 0. So, the only element of X
converging to x is X* = (O ..... 0, 32% 32,% . ) The subset of the interval

consisting of these points, | J, -y As, is dense in the unit interval.

neN

If we choose a point not in this subset, for example x = 5, we obtain a

1
il
different result. First of all, we know that % is not going to be a point of the
1
2
= 2k which is impossible. Now we claim that, for every n € N,

approximation, for any n € N, because if that was true, then
32/773

= % and that
implies
% is at the same distance of two consecutive points of the approximation and,

because of that, both minimize its distance to the approximation. This is true
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because
kK+1 1 1 k 32n=3 1
W_ZZZ_W(:)/(:T’

Now, let us construct the ‘maximal’ element for this point. We get:

o 1 1 32/77371 3217734'»1
2 2
X, = B (§ 32n3) NA, = { 3203 ' 3203 } '

It is easy to see that p, (X)) = X, for every n < m so X; = X, for every

n & N. So,forx:%,

2n—3__ 2n—3
O{lz} {EE} {32132“} )
1373333 32n-3 ' 32n-3 e

which obviously converges to 3 with the Hausdorff metric. But now, we can see

X' =

that each term has two elements and the maps p,.,, are sending the first to the

first and the second to the second, so we can consider the sequences
2n—3__
A3 133 323 [
2n—3
SERLIERE=
A3 13 ST [

and claim that (3, ¢, € X and both converge to % So this point has exactly

G

G =

three points of the inverse limit in its inverse image by ¢, being that map not

tnjective.
We can actually say more about the injectivity of ¢.
Proposition 21. Let X be a compact metric space and suppose we do the main

construction. If x € X satisfies that there exists an ny € N, with x € A, for

every n > ng, then the cardinality of ¢~'(x) is one.
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Proof. Let us suppose we obtain the sequences {&,, A, Vi, 05 }nen performing
the main construction. We are going to prove that, if x € X belongs to A, for

every n = no, then

X' = (P1,,70(X) ~~~~~ pno—1,n0(X),X,X,.A.) .

So, there are no more points C € X satisfying ¢(C) = x, appart from X*
(because of the maximality of X*). For n > ng, we have that x € X, =
B(x, €,) N A, and then, x € X for every n > ng, because p, ,(x) = x for every
no < n < m. So X* has the form

X = (Pral X Pt Xy X ).

Now we prove that X = {x} for every n > ng. Let yo € X,,. Then, y €
X, U and only if there exists, for every i € N, y; € A,y such that y €
Protineti+1(Yir1) and y; € X, 41 for every i € N. We are going to see that, if
there is a chain of points satisfiying the first condition, they cannot satisfy the
second. So, let us suppose there exists a chain y; € A, 4, for every i € N such
that one belongs to the image of the following. For the sake of simplicity, let
us write d; ;== d(x, y;) for i € N, (and do = d(x, yo)). For every i € N, y;41 is
closer (or at the same distance) to y; than to x, so we have

dir 2 d(yi yiy1) < Vho+i-

Moreover, it is obvious that d; < diq + d(yi1, yi), Le, di — dipr < d(yi1, yo).
Combining this with the previous observation, we get d; — di+1 < Vn,41. On the
other hand, we have that, for every i € N, d; < di1 + d(yis1, yi) < 2di4q, SO
divm = Zd—m We supposed yo € X, so €,, — dy > 0. We claim that, for every

i €N,
2€5, — ([ + 2)dy

Eng+i — di i
We prove it by induction. The first case is
Eng — Vn Eny — dO d1
Epgp1 —d1 < ——=—"—di < = - =
o+1 1 5 1 5 >

Eng — do do - 28,70 — 3do

< _ 0
= 2 22 22
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Now, suppose the hypothesis of induction is satisfied, and we check

Eng+i — VYno+i Engti — di d
Engrit1 —dip1 < %yﬁ —dip1 < 0+2 — ;
2€n0 — ([ + Z)do do 28,70 — (l + 3)d0
< Jit2 T o2 Jit2

It is obvious that there exists an i € N such that (i + 3)dy > 2¢€,,. For this
we have that €,) — d; < 0, so y; & X4, and then, yo & X7 . We conclude
Xy, = 1x} and the same argument can be applied to show that X7 = {x}, for

everyn=ng v

3.2 Some special features

In view of Proposition 21, it is natural to look for FAS making the map ¢ the
more ‘injective’ posible, i.e, injective in the largest possible set of points. The

first observation we can do is

Remark 14. For every FAS of X, the set | J, .y A, is always dense in X. For
each open set U C X there exists x € U and € > 0 such that B(x, ) C U.
Let us select np € N such that B(x, g,) C B(x, €). Then, for any a € A,
with d(x, a) < &,,, we have that B(x, &) N A,, # 0. This also shows that every

compact metric space has a countable dense subset.

We want to apply Proposition 21 to obtain inyectivity in a dense subset of

X. We can obtain the following

Construction 1. For every compact metric space X, there exists a FAS with
A, C Apyq for every n € N: If M = diam(X), let us consider &1 > M, and
Ay = {x} with x € X. Then, consider &, with the usual rule. Now, for A;, we
take the union A, = A, N Ay where A, is a €, approximation of X, then so is
A,. We can proceed in this way for every n € N. If we have that A, is a ¢,
approximation of X, consider y, and 9, and take €, as allways. Then consider
An41 as the union A7, NA, where A7, is a £,,1 approximation of X and, hence,
Ap41 too. In this way, we obtain the desired FAS of X.

The best situations we can have are the following.
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3.2.1 Countable spaces

Proposition 22. Let X be a countable metric space. Then there exists a FAS of

X such that the inverse limit X is homeomorphic to X.

Proof. We can write X = {x1,x, ..., Xp, ... }. We just need to find a FAS for
X satisfying x, € A, and A, C A, for every n € N. The first condition gives

us |J,enAn = X and the second one will make ¢ injective on the set

. (U An) — ¢ 'X) =X,

neN

and then, ¢ : X — X will be a homeomorphism. There are many ways of doing
so. We can just do the general construction forcing each A, to contain x, and
A, for every m < n. For example, if we consider, for every n € N, the numbers

rn)=min{ieN:{x, ..., x;} is a &, approximation of X},

it is clear that r(n + 1) > r(n) and then we can write the approximations as

A1 = {X1}
A2 = {X1 ..... Xr(Z)}
An = {X1 ..... Xr(n)}

and we are done VvV

Now we face the case of proper dense subsets of X. First of all, we observe

the following

Remark 15. For every dense subset Y C X of a compact metric space, and every
€ > 0, there exists an e-approximation A C Y: Let us consider the covering
{B(x, 5) : x € X} and a finite subcovering {B(x;, §), .. ., B(xc, 5)}. Now we take
T yr € Y such that d(x;, y;) < 5 forevery i =1, ..., k,so {yy,..., yrtis

an g-approximation of X.

We can state the main result in this direction
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Proposition 23. For every countable dense subset of a compact metric space,
Y C X, there exists a FAS of X such that there is a dense subset of X which

is homeomorphic to Y.

Proof. If we write Y = {y1,y2, ..., Yn, ...}, it is easy to obtain a FAS of X
such that A, C A,4, for every n € N, and UHGNA,7 = Y. For example, using
the previous remark, we can take as approximations

A= i}

A, = {y2} UA UA, with A5 C Y an e;-approximation of X,
Ay = {ys;} UA UA, with A C Y an e3-approximation of X,
A, = {ys,} UA,_1UA, with AL C Y an g,-approximation of X,

If we restrict the map ¢ : X - X DY =/
that

A, to the set ¢~ '(Y) we obtain

neN

@ |1y e '(Y)— Y

is injective and hence a homeomorphism. So ¢~ is the desired set. We have
the inclusions ¢~ '(Y) C X* C X, by construction (recall Proposition 21). Now,
to see that ¢~ '(Y) is dense in X*. Let V be any open set of X* and C € V
any point of it, where C = (G4, G, .. ., C,....). Choose an open neighborhood
from the basis

CeW=(2x... x2%x Ug, (Ans1) X ..)JNX CV

and select any c € C,. Then, ¢* =(...,c,c,...), because A, C A, for every
neN SoceWne (V)T Ve '(Y) which implies ¢~ 1(V) = X*

Remark 16. The inclusion @~ '(Y) of last proposition is proper: Recall example
4 where, Y =,y Ay where A, = {555 k=0,1,..., 3*=3} and, while 1

neN 2
is obviously an element of X*, it does not belong to ¢~ '(Y), since % does not

belong to any approximation A,.
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3.2.2 Ultrametric spaces

An ultrametric space X is a metric space with an extra property of the distance.
Instead of satisfying just the triangle inequality, they satisfy the strong triangle
inequality, that is:

Vx,y,z € X, dx,y) < max{d(x,z),d(y, 2)}.

This inequality gives us some properties that make the ultrametric spaces very
special ones. For example, it is satisfied®

- Every triangle is isosceles, with the non equal side smaller than the other
two.

- For every x,y € X and € > 0 > 0, B(x, ) N B(y, 0) #+ @ implies that
B(y, 0) C B(x, g).

We want to show that, for the case of ultrametric spaces, there exist FASs
such that they recover the topological type of the space. The key idea here, is

that for those spaces there are very special approximations:

Lemma 8. Let X be a compact ultrametric space. For every € > 0, there exists
an e-approximation of X, {x, ..., X}, such that B(x;, €) N B(x;, €) = 0 for every

i+ ]

Proof. The covering by open balls {B(x, €) : x € X} of X has a finite subcover
{B(x1,€), ..., B(xe, }). So, {x1,..., x¢} s an e-approximation of X. Now for
any ( # j such that B(x;, €)NB(x;, €) # @ it turns out that B(x;, €) = B(x;, €) v/

We can state the main theorem about ultrametric spaces.

Theorem 15. Let X be a compact ultrametric space, then, there exists a FAS
{€n, An Vi, Ontnen, such that X = X.

Proof. Let us consider any FAS of X satisfying the property stated in the previ-
ous lemma. Then, for every x € X and every n € N, we have that card(ga,(x)) =

1. Let us suppose that a1, a, € ga, (x). Then, d(x, aq),d(x, a2) < y, < €, but,

3See chapter 2 of [59] for more properties and detailed proofs about ultrametric spaces.
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in that case, we will have that x € B(ay, €,) N B(az, €,) which is not possible.
Then, ga, : X — A, is actually a single valued continuous map. Moreover, if we

restric to A,,1, we obtain that

qAn Aps1 ™ pn.n+1 |An+1: An+1 An

is a continuous map. So, it makes sense to write the following diagram,

X
A
qAnHL N
Aﬂ+1 nr

Pn+1.n

which, moreover, is commutative (compare with Proposition 11). If it would not
be, then there would exist a1, a; € A, with ga,(x) = a1 and pj, n419a,., (x) = a2

Clearly, d(x, a1) < €, but also

d(X' GZ) < d(X’ qA/HrW (X)) + d(qAn+1 (X)' pﬂ,l7+1 qAn+1 (X)) <

En —
< Yn+1+yn<5n+1+)/n< 72)/”

+ Vn < &p.

and this is imposible, since then x € B(ay, €,) N B(ay, €,). Adding that ga, is
always a surjective map distinguishing points of X (see corollary 3 on page 61 of
[47]), we have that X is the inverse limit X = lim_(A,, pn.ne1). Now, it remains
to see that every element of the inverse limit C = (G, G, .. ., Ch...) X
satisfies that card(C,) = 1 for every n € N. If not, for any pair a4, a, € C, we
would have that d(x, aq), d(x, a2) < €, with x = limy{C,}, which, again, is not
possible. So, we have that

X = [(L_m (UZg,,(An): pn,n+1) = [(L_m(An: ,Dn,n+1) =X \/

3.3 Previous work on finite approximations

Our construction is a sequence of finite spaces, which, in the limit, are able
to reflect the shape and homotopy properties of the original space. Its main

features are:
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- It is internal: It is constructed from the space itself, without need of external
ambient spaces to approximate them. We use the hyperspace, which is

constructed just in terms of the compac metric space.

- It is constructive: Given a space explicitly, we can actually select points
for each approximation. This is important, since it allows us to perform
explictly the construction over the space, and possibly determine some

topological structure, up to some error,

There exist previous results on the approximation of topological spaces by finite
spaces. This is an old theme, but nowadays it is becoming more important
because of its role in the emerging field of computational topology. In this

section we will review some of these results and compare them with ours.

3.3.1 Approximation of compact polyhedra

There is a paper of E. Clader [19] where the following theorem is proved:

Theorem 16 (E. Clader). Every compact polyhedron is homotopy equivalent to

the inverse limit of a sequence of finite spaces.

The proof consists of taking as finite spaces the vertices of the barycentric
subdivisions of the simplicial complexes defining the compact polyhedron. Given
a simplicial complex, the McCord correspondence assigns a finite Ty space.
Clader assigned the opposite topology to these finite spaces. That is, consider
for every n € N, the n-th barycentric subdivision K and the finite space
F, = X(K"), that is, the n-th barycentric subdivision of the finite space X(K)
with the opposite topology of that assigned by McCord. Then, there is a natural
map p, from |K]| to each F,, because every point of |K| belongs to a unique
simplex of K. For every n > 1, there is a map q, : F, — F,_1 closing the
diagram with p, and p,_4. Then, it is shown that the polyhedron is a retract
of the inverse limit of these finite spaces and maps. Note that every compact
polyhedron is a compact metric space (for details of the metric, see, for example
the appendix on polyhedra of [47]). So, this theorem is a particular case of

corollary 7.
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3.3.2 Finite approximations and Hausdorff reflections

In a series of papers, R. Kopperman et al. ([37],[38]) proved the following theorem

about finite approximations.

Theorem 17 (R. Kopperman, R. Wilson). Every compact Hausdorff space is the
Hausdorff reflection of the inverse limit of an inverse system of finite spaces.

The finite spaces involved in this proof are constructed in a very theoretical
way. It is considered the set of all possible open coverings of the space and then
the spaces are defined with a boolean algebra on the open sets of the coverings.
This theorem has the advantage that it is very general: It works for any compact
Hausdorff space, with no need for a metric. But it has the desadvantage that
it is not constructible and that we loose a lot of intuition with the Hausdorff
reflection.

The idea of a reflection of a topological space is to construct another space,
as similar as posible to the first one with an extra separation and a universal
map. Somehow it is similar to compactification. Concretely, given a topological
space X and a separation property 7, we will say that py : X — X7 is the
T reflection of X if iy is a continuous map, X7 has the property 7 and every
continuous map f : X — Z with Z having property T, factors through a map
g : X7 — Z, e, the diagram

X f 7
MXL /
g
Xt

commutes. If the map px is surjective we will say that the reflection is surjective,

too. For some properties, the existence of reflectors is a well known fact.

Theorem 18. (see [54] chapter 14)Let X be a topological space. For T being the

separation properties T;, i=0,1,2,3, 3% there exists a surjective reflection.

It is easy to see that two reflections of the same space are homeomorphic.
In many cases, reflections are obtained as quotient spaces (not in every case,
as for example the Tychonoff functor -or reflection- which is not obtained as a

quotient) for a relation. Nevertheless, it is not allways obtained as the obvious
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relation. As a matter of fact, in order to obtain the Hausdorff reflection we need
to define the following relations (see the reference [62] a short and beautiful

paper about reflections, where this is showed):

o xRy iff for every pair of neighborhoods U, U, of x,y resp., we have

U U, + 0.

o xR,y iff there exist x =z, 25, . . ., z, = y such that Z1R 2Ry ... Ry z,.
o xRsy iff for every f : X — Z, with Z Hausdorff, we have f(x) = f(y).

Then, the Hausdorff reflection of X is the quotient space X = X/R;.

We want to compare the Hausdorff reflection of a topological space with the
space itself in terms of shape type. As a motivation, we can cite [53], where it is
shown that the Tychonoff functor indeed induces the identity morphism in shape.
So, a topological space and its Tychonoff reflection have the same shape. We
will show the same for the Hausdorff reflection.

Lemma 9. The Hausdorff reflection of the product X x I, where | = [0,1], is
homeomorphic to Xy x 1.

Proof. Consider the continuous map

fiXx] — Xyx|
() = (pxx), 1),

which is a quotient map. Moreover, the space Xj; x [ is Hausdorff, so there exists
a continuous surjective map h : (X x /)y — Xy x [ such that the diagram

X x| ! Xy x|
NXX/\] /

h
(X x 1)y

commutes. We see that h is actually a homeomorphism. First of all, h is a
quotient map, because f and py; are ([28], pag 91). Also, it is an injective map.
Indeed, let [a],[b] € (X x /) such that h(la]) = h([b]) = ([z], t). Considering
that tixx; is surjective, there exist (x, 1), (x, t2) such that ux.(x, t1) = [a] and



3.3. Previous work on finite approximations 97

txxi(y, to) = [b]. Because of the commutativity of the previous diagram we have
that

([x] 1)) = F(x, t1) = hlpxsalx, tr)) = h(a)) = (2], )
h HXxxI h

y) £ = F(y. ) = hlpcaly. ) = h(b) = (2],
so [x] = [y] =zl and y = t, = t. For this concrete t, we consider the
commutative diagram
X— 2 X x|
HXL jUXxl
Xy (X x Ny

which exists for being pxx; o (id x t) : X — (X x [)yy a continuous map to a
Hausdorff space. We consider the images of x, y by the two different maps of
the diagram. As [x] = [y], we obtain that [a] = [b], so h is injective. A quotient

and injective map is a homeomorphism v

Theorem 19. For every topological space X, the Hausdorff reflection px : X —
Xy induces the identity morphism in shape.

Proof. To show this, we are going to use the characterization of identity mor-
phisms in shape, Theorem 4. So, iy : X — Xy is the identity morphism in shape
if and only if the map
Xy, Pl — [X,P]
h — h-f,

with P being any metric ANR, is bijective.
It is surjective: Given a map g : X — P, with P ANR and then, Hausdorff,

there exists a map h : Xy — P such that g = h - pyx, that is, what we wanted. It
is injective: Let hqy, hy : Xiy — P, with P ANR, two continuous maps such that
hy-ux y hy-ux are homotopic, i.e, there exists a continuous map, G : X x [ — P
such that G(x, 0) = hq-pux(x) and G(x, 1) = hy - ux(x). Being P Hausdorff, there
exists a continuous map £ : (X x [)y — P such that G = F - ux«;. Applying the

previous lemma, we get fixy; = pix X id, so we have that the following diagram
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commutes:
X x [ —C& P.
ﬂXXidj /
,XH x |

Then, for every x € X, we have

F(x],0) = G(x,0) = hy - pix(x) = hi([x]
Fllx]. 1) = Glx, 1) = hy - px(x) = ha(x]).

So, hy and h; are homotopic v

Corollary 5. A topological space X has the same shape than its Hausdorff

reflection Xy.

Note that with Theorem 17 and the result just proved here about the shape
of the Hausdorff reflection we will get the following generalization.

Corollary 6. Every compact Hausdorff space has the same shape as the inverse

limit of an inverse system of finite spaces.

In an attempt of understanding better the Hausdorff reflection of an inverse
system of spaces, Kopperman and Wilson proved that the original space is not
only the Hausdorff reflection but the set of closed points of the inverse limit. We

can prove the same in our construction.

Proposition 24. For every compact metric space X and every FAS of X, {€,, As, Vn, On }nen,
the space X* is just the set of closed points of X. Moreover it is its Hausdorff
reflection X* = Xy.

Proof. First of all, we are going to characterize, for every x € X the point of

the inverse limit X* = ¢(x). It is the set

X = [ {c}
)

Cep(x

We divide the proof:
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(C) We show here that if ¢(X*) = ¢(C) = x (notation: X* = (X7, X3, ...)),
then X* € {C}. Let X* € V an open neighborhood in X. Then, there
exists an open neighborhood

X e U= 2% x2% x ... x 2% x Upe, , (A1) x .. )N X.

But, obviously, C € U,so C e UN{C} # 0.

(D) Let D = (Dy,D,,...) € ﬂc@rw)mﬂ‘en {D,} converges to x in the
Hausdorf metric. So, for every D € U open neighborhood, we have that
Un{X*} # @. In particular, for every r € N we have neighborhoods of
the form

(2P x 2P % x 2P x U ((Arpr) X )N X,

where X* belongs. So, for every r € N we have X* = D,, hence X* = D.

Now to show that X* is the set of closed points, first observe that every
Xt e X*is X* = ﬂCeqﬂ(X) m so a closed set. ﬁthe other hand, if there is
a closed point C € X, with ¢(C) =y then Y* € {C} ={C} so C = Y*" € X*.

To show that X* is actually the Hausdorff reflection of X, let us consider
a continuous map o : X — Y with Ya Hausdorff space. Consider two points
C, C" € X such that ¢(C) = ¢(C') = x = @(X*), with X* € X*. Then, using the
previous characterization of X*, we have that X* & mﬁm Then, applying

the map a, and using that it is continuous and that Y is Hausdorff, we obtain

a(X7)

S
c {a(O)} n{a(C)} =
= {a(C) (€)

so, a(X*) = a(C) = a(C’). Now, we claim that the map ¢ - ¢ : X — X* is

actually the Hausdorff reflection of X. This is so, because the map «a

yol X —
Y makes the diagram
o9

X
Y

X*
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commutative and @ |y« is continuous since ¢ - ¢ is a retraction and hence a
identification v

3.4 Generalization to hyperspaces

Let X be a compact metric space and 2 its hyperspace with the upper semifinite
topology. If we perform the main construction on X applying Theorem 8, we
obtain sequences {&,, A,, Vn, On}nen, such that, for every n € N, A, is an g,
approximation of X and {e,} is a decreasing sequence tending to zero. We
also have continuous maps pj 1 @ Usg,  (Ar) — Uy, (An) for every n € N.
These maps can be extended to the hyperspaces 2/ (for short, 2*) of the

approximations with the upper semifinite topology in the obvious way,

pn,n+1 : 2An+1 N ZAN

C +— 1a,(0).

They are continuous, because, as Alexandroff spaces, the order is preserved
by the map. Moreover, they make the following diagram, where the maps i :

Uze, (An) — 2% are just inclusions, commutative:

2An+1 Pn,n+1 ZA”

UZg”H (An+1 ) UZ&n (An)

Pn.n+1

We can obtain the hyperspace of X with the upper semifinite topology as an

inverse sequence of finite spaces, up to homotopy.

Theorem 20. Let X be a compact metric space and consider sequences {&,, Ay, Y, O }nen
from the main construction. The inverse limit A of the inverse sequence {2A", Pnni }

has the homotopy type of 2.\. Moreover, there is a subspace A* C A homeo-
morphic to 27

We first prove the following technical and easy lemma, which will be useful

in the proof.
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Lemma 10. Let (X, d) be a compact metric space. For every C,D C X. Then,
for every 0 < 0 < € and n < € — 0, we have that, if D C B(C,n), then
B(D, o) C B(C,¢). In particular, it D C B(C, e —0), then B(D, 0) C B(C, ).

Proof. Let d" € B(D, 0), there exists d € D such that d(d’, ¢) < 0. By hypoth-
esis, there exists ¢ € C such that d(d, ¢) < n. Then,

dd, o) <dd,d)+dd,c)<d+n<e v

Remark 17. The converse of this lemma is obviously false. For instance, Let X
be the interval / =1[0,1], C = {0} and D = {1}. Then B (D, 3) C B(C, 3), but
DeB(C1).

Proof of Theorem 20. The proof follows the same steps as Theorem 14, altough
we will need to add some extra proofs. The interpretation of the inverse sequence
of points with the Hausdorff distance comes from the quoted theorem. Every point
of the inverse limit {C,},en € A is a Cauchy sequence in 2/, converging to a
unique point C € 2X. Also, we have that, in terms of the Hausdorff metric, the
diference between two elements of the sequence depends only on the lower one.
Let {C,}heny € X be a point of the inverse limit. Then, the Hausdorff distance
between terms of the sequence C, and C,, with n < m, is dy(C,, C,) < €,. This
leads (as in the other case) to a bound for the limit: dy (C, C,) < &,.

Define the map ¢ : A — 2 assigning to every sequence {C,},en € A the
unique point in the limit C = lim{C,},en in the Hausdorff metric. The map
@ : A — 2%, sending {C,},en to C is continuous. As in the previous case, we
will show that it is continuous in every point. Let U be an open neighborhood
of C in 2%. Assume C € B(V) C U, with V open neighborhood containing C.
Consider € > 0 such that B(C, €) C V. Hence, B(B(C, €)) C B(V). Let np € N
be a natural number satisfying that, for every n > no, €, < £. Consider the

2
open neighborhood of {C,},

W = (ZC1 x 20 % . x 200 x Ao X ...)NA.

Let {D,} € W be an element of this neighborhood an suppose D = limy{D,}.
Then,
D C B(Dy,. €ny) C B(Gyy €0) B(C, €),
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because dy (D, D,,), D, C C,

n, and Lemma 10 applied to the inclusion

no

G, CB(C, ey) CB(C, e—¢y),

which is true since g,, < § < € — g, Hence, D C B(V) C U, and ¢ is
conttnuous.

Now, we define an inverse for ¢ as in the previous case. For every C € 2,
define for each n € N, the sets C” = B(C, ,)NA,, finite and non-empty subsets
of X, and

=) PanlC"),

also non-empty sets (nested sequence of closed sets). To show that it is indeed
a nested sequence, is slightly different from the simpler case. We have to show
that, for every C & fo and n < m, ppwst(C™N C pun(C™). As before, it
is enough to show that p, »e1(C™") € C™ Let us consider an element d €
Pmms1(C™1). There exists an element ¢ € C™*' such that d € p,ms1({c}), and
hence, d(d, c) < &,. If c € C™*1, there exists ¢’ € C such that d(c, ¢/) < €41

Then, we have
d(d, ) < d(d, c) +d(c, ) <&y + €ny1 < €n,

and hence d € C™. To show that actually {C;} is an element of the inverse
limit A, we just repeat the arguments of the previous case, where we showed
that, for every x € X, {X’} € X. It is not used there the fact that the diammeter
of the set {x} is zero. We also define the map * : N — N as before. What
needs to be proved is that limy{Cs} = C. That is, for every € > 0 we want a
natural number ng such that, for every n > ng, dy (C, C) < €. We claim that,
for every n € N, dy (C, () < €,. By definition, we have that C; C B(C, &,),
for every n € N. On the other hand, we want to show, for every n € N, that, for
every ¢ € C, there is a point ¢* € (' such that d(c, ¢*) < g,. Consider

c"=B(c,e,)NA, CB(C e,)nA, =C",

for every n € N. We know from the proof of Theorem 14, that the set ¢” is
non-empty and that p, »(c") C c". Moreover, the sets (7, pnm(c") are not
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empty, and, by construction,

m Pn,m(Cm) C m Pn,m(Cm) = C:'

m>n m>n

so, any element ¢* € (), Pnm(c”) satisfies ¢ € C; and d(c, c*) < &,.

Here, we also have the maximal property: For every {C,} € A, such that
C = @({C,}), we have that C, C C;, for every n € N. It can be proved exactly
the same way as in the proof of Theorem 14.

We define the map ¢ : 2 — A with ¢(C) = {C*}. This map is shown to be
continuous following the same arguments as in the proof of Theorem 14 adapted
to a set C instead of a point x. Given an open neighborhood V/, containing
{C:}, there is a basic open subset

{CYcW=(2x.. . x25x2"" x..)JnAcCV.
Consider s = x(r), and
eH(C) ={d(a, C): a € A\ X°}.

Then, the open neighborhood B(U) of C, where U = B(C,0), with § <
min {e(C) — &, &}, satisfies that, for every D € B(U), ¢(D) ¢ W C V.
Hence ¢ is continuous. Note that we have not required C to be finite anywhere,

and it is enough to be closed, so the domain of the map is the whole hyperspace.

Next, we show that ¢ : 2% — A is injective. First, we are going to prove the
following claim: If C,D € 2 satisfy C ¢ D, then, C: C D; for every n € N
and there exists ng € N such that, for every n > ng, C; & D7: Indeed, if C C D,
then C" C D" for every n € N, and then C; C D:. If there is no ngp € N such
that Ci # D7, then {C;} = {D;} and C = D. For every n > no, C; # D;,
because if not, C\ = py.n(C) = pne.n(D;) = Dy, and that is impossible. Now,
for the injectivity, if C # D, we can assume without loosing the generality that
there exists ¢ € C\ D. Consider € = d(c, D). For s > 0 satisfying &5 < 5, we
have ¢" N D" = @ for every n > s, so ¢ N D = for every n > s. Because of
the previous claim, we have, ¢ C C: for every n € N. Hence, {C} and {D;}
must be different.
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Note, in a similar fashion as in Theorem 14, that A* = ¢(A) = {{C;} : C € 2} }.
In contrast with that theorem, A" is not necesarily Hausdorff, because, for ex-
ample, if C,D € 25 are subsets such that C C D, then it is not possible
to separate {C}} and {D!} by open neighborhoods. Nevertheless, the maps
@ A" — 2¥ and ¢ : 2¥ — A* are mutually inverse continuous bijections, so
A* is homeomorphic to 25.

It remains to prove that A retracts to A*, and hence as 2. Repeat, step by

step, this part of the proof of Theorem 14. With the same notation, we have that

HUD. 1) = o p({D,}) = $(D) = {D;} € W.

Then D C B(C, d) and hence, D* = C*, so Df C C* and we are done Vv

So, we obtain:

Corollary 7. For every compact metric space X, there exists an inverse sequence

of finite spaces whose inverse limit has the same homotopy type as 2.\

Remark 18. Note that the finite spaces are precisely subsets of the hyperspace
2%, and that the hyperspace 2 is an Alexandroff space. This is related with the
next chapter, where we deal with this kind of inverse limit approximations for

Alexandroff spaces.

Moreover, these inverse sequences are related in the following way. For
every n € N, the inclusion i, : U, (A,) — 2™ induces a map in the limit

f: X — A making this diagram commutative.

ZA’\ ZAZ o ZAN 2An+W

) T

UZ& (A1) I — U2sz (AZ) -~ ...~ U2s,, (An) I — UZ&,,+1 (An+1) ~ ...

This map is essentialy (up to homotopy type of the spaces) the embedding of
the canonical copy of X in the hyperspace 2, in the sense that this diagram of
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homeomorphisms is commutative:

2 A

|






Chapter 4
Universal hyperspaces

In the previous chapters we have used extensively finite spaces that are subsets
of some hyperspaces with the upper semifinite topology. It is precisely this
topology what makes this finite spaces so useful. Here, we propose the same
hyperspace, in a more abstract setting, to be universal (in a sense that we will
see later) for Alexandroff spaces. The upper semifinite topology is posed, even
having poor topological properties, as a good ambient space to set (algebraic)
topological results with the advantage that it is defined via the space itself.
Moreover, the easy handling of the upper semifinite topoloy, allows us to express,

very easily, some complicated properties.

4.1 Hyperspaces of discrete spaces

We will define hyperspaces with universality properties for some classes of
Alexandroff spaces. In [5], the authors describe an embedding for every Ty-
chonov space in its hyperspace with the upper semifinite topology. They relate
properties of the space with properties of the hyperspace using that, although
the topology of the hyperspace is non-Hausdorff, it is very easy to manipulate.
In [6], the same authors describe a special neighborhood system, for the em-
bedding of a compact metric space in its upper semifinite hyperspace to get
results in the shape theory for compacta. Here we also use hyperspaces with
the upper semifinite topology, but with a slightly different point of view: Given
a topological space, we define hyperspaces of sets with the discrete topology.

107
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Then, some subspaces of these hyperspaces will describe the topology of the
original space. So, we focus in the subsets of the hyperspace, more than in the
topology of the hyperspace itself.

Recall the following notation: For an Alexandroff space X, we write B, for
the minimal neighborhood of the point x € X. For every topological space X, let
2x be the set of non-empty closed subsets of X. The upper semifinite topology
is generated by the base

B(U)={C€2":Cc U}, UopeninX.

First of all, we quote the following result about hyperspaces of Alexandroff

spaces.

Proposition 25. For every Alexandroff space X, the hyperspace 2\ is an Alexan-
droff space.

Proof. As an Alexandroff space, every point x € X has a minimal neighborhood
B,. Now, consider a point C € 2X. This point consist of a set of points
C = {x;}jes, x; € X. For every j € J, consider the open neighborhood B(B, ) in
2% Then we claim that
Bc = JB(B,)
jel

is the minimal neighborhood of C. Consider any basic open neighborhood B(U)
of C. Then, C C U, so x; € U for every j € J, and then, BX/ C U. Then it is
clear, for every j € J, that B(B,)) C U and hence B C B(U)) v

Example 5. The converse of this proposition is not true, even for 7y Alexandroff
spaces, as shown in the following example: Consider the unit interval | =
0, 1] with the topology having as proper open sets the half intervals [0, t) with
t € (0,1). Now consider the subspace X = {1 : n € N} U {0} with the
subspace topology. It is a Ty non-Alexandroff space, since the (of course infinite)

intersection of open sets

() (0.6)nX) = {0}

te(0,1)

is not an open set. But, it turns out that the hyperspace 27 is Alexandroff. Every
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proper closed set is of the form X\[0, t), with t € (0,1), te, X, = {1, 1=, ..., 1}
with n € N. For every n € N, the only open set containing X, is X, so every

point of 2% has B(X) = 2 as minimal neighborhood.

Let X be a set with the discrete topology. We can consider the hyperspace
of non-empty (closed)' subsets 2* with the upper semifinite topology. We will

write 2% to denote this topological space.
Proposition 26. For every set X, the space 2 is a Ty Alexandroff space.

Proof. To show that it is Alexandroff, we need to find, for every point of the
space, a minimal neighborhood. Every subset C of X is open with the discrete

topology, so the basis element of C is B¢ = 2C. It is easy to see that

Be= () BW)

CcUopen inX

so, it contains C and it is contained in any open neighborhood of C. Hence
2% is an Alexandroff space with minimal neighborhoods 2¢ for every C € 2%
It is To because, for every pair of different points C,D & Zf,(d, there are two
possibilities: If C & D, then C € B 3 D. It C ¢ D and D ¢ C then we have
both C € Bc D and C & Bp € D. The space 2. is not T because for every
two points such that C < D, that is, C C D, every neighborhood of D contains
BpDBraC Vv

Remark 19. As a Ty Alexandroff space, the partial order induced in 2{¢ is, for
every C,D € 2% C< Difandonlyif C C D.

We now consider the power of finite sets of X, that is,
2} = {C € 2% : card(C) is finite} C 2%
which receives the subspace topology, so

[B(U)N 2} : U open in X}

TIn this case, it is not a necessary condition, since every subset is open and closed.

2If X is discrete, then it is an Alexandroff space, and we already know that the hyperspace
is Alexandroff. We prove it explicitly for this case, in order to find the minimal basis and we
also show that the hyperspace is also Ty.
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is a basis for its topology. As a subspace, fod is a Ty Alexandroff space, with
minimal neighborhoods 2€, for each C € 2;“. Define, for every r € N, the set

Zfd = {C S 2,),(" ccardC < r}

of points of the hyperspace 2%¢ with a bounded (by r) number of elements.

Remark 20. For every r € N, the space 2% is an open subset of 2?(”. This is
so because, for every C € 2, its minimal neighborhood 2¢ is contained in the
space 2. Moreover, for every pair r < s, we have the inclusion 2% C 2.

Example 6. In general, the space Zfd is not 74. For example, for the set of
natural numbers N, we have that ZI)}] is not Ty because, for example, the minimal
neighborhood of {1, 2,3} contains {1, 2}.

Of course, the only outstanding information of the set X that is kept in the

hyperspaces 22 and 2?@ is the cardinality. That is, we have the following

Proposition 27. Let X, Y be sets with cardinalities wx and wy respectively.

Then, the following are equivalent:
(i) wx = wy.
(ii) 2%¢ is homeomorphic to 2!¢.
(iii) Zfd is homeomorphic to nyd.

Despite this fact, we will use the set notation instead of dealing just with
cardinalities for the sake of simplicity.
We study some topological properties of these hyperspaces. For instance,

the space 2 is strongly deformable to any of its points.

Proposition 28. For every set X, the space 2?(" is contractible. Moreover it can

be strongly retracted to any of its points.

Proof. Let A be any point of 2?(5’, and e a single point; we will prove that Zfd
can be retracted to that point. Let us consider the following maps
. Xd . Xd
p: 27 — e p: & — 2}
C +—— o o — A

The composition of maps p - i : @ — e is the identity. And the composition
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i-p: fo" — Zfd is not the identity, in general, but it turns out that it is
homotopic to it. Indeed, the map H : 2} x [0,1] — 2, defined by

A ifttel0,9),
Hix,t) =1 CUA ift=1,
A ifte(31]

is an homotopy between the maps H(x, 0) = i - p(*) and H(x, 1) = id. We shall

prove that this map is continuous everywhere. Let (C, t) € 2}¢ x [0, 1]

e If t €]0,3) then H(C,t) = A Let V be any neighborhood of A we have
that A € B4 C V. The neighborhood of (C, t) given by U = Zfd x [0, %)
satisfies H(U) = A€ V.

o lf t € (%1] then H(C,t) = C. Let V be a neighborhood of C, we know
that C € B¢ € V. The neighborhood U = 25 x (3,1] of (C, t) satisfies
HU)=CeV.

e Finally, H(C, %) = CNA. For any neighborhood V' of C UA we can claim
that CUA € Beua C V so the image of the neighborhood of (C, 3) given
by U = 2% x [0, 1] satisfies HU) = CUA €V v

This is quite non-evident since this space is highly non-homogeneous.

Definition 8. A topological space X is said to be homogeneous if, for every two
points x, y € X, there is a homeomorphism f : X — X such that f(x) = y. In

other words, the group of self homeomorphisms of X is transitive in X.

We characterize the homeomorphisms of our space in order to measure its
unhomogeneity.

Proposition 29. Let X be any set. Then a function f : 2} — 2 is a homeo-
morphism if and only if there exists a bijection y : X — X such that f = 2¥. That
is, the homeomorphism group of Zfd is isomorphic to the group of permutations
of card(X) elements.

Proof. This is a direct consecuence of proposition 2.8 of [5], because every set
with the discrete topology is a Tychonov space. In this particular situation, the

proof is simpler, as shown.
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Consider we have a bijection y of X and define f : 2?(” — fod as f = 2V.
Then, for every C € 2,)((", we have f(C) = U.ccy(c). The map f is continuous

. X,
and open, since, for every C € 277, we have

109 =

DccC

U y(c)) — JUcecvle) — f(C)

ceD

It is clearly injective. If C # D, let us suppose that there exists d € D\C.
Then y(d) € f(D)\f(C). Finally, f is surjective: For every C & 2;(”, C =
Ucey—1((:) y(c) = f(y~'(C)). We conclude that f is a homeomorphism. On the
other hand, let f : 2} — 25’ be a homeomorphism. Consider a point of 2,
consisting of only one point of X, that is {x} &€ 2;. Let us write f({x}) = C €
27 Then, f~! is a continuous map sending C to {x}, so f~1(2€) c 20} = {x}.
But £~ must be injective so card (2°) = 1, hence C = {y} with y € X. That
means there exists a function y : X — X such that f({x}) = y(x) for every
x € X. This function must be a bijection, since f is. Now, let us consider
C e Zfd. Since f is continuous, we have y(c) = f({c}) C f(C) for every
c € C, that is, [, v(c). On the other hand, since =" is continuous, for every
d € f(C) we have y~'(d) = f'({d}) C C, and hence d € (), y(c). We
conclude f(C) = (e V(o) Le, f =2V

As an immediate corollary we obtain

Corollary 8. Let X be any set and consider C,D & Z?("‘ Then there exists a
homeomorphism f : 2} — 2 with f(C) = D if and only if card(C) = card(D).

Proof. If f : 2,)((" — 2,)((” is a homeomorphism then, by the previous proposition,
there exists a bijection y : X — X such that f = 27. It is clear that the elevation
of a bijection must preserve the cardinal of the elements.

The opposite implication is straightforward because it is always possible to
extend bijections to sets with the same cardinal. If card(C) = card(D), then we
can define two bijections a : C — D and B : X\C — X\D. Now we can define
a bijection y : X — X on the whole set by

] alx) UxeC,
M =1 g i x e X\C
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Since it is a bijection, then f = 2¥ is a homeomorphism sending C to D, as
required Vv

Remark 21. From the previous proof we can deduce that there exist exactly
card(C)!-card(X\ C)! different homemorphisms (the combination of possible choices
for the bijections a and B) sending C to D.

Remark 22. The last proposition and its corollary remain true if we replace Zfd

with 2% Nothing in the proofs actually changes.

Local finiteness is a property of topological spaces closely related to Alexan-
droff spaces.

Definition 9. A topological space X is called locally finite if, for every x € X,
there exists a finite neighborhood x € U C X. We will say that an Alexandroff
space A is strongly locally finite® if, for every a € A, the set of points related
to a, that s,

{beA:b<aora<b},

is finite (equivalently, for every @ € A, B, and mA are finite sets).
Remark 23. Finite topological spaces are always locally finite. For Alexandroff
spaces, strong local finiteness implies local finiteness.

Remark 24. For every infinite set X, the hyperspace Zfd is not finite, is locally
finite but it is not strongly locally finite: For every C & Zfd, the minimal
neighborhood 2¢ is a finite open set containing C. But C is contained in an

infinite number of elements of 2,
It turns out that locally finite spaces are nothing but an special class of

Alexandroff spaces.

Proposition 30. Every topological space is a locally finite space if and only if
it is an Alexandroff space with finite minimal neighborhoods.

Proof. Let X be a locally finite space. Let us consider, for x € X, a finite open
neighborhood x € U C X. We claim that

BuzﬂB

xeBCU open

3This notion of local finiteness comes from the paper [39].
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is the minimal open neighborhood for x. Note that it is not empty, because
By € U 3 x, and open, because it is a finite intersection (remember U is finite)
of open sets. It is the minimal neighborhood of x because, if V' is another open
neighborhood of x, then VN U C U is an open neighborhood of x, and hence
By C V. Finally, the construction does not depend on the choice of the finite
open neighborhood of x. If we use a different one, say U’, then UNU" C U, U, so
By C U and By C U which implies, respectively, that B,y C By and By C U,

so By = By = By is well defined. The converse is obviously true v/

Compactness and paracompactness are easily characterized in these hyper-

spaces:
Proposition 31. Let X be any set. The following statements are equivalent:
(i) X is finite.
(ii) 2?(” is compact.
(iii) Zfd is paracompact.
(iv) Zfd is strongly locally finite.
Proof. The implications (i)=(ii)=(iii) are obvious.

(ii)=(iv) If 2?(‘1 is paracompact, then the minimal open covering {ZC C e Zfd}
must be locally finite, so, for every C & Zfd, C C D for a finite number of

_2Xd
points D € 2, (or, in other words, for every C € 2,, the closure {C}”

is finite). Since 2¢ is always finite too, Zfd space is strongly locally finite.

(iv)=(1) If X was infinite then, for every C & Zf", we would have that X\ C would
—__oXd
be infinite, and then C € C U D for every D € X\C, making {C}zf

infinite, which is impossible v

We can look for the smallest compact space containing Zfd. For non-
Hausdorff spaces, there is an analogous to the concept of compactification called

the Alexandroff extension®, which is defined in the same way.

“In the definition of compactification is usually assumed that the space is, at least, Hausdorff,
in order to ensure that the compactification has some desired properties.
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Definition 10. Let X be any topological space and oo any object not in X.
Consider the set X* = X U {oo} with open sets the open sets of X and the
subsets oo € U such that X\U is closed and compact. The inclusion map

c: X — X* is then called the Alexandroff extension of X.

Proposition 32 (Properties of the Alexandroff extension). Let X be a topological

space and ¢ : X — X* its Alexandroff extension. Then:
(i) The space X* is compact.
(ii) The map c : X — X* is continuous and open.
(iii) If X is not compact, ¢(X) is dense in X*.

Definition 11. Let X be a topological space and * any point not in X. The
non-Hausdorff cone is the space X U {} with proper open sets the open sets of
X.

Remark 25. In general, for every topological space X, the topology of the Alexan-
droff extension is finer that the one in the non-Hausdorff cone.

In order to find the Alexandroff extension of our space, we need the following

lemma.

Lemma 11. /f X is an infinite set, there are no closed and compact subsets of
274

Proof. Consider a non-empty subset B C Zfd and suppose it is closed and
compact. Consider a point a € B, then {a} € B = B, being a closed subset of
a compact space, is compact. But this is not possible: Consider the open covering
U{a}CC 2€ of m, and suppose there is a finite subcovering, say {ZQ ..... ZCS}.
Then, for every D € C\X, we have {a}UD € {a} but {a}UD ¢ {2,..., 261,
so there are no possible finite subcoverings v’

Remark 26. 1t turns out that given any set X, the Alexandroff extension and the
non-Hausdorff cone of the hyperspace 2} C 2 are exactly the same topological

space.

Proposition 33. The subspace 2;* U {X} C 2X¢ is the Alexandroff extension of
2/,
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Proof. We will show that they have exactly the same open sets. As a subspace,
Zfd U {X} has as open sets the intersections with open sets of 2. Let U be an

open set of 2X¢, and consider its intersection with 2; U {X}.
e If X & U, then the intersection is U N 2.

e If X € U, then U has to be 2%, so the intersection is the whole set
277U {X}.

On the other hand, as the Alexandroff extension, the open sets are the open sets
of 2;@ and the sets V, containing X, such that 2?(“\\/ is closed and compact.
But, by the previous lemma, the only possibility is the empty set, so there is

only one open set more, 27 U {X} v

Now we give a description of the Alexandroff extension in terms of an inverse

limit of subspaces of 2,

Theorem 21. Let X be any set. Consider the hyperspace of finite subsets
Zfd C 2% with the upper semifinite topology. The Alexandroff extension of Zfd

is homeomorphic to an inverse limit of an inverse system of finite spaces.

Remark 27. The proof of this theorem for the case 2}' (or, equivalently, when the
cardinal of X is countable) is simpler and more intuitive. Even the statement of
the theorem we want to prove is then easier, because we just need a sequence
(instead of a system) of finite spaces. We include it here and we recommend
the reader to check this proof in order to understand the general case.

Theorem 22. The Alexandroff extension of 2 is homeomorphic to an inverse

limit of an inverse sequence of finite spaces.

Proof. We should think about this space as an countable cone over the point
{1}. This allows us to understand what follows. The natural numbers are totally
ordered. In this case, there is a sequence of ordered-by-inclusion open sets (of
the basis)

8{1} C 8{1,2} C 8{1,2,3} C ...

such that
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Despite of this, they are not a basis: For example, the point {1,4} € Bp24
but it is imposible to find an s such that {1,4} € By

to construct an inverse sequence in terms of this ordered chain. We can define

s} C Bi24p. We want

a natural map (a kind of “collapse’-this is not formal!) from every element of the
chain to a lower one. For every n € n € N, define a map p,, g : 217+

[ fn+1¢cC
Poost =0 14, n} tn+1ecC

This map is continuous: Suppose we have a pair of points of 2{"""+1} ‘namely
C C D. Then, there are three different cases:

e lfn+1¢& CcCD,thenp,p1(C)=poni(D)=1{1,..., n}t.
e lfn+1¢&C,D, then p,,1(C)=C C D =p,,1(D).

e lfn+1¢ Cbutn+1¢€ D, thenp,,1(C)=CC{1,..., nt = pna(D).

S0, Pnnsa s continuous for every n € n € N.

Now it makes sense to ask what is the inverse limit of the inverse sequence

Table 4.1 shows a visualization of the first elements of the sequence: From
the table, we see that each element {a1,..., as} (suppose ordered) of 2§ is
represented in the inverse limit as an element that begins at the a,-th term of
the sequence. But there is an element of the inverse sequence that is not any

of the previosly described, namely

({13 {1,2},{1,2,3},{1,2,3,4}, .. ).

is homeomorphic to the subspace 2 U {N} C 2.

For every C € 2% let us write the maximum of its elements as m(C) =
max {¢; € C}. Define the following map, h: 2N U {N} — N as

h(N) ({13 {121 {1, 2,3}, ..,
hC) = ({1} {1.2}. ..., {v2,..., m(C)—1},C,C,...), for every CEZI,}I.
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2{1} = 2{1,2} e 2{1,2,3} o 2{1,2,3,4} —
{1} {1} {1} {1}

{2} {2} {2}

1,2} =—{1,2} {1.2}

%{3} )
{1.3) (1.3}
{2,3} {2,3}
1,23} 1,2,3)

4y, {14}, —

We will show that this map is a homeomorphism between the two spaces.

1. h is well defined: It is obvious that h(N) € N. And, for every C € 2V,
h(C) € N, since
o for n < m(C)—2 proi({1..... nn+1})={1,..., n},
® pue-1.mo(C) ={1,2,...,m(C) — 1} and
e for n > m(C), ppps1(C) = C.

2. h is injective, as easily checked from the definition.
3. h is surjective: Consider (G, G, ..., ) € N. Two possibilities:

e If, for every n € N, G, #+ C,4q, then C, = {1,2,.. ., n} for every
neNand h(N)= (G, G, .. ).

o [f there exists ny € N, such that, C,, = C,,+1, let us suppose that it
is the minimum satisfying this condition and then: For every n < ng
we have that C, # C,41, 50 G, = {1,..., n}. For every n > ny,
n & C, so G, = C,. Inthis case, h(G,,) = (G, &, .. ).

4. h is continuous: Let us divide the proof in two cases.
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e Every open neighborhood U of h(N) must be U = (21"} x 2172} x .. )n
N =N and h (2] U{N}) C U.

e For every C € 2%, consider an open neighborhood W of h(C) in \V.
Then

h(C) € V = (21 x 2004 5 1 21Tl 5 2€ 5 QUmOF 2 s )N € W

The open neighborhood 2¢ of C satisfies that h(2¢) C V, since, for
every D € 2¢, h(D) € V, because m(D) < m(C).

5. h is an open map: It sends every basic open set to an open set. Namely,
h(2Y U {N}) = N and, for every C € 2V,

h(2€) = (27 5 20020 s 200m(OF 5 26 5 QMmO e ) AN
C For every D € 2%, h(D) € N by definition, and

ILI(D) c (2{1} % 2{1,2} X X 2{1 ..... m(C)} > 2C > 2{1 ..... m(C)+2} > ) ’

D Any element of this set is of the form
A= (prmcr1 (D), prmcy1 (D), - ., P 1+1(D), D, ey micys2(D), )
for some D € 2€. But, it is easy to see that

A=({1}{1.2}, ... {1,....mD)—=1},D,D,...) = h(D).

The map h, as a continuous open bijection, is @ homeomorphism. v
Now we proceed with the general case.

Proof of Theorem 21. We define first the inverse system. Consider the directed
set Z;(" in which C < C"if C € C’. As objects, we consider the finite spaces 2€,
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for every C € 2,)((”. For every pair C < (7, define the map pe ¢ : 26 — 2€ as

D {DcC
(D) =
pec(D) {C D¢ C

for every D C C’. This map is continuous, because, for every pair D C D’ such
that D, D" C ', we have:

f Dc D' C C, then h(D) =D C D' = h(D'),
if D Cbut D' ¢ C, then h(D) =D C C = h(D') and
if D, D’ ¢ C, then h(D) = C = h(D)).

Let us write X for the inverse limit of the inverse system {ZC,pC,C/, 2?@}. We
define a map

h:2MU{X} — &
as follows. For X € 2X U {X}, (h(X)). = C, for every C € 2. For every
D e 2Xu {X},
D #DccC

(Mmk:{c7u0¢c

We will show that h is a homeomorphism and, in order to do that, we need to
show several things.
1. h is a well defined map.

This is almost trivial in the case of the image of X, because it is (h(X)). =
C, forevery C € 2?(‘1, and pc.c(C) = C for every C < C'. So h(X) € X.

For every D € 2?(", we have that, for every pair C < (',

pecD) UDCC_ | o ipdc —mo),.,

(C) D¢ C
pec(C) UDE C ifD¢C

D #DccC
chMmd={

hence h(D) € X.

2. h is continuous.
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The only possible open neighborhood of h(X) is X.

For every D &€ 2?([’, let us consider an open neighborhood h(D) C W in
X. There exists an open set V' C |_|Cezé 2¢ such that h(D) € VNX Cc W
with
20 i Ccelq,. .., G,
(\/)C = c - { }
2% if not,

for some n € N and with D C Gy, .. ., C,. We claim that h(2°) Cc VN X:

For every A € 22, we have that, if C € {C, ..., G}, then AC D C C,

so (h(A)). = A € 2P, If not, (h(A)), could be A or C, but both are in 2¢.
3. h is surjective. Let A be an element of C.

If, for every C € 2;%, (A)- = C, then h(X) = A

If there exists C € 2 such that (A)- = D ¢ C, then we compute the rest

of the projections as follows.

e Forevery C' < C,

D #DcC
, ~(D) =
pecD) {C/ D¢ C

e Forevery C < C', pc.o(D)=D.
e If C and C’ are not related (C ¢ C" and C’' £ C), then we know

that there exists C” > C, C’ (because 2)F< with the subset relation is

a directed set), and then, pc (D) = D so

D uUDccC
///D:
pe.cr(D) {C/ D¢ C
and hence
D iDccC
(A)c: )
C #tD¢C,
so A= h(D).

4. his injective. Let C + D two points of 2 U {X}. If one of the two points
is X, it is clear that the images are different. If both are points of 2?@,
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then consider E > C, D and then we have C = (h(C))g # (h(D)) = D.

5. h is an open map. Let D & Zfd a point and 2” its minimal open neigh-
borhood. We claim that h(2°) = V N X, with

20 fCc=D
V). =
Vie { C if not.

C For every £ C D, we have (h(E)), = E € 2P,

D Let A be a point of the intersection VX. Then (A)p = B C D.
Because of the surjectivity we have A = h(B), with B € 2°.

Hence h is open since VN X is open Vv

4.2 Embeddings into hyperspaces

Let us recall this result in [5] about embeddings of a space into its hyperspace

with the upper semifinite topology:

Proposition 34. Let X be a Tychonov space. The map ¢ : X — 2 given by
o(x) = {x} is a topological embedding. Moreover ¢(X) (called the canonical
copy of X) is dense in 2.

Note that the hyperspaces used in this proposition have the upper semifinite
topology given by the topology of X (in contrast to our case, in which they
have the discrete topology). This is used to stablish the quoted embedding. We
would like to embed topological spaces in the hyperspaces 2 and 2?(”. It is
obvious that the same map is not useful here. In fact, we have the following

anti-embeddability result:

Proposition 35. Let X be a topological space. Then, the map ¢ : X — 2;(”,
defined by ¢(x) = {x}, is continuous if and only if X has the discrete topology.

Proof. If it is continuous then, for every x &€ X, there exists a neighborhood of
x, say U, such that ¢(U) c 2t = {x}. If y is another point of X lying in U,
then its image would be x, but this is not possible. Then, U = {x} is open in
X so it is discrete v
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We will need to find a new class of spaces and a different map. Every

subspace of 2} is a Ty Alexandroff space, so the following proposition is natural.

Proposition 36. For every Ty Alexandroff space X, there exists a topological
embedding p : X — 2. If the space X is also locally finite, then the embedding
is into 2;*. Moreover, the embedding is as an open subset if and only if X has

the discrete topology.

Proof. We define the map

pX — 2%

x — B,

It is obviously well defined. If X is locally finite, we know by Proposition 30
that the minimal neighborhoods are finite so then, actually, the image is in Zfd.

It is a continuous map, because
x <y« B, C B, & px) < ply). (4.1)

It is injective, because, for two different points x # y in X, since X is T,
there exists an open neighborhood of one not containing the other, let us say
x € U3y Then, x € By $ y so By # B, and hence p(x) #+ p(y). It remains
to show that the map restricted to its image p : X — p(X) is a homeomorphism.
But this is trivial because of relation (4.1) Vv

As we know, the hyperspaces 2 and Zfd are determined by the cardinal of

the space X. So, we can generalize this embeddings a little bit.

Proposition 37. Let X be any set. The hyperspace 2. (Zfd) is universal for
every Ty Alexandroff (locally finite) space Y with card(Y) < card(X).

Proof. Consider a bijection of Y with a subset of X, a: Y — Z C X. We define
the map

p Y — 2%
y — {a(g[):g[EBy}.
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This map is shown to be well defined, continuous, injective and a homeomorphism
if considered onto its image in the same way as in the previous proposition,

because relation (4.1) holds again v

Example 7. We really need the Ty condition. For example, the finite space
X = {1,2,3}, with open sets T = {{1}, {1, 2}, {1,2,3}}, is not Ty and the map

p: X — 2N sending x to B, is not injective.

Remark 28. What we are really doing is to consider every POSET as a family
of subsets and inclusions, which is quite natural.

Using the Alexandroff-McCord functors, we can actually embed every Ty

Alexandroff space up to weak homotopy equivalence.

Proposition 38. for every (locally finite) Ty Alexandroff space X, there is an em-
bedding ¢ : Y — ZZ(d(Zfd) where Y is a topological space weakly homotopically
equivalent to X and ¢(Y) (s open in fod(Zfd).

Proof We define Y = X(K(X)) and the map ¢ : ¥ — 2 is just the identity
map. It is obvious that, every element of Y belongs to 20¢. The continuity,
bijectivity onto the image and the continuity of the inverse are also trivial. We
just need to show that ¢(Y) is open in 20¢. Let C be a point of ¢(Y). Then
C € 2° C ¢(Y), because, for every D € 2¢ we have D € X(K(X)) vV

As a direct corollary, we obtain an embedding of the Alexandroff space

associated to every simplicial complex.

Corollary 9. Let K be a (finite) simplicial complex. Then, there exists an em-

%

V(2Y), where V is the discrete set of

bedding of X(K) as an open subset of 2
vertices. The embedded copy contains the set of singletons of vertices 27 .

4.3 The simplicial neighborhoods category

Let K be a simplicial complex with vertex set V. As we saw in corollary 9,
we can identify the simplicial complex with an open subspace U = X C 2} of
a hyperspace, such that it contains a canonical copy of the vertex set, that is,
2V ={{w},..., {va}} € U. We will say that U is a simplicial neighborhood
of the vertex set 2.
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We will review some properties and examples of simplicial complexes from

this point of view.

Definition 12. Let U C 2} be a simplicial neighborhood. We will say that U is
locally finite if, for every C € U N 2Y the closure mu is finite.

Given any simplicial neighborhood U C 2F, we will say that C € U is a
g-simplex if C € 2y,,\2/. We also say that C has dimension g. For any two
elements C, D € U satisfying C < D, we say that C is a face of D and a proper

face if C # D. Moreover, if C has dimension g, we say that C is a g-face of D.
Example 8. Some examples from the list of examples of simplicial complexes

from the book [63]

1. The empty set @ is a simplicial neighborhod.
2. For every set V, 2F is a simplicial neighborhood.

3. Let C be a point of a simplicial neighborhood. Its set of faces, C =
{D € U:D< C} is asimplicial neighborhood, because C = 2¢.

4. For C € U, the set of proper faces of C, C = {De U:D< C}is a
simplicial neighborhood. This is so, because 2°\{C} = Upsc 2P is open.

5. For every simplicial neighborhood U C 2/, its g-dimensional skeleton
U, = UN2Y,,, being an intersection of open sets, is a simplicial neigh-

q+1
borhood.

6. Let X be any set. Consider a family W = {W,} of subsets W, C X. The
nerve N'(W) of W, is the simplicial neighborhood of 2}¥ defined by

{Wae, -0, We,} ENW) = W .0 W, + 0.

It is an open set since every point {Wj,, ..., We, } € N(W) has an open
neighborhood 2t Wead < AF(W).

We can define a notion of dimension exactly in the same way it is defined
for simplicial complexes. Let U C 2. We will say that U has dimension @ if
U =@, dimension n if U C 2V, and dimension oo if U ¢ 2! for every n € N.

We will say that U is finite as simplicial neighborhood if it is finite as a set.
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Given any simplicial neighborhood U C 2}, a simplicial subneighborhood
W C U is just an open space contained in U. We will say that a simplicial
subneighborhood W C U is full if, for every C € U satisfying 2 N 2Y ¢ W,
the closures in both spaces are the same, mu - {C} .

Example 9. More examples from [63].

1. For every g € N, the g-skeleton U, is a simplicial subneighborhood of
U c2/. For p<gq, U, is a simplicial subneighborhood of U,

2. For every C in a simplicial neighborhood U C 2Y, we have that C ¢ C C
U are simplicial subneighborhoods.

3. Consider a family {U,},e; of simplicial subneighborhoods of a simplicial
neighborhood U. Then the union (.., U; and the intersection ()._, U; are

jel JIST |
simplicial subneighborhoods of U.

4. For A C X, and W = {W,} with W, C X, the nerve of A, defined as
NaW) = N(W) N 24, is a simplicial subneighborhood of N'(W).

Given a simplical map between simplicial complexes, ¢ : Ky — K5, we can
define a map between the corresponding simplicial neighborhoods ¢ : Uy — U,
as the map ¢y = X(¢). That is, the map between the simplicial neighborhoods
is defined as

This map is obviously continuous (as seen in [48]). Moreover, it is an open
map, because, for every C € U;, ¢(2°) = 2%9. So, it is evident that the
application X is a covariant functor between the category of simplicial complexes
and simplicial maps and the category of simplicial neighborhoods of hyperspaces
(with the upper semifinite topology) and continuous and open maps between
them. From now on, we will call a continuous and open map between simplicial
neighborhoods a hypersimplicial map.

We will define now an inverse of this functor. For every simplicial neigh-
borhood U C 2, we define a simplicial complex K = Y(U) as follows: The
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vertices of K are the points of UN 2} and the simplices are the points of U\2;.
In this way, every face of a simplex T C o is a simplex, since, as points in U,
if 0 € U, then 29 C U, because U is open. For every hypersimplicial map
between simplical neighborhoods ¢ : U; — U,, we define a simplicial map be-
tween the simplicial complexes Y(¢) : Y(Uy) — Y(Us) as Y(P)(v1) = v2, where
Y({v}) = {w}. Itis a simplicial map: For every C € U, we have that {C}
ts open in U if and only if C consists of only one element C = {v} (because
its minimal neighborhood 2¢ has to be only C). So, it is clear that Y(¢/) sends
vertices to vertices. Moreover, ¢/ is continuous, so C C D implies ¢)(C) C (D),
and that ensures that the induced map Y(¢) sends simplices to simplices. These

functors are mutually inverse, so we have the following.

Corollary 10. The category of simplicial neighborhoods and hypersimplicial
maps is equivalent to the category of abstract simplicial complexes and simplicial
maps.

4.3.1  Universality of 2} for shape properties

In this section we will use subsets of a given compact metric space, lying in the
hyperspace, to determine the shape properties of the space that are encoded
in some way in the hyperspace. Recall from [4] that, for every compact metric

space (X, d), we can define, for every € > 0, the subsets of X consisting of
U. = {C C X closed : diam(C) < €} c 2.

In that paper it is shown that the family {U.} is a base of open neighborhoods
of the canonical copy of X for the topology of 2. We can define these sets still
in the hyperspaces 2 (although the closed condition is unnecessary) and they
are also open, because for every € > 0 and every C € U,, we have 2¢ C U..

We can use these sets to determine the Cech homology of our original space X.

Proposition 39. Let (X, d) be a compact metric space. There exists an inverse
system of subspaces onfd such that their McCord associated inverse system is
an HPol expansion of X.
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Proof. We consider, for every € > 0, the intersection
f X
U, = U N 2;7,

which is open, To and Alexandroff. For every pair € < € we have the inclusion
map

iee UL — UL

So, we can consider the inverse system of the McCord associated polyhedra and
maps,

[IK(UD], IKic.)], R} .

As it is shown in corollary 7 of [3] (for a finite set of vertices but the same
proof extends to an infinite set of vertices), the simplicial complex K(U!) is
isomorphic to the barycentric subdivision of the Vietoris-Rips complex R.(X),
so their realizations are homeomorphic. So, this inverse system is isomorphic to
the Vietoris system (see [47] for a description), which is an HPol-expansion of
X V.

Remark 29. Note that the same construction can be done for every different
metric (generating the same topology or not) in the set X. So, in that sense, 2;(”

is universal for every shape property of every possible metric given over X.

Remark 30. Note that we have encoded all the shape information of a compact
metric space (actually all the shape information of every possible metric on the
set, that makes it compact) in terms of the category of simplicial neighborhoods

and hypersimplicial maps.
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Problems, speculations and some

scattered results

In this chapter, we present directions for future work, with some observations
and small results that have not reached yet the theorem status, but we think

that they could be a good starting point.

5.1 Inverse persistence

It is clear (see sections 1.3 and 1.5 in chapter 1) that a persistence module is
nothing but an inverse sequence of vector spaces and homomorphisms reversed,
in the sense that the sequence grows in the opposite direction. Moreover, if we
‘cut’ the inverse sequence at some step, we obtain a persistence module of finite
type and, hence, the corresponding barcode. In this way, we can obtain per-
sistence modules from HPol-expansions of spaces and this makes a connection
between shape theory and persistent homology theories

Let us consider a compact metric space X and a polyhedral approxima-
tive sequence’ AK(X) = {K,, pani1}. Although all these inverse sequences of
polyhedra are the realizations of inverse sequences of simplicial complexes and
simplicial maps between them, they are not filtrations of simplicial complexes,

even obviating the finiteness condition, since the maps involved are not the in-

TAny of the polyhedral approximative sequences of section 2.3. Hence, the letter K stands
here for any of the following: M,C, W, D, or D.

129
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clusion. But, if we consider, for any p € N, and a field F, the induced homology
inverse sequences H,(AK(X); FF), denoted H,(IC(X)) for short, they are persis-
tence modules (with maps not induced by the inclusion) of simplicial complexes,
but by means of proximity, as indicated in the quoted section.

We propose an alternative process for the construction of persistence modules
coming from a point cloud, using our polyhedral approximative sequences. The
theoretical foundation of doing so relies on the fact that, if we would have the
ideal situation of having e-approximations for every € > 0, these sequences
will give us all the information concerning the Cech homology. Now for the
details. Let X be a point cloud. We apply our main construction to obtain a
FAS {e,, An, Vn, On}nen of X Since X is finite, {&,, Ay, Vo, 0s }nen has only a
finite number of different approximations: There is an integer s such that, for
every n = s,

2e, < max{d(x,y): x,y € X},

and hence A, = A,p1 = X, U, (As) = Use,,,(Ans1) @and pppyr = id. So, we
have only a finite number s of “changes’ in the sequence, that we can be written

as
U (A1) == Ug,(A)) = . = Ue, (As) === U (A).

Now, consider any of the induced polyhedral approximative sequences of section
2.3,

P12 Ps—1
/<1%/<2<_~~-H s—1s;/<s~

Its induced p-th sinqgular homology sequence (for a field F)
Hy(Ky) <22 Hy(KD) = o= Hp(Koqs) <225 H,(KY)

is indeed a persistence module of finite type, so it has an associated barcode
Bx. There are several differences between this procedure, that we will informally

call inverse persistence, and the usual one. We list some of them here:

1. The simplicial complexes used in reqular persistence are constructed using
all the set of points of the point cloud for every level. In contrast, the
simplicial complexes constructed in the inverse persistence are based on
subsets of the point cloud. Moreover, we need to add more points to the

finite spaces, in order to make the maps between them continuous.
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2. The maps used in the finite sequence of polyhedra constructed from the
point cloud are always inclusions in reqular persistence, but they are
not in inverse persistence. Although they are not inclusions, they are
consistent is some sense because they are defined in terms of proximity
and, as we have seen, they are constructed in a way that, carried until
the infinity, captures the Cech homology (or more generally, any shape
property) of the space.

For the analysis of the inverse persistence we propose the following steps.

1. Formalize the algorithm outlined here and compare the computational cost

with the standard algorithms for persistence on point clouds.

2. Compare the obtained inverse persistence modules and compare them with
the reqular persistence modules in terms of the concept of interleaving,
introduced in [18] by Chazal et al.

3. Compare the obtained barcodes from inverse persistence with the ones
obtained by regular persistence using the bottleneck distance on barcodes

(see [20] for definition and main results concerning this distance).

It is expected that the inverse persistence modules have the same behaviour
as reqular ones in terms of stability (see [20, 18]), because of the shape theo-
retical framework where they are constructed. We hope this shape approach to
persistence to be suitable for real world applications because of its constructibil-

ity and its good properties concerning stability.

5.2 The stability problem

It is a well known problem to determine for which spaces a finite set of points
determines the homotopy type (or the homology) of the space. It could be roughly
posed as follows.

Question 2. Let X be a topological space. What conditions do we have to
impose to X in order to claim that there exists a finite set F C X and a real
number € > 0 such that |[R.(F)| = X or, at least, for every p € N and some
commutative ring R with unity, H,(|R:(F)|; R) = H,(X; R)?



132 Chapter 5. Problems, speculations and some scattered results

This problem was first proposed by Hausmann for Riemannian manifolds in

[35] where he proves the following theorem.

Theorem 23. Let M be a Riemannian manifold with r(M) > 0 (this is an
non-negative real number associated to M and related with its curvature by
means of some conditions on the geodesics). For every 0 < € < r(M), the map
T |R(M)| — M is a homotopy equivalence.

In [40], Latschev answers in the affirmative the problem posed by Hausmann
with the following stronger theorem. It makes use of the Gromov-Hausdorff
distance between metric spaces X, Y, which is?

deu(X,Y) = LQfXL{‘i,dH(X YY),

for Z every metric space containing X’, Y’ isometric copies of X, Y.

Theorem 24. Let X be a closed Riemannian manifold. There exists £y > 0 such
that for every 0 < € < gy there is a 0 > 0 such that any metric space Y with
den(X,Y) < 0 (where dgyy denotes the Gromov-Hausdorff distance for metric
spaces) then |R(Y)| is homotopically equivalent to X.

In a completely different direction, there are some results of Niyogi et al.
56, 57] giving probabilistic bounds for capturing or reconstructing the homology
of a submanifold of some R” with some probability distribution involved, and
considering noise. The geometric properties as a manifold are also extensively
used there. In particular, they introduce the condition number, a real number
asociated to M encoding some local and global curvature considerations.

We are interested in this problem in our context in order to determine what
spaces admit inverse persistence modules of finite type. In order to address this
problem, we set the following definitions

Definition 13. A polyhedral approximative sequence AIC(X) = {K,|, |pans1|} for
X is said to be weakly homotopically (shape) stable provided there is an integer
k such that, for every n > k, |KC,| is homotopically (shape) equivalent to X. If,

moreover, for every n > k, the maps |p,,;1| are homotopic (shape) equivalences,

2For some results concerning this notion, see [16], for example.
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then IC(X) is called homotopically (shape) stable. Finally, a compact metric
space X will be called (weakly) homotopically (shape) approximable if it has

(weakly) homotopically (shape) stable polyhedral approximative sequences.

The first unknown fact is to determine if the word weakly really changes the

definitions above, that is:

Question 3. If we perform the main construction to X and we obtain a poly-
hedral approximative sequence {|K,|, |pani1]} with |K,| = |Koga] (Sh(IK,]) =
Sh(|K,+1])) for some n. Does it follow that the map |poni1| @ |Knsi| = |Kal ts a
homotopy (shape) equivalence?

Remark 31. Evindently, a (weakly) homotopically stable sequence is also a
(weakly) shape stable one. Hence, a (weakly) homotopically approximable space
is (weakly) shape approximable. Moreover, for polyhedra, the words “homotopy’

and “shape’ in these definitions are interchangeable.

Remark 32. The induced inverse sequences of homology groups and homomor-
phisms of homotopically stable polyhedral approximative sequences are inverse

persistent modules of finite type.

Remark 33. For a finite metric space, every polyhedral approximative sequence

is homotopically stable.

From Latschev's previous result, we can easily derive the following proposi-
tion. As we will make use of finite approximations of our space, the following
observation about Gromov-Hausdorff distances between a metric space and a
subset will be used.

Remark 34. If A C X is a € approximation of the metric space X, then
den(A X) < dp(A X) < e.

Proposition 40. Every closed Riemannian manifold M admits an Alexandroff-
McCord polyhedral approximative sequence weakly homotopically stable.

Proof. The result is obtained by a slight modification of the main construction
for FAS's. Consider the real number gy of Theorem 24 for M. Perform the main

construction on M until we get an integer k such that ¢ < &. Then, by the
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same theorem, there exists a 0(gx) such that, for every metric space Y satisfying
deu(Y, M) < 0(&k), we have R (Y). Now, consider a n, approximation A, with
Nk = min{&, 0(ex)}. Then, since dgy(Ac, M) < 0(&k), we have

(U (A = [Re, (Al = [Rae, (Al = M.

Now compute yi, 0 and €41 as usual and repeat the previous step. We can

repeat this indefinitely to obtain the desired inverse sequence v/

We want to know whether other weaker properties can be asked to a topolog-
ical space to be homotopically approximable. We believe that shape properties
such as movability, stability or to have the same shape as a finite polyhedron
can be crucial here. The example of S' from the introduction of [3] is homotopi-
cally stable. The examples of sections 2.5 and 2.6, for the computational Warsaw
circle and the computational Hawaiian earring are examples of non weakly ho-
motopically stable polyhedral approximative sequences. The (computational)
Hawaiian earring cannot be a shape stable space, because its Cech homology
is not finitely generated. So, movable spaces are not necessarily shape approx-
imables. But, there are shape stable polyhedral approximative sequences, as

shown in the following example. So, the Warsaw circle is shape approximable.

Example 10. The computational Warsaw circle W of section 2.5 is weakly shape
approximable. Indeed, given any FAS of W, we can modify it from any step to
obtain a shape stable polyhedral approximative sequence from this point. Let us
consider that we have performed the main construction to W until step s > 1,
obtaining a “truncated” FAS {U,, , A, yn,é,,}f7=1. For the next step, consider
first an integer k large enough to satisfy

lOg(‘c:s - Vs) l09 55
k 1— 71—
> max { > , >
which ensures : 5
. Es — Vs S
?<mm{ > ,?]’ (51)

Now, consider any €41 € (2% ;—k) for example €54 = % which is a valid

value because of 5.1. Consider a grid in R? of side 217 G(k) = {(2’—1 é’—;) n,me Z}‘
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We take its intersection with the computational Warsaw circle Ac 1 = G(k)NW
as &s4q1-approximation (see figure 5.1) of W. The corresponding Alexandroff-
McCord polyhedron |K(Use,,, (As+1))] is the barycentric subdivision of the poly-
hedron depicted in the right side of figure 5.1. As it is readily seen, the homotopy

7N

N A

Figure 5.1: On the left, the intersection of the grid G/(k) with W is As;q. On the
right, the polyhedron |Ro...,(Ast1)|, where each represents a tetrahedron.

type of this polyhedron is the same as S'. So we have
Sh(|K(Uze,., (Asp1))l) = Sh(S") = Sh(W).

Independently of the values of y.,1 and d¢,4, we can apply the same construction
to obtain an ey -approximation As, of W such that [K(Use.,,(As+1))| has the
same shape as W. We can do this process indefinitely to obtain a weakly shape

stable polyhedral approximative sequence of W.

Question 4. It is evident that a necessary condition to be a weakly homotopically
(shape) approximable space is to have the homotopy (shape) type of a compact

polyhedron. Is it a sufficient condition?

In section 2.5 and in Example 5.1, we have computed two different FASs for
the computational Warsaw circle with their corresponding Alexandroff-McCord
approximative sequences. They are essentially different at the homology level.
While the first homology group of polyhedra become more different to the Cech
homology of the space in the first sequence, it has the same homology in the
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second step and further in the second one. But, even in the first case, we
observed (see comments about homology in section 2.5) that the image of the
homology group at any step by the induced map in homology by the bonding
maps gives us the Cech homology of the space. We would like to know if this
property is satisfied for any class of compact metric space. We formulate the

following tentative result:

Conjecture 1. Let X be a compact metric space with the shape of a compact
polyhedron. Then, for every FAS of X, there exist two integers n < m such that
the map induced in homology by the bounding map

(Prm)s : FA(I(Use, )(AR)) — Hi(K(Uag, )(An))

satisfies
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