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Resumen

En cumplimiento del Articulo 4 de la normativa de la Universidad Com-
plutense de Madrid que regula los estudios universitarios oficiales de postgra-
do, se presenta a continuacién un resumen en espanol de la presente tesis, que
incluye la introduccién, objetivos, principales aportaciones y conclusiones del
trabajo realizado.

0.1. Introducciéon

»gas redes inalambricas de sensores [CES04] (en inglés: “wireless sensor
networks” o WSN) son redes inalambricas constituidas por una serie de sen-
sores autéonomos distribuidos que cooperan para medir parametros fisicos.
Sus utilidades van desde la observacion ambiental a la monitorizacion médi-
ca. La WSN captura e interpreta informacion relevante, que posteriormente
es almacenada o enviarla a una estacion base. Para llevar a cabo estas tareas
cada nodo esta equipado con varios sensores, un chip de radio y un micro-
controlador. Como fuente de energia utilizan una bateria, aunque también
pueden usarse dispositivos de recuperacion de energia (como paneles solares
o generadores termoeléctricos), para asi aumentar el tiempo de vida del nodo
y minimizar su mantenimiento [PS05].

La Figura [I] muestra la arquitectura tipica de una WSN. La red se com-
pone de varios nodos (sensor nodes) que miden una serie de parametros y
envian la informacion recogida a un nodo central (mesh node). Cada nodo
puede alcanzar uno o mas nodos centrales, ya sea directamente o a través de
otros nodos de la red, siguiendo un esquema multisalto. Los nodos centrales
pueden estar conectados entre si dando lugar a una red de mas alto nivel
a la que puede accederse por medio de estaciones de control (management
station), ya sea usando una conexion inaldmbrica punto a punto con uno de
los nodos centrales o a través de Internet.

Las WSNs pueden estar equipadas con cualquier tipo de sensor, dando
lugar a multitud de aplicaciones. Se usan tanto en el &mbito comercial como
industrial, para medir pardmetros que son demasiado dificiles o caros de
monitorizar usando sensores con cables. Estas redes pueden desplegarse en

XXV
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management
station

/"

mesh node

sensor

IEEE /802.3

management
station

Figura 1: Arquitectura tipica de una WSN

areas selvaticas, donde pueden operar durante anos sin necesidad de recargar
o cambiar las baterfas de los nodos. Entre sus aplicaciones encontramos:

» Investigacion biolégica: seguimiento de especies salvajes en su habitat
natural.

» Monitorizacién ambiental: polucion (aire, agua, tierra), deteccion de
incendios forestales, prediccién de terremotos y otros desastres natu-
rales.

= Respuesta frente a accidentes: dar soporte a los equipos de emergencia
para identificar riesgos o peligros, localizar supervientes.

s Agricultura: seguimiento de cultivos, gestion de microclimas para me-
jorar la produccién de vinos, control de fertilizacion.

= Sector industrial: control y seguimiento del proceso de fabricacién, pre-
diccidon de fallos mecanicos, control de calidad.

= Sector comercial: control de stock, seguimiento de productos, control
de calidad.

s Arquitectura: espacios inteligentes, domética, deteccion de intrusos.

= Transporte: control de los sistemas internos de coches, barcos y aviones.
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= Autoridades locales: informacion sobre el trafico, analisis y coordina-
cion.

= Militar: vigilancia, identificaciéon de enemigos, seguimiento de objeti-
vos, soporte para operaciones logisticas.

= Medicina: seguimiento de personal médico y pacientes, monitorizaciéon
de senales biométricas, control de administracién de medicamentos.

Este trabajo se centra en el estudio de un subconjunto de WSNs para
aplicaciones biomédicas, llamadas redes inalambricas de sensores corporales
(en inglés: “wireless body sensor networks” o WBSNs), que tienen un enor-
me potencial para transformar la manera en la que interaccionamos con las
tecnologias de la informacion [HIBT09|, para asi obtener un mayor beneficio
de su uso. Como caso préctico, y sin pérdida de generalidad, este trabajo se
centra en el estudio del electrocardiograma (ECG). Las siguientes secciones
muestran mas en detalle las ventajas de las WBSNs y su aplicaciéon para
monitorizacién de ECG.

0.1.1. Redes Inalambricas de Sensores Corporales

El envejecimiento de la poblacién, asi como su estilo de vida cada vez
més sedentario, estan incrementando la aparicion de enfermedades cronicas
como enfermedades cardiovasculares, hipertension y diabetes. Segiin la Or-
ganizacion Mundial de la Salud, las enfermedades cardiovasculares causan el
30 % de las muertes a nivel mundial (alrededor de 17,5 millones de personas
en 2005). La diabetes afecta actualmente a 180 millones de personas en todo
el mundo, pudiendo llegar a 360 millones en 2030 segtn los expertos. De
hecho, més de 2300 millones de personas tendran sobrepeso en 2015. Ade-
maés, se esta produciendo un rapido aumento en el nimero de afectados por
enfermedades neurodegenerativas como el Parkinson o el Alzheimer [PW10].
Resumiendo, hoy en dia, las enfermedades no contagiosas son responsables
del 63 % de las muertes a nivel mundial y se prevé que el coste causado por
las mismas puede llegar al 75 % del producto interior bruto en el ano 2030.

Las crecientes necesidades de atenciéon médica estan ejerciendo una enor-
me presion sobre el sistema sanitario. Por otra parte, la escasez de personal
cualificado, asi como el endurecimiento de los presupuestos han agravado la
inminente crisis sanitaria. Estas tendencias econdmicas, sociales, demogra-
ficas ponen de relieve la necesidad de aprovechar los avances tecnolégicos
para lograr soluciones viables y eficaces que mejoren la calidad de vida de
los pacientes. Por otra parte, como se muestra en la Figura , el 50 % de los
determinantes de la salud estan relacionados con el estilo de vida. Estos cam-
bios exigen un cambio de paradigma en la prestaciéon de asistencia sanitaria,
donde las tecnologias de la informacién y los sistemas de monitorizaciéon de
pacientes son claves para la llegada de la medicina preventiva personalizada.
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Figura 2: Determinantes de la salud (fuente: Institute for the future, Center
for disease control and prevention, 2006)

Estos sistemas son capaces de recoger datos de los pacientes y mejorar la efi-
cacia de las terapias. También pueden apoyar la toma de decisiones clinicas
y proporcionar una via de comunicaciéon comoda y barata entre los pacientes
y el personal sanitario.

Las WBSNs para monitorizacién, diagndstico y detecciéon de emergen-
cias, estdn ganando popularidad y estan llamadas a cambiar profundamente
la asistencia sanitaria en los préoximos anos. El uso de estas redes permi-
te una supervision continua, contribuyendo a la prevenciéon y el diagndstico
precoz de enfermedades, al tiempo que mejora la autonomia del paciente
con respecto a otros sistemas de monitorizaciéon actuales, mas invasivos y de
mucho mayor tamano. Sin embargo, la adopcion de las WBSNs debe superar
grandes retos técnicos y sociales (forma y tamano, duracion de la bateria,
fiabilidad, seguridad, privacidad, compatibilidad, facilidad de uso, etc.). Aun-
que las WBSNs comparten algunos de estos retos con las WSNs genéricas,
han surgido muchos interrogantes que requieren de nuevas lineas de investi-
gacion. Por lo tanto este tipo de redes merece un anélisis por separado, ya
que la naturaleza de las senales, el tipo de algoritmos de procesamiento de
senal y las limitaciones inherentes de las aplicaciones sanitarias hacen a estas
redes muy diferentes del resto de WSNs.

A diferencia de las WSNs genéricas, que se componen de un gran ntmero
de nodos distribuidos que realizan la misma tarea, las WBSNs cuentan con
unos pocos nodos (a menudo menos de 10) que cubren el cuerpo de un
ser humano, cada uno de los cuales estd dedicado a una tarea especifica.
Por ejemplo, un nodo que mide aceleraciéon en el tobillo para el analisis
de la marcha no puede medir también el electroencefalograma (EEG), ya
que tanto la ubicacién como el hardware de muestreo de las senales son
totalmente diferentes.

Desde el punto de vista de la adquisicién de datos, las senales comun-
mente utilizadas en WBSNs, tales como EEG, ECG o aceleracion, tienen
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Figura 3: Arquitectura de una WBSN

componentes en frecuencias relativamente altas, lo que requiere el uso de
altas velocidades de muestreo (desde 100 Hz a 1 kHz). Esto conduce a la
generacion de una enorme cantidad de informaciéon en cada nodo en com-
paracion con las WSNs genéricas, que necesita ser almacenada, procesada o
transmitida a una estacién base o coordinador.

Para lograr una adopcién generalizada, los nodos de una WBSN deben ser
minimamente invasivos, lo que significa que deben tener un reducido tamano
que los haga cémodos de usar y por tanto no alteren la actividad normal
del paciente. Esto implica el uso de baterfas mas pequenas, que obligan a
buscar un compromiso entre consumo de energia y la fidelidad, rendimiento
y latencia de las aplicaciones. Esta tesis estudia estos compromisos con el
fin de mejorar la eficiencia energética de las WBSNs, prolongando por tanto
su vida util. Al mismo tiempo se busca explotar la limitada capacidad de
procesamiento y memoria de los nodos, para lograr WBSNs inteligentes que
sean capaces de proporcionar informacién en tiempo real sobre el estado de
salud del paciente.

En la literatura podemos encontrar una gran variedad de aplicaciones de
WBSNs, que van del estudio del sueno a la deteccion de estados de animo
o dolor. Por ejemplo, Grundlehner y otros [GBPG09| presentan una WBSN
para monitorizar en tiempo real el nivel de activacién mental, basdndose
en un analisis del ECG, la respiracién, la respuesta galvanica de la piel y
la temperatura de la piel. Estas constantes vitales son recogidas por una
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WBSN y transmitidas a un ordenador central que procesa la informacion y
proporciona una evaluaciéon en tiempo real del nivel de activacién mental.
Abbate y otros [AACT11| presentan un sistema para detecciéon de caidas
basado en datos de aceleracion con el que obtienen un 100 % de sensibilidad
y especificidad.

En esta tesis se considera como caso practico una WBSN para monitori-
zacion cardiaca, que lleva a cabo un analisis automético del ECG. Tradicio-
nalmente, este anélisis se realiza en el hospital usando voluminosos sistemas
de monitorizacién instalados en las habitaciones, que procesan el ECG en
tiempo real, o por medio de un sistema Holter, que almacena el ECG del
paciente durante un largo periodo de tiempo, tras el cual los datos son des-
cargados e interpretados en el hospital usando un software especial. Aunque
mas pequenos que los tradicionales monitores instalados en los hospitales, los
Holters siguen teniendo un tamano que los hace incomodos de utilizar. Re-
cientemente, se ha dedicado un importante esfuerzo industrial y académico
a crear sistemas de monitorizacion de ECG de pequefio tamano, portatiles
e inalambricos, que estan llamados a ser el motor de la proxima generacién
de sistemas moviles de monitorizaciéon cardiaca. Sin embargo, estos sistemas
se limitan principalmente a la transmisiéon del ECG en bruto, lo que implica
un gran consumo de energia que reduce su autonomia a muy pocos dias. El
objetivo de este trabajo es disenar un monitor Holter inalambrico de larga
duracién y reducido tamano con capacidad de diagnostico en tiempo real.

0.1.2. Monitorizacioén cardiaca

La eleccion del ECG esta principalmente motivada por el gran conoci-
miento de esta senal en la comunidad médica. Por otra parte, como ya he
mencionado anteriormente, las enfermedades cardiovasculares son la princi-
pal causa de mortalidad en el mundo, responsables del 30 % de las muertes
a nivel mundial en 2005 y de un gasto econémico de miles de millones de
dolares [PW10]. Se prevé que estas cifras vayan en aumento debido al rapido
envejecimiento de la poblacién mundial y a su estilo de vida poco saluda-
ble. Las WBSNs estan preparadas para ofrecer soluciones a gran escala y
bajo coste, para disminuir el alto gasto sanitario que, de lo contrario, puede
volverse insostenible en los préoximos anos. Esta tesis propone un sistema
automatico y multiderivaciéon de diagnostico de ECG en tiempo real. Para
maximizar la eficiencia energética de este Holter inalambrico inteligente, esta
tesis propone reducir el envio de informaciéon por radio incluyendo analisis
automatizado de la senal ECG en el nodo. Los resultados obtenidos en esta
tesis para el caso practico considerado (monitorizacion de ECG) se puede
extrapolar a otras aplicaciones que utilizan diferentes senales biométricas,
ya que todas ellas tienen requisitos muy similares.

El ECG describe la actividad eléctrica del corazon, registrada por electro-
dos colocados sobre la piel [SLO5|. Las variaciones de voltaje medidas por los
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electrodos son causadas por los potenciales de accién de las células cardiacas,
causantes de la contracciéon del corazén. La morfologia de la onda resultante
contiene informacién que puede usarse para diagnosticar enfermedades re-
flejadas por alteraciones de la actividad eléctrica del corazén. El patron de
tiempo que caracteriza la ocurrencia de latidos sucesivos es también muy
importante. El ECG es una sefial més o menos periodica, y cada latido se
compone de un complejo QRS, precedido por una onda P, y seguido por una
onda T (véase la Figura , que se corresponden con la secuencia de eventos
que definen un ciclo cardiaco.

0.1.3. Objetivos de esta tesis

El primer objetivo de esta tesis es desarrollar un sistema de monitori-
zacion de ECG, que no s6lo muestre continuamente el ECG del paciente,
sino que ademas lo analice en tiempo real y sea capaz de dar informacion
sobre el estado del corazon a través de un dispositivo moévil. Esta informacion
también puede ser enviada al personal médico en tiempo real. Si ocurre un
evento peligroso, el sistema lo detectaréa automaticamente e informaré de in-
mediato al paciente y al personal médico, posibilitando una rapida reaccién
en caso de emergencia. Para conseguir la implementaciéon de dicho sistema,
se desarrollan y optimizan distintos algoritmos de procesamiento de ECG
en tiempo real, que incluyen filtrado, deteccién de puntos caracteristicos y
clasificacién de arritmias.



XXXII RESUMEN

El segundo reto de esta tesis consiste en la mejora de la eficiencia ener-
gética de la red de sensores, cumpliendo con los requisitos fidelidad y rendi-
miento de la aplicacién. Para ello se proponen técnicas de diseno para reducir
el consumo de energia, que permitan buscar un compromiso 6ptimo entre el
tamafno de la bateria y su tiempo de vida. Si el consumo de energia puede
reducirse lo suficiente, seria posible desarrollar una red que funcione per-
manentemente. Por lo tanto, el muestreo, procesamiento, almacenamiento y
transmision inalambrica tienen que hacerse de manera que se suministren
todos los datos relevantes, pero con el menor consumo posible de energia,
minimizando asi el tamano de la bateria (que condiciona el tamano total
del nodo) y la frecuencia de recarga de la bateria (otro factor clave para su
usabilidad). Por lo tanto, para lograr una mejora en la eficiencia energética
del sistema de monitorizaciéon y anélisis de ECG propuesto en esta tesis, se
estudian varias soluciones a nivel de control de acceso al medio (MAC) y
sistema operativo (OS).

0.2. Evaluaciéon de arquitecturas

0.2.1. Arquitecturas para WBSNs: estado del arte

El presente trabajo considera la arquitectura tipica de una WBSN don-
de un microcontrolador ejecuta una aplicaciéon software de procesamiento de
datos, y los demas servicios se delegan en un OS. La Figura [5] ofrece una
vision estructural de este tipo de nodos. Asumimos que un nodo transmite
sus datos a una estaciéon base siguiendo la topologia de estrella normalmente
usada en WBSNs. Cada nodo de la red genera una cantidad de trafico cons-
tante, evitando asi rafagas de datos que pueden interferir con la transmisiéon
periddica de los otros nodos de la red.

El sensor es el bloque hardware que muestrea la sefial a una frecuencia
que depende de las componentes en frecuencia de la sefial y de otras limita-
ciones como el teorema de Nyquist-Shannon. A continuacién, un conversor
A/D digitaliza las muestras utilizando un namero de bits que depende de su
resolucion.

Las aplicaciones (applications) comprenden todos los programas software
utilizados para procesar los datos detectados, incluyendo filtrado, extraccién
de caracteristicas, compresiéon y agregacion.

El sistema operativo (operating system, OS) ofrece servicios tales como
la interaccién con el hardware o el software que gestiona el muestreo de la
senial, la memoria y la transmisiéon por radio. E1 OS también gestiona un
conjunto de colas, incluyendo las de la comunicacién entre procesos y otra
que contiene los paquetes listos para ser transmitidos. Ademés, el sistema
operativo implementa un protocolo MAC para controlar el acceso al medio
inalambrico compartido entre los nodos de la red.
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Figura 5: Diagrama de bloques de la arquitectura de referencia

El microcontrolador (microcontroller, nC) es el bloque que se encarga
de ejecutar el OS y las aplicaciones software. Dependiendo del hardware,
técnicas tales como escalamiento dinamico de voltaje [GC97| podrian estar
disponibles para permitir que el microcontrolador permanezca activo durante
un tiempo limitado (ciclo de trabajo) y para cambiar a un estado de bajo
consumo cuando no hay tareas en espera de ser ejecutadas.

El banco de memoria (memory) almacena los datos de las aplicaciones
y del sistema operativo. Aunque una memoria més grande exhibe un mayor
consumo de energia [KOKEQG], un tamano demasiado limitado puede afec-
tar a la capacidad de las colas internas, y por tanto al rendimiento de las
aplicaciones y de la transmision.

Por altimo, la radio es la encargada de modular y transmitir los datos
a través del canal inalambrico. Dependiendo de las caracteristicas de la pla-
taforma, pueden configurarse la potencia de transmisiéon inalambrica y el
esquema de modulacion, incluso dindmicamente [SRS03|, para determinar
la cobertura de la comunicacion con una tasa de paquetes erroneos (PER)
predeterminada.

Con la proliferacion de las aplicaciones para WBSN, muchas plataformas
con una arquitectura que se corresponde con la representada en la Figu-
ra [5] han aparecido durante los ultimos anos. La primera decision critica que
debemos tomar cuando nos enfrentamos al desarrollo de una WBSN es la se-
leccion de la plataforma mas apropiada, teniendo en cuenta los requisitos de
la aplicacion. En este trabajo, las diferentes plataformas disponibles se van
a analizar desde el punto de vista de su flexibilidad y su eficiencia. En este
sentido, podemos clasificarlas en dos grupos principales: application-specific
integrated circuits (ASICs) y plataformas commercial off-the-shelf (COTS).
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El uso de ASICs es siempre més eficaz en cuanto a consumo de energia y
tamafo, ya que estan especialmente disenados para una aplicacién muy espe-
cifica. Sin embargo, el disefio de estos dispositivos requiere un gran esfuerzo
mientras que ofrecen una flexibilidad muy limitada. A pesar de que las pla-
taformas ASIC logran una gran eficiencia energética, su uso es muy limitado
debido a su naturaleza “rigida”’, no reprogramable, por lo que solo pueden
realizar una secuencia predefinida de operaciones. Los COTS son en gene-
ral menos eficientes energéticamente y tienen un tamano maéas grande, pero
por otro lado proporcionan una mayor flexibilidad, permitiendo la ejecucién
de tareas mas heterogéneas, debido a que normalmente usan procesadores
de proposito general (GPPs). A menudo, los COTS son una buena soluciéon
ya que pueden ofrecer un tamafo, rendimiento y tiempo de vida razonables
para aplicaciones WBSN, si bien tienen un coste de producciéon muy bajo.

Una eleccién equilibrada entre flexibilidad y eficiencia energética para el
procesamiento de senales biométricas en tiempo real consiste en el uso de un
application-specific instruction-set processor (ASIP). Los ASIPs ofrecen flexi-
bilidad para un grupo de aplicaciones especifico, mientras que consiguen una
mayor eficiencia energética en comparaciéon con los microcontroladores de
proposito general de bajo consumo, ya que tienen un conjunto de instruccio-
nes reducido y personalizado para el grupo de aplicaciones correspondiente.

0.2.2. La plataforma Shimmer™

Teniendo en cuenta las ventajas e inconvenientes de cada tipo de arqui-
tectura disponible para WBSNs, decidi utilizar el el nodo Shimmer™ como
caso practico de arquitectura. La eleccién de esta plataforma vino motivada
principalmente por las siguientes razones:

s Gran flexibilidad, debido al uso del microcontrolador de propdsito ge-
neral MSP430. Este trabajo no sélo se centra en el procesamiento de
senales biométricas, sino que también analiza y propone las optimiza-
ciones a otros niveles de la arquitectura (OS, protocolo MAC, etc.).
Por esta razon, las implementaciones de ASIC y de ASIP se han des-
cartado, buscando tener un conjunto de instrucciones lo mas flexible
posible.

= Los recursos computacionales y de memoria de esta plataforma, asi
como su fuente de energia, ofrecen un ejemplo representativo de los
recursos tipicos de un nodo de una WBSN para las aplicaciones consi-
deradas en este trabajo. Ademaés, el uso de componentes COTS reduce
el coste de la plataforma en comparaciéon con ASICs o ASIPs.

= Soporte. Aunque el MSP430 no ofrece un consumo tan reducido como
otras arquitecturas, el uso de este microcontrolador esta muy extendi-
do, siendo utilizado en dominios de aplicacién muy heterogéneos. Por
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lo tanto, hay un gran apoyo para esta plataforma en lo que se refiere
a herramientas disponibles o cddigo portado (OSs, protocolos MAC,
aplicaciones, etc.).

= Gran numero de campos de aplicacién, ya que hay multitud de acceso-
rios para el Shimmer™ por lo que se puede utilizar no solo para ECG,
sino también para otras aplicaciones biomédicas (EEG, electromiogra-
ma, respuesta galvanica de la piel, etc.) y no biomédicas (temperatura,
humedad, luminosidad, etc.).

= Es un buen representante de una plataforma WBSN, por lo tanto todos
los resultados obtenidos en esta tesis usando el nodo Shimmer™, son
igualmente aplicables a otras plataformas WBSN.

0.2.3. Arquitectura de la plataforma Shimmer™

El nodo utilizado en este trabajo es el Shimmer™ [BGM™10], una pe-
quena plataforma inaldmbrica disenada por Intel para aplicaciones médicas.
Esta plataforma tiene el objetivo a largo plazo de facilitar la investigacion
en tecnologias para una vida independiente, ya que puede montarse en el
brazalete de un reproductor MP3 y tiene una carcasa muy robusta con un
tamano de 54 x 35 x 18 mm. El nodo Shimmer™ esta equipado con el mi-
crocontrolador de 16 bits y ultra bajo consumo TT MSP430F1611 [Insc|, que
opera a una frecuencia maxima de 8 MHz, incluye 10 kB de RAM, 48 kB
de memoria Flash y otros periféricos como un convesor A/D de 8 canales
y resolucion de 12 bits, una unidad de acceso directo a memoria (DMA) y
un multiplicador hardware. Este nodo tambien esta equipado con dos chips
de radio (uno Bluetooth y otro compatible con IEEE 802.15.4), un acelerd-
metro de 3 ejes y un puerto de expansiéon utilizado para conectar una placa
equipada con sensores adicionales (ECG, giroscopios, etc.). En este trabajo
usamos una placa que es capaz de muestrear y acondicionar 3 derivaciones
de ECG. También incorpora una ranura MicroSD™ que permite almacenar
hasta 2 GB, cuatro diodos emisores de luz (LED) para fines de visualizacion
y una baterfa integrada de Li-ion de 280 mAh.

Esta plataforma ha sido disenada para programarse con el sistema opera-
tivo TinyOS |[LMP'04] y sus controladores especificos. Desafortunadamente
TinyOS muestra varios inconvenientes, que seran discutidos en la Seccién 0.3
que lo hacen inadecuado para las aplicaciones consideradas en este trabajo.
Debido a estas limitaciones, se ha portado FreeRTOS |bibal, que es una sis-
tema operativo ligero, portable y de cédigo abierto, que da soporte para
operaciones en tiempo real. Por dltimo, hemos utilizado la herramienta de
codigo abierto GCC 3.2.3 para el MSP430 [bibb] y Code Composer Essentials
(CCE) v.3.1 [Insb], que utilizan todos los recursos hardware del microcon-
trolador utilizado, para compilar las aplicaciones para el nodo.
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Figura 6: Esquema simplificado de las interconexiones del Shimmer™.

0.2.3.1. Estimacién del consumo de energia

Para justificar ain més la eleccion de la plataforma Shimmer™ y motivar
las técnicas de eficiencia energética propuestas en esta tesis, se presentan
los resultados de consumo de energia de un nodo WBSN en dos escenarios
de aplicacion: ECG streaming (un nodo situado en el cuerpo muestrea 2
derivaciones de ECG y transmite los datos a una estaciéon base) y Rpeak
(aplicacion que detecta cuando un latido se produce y sélo transmite la
ubicacion de los picos R al coordinador de la WBSN).

Estos resultados [RPRT08| se obtuvieron utilizando una plataforma de-
sarrollada en IMEC Netherlands [PGdVTO07]|, cuya arquitectura hardware es
muy similar a la del Shimmer™. Esta plataforma es capaz de muestrear hasta
24 canales de EEG y 1 canal de ECG usando un ASIC de ultra-bajo con-
sumo (10,5 mW a 3,0 V). El microcontrolador usado es el TI MSP430F149,
mientras que la responsabilidad de la comunicacién inalambrica recae en la
Nordic nRF2401, un radio de bajo consumo de 2,4 GHz (10,5 mA con una
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Figura 7: Foto de la placa base del Shimmer™

potencia de salida de -5 dBm y 18 mA en modo de recepcion).

En cuanto al software, el nodo cuenta con un OS integrado, TinyOS,
encima del cual se construye la arquitectura software completa, incluyendo
el protocolo MAC. Este estudio propone el uso de un protocolo time division
multiple access (TDMA), que permite a varios usuarios compartir el mismo
canal de frecuencia dividiendo el tiempo en diferentes franjas. Cada nodo
tiene una franja asignada, que puede utilizar para intercambiar datos con el
coordinador de la WBSN. El protocolo esta regulado por el coordinador, que
periddicamente emite senales de sincronizacion (beacons) a todos los nodos.

La Figura [8| presenta el consumo de energia de los principales bloques
hardware de la arquitectura para los dos escenarios considerados (ECG strea-
ming y Rpeak) asumiendo una frecuencia de muestreo de 200 Hz. Esta figura
muestra que el bloque dedicado a muestrear la senal tiene un consumo de
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energia muy elevado, lo que se puede disminuir con el uso de la Shimmer™,
ya que el consumo de energia se reduce a 6,6 mW. La radio es también un
componente con gran consumo de energia, especialmente en el escenario de
ECG streaming, pero su consumo se puede reducir mediante el uso de un
protocolo MAC maés optimizado y un sistema operativo més eficiente. Ade-
mas, la Figura [§] también demuestra que el consumo de energia de la radio
puede reducirse significativamente si el microcontrolador del nodo se utiliza
para procesar la senal ECG y asi disminuir la cantidad de datos que debe
ser transmitida al coordinador de la WBSN.

Por estas razones, esta tesis propone varias técnicas de diseno para WBSNs
inteligentes y energéticamente eficientes, que seran detalladas en las seccio-
nes siguientes. El objetivo final es disefiar un Holter inaldmbrico inteligente
de larga duracién con capacidad de diagnostico en tiempo real.

0.3. Optimizaciones de la WBSN relativas a la co-
municacién

Un nodo sensor esta equipado con una radio, que permite al dispositivo
enviar la informacion previamente recogida y procesada al coordinador de la
WBSN o recibir 6rdenes de él. El protocolo de control de acceso al medio
(MAC), que gestiona el acceso al canal inalambrico, tiene que enfrentarse a
varios problemas de comunicacion. Los més importantes son los siguientes:

= Colisiones. Se producen cuando dos o més dispositivos acceden al canal
inalambrico para enviar informacién al mismo tiempo. Esto provoca la
corrupcion de los paquetes que se envian, que tienen que ser transmi-
tidos de nuevo.

= Overhearing. Se produce cuando un nodo A envia datos a un nodo B,
y hay un nodo C que recibe este paquete.

s Idle listening. Este problema se da cuando un nodo A no sabe cuando
otro nodo B le va a enviar un paquete. Esto causa que el nodo A
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necesite mantener la radio en modo de recepcién por un periodo de
tiempo durante el cual no esta recibiendo ninguna informacion.

Todos estos problemas aumentan significativamente el consumo de ener-
gia, ya sea por retransmision de paquetes, recepciéon de datos que no son para
el nodo o escuchar el canal cuando no se esta enviando ninguna informacién
al nodo. Un protocolo MAC para WBSNs tiene que considerar todos estos
problemas y tratar de minimizar su ocurrencia para reducir el consumo de
energia del nodo tanto como sea posible. Ademaés, el protocolo MAC implica
la transmision de paquetes de control (mensajes de sincronizacion, acuses
de recibo para indicar que un paquete ha sido recibido correctamente, etc.),
cuya transmisién también debe reducirse a fin de minimizar el consumo de
energia de la radio.

0.3.1. Protocolo MAC propuesto

Beacon Beacon
— "—— Contention Access Period (CAP) | Contention-Free Period (CFP) | a‘ —
[ [ |
GTS GTS GTS INACTIVE
o1 |2 |3 [4]5 |6 |7 |89 101 [12|13]14]15

| Superframe Duration (SD) = 15.36 ms ~SFO |

\ Beacon Interval (Bl) = 15.36 ms »2BCO

Figura 9: Estructura del superframe IEEE 802.15.4

Con el fin de aprovechar al maximo las capacidades de bajo consumo de
este chip de radio, y por lo tanto reducir el consumo de energfa del siste-
ma en su conjunto, este trabajo propone un protocolo MAC especialmente
optimizado para adaptarse a los requisitos de las aplicaciones para WBSN
aqui consideradas. El nodo Shimmer™ implementa una sencilla pila TCP /IP
para la radio CC2420, en lugar del estandar IEEE 802.15.4 [Std03]. Para op-
timizar el consumo energético del nodo, decidimos implementar una versién
reducida del modo beacon-enabled del protocolo IEEE 802.15.4 usando slots
de tiempo garantizados (en inglés: “guaranteed time slots” o GTS) [Std03|
y una topologia de estrella (cada nodo sensor s6lo puede enviar datos a un
dispositivo que actiia como coordinador de la WBSN).

En este modo, el coordinador envia beacons de manera periddica, que
son utilizados por el resto de los nodos para sincronizar sus transmisiones
con sus correspondientes GTS. Estos beacons se envian cada beacon interval
(BI) = 15,36 - 25%ms, donde BO es beacon order, 0 < BO < 14. Tras la
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recepcion del beacon, comienza un un periodo activo llamado superframe,
cuya estructura se muestra en la Figura @ La duracion del superframe (SD)
es igual a 15,36 - 25Pms, donde SO es el superframe order, que tiene que ser
menor o igual a BO. En este caso, el valor del SO se ha establecido en 4, lo que
implica una SD de 245,76 ms dividida en 16 intervalos de tiempo iguales.
Con el fin de permitir que varios nodos sensores formen parte de la red,
se han asignado dos intervalos de tiempo por GTS, o lo que es lo mismo,
30,2 ms por GTS. Usando esta configuracion, hasta 8 nodos pueden estar
simultaneamente dentro de la WBSN. Observemos que, si bien el superframe
se divide en un periodo de contencion de acceso (CAP) y un periodo libre de
contencion (CEP), el protocolo propuesto solo se utiliza este ultimo periodo,
ya que se busca una operacién libre de colisiones.

El tamano de los paquetes utilizados en este protocolo es de 127 bytes
(11 para la cabecera, 114 de datos y 2 para la suma de verificacion). Por lo
tanto, cada nodo puede enviar un maximo de cuatro paquetes durante su
GTS, porque se necesitan 7,36 ms para llenar el buffer de transmision de la
radio CC2420 y enviar el paquete a través del aire, como se mostraré en la
Seccion [0.3.3.11

El protocolo propuesto utiliza un enfoque TDMA, que ha demostrado
ser ventajoso en WBSNs con topologia de estrella, ya que su naturaleza
centralizada elimina la aparicién de colisiones y overhearing. Por otra parte,
este protocolo usa muy pocos paquetes de control (s6lo se envian los beacons
para sincronizar a los nodos con sus GTS y los ACKs que el coordinador
envia a los nodos para confirmar la recepcion de los paquetes transmitidos).
Ademas, el idle listening se reduce drasticamente, ya que los nodos saben
con mucha precisiéon cuando tienen que estar en modo de recepcién para
escuchar los beacons y ACKs enviados por el coordinador.

Este protocolo requiere una sincronizacién muy precisa para mantener
la coordinacién de la red y minimizar los periodos de idle listening, ya que
solo una buena sincronizacién permitira a los nodos ajustar con precisiéon los
instantes de tiempo en los que tienen que encender su radio para esperar la
recepcion del beacon. Ademas, cada nodo de una WBSN puede muestrear
una o mas constantes vitales (monitorizacion multiparamétrica), sobre las
que se aplican un conjunto de algoritmos con el fin de acondicionar la senial
o extraer informacion significativa, que posteriormente se pueden combinar
para realizar un anélisis global que tenga en cuenta todas las senales. Es-
tos algoritmos también pueden cambiar de forma dinédmica, en funcién del
rendimiento deseado en cada momento. El uso de un OS ayuda a lograr una
gestion eficiente de los recursos hardware del nodo. Por otra parte, el OS debe
proporcionar una planificacion eficaz de las distintas tareas ejecutadas en el
microcontrolador, tales como algoritmos de procesamiento de senal, control
del protocolo MAC o gestion del muestreo de la senal, asi como ofrecer co-
municacioén entre procesos. Finalmente, el uso de un OS permite desacoplar
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los recursos hardware y software del nodo, proporcionando una mayor flexi-
bilidad, puesto que el programador no tiene que preocuparse del hardware
sobre el que van a ejecutarse sus aplicaciones. Por esta razén, introducimos
el uso de un OS.

0.3.2. Sistema operativo

Un OS para WBSNs debe dar soporte para operaciones en tiempo real,
que le permitan hacer frente a las altas frecuencias de muestreo requeridas
por algunas seniales biométricas y a la estricta sincronizaciéon impuesta por
el protocolo MAC propuesto anteriormente. El OS debe también ser multi-
tarea, ya que un nodo ejecuta diferentes tareas software simultaneamente.
Estas tareas comprenden el muestreo de la senal, la gestién del protocolo
MAC y la ejecuciéon de los algoritmos que se aplican sobre las distintas se-
nales adquiridas. Por ultimo, la sobrecarga del OS en cuanto a computacion
y uso de memoria debe ser lo mas pequena posible, pues los recursos de
procesamiento y almacenamiento de los nodos WBSN son muy limitados.

Tras descartar el uso de un OS orientado a WSNs como TinyOS |[LMP™04]
o Contiki [DGV04], principalmente porque no ofrecen soporte para opera-
ciones en tiempo real como requieren las aplicaciones consideredas en este
trabajo, se decidi6 utilizar FreeRTOS |bibal, que aunque no esta especifica-
mente disenado para usarse en WSNs, cumple todos los requisitos para ser
utilizado en dispositivos de una WBSN.

FreeRTOS |bibal es un sistema operativo para sistemas empotrados lige-
ro, portable y de codigo abierto, que da soporte para operaciones en tiempo
real. Sus principales ventajas son:

= Tiene un completo planificador de tareas, con asignaciéon de priorida-

des.
» Incluye varios modelos de memoria.

» Implementa colas, semaforos, monitores, mutexes para la comunicaciéon
y sincronizacion entre tareas o entre tareas e interrupciones.

= Soporta temporizadores software eficientes.
= Potente funcionalidad de trazado de la ejecucion.
= Opciones de deteccion de desbordamiento de la pila.

= Herramientas de desarrollo gratuitas para muchas de las arquitecturas
soportadas.

FreeRTOS esté diseniado para ser pequeiio y simple. El niicleo se compone
de s6lo tres o cuatro archivos en C. Por otra parte, todas las caracteristicas
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anteriormente enumeradas pueden seleccionarse por separado para ser in-
cluidas o no, lo que permite crear una version totalmente personalizada del
OS que so6lo incluye las funcionalidades necesarias, redudiendo por tanto el
tamano del programa. Esta posibilidad permite la creacién de aplicaciones
multitarea y en tiempo real muy ligeras. Por estas razones, se ha portado
FreeRTOS al Shimmer™ y se han implementado las siguientes tareas:

» Alta prioridad: gestion del protocolo MAC.
= Prioridad media: captura, digitalizaciéon y almacenamiento de la senal.

» Baja prioridad: algoritmo de procesamiento de senal, incluyendo tam-
bién el empaquetado de los datos que deben ser enviados por radio.

Cuando ninguna de estas tareas se esta ejecutando, el planificador pone
al microcontrolador en modo de bajo consumo. Esto permite una gestiéon
eficiente de los recursos de la plataforma en cuanto a rendimiento y consumo
de energia, al mismo tiempo que se tiene una reducida sobrecarga asociada
con el OS.

FreeRTOS esta portado a varios microcontroladores. En particular, exis-
te soporte para el microcontrolador TI MSP430 y para la radio CC2420,
compatible con el estandar IEEE 802.15.4, incluida en el Shimmer™.

0.3.3. Caracterizacion del consumo de energia del Shimmer™

En esta seccién se presenta una caracterizacion de la temporizacion y el
consumo de energia de todos los componentes del Shimmer™
rentes modos de trabajo. Con esta informacién, que no estd completamente
disponible en los datasheets de los componentes, es posible hacer una esti-
macion muy precisa del consumo de energia del Shimmer™ (y por tanto de
su vida 1til) bajo determinadas circunstancias de trabajo.

en sus dife-

0.3.3.1. Marco de trabajo para los experimentos

Este trabajo se basa en la plataforma Shimmer™, aunque todos los re-

sultados obtenidos para esta plataforma se pueden extrapolar a cualquier
otra plataforma para WBSNs. En adelante, asumimos el uso de FreeRTOS y
el protocolo MAC propuesto en la Seccion [0.3.1] Para medir el consumo de
energia, se coloca una resistencia de 10,3 €2 en la alimentacion del nodo. La
tension se mide con un osciloscopio, y se calculan la corriente correspondien-
te y el consumo de energia. Utilizando esta configuracion, se puede medir el
consumo de energia de cada componente del nodo por separado habilitando
el componente cuyo consumo queremos medir y deshabilitando el resto de los
componentes de la plataforma. De esta forma se obtiene un perfil muy deta-
llado del consumo de energia de cada bloque en todos sus modos de trabajo.
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Ademas, este perfil proporciona informacion de, por ejemplo, cuanto tiempo
se requiere para transferir un paquete del microcontrolador a la radio, cuanto
tiempo se tarda en enviar un paquete por radio, el tiempo requerido para
pasar de un modo de trabajo a otro, etc.

Para todos los experimentos se han utilizado dos nodos: uno de ellos se
encarga de muestrear el ECG, procesarlo y enviar los resultados a otro, que
acttia como coordinador. Dado que usamos un esquema GTS, los resultados
obtenidos con esta configuracién puede extrapolarse a una red con mas nodos,
pues las comunicaciones de los demas nodos no interfieren entre si.

La Figura [I0] muestra la traza de consumo de energia de un nodo que
ejecuta una simple aplicacion de streaming, en el que la senal ECG completa
se envia al coordinador de la WBSN sin realizar ningtin procesamiento de la
misma. En cuanto a la radio, se pueden distinguir tres fases principales en la
Figura : recepcion del beacon, modo de bajo consumo (LP) y transmision.
Durante la recepciéon del beacon, la radio pasa al modo de recepcién antes de
la llegada del beacon, y entonces lo recibe. De esta forma, en la Figura [10] se
pueden apreciar dos partes claramente diferenciadas en la fase de recepciéon
del beacon: (1) la primera parte tiene una duracion de 1,39 ms y un consumo
de 72,39 mW, y corresponde a tener la radio en modo de recepcién esperando
el beacon mientras que el microcontrolador esta inactivo; (2) la segunda par-
te tiene una duraciéon de 0,97 ms y un consumo de 82,59 mW, y corresponde
a tener la radio en modo de recepcién que transfiere al microcontrolador el
beacon recibido, el microcontrolador estd por tanto activo para analizar el
beacon recibido. Después de la recepcién del beacon, la radio nodo entra en
un modo LP hasta el comienzo de su GTS. Finalmente, durante su GTS,
el nodo transmite la sefial ECG al coordinador. La Figura muestra la
transmision de dos paquetes de datos. Durante el envio de un paquete se
distinguen dos zonas: (1) la primera se corresponde con el periodo durante
el cual el microcontrolador envia el paquete al chip de radio CC2420 (que
se encuentra en modo inactivo), consumiendo 16,8 mW durante 2,85 ms; (2)
la segunda zona representa el periodo durante el cual la radio transmite el
paquete por el aire mientras que el microcontrolador cambia de nuevo modo
inactivo, disipando 51,92 mW durante 4,51 ms. Después de transmitir el pa-
quete, se aprecia como la radio pasa automaticamente a modo de recepcién,
para esperar un ACK del coordinador que indica que el paquete se ha reci-
bido correctamente. La recepcion del ACK dura 0,75 ms y tiene un consumo
asociado de 72,39 mW. Durante todo el proceso, el microcontrolador esta
continuamente actualizando el contador de ticks del sistema (cada 0,32 ms)
y la tarea de muestreo lee una muestra del ADC cada 4 ms. El muestreo se
aprecia claramente durante la fase de bajo consumo de la radio. La Tabla
resume los consumos del microcontrolador y la radio para los diferentes mo-
dos de trabajo de nuestra plataforma, mientras que la Tabla [2| muestra la
temporizacion de las fases de la radio anteriormente mencionadas.
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Figura 10: Potencia disipada por el Shimmer™ durante el muestreo, proce-
samiento y transmision

Tabla 1: Caracterizacion del consumo del Shimmer™ (en mWW)

CPU | Radio | Total
Radio en modo de recepcion (pC inactivo) 6,60 | 65,79 | 72,39
Radio en modo de recepcion (uC activo) 16,80 | 65,79 | 82,59
Transmision del paquete (del 4C a la radio) | 16,80 | 0,00 16,80
Transmision del paquete (por el aire) 6,60 | 45,32 | 51,92
Muestreo (uC y radio inactivos) 6,60 | 0,00 6,60
Muestreo (uC activo and radio inactiva) 16,80 | 0,00 16,80

Tabla 2: Temporizacion del Shimmer™ (en ms)

Recepcion del beacon (radio en recepcion y pC inactivo) | 1,39
Recepcion del beacon (radio en recepcion y pC activo) 0,97
Transmision del paquete (del pC a la radio) 2,85
Transmision del paquete (por el aire) 4,51
Recepcion del ACK 0,75

0.3.3.2. Caso base: ECG streaming

Aunque una plataforma WBSN esta equipada con un microcontrolador
que le dota capacidad de procesamiento, en la mayoria de los casos este
microcontrolador simplemente acttia como unidad de control para gestionar
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todos los recursos hardware del nodo. En lugar de procesar los datos obteni-
dos por los sensores, la sefial completa se envia al coordinador de la WBSN.
Una de las principales aportaciones de este trabajo consiste en realizar diag-
nostico a bordo del nodo para poder detectar posibles arritmias en tiempo
real (tradicionalmente este procesamiento se ha realizado a posteriori). De
este modo, la préxima secciébn propone varias técnicas que explotan el mi-
crocontrolador para reducir la cantidad de informaciéon que debe ser enviada
y por tanto el consumo de energia de la radio, lo que implica una mayor
vida 1til del nodo sensor. Esta secciéon presenta un caso base en el que se
realiza la transmision de la senal ECG completa, que servirad como referencia
para evaluar las posibles mejoras o penalizaciones en consumo de energia
resultantes al aplicar distintas técnicas de procesamiento a bordo del nodo
que se proponen en la seccién siguiente.

Teniendo en cuenta la caracterizaciéon del consumo que se acaba de pre-
sentar, la Tabla |3| muestra el consumo de energia del Shimmer™ ejecutando
una aplicaciéon que simplemente envia la sefial ECG en bruto al coordina-
dor de la WBSN sin realizar ningin tipo de procesamiento previo. En este
caso, si se quiere extraer informaciéon relevante a partir del ECG, el coor-
dinador deberia usar un software adicional para procesar la senial, como es
el caso en los dispositivos Holter. La primera fila indica el ciclo de trabajo
del microcontrolador. Dado que la aplicacién no lleva a cabo ningin tipo de
procesamiento, el ciclo de trabajo en este caso es 0. La segunda fila indica
el intervalo de tiempo entre la generaciéon de dos paquetes de datos consecu-
tivos. Teniendo en cuenta que el cuerpo de un paquete es de 114 bytes, que
una muestra se representa con 1,5 bytes y que la frecuencia de muestreo es
de 250 Hz, la aplicacién de streaming genera un paquete cada 304 ms. La
tercera fila muestra el beacon interval, que se ajusta de acuerdo al intervalo
de tiempo entre paquetes consecutivos. Teniendo en cuenta que la longitud
de la cola de FreeRTOS dedicada a almacenar los paquetes listos para ser
transmitidos esta limitada a un méximo de 4 paquetes, BCO debe ser menor
o igual a 6. Se elige el valor mas alto, para reducir tanto como sea posible el
consumo de energia en la radio, por lo tanto, el beacon interval es 983ms. La
cuarta fila informa del consumo total de energia por segundo, que es 7,70mJ
en este caso. Finalmente, la tltima fila se calcula directamente a partir de
la cuarta, asumiendo que la fuente de energia del Shimmer™ es una bateria
de Li-ion de 280 mAh a 3,7 V, y muestra la vida util del sistema, que es
134,6 horas.

La Figura muestra el porcentaje del consumo total de energia del
Shimmer™ debido a muestreo y comunicacién por radio para una aplica-
cién que hace streaming del ECG. El consumo del microcontrolador no se
considera en la figura, ya que esta aplicacidén no requiere ningtn tipo de tra-
tamiento. El consumo de energia debido al muestreo del ECG es constante,
y no puede reducirse a menos que reemplacemos el ADC por otro de menor
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Tabla 3: Vida 1til del Shimmer™ haciendo streaming del ECG

Ciclo de trabajo (%) 0
Paquete listo cada... (ms) | 304
Beacon interval (ms) 983
Consumo de energia (m.J) | 7,70
Vida atil (h) 134,6

M Radio

M Muestreo

Figura 11: Consumo de energia del Shimmer™ debido a muestreo y comu-
nicaciéon por radio haciendo streaming del ECG

consumo. Por lo tanto, la tnica parte del consumo de energia que se puede
reducir es la de la comunicacién por radio. Para lograr esto, la siguiente sec-
cion propone varios algoritmos que extraen solo la informacion relevante de la
senal ECG para asi reducir significativamente la cantidad de datos que debe
ser transmitida, y por tanto reducir el consumo de energia de la radio. Si la
sobrecarga computacional de estos algoritmos es lo suficientemente baja, la
vida 1til de la plataforma no se vera afectada (o incluso puede aumentarse),
mientras que el sistema seré capaz de realizar procesamiento inteligente del
ECG y ofrecer un diagnostico en tiempo real.

0.4. Optimizaciones a nivel de aplicacién

En la Seccion [0.2] hemos visto que las plataformas WBSN estan equipa-
das con microcontroladores, que las dotan de capacidad de procesamiento y
memoria. Estos microcontroladores pueden explotarse para ejecutar algorit-
mos de procesamiento de la sefial ECG en tiempo real, tales como filtrado,
compresion, extraccion de puntos caracteristicos, deteccion de arritmias, etc.
Estos algoritmos pueden reducir significativamente la cantidad de informa-
cibn que debe transmitirse y por lo tanto reducir el consumo de energia
derivado de la transmision de datos. Ademés de la posible reduccion del
consumo total de energia del nodo, la ejecucién de aplicaciones a bordo del
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nodo puede ser de gran ayuda para los pacientes y el personal sanitario, pues
proporcionan informacién y diagnostico en tiempo real del estado de salud
del paciente. Por lo tanto, es necesario optimizar estos algoritmos para su
ejecucion en tiempo real en una plataforma WBSN, con el fin de reducir la
complejidad computacional y la memoria requeridas por los mismos y por lo
tanto minimizar el impacto del microcontrolador en el consumo de energia
total del nodo.

SHIMMER node

°) o IN0|§e N .ECG. _>Ar[’hythn".na
- : filtering delineation diagnosis

L ((I)) J
=

No SIM = 11:22 AM

Slow conduction between atria and

ventricles.

Figura 12: Arquitectura software del sistema de monitorizacién de ECG pro-
puesto

La Figura[I2) muestra la arquitectura software del monitor inalambrico de
ECG propuesto en este trabajo. En primer lugar, la senal ECG se muestrea
y acondiciona para reducir el ruido y los artefactos (ECG filtering). Enton-
ces, se detectan los puntos que marcan el principio, pico y final de las ondas
caracteristicas del ECG (ECG delineation). Finalmente, esta informacion se
utiliza para realizar un diagnostico de arritmias. Los resultados obtenidos
después de las fases de delineacion y diagnostico de la arritmias (y, opcio-
nalmente, la sefial ECG completa) se transmiten de forma inalambrica al
coordinador WBSN, donde estos datos se pueden mostrar o almacenar.

En esta seccién se presentan varios algoritmos de filtrado de ECG, de-
lineacion y deteccion de arritmias para su ejecucion en el Shimmer™. Por
altimo, se ofrece una evaluacion del rendimiento de dichos algoritmos, asi
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como un estudio comparativo de su consumo de energia (y por tanto de la
vida 1til del nodo que los ejecuta).

0.4.1. Filtrado de ECG

Con el fin de mejorar la calidad de la senal del ECG y por tanto po-
der realizar un diagnéstico méas preciso, es muy importante reducir tanto
como sea posible la presencia de ruido, como el ruido de linea de base o
ruido electromiografico. El ruido de linea de base consiste en una actividad
de baja frecuencia externa al ECG que puede interferir con el analisis de
la senal, haciendo que su interpretacién clinica sea incorrecta. El ruido de
linea de base es a menudo inducido por el ejercicio y puede tener su origen
en multitud de fuentes, que incluyen transpiracion, respiracién, movimientos
del sujeto o contacto deficiente de los electrodos. El contenido en frecuen-
cia del ruido de linea de base se encuentra generalmente en el rango entre
0,05 y 1 Hz [fQEWPS85|, pero, durante el ejercicio intenso, puede contener
frecuencias més altas.

El ruido electromiogréfico, que esta causado por la actividad eléctrica de
los miusculos durante los periodos de contraccién, se encuentra comunmen-
te en los ECGs registrados durante periodos de monitorizacién ambulatoria.
Este tipo de ruido puede ser intermitente, debido a un movimiento repentino
cuerpo. Las componentes de frecuencia de este ruido se solapan considera-
blemente con las del complejo QRS.

En esta seccion se proponen dos técnicas para filtrado de ECG: una
basada en cubic splines y otra en filtrado morfolégico. La primera solo elimina
el ruido de linea de base, mientras que la segunda también incluye una fase de
reduccién de ruido de alta frecuencia como el electromiografico o el causado
por interferencias inducidas por lineas eléctricas cercanas.

Estimacioén del ruido de linea de base usando cubic splines

Esta técnica, basada en [MKT77|, utiliza un polinomio de tercer grado para
aproximar el ruido de linea de base, que luego se resta de la senal original.
Para este fin, se elige una muestra representativa (o knot) de cada latido,
dentro del segmento isoeléctrico que va desde el final de la onda P al comien-
zo del complejo QRS. Entonces se calcula un polinomio de tercer grado que
pase por tres knots consecutivos. Este polinomio, que representa una apro-
ximacion del ruido de linea de base, se resta del ECG original para obtener
la senal filtrada.

Filtrado morfolégico

Este método, introducido por primera vez en [SCK02|, aplica varias opera-
ciones morfologicas (erosiones y dilataciones) a la sefial ECG para estimar
el ruido de linea de base. Los operadores morfologicos son muy utilizados
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para procesamiento de senales e imagenes debido a su gran robustez y ren-
dimiento para extraer informacion de la forma de las seniales, ademas de ser
operaciones sencillas y réapidas de calcular. En este tipo de operaciones se
usan dos conjuntos de datos: por un lado la senal a transformar y por otro
una serie de elementos estructurales que se disenan segin las caracteristicas
morfologicas que se quieren extraer de la senal.

Este método consta de dos fases. En la primera se aplican varias opera-
ciones de erosion y dilatacion a la senal ECG original para estimar el ruido
de linea de base. Primero se aplica una erosiéon seguida de una dilatacion,
que elimina los picos en la senal. Entonces, se aplica a la onda resultante una
dilatacién seguida de una erosiéon para eliminar los valles. El resultado final
es una estimaciéon del ruido de linea de base, que se resta a la senal original
para eliminarlo. En el segundo paso, se reduce el ruido de mas alta frecuencia
por medio de varias operaciones adicionales de erosién y dilatacién aplicadas
en paralelo, usando unos elementos estructurales especiales que ayudan a
mantener los picos y valles de las ondas importantes (complejo QRS y ondas
PyT).

0.4.2. Delineacion de ECG

Se ha dedicado un gran esfuerzo a la investigaciéon para automatizar el
analisis de seniales ECG y la deteccion de sus ondas mas significativas [SLO5].
De hecho, el rendimiento de un sistema de anélisis automatizado de ECG
depende criticamente de una deteccion precisa de estas ondas (delineacion
de ECG). Esto ha motivado la aparicion de gran variedad de técnicas para
delineacion de ECG.

Dos de las técnicas méas sobresalientes para delineaciéon automéatica de
ECG se analizan en esta seccion. La primera se basa en la transformada
wavelet (WT) [LZT95, MAOT04], y la segunda en la derivada multiescala
morfologica (MMD) [SCKO05]. Siguiendo estos dos enfoques, se han desa-
rrollado varios algoritmos para la delineacion de una (single-lead) o varias
(multi-lead) derivaciones, que ademés se han optimizado para su ejecucion
en el Shimmer™. Esta seccion describe los algoritmos propuestos y analiza
su rendimiento en términos de precision.

Para evaluar la precisién de la delineacién se utiliza la base de datos
QT (QTDB) [LMGM97|, que contiene 105 sefiales ECG de 2 derivaciones,
muestreadas a 250 Hz y con una duracién de 15 minutos. Los puntos carac-
teristicos del ECG han sido anotados manualmente por cardiélogos, lo que
permite una facil evaluacion de la precision de los algoritmos de delineacion
automatica. Las estadisticas que se utilizan en esta evaluacién son la media
(m) y desviacion estandar (o) de los errores en la deteccion de cada uno de
los puntos. Ademaés, se cuentan los verdaderos positivos (T'P), falsos posi-
tivos (F'P) y falsos negativos (F'N) para calcular la sensibilidad (Se) y el
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valor predictivo positivo (P+), que segiun [EC508] se definen como:

TP TP

e p TP |
Se=7p+rNn Tt ThiFp (1)

Para evaluar la delineacién single-lead, el algoritmos se ejecuta por sepa-
rado para las 2 derivaciones de la QTDB y, para cada uno de los puntos, se
elige la detecciéon mas proxima a la anotacién manual.

0.4.2.1. Delineacion single-lead basada en WT

Esta técnica lleva a cabo la deteccion de todos los puntos caracteristicos
(inicio, pico y final) de las ondas del ECG mediante una WT, que produce
derivadas de la sefial ECG de entrada en cinco escalas diddicas (de la 2!
a la 2%). La eleccion de estas escalas viene motivada por la observacion de
que la mayor parte de la energia de la senal ECG se encuentra dentro de
ellas [IMAO™04]. En particular, se ha demostrado que la energfa del complejo
QRS es menor en las escalas superiores a la 2* y que las ondas P y T tienen
componentes importantes en la escala 2°.

Una vez calculados los resultados de la WT, se aplican un conjunto de
reglas para extraer los puntos importantes de la senal ECG. El primer punto
detectado es el pico principal del complejo QRS, entonces el complejo QRS
se delinea, detectandose su inicio y final. Luego se detectan los picos de las
ondas P y T, junto con sus inicios y finales de onda.

Para este primer conjunto de experimentos, se ejecuta el algoritmo pro-
puesto en el Shimmer™ y se calculan los cuatro valores que indican la preci-
sion de la delineacion. La Tabla[d muestra los resultados obtenidos, junto con
los del algoritmo original que funciona de forma offline [MAO™04]. La tltima
columna indica las tolerancias maximas de desviacion estandar exigidas por
el CSE [fQEWPS85|. Estos resultados ponen de manifiesto que la precision
del algoritmo propuesto esté dentro de las tolerancias maximas de desviacién
estandar para todos los puntos, excepto el QRSynser and Popser, que solo es-
tan por encima de las tolerancias por una fraccién del tiempo de muestreo.
Por otra parte, la Tabla |4| muestra que la implementaciéon propuesta para
el Shimmer™ supera ampliamente al algoritmo propuesto en [MAOT04] en
términos de desviacion estandar, con el valor anadido de que la implementa-
cién propuesta se ejecuta en tiempo real y preservando una alta sensibilidad
y valor predictivo positivo.

0.4.2.2. Delineacién single-lead basada en MMD

Este método usa operadores morfologicos (erosion y dilatacion), que han
demostrado una gran eficiencia en el analisis de senales de cualquier dimen-
sién cuyos puntos significativos estan localizados en méximos y minimos
locales. Los puntos mas importantes del ECG (comienzo, pico y final del
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Tabla 4: Precision del algoritmo de delineacion single-lead basado en WT vs.

caso base [MAO™T04]

este trabajo Martinez Tolerancias
Método 16-bit int IMAO™04] (2scsE)
Shimmer™
Se (%) Se (%)
Pardmetro | Pl (%) Pt (%) o (ms)
m £ o (ms) | m £ o (ms)
99,87 98,87
Porset 91,98 91,03 10,2
86+ 11,2 | 2,0+ 14,8
99,87 98,87
Prea 92,46 91,03 ;
10,1 £+ 8,9 3,6 + 13,2
99,91 98,75
P.a 91,70 91,03 12,7
0,94 101 | 1,94 12,8
99,97 99,97
QRSopset 98,61 N/A 6,5
3,4+ 7,0 46 + 7,7
99,97 99,97
QRS.na 98,72 N/A 11,6
3,5+ 8,3 0,8 + 8,7
99,97 99,77
Toeal 98,91 97,79 ;
3,7+ 13,0 0,2 + 13,9
99,97 99,77
Tond 98,50 97,79 30,6
944169 | —1,6 + 18,1

complejo QRS y las ondas P y T) pueden considerarse como tales puntos
significativos [MZ92al [Wit84].
El algoritmo se divide en tres pasos: filtrado, aplicacion de MMD y de-

teccion de los puntos caracteristicos. Para el primer paso se utiliza el filtro
morfologico presentado en la Seccién que acondiciona la sefial ECG
original para minimizar el ruido, de forma que se pueda realizar una detec-
ci6n mas precisa de los puntos caracteristicos. Este paso es primordial puesto
que la presencia de ruido de linea de base puede alterar significativamente
los resultados de la delineacion.

Para el segundo paso, y de acuerdo con [SCK05], los puntos caracteristi-
cos de la onda de ECG se corresponden con maximos y minimos de la senial.
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Por lo tanto, un punto caracteristico se define como un punto en el que las
derivadas a su izquierda y a su derecha existen y tienen distinto signos. Para
facilitar la deteccion de estos puntos, la senal se transforma usando la MMD,
de forma que un pico positivo de la sefial ECG (la derivada es positiva a su
izquierda y negativa a su derecha) se transforma en un minimo local. En
el comienzo y final de las ondas positivas, hay un aumento repentino de la
derivada a su derecha con respecto a su izquierda, por lo que estos puntos se
transforman en maximos locales.

Finalmente, el algoritmo detecta los puntos importantes en la senal trans-
formada, estudiando sus méximos y minimos locales que superan unos de-
terminados umbrales, que se ajustan dinAmicamente a la morfologia de cada
una de las ondas. La Figura [13| muestra una senal ECG (a), la misma senal
tras realizar el filtrado morfologico (b) y la senal transformada después de
aplicar la MMD (c).

La segunda columna de la Tabla [5| muestra los resultados del algoritmo
propuesto ejecutandose en el Shimmer™. La desviacién estandar esta por
debajo de las tolerancias maximas para todos los puntos, al contrario que
el algoritmo original (tercera columna de la Tabla . Gracias a las mejoras
que se han incluido en esta nueva version del algoritmo, el error medio se ha
reducido significativamente (4 ms de media). Esto significa que, en promedio,
los puntos detectados por el algoritmo propuesto estan 4 ms (es decir, una
muestra) mas cerca de los reales que los detectados por el algoritmo original.

La desviacién estdndar también se mejora con respecto al caso base para
la onda P y el complejo QRS. En el caso de la onda T (filas Tyopset v Tend)s
la desviacién estdndar obtenida por el algoritmo propuesto es mayor que
en la version original, pero esto no es un problema ya que los resultados
obtenidos por nuestro algoritmo son significativamente inferiores a los limites
establecidos por el CSE.

0.4.2.3. Delineacion multi-lead basada en WT

En la practica clinica, sin embargo, se usa mas de una derivacion (12 en
los monitores estandar que se utilizan en los hospitales o 3 en monitoriza-
cion ambulatoria usando dispositivos de tipo Holter). La utilizacién de un
esquema multi-lead requiere el desarrollo de técnicas que sean capaces de ex-
plotar la informacién contenida en las derivaciones disponibles para mejorar
la precision, la estabilidad y la resistencia frente a ruido de la delineacion,
en comparacion con un enfoque single-lead.

Hay dos métodos para la delineaciéon multi-lead. El primero consiste en
delinear cada una de las derivaciones por separado y aplicar reglas de se-
leccion sobre los puntos detectados para quedarse solo con los “mejor” de-
lineados. Cuando sélo se dispone de dos derivaciones, como es el caso en
este trabajo, debido a las limitaciones de memoria del Shimmer™, este en-
foque no es aplicable, y debe ser reemplazado por una selecciéon 6ptima en
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P wave T wave
QRS complex
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()
Figura 13: (a) Senal ECG original (b) ECG después de aplicar el filtrado

morfologico (c) Senal resultante de aplicar la MMD a la senal filtrada

la que se elige el punto que presenta el menor error. Sin embargo, este en-
foque no es realista, y solo se puede utilizar para propodsitos de validacion,
puesto que el algoritmo de delineaciéon no puede saber cual es la derivaciéon
que presenta menor error para cada uno de los puntos. El segundo méto-
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Tabla 5: Precision del algoritmo de delineacién single-lead basado en MMD
tanto si se ejecuta en un PC como en el Shimmer™ vs. caso base [SCKO03|

MMD mejorado | MMD mejorado Tolerancias
Método floating-point 16-bit int MMD original (2scsE)
PC Shimmer™
Se (%) Se (%) Se (%)
Pardmetm Pr—rtin (%) P;rtin (%) P;rtzn (%) g (ms)
m + o (ms) m + o (ms) m =+ o (ms)
99,75 99,15 97,2
Ponset 96,66 96,70 - 10,2
3,6 £9,6 3,5 £ 10,7 9,0+ 9,4
99,91 99,28 -
Ppeak 96,67 96,65 - -
2,6 £7,7 1,2 +78 -
98,56 98,68 94.8
P 96,98 96,95 - 12,7
2,2+ 94 1,1 + 10,0 12,8 + 13,2
99,37 99,03 100,0
QRSonset 100,0 100,0 - 6,5
1,0+ 64 0,7 £ 6,7 3,5+6,1
99,89 99,78 100,0
QRS.na 99,97 99,97 - 11,6
—0,4 + 6,8 0,2+ 7,0 2.4 + 10,3
95,11 96,10 99,8
Toyoct 83,42 83,96 - ;
5,7 + 26,7 8,7+ 258 7.9 + 15,8
99,75 99,60 -
Tyeak 100,0 100,0 - ;
0,3 + 15,0 0,7 + 13,1 -
95,23 95,37 99,6
Tend 97,92 97,80 - 30,6
734190 —6,0 + 17,0 8,3+ 124

do de delineaciéon multi-lead se basa en la combinacién de las derivaciones
para construir una tnica senal — que da una visién global del funcionamien-
to del corazén, independientemente de las derivaciones que se usen — sobre
la que se aplica un algoritmo de delineacién single-lead. En la literatura
podemos encontrar diferentes técnicas para la fusién de todas las deriva-
ciones en una tdnica senal: (1) la combinacién basada en root mean square
(RMS) [IvOHO6l [SML06, RBBT09]; (2) una derivada obtenida usando una
WT a partir de 2 o 3 derivaciones ortogonales [AMRL09]; o (3) la combi-
nacion de las derivadas de todas las derivaciones disponibles [IM10]. Dadas
las limitaciones de procesamiento y memoria del nodo utilizado, se elige el
enfoque basado en RMS, puesto que tienen una complejidad computacional
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muy baja y una gran escalabilidad.
En consecuencia, las L derivaciones disponibles z;[n], con | = 1,...,L,
se combinan en una unica senal xgprg[nl:

sobre la cual se realiza una delineacién single-lead. Para una correcta com-
binacién de las diferentes derivaciones, es fundamental eliminar en cada una
de ellas el ruido de linea de base (causado principalmente por la respiracion
y los cambios de impedancia de los electrodos debidos a la transpiracién y
los movimientos del cuerpo) antes de calcular el RMS [IvOHO06, [SML06|. Por
lo tanto, ya que la calidad de la posterior delineaciéon dependera de la co-
rreccion de linea de base, este trabajo evalua la efectividad de los dos filtros
propuestos en la Seccién [0.4.1} cubic splines y filtrado morfologico.

Para la delineacién de la senial xrprg se usa el algoritmo basado en WT
propuesto en la Seccion [0.4.2.1] ya que su tiempo de ejecucion es mucho
menor que el basado en MMD y por lo tanto implica un menor consumo de
energia, ofreciendo una gran precisién en la deteccién de los puntos caracte-
risticos del ECG.

Si comparamos la precision de los algoritmos single-lead para la primera
y la segunda derivacion de la QTDB (tercera y cuarta columna de la Tabla@,
respectivamente) y la obtenida con un enfoque multi-lead (primera y secunda
columna de la Tabla @, se confirma que el uso de miultiples derivaciones
puede aumentar la precision de la delineaciéon con respecto a la utilizacion
de una tnica derivacion. Los dos filtros para eliminar el ruido de linea de base
ofrecen resultados muy parecidos de error medio (m) y desviaciéon estandar
(o), por encima de las tolerancias maximas por s6lo una fraccion del tiempo
de muestreo.

Ademas, la Tabla [6] muestra también que los resultados de la delineacion
multi-lead son muy parecidos a los de la delineacién de la mejor derivaciéon
(obtenidos para la derivacion 1), y superan por casi una muestra (4 ms) los
de la delineacion de la peor derivaciéon (obtenidos para la derivacion 2). Esto
confirma que la combinacién de las derivaciones disponibles mediante RMS
reduce la dependencia de los resultados en determinadas derivaciones, a la
vez que ofrece mayor robustez y estabilidad.

0.4.3. Diagnéstico de arritmias

Los resultados de los algoritmos de delineacién previamente estudiados se
pueden utilizar para realizar diagnéstico en tiempo real a bordo del nodo sen-
sor, para proporcionar al paciente informaciéon sobre el estado de su corazon,
asi como reducir significativamente la cantidad de datos que se transmiten
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Tabla 6: Comparativa de la precisiéon de los algoritmos de delineacién multi-

lead con los single-lead

2-lead 2-lead Single-lead Single-lead || Toleranc.
Meétodo 16-bit int 16-bit int 16-bit int 16-bit int (2scsE)
Cubic spline Morpho. Lead 1 Lead 2
Se (%) Se (%) Se (%) Se (%)
Pardm. P’r-rtzn (%) P’r—rtin (%) P;in (%) Pr—rtin (%) g (ms)
m+o(ms) | mto(ms) | m=xo (ms) | m=Eo (ms)
94,02 96,24 98,84 97,31
P, 95,15 91,19 92,66 91,76 10,2
41+171 2,56 +164 134 £ 148 | 10,4 £ 194
94,02 96,24 98,84 97,09
Ppeak 95,42 91,38 92,93 92,21 -
12,8 + 12,1 14,7 £ 134 | 15,6 £12,1 | 6,9 + 16,9
94,05 96,27 98,87 96,81
Pera 95,49 91,55 93,24 91,43 12,7
-21+£142 | -1,9+ 155 1,6 £13,2 | —8,5+ 17,9
99,67 99,75 99,61 99,67
QRSon 99,23 97,07 99,56 98,61 6,5
3,2 £87 6,9 £ 8,0 5,4 + 84 8,6 + 12,6
99,67 99,75 99,61 99,72
QRSend 99,20 97,07 99,56 98,72 11,6
7,3 £ 11,9 9,0 +£9,1 1,6 £ 10,1 8,7+ 13,1
98,00 98,33 99,35 99,35
Tpeak 99,23 98,58 99,49 98,90 -
1,9+ 174 5,3 £ 19,3 5,3 £ 184 3,5 £ 23,5
97,94 98,11 99,32 99,18
Tend 98,72 98,08 99,24 98,38 30,6
414253 | —11,4+249 | —53 £227 | —4,6 £ 27,2

de forma inaldmbrica, y por lo tanto, prolongar la vida util del nodo. Para
ilustrar esto, esta seccién propone un algoritmo de diagnéstico que evalta
un conjunto de reglas que un ECG normal debe cumplir. Si alguna de las
reglas no se cumple, el algoritmo genera una alarma que serd enviada al
coordinador WBSN.

Ademas, esta seccién propone un enfoque mas preciso, donde se adapta
el algoritmo de diagnostico para la deteccion de una arritmia cardiaca es-
pecifica. En este caso, se propone un sistema de deteccion automatica y en
tiempo real de fibrilacion auricular (AF), que también utiliza la salida de los
algoritmos de delineacién para llevar a cabo un analisis detallado de las irre-
gularidades que aparecen durante los episodios de AF. Méas concretamente,
se estudian la variabilidad del intervalo R-R y la ausencia de la onda P. Los
resultados obtenidos son muy similares a los de otras técnicas que realizan la
deteccion de AF a posteriori sobre una senal grabada por un dispositivo de
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tipo Holter, alcanzando una sensibilidad del 96 % y un 93 % de especificidad
para la base de datos AFDB.

0.4.4. Consumo de energia versus rendimiento

De acuerdo con la caracterizacion de la plataforma Shimmer™ realizada
en la Seccién esta seccién propone un esudio del consumo de energia
del nodo ejecutando una sencilla aplicacién en la que solo se hace streaming
del ECG y todos los algorimos de analisis en tiempo real propuestos en este
trabajo, para evaluar el impacto del procesamiento a bordo del nodo en el
consumo de energia total.

Tabla 7: Vida util del Shimmer™ para los algoritmos de delineacién

ECG Single | Single | 2-lead | 2-lead
Stream. | lead lead Morph. | spline
WT MMD | filt. filt.

Ciclo de trabajo (%) 0 6,78 18,25 | 19,17 33,22
Paquete listo cada... (ms) | 304 2250 | 2250 | 2250 2250
Beacon interval (ms) 983 7864 | 7864 | 7864 7864
Consumo de energia (mJ) | 7,70 7,44 8,62 8,71 10,15
Vida util (h) 134,6 139,2 | 120,2 | 118,9 102,1

La Tabla [7| muestra que el consumo total de energia aumenta con la
carga computacional del algoritmo de delineacién. Sorprendentemente, tam-
bién evidencia que incluso el sencillo algoritmo de delineacién single-lead
basado en WT, que solo consume 6,78 % del tiempo de CPU y reduce signi-
ficativamente la cantidad de datos a transmitir (de 3,29 a 0,44 paquetes por
segundo), ofrece una extension marginal de la vida util del nodo con respecto
a streaming de ECG. Estos resultados destacan que, para las aplicaciones de
WBSN, la radio no siempre es responsable de la mayor parte del consumo de
energia del nodo, como se asume en otras areas de aplicaciéon de las WSNs.
Para comprender mejor el impacto del procesamiento del ECG a bordo del
nodo en su vida 1util, desglosamos el consumo de energia de cada uno de
los componentes del nodo y los analizamos por separado, viendo que los dos
bloques con mayor consumo de energia son la radio y el microcontrolador.

Radio

El consumo de energia de la radio depende del protocolo MAC [Std03]|, que
anade una cierta sobrecarga en la comunicacién para controlar el acceso
al medio compartido. La parte del consumo total de energia debido al uso
del protocolo MAC soélo representa el 1,3 % para la delineacion multi-lead
con cubic splines, y un 14,3 % para el streaming de ECG. Por lo tanto, el
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protocolo MAC basado en GTS que se ha propuesto es una buena opcién
para un escenario en el que se realiza una monitorizaciéon continua del ECG
con envio perioddico de resultados. Cabe mencionar que esta caracterizacion
del nodo se hizo usando una configuraciéon en la que los nodos implicados
tenfan visién directa entre si. Un estudio detallado de la propagaciéon de las
ondas de radio alrededor del cuerpo se deberia realizar para poder ajustar
un poco mejor el consumo de la radio, sin embargo este estudio esta fuera
del alcance de esta tesis.

12

10

4

2

0 - T T T

Streaming Single-lead WT  Single-lead MMD 2-lead 2-lead
(cubicspline) (morphological)

M Ejecucion de codigo
H Radio
- Muestreo

mJ

Figura 14: Desglose por componentes del consumo de energia del Shimmer™

Microcontrolador

El consumo debido a la CPU tiene un impacto significativo en la vida de
nodo cuando se ejecutan los algoritmos de delineacién propuestos, que re-
quieren mas potencia de computo que si simplemente se hace streaming del
ECG. A excepcion del algoritmo de delineacion single-lead basado en W',
el aumento de actividad de la CPU lleva a una reducciéon de la vida til del
nodo, aunque el consumo de energia de la radio se reduzca 8,6 veces (con
respecto a streaming). Por lo tanto, la ejecucion de codigo puede ser muy
costosa si la disipacién de potencia del microcontrolador es alta o el algorit-
mo a ejecutar no ha sido cuidadosamente optimizado para la plataforma que
se esta utilizando. Por lo tanto, se debe llevar a cabo un estudio cuidadoso
en el momento de elegir o disefiar el microcontrolador de cada plataforma
WBSN. Este estudio es clave para tener en cuenta la disipaciéon de potencia
en modo activo, asi como la posibilidad de usar una tensién de alimentacién
baja o modos de trabajo de bajo consumo que deshabilitan algunas partes
del microcontrolador cuando no se utilizan.

Sin embargo, para el Shimmer™ el proceso dominante del microcontro-
lador en términos de consumo de energia no es la ejecuciéon de codigo. Como
se ilustra en la Figura [I4] la mayor parte del consumo de energia se debe
al muestreo de la senal del ECG (el 65,2 % para delineacién multi-lead con
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Tabla 8: Vida util del Shimmer™ para los algoritmos de diagnostico de
arritmias

ECG Diagnostico | Deteccidon
streaming | general de AF
Ciclo de trabajo (%) 0 6,85 7,73
Paquete listo cada... (ms) | 304 21000 21000
Beacon interval (ms) 983 62915 62915
Consumo de energia (m.J) | 7,70 7,32 7,41
Vida uatil (h) 134,6 141,5 139,9

cubic splines y el 85,7% para streaming). Por lo tanto, podemos apreciar
como el muestreo de la senal puede ser muy costoso en términos de consumo
de energia en funcién de la implementaciéon de hardware y la frecuencia de
muestreo. En este caso particular, para la frecuencia de muestreo que se con-
sidera (250 Hz), no es posible deshabilitar el voltaje de referencia interno de
los ADCs entre dos muestras consecutivas, porque el tiempo que el regulador
de tensién interno tarda en alcanzar el nivel adecuado para la conversiéon es
mayor que el tiempo entre muestras, asi pues, el voltaje de referencia esta
siempre activo, aumentando significativamente el consumo total de energia.
Por lo tanto, elegir un ADC de bajo consumo puede reducir en gran medida
el consumo de energia de todo el sistema, pues la tarea de muestreo ha de-
mostrado ser responsable de un gran consumo de energia en nuestro sistema
WBSN de monitorizacion de ECG.

La Tabla[§ muestra el consumo de energia del Shimmer™ ejecutando una
aplicacién de streaming de ECG, asi como de los algoritmos propuestos para
diagnostico general de arritmias y deteccion de AF. Ambos algoritmos sélo
envian los resultados obtenidos (la clasificacion de cada latido, indicando si es
normal o se ha detectado alguna arritmia), por lo que solo es necesario enviar
4 bytes por latido (28 bits para indicar el momento en el que se ha detectado
el latido y los restantes 4 bits para el c6digo que contiene el resultado de la
clasificacion). Este codigo puede tomar 9 valores posibles, que indican si el
latido es normal o si muestra AF o alguna otra de las 7 patologias detectadas
por el algoritmo de diagnéstico general. Como un paquete puede contener un
méximo de 114 bytes de datos, se pueden almacenar 28 latidos. Suponiendo
una frecuencia cardiaca tipica de 80 latidos por minuto, se genera un paquete
cada 21 s.

De la Tabla [§| podemos concluir que a pesar de realizar procesamiento
avanzado en el Shimmer™ y por tanto aumentar el consumo de energia del
microcontrolador, la vida 1til del nodo ejecutando el algoritmo de detecciéon
de AF en tiempo real es mayor que si solo se hace streaming de ECG, debido
a la enorme reduccién en la cantidad de informacién que se transmite al
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coordinador WBSN. Gracias a esta reduccion, el algoritmo genera un paquete
cada 21 s, disminuyendo el consumo de energia de la radio a solo el 0,22 %
del total de la plataforma para el caso de deteccion de AF. Si la frecuencia
de la generacion de paquetes se reduce aun mas, lo cual es posible si el
nodo sélo envia un paquete de alarma cuando se detecta una arritmia, el
ahorro de energia sera insignificante. Por ejemplo, si no se detecta ninguna
alarma, el consumo de energia de la radio seria el 0,04 % del total, y la vida
atil se incrementaria de 139,9 a 140,1 horas. Por lo tanto, esta observaciéon
concluye que la Gnica manera de reducir atin mas el consumo de energia de
la plataforma pasa por optimizar el ADC o el microcontrolador.

0.5. Conclusiones

Como se mencionoé en la introduccién, las enfermedades cardiovasculares
son la principal causa de mortalidad en todo el mundo, responsables del 30 %
de las muertes a nivel mundial en 2005 y de un gasto econémico de miles
de millones de dolares [PW10]. Se prevé que estas cifras vayan en aumento
debido al rdpido envejecimiento de la poblacién mundial y a su estilo de vida
poco saludable. Las WBSNs estan preparadas para ofrecer soluciones a gran
escala y bajo coste, para disminuir el alto gasto sanitario que, de lo contrario,
puede volverse insostenible en los préoximos anos.

En esta tesis se propone el desarrollo de un sistema de monitorizacién de
ECG, que no s6lo muestre continuamente el ECG del paciente, sino que ade-
mas lo analice en tiempo real y sea capaz de dar informacién sobre el estado
de su corazdn. Para ello, en primer lugar, se ha llevado a cabo un estudio de
las arquitecturas disponibles para WBSNs en la Seccion [0.2] eligiéndose la
plataforma Shimmer™ como caso practico, ya que se adapta perfectamente
a los requisitos de este trabajo. Esta plataforma ofrece una gran flexibili-
dad para aplicar las diferentes técnicas que se han propuesto, y suficiente
capacidad de procesamiento y memoria para hacer frente a las aplicaciones
propuestas en este trabajo. Ademaés, su estructura hardware encaja con la ar-
quitectura general de nodo de una WBSN, por lo tanto, todos los resultados
presentados en esta tesis se pueden extrapolar a otras plataformas.

Por otra parte, este trabajo pretende mejorar la eficiencia energética de
la WBSN, cumpliendo con los requisitos de rendimiento impuestos por la
aplicacion. Para lograr este objetivo, la Seccion [0.3| presenta un protocolo
MAC especialmente disefiado para cumplir con los requisitos de las WBSNs.
Este protocolo MAC es una versién reducida del modo beacon-enabled del
protocolo IEEE 802.15.4 que usa GTS. Se utiliza un enfoque de tipo TDMA,
que ha demostrado ser ventajoso en WBSNs con topologia de estrella, ya que
su naturaleza centralizada elimina la aparicién de colisiones y overhearing,
mientras se usan muy pocos paquetes de control, reduciéndose drésticamente
el idle listening. El uso de este protocolo MAC contribuye a mejorar la efi-
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ciencia energética de la WBSN ya que reduce significativamente el consumo
de energia de la comunicaciéon inaldmbrica.

En la Seccion [0-3] también se propone el uso de FreeRTOS, un OS muy
ligero que proporciona soporte para operaciones en tiempo real y permite
una gestion eficiente de los recursos hardware del nodo. Ademés, FreeRTOS
realiza una planificaciéon muy efectiva de las distintas tareas a ejecutar en
el nodo, como algoritmos de procesamiento de senal, gestiéon del protocolo
MAC, muestreo de la sefial, asi como la comunicacién entre procesos. Final-
mente, el uso de este OS permite desacoplar los recursos hardware y software
del nodo, proporcionando una mayor flexibilidad al programador.

A continuacién, la Secciéon presenta varios algoritmos para realizar fil-
trado de ECG, delineacién y diagnoéstico de la arritmias en tiempo real, que
dotan a los nodos de capacidad para evaluar el estado del corazén y detec-
tar alteraciones cardiacas potencialmente peligrosas. Estos algoritmos, que
han sido optimizados y portados al Shimmer™ también pueden contribuir
a la reduccién del consumo de energia del nodo, ya que reducen significati-
vamente la cantidad de informacién que debe ser transmitida. Para lograr
esta reduccion del consumo de energia, hay que buscar un compromiso entre
el uso de la CPU y la comunicacién por radio.

En particular, la Seccién propone dos algoritmos de delineacion de
ECG single-lead en tiempo real, uno basado en la transformada wavelet y
otro en la transformacién morfolégica multiescala, que ofrecen una excelente
precision en la deteccion de los principales puntos del ECG. Después, es-
ta secciéon propone dos algoritmos de delineaciéon multi-lead basados en la
combinacion de las derivaciones disponibles mediante RMS, que utilizan dos
técnicas diferentes para la eliminacién del ruido de linea de base: uno basado
en cubic splines y otro en filtrado morfologico. La precision de la delineacion
multi-lead es similar al mejor caso de delineacién single-lead para la base de
datos QTDB, y queda muy cerca de las tolerancias maximas propuestas por
el CSE. Esto confirma que este enfoque multi-lead consigue que los resulta-
dos no estén condicionados a la elecciéon de una determinada derivacién o a
la intervencién de un experto que juzgue cudl es la derivacién mas adecuada
para realizar la delineacion. Ademas, las dos técnicas para la eliminacion del
ruido de linea de base muestran distintos compromisos entre predictividad
positiva, por un lado, y complejidad computacional y uso de memoria por
otro.

A continuacion, la Seccion [0.4] propone dos enfoques para el diagnostico
de arritmias en tiempo real. El primero, mas general, utiliza un conjunto de
reglas que tienen en cuenta la informacion morfologica y temporal extraida
por los algoritmos de delineacion de ECG propuestos. Para cada latido, el
algoritmo evaltGa si es normal o presenta alguna irregularidad que pueda
indicar un comportamiento anormal del corazon. El segundo enfoque, mucho
més preciso ya que estd especialmente adaptado para detectar una arritmia
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particular, consiste en un algoritmo de deteccion de AF que se basa en la
observacion de dos irregularidades caracteristicas de los episodios de AF
que se manifiestan en la senial ECG: la variabilidad del intervalo R-R y la
ausencia de la onda P. Los resultados obtenidos por este sistema de deteccién
de AF en tiempo real son muy similares a los de otras técnicas que realizan
la deteccion de AF a posteriori sobre una sefial grabada por un dispositivo de
tipo Holter, alcanzando una sensibilidad del 96 % y un 93 % de especificidad
para la AFDB.

La Seccion también presenta una evaluacion del consumo de energia
Shimmer™ para los distintos algoritmos de delineacion y deteccion de arrit-
mias propuestos, con respecto al caso base que simplemente realiza streaming
del ECG. El desglose del consumo de energia de los bloques hardware del
nodo demuestra lo siguiente:

1. Aunque el nodo realice procesamento avanzado de la sefial ECG en
tiempo real y por tanto el consumo de energia del microcontrolador
aumente, la vida 1til del sistema puede verse incrementada respecto
al caso base que realiza streaming del ECG, ya que la cantidad de
informacion que debe ser enviada al coordinador de la WBSN se reduce
drasticamente.

2. Dado un protocolo MAC optimizado para WBSNs como el propuesto
en la Seccion [0.3] y una gestion eficiente de los distintos modos de
trabajo ofrecidos por la radio, la delineacién single-lead proporciona
una mejora practicamente despreciable de la vida 1til del nodo con
respecto a hacer streaming del ECG.

3. La vida til del nodo se ve reducida si se usa alguna de las técnicas de
delineacién multi-lead propuestas, que conllevan un aumento de hasta
5 veces del uso de la CPU.

4. El muestreo del ECG es la tarea que demanda un mayor consumo de
energia para la frecuencia de muestreo considerada.

En consecuencia, la exploracién arquitectonica realizada en este trabajo
sugiere que hay que hacer una eleccién cuidadosa de los componentes de la
plataforma WBSN, teniendo en cuenta la aplicacion final durante la fase de
diseno. Esto puede permitir una gran disminuciéon del consumo de energia
del sistema, por lo tanto, se puede aumentar la vida ttil del nodo siempre
que:

1. Se use un conversor A/D de bajo consumo que permita racionalizar el
consumo del muestreo del ECG.

2. El nodo esté equipado con un microcontrolador de bajo consumo que
permita realizar procesamiento avanzado de la senal ECG sin que el
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impacto en el consumo de energia total del nodo sea demasiado signi-
ficativo.

Por tltimo, pero no por ello menos importante, es fundamental realizar
una correcta optimizacién de los algoritmos ejecutados en el nodo que
tenga en cuenta los limitados recursos de procesamiento y memoria de
los que este dispone.
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Chapter 1

Introduction

Know thyself.

Ancient Greek aphorism

QUireless Sensor Networks [CES04] (WSN) are wireless networks con-
sisting of spatially distributed autonomous sensors to cooperatively monitor
physical magnitudes. Their utility ranges from environmental measurements
at different locations to medical monitoring. The WSN main workload en-
tails sensing relevant information by the nodes, collecting that information,
interpreting it, recording it and communicating it to a base station. In order
to perform those activities each sensor node is made up for some sensors, a
radio transceiver and a microcontroller. As power source they usually have
a battery, but energy harvesting modules (like solar cells or thermoelectric
converters) can also be included, increasing the life of the node and therefore
minimizing its maintenance [PS05].

Figure shows the architecture of a typical WSN. This network is
composed of many sensor nodes that sense different parameters and send
the collected information to a mesh node. Each sensor node can access one
or more mesh nodes either directly or through other sensor nodes of the
network following a multi-hop approach. Mesh nodes can be connected to
each other to develop a higher level network, which can be accessed from a
management station using a direct wireless connection to one of the mesh
nodes or via Internet.

The type of sensors that can be used in a node is not restricted, so
WSN applications are many and varied. They are used in commercial and
industrial applications to monitor data that would be difficult or expensive
to monitor using wired sensors. They could be deployed in wilderness areas,
where they would remain for many years (monitoring some environmental
variables) without the need to recharge/replace their power supplies. Some
of the important applications of WSNs are:
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Figure 1.1: Typical WSN architecture

= Biologic research: non-invasive habitat monitoring and study of wildlife
species/populations.

» Environmental monitoring: pollution (air, water, soil), early alarms for
forest fires, volcanoes, earthquakes, and other natural hazards.

» Disaster response: emergency support for disaster recovery scenarios
to identify risks and hazards and locating people/survivors.

s Agriculture: livestock and crops monitoring, microclimate management
for dairy production or wines and soil fertility analysis.

s Industrial sector: manufacture process automation, monitoring and
control, equipment failure prediction and production quality assurance.

» Retail sector: stock management, product tracking and quality moni-
toring.

s Architecture: smart office spaces, home automation, intrusion detec-
tion.

= Transportation: monitoring of internal systems in cars, ships and air-
crafts.

s Local authorities: road traffic reporting, analysis and coordination.
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= Military: surveillance, enemy identification, target acquisition and trac-
king and logistic operations support.

= Healthcare: staff and patient tracking, on-the-body vital signs monito-
ring and drug administration control.

This work is focused on the study of a subset of WSNs for healthca-
re applications, i.e., Wireless Body Sensor Networks (WBSNs), which have
a tremendous potential to transform how people interact with and benefit
from information technology . As a case study, and without loss of
generality, this work is focused on the analysis of electrocardiogram (ECG)
signals as an example of very relevant bio-signal to study a plethora of pos-
sible cardiovascular diseases. In the next sections, the potential advantages
of WBSN technology and its application to ECG monitoring are discussed
more in detail.

1.1. Wireless Body Sensor Networks

An aging population and sedentary lifestyle are fueling the prevalence
of chronic diseases such as cardiovascular diseases, hypertension, and dia-
betes. According to the World Health Organization, cardiovascular disease
causes 30 % of all deaths in the world (about 17.5 million people in 2005).
Diabetes currently affects 180 million people worldwide and is expected to
affect around 360 million by 2030. More than 2.3 billion people will be over-
weight by 2015. A rapid rise in debilitating neuro-degenerative diseases such
as Parkinson’s and Alzheimer’s is threatening millions more [PWT0]. In sum-
mary, non-communicable diseases are today involved in 63 % of all deaths
worldwide, and are predicted to cost 75 % of the current GDP by 2030.

M Health behaviors/personal lifestyle
H Environment

m Genetics

W Access to care

Figure 1.2: Determinants of health (source: Institute for the future, Center
for disease control and prevention, 2006)

Burgeoning healthcare needs are exerting an enormous strain on the fra-
gile healthcare delivery infrastructure. Moreover, a shortage of skilled staff,
overload, and tightening of budgets have aggravated the impending health-
care crisis. These economical, social, and demographic trends highlight the
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need to exploit technological breakthroughs to bring affordable and efficient
solutions to people that will improve their quality of life. Moreover, as de-
picted in Figure 50 % of the determinants of health are related to health
behaviors and personal lifestyle. These changes call for a paradigm shift in
healthcare delivery, where wearable personal health I'T systems are key for
the advent of personalized preventive healthcare. These systems are able to
collect unprecedented longitudinal patient data and improve the effectiveness
of therapeutic intervention and the science of health promotion. They can
also support clinical decision making and provide a convenient, cost-effective
care delivery channel.

WBSNs for health monitoring and diagnosis, as well as emergency de-
tection, are gaining popularity and will deeply change healthcare delivery
in the next years. The use of these networks enables continuous biomedical
monitoring and care, helping to the prevention and early diagnosis of disea-
ses, while enhancing the patient’s autonomy with respect to more invasive
and bulky state-of-the-art technologies for healthcare monitoring. However,
the adoption of WBSN technology must overcome formidable technical and
social challenges (e.g., form factor, battery life, reliability, safety, security,
privacy, interoperability, ease of use, etc.). Although WBSNs share some of
these challenges with general WSNs, many WBSN-specific research and de-
sign questions that require new lines of inquiry have emerged. Therefore this
kind of networks deserve a separate analysis, since the nature of the sensed
signals, the type of signal processing algorithms and the inherent limitations
of healthcare applications make them very different from the rest of WSNs.

Unlike generic WSNs, which are composed of a high number of nodes
spread over a big area and performing the same task, WBSNs have a few
nodes to cover a human’s body (very often less than 10), with each node de-
dicated to a specific task. For example, a sensor node monitoring acceleration
at the ankle for gait analysis clearly cannot also measure the electroencepha-
logram (EEG) since both the location and sensing hardware are so different.

From the point of view of the data acquisition, the signals commonly used
in WBSN applications such as EEG, ECG or acceleration data have quite
high-frequency components, which entails the use of high sampling rates to
acquire them, typically in the range from 100 Hz to 1 kHz. This leads to
the generation of a huge amount of information in each node compared to
generic WSNs; that needs to be stored, processed or transmitted to a WBSN
coordinator.

To achieve a widespread adoption, WBSN nodes must be extremely non-
invasive, which means that the nodes must have a small form factor that
makes them comfortable to use and not impair normal activities. Smaller
nodes imply smaller batteries, creating strict tradeoffs between WBSN node
energy consumption and the fidelity, throughput, and latency requirements
of WBSN applications. This thesis studies these tradeoffs to improve the
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Figure 1.3: WBSN architecture

energy efficiency of the WBSN, and therefore improve its lifetime, while
exploiting the limited processing capabilities and memory resources of the
nodes to achieve smart WBSNs that are able to provide heath information
of the patient in real time.

WBSN  technology can be used to monitor many heterogeneous vital
signs, giving raise to a wide application domain. In the literature we can
find a great variety of WBSN applications that use one or more of these
vital signs (multi-parametric monitoring) to track every facet of life, from
sleep to pain. For example, Grundlehner et al. introduce a WBSN
for real-time arousal monitoring based on the ECG, respiration, skin conduc-
tance and skin temperature. These vital signs are collected by a WBSN and
transmitted to a central PC, that online processes the information to pro-
vide real-time arousal evaluation. Abbate et al. present a WBSN
system for fall detection based on accelerometry data. They propose an ap-
proach that filters “activities of daily-living” from the data sensed by the
accelerometers, which significantly improves the performance of the fall de-
tection, achieving 100 % sensitivity and specificity.

This thesis considers as a case study a WBSN for cardiac monitoring
that performs an automatic analysis of the ECG signal. Traditionally, this
analysis was either taking place online on bulky, high-performance bedside
cardiac monitors, or performed offline during a postprocessing stage after
ambulatory ECG recording using wearable, yet obtrusive, ECG data loggers
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(Holter devices). Recently, a significant industrial and academic effort has
been dedicated to build miniature, wearable and wireless ECG monitors
as an enabler of next-generation mobile cardiology systems. However, these
systems are mainly limited to streaming the raw ECG data, leading to a
high energy consumption that reduces their autonomy to few days. The aim
of this work is to design a miniaturized long-lived wireless Holter monitor
with embedded real-time diagnosis capability.

1.2. Cardiac monitoring

The choice of ECG is mainly motivated by the deep and detailed know-
ledge of the medical community about this signal, which reflects cardiac
disturbances that can be diagnoses using many of the algorithms already
available in the literature. Moreover, as previously mentioned, cardiovascular
diseases are the major cause of mortality worldwide, responsible for 30 % of
deaths worldwide in 2005 and economic fallout in billions of Dollars [PW10].
Their burden is only expected to rise due to, on the one hand, the fast aging
of the world population, and on the other hand, the increasing prevalence of
unhealthy lifestyles. WBSN technologies are poised to offer large-scale and
cost-effective solutions to decrease the high healthcare costs and medical ma-
nagement needs of ECG analysis and diagnosis that, otherwise, are expected
to be unsustainable for traditional healthcare delivery systems in the next
years. Nevertheless, the results obtained in this thesis using ECG monitoring
as a case study can be extended without loss of generality to other appli-
cations that use different biometric signals, since they all have very similar
requirements.

Regarding ECG, a plethora of research projects started in recent years:
MyHeart [LSDT06], Health@Home |SSS™10], MobiHealth [yHBW™04], Co-
deBlue [KKGO07], etc. These projects propose WBSNs as a solution to moni-
tor real-time patients’ vital activities and collecting data for further proces-
sing. In addition, the development of two commercial products and a research
prototype can be highlighted: Toumaz’s Sensium Life Pebble [Tec09|, a CE-
certified ultra-small and ultra-low-power monitor for single-lead ECG, heart
rate (HR), physical activity and skin temperature measurements with a re-
ported autonomy of 5 days on a hearing aid battery; Corventis’s PiiX [Cor09],
a CE and FDA-cleared lead-less band-aid-like ECG sensor able to perform
continuous arrhythmia detection based on HR measurements; and finally
IMEC’s prototype of a single-lead bipolar ECG patch [YTPT09| for ambu-
latory HR monitoring with a claimed 10-day autonomy on a 160mAh Li-ion
battery. Accordingly, state-of-the-art unobtrusive wireless mobile/ambula-
tory ECG monitors are single lead and limited to streaming of the whole ECG
signal to a coordinator or simple embedded HR measurement and analysis.
However, this thesis advocates for an advanced real-time automated multi-
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lead ECG diagnosis system. This long-lived smart wireless Holter requires a
major breakthrough in the energy efficiency of ECG monitors. To this end,
this thesis proposes to reduce the amount of streamed data by means of
embedding the automated ECG signal analysis without compromising the
system lifetime.

The ECG signal that the proposed smart Holter monitor captures and
analyzes describes the electrical activity of the heart recorded by electrodes
placed on the body surface [SLO5|. The voltage variations measured by the
electrodes are caused by the action potentials of the excitable cardiac cells
as they make the cells contract. The resulting heartbeat in the ECG is mani-
fested by a series of waves whose morphology and timing convey information
which is used for diagnosing diseases that are reflected by disturbances of the
heart’s electrical activity. The time pattern that characterizes the occurrence
of successive heartbeats is also very important.

QRS
Complex

|
R
ST
PR Segment
Segment T
P
PR Interval Q
S
QT Interval
I

Figure 1.4: ECG beat showing the QRS complex, and the P and T waves.

The ECG is roughly a periodic signal, and each beat is composed of
a QRS complex, preceded by a P wave, and followed by a T wave (see
Figure , which correspond with the sequence of mechanical events that
defines a cardiac cycle. This cardiac cycle can be assumed to start in the
right atrium where blood is collected from all the veins in the body except
those of the lungs. When the right atrium is triggered to contract, it forces
blood into the right ventricle. When the right ventricle has been filled, it
contracts and forces blood into the lungs, where the excess carbon dioxide
is replaced by oxygen. The pulmonary veins return the oxygenated blood to
the left atrium which in turn empties into the left ventricle. In its capacity as
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a high-pressure pump, the left ventricle forces blood to all of the body organs
and tissues (except the lungs) through the arterial vessels which evolve into
capillaries and, finally, into the venous return system of the heart.

Each cardiac cycle is composed of two phases, activation and recovery,
which are referred to in electrical terms as depolarization and repolarization
and in mechanical terms as contraction and relaxation. Depolarization is
manifested by a rapid change in the membrane potential of the cell (from
-90 to 20 mV in approximately 1 ms) and constitutes the initial phase of
the cardiac action potential. The rapid change in voltage causes neighboring
cells to depolarize, and, as a result, an electrical impulse spreads from cell to
cell throughout the myocardium. Depolarization is immediately followed by
repolarization during which the membrane potential of the cells gradually
returns to its resting state. Atrial depolarization is reflected by the P wave,
and ventricular depolarization is reflected by the QRS complex, whereas
the T wave reflects ventricular repolarization. Atrial repolarization cannot
usually be discerned from the ECG, since it coincides with the much larger
QRS complex.

The P wave reflects the sequential depolarization of the right and left
atria. In most leads, the P wave has positive polarity and a smooth, mo-
nophasic morphology. Its amplitude is normally less than 300 pV, and its
duration is less than 120 ms. An absent P wave may, for example, suggest
that the rhythm has its origin in the ventricles, causing atrial depolarization
to coincide with ventricular depolarization.

The QRS complex reflects depolarization of the right and left ventricles
which in the normal heart lasts for about 70-110 ms. It has the largest ampli-
tude of the ECG waveforms, sometimes reaching 2-3 mV. The first negative
deflection of the QRS complex is denoted the Q wave, and the first positive
is denoted the R wave, while the negative deflection subsequent to the R
wave is denoted the S wave (Figure . Although the QRS complex may
be composed of less than three individual waves, it is nevertheless referred
to as a QRS complex.

The ST segment is not really a wave, but represents the interval during
which the ventricles remain in an active, depolarized state. The ST segment
begins at the end of the S wave (the J point) from where it proceeds nearly
horizontally until it curves into the T wave (Figure . Changes in the
ST segment, which make it either more elevated, depressed, or more steeply
sloped, often indicate various underlying cardiac conditions.

The T wave reflects ventricular repolarization and extends about 300 ms
after the QRS complex. The position of the T wave is strongly dependent
on heart rate, becoming narrower and closer to the QRS complex at rapid
rates; this “contraction” property does not apply to the P wave or the QRS
complex. The normal T wave has a smooth, rounded morphology which, in
most leads, is associated with a single positive peak.
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The R-R interval represents the length of a ventricular cardiac cycle,
measured between two successive R waves, and serves as an indicator of
ventricular rate. The R-R interval is the fundamental rhythm quantity in any
type of ECG interpretation and is used to characterize different arrhythmias
as well as to study heart rate variability.

The PR interval is the time interval from the onset of atrial depolariza-
tion to the onset of ventricular depolarization. Accordingly, the PR interval
reflects the time required for the electrical impulse to propagate from its
origin, where the cardiac cycle is initialized, to the ventricles. The length of
the PR interval is weakly dependent on heart rate.

The QT interval represents the time from the onset of ventricular de-
polarization to the completion of ventricular repolarization. This interval
normally varies with heart rate and becomes shorter at more rapid rates.
Prolongation of the QT interval has been observed in various cardiac disor-
ders associated with increased risk of sudden death.

1.3. Motivation and challenges

In 2009, the prestigious Wired magazine published an article about how
wireless sensor technology can help us to track and analyze our vital signs,
exercise, nutrition and health to optimize our lives. A fragment of the article
says: “a data-driven health revolution promises to make us better, faster,
and stronger”. WBSNs are poised to be technology to enable this revolution,
since they can provide long-term non-invasive monitoring of our vital signs
and habits to give us information about our health status. Then, the first
challenge of this thesis is to develop an ECG monitoring system that not
only continuously acquires and displays the ECG signal of the patient, but
it also features on-board real-time analysis and diagnosis, instantly providing
information about the operation of the heart. This information is accessible
to the patient through a hand-held device, such as a mobile phone, and
it can also be sent to the medical staff in real-time. If an abnormal event
happens, the system will automatically detect it and the patient and the
doctors will be immediately informed, making possible a very quick reaction
in case of an emergency. To achieve the development of such system, several
algorithms are proposed and optimized to perform on-board real-time ECG
signal filtering, characteristic points detection and arrhythmia classification.

The second main challenge of this thesis is the improvement of the WBSN
energy efficiency, while meeting the data fidelity requirements of the appli-
cation. The battery-size versus -life tradeoff plays a major role in defining
any WBSN system, and applying design techniques to reduce energy con-
sumption can improve both size and lifetime. If the energy consumption can
be reduced far enough, perpetual operation on harvested energy becomes
a possibility. Thus, WBSN node sensing, processing, storage, and wireless
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transmission must all be done in a way that reliably delivers the important
data but with the lowest possible energy consumption, thus minimizing bat-
tery size (which dominates WBSN node form factor) and maximizing time
between battery recharge (which is a key factor in wearability), both of which
can impact the performance and practicality of possible applications. Hence,
to accomplish an improvement in the energy efficiency of the proposed real-
time ECG monitoring system, several solutions are studied at the level of
the medium access control (MAC) protocol and the operating system (OS).

1.4. Thesis outline

The rest of the thesis is organized as follows: chapter [2] reviews some of
the available state-of-the-art WBSN architectures and provides a detailed
description of the one used in this thesis, the Shimmer™ platform. Chap-
ter [3] presents optimizations at the level of the MAC protocol and the OS
to improve the energy efficiency of the platform. Besides, it provides a cha-
racterization of the Shimmer™"s energy consumption using the proposed
low-level optimizations. Chapter [4] describes a set of application-level opti-
mizations that consist of several algorithms for ECG filtering, delineation
and arrhythmia detection. In addition to this, it shows a detailed study of
the accuracy, execution time and memory usage, as well as a comprehensive
evaluation of the energy consumption entailed by the considered algorithms.
Our concluding remarks will be given in chapter 5] as well as the contribu-
tions of this work and future lines of work.



Chapter 2

Case study architecture
evaluation

Nothing in life is to be feared,

1t 1is only to be understood.

Now is the time to understand more,
so that we may fear less.

Marie Curie

2.1. WBSN architectures: state of the art

This work considers the typical WBSN architecture, where a software
application for data processing is executed on a microcontroller, and the
remaining services are delegated to an operating system. Figure provides
a structural outlook of this class of nodes. We assume that a node transmits
its data to a central coordinator through the typical star topology used in
WBSNs. Each node in the network generates a constant traffic, thus avoiding
data bursts that may interfere with the periodic transmission of the other
nodes in the network.

The sensor component describes the hardware that conditions and sam-
ples the raw signal at a frequency that depends on the signal and on cons-
traints such as the Nyquist-Shannon theorem. Then, the samples are quan-
tized by an A/D converter using a number of bits that depends on its reso-
lution.

The applications components comprise all the software programs used to
process the sensed data, including filtering, feature extraction, compression
and aggregation.

The operating system (OS) provides services, such as, the interaction with
the hardware, the software-level management of the sensing, the memory and
the radio transmission. The OS also manages a set of queues, including the

11
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Figure 2.1: Block diagram of the reference node architecture

ones for interprocess communication, and the one containing the packets to
be transmitted. Furthermore, the OS implements a MAC protocol to share
the access to the wireless medium among the nodes in the star-topology
network.

The microcontroller (uC) is the component of the platform in charge of
executing the OS and the software applications. Depending on the hardware,
techniques such as dynamic voltage scaling [GC97| might be available to
allow the microcontroller to be active for a limited time (or duty cycle), and
to switch to a low-power state when there is no task to be executed.

The memory bank is used to store the data required by the applica-
tions and the OS. Although a larger memory exhibits a higher energy con-
sumption [KOKEQ6|, a limited size may affect the capacity of the internal
queues, and hence the performance of the applications and the throughput
of the transmission.

Finally, the radio component describes the hardware used to modula-
te and transmit the data through the wireless channel. Depending on the
characteristics of the platform, the wireless transmission power and the mo-
dulation scheme can be adjusted, even dynamically [SRS03|, to determine
the distance that is covered with a predetermined packet error rate (PER).

With the proliferation of WBSN applications, many platforms whose ar-
chitecture corresponds to the one depicted in Figure[2.I]have appeared during
the last years. The first critical choice when we face the development of a
WBSN is the selection of the most appropriate platform, taking into account
the requirements of the application. In this work, the different platforms are
going to be analyzed from the point of view of their flexibility and efficiency.
In this sense, we can divide them into two main groups: application-specific
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integrated circuits (ASICs) and commercial off-the-shelf (COTS) platforms.

2.1.1. Application-Specific Integrated Circuits

The use of ASICs is always more efficient in terms of energy consumption
and size, since they are especially designed for a very specific application.
However, these devices involve a great design effort and offer a very limited
flexibility. They can only perform a predefined specific sequence of opera-
tions due to their hardwired nature, since they are tailored for a particular
application.

In the literature, many energy-efficient ASIC implementations are avai-
lable for digital signal processing in health monitoring systems, performing
heart rate monitoring and extraction of ECG characteristics. For instance,
Massagram et al. [MHM™10| introduced an ASIC designed for digital heart
rate variability (HRV) parameter monitoring and assessment. This ASIC
chip measures R-R intervals and stores HRV parameters into its internal
memory in real time. The prototype chip was fabricated in a 0.5 pm com-
plementary metal-oxide semiconductor technology on a 3x3 die area, with a
measured dynamic power consumption of 10 yW and measured leakage cu-
rrent of 2.62 nA. The HRV monitoring system including this HRV ASIC, an
analog-to-digital converter, and a low complexity microcontroller was estima-
ted to consume 32.5 W, which is seven times lower power than a stand-alone
microcontroller from Microchip performing the same functions.

Similarly, in another study, Hui-Min et al. [HMYLH™"10] introduced an
ASIC platform to extract QRS complexes from ECG signals. The detec-
tion is based upon digital analysis of slope, amplitude and width, reaching
99.36 % of accuracy. This ASIC features only 2.21 W power consumption
and 0.68 mm? core area.

In [WC04], a Fast Fourier Transform (FFT) processor with programma-
ble FFT length and bit precision was proposed. The FFT processor, fabrica-
ted in a standard 0.18 um CMOS process, operates in sub-threshold voltage
region. At the minimum supply voltage (180 mV), where the circuit is still
functional, it dissipates only 90 nW.

Moreover, [KSR03| presents an ultra-low-power, delayed least mean squa-
re (DLMS) adaptive filter operating in the subthreshold region for hearing
aid applications. Simulation results show that the DLMS adaptive filter can
operate at 22 kHz using a 400 mV supply voltage. To validate the robust
operation of subthreshold logics, a 0.35 pum, 23.1 kHz, 21.4 nW, 8x8 carry
save array multiplier test chip was fabricated. The test chip showed stable
operation at a supply voltage of 0.30 V.
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2.1.2. Commercial Off-The-Shelf platforms

Even though ASIC platforms achieve significant energy efficiency, their
usage are very limited due to their rigid, not reprogrammable nature. COTS
are in general less energy efficient and have a bigger size, but on the other
hand they provide more flexibility, enabling the execution of more heteroge-
neous tasks. Many times, COTS are a good solution since they can provide
reasonable size, performance and lifetime for many WBSN applications, whi-
le having a very low production cost.

COTS platorms normally use general purpose processors (GPPs), which
offer high flexibility for embedded biomedical signal processing. For instan-
ce, Jocke et al. [JBWT09| present a 0.13 um CMOS sub-threshold mixed-
signal system-on-chip (SoC) that acquires and processes an ECG signal for
wireless ECG monitoring. This SoC uses a sub-threshold digital microcon-
troller to process the acquired ECG data, proving that biomedical signal
processing can be performed on WBSN nodes by relatively simple general
purpose low power microcontrollers. Moreover, many commercially available
WBSN nodes include a well-established general purpose low-power proces-
sor as a digital processing platform on the node. For example, TelosB [Tecbl,
Shimmer™ [BGMT10| and Tinynode [SA| are equipped with the MSP430
microcontroller from Texas Instruments [Insc] and MICAz [Tecal includes the
ATmegal28L low-power microcontroller from Atmel corporation. However,
these commercially available low-power microcontrollers do not exploit very
sophisticated energy-efficiency techniques. A custom implementation of the-
se well-established instruction set architectures (ISAs) can provide a higher
energy efficiency compared to commercially available low-power microcon-
trollers. For example, Zhang et al. [ZSB™11] show that a custom implemen-
tation of a well-established ISA achieves 100x higher energy efficiency per
instruction with respect to the MSP430. However, custom implementations
generally lack of built-in units such as clock generator, voltage regulator
as well as compatible peripherals that reduce their flexibility compared to
commercially available microcontrollers.

2.1.3. Application-Specific Instruction-set Processors

A balanced choice between hardware flexibility and energy efficiency for
online biomedical signal processing is an application-specific instruction-set
processor (ASIP). ASIP systems offer hardware flexibility for a specific appli-
cation group while achieving a higher energy efficiency compared to general
purpose low-power microcontrollers, as their instruction set is reduced and
customized for the corresponding application group.

The reduced and customized instruction set leads to a significant energy
saving. For instance, in [YKH™'09|, a general purpose processor architecture
was modified to have several customized instructions for a cardiac beat de-
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tector algorithm. These modifications include a combined instruction which
executes two load and one multiply-accumulate operation in parallel, lea-
ding to a 81 % cycle count reduction and 55 % energy saving compared to
the general purpose processor for the beat detector algorithm. In addition
to instruction set modifications, having dedicated hardwares for common
operations of targeted application groups can improve the energy efficiency.
These dedicated hardware blocks can be implemented either as an internal
functional unit of an ASIP processor like an arithmetic logic unit (ALU)
or as a peripheral attached to the processor. In [KC11], a biomedical sig-
nal processing platform with a GPP and several programmable hardware
accelerators, attached for common operations of biomedical signal proces-
sing algorithms such as FIR and median filters, a coordinate rotation digital
computer engine and a FFT module, was introduced. The authors show that
programmable accelerators perform signal processing tasks with up to 215x
lower energy consumption compared to the GPP. Moreover, the GPP with
the accelerators achieves up to 91 % energy savings compared the GPP-only
implementation.

2.2. The Shimmer™ platform

Considering the previously discussed advantages and drawbacks of each
type of architecture available for WBSN nodes, I decided to use the Shimmer™
platform as representative target architecture case study of WBSN. The choi-
ce of this platform was mainly motivated by the following reasons:

= High flexibility, due to the use of the MSP430 general purpose mi-
crocontroller. This work is not only focused on the biomedical signal
processing, but also analyzes and proposes optimizations in other levels
of the system’s architecture (OS, communication protocol, etc.). For
this reason ASIC and ASIP implementations were discarded, seeking
to have an instruction set that is a flexible as possible.

= The computational and memory resources of this platform, as well as
its energy supply, offer a representative set of resources of WBSNs for
the considered applications in this work. Moreover, the use of COTS
components reduce the cost of the platform compared to ASICs or

ASIPs.

= Software and firmware support, as though the MSP430 is not as low-
power as other architectures, it is a very spread microcontroller used
in a heterogeneous application domains. Therefore, there is a lot of
support for it in terms of tools or ported code (OSs, MAC protocols,
applications, etc.).
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= Broad target application range, since there is a great number of ac-
cessories for the Shimmer™ platform, making it usable non only for
ECG, but also for other biomedical (EEG, electromyogram, galvanic
skin response, etc.) and non-biomedical (temperature, humidity, light,
etc.) applications.

s It is a good representative of a WBSN platform. Therefore, all the
results provided in this thesis, where the Shimmer™ has been used,
are similarly applicable to other WBSN platforms.

2.2.1. Overall Shimmer™ architecture

Our target WBSN node is the Shimmer™ |[BGM™10|, a small wireless
sensor platform designed by Intel for wearable health-sensing applications.
This platform has the long term goal of facilitating research in independent
living technologies, since it can be mounted in an MP3 player armband and
the durable enclosure has a size of 54 x 35 x 18 mm. Shimmer™ is equipped
with the ultra-low-power TI MSP430F1611 [Insc] microcontroller, two radio
chips (Bluetooth and IEEE 802.15.4-compliant), a 3-axis accelerometer and
an expansion port used to connect a daughter board equipped with additional
sensors (ECG, gyroscopes, etc.). It also provides a MicroSD™ Flash socket
for up to 2 GB of additional storage, four light-emitting diodes (LED) for
display purposes and an integrated 280 mAh Li-ion battery.

This sensor platform has been designed to be programed with the Tin-
yOS |[LMP™04] operating system and its specific drivers. Unfortunately, Tin-
yOS shows several drawbacks, which will be discussed in Section[3.3.1.1] that
make it unsuitable for the applications presented in this work. Due to these
limitations, we ported FreeRTOS [bibal, which is a portable, open source,
hard real-time mini kernel that includes support for the TI MSP430 mi-
crocontroller and the CC2420 IEEE 802.15.4-compliant radio chip used by
Shimmer™. Finally, I have used the open-source GCC 3.2.3 toolchain for
the MSP430 [bibb] and Code Composer Essentials (CCE) v.3.1 [Insb|, which
use all the hardware resources of the target microcontroller, to compile the
applications for the node.

2.2.2. Texas Instruments MSP430 microcontroller

The Texas Instruments MSP430F1611 [Insc| is one of the core compo-
nents of the Shimmer™ baseboard and its primary advantages are its extre-
mely low power during periods of inactivity and its proven history for medical
sensing applications. The MSP430 is based on the 16-bit RISC CPU, perip-
herals and an adaptable clocking mechanism connected via a von-Neumann
memory address bus (MAB) and memory data bus (MDB). The MSP430
offers a maximum frequency of 8 MHz and is optimized for high-level pro-
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Figure 2.2: Simplified Shimmer™ system interconnections

gramming with only twenty seven core instructions and seven addressing
modes. Figure 2.4] illustrates an architectural overview of the CPU, which
shall be discussed under the following headings: clocking, memory, timers,

USART and ADC.

2.2.2.1. Clocking

The MSP430 clocking mechanism is designed to support a battery supply
with low power consumption by allowing the user to select from three inhe-
rent clock signals to gain optimum correlation between performance selection
and power usage. The three available clocks are:

» Auxiliary Clock (ACLK), which is a low-frequency clock supplied by a
32 kHz crystal, and utilized for self wake-up and self-timing operation
and low-power mode.

» Master Clock (MCLK), a high-speed clock which is fed from an internal
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digitally controlled oscillator (DCO), selected using interrupt requests.
This is used for high-speed signal CPU and peripheral applications.
The DCO, which may operate up to 8 MHz, can be activated from
sleep mode in 6 ps and allows the CPU to be operated in very quick
bursts.

» Sub-Main Clock (SMCLK), which is a clock designed to utilize the
DCO or standard crystal oscillators as necessary for peripheral opera-
tion.

2.2.2.2. Memory

The MSP430 contains 10 kB of RAM, 48 kB of Flash and 128 B of
information storage. The programming of the flash memory can be completed
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in system using the CPU or via the bootstrap loader or JTAG port. The flash
memory can be utilized for storing both the data and the code and the CPU
has the ability to write to the flash memory via single-bytes and single-words.

2.2.2.3. Timers

The MSP430 microcontroller is equipped with two timers, Timer A
and Timer B. Timer A is a 16-bit asynchronous timer/counter which con-
tains three capture/compare registers which allow for pulse-width modula-
tion (PWM) outputs, interval timing and multiple capture/comparing. Ti-
mer A also includes asynchronous input and output latching and the ability
to generate interrupts depending on overflow conditions of the counter and
capture/compare registers.

Timer B is identical to Timer A with the additional functionality of
having a programmable length (8, 10, 12, or 16 bits), double-buffered and
group-able registers and the ability to force the outputs into a high-impedance
state. Timer B however does not contain the synchronized capture /compare
input bit function.

2.2.2.4. USART

The MSP430 contains two hardware-universal asynchronous/synchro-
nous receive/transmit serial communication USARTs (USARTO0 and USART1),
as illustrated in Figure which enable SPI (3 or 4 pin) and asynchronous
UART functionality. The USARTO also allows I2C transmissions and has
two specific DMA channels to ensure maximum throughput with data ra-
tes up to 400 kbps. The signal transmission and reception is possible using
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double-buffered channels.

Within the Shimmer™ platform, the MicroSD™ Flash Socket and 802.15.4
radio are connected to the microcontroller using the SPI mode, where serial
data is transmitted using a shared master clock. This is activated when the
12C bit is cleared and the SYNC bit is set. The flow of the data trans-
fer is possible using three or four pins; the slave in, master out (SIMO),
slave out, master in (SOMI), USART SPI clock (UCLK) and slave transmit
enable (STE) formats. In addition to master and slave modes 7-bit and 10-bit
addressing are also supported. For low-power operation, receiver start-edge
detection is incorporated for auto wake-up.

2.2.2.5. ADC

The MSP430 has 8 ADC channels for 12-bit A/D conversions using a
16-word conversion-and-control buffer which enables data to be read and
stored without the need for CPU intervention. For the Shimmer™ platform
the external ports are utilized for reading data from the XYZ accelerometer
(3 channels), the internal expansion connector (3 channels) and the external
expansion connector (2 channels). The ADC internal ports can be used to
read data from the internal temperature sensor or read in the battery voltage.
The maximum conversion rate of the ADC is greater than 200 ksps and the
sampling period can be controlled by software or one of the internal timers.
To maintain the low-power usage capabilities of Shimmer™ the MSP430
ADC core is disabled when not in use and re-enabled when necessary.

2.2.3. (CC2420 radio transceiver

One of the key functions of the Shimmer™ board is its ability to com-
municate as a wireless platform. Although Shimmer™ has the dual functio-
nality of having both 802.15.4 and Bluetooth radio modules, in this work
we only consider the CC2420 [Insa] 802.15.4-compliant radio chip due to
its low-power capabilities and flexibility that allow the implementation of
power-saving techniques.

The CC2420 radio chip is suitable for WBSN, as it is designed for low-
power and low-current applications. The radio may also be turned off by the
MSP430 for low-power operation. The CC2420 radio has an inherent direct-
sequence spread-spectrum modem and a theoretical data rate of 250 kbps.
The CC2420 is controlled by an SPI connection over the USART1 and with
the CC2420 having support for applications such as packet handling, data
transmissions, data encryption, received signal strength, link quality and
packet timing, the work load on the MSP430 microcontroller is reduced. The
(C(C2420 requires only a few extra additional components such as a reference
crystal oscillator and does not need any external filters.
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2.2.4. ECG daughter board

The Shimmer™ platform provides a 20-pin internal expansion connector
that allows the use of other add-on modules with additional sensors, such
as ECG, galvanic skin response, electromyogram, gyroscope, magnetometer,
GPS, etc. Within this work we only consider a daughter board that is able
to acquire and condition 3-lead ECGs.

Figure 2.5: ECG add-on board and Shimmer™ with connecting sensor pads

This expansion board, as in Figure has four connectors for four elec-
trodes, which have to be placed in the right arm (RA), left arm (LA), right
leg (RL) and left leg (LL) of the patient. The design uses CMOS operatio-
nal amplifiers and produces two derivations, obtained by reading the voltage
difference RA - LL (lead II) and LA - LL (lead III). The remaining standard
derivation (lead I, RA - LA) can be calculated on the host CPU from leads IT
and III. RL electrode is actively driven with the average of the other three,
to improve signal-to-noise, this type of connection is called a “Wilson’s Cen-
tral Terminal”. This creates a negative-feedback loop where common-mode
voltage on the body is driven to zero by the RL electrode.

In addition, lead inputs have weak pull ups to detect floating electrodes.
The ECG front end was designed to provide fast baseline restoration for
ambulatory applications and a gain of 175. It implements the following three
filters:

» First-order low-pass filter at 724 Hz, at lead input.
= First-order low-pass filter at 159 Hz, at final gain stage.

= AC-coupling high-pass filter at 0.05 Hz to reduce motion artifacts.

2.2.5. Energy consumption estimation

In order to further justify the choice of the Shimmer™ platform and
motivate the techniques for energy efficiency proposed in this thesis, this
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section presents energy consumption results of a WBSN node in two different
application scenarios: ECG streaming (a 2-channel ECG signal is acquired by
a node placed on the body and transmitted to the WBSN coordinator) and
Rpeak (application that detects when a heart beat occurs and only transmits
the location of the R peaks to the WBSN coordinator).

These results [RPRF08| were obtained using a WBSN platform develo-
ped at IMEC Netherlands [PGdVT07], whose hardware architecture is very
similar to the Shimmer™ node. This platform is capable of monitoring up to
24 EEG channels and 1 ECG channel by means of an ultra-low-power ASIC
that features a constant power consumption 10.5 mW at 3.0 V. The proces-
sing capability is provided by a TI MSP430F149 low-power microcontroller.
The wireless communication is based on the Nordic nRF2401, a low-power
single-chip 2.4 GHz transceiver. This component consumes 10.5 mA at an
output power of -5 dBm and 18 mA in receive mode.

Regarding the software, the node includes an embedded operating sys-
tem, TinyOS, on top of which the entire software architecture is built, in-
cluding the MAC protocol. This study proposes the use of a Time Division
Multiple Access (TDMA) protocol, which allows several users to share the
same frequency channel by dividing the timeline into different time-slots.
Each node has a slot assigned, and can use it to exchange data with the
WBSN coordinator. The timing of the protocol is regulated by the coordi-
nator, which periodically broadcasts synchronization signals (beacons) to all
the nodes.

ECG streaming Rpeak

W Microcontroller
M Radio

Sensors

Figure 2.6: Energy consumption of the main components of a WBSN plat-
form in two different application scenarios: ECG streaming and Rpeak

Using this hardware and software architectures, Figure [2.6] presents the
energy consumption by hardware component for two different scenarios (ECG
streaming and Rpeak application), assuming a sampling frequency of 200 Hz.
This figure shows that the sensing part features a very high energy consum-
ption, which can be decreased with the use of the Shimmer™ platform,
since the power consumption is reduced to 6.6 mW. The radio is also an
energy-hungry component, specially in the ECG delineation scenario, but
its consumption can be decreased by using a more optimized MAC protocol
and a more efficient OS. Moreover, Figure [2.6] also proves that the energy
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consumption of the radio can be significantly reduced if the microcontroller
of the node is used to perform ECG signal processing to decrease the amount
of data that needs to be transmitted to the WBSN coordinator.

For these reasons, this thesis proposes several design techniques for smart
and energy-efficient WBSNs, that will be detailed in the following chapters.
The final goal is to design a long-lived smart wireless Holter with embedded
real-time diagnosis capability.






Chapter 3

Communication-related
optimizations for WBSNs

FEverything should be made as simple as
possible, but not simpler.

Albert Einstein

A WBSN node is equipped with a radio, which allows the device to send
the collected and processed information to the WBSN coordinator or receive
commands from it. The medium access control (MAC) protocol manages the
access to the wireless channel and has to deal with several communication
issues. The most important ones are the following;:

collision

6. 0 0.0

Node S;'s radio range Node S,'s radio range

Figure 3.1: A collision happens when nodes S; and Sy transmit a packet at
the same time

25



26 CHAPTER 3. Communication-related optimizations for WBSNs

Node S's radio range

Figure 3.2: Overhearing: node S sends data to node R, but nodes Ny, Na,
..., N7 all receive such packet

Node A's radio range

Figure 3.3: Idle listening: node A does not know when it will be receiver of
a message from Ny, No, ..., or Ny

s Collisions. They happen when two or more devices access the wireless
channel to send information at the same time (see Figure [3.1). This
causes the corruption of the packets that are being sent, which have to
be transmitted again.

» Overhearing. It occurs when a node A is sending data to a node B, and
there is a node C that receives this packet (see Figure [3.2)).

s Idle listening. It appears when a node A does not know when another
node B of the network is going to send a packet to it (see Figure .
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This causes that node A needs to keep the radio in receiving mode for
a period of time when it is not receiving any information.

All these problems lead to an important increase in the energy consum-
ption, which can be due to retransmission of the packets, reception of infor-
mation that is not for the node or listening to the channel when no infor-
mation is being sent to the node. A MAC protocol for WBSN devices has to
consider all these issues and try to minimize their occurrence to reduce the
energy consumption of the node as much as possible. Moreover, the MAC
protocol involves the transmission of control packets like synchronization
messages, acknowledgments to indicate that a packet has been correctly re-
ceived, etc. whose transmission should also be minimized in order to further
reduce the energy consumption of the radio.

3.1. State of the art: Medium Access Control pro-
tocols

Since the MAC protocol significantly influences the energy consumption
of the WBSN, different solutions presented in the literature are going to be
described in this section.

Centralized schedule-based MAC protocols, such as time division multi-
ple access (TDMA), perfectly fit the requirements of WBSN networks, since
typically all the nodes of the network transmit their data to a central coor-
dinator through a star topology. The use of these protocols avoid collisions,
since the central coordinator synchronizes the nodes of the network so that
only one of them is accessing the wireless channel at a time. They also avoid
overhearing, because a node switches its radio to receiving mode only when it
is expecting some information. For example, during the time slot the WBSN
coordinator uses to send a synchronization packet to all the nodes of the
network or after sending a packet, in order to receive the acknowledgement
the coordinator will send if the packet has been correctly received. For the
same reason, idle listening does not occur either in this kind of protocols.

In this regard, H-MAC [LT10| aims to improve WBSNs energy effi-
ciency by exploiting heartbeat rhythm information, instead of using periodic
synchronization beacons, to perform time synchronization. Biosensors in a
WBSN can extract the heartbeat rhythm from their own sensory data by de-
tecting waveform peaks. All the rhythms represented by peak sequences are
naturally synchronized since they are driven by a same source, the heartbeat.
Following the rhythm, biosensors can achieve time synchronization without
having to turn on their radio to receive periodic timing information from a
central controller, so that energy cost for time synchronization can be com-
pletely avoided and the lifetime of network can be prolonged.

The reservation-based dynamic TDMA (DTDMA) [LLK09| focuses on
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the dependability and power efficiency. In DTDMA, the slots are allocated by
the WBSN coordinator only to the devices which have buffered packets and
released to other devices after the current allocation. Through the adaptive
allocation of the slots in a DTDMA frame, the coordinator adjusts the duty
cycle adaptively with the traffic load. Comparing with the IEEE 802.15.4
MAC protocol, the DTDMA provides more dependability in terms of lower
packet dropping rate and less energy consumption.

BodyMAC [FD09], which also shows superior performance than IEEE
802.15.4, uses flexible bandwidth allocation to improve node energy effi-
ciency by reducing the possibility of packet collisions and by reducing radio
transmission times, idle listening and control packets overhead. BodyMAC
is based on a downlink and uplink scheme in which the contention free part
in the uplink subframe is completely collision free. Three types of bandwidth
allocation mechanisms allow for flexible and efficient data and control com-
munications. An efficient sleep mode is introduced to reduce the idle listening
duration, especially for low duty cycle nodes in the network.

Recently, the IEEE 802.15.6 task group [Net] has approved a draft of a
standard for Body Area Network (BAN) technologies with the scope of short
range, wireless communication in the vicinity of, or inside, a human body
(but not limited to humans). The aim of the group is to create a protocol that
can use existing ISM bands as well as frequency bands approved by national
medical and/or regulatory authorities. The protocol needs to also provide
support for Quality of Service (QoS), extremely low power, and data rates
up to 10 Mbps while simultaneously complying with strict non-interference
guidelines. This standard considers effects on portable antennas due to the
presence of a person (i.e., varying with male, female, skinny, heavy, etc.),
radiation pattern shaping to minimize the specific absorption rate (SAR)
into the body, and changes in characteristics as a result of the user motions.

3.2. Proposed MAC protocol

Beacon Beacon
— "—— Contention Access Period (CAP) | Contention-Free Period (CFP) | 41 —
f I 1
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Superframe Duration (SD) = 15.36 ms *oSFO |

|
[
| Beacon Interval (Bl) = 15.36 ms +pBCO |
[

Figure 3.4: Structure of the IEEE 802.15.4 superframe
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In order to fully exploit the low-power capabilities of this radio chip, and
therefore reduce the energy consumption of the overall system, this work
proposes a MAC protocol specially optimized to fit the requirements of the
herein considered WBSN applications. Our target node implements a simple
TCP/IP stack for the CC2420 radio instead of the IEEE 802.15.4 [Std03].
To optimize the energy consumption of the WBSN platform, we decided
to implement a reduced version of the beacon-enabled mode of the IEEE
802.15.4 protocol using Guaranteed Time Slots (GTS) [Std03| over a star
network (i.e., each sensor node can only send data to a designated WBSN
coordinator/sink).

In this mode, the coordinator broadcasts periodic beacons, which are used
by the rest of the nodes to synchronize their transmissions with their exclusi-
vely allocated GTS. These beacons have to be sent periodically every beacon
interval (BI) = 15.36-2%9 ms, where BO is the beacon order, 0 < BO < 14.
Following the beacon reception, an active period called superframe, whose
structure is shown in Figure [3.4] is defined. The duration of the superframe
(SD) is equal to 15.36-2°C ms, where SO is the superframe order, that has
to be less or equal to BO. The SO has been set to 4, that leads to a SD of
245.76 ms divided in 16 equal time slots. In order to allow multiple sensor
nodes in the network, a fixed two time slots per GTS have been assigned,
which means 30.2 ms per GTS. In this configuration, up to 8 nodes can be
simultaneously in the WBSN. Let us observe that, although the superfra-
me is divided into a contention access period (CAP) and a contention-free
period (CFP), the proposed protocol only uses the latter, since it pursues
collision-free operation.

The size of the packets used in this protocol is 127 bytes (11 for the
header, 114 of payload and 2 for the checksum). Then, each node can send
up to four full packets in its GTS, because 7.36 ms are needed for filling the
C(C2420 transmission buffer and sending the packet over the air, as it will be
shown in Section B.4.11

The proposed protocol uses a TDMA-like approach, which has been pro-
ven to be advantageous in star-topology WBSNs, since its schedule-based
nature eliminates the possibility of having collisions and overhearing. Mo-
reover, this protocol keeps the control packet overhead very low. The only
control packets that are sent are the beacons to synchronize the nodes with
their GTS and the ACKs that the WBSN coordinator sends to the nodes to
confirm the reception of the transmitted packets. In addition, idle-listening
is dramatically reduced, since the nodes know quite precisely when they have
to be in receiving mode to listen to the beacon and the ACKs sent by the
WBSN coordinator.

Very tight timing constraints are required for the protocol to keep all the
nodes of the WBSN synchronized while reducing the idle-listening periods as
much as possible, since an accurate timing will allow the nodes to adjust very
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precisely the instants of time when they have to switch their radio on to lis-
ten for an incoming beacon. In addition, each platform of a WBSN can sense
one or several vital signs (multi-parametric monitoring). A set of algorithms
are applied on each signal separately, in order to condition the signal or ex-
tract meaningful information that can subsequently be combined to perform
a more analysis considering all the signals. The algorithms used to process
each of the acquired signals may also change dynamically, depending on the
required performance or accuracy of the analysis at each moment. The use
of an operating system (OS) helps to achieve an efficient and energy-aware
management of the heterogeneous hardware resources of the WBSN node.
Moreover, the OS must provide an effective scheduling of the different tasks
to be executed in the microcontroller, such as signal processing algorithms,
MAC protocol management or sensing, as well as interprocess communica-
tion. Finally, unlike standalone applications, in which the hardware resources
have to be manually managed by the programmer, the use of an OS allows
to decouple the hardware and software resources of the node, providing more
flexibility. For this reason, the use of an OS is introduced in the following
section.

3.3. Operating system

An OS for WBSNs should provide real-time capabilities to deal with the
high sampling frequencies required by some of the biopotential signals as
well as with the tight timing constraints, which have been presented in the
previous section, and that are imposed by the proposed centralized schedule-
based MAC protocol. The OS should also implement multitasking, since the
node will be executing different software tasks concurrently. These tasks
comprise sensing, MAC protocol management and all the algorithms that
are applied on the various signals that are acquired. Finally, the OS must
be small in terms of computational overhead and memory usage, due to the
limited processing and storage resources of WBSN platforms.

3.3.1. State of the art

During the last years, several OSs specially designed for WSN devices
have been proposed [FK1I]. Two of the most salient and spread among the
WSN community are TinyOS [LMPT04] and Contiki [DGV04]. These OSs
are analyzed in the following subsections, as well as FreeRTOS [biba), which
is not specifically designed for WSNs, but fulfills all the requirements to be
used by WBSN devices.
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3.3.1.1. TinyOS

TinyOS [LMPT04] is an open source event-driven OS designed for low-
power wireless devices, such as those used in sensor networks, ubiquitous
computing, personal area networks, smart buildings, and smart meters. Tin-
yOS can support concurrent programs with very low memory requirements.
The OS has a footprint that fits in 400 bytes. The TinyOS component li-
brary includes network protocols, distributed services, sensor drivers, and
data acquisition tools. Unfortunately, although it is possible to use TinyOS
for some specific real-time applications due to its event-driven capabilities,
this is not enough for the applications considered in this thesis. Sometimes,
serving a new event, as for example a packet reception, requires a long exe-
cution time. In these cases, TinyOS recommends to launch a new task, in
order to keep the code associated to the event as short as possible and the-
refore not disabling other events during long periods. Anyway, due to the
non-preemptive nature of the TinyOS task scheduler, tasks should also be
short, in order to yield the CPU often enough so that the rest of tasks can
accomplish their deadlines. For complex systems, that execute many task,
this forces the programmer to generate very specific and complicated code
for each application.

Summarizing, TinyOS does not feature hard real-time capabilities, which
are required by many WBSN applications due to the high sampling frequency
that is required, the complexity of the algorithms and, especially, the wire-
less communication, since most of the MAC protocols for WBSNs follow a
centralized approach that involves very tight timing constraints to maintain
the synchronization among all the devices of the network.

3.3.1.2. Contiki OS

Contiki [DGV04] is a small, open source, highly portable, multitasking
computer OS developed for use on a number of memory-constrained net-
worked systems ranging from 8-bit computers to embedded systems on mi-
crocontrollers, including sensor network platforms. Contiki is designed for
embedded systems with small amounts of memory. It consists of an event-
driven kernel on top of which application programs are dynamically loaded
and unloaded at runtime. The processes of this OS use light-weight pro-
tothreads that provide a linear, thread-like programming style on top of
the event-driven kernel. It also supports per-process optional preemptive
multi-threading, interprocess communication using message passing through
events, as well as an optional GUI subsystem with either direct graphic sup-
port for locally connected terminals or networked virtual display with VNC
or over Telnet. Contiki runs on a variety of platform ranging from embedded
microcontrollers such as the MSP430 and the AVR to old home PCs. Code
footprint is on the order of kilobytes and memory usage can be configured
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to be as low as tens of bytes. However, as TinyOS and most of the OSs
especially designed for WSNs, Contiki does not have real-time capabilities,
which makes it impossible to use in some WBSNs.

3.3.1.3. FreeRTOS

FreeRTOS |bibal is a portable, open source, hard real-time OS for em-
bedded devices. The main advantages of this operating systems are:

» Supports a full preemptive task scheduler (although it also includes
cooperative and hybrid configuration options).

» Implements task prioritization, without software restrictions on the
number of priorities that can be used.

» Different memory models (from a very light one to a fully featured
version).

= Queues, binary semaphores, counting semaphores, recursive semapho-
res and mutexes for communication and synchronisation between tasks,
or between tasks and interrupts.

s Mutexes with priority inheritance.

= Supports efficient software timers.

» Powerful execution trace functionality.
= Stack overflow detection options.

s Free development tools for many supported architectures.

FreeRTOS is designed to be small and simple. The kernel itself consists
of only three or four C files. Moreover, all the previously enumerated fea-
tures can be selected separately to be included or not, allowing to create
a fully customized version that only includes the needed functionalities to
reduce the program memory usage. This possibility leads to the creation
of very light prioritized multitask real-time applications. For these reasons,
FreeRTOS was ported to the Shimmer™ platform, which implements the
following tasks:

» High priority: manage the MAC protocol.
s Medium priority: sample ADC and store the value.

s Low priority: signal processing algorithm, including packing in frames
the information to be sent via radio.
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When none of these tasks is being executed, the scheduler puts the mi-
crocontroller in low-power mode. This enables an efficient and energy-aware
management of the resources of the platform while having a very low over-
head associated with the OS.

FreeRTOS has been ported to several microcontrollers. In particular, it
includes support for the TT MSP430 microcontroller and the CC2420 IEEE
802.15.4-compliant radio chip included in the Shimmer™ platform.

3.4. Characterization of the Shimmer™"’s energy con-
sumption

This section presents a characterization of the timing and power con-
sumption of all the components of the Shimmer™ platform in their different
modes of operation. Once this information, which is not fully available in the
datasheets of the components, is obtained, a very accurate estimation of the
Shimmer™"s energy consumption (and therefore lifetime) under controlled
circumstances can be calculated.

3.4.1. Experimental framework

This work is based on the Shimmer™ platform, as a representative state-
of-the-art wearable platform, equipped with an ultra-low-power microcontro-
ller (Texas Instruments MSP430) and a low-power low-rate IEEE 802.15.4-
compliant radio (CC2420). Anyway, the results obtained for this platform
can be generalized to any other WBSN platform and application with simi-
lar requirements. For all the following, we consider the use of FreeRTOS and
the MAC protocol proposed in Section

To measure the power consumption during operation, a 10.3 € resistor
is placed in the power path of the node. The voltage is then measured using
an oscilloscope, and the corresponding current and power consumption are
calculated. Using this configuration, the power consumption of each single
component of the node is measured by enabling it and disabling the rest
of components of the platform. For each component, a very detailed profile
is obtained for all its operating modes. Apart from the power consumption
values for each operating mode, this profile provides timing information that
shows, for example, how much time is required to transmit a packet from
the microcontroller to the radio, how long it takes to send a packet through
the wireless link, the required time to switch between different modes, etc.

For all the experiments, two nodes have been used. One node is in charge
of sampling the ECG signal, processing it and sending the results to the
other node, which works as a base station. Since GTS scheme is being used,
the results obtained with this setup can be extrapolated to a network with
more nodes, because additional nodes do not interfere with each other.
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Figure depicts the power consumption trace related to a sensing no-
de running a simple streaming application, in which the raw ECG signal
is forwarded to the WBSN coordinator without performing any on-board
processing. Regarding the radio, three main phases can be distinguished in
Figure beacon reception, low power (LP) mode and transmission. Du-
ring beacon reception, the radio first switches to reception mode before the
beacon is expected, then receives it. Therefore, the beacon reception pha-
se in Figure has two clearly distinct parts: (1) the first part lasts for
1.39 ms, has a power consumption of 72.39 mW, and corresponds to a radio
in reception mode waiting for the beacon while the microcontroller is idle;
(2) the second part lasts for 0.97 ms, has a power consumption of 82.59 mW,
and corresponds to a radio in reception mode and a microcontroller awake
reading from the radio and analyzing the received beacon. After the bea-
con reception, the node radio enters a LP mode until the start of its assig-
ned GTS. Finally, during its GTS, the node transmits the ECG signal to
the coordinator. Figure depicts the transmission of two data packets. In
every packet transmission, two different zones can be clearly distinguished:
(1) the first zone corresponds to the microcontroller sending the full packet
to the CC2420 radio chip (in idle mode), and consumes 16.8 mW during
2.85 ms; (2) the second zone corresponds to the radio actually transmitting
the packet while the microcontroller switches back to idle mode, and dissi-
pates 51.92 mW during 4.51 ms. After each packet transmission, the radio is
seen to automatically go to reception mode, while it waits for an ACK from
the WBSN coordinator. The ACK reception lasts for 0.75 ms and has an
associated power consumption of 72.39 mW. During the entire process, the
microcontroller is continuously updating the operating system tick counter
(every 0.32 ms) and the sampling task is reading one sample from the ADC
every 4 ms. This process is especially noticeable during the low-power phase
of the radio. Table summarizes the power consumption of the microcon-
troller and the radio for the different operating modes of our platform, while
Table reports the timing information related with the aforementioned
phases of the radio.

Table 3.1: Average power characterization (in mW) of Shimmer™

CPU | Radio | Total
Radio reception (C idle) 6.60 | 65.79 | 72.39
Radio reception (uC active) 16.80 | 65.79 | 82.59
Packet transmission (from uC to radio) 16.80 | 0.00 | 16.80
Packet transmission (actual radio transmission) | 6.60 | 45.32 | 51.92
Sampling (uC and radio idle) 6.60 | 0.00 | 6.60
Sampling (uC active and radio idle) 16.80 | 0.00 16.80
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Figure 3.5: Power dissipated in Shimmer™ during sampling, processing and
transmission

Table 3.2: Average timing characterization (in ms) of Shimmer™

Beacon reception (radio in reception and pC idle) 1.39
Beacon reception (radio in reception and puC active) | 0.97
Packet transmission (from pC to radio) 2.85
Packet transmission (actual radio transmission) 4.51
ACK reception 0.75

3.4.2. Reference case study: ECG streaming

Although WBSN platforms are equipped with a microcontroller that pro-
vides processing capabilities to the system, in most cases this microcontroller
simply acts as a control unit to manage all the hardware resources of node.
Instead of performing any processing on the data acquired by the sensors,
the complete raw signal is sent to the WBSN coordinator. One of the main
contributions of this work consists of achieving on-board on-line diagnosis to
be able to detect possible arrhythmias in real time (traditionally this pro-
cessing has been performed following an off-line approach). Hence, the next
chapter proposes several techniques to exploit the capabilities of the micro-
controller to reduce the amount of information that needs to be sent by the
nodes, and therefore reduce the energy consumption of the radio, leading to
a longer lifetime of the sensor platform. Thus, this section presents a confi-
guration that performs ECG streaming as a reference case study to evaluate
the possible savings or penalization in terms of energy consumption of the
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different techniques to perform advanced on-board processing proposed in
the next chapter.

Based on the above power characterization, Table [3.3] shows the energy
consumption of a Shimmer™ node running a simple ECG streaming appli-
cation that simply sends the raw ECG signal sensed by the platform to the
WBSN coordinator without any preprocessing. In this case, if any informa-
tion wants to be extracted from the ECG, additional software needs to be
used on the WBSN coordinator to process the signal (eg.: Holter).

The first row reports the duty cycle in percentage of ECG signal acqui-
sition time. Since the application does not carry out any signal processing,
the duty cycle in this case is 0. The second row indicates the time interval
between the generation of two consecutive data packets. Given the facts that
the payload of a packet is 114 bytes, a sample is represented using 1.5 bytes
and the considered sampling frequency is 250 Hz, the streaming application
generates one packet every 304 ms. The third row shows the beacon interval,
which is adjusted according to the time interval between consecutive packets.
Taking into account that the length of the queue provided by FreeRTOS to
store the data to be transmitted is limited to 4 packets, BCO should be
lower or equal to 6. The highest value is chosen, to reduce as much as pos-
sible the energy consumption in the radio, therefore the beacon interval is
983 ms. The fourth row reports the total energy consumption per second,
which is 7.70 mJ in this case. Finally, the last row is directly calculated from
the fourth one, assuming the energy supply of the Shimmer™ platform is
a 280 mAh Li-ion battery at 3.7 V, and shows the lifetime of the system,
which is 134.6 hours.

Table 3.3: Node lifetime for the ECG streaming application

Duty cycle (%) 0
Packet ready every... (ms) | 304

Beacon interval (ms) 983

Energy consumption (mJ) | 7.70
Lifetime (h) 134.6

Figure [3.6] shows the percentage of the total energy consumption of the
Shimmer™ due to sensing and radio communication for the ECG streaming
application. The microcontroller values are not included in the figure, since
this application does not require any kind of processing. The energy consum-
ption (due to sensing) is constant, and cannot be reduced unless a different
ADC is used. Therefore, the only part of the energy consumption that can be
reduced is the one due to the radio communication. Hence, the next chapter
proposes several algorithms that extract only the relevant information of the
ECG signal in order to significantly reduce the amount of data that needs
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Figure 3.6: Energy consumption of the Shimmer™ due to sensing and radio
communication for the ECG streaming application

to be transmitted, and therefore decrease the radio’s energy consumption. If
the computational overhead of these algorithms is low enough, the lifetime
of the platform would not be affected (or it can even be increased), while
achieving smart real-time ECG diagnosis.






Chapter 4

Application-level optimizations

The function of good software is to make
the complex appear to be simple.

Grady Booch

In Chapter 2| we have seen that WBSN platforms are equipped with mi-
crocontrollers, which supply processing power and memory resources. The
capabilities of the node’s microcontroller can be exploited to apply diffe-
rent real-time signal processing algorithms on the RAW ECG data sensed
by the node, such as filtering, compression, feature extraction, arrhythmia
detection, etc. These algorithms can significantly reduce the amount of in-
formation to be transmitted by the sensor platform, therefore reducing its
energy consumption due to data transmission. Apart from the possible re-
duction of the total energy consumption of the node, the onboard execution
of applications helps the patients and healthcare givers providing real-time
monitoring and diagnosis of the health conditions of the patient. Thus, a
sensible development and optimization of these algorithms for its real-time
execution on a WBSN platform is needed, in order to reduce the compu-
tational complexity and memory usage requirements of the algorithms and
therefore keep the impact in the energy consumption of the microcontroller
as low as possible.

Figure depicts the software application architecture of the wireless
ECG monitor proposed in this work. The ECG signal is first acquired and
conditioned to reduce the noise and artifacts (ECG filtering). Then, the peak
and boundaries of the characteristic ECG waves are detected (ECG delinea-
tion). Finally, this information is used to perform arrhythmia diagnosis. The
results obtained after the ECG delineation and arrhythmia diagnosis phases
(and optionally the RAW ECG signal) are wirelessly transmitted to a WBSN
coordinator, where they can be displayed or stored.

In this chapter, I first introduce several algorithms to perform ECG signal
filtering, delineation and arrhythmia detection. Then, for each algorithm,

39
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Figure 4.1: Software application architecture of our wireless ECG monitor

the required optimizations for their execution on the Shimmer™ platform
are also tackled. Finally, I provide a performance evaluation as well as a
comparative study of its energy consumption (and corresponding sensor node
lifetime).

4.1. ECG filtering

In order to improve the quality of the ECG signal and be able to perform
a more accurate diagnosis, it is crucial to reduce as much as possible the
presence of noise and artifacts, such as baseline wander and electromyograp-
hic noise. The baseline wander is an abnormal, low-frequency activity in the
ECG which may interfere with the signal analysis, making the clinical in-
terpretation inaccurate. Baseline wander is often exercise-induced and may
have its origin in a variety of sources, including perspiration, respiration,
body movements and poor electrode contact. The spectral content of the
baseline wander is usually in the range between 0.05 and 1 Hz [fQEWPS85|
but, during strenuous exercise, it may contain higher frequencies.

The electromyographic noise is caused by the electrical activity of skeletal
muscles during periods of contraction, commonly found in ECGs recorded
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during ambulatory monitoring exercise. This kind of noise can either be in-
termittent in nature, due to a sudden body movement, or have more statio-
nary noise properties. The frequency components of this noise considerably
overlap those of the QRS complex.

In this section, two techniques for ECG filtering are proposed, namely,
cubic spline baseline estimation and morphological filering. The first one only
performs baseline wander removal, while the second one also includes a noise
suppression phase to reduce the high-frequency noise such as electromyo-
graphic noise or power-line interference.

4.1.1. Cubic spline baseline estimation
4.1.1.1. Method

This technique, based on [MKT7|, uses a third-order polynomial to ap-
proximate the baseline wander, which is then subtracted from the original
signal. To this end, a representative sample (or knot) is chosen for each beat
from the silent isoelectric line, which is represented by the PR segment in
most heart rhythms. The polynomial is then fitted by requiring it to pass
through successive triplets of knots.

This idea comes from a previous research [MPL™77| that tried to adapt
a straight-line to the segments connecting the pre-P-wave period and the
post-T-wave period of each beat as successive baseline estimates. While this
solution preserves low-frequency heart activity and leads to a small compu-
tational cost, such a first-order estimator can only accurately track baselines
of very low frequencies. Furthermore, the resulting baseline estimate does
not adapt properly to the variations and, what is worse, its derivatives at
the knots are discontinuous.

Increasing the order of the polynomial and selecting one knot per beat th-
rough which the baseline estimation must pass is the method used to remove
higher-frequency baseline noise and preserve low-frequency heart informa-
tion, which is useful for other processes to apply after the baseline wander
removal. By using higher-order polynomials, the likelihood of producing an
accurate baseline estimate increases, although it is obviously linked to an
increased computational complexity.

Instead of letting the order increase as the number of knots does, third-
order polynomial fitting to successive triplets of knots represents a popular
approach [MKT77, BMT9I] and leads to good results in terms of baseline
removal. This technique requires the QRS complexes to be detected and the
corresponding PR segments to be accurately determined. An averaged point
in each PR segment of the ECG signal is chosen as sample of the baseline.
This segment is used because of the ease and accuracy in locating it. At each
PR segment, there is a knot through which the baseline noise estimator must
pass. By fitting a third-order polynomial through these knots in the ECG



42 CHAPTER 4. Application-level optimizations

signal, we get the estimation for the baseline (see Figure . The polynomial
is fitted in such a way that, once it is subtracted from the original signal,
these knots have a value of 0.

ti Lit1

Figure 4.2: ECG signal with three knots and the cubic spline baseline wander
estimation y(t)

The performance of the cubic spline technique critically depends on the
accuracy of the knot detection. The segment is relatively easy to delimit in
ECG signals recorded during resting conditions but it may be very difficult
to find it in recordings with muscle noise or when certain types of arrhyth-
mias are present, such as ventricular tachycardia, which severely distorts
the ECG signal and makes the location process quite difficult. On the other
hand, this approach to baseline wander removal results in a time-variable
cut-off frequency linear filtering since the baseline estimate tracks rapid ba-
seline wander when a fast heart rate is encountered. More knots become
available at faster heart rates, so the segment between beats is shorter and
the cubic spline can adapt itself better to the located knots. According to
this, polynomial fitting performs poorly when the available knots are too far
from each other, since the interval between ¢; and ¢;41 is too long to achieve
a proper estimation.

In order to accurately detect the PR segment, a reduced version of the
single-lead WT-based delineator that will be presented in Section is
used. This version of the delineator detects the end of the P wave and the
beginning of the QRS complex. Then, one of the points between these two
is selected as knot of the heart beat under analysis. Once the knots of three
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consecutive beats of the input signal have been located, we can proceed with
the cubic spline baseline estimation algorithm. The knots of the successive
heart beats are denoted for the signal z(t) as

z(t),i=0,1,2, ..., (4.1)

The baseline estimate y(t) is computed for the interval [t;, ;1] by incor-
porating the three knots x(t;), z(ti+1), x(ti+2) into the Taylor series expan-
ded around t;.

00 Y/
) = 3 00 (4.2
1=0 )

For a third-order polynomial description, this series is truncated to

)2 _+.)3
o(0) =yt + (= /) + C g+ E ) )

And the series expansion for the first derivative y/(t) is

E= 8" iy (4.4

y'(t) =y (t) + (¢ = t)y" (1) + ~—

At t = 0 we assume, to get this technique working, that
y(0) = z(0) (4.5)

We must approximate the first derivative y/(¢;) at t; by the slope between

x(ti+1) and x(t;)
y/(ti) _ x(tlt-l-l) — f(tZ) (46)
i+1 — U

As shown in [Gre69], classical splines of order three and higher, in which
only the highest derivative is discontinuous, suffer stability problems during
computation so we define both y(t) and y'(¢) at each knot to arrive at a
stable solution.

At the next beat, and to keep the cubic spline adapted to pass through
all the considered knots, we must approximate, once more,

z(tiv2) — x(t)

4.
tiva — t; (4.7)

Y (tiv1) =
To find the remaining two variables y”(¢;) and 3" (¢;) in y(t), the Taylor
series for y(t) and y/(¢) is studied for t = ¢;41:

42 1 — )3
Y(tier) = y(ti) + o' () (tigr — ) + y”<ti>(t”l2t’) + y’”“l‘)w
(4.8)

(tiv1 —t)?

5 (4.9)

Y (tiv1) = y'(t) + 4" () (tir — i) + 4" (t:)
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To get the cubic spline to pass through this knot,
y(tiv1) = o(tiv1) (4.10)

Inserting these values of y(¢;+1) and 3/(¢;+1) into the previous equations
we get:

(ti+2)—y(ti)
6(y(tiv1) — y(ti)) 202y’ (t:) + * (tﬁri) )

"(4) = _ 4.11

y (t ) (ti—i—l — ti)Q (ti—i-l - ti) ( )

y///(t') _ 12(y(tiv1) — y(t:)) 6(y"(t:) + (tj-fl_ti) ) (4.12)
’ (tig1 —t;)3 (tit1 —t;)? .

where, as we know,
Y(tiv2) = z(tit2) (4.13)

We have then the baseline estimate y(¢) completely specified to be com-
puted in the interval [¢;,¢;41]. To get the signal without baseline wander we
have to subtract the baseline estimate y(¢) from the original ECG signal in
that interval. Then, this procedure has to be repeated for the next interval
[ti+1,ti+2] using the knots x;;1, xito and so on.

4.1.1.2. Real-time embedded implementation

The use of this technique in an embedded platform has to consider the
fact that the PR segment needs to be accurately defined in each beat. To
perform this task, a reduced version of the single-lead WT-based delineator
that will be presented in Section is used. Then, we experimentally
choose as a knot the point that is 28 ms (7 samples) before the beginning
of the QRS complex. We use a struct to store all the information related to
each of the three consecutive beats needed by the algorithm. This information
includes how many data samples the beat has, the ordinal value of its knot,
a pointer to a buffer where all its data samples are stored and how many
bits are needed to represent these values.

When a new knot is located, it also means that the previous beat has
just finished. The length of the previous beat is then stored in its associated
struct and, by using a variable to keep track of the maximum sample value
in that beat, we can get how many bits are needed to represent all the values
in that beat. We can then restart the length counter and reinitialize the
variable for the search of the maximum value in the new beat. Subsequently,
it is time to proceed with the cubic spline filtering in case it is at least the
third beat that has taken place. Otherwise, we have to wait until we have
detected three beats, with their associated structs completely filled and all
the samples values stored in memory.

By using the amount of bits needed to represent all the values of the beat,
we calculate how many bits we can shift the samples to the left. In this way
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we optimize the use of the available bits for the coding of the intermediate
operands and therefore we get the best accuracy in all the operations. For
a beat i, and following the equations explained in the previous section, we
need to get the ordinal value of its knot and the knots of the two following
beats. These values are arithmetically left-shifted according to the maximum
number of bits needed for their coding. Furthermore, we need the information
about how long the beats ¢ and ¢ + 1 are. With these data, we can obtain
y'(t;), ¥ (t;) and y"”'(t;). These variables use the length of the beat to the
power of 3 and to the power of 2. Once we get the value of these three
variables, which will remain constant during the processing of the whole
beat, we use a new struct to facilitate the computation of the result, that
stores the values of ¥/(¢;), y”(t;) and y"(¢;), the ordinal value of the knot of
the beat, the length of the beat, a pointer to the buffer with all its samples
and how many bits the variables in the calculation have been shifted. This
new struct uses a queue scheme: we will have a pointer to a struct with the
information about the beat in which the computation is taking place and
this struct will also have a pointer to the following struct of a beat ready
to be processed, if it is the case. When the new struct is ready, it is stored
in the process queue. Finally, once the new input sample is processed, we
pay attention to the queue to check whether there is a new beat ready to be
processed or not.

If a new beat is available, every time a new sample is read (every 4 ms)
we provide as output a new value of the first beat in the queue. With the
values stored in its struct inserted into the equation for y(t), we get the
baseline estimation for the current output value. The, by subtracting the
estimation from the original input sample, we get a new value of the filtered
output signal. After moving indexes for the circular buffer, and increasing
the counter for the length of the current one, the algorithm is ready to receive
a new input sample.

A first implementation of this algorithm was developed for a PC, which
used floating-point operands for the computation of 3/ (¢;), v" (¢;) and y"(¢;),
but since the MSP430 microcontroller does not include a floating-point unit,
we had to adapt the calculations to use only integer variables. However, we
realized that a simple 16-bit integer implementation is not accurate enough
for the calculations needed by this technique. Actually, for a 16-bit integer
implementation, the result is a straight horizontal line which passes through
the knot of each beat. So we decided to use 32-bit integers in the required
cases to arithmetically left-shift as much as possible all the data needed in
the computation of those variables to get a better accuracy.

In terms of calculation, the MSP430 microcontroller meets the real-time
and accuracy requirements of this technique except for the computation of
y"'(t;). As defined in its equation, this variable uses the power of 3 of the
length of the beat. Again, since the MSP430 uses by default 16-bit operands,
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only 40 to the power of 3 can be operated. Beats longer than 40 samples,
which is obviously the commonest case since 40 samples between each beat
means a heart rate of 375 beats per minute (bpm), lead to an overflow in
the register. Therefore, the calculation of y"'(¢;) has to be performed using
32-bit operands, supported by the MSP430 but more expensive in terms of
computation.

Another factor we have considered is that we do not know how long a
beat is going to be. We can try to estimate the duration of each beat once
we have detected the first beats in the signal but this duration cannot be
considered as constant. Therefore, we have to decide the length of the buffer
in which all the data samples of a beat is going to be stored. In our tests, we
consider a beat length of 500 samples. This results in a 30 bpm minimum
heart rate for this technique to work.

Figure 4.3: Input ECG signal, baseline estimation and output signal

To conclude with the implementation of this technique, Figure shows
how it works for a given input with baseline wander. The vertical red lines
mark the position of the knot in each detected beat. The black ECG signal
is the input signal whereas the dotted line is the estimation of the baseline
wander. Finally, the blue ECG signal is the result of the baseline wander
removal from the original input signal. The horizontal solid line shows the
zero value.
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4.1.2. Morphological filtering
4.1.2.1. Method

This method, first introduced in [SCKO02], applies several morphological
operations to the original ECG signal to estimate the baseline wander. Morp-
hological operators have been widely used in the signal and image processing
fields due to their robustness and adaptive performance in extracting infor-
mation from the shape of the signals, as well as to their simple and quick
computation. Mathematical morphology, based on sets operations, provides
an approach to the development of non-linear signal processing methods, in
which the shape information of a signal is incorporated. In these operations,
the result of a data set transformed by another set depends on the shapes of
the two sets involved. A structuring element has to be designed depending
on the shape characteristics of the signal that is to be extracted.

Two basic morphological operators exist: erosion (&) and dilation ().
Using erosion and dilation we can define derived operators: opening (o) and
closing (e). We consider f(n),{n =0,1,...,N — 1} as a discrete signal con-
sisting of N points and B(m),{m =0, 1, ..., M — 1} a symmetric structuring
element of M points.

Erosion (©) is a shrinking operator in which the values of f © B are
always less than those of f.

M—-1

(f€>B)OO=:nwnm:amJ11{f01— -+no—-B@n)} (4.14)

Dilation () is an expansion operator in which the values of f @ B are
always greater than those of f.

(feB)(n) = mame,...,M—l{f(n M-l +m) + B(m)} (4.15)
M—-1 M+1
Mn:{ g N == }

The opening of a data sequence can be interpreted as sliding a structuring
element along the data sequence from beneath and the result is the highest
points reached by any part of the structuring element. Opening is used to
suppress peaks and is defined as: fo B = f © B & B. The closing of a data
sequence can be interpreted as sliding a flipped-over version of the structuring
element along the data sequence from above, and the result is the set of lowest
points reached by any part of the structuring element. Closing is often used
to suppress pits and is defined as: fe B= f® BSOS B.

This technique uses a sequence of opening and closing operations to per-
form a baseline wander removal and electromyographic noise suppression.
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Based on the different characteristics of the baseline drift and the noise con-
tamination in the ECG signals, different structuring elements and different
morphological operators are used.

The baseline wander removal is performed by removing the drift in back-
ground from the original ECG signal, following the method presented in [CD89].
To get the baseline estimation we use f, = f,0 B, ® B, and then this baseline
drift is subtracted from the original input signal to get the filtered output
signal. The signal is first opened by a structuring element B, for removing
peaks in the signal. Then, the resultant waveforms with pits are removed by
a closing operation using the other structuring element B.. B, and B, are
defined as two horizontal line segments of zero amplitude but with different
lengths. The result of this compound operation is then an estimate of the
baseline drift f;, and, therefore, the correction of the baseline is then done
by subtracting f; from the original signal f,.

Different lengths in B, and B, are used because the construction of the
structuring element for baseline correction depends on the duration of the
characteristic wave and the sample frequency of the ECG signal Fs Hz. If the
width of a characteristic wave is T, (s), the number of samples of that wave
is T Fs so the structuring element B, should have a length larger than T, F.
The subsequent closing operation, which uses B., takes place to remove the
pit left by the opening operation, so the length of the structuring element
B. must be longer than the length of B,. The width of the characteristic
waves of an ECG signal, such as the P wave, the T wave, and the QRS
complex, is generally less than 0.2 s.Hence, L,, the length of B,, is selected
as 0.2F5, and L., the length of B,, is typically selected to be longer than B,,
at about 1.5L,. Since we are using Fs; = 250 Hz as sampling frequency, we
get L, =0.2F; =0.2 x 250 =50 and L. = 1.5L, = 1.5 x 50 = 75.

After baseline correction, noise suppression is performed by processing
the data through an opening and a closing operation concurrently, and then
the results are averaged. The opening and closing operations for noise sup-
pression use a structuring element pair, Bpgir defined as Bpgir = {B1, B2}
with By and By different in shape but equal in length. The sequence of By
and By corresponds to the order of dilation and erosion in the opening and
closing operations. The process of signal conditioning for noise suppression
is described by the following equation:

f = %(fbc ® Dpair + fbc o Bpair)
(4.16)

1
= §(fbc@BleB2+fbc@B1 @ Bs)

where f is the resultant signal after noise suppression and f;. the signal af-
ter baseline correction. The B, is selected by considering the purpose of
analysis and the morphological properties of the ECG signal. B; is selected
to be a triangular shape, used to retain the peaks and valleys of the charac-
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teristic waves, such as the QRS complex. To minimize the distortion to the
ECG signal, the length of Bl is chosen to be the same as that of Bs. The
length of both structuring elements is related to the bandwidth of the ECG
signal and the sampling rate. Since the sampling frequency is fixed, a shorter
structuring element can be used to reduce the distortion of the waveform, so
B; = (0,1,5,1,0). By is chosen to be a line segment of zero value and the
same length as By, so By = (0,0,0,0,0).

Using the proposed structuring element pair, noise can be suppressed
while reducing the smoothing of the significant peaks and valleys in the
ECG signal, which are essential to subsequent reliable detection of the cha-
racteristic waves of the input signal.

4.1.2.2. Real-time embedded implementation

This morphological filtering technique has clearly been designed to work
offline. According to the definition of the morphological operators, we need all
the input data to perform the first erosion and this is impossible to implement
on a real-time embedded platform. Even worse, in the proposed technique
different morphological operations are compound. The subsequent dilation
needs the result of the previous erosion so we need to keep track of a big
amount of data in memory to get this technique working.

However, our implementation uses a constant and low amount of me-
mory and supports the baseline wander removal and the noise suppression
operations provided by this technique. We use several circular buffers to
operate and store the partial results needed in each morphological opera-
tion achieving a very optimized final implementation that involves a very
reduced execution time due to an improvement in the use of buffer indexes
and peaks/pits comparison analysis that is presented in the following of this
section.

All the buffers used in this implementation are circular buffers of 16-bit
integers, the basic datatype of the MSP430 platform. The calculation of the
baseline drift f, = f, o B, ® B., is made through a sequence of erosion and
dilation operations. The first operation, f; = f, © B, is an erosion that uses
the input signal f, and the structuring element B,, which is a horizontal
line segment of zero amplitude. According to the definition of this technique,
B, is 50 elements long. If we pay attention to what the erosion operation
means, each sample f(n), with n = {@,...,N — #}, is going to be
used in an operation where each element of B, will be subtracted to this
sample. The minimum value obtained in all the subtractions will be stored
in (foB,)(n) (see Figure. For n = {0, ..., 21 —1}, there is no definition
of (f © B,)(n), thus we use (f © B,)(n) = f(n). In addition, since it is a
real-time implementation and it is not known how long the input data will
be, there is no definition for V.

Thanks to the fact that the structuring element B, is a horizontal line
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l input(0, ..., M) — Bg(0, ..., M) l
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Figure 4.4: Representation of the erosion operation

segment of zero amplitude, the first erosion can be implemented as a simple
search of the minimum value in a vector with the same length as B, (50
elements in this case). Hence, the first circular buffer we use to support the
erosion operation is 50 elements long. In this buffer, each new input sample
is hosted in a position. When the buffer is completely filled for the first time,
each new input sample will overwrite the sample stored 50 samples before.
In order to implement the erosion operation, we use an index that points to
the minimum value available in the buffer.

The first 50 input data samples are only used to fill this circular buffer.
When a new sample is received in this initialization period, its value is com-
pared to the previous minimum value received and stored in the buffer. If
the new sample is lower or equal than the previous minimum, the correspon-
dent index is updated and it is ready to receive a new sample. The idea of
updating the index when the new value is equal to the previous minimum
is made to keep the minimum index alive as much as possible and therefore
reduce the chances of this index to be disabled by an overwriting operation
in the position it is pointing.

While the circular buffer is being initialized, the result of the erosion
operation is the same value received as input. Once the buffer is completely
filled for the first time, the operation is different. Before storing the new
input sample, we check whether it is going to overwrite the previous minimum
found in the buffer. If it happens but the new value is equal or even lower than
the previous minimum, there is no action to take: the minimum index will
stay pointing to the current position and the operation will work properly.
If the new value is higher than the previous minimum and it is going to
overwrite it, we need to find the new minimum in the buffer. This is made
by storing the new input sample in the buffer and then performing a linear
search. On the other hand, if the new sample is not going to overwrite the
previous minimum, we have to check whether its value is lower or equal to
the previous minimum. If it is, the minimum index is updated to point to
the current position. Otherwise, no change is made to any index.

We use this implementation because it provides a low number of indexes
changes and comparisons. However, it has a flaw in terms of efficiency and
computational cost, due to the linear search that needs to be done in the
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circular buffer when a new input sample overwrites the previous minimum
value. This buffer is 50 elements long so such a linear search would be likely
to be avoided. A possible solution to avoid it consists in the use of a second
index to point to the second minimum value. In order to evaluate if the use of
a second index is worthy, since it involves more comparisons and conditional
statements in the code, we analyzed how many linear searches are done in
average for a heterogeneous set of ECG signals. For test purposes, we use
several 15-minute ECG recordings sampled at 250 Hz (225000 samples per
recording). Without the use of a second pointer, 25983 linear searches per
recording were performed, in average, in this first erosion operation. This
corresponds to the 11.55% of the input samples.

The use of a second index changes the behavior of the implementation of
the operation and increases the amount of comparisons. In this case, during
the initialization period, if the new input sample is not lower or equal than
the previous minimum found, we have to check whether it is lower or equal
to the value pointed by the second index. As before, updating this pointer
in case the new sample is equal to the pointed value allows this index to
remain alive as long as possible so that the final number of linear searches is
reduced. The second index can be disabled by storing the value -1.

When the circular buffer is filled, the operation with two indexes is more
complex. If the new sample is going to overwrite the minimum in the buffer,
we check whether it is lower or equal to that value. If it is, there is no change
to make and the buffer is ready. Otherwise, we pay attention to the second
index. If this second index is disabled (its value is -1), we have to perform
a linear search to update the minimum and the second minimum indexes.
If the new input sample is not lower or equal to the value pointed by the
second index, we make the minimum index point to that value in the buffer
and disable the second index.

If the new sample does not overwrite the position of the minimum value
but it is lower or equal to this minimum, the minimum index will now point to
the current position and the second minimum index will point to the previous
minimum position. If the new sample is going to overwrite the value in the
position pointed by the second minimum pointer, we disable this pointer in
case the new value is greater than the previous second minimum. Otherwise,
the second minimum pointer is still valid. Finally, if this second minimum
index is not disabled and the new input sample is lower or equal to the value
pointed by it, we change the index to point to the current position.

Once implemented and tested with the same input signal as the case in
which we use a single index, only 12536 linear searches were performed, which
corresponds to the 5.57 % of the input samples. This means a reduction of
13447 searches thanks to the use of two indexes instead of one.

Algorithm shows the operation of the circular buffer B, the minimum
index min, the second minimum index secmin and the new position to be
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Algorithm 4.1 Operation of the circular buffer and indexes
if cur = min then
if newSample > B[min| then
if secmin = —1 then
Perform a linear search
else if newSample > Blsecmin] then

min = secmin
secmin = —1
end if
end if
else if newSample < B[min] then
secmin = min

min = cur
else if cur = secmin AND newSample > Blsecmin| then
secmin = —1

else if secmin # —1 AND newSample < B[secmin] then
secmin = cur

end if

written cur.

The next operation to be performed is the dilation that corresponds to
the first opening with the input signal and the structuring element. This
dilation takes as input the result of the previous erosion and uses the same
structuring element B,. Since B, is a horizontal line segment of zero am-
plitude, this operation is similar to what has been explained before, with
the only difference of searching for the maximum value in the vector, ins-
tead of the minimum one. As before, we need a 50-element circular buffer,
corresponding to the length of the structuring element B,.

Since there is no definition for the result of the first values of the input
signal when n < %, this buffer is initialized with the input data until its
half is reached. Once the buffer is half full, it will have to wait for the first
output values of the first erosion operation. At the beginning we must fill the
first circular buffer (erosion) and, then, we can fill this second circular buffer
(dilation) with the results of the first one. The dilation operation is based
on additions and a search for a maximum element, so in this case we need
to keep two indexes to the maximum value and the second maximum value
of the buffer. The behavior of these indexes is the same as in the previous
case except for the fact that the maximum value is taken under consideration
instead of the minimum one. As before, during the initialization of this buffer,
we pay attention to the new values to keep track of where the maximum
values are stored.

As in the previous case, we performed tests using one or two indexes to
keep track of the maximum values. In the implementation that uses only one



4.1. ECG filtering 53

index, for the same test input of 225000 samples, 77507 linear searches were
made, which corresponds to a 34,45 % of the input data. Such an amount of
searches justifies the additional comparison process needed by the use of a
second pointer. As a result of this improvement, only 10255 linear searches
were made, which corresponds to a 4,56 % of the input data. It is truly
significant that for a higher amount of searches than in the case of the erosion
operation, the use of a second pointer reduces even more the final number
of searches. This is explained by the shape of the data provided as input to
this dilation operation. At first, more linear searches are made but, with a
second index, we get an greater reduction because of the lower number of
invalidations of this second index.

This buffer cannot return any result until it is completely full. The circu-
lar buffer of the erosion had a specific initialization process which guarantees
that after 50 input samples, it could be possible to get results from it. To get
this dilation buffer working we have to wait for 75 input samples: 25 of them
are going to initialize both the erosion and the dilation buffers, the following
25 will complete the erosion buffer and the last 25 samples will produce 25
output values after the erosion, which will be enough to completely fill the
dilation buffer. Once the dilation buffer is full, each new input value will pro-
duce an output value after the erosion operation. This output will be at the
same time an input for the dilation operation, and will produce an output
value after the dilation (the one in the position pointed by the maximum
index). This value is the result of the first opening operation f, o B,.

The next operation to be performed is a closing, which consists of a
dilation and an erosion, and uses as input the result of the previous opening
operation and the structuring element B,, which is a horizontal line segment
of zero amplitude with a length of 75 elements. After this closing operation we
will get the baseline drift f; to be subtracted from the input signal. As before,
we use a circular buffer to store the result of the first dilation operation. To
initialize this buffer, the first 25 samples are taken from the input signal, since
there is no definition for them in the morphological operators. This buffer has
to wait until the two previous buffers are filled and start producing results.
Our implementation uses a control variable to check whether the previous
dilation buffer is full and, then, start copying its output data to this new
dilation buffer. While it receives the first raw input data it keeps track of the
values to update the index pointing to the maximum stored value. When a
new value is received, the procedure is equal to the previous cases. First, we
have to check whether the new value is going to overwrite a value pointed
by any index. Then, we check if the new value is greater than the maxima
pointed by the indexes and finally store the new sample. According to my
tests, the dilation operation triggers more linear searches than the erosion
operation. In this buffer, using the input signal of 225000 samples, 67492
linear searches were made in the implementation with a single index, which
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corresponds to a 30 % of the input data. However, by using a second index,
the amount of linear searches is amazingly reduced to only 3419, a 1.52%
of the input data. This reduction is explained by several factors. Firstly,
the signal this operation receives as input has been previously processed by
an opening operation so its shape is not as rich as the shape of the raw
input. Secondly, the structuring element, B, is 50 % longer than the element
B, used in the previous opening operation, which reduces the possibility of
overwriting an index.

This dilation operation starts returning output values when its associa-
ted circular buffer is full. Then, the value in the position pointed by the
maximum index is the result of the dilation operation. The baseline drift
computation finishes with the last erosion operation, which also completes
the closing operation with the structuring element B.. This last operation is
implemented by a new 75-element circular buffer. The initialization of this
buffer is more complex than for the previous buffers. Once more, the first
25 elements of the input dataset are stored directly at the beginning of this
buffer. The dilation buffer of the closing operation has to wait until the di-
lation buffer of the opening operation was full. Then, it received values after
the opening operation. The erosion buffer of the closing operation also starts
receiving values from the dilation buffer of the opening operation, since there
are values before the half of the previous buffer that are going to be copied
directly (see Figure [4.5)).
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Initialization with input data  Initialization with data from dilation 1

Figure 4.5: Scheme of the use of circular buffers for the implementation of
the opening and closing operations and their initialization process

The behavior of this last erosion buffer is similar to the previous cases,
since the structuring element B, is a horizontal line segment of zero ampli-
tude. The erosion operation returns as a result the minimum element in the
array. In the implementation with a single index, and for the same input
signal of 225000 samples as we used in the previous cases, 34416 linear sear-
ches were performed, which corresponds to a 15.3% of the input dataset.
By using a second minimum index, the number of linear searches is reduced
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to 3062, which stands for only 1.36 % of the input signal length. Again, this
huge reduction is due to the longer structuring element, which means that
the chances of disabling an index are lower and, thus, the use of a second
index is completely justified.

When this last circular buffer is full, we are able to get values for the
baseline drift estimate f;,. After processing a new input sample, performing
the opening and closing operations, the value in the position pointed by the
minimum index of this last erosion buffer is the new value of the baseline
drift. This value has to be subtracted from the input signal to get a signal
without baseline wander. However, we have to remind that there is a delay
between the input signal and the result of the filter because of the initiali-
zation process of the different buffers. While each buffer is being filled, no
outcome is returned so the delay is increasing until all the buffers are full.
An additional buffer is used to store the input signal and therefore overcome
the delay between the input and the output. This is also a circular buffer
with two indexes: one to control the next position to be written with a new
input sample and another one to control which position has the next value to
be used for the final output. Each output value produced by the last erosion
operation has to be subtracted from the correspondent input data sample
which is stored in this buffer. When the subtraction is performed, we have
the input signal with baseline correction fp. = f — f.

After the baseline correction is performed, we apply noise suppression.
This is done by a concurrent closing and opening operation based on the use
of two different structuring elements. These elements are 5-element long so,
as we did in the previous cases, we will use a buffer of equal length. The
first concurrent operation to be performed is an erosion and a dilation using
B; = (0,1,5,1,0). The approach followed for the implementation of this
calculation is different to what has been carried out before. At first, we use
a b-element circular buffer to store the output of the baseline correction fp..
To carry the first erosion and dilation out, we use a static array of elements
to store the offset of Bj for its use with the circular buffer. Since we can find
the first element in any of the five positions of the circular buffer, we control
that the structuring element matches the right element in the buffer (see
Figure 4.6)). This is done by unfolding all the combinations of B1, according
to its starting point, in a bigger array of 25 elements: (0, 1, 5, 1, 0, 0, 0, 1,
51, ...).

Then, to calculate the first operations we only have to add (dilation) or
subtract (erosion) each value in the structuring element to/from each value
in the circular buffer. In the case of the erosion operation, we use a variable
to store the minimum value obtained after the subtraction and, likewise, we
use another variable to store the maximum value obtained after the addition.
By accessing these values once the buffer has been covered, we get the result
of this new erosion and dilation operations.
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Figure 4.6: Matching of the circular buffer and the corresponding instance
of the structuring element Bj in its array

We need another variable to control in which position of the structuring
element we have to start to calculate. When a new value is stored in the
circular buffer, we have to get the maximum and minimum values obtained
after the calculation with the structuring element. This is done by going
through the circular buffer and adding or subtracting each of its values to
the corresponding value of Bj. We use a chain of comparisons to get the
final maximum and minimum values and, to optimize the amount of changes
in each control variable, an analysis was made to know in which relative
positions the maximum and minimum values were found.

The most straightforward implementation of this erosion and dilation
operations, from the programmer’s point of view, would be to start by the
first element in By and calculate the result with the corresponding first ele-
ment in the circular buffer. Then, process the second and so on. However,
since we are interested in an efficient implementation in terms of memory
and computational power, we performed an analysis to check whether the
maximum and the minimum values of each operation can be found with a
higher probability in a certain position, so that we could reduce the amount
of comparisons and changes of variables. Just by going through the array in
a linear sequence, we cannot be sure of whether we are following the best
path in the comparison chain.

The first implementation used a linear sequence to calculate with the
structuring element by buffer[0] + B1[jl, buffer[1] + B1[j+1],

At first, a solution to reduce the amount of changes of the value of the varia-
bles would be to analyze in which positions the maximum and the minimum
are found more often. It should obviously depend on the value of j, the
variable that controls in which instance of the structuring element B; we
are working on in the buffer B1. However, performing such an analysis for
each instance and implementing this variable access method would lead to
an extra cost of addressing, since the access to the array By would depend,
for optimization purposes, on another static array in which the best access
chain for each instance would be stored: buffer [0] + Bl[opt[j]]. This op-
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timization would not be efficient since the extra addressing operation would
lead to an higher cost in terms of computation and memory accesses.

The solution to avoid this extra cost while trying to perform such an
optimization is not to consider in which instance of B; we are working to
calculate the array B1l. At first, we could consider that the maximum and
minimum values are stored in whatever position so that it might be difficult
to find a pattern for their locations. Thanks to the use of control variables,
we discovered that, for the input test of 225000 samples, 295232 changes in
the variable for the dilation operation were made and 271059 changes took
place in the variable for the erosion. This amount of changes corresponds to
1.31 changes per sample in the dilation and 1.20 changes per sample in the
erosion.

To try to reduce these figures, we performed an analysis using all the
records of the QT database. The structuring element has five elements so
we only had to check in which of these positions the maximum and the
minimum were found while doing the calculation. Counting the changes for
all the signals, for the sequence of accesses we tested, the sequence (3, 4, 0, 1,
2) resulted in 57596223 changes for the variable of the dilation operation and
the sequence (2, 3, 4, 0, 1) gave as a result 57262531 changes for the variable
of the erosion operation. We did not test all the possible combinations since
the first element of the sequence can be used to prune the search space for
the best combination.

The best access sequence for the dilation operation is (0, 2, 4, 1, 3), which
reduces the amount of changes to 53035250 and, for the erosion operation, the
best sequence is (0, 2, 3, 1, 4), which reduces the amount of changes for all the
input dataset to 53075361. Applying these sequences to the implementation
and using the same input test, the result was that only 261362 changes were
made (a 11.47 % reduction and only 1.16 changes per sample) in the dilation
operation. In the erosion operation, only 254809 changes took place (a 6.00 %
reduction and 1.13 changes per sample).

This optimization does not involve extra computational cost since the
implementation has to go through the hole array for the structuring element.
Although the number of comparisons cannot be reduced, because we have
to compare all the values, the number of changes in the variables of the
morphological operations is reduced, leading to a better performance.

These concurrent erosion and dilation operations are needed in three dif-
ferent parts of the implementation of the algorithm. The structuring element
is only 5 elements long, so it is completely filled with the first five input sam-
ples. While the first buffer for the erosion operation at the beginning of the
implementation is being filled, those values are also stored in the first buf-
fer for noise suppression. Since its length is of only five elements, the noise
suppression code starts producing results before the baseline correction is
done.
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While the buffer for the second erosion in the baseline correction is being
filled, those samples also have to be processed by the noise suppression part.
They do nor produce any output for the baseline correction but they are
needed in this filtering process. Finally, once all the buffers are full, the code
for this first concurrent operation is ready to produce right results.

The second concurrent operation corresponding to the final erosion and
dilation in the concurrent opening and closing is based on the use of the
structuring element B, which is a horizontal line segment of zero amplitude
with a length of five elements. The implementation of this second concurrent
operation follows the same approach as the baseline wander removal part.
We use two new circular buffers of five elements to support these operations
and, since the structuring element has a constant zero value, we do not have
to go through the buffer as we had to do when using B;. The small size of
the buffer (i.e., only five elements) can lead us to think that the use of only
one index to control where the maximum and minimum values are stored
is enough, since a linear search in such a small buffer is rapid. In order to
analyze this, we performed experiments using one and two indexes. If we
only use one index, 71090 linear searches where triggered for the dilation
operation, which corresponds to the 31.6 % of the input test data. For the
erosion operation, 97650 linear searches where performed, which stands for
a 43.4 % of the input data. This high number of linear searches is due to the
small size of the structuring element. With the use of a second index, the
number of linear searches was reduced to 31844 (14.15% of the input data)
in the dilation operation and to 45061 (20.03% of the input data) in the
erosion operation. These new circular buffers have to be properly initialized
by waiting until the previous buffers are full and start to produce output
values.

Table 4.1: Reduction of linear searches in the circular buffers due to the use
of a second index for a test input of 225000 samples

Buffer # searches # searches with 2nd index | Reduction
erosion 1 | 25983 (11.55 %) 12536 (5.57 %) 51.75%
dilation 1 | 77507 (34.45 %) 10255 (4.56 %) 86.77 %
dilation 2 | 67492 (30.00 %) 3419 (1.52%) 94.93 %
erosion 2 | 34416 (15.30 %) 3062 (1.36 %) 91.10 %
dilation 4 | 71090 (31.60 %) 31844 (14.15%) 55.21 %
erosion 4 | 97650 (43.40 %) 45061 (20.03 %) 53.85 %

Once the concurrent operations are performed, we get the result of fp. ®
B16 By and fp. © B1 ® Bs by accessing the values pointed by the maximum
and the minimum indexes, respectively, in the last circular buffers. To get
the output of the filter after the noise suppression part, we have only to add
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Figure 4.7: Baseline correction and noise suppression output (centered, in
blue), baseline correction output (in black, at the top) and input signal and
baseline estimation (below, in red and black)
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those values and average them: f = Z(fpe ® By © Ba + fpe © By @ By). The
result of each part of this filter is depicted in Figure [£.7]

In contrast to the cubic spline technique, this morphological filtering
provides more stability. There is no estimator to use and, in fact, all the
technique works the same for any point in any characteristic wave of the ECG
signal. We have to keep in mind that the use of morphological operators are
based on structuring elements chosen according to the shape of the signal we
are trying to process. Thanks to the fact that the structuring elements B,,
B, and By are horizontal line segments of zero amplitude, the algorithm can
be efficiently implemented with no extra cost for calculation for each element
in those structuring arrays. Then, the main goal is to reduce the amount of
linear searches. This technique is not artifact-dependent since an artifact in
the input signal cannot trigger any special condition in the filtering process.

4.2. ECG delineation

A significant amount of research effort has been devoted to the auto-
mated analysis of ECG signals, and the underlying detection of the major
ECG characteristic waves, namely the QRS complex, P and T waves [SLO05],
described in Section In fact, the performance of an automated ECG
analysis system critically depends on the reliable detection of these fiducial
waves, so-called ECG delineation. This has motivated the rich variety of
state-of-the-art ECG delineation approaches.

In this section, two of the most salient techniques for automated ECG
delineation are analyzed. The first one is based on the wavelet transform
(WT) |[LZT95, MAO™04], and the second one on the multiscale morpholo-
gical derivative (MMD) [SCKO5|. Using these two approaches, several algo-
rithms for single and multi-lead delineation are developed and optimized for
their execution on the Shimmer™ platform.

The algorithmic transformations and software optimizations necessary to
enable embedded ECG delineation notwithstanding the limited processing
and storage resources of the target platform are described, and the perfor-
mance of the resulting implementations are analyzed in terms of delineation
accuracy, execution time and memory usage. Finally, a comprehensive eva-
luation of the energy consumption entailed by the considered algorithms is
proposed.

4.2.1. Database and performance metrics

In this section, the database and metrics used for the performance eva-
luation of the subsequently presented algorithms are described. We used
the validation procedure detailed in [MAO™04|, in order to be able to com-
pare the results. This procedure uses the 105 records of the QT database
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(QTDB) [LMGM97]. The QTDB is a free-access database, which consists
of 15-minute excerpts of two-lead ECG recordings sampled at 250 Hz, with
manual annotations of the QRS complexes, P and T waves performed by ex-
pert cardiologists. These annotations span a total of 3600 beats, and feature
a wide variety of ECG morphologies.

To assess the performance of the investigated algorithms, the following
rules are applied. An automatic annotation is considered to be related to
a manual one if the time interval between them is shorter than 320 ms.
This value has been empirically chosen to compare our results to the ones
of [IMAO™04] as fairly as possible, since part of the herein proposed algo-
rithms are based on this work. This value allows us to obtain the closest
results of sensitivity and positive predictivity to [MAOT04], and therefore
be able to directly compare the mean error and standard deviation values.
Hence, this pair of annotations is a true positive. A manual annotation that
has no corresponding automatic annotation is counted as a false negative,
and automatic annotations without manual annotations count as false po-
sitive. Accordingly, the sensitivity (Se) and positive predictivity (P+) of a
delineation algorithm are defined as [EC508]:

TP . TP
TP+ FN’ TP+ FP

where TP is the number of true positive detections, F'IN is the number of
false negative detections and F'P is the number of false positive detections.
The reported error statistics correspond to the computation of (automatic-
manual) marks. In addition, due to the QTDB format, it is impossible to
know if the lack of an annotation means that the wave is not present or that
the cardiologist did not annotate the point with confidence for some reason.
In the first case, an automatic detection would count as a false positive,
but in the second case, it would not necessarily mean that the detection is
erroneous. As a result of this overestimation of false positives, we show in
the tables the value of P,j;m, which is a lower bound on the real value of P+.

Se (4.17)

Moreover, the mean (m) and the standard deviation of the delineation
error (o) are also computed. The mean error (m), which is computed as the
average of the errors across all the records, shows how close the results of the
algorithm are to those that have been manually annotated in the database.
Finally, the standard deviation of the error (o), which is defined as the
average of the standard deviation of each record, provides us information
about the stability of the detections.

In order to compare the results of a single-lead delineation algorithm
with the manual annotations of the database, which are performed using 2
leads, the algorithm is executed in both leads separately. Then, if 2 automatic
annotations on different leads fall within the 320 ms interval, the closest one
to the manual annotation is chosen to compute the error, and the other one
is not counted as a false positive.
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4.2.2. Single-lead WT-based ECG delineation

The first ECG delineation approach under analysis is based on the wave-
let transform (WT) [LZT95, MAOT04], mainly because this transform pro-
vides a description in the time-scale domain that allows the suitable repre-
sentation of signals having multiresolution characteristics such as the ECG
signal. Indeed, the ECG signal is characterized by a cyclic occurrence of
patterns at different frequency content (QRS complex, P and T wave).

4.2.2.1. State-of-the-art single-lead offline delineation algorithm

Each of the three waves of the ECG signal has different frequency content,
as seen in figure [£.9 The QRS complex is characterized by relatively high
frequencies, while the P and T waves are composed of low frequencies.
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Figure 4.9: Frequency components of P, T and QRS waves (see [SLO3|, p.
498).

This kind of signal can be well decomposed using a dyadic discrete wa-
velet transform (DWT) [LZT95, MAO™04], which provides us with multiple
outputs, called scales. Each scale matches different frequency bands of the
original ECG signal, which will allow us to perform a multi-scale analysis to
detect the ECG waves.

A dyadic DWT is composed of cascaded identical high-pass (G) and
low-pass (H) filters. Mallat [Mal89| provides an implementation using deci-
mation, which, as in [MAOT04], we will not consider here, as it introduces
time-variance. We will instead use an implementation without decimation
(Algorithme a trous implementation [CK96], as shown in Figure [4.10)).

In the z-domain, the output Wy X (2) of the DWT at scale 2* can be
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Figure 4.10: “algorithme & trous” implementation, as shown in [MAO™T04,
Figure 1.b

expressed as follows:

[ G(») ifk=1
WX () = { Gl 2 HGE) k2

This work uses the prototype wavelet 1(t) proposed by [MZ92b]:
N
W(Q) = jO (szné‘*)) (4.18)
4

For this prototype wavelet, the filters H(z) and G(z) can be computed,

then their finite impulse response in the time domain h[n] and g[n] can be
obtained [MAO™04]:

hin] = = - (8]n + 2] + 36[n + 1] + 36[n] + d[n — 1)) (4.19)

1
~ 38
=2-(6[n+ 1]+ d[n]) (4.20)

gln]

These filters have the frequency responses shown in Figure for an
input sampling rate of 250 Hz. It is also important to mention that the
output at each scale 2% corresponds to the derivative of the filtered version
of the input z[n].

Five different scales are used in this work: from scale 2! matching high
frequencies, thus very sensitive to noise, to scale 2° matching only low fre-
quencies, causing it to smoothen the original signal, as seen in Figure [£.11]

In order to implement the filters, we first have to make them causal:

hin] = < - (0[n] + 3d[n — 1] + 3d[n — 2] + d[n — 3]) (4.21)

1
8
gln] =2-(8[n] + o[n —1]) (4.22)

Since the implementation without decimation is used, the filters have to
be rescaled at each step, where gi[n] and hg[n] are the time-domain equiva-
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Figure 4.11: Frequency response of the DWT at scales 2! to 2°

k k
lent of respectively G(22") and H(2%").

~(6[n] +36n — 2K +35n—2-2"+6mn—3-2") | .., ,
- (8[n] + 8[n — 2%) }w1th k=0,1,2,3,4

(4.23)

As the filters have linear phase, their outputs can be realigned for the
purpose of obtaining no delay with respect to the ECG input signal, allowing
us to perform analysis over multiple scales.

This delay is given by the mid-point of the non-zero portion of the impulse
response:

delay(gx[n]) = 0.5 - 2*

delay(hy[n]) = 1.5 - 2% }With k=0,1,2,3,4 (4.24)

Thus, the delay of each filter, after rounding, is:

delay (Wyiz[n]) = |delay(go[n])| = [0.5-2| =0 (4.25)
k—2 k—2 4
delay(Warx[n]) = |delay(gr—1[n]) + Z delay(h;[n])| = |0.5-2871 4+ 1.5. Z 27
=0 =0
k-1 12! k -
= 05247 415 | = {2 - 1.5J  with k= 2,3,4,5

(4.26)

The numerical values are reported in Table
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Table 4.2: Position we need to look at for each filter when considering the
input at time n

Input | 21 [ 22 23 21 20
n n | n+2|n+6 | n+14 | n+30

Once the outputs of the discrete wavelet transform are computed, a set
of rules are applied to extract the fiducial points of the ECG signal. The first
detected point is the main peak of the QRS complex, then the QRS complex
is delineated, to find its onset and end. Then the P and T waves are detected,
along with their onsets and ends. A detailed description of these rules, that
had to be adapted to allow a real-time implementation on the Shimmer™
are given in the following section.

4.2.2.2. Real-time embedded WT-based single-lead delineation

The algorithm is based on [MAO™04] and [LZT95], however, several mo-
difications had to be introduced to allow an implementation on an embedded
platform. Some new rules that were not explicitly mentioned in both publi-
cations have also been included.

QRS detection

QRS detection is performed as in [MAO™04]. First, we search for maximum
moduli sets at scales 24 to 2! exceeding some thresholds eéRS to ElQRS‘ Since
the scales are derivatives of the original signal, this will correspond to slopes
of the QRS complex. We start by looking for a maximum modulus at scale
24, then for a related one at scale 23, and so on for lower scales.

A maximum modulus at scale 2¥ is considered to be related to another
one at scale 28~ if the time interval between them is less than 40 ms. We
simplified the rule proposed by [LZT95] in case more than one maximum lies
within this interval, the closest one is selected.

As proposed by |[LZT95|, a QRS complex is characterized by a pair of
maximum moduli sets with different signs at scale 23, whose time interval is
lower than 120 ms. If two minima, min, and mine, are found within 120 ms
of a maximum, we call their absolute values A; and A, and their distance
to the maximum I and Lo, and the following rules are applied:

1. If é—i > 1.2+ 22 miny is considered to be redundant

a2
Lo
2. If é—; >1.2- %, many is considered to be redundant

3. If both are on the same side of the maximum, the minimum with the
largest distance to the maximum is considered as redundant.
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4. If they are on different sides, the minimum following the maximum is
considered as redundant.

A symmetric procedure is applied if two minima are found in the neigh-
borhood of a maximum.

Once a pair of sets is found (due to the rules above, the maximum moduli
at scale 2% must have different signs), the R peak is found by looking for the
zero-crossing between the 2 maximum moduli at scale 2'. Again, as the scales
are derivatives of the original signal, the zero-crossing corresponds to a peak,
i.e. the R peak.

Thresholds
IMAO™04] computes the thresholds elé rg Py taking the root mean square
(RMS) over 2'6 samples of scale 2% (these results are then divided by 2
for scale 2%). This is fine for an offline implementation, but as we want our
algorithm to run in real-time, only a limited set of samples can be considered.

In the proposed algorithm, the RMS is first computed on each block of
512 samples, which corresponds to the size of our circular buffer (this size
was chosen to support the limited memory of our embedded system, see
Section , and the average over the last 8 blocks is considered. As
in [MAO™04], the RMS value needs to be divided by 2 for eé) RS

A strong advantage of using a threshold computed over a limited amount
of time is that the locality of the signal is considered, which is important
for an implementation meant to be used in ambulatory conditions, as the
noise, heart beat rate and other parameters may change quickly compared
to records of the QTDB, which are usually rather stationary.

R-R interval
For some of the following rules, the current R-R interval (i.e. the interval
between 2 consecutive R waves, denoted rr in the rest of this document),
needs to be estimated. A moving average is used to perform this estimation
(rr; being the current estimate, and r7;_1 the previous one):

rY; = Z “rri_q + i . max(mq;1 ,min(rri—1 - 2, RRmeasured)) (4.27)
This allows the estimate to be sensitive to a change in the heart beat
rate, without being too vulnerable to false detections, which would in turn
produce an avalanche of other false detections due to the search back rule.
Additionally, the heart beat rate cannot take a value above 300 beats per
minutes ([SLO5], p. 415).

Search back
If no QRS complex is detected for 1.5-7r, we look backwards and try to find a
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pair of maximum moduli at scale 23, using the same threshold e% Rrg- 1 then
directly look for the zero-crossing point at scale 2!, without searching for
maximum moduli at scales 22 and 2!. This is somehow similar to [LZT95],
except they lower the threshold e?é g to half its original value, while we
do not perform this step, and keep the same e% rg values. This is however
less sensitive than the normal rule above, since we do not ask for maximum
moduli at scales 2!, 22 and 24.

QRS delineation

Individual waves
Once the main wave of the QRS complex has been detected, I look for se-
condary waves of the QRS complex. We search for maximum moduli at scale
22 exceeding a threshold Yors in a 160 ms search window centered on the
main wave.

Yors = 0.06 - max(|Way2x[n]|), with n in the search window defined above.
(4.28)

IMAO™04] uses 2 different thresholds to detect waves before and after
the main peak. The proposed embedded implementation uses only one since
it does not change the results, and allows to simplify the algorithm.

As for the main wave of the QRS complex, a secondary wave is charac-
terized by 2 maximum moduli at scale 23 with different signs. And the peak
is marked as the zero-crossing at scale 2! between these 2 maximum moduli.

IMAO™04] suggests to take only 3 waves into account, but does not say
what to do if more are detected. In this implementation, if more than 3
significant waves are detected (i.e. the main wave plus 2 secondary waves),
the closest to the main peak are selected.

Onset and end
The QRS onset and end are detected at scale 2. A QRS complex, at scale
24 is normally composed of a single pair of maximum moduli, while it may
be composed of many maximum moduli at lower scales, because the signal
gets smoothed down at higher scales, due to the lower cut-off frequency.
Given this, we look for the maximum moduli at scale 2* around the main
QRS peak, and their values are used as thresholds:

EQRSonser = 0.25 - max(|Waaz[n]|),n € [R — 80ms; R — 4ms] (4.29)
€QRS,,y = 0.3 - max(|Waaz[n]|),n € [R + 4ms; R+ 80ms] (4.30)

Nmaz on, Tmaz end are then defined, as the samples where the maximum
moduli above occur.
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The first and last maximum moduli at scale 22 associated with any of
the QRS individual waves are also used. These values are named 7 ;.5; and
Niast, like [MAOT04].

To detect the QRS onset, we start from min(nmaz on, 7 first — 8 ms) and
we go backwards until we find a value at scale 2* smaller than §QRSonser-

A similar rule is used to detect the QRS end, starting from max(nmaxiend, Nast +
8 ms), then going forward using {grs,,, as a threshold.

end

P and T waves detection

P and T waves detection and delineation follow the same procedure, except
that their detection search windows and thresholds are different. As sug-
gested in [MAOT04|, we first look for all local maximum moduli at scale
24 within a search window exceeding a threshold 6‘113 - We then only con-
sider maximum moduli with amplitude greater than a threshold vp/p =
0.125 - max(|Wyaz[n]|), with n within the search window. If more than 1 pair
of maximum moduli is detected, different rules are used for the P and T
waves to determine which pair to take into account.

IMAO™04] takes multiple pairs into account, in order to be able to de-
tect biphasic P and T waves. My experience with records in the QTDB
(JLMGM97]) shows that using only the main pair is sufficient to delineate
satisfactorily the wave peak, onset and end, even when the wave morphology
is biphasic. Also, taking only one pair into account has some advantages
when the P wave is faint (it is not uncommon to detect up to 4 pairs in that
case), or when both T and U waves are present. If no pair is found at scale
24 the process is repeated at scale 2°, using new thresholds (6?:, /T)'

Once the pair of maximum moduli is found at scale 2* (k = 4 or 5), the

zero-crossing at scale 23 between them is selected as the wave peak. If no
zero-crossing is found at that scale, then the zero-crossing at scale 2* is used.

Thresholds
[IMAO™04] uses some thresholds €7, s computed over the last R-R detection
to find if a modulus maximum is significant. Our observations suggest that,
most of the time, these thresholds were very close to zero, and better re-
sults were obtained by simply considering every positive local maximum and
negative local minimum.

This is logically equivalent to take:

€h=e€r=0 (4.31)
The same reasoning was followed for e% e

€ =er=0 (4.32)
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Onset and end
The onset and end of the P and T waves are detected on the scale 2% where
the relevant pair of maximum moduli above is found [MAO™04]. To detect
the onset, we start from the first element of the pair of maximum moduli
(n first), and go backwards until we find a local minimum modulus, or until
the value goes below a threshold {p/r, ..., Whichever comes earlier.

For the end, we start from the second element (njs), and go forward
using the same rules, but with other thresholds {p/7, .

These thresholds are defined as follows [MAO™T04]:

gPonset = 05 : W24$[nf’i’!’8t] ( )
£p, = 0.9 Waaz[nyas] (4.34)
gTonset = 025 ' W24x[nfi’l“st] (435)
gTen(i = 0'4 ' W24w[nlast] ( )

P detection
The search window for the P wave relatively to the QRS complex was not
mentioned in [MAOT04]. We used as a base search window (BSW):

BSW = [QRSOHSQt — min(340 ms, 7"7'/2); QRSonset — 8 ms] (4'37)

When a P wave is detected, the positions of the surrounding maximum
moduli, relatively to the R peak, are recorded in pri; and pro. A moving ave-
rage with parameters 0.75/0.25 is used to smooth down the values, allowing
us to be flexible but resilient to detection errors. For the next searches, we
look for the P wave at scale 2¢ using a narrowed search window (NSW):

NSW = BSW N [Rpeak —1.5-pry; Rpeak —0.6 -p?"z] (4.38)

If the P wave is not found at scale 2%, we look for it again at scale 2°,
using the same window. If the P wave is still not found, we search again
using a wider window (NSW):

NSW' = BW N [Rpeak — 2.0 - pr1; Rpeak — 0.5 - pro] (4.39)

These rules improves the results significantly when the P waves are hard
to distinguish.

If multiple maximum moduli pairs are found within the search window,
the one with the maximum slope is selected

|(Wasz[na] = Warz[na])/(n1 = n2)l, (4.40)

with ny and ng being the 2 maximum moduli of the pair. The maximum slope
usually corresponds to the most important wave in terms of amplitude.
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T detection
As for the P wave, the search window was not stated in [MAOT04]. We
decided to use a search window SW defined as follows:

SW = [max (QRSend + 60 ms, QRSonset + (0.5 - QTemin - V7)) |
QRSonset + (1.5 - QTCrma - \/ﬁ)} (4.41)

The values for QT cpin, QTcmax can be found in Table and are based
on normal values for the QT coefficient in Bazet’s formula|RGJT09]:

QTec— time interval from QRSynser 10 Teng

(4.42)

V/previous R-R interval

Table 4.3: Normal values of the QT'¢, as found in [RGJT09]. HBR = heart
beat rate (per minute), RR = R-R interval (in seconds). Values in the last
two columns correspond to normal maximum and minimum values of the
QT coefficient

HBR | RR QTCmin QTCmax

40 1.5 0.41 0.51
50 1.2 0.38 0.46
60 1.0 0.35 0.43
70 | 0.86 0.33 0.41

80 | 0.75 0.32 0.39
90 | 0.67 0.30 0.36
100 | 0.60 0.28 0.34

120 | 0.50 0.26 0.32
150 | 0.40 0.23 0.28
180 | 0.33 0.21 0.25
200 | 0.30 0.20 0.24

Ascending or descending T waves do not cause a pair of maximum moduli,
but just a single maximum modulus, generally well above the threshold.
Thus, the following rule was added: if there is only one maximum modulus
in the search window, and this maximum modulus is greater than 2- e[}, that
point is considered to be an ascending or descending T wave, and we look
for the onset and the end of the wave from there.

If within the search window, at scale 2%, there are more than one maxi-
mum modulus pair, and if the ratio between the slopes is less than 2, the
pair with the biggest modulus maximum at scale 2° is chosen.

This rule enables us to distinguish the T wave properly when both T and
U waves are present, the U wave being a second wave, after the T wave, with
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similar characteristics and frequency content that can be visible under some
conditions. In theory, this rule would prevent us from detecting biphasic T
waves, but in practice, the end of the T wave is still detected correctly thanks
to the rules concerning the end point.

Porting on the Shimmer™ platform

In addition to the previously described algorithmic adaptations, some opti-
mizations to adapt the algorithm to the limited resources or the Shimmer™
platform are performed.

Considering the amount of memory available (10 kB), the maximum buf-
fer size for the input data and each of the 5 wavelet transforms is 512 samples.
Since a 16-bit integer needs 2 bytes, these data use 6 kB of RAM. If we ta-
ke into account the rest of variables used by the code, the total amount of
memory required by the algorithm is 7.2 kB bytes (72 % of the available
memory).

Regarding the arithmetic operations, they have to use integers only, since
there is no hardware floating-point unit in this node’s CPU (MSP430). Using
any kind of floating-point operations would lead the compiler to generate slow
emulation code.

The most time-consuming parts of the algorithm are the low-pass and
high-pass filters, since they have to be called 4 and 5 times respectively for
each data sample. However, these filters are very simple, since they do not
even require any division or hardware multiplications, and can be performed
efficiently using only shift and addition operations. These time-critical fun-
ctions were coded in assembly, which provides a gain of more than 20% in
terms of processing time, as seen in Table

Table 4.4: Processing time needed to delineate lead 1 of the se1302 record
from the QTDB, i.e. 37 seconds of data, using either C or assembly filters.

Filter implementation Time Gain
C 2863 ms -
MSP430 assembly 2244 ms | 22%

The compiler automatically uses the hardware multiplier to execute mul-
tiplications by factors other than powers of 2 (which can be replaced by
simpler shift operations). Since no hardware divisor is available, the compi-
ler provides software emulation for division (again, divisions by powers of 2
are replaced by shift operations).

Finally, the e thresholds are computed using the RMS of data blocks,
which requires a square root to be performed. I had to write the code for this
operation, since there is no C function for integer square root. We could have
used the function sqrt, which uses floating points, but this would require



72 CHAPTER 4. Application-level optimizations

many slow software floating point operations. A simple algorithm to perform
the operation /n is the Longhand square root algorithm [Rol87], using the
following recursive formula:

1
Thi1 = 5 ($k+n),k20,x0>0 (4.43)
Ty,

2
until it converges to a number. In addition, division is expensive on the
MSP430, as it has to be performed by software. To avoid unnecessary steps,
the starting value zg is first roughly estimated using the order of magnitude
of the input number n.

4.2.2.3. Validation and experimental results

For this first set of experiments, I run the improved online single-lead
delineation algorithm on the Shimmer™ platform and compute the four
relevant performance metrics described in Section [£.2.1] Table [4.5] reports
the obtained results, together with those of the original offline single-lead
algorithm [MAO™04]. The last column indicates the standard deviation to-
lerances by the CSE working party [fQEWPS85|. Note that for the sack of
consistency with the validation procedure of [MAO™04], the results of our
online algorithm in Table correspond to performing online single-lead
delineation on the two channels of each QTDB excerpt, then selecting the
automatic annotation on the channel producing less error, for each manual
annotation of the database. The results obtained using this validation proce-
dure represent the optimal single-lead delineation that can be achieved using
a 2-channel ECG input signal (“genie” selection).

Table [4.5] illustrates that our implementation performs within the stan-
dard deviation tolerances for all points, except the QRSynset and Py ger, for
which we are above the agreed tolerances by only a fraction of the sam-
ple duration. Furthermore, Table shows that this implementation of our
proposed algorithm consistently outperforms the state-of-the-art offline algo-
rithm proposed in [MAO™04] in terms of standard deviation, while running
in real time and preserving a high sensitivity and predictivity.

In addition, we measured the real-time performance of our algorithm im-
plementation on the Shimmer™ platform. To this end, in order to emulate
the behavior of the real system, in which the ECG signal is read by the
sensors, all the data of the QTDB is sequentially sent from a PC to the
Shimmer™ through the serial port in small blocks of 512 kB. The signal
is processed in the platform and the results are sent back to the PC using
also the serial port to enable a visual verification of the performed automa-
tic ECG delination. In addition, we used an internal timer of the MSP430
to compute the total processing time. This timer is suspended when data
transfers are performed through the serial port, and resumed when the data
is being processed, as if it was in real time. Thus, we can extract a ratio
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Table 4.5: Single-lead delineation performance of our online optimized im-

plementation vs. the baseline offline algorithm [MAO™04]

this work Martinez Tolerances
Method 16-bit int IMAO™04] (2scsE)
Shimmer™
Se (%) Se (%)
Parameter | Pl (%) Pt (%) o (ms)
m + o (ms) | m £ o (ms)
99.87 98.87
Ponset 91.98 91.03 10.2
8.6 £ 11.2 2.0+ 14.8
99.87 98.87
Preak 92.46 91.03 -
10.1 £ 8.9 3.6 £ 13.2
99.91 98.75
P.a 91.70 91.03 12.7
0.9 £ 10.1 1.9 £ 128
99.97 99.97
QRSonset 98.61 N/A 6.5
34+70 4.6 £ 7.7
99.97 99.97
QRSuna 98.72 N/A 11.6
3.5 +£83 0.8 +£ 8.7
99.97 99.77
Theak 98.91 97.79 -
3.7 £ 13.0 0.2 £ 13.9
99.97 99.77
Tena 98.50 97.79 30.6
—-244+169 | —1.6 £ 18.1

between the amount of data to process and the actual time needed to pro-
cess the data of the ECG waves of the QDTB. Interestingly, the obtained
processing ratio results using the proposed algorithm and embedded imple-
mentation prove that we can perform real-time delineation while keeping the
MSP430 microcontroller in sleep mode about 93 % of the time on average.
Thus enabling a very low-power embedded ECG wave delineation system.

4.2.3. Single-lead MMD-based ECG delineation

A second widely used approach for ECG delineation is based on the
multiscale morphological derivative (MMD) [SCKO05]. As a nonlinear filtering
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technique, it has been proven that the morphological dilation and erosion
operations that involve the MMD, satisfy the causality and the additive
semigroup property required by multiscale analysis [PLI6, [JD96l BS93| for
signals of any dimension with local maxima and local minima as singular
points. The fiducial points in ECG signal, such as the Q wave, R peak, S
wave, the onsets and ends of the P and T waves, can be regarded as such
singular points [MZ92al [Wit84].

4.2.3.1. State-of-the-art single-lead offline delineation algorithm

The original algorithm for offline ECG signal delineation [SCKO05| is di-
vided in three main steps (filtering, transform and characteristic wave deli-
neation), which are subsequently explained in detail.

Filtering

The sensed ECG signal is filtered for baseline wander suppression and noise
reduction. To this end, the same morphological filter [SCK02| already pre-
sented in Section [4.1.2]is used, which conditions the input signal for a better
detection of the fiducial waves with minimum signal distortion. For this de-
lineation algorithm, baseline correction is critical, since the elimination of
baseline wander can change dramatically the information extracted from the
ECG signal.

Application of the MMD transform
According to [SCKO05|, the singular points of the ECG wave (onsets, peaks
and ends of the QRS complex and P and T waves) correspond to maxima
and minima of the signal. Therefore, a singular point is defined as a point
whose derivatives on the left and right exist with different signs.

The derivative on the right at point x of function/signal f can be defined
by the morphological sup-derivative Mf(x), defined as:

s—0 S

and the derivative on the left can be similarly defined by the morphological
inf-derivative M (), defined as:

f s—0 S

where for the functions f : D C R — R and g5 : Gs C R™ — R(s > 0),
the two fundamental operations of multiscale morphology are defined in the

same way as in [£.2.4] as:

Dilation : (f ® gs)(z) = sup {f(x—1t)+gs(t)} (4.46)
te(GsNDy)
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Erosion: (f&gs)(x)= inf {f(xr+1t)—gs(t)} (4.47)
te(GsNDy)
where D, is the translation of D, D, =z +1t:t € D, sup(f) and inf(f)
refer to the supremum and infimum of f, s is scale and g, is the scaled
structuring function [DS88]. In the discrete case, where the function is a
finite set of points , max(f) and min(f) are used instead of sup(f) and
mf(f).
The proposed multiscale morphological derivative transform M;f [SCKO05]
is defined as the derivative on the right minus the derivative on the left:

flx) = (f ©gs5)(x)

= lim — lim
s—0 S s—0 S
S S -2
s—0 S
Therefore, the scaled version of MJ‘? at scale s, M}is is defined as:

S

This means that a positive peak in the ECG signal (its left derivative
is positive and its right derivative is negative) is transformed into a local
minimum. At the onsets and ends of the positive waves, there is an abrupt
increase of the derivative from the left to the right, hence, these points are
transformed into local maxima.

For a discrete signal, if we choose a flat structuring element of amplitude
0 (gs(z) = 0,z € G, where G = {z : ||z|]| < s}, as stated in [JD96]), Mjils
can be simplified by choosing a moving window of length 2s+ 1 samples and
finding the maximum and minimum values in the window, as well as the
value of the signal at the central point f(x). By applying this, the multiscale
morphological derivative transform of a discrete signal f at scale s, M}is, is
defined as:

max{f(t)}te[a:—s,x—i—s] + min{f(t)}te[x—s,z-‘rs] - 2f(l')

M (o) = 5

(4.50)

To accurately and robustly detect the relevant signal singularities, the
scale of the transform (s) should be as large as possible but less than T, Fy,
where T, is the duration of the shortest ECG characteristic wave we want
to detect and Fj is the sampling frequency of the signal. The shortest wave
of interest is the QRS complex, whose duration is usually between 0.06 s
and 0.12 s. Since the sampling frequency used in this work is 250 Hz, the
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scale of the transform should be between 15 and 30. In this study we choose
the lowest value, 15, in order to detect correctly all the waves, even if their
duration is very short. If we choose a higher value of s, the transformed
signal will be smoother and the bounds of the waves will be more difficult to
detect, specially for waves with a very short duration as the QRS complex.
Figure depicts the original signal (a), the signal after the morphological
filtering (b) and the result of applying the morphological derivative to the
filtered signal (c).

ECG wave delineation

The delineation of the fiducial points of the ECG signal is performed only
taking into account the transformed signal. This delineation detects the local
minima and maxima of the transformed signal, since, as aforementioned, the
MMD transform converts the singular points of the original ECG signal into
local maxima and minima.

Limitations

This approach causes misdetections due to the fact that, in some cases, a
fiducial point of the original ECG signal is not transformed into a maximum
or minimum, as depicted in Figure This figure represents an excerpt of
the original ECG signal and its transform, and illustrates the wrong detection
of the end of the QRS complex by this offline algorithm and the real position
of this point. The procedure followed by the algorithm to detect the end of
the QRS complex is to search for a local minimum starting from the right
of the R peak (vertical solid line). Therefore, it is incorrectly detected in the
point indicated by the rightmost vertical dotted line. The actual end of the
QRS complex is indicated by the leftmost vertical dotted line.

4.2.3.2. Real-time embedded MMD-based delineation

The limitations of the original offline MMD algorithm are due to the fact
that, very often, at a fiducial point of the wave there is an abrupt change of
the derivative, but not necessarily a local maximum or minimum. Then, a
more efficient and accurate way of detecting these fiducial points is to look
for abrupt changes in the slope of the transformed signal instead of looking
for the local maxima and minima.

Furthermore, as was stated in the introduction, the aim of this work is
to run this algorithm for ECG wave delineation on an embedded wearable
platform. Due to the memory restrictions in this kind of platforms, only a
small excerpt of the ECG record can be stored for its subsequent processing.
On the other hand, we need as much data as possible to accurately calcu-
late the thresholds that will be used in the delineation process. Taking into
account both a high delineation accuracy and a low memory usage to make
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P wave T wave
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()

Figure 4.12: (a) Original ECG input signal (b) Signal after morphological
filtering (c) Result of applying the multiscale morphological derivative trans-
form at scale 15 to the filtered signal

the algorithm suitable for the node, the length of the sliding window needed
to keep the last samples of the signal has been experimentally chosen to be
500. Hence, our implementation has been adapted to use a circular buffer of
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Actual end of the QRS complex

Wrong detected end of the QRS
complex (original algorithm)

wmﬂrﬂ‘///\‘

Figure 4.13: Misdetection of the end of the QRS complex due to the absence
of a clear minimum

0 0.2 0.4 0.6 0.8

Figure 4.14: Detection of all the fiducial points of a complete ECG wave

only 1000 bytes, which contains the last 500 samples of the read ECG signal.
Since the sampling frequency used in this work is 250 Hz, 2 s of signal are
stored in the node.
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Thresholds definition

In order to find all the characteristic points of the original ECG signal (on-
sets, peaks and ends of the P wave, QRS complex and T wave), we have
to find the points in the transformed signal where there is a sudden change
in the slope. Figure [£.14] represents an example of our delineation process
of a complete ECG wave. First, the algorithm calculates a set of thresholds
which will be used to find the points that correspond to the R peak (Thg),
the bounds of the Q and S waves (T'hgg), the bounds and peak of the P
wave (Thp) and the bounds and peak of the T wave (Thr). To this end,
the algorithm makes two histograms of the transformed signal. The first one,
which takes into account the complete excerpt of signal that is stored in the
buffer, and finds the maximum absolute amplitude and the most dense parts
of the signal. Thr and T'hgg are values between them. The second histogram
considers only the part of the signal with more density, where the P and T
waves appear. The higher resolution in the histogram achieved by taking into
account only this part of the signal, allows to find more accurately Thp and
Thr.

ECG detection process

The first point to be found is the R peak, which appears in the transformed
signal as a local minimum with absolute amplitude greater than Thg. As
illustrated in Figure [£.14] at the left of the R peak, the algorithm looks for
two points featuring sudden changes in the slope and with absolute amplitu-
de greater than Thgg (onset of the R and Q waves, respectively). At the left
of the QRS complex, the algorithm looks for two zero-crossings. The abso-
lute minimum between these two zero-crossings is the P peak if its absolute
amplitude is greater than Thp. The first local maximum, from the left of the
zero-crossings, with absolute amplitude greater than Thp is the onset of the
P wave and the first local maximum, from the right of the zero-crossings,
with absolute amplitude greater than Thp is the end of the P wave.

The same procedure is followed at the right of the R peak to find the end
of the R wave, the end of the S wave and the onset, peak and end of the T
wave.

Next, I explain in more detail the general method for the detection of
the characteristic points of the ECG wave on the embedded sensor node.
Once the buffer, which stores the last 500 samples of the signal, is full for
the first time, the algorithm calculates the thresholds (T'hgr, Thqs, Thp and
Thr) based on the histogram of the signal, as we previously introduced. The
calculation of the thresholds is repeated every time a R peak is detected.
Once the thresholds are set, the algorithm proceeds as follows.

» Starting from the last detected point (or from the beginning of the
buffer if it is the first time that the buffer is completely filled), the
algorithm searches for a local minimum with absolute amplitude larger
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than Thg. This point is detected as an R peak. Depending on the
placement of the electrodes in the patient, we can obtain an ECG
signal in which the R peak is inverted, this behavior is considered by
the algorithm. In this case, the detected minimum will be either the
onset or the end of the R wave and the algorithm will find the R peak,
that will be a local maximum with amplitude larger than Thg.

Once the R peak has been detected, the algorithm searches back trying
to find the onset of the R wave, the onset of the Q wave and the P
wave. Then, starting again from the R peak, it will search forward for
the end of the R wave, the S wave and the T wave.

From the R peak to the left, the algorithm looks for a sudden change
in the slope of the transformed signal. This point will be detected as
the onset of the R wave if its absolute amplitude is larger than T'hqg.
From the onset of the R wave to the left, again it looks for another
sudden change in the slope. This is considered as the onset of the Q
wave if its absolute amplitude is larger than Thqg.

From the onset of the Q wave to the left, the algorithm looks for
a big reduction in the slope of the signal and afterwards for a zero-
crossing from a positive to a negative point. The algorithm then looks
for a second zero-crossing, now from a negative point to a positive one.
The minimum point between these two consecutive zero-crossings is
considered to be the peak of the P wave if its absolute amplitude is
greater than Thp. The first local maximum from the left of the left
zero-crossing with absolute amplitude greater than Thp is detected as
the onset of the P wave. Then, the first local maximum from the right
of the right zero-crossing with absolute amplitude greater than Thp is
detected as the end of the P wave.

If a valid P wave is not found, the step is repeated starting from the
second zero-crossing that was detected to the left.

From the R peak to the right, the algorithm looks for a sudden change
in the slope of the transformed signal. This point will be detected as
the end of the R wave if its absolute amplitude is larger than Thgg.

From the end of the R wave to the right, again it looks for another
sudden change in the slope. This is considered as the end of the S wave
if its absolute amplitude is larger than Thgg.

From the end of the S wave to the right, the algorithm looks for a
big reduction in the slope of the signal and afterwards for a zero-
crossing from a positive to a negative point. The algorithm then looks
for a second zero-crossing, now from a negative point to a positive one.
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The minimum point between these two consecutive zero-crossings is
considered to be the peak of the T wave if its absolute amplitude is
greater than Thy. The first local maximum from the left of the left
zero-crossing with absolute amplitude greater than Thy is detected as
the onset of the T wave. Then, the first local maximum from the right
of the right zero-crossing with absolute amplitude greater than Thyp is
detected as the end of the T wave.

» [f a valid T wave is not found, the step is repeated starting from the
second zero-crossing that was detected to the right.

In order to implement this algorithm for its execution in the Shimmer™
platform and make the final system to operate in real time, two types of
optimizations need to be performed in this algorithm: suppression of the
floating-point operations and changes in the underlying parameters of the
algorithm.

Suppression of floating-point operations

Since there is no hardware support for floating-point operations, all the
floating-point operations contained in an application compiled for one of
these platforms will be replaced by software emulation code, which leads
to a very long execution time of the application. For this reason, the first
optimization that has to be carried out is replacing all the floating-point ope-
rations by integer operations, which can be quickly executed in the target
microcontroller.

Changes in the underlying parameters

The execution time of the overall algorithm can be further reduced by choo-
sing intelligently the parameters used in the filtering, morphological trans-
formation and other intermediate operations, so that the algorithm makes as
little as possible use of arithmetic operations for which there is not specific
hardware support. Two operations of this type that are intensively used are
the division and the modulo.

The division is used mainly to calculate the morphological derivative
and the histogram of the signal needed to set the thresholds. Then, most of
the divisions, which were manually optimized to use a power-of-two divisor,
are translated by the compiler into shifts that can be performed extremely
quickly.

As an example, the scale of the morphological derivative, that was initially
selected to be 15, was changed to 16, which is also a very low value in the
range from 15 to 30. The number of ranges used in the histogram to calculate
the thresholds was also changed, being reduced from 20 to 16.

As described before, the algorithm uses a circular buffer to store the last
samples of the ECG signal, as well as two more circular buffers for the filtered



82 CHAPTER 4. Application-level optimizations

signal and the signal after the MMD transform, respectively. The algorithm
uses several pointers to access the data stored in the buffers, everytime one
of these pointers is moved, a modulo operation is used to make sure that
the pointer is always within the bounds of the buffers. The length of the
buffers was changed from 500 to 512. Thus, the modulo operation can be
transformed into a simple mask operation and executed much faster.

The impact of these changes in terms of delineation accuracy is negligible,
as confirmed by the validation results for a representative embedded sensor
node, while they help to significantly speed up the execution time of the
algorithm.

4.2.3.3. Validation and experimental results

For the validation of this work, I run on a WBSN platform the proposed
online version of the multiscale morphological derivative transform-based
detector using as input the 105 records of the QTDB [LMGM97]. In this
evaluation, we compare the proposed improved algorithm with the original
MMD detector, as shown in Table

Validation on a PC

The first experiment I run is the validation using the online algorithm on a
PC, with floating-point operations in order to have the highest achievable
delineation accuracy. The first column of Table shows the results of this
validation. The values in the last column of the table are the limits in the
standard deviation that are set by the CSE committee [fQEWPS85|. All the
results of our algorithm are below these limits, unlike the original MMD
algorithm (third column of Table , which violates the threshold given by
the CSE committee for the end of the P wave (row P.,q). Thanks to the
improvements that have been included in this new version of the algorithm,
the mean error has been significantly reduced (by 4 ms on average, if we
calculate it using the absolute value of the mean error in every detection).
This means that, on average, the points detected by the proposed algorithm
are 4 ms (i.e., one sample) closer to the real ones than the ones detected by
the original offline algorithm.

The standard deviation is also improved with respect to the original
MMD detector for the case of the P wave and the QRS complex. In the
case of the T wave (rows Typser and Tepq), the standard deviation obtained
by our detector is higher than in the original implementation, but this is
not a problem since the results obtained by our algorithm are significantly
lower than the limits given by the CSE committee (last column of Table ,
because the T wave is not decisive in the diagnosis of cardiac pathologies.
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Table 4.6: Results of our algorithm (both in the PC and the Shimmer™
platform) and other state-of-the-art algorithms for ECG signal delineation

Improved MMD | Improved MMD Tolerances
Method floating-point 16-bit int Original MMD (2scsE)
PC Shimmer™
Se (%) Se (%) Se (%)
Parameter P’r-:in (%) P’rjl_in (%) ‘P’r_r‘:in (%) a (HIS)
m + o (ms) m + o (ms) m + o (ms)
99.75 99.15 97.2
Ponset 96.66 96.70 - 10.2
3.6 £ 9.6 3.5 +£10.7 9.0+ 94
99.91 99.28 -
Ppeak 96.67 96.65 - -
2.6 £ 7.7 1.2+ 78 -
98.56 98.68 94.8
P 96.98 96.95 - 12.7
22 +94 1.1 +10.0 12.8 £ 13.2
99.37 99.03 100.0
QRS onset 100.0 100.0 - 6.5
1.0+ 64 0.7 £6.7 3.5 +6.1
99.89 99.78 100.0
QRS,na 99.97 99.97 ; 11.6
—0.4 £+ 6.8 —-02+7.0 2.4 +10.3
95.11 96.10 99.8
Tonset 83.42 83.96 - -
5.7 + 26.7 8.7 £+ 25.8 7.9 + 15.8
99.75 99.60 -
Tpeak 100.0 100.0 - -
—0.3 £ 15.0 0.7 £ 13.1 -
95.23 95.37 99.6
Teona 97.92 97.80 - 30.6
—7.3 £19.0 —6.0 £ 17.0 8.3+ 124

Validation on the Shimmer™ Platform

After performing all the previously described optimizations for embedded
sensor platforms, the algorithm was validated in the Shimmer™ platform,

using as an input the whole QTDB, which is sent from a PC to the Shimmer

TM

through the serial port in small blocks of 512 kB as in Section The
second column of Table shows the results of the algorithm running on
the Shimmer™ platform. As it is shown, the degradation in the results due
to the loss of accuracy of the optimizations performed to make the algorithm
suitable for the embedded platform is negligible. Regarding the mean error,
the same values, on average, are obtained in the version of the algorithm
for the Shimmer™ (using integer operations and the optimized underlying
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parameters previously described) and in the version of the PC (using double-
precision floating-point operations and the initial underlying parameters).
The sensitivity is slightly better, on average, for the version running in the
Shimmer™ than for the one running in the PC.

4.2.4. Multi-lead WT-based ECG delineation

In clinical practice, however, several leads are simultaneously acquired,
be it the standard 12-lead ECG in traditional clinical settings or the 3-lead
configuration in emerging ambulatory ECG monitoring. This calls for the
deployment of delineation approaches able to exploit the multiple available
leads to improve the accuracy, stability and resilience to artifacts of the
characteristic waves measurements, compared to single-lead delineation.

There are two approaches to multi-lead delineation. The first approach
consists in first delineating each and every lead individually, then applying
a median postprocessing selection rule over the characteristic wave peaks,
to select the “best” delineated ones. Then, the wave boundaries with longest
wave duration are chosen, with some outlier protection, in order to retain the
“best” global single-lead delineation [LJC94, MAO™04]. When only two leads
are available, this approach is however not applicable, and must be replaced
by a “genie” selection that chooses for each point the lead with less error.
However, this “genie” selection, which represents the optimal delineation, can
only be used for validation purposes since the algorithm cannot know which
is the lead with less error. The second approach instead proposes to combine
the individual leads into a multi-lead signal — which provides an overall view
of the cardiac phenomena and is independent of the lead system used — on
which a single-lead delineation algorithm is further applied. Different multi-
lead signals can be found in the literature: (1) the combination of the ECG
leads in the root mean squared (RMS) sense [[vOHO06, SML06, RBBT09|;
(2) a derived spatial lead obtained via a multi-step iterative search on the
spatial WT loops of the 2 or 3 original orthogonal leads [AMRLQ9]; (3) a
combination of the derivatives of the ECG leads [IM10]. Given the limited
processing and storage resources of our target embedded sensor node, we he-
rein retain the well-established RMS-based multi-lead delineation approach
due to its lower computational complexity and better scalability. We will
additionally benchmark its performance with respect to the selection-based
multi-lead delineation.

Accordingly, the available L ECG leads x;[n], with [ = 1,..., L, are first
combined in a single multi-lead signal xgarg[n]:

(4.51)

where n denotes the discrete-time index, on which single-lead delineation is
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performed. For a meaningful combination, it is crucial to remove baseline
wander (mainly caused by respiration, electrode impedance changes due to
perspiration and body movements) on each of the leads before computing
the RMS [IvOHO06l [SMLO0G|. Therefore, since the quality of the subsequent
delineation depends on the baseline wander correction, we assess in this work
the effectiveness of the two state-of-the-art approaches previously studied in
Section [4.1} cubic spline baseline estimation and morphological filtering.

The delineation of the signal xzgrprg is performed using the single-lead
WT-based ECG delineator proposed in Section since it clearly out-
performs the single-lead MMD-based ECG delineator in terms of execution
time, therefore achieving a lower energy consumption, while having a high
accuracy in the detection of the ECG characteristic points.

4.2.4.1. Validation and experimental results

The accuracy of our online multi-lead delineation using the two conside-
red baseline wander removal techniques, running on the Shimmer™ platform
for the QTDB, are compiled in Table [£.7] For comparison, this table also in-
cludes the delineation results of the online single-lead delineation algorithm
applied on each of the two leads of the database.

Comparing the accuracy of single-lead delineation on individual leads
(third and fourth columns of Table and that of the multi-lead RMS
approaches (first and second columns of Table , it is confirmed that
exploiting the multiple leads has the potential to provide more accurate
boundary locations than any lead by itself. The two considered baseline
removal techniques exhibit equivalent accuracy figures in terms of mean (m)
and standard deviation (o), which are off the tolerances by only a fraction
of the sample duration for all wave locations, except the onset of the P
wave. For this particular wave boundary, none of the methods discussed in
this section fulfills the loose criterion on the tolerance for the dispersion of
automatic delineation errors. Interestingly, multi-lead delineation with cubic
spline baseline estimation offers the best positive predictivity performance,
Pt. . among all the methods of Table

Furthermore, Table [£.7] also shows that multi-lead delineation performs
equivalently to the best single-lead delineation (i.e., obtained on lead 1), and
outperforms the worst single-lead delineation (i.e., obtained on lead 2) by
one sample duration. This further confirms the previously introduced evi-
dence [SMLO06] that RMS-based lead combining alleviates the dependency of
delineation results on specific leads or lead systems, and that it provides a
more robust and stable boundary locations than single-lead delineation. The
validation herein produced is limited to 2-lead ECG excerpts of the QTDB
database, due to the memory limitations of the target embedded sensor plat-
form. This validation should, however, be extended to higher dimensional
excerpts to fully evaluate the performance and advantage of multi-lead deli-
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Table 4.7: Performance comparison of online multi-lead and single-lead deli-

neation
2-lead 2-lead Single-lead Single-lead || Toleranc.
Method 16-bit int 16-bit int 16-bit int 16-bit int (2scsE)
Cubic spline Morpho. Lead 1 Lead 2
Se (%) Se (%) Se (%) Se (%)
Param. P’r-rtzn (%) P’r—rtin (%) P;in (%) Pr—rtin (%) g (ms)
m+o(ms) | mto(ms) | m=xo (ms) | m=Eo (ms)
94.02 96.24 98.84 97.31
P,, 95.15 91.19 92.66 91.76 10.2
4.1+ 171 2.5+ 164 134 £14.8 | 104 £ 194
94.02 96.24 98.84 97.09
Ppeak 95.42 91.38 92.93 92.21 -
12.8 £ 12.1 14.7 £ 134 | 15.6 £12.1 6.9 + 16.9
94.05 96.27 98.87 96.81
Pona 95.49 91.55 93.24 91.43 12.7
—214+142 | —-1.9+ 155 1.6 £13.2 | =85 £ 179
99.67 99.75 99.61 99.67
QRSon 99.23 97.07 99.56 98.61 6.5
3.2+ 87 6.9 + 8.0 5.4 4+ 84 8.6 + 12.6
99.67 99.75 99.61 99.72
QRSend 99.20 97.07 99.56 98.72 11.6
7.3+ 11.9 9.0+ 9.1 1.5 £ 10.1 8.7+ 13.1
98.00 98.33 99.35 99.35
Tpeak 99.23 98.58 99.49 98.90 -
1.9+ 174 5.3 +£19.3 5.3 £ 184 3.5 £ 23.5
97.94 98.11 99.32 99.18
Tend 98.72 98.08 99.24 98.38 30.6
—4.14+253 | =114 £ 249 | —5.3 £22.7 | —4.6 £ 27.2

neation over its single-lead counterpart.

Additionally, Table reports the memory usage and duty cycle on the
Shimmer™ of the delineation algorithms validated in Table In particu-
lar, it shows that RMS-based multi-lead delineation requires up to 2 times
the memory usage of its single-lead counterpart. This is because it must fil-
ter the two leads separately for baseline removal, combine them, and finally
delineate the resulting signal. Interestingly, both RMS-based implementa-
tions exceed the 10 kB RAM memory of the platform. The corresponding
results in Table |4.8| have in fact been obtained using an alternative version of
the MSP430 microcontroller (MSP430F5438), which is equipped with 16 kB
of RAM memory. Moreover, the duty cycle of the RMS-based methods is
considerably higher than that of single-lead delineation, with most of the
computational burden dedicated to baseline wander removal (i.e., 26.44 %
for cubic spline baseline estimation vs. 12.39 % for morphological filtering).
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Table 4.8: Computational burden and memory footprint

Algorithm RAM usage (kB) | Duty cycle (%)
Single lead 7.2 6.78
2-lead RM S 14.9 33.22
cubic spline filtering
2-lead RM S 10.9 19.17
morph. filtering

4.3. Arrhythmia diagnosis

The results of the previously studied ECG delineation algorithms can
be used to perform autodiagnosis onboard the sensor node to provide the
patient with information about his heart’s state as well as significantly reduce
the amount of data to be wirelessly transmitted, and therefore extend the
lifetime of the node. To illustrate this, this section proposes a diagnosis
algorithm that evaluates a set of rules that a normal ECG should meet. If
any of the rules is not satisfied, the algorithm generates an alarm that will
be sent to the WBSN coordinator. Moreover, this section proposes a more
accurate approach, where the diagnosis algorithm is tailored to the detection
of a specific cardiac arrhythmia. In this case, an an automated real-time
atrial fibrillation (AF) detection algorithm is proposed, which also uses the
output of an ECG delineator to perform a detailed analysis of characteristic
irregularities of AF episodes.

4.3.1. General diagnosis algorithm

After processing the original ECG signal and obtaining the peaks and
boundaries of the characteristic ECG waves, this diagnosis algorithm is ap-
plied to check if the signal presents any anomalous behavior, which may
hint that the patient is suffering a cardiovascular pathology. This algorithm
evaluates iteratively five different conditions based in the points detected in
the ECG signal, according to the valid ranges reported in [Sch71l [PG85|,
namely:

1. The time from QRS,pset to QRSe,g must be less or equal to 0.10s.

2. The time interval from P, st t0 QRSonser must be in the range from
0.12s to 0.20s.

3. The amplitude of T}, must always be positive.

4. The time from QRSonset 10 Rpeqr must not be longer than 0.03s.
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Table 4.9: Normal values of the QTc. HBR = heart beat rate (per minute),
RR = R-R interval (in seconds).

HBR | RR | QTc and normal limits
40 1.5 0.46 (0.41 - 0.51)
50 1.2 0.42 (0.38 - 0.46)
60 1.0 0.39 (0.35 - 0.43)
70 0.86 0.37 (0.33 - 0.41)
80 0.75 0.35 (0.32 - 0.39)
90 0.67 0.33 (0.30 - 0.36)
100 | 0.60 0.31 (0.28 - 0.34)
( )
( )
( )
( )

120 | 0.50 0.29 (0.26 - 0.32
150 | 0.40 0.25 (0.23 - 0.28
180 | 0.33 0.23 (0.21 - 0.25
200 | 0.30 0.22 (0.20 - 0.24

5. The QT interval rule, which establishes a relation between the interval
from QRSynset to Topg. This rule indicates the valid interval between
the heart beat rate, and the last R-R interval (i.e., the interval from
the last R peak to the current one). To find the valid QT interval,
Bazet’s formula is used to calculate the QT coefficient for an input
signal (QT'c) as shown in Equation (4.52). Then, the valid values of
the QT'c are reported in Table

time interval from QRSynset 10 Teng

QTc = (4.52)

v/previous R-R interval

As a result, according to the results of checking these previous five con-
ditions, the sensor node reports to the WBSN coordinator that the heart of
the monitored patient can be suffering one of the pathologies of Table

4.3.2. AF detection

Atrial fibrillation (AF) is the most common cardiac arrhythmia. It is as-
sociated with high risk of stroke, dementia, heart failure and death [Bea09],
and is predicted to be responsible for over 3 million hospitalizations by
2025 [WCO03]. AF occurs when disorganized electrical signals cause the heart’s
two upper chambers (called the atria) to contract very fast and irregularly.
This results in a desynchronization between the atria and the lower chambers
(called the ventricles), which leads to an inefficient pump of blood. The early
detection of AF is important to ensure dangerous diseases to be identified and
treated accordingly. However, it can be problematic since the AF can appear
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Table 4.10: Pathologies detected by the diagnosis algorithm

Problem

Possible pathology

Time from QRSynset to
QRS¢pa: longer than
0.10s (it could even

Block of the His bundle. Supraventricular
rhythm with aberrant conduction.
Abnormal conduction over accesory path-

reach 0.12s) ways.
Ventricular rhythm or pacemaker rhythm.
The time interval from | Disorder in the conduction between

Pypset to QRSonset is
longer than 0.20s (long
PR interval)

atriums and ventricles at the atrioventri-
cular node level, His bundle (or its bran-
ches) or Purkinje system.

The time interval from
Ponset to QRSonset
is shorter than 0.12s
(short PR interval)

Presence of an anomalous accesory path-
way that produces a faster conduction or
the presence of a rhythm with origin in the
atrioventricular union, in the left atrium or
in the lower part of the right atrium. Gene-
rally, this anomaly is due to a ventricular
preexcitation.

The amplitude of Tjeqr
is negative (negative T
wave)

Primary alterations of the repolarization
phase (due to ischemia or myocardial in-
farction, subacute pericarditis or myocar-
ditis).

Secondary alterations of the repolarization
phase (due to alterations of the ventricular
repolarization).

The time from QRS set
to Rpeqr is longer than
0.03s

Delay in the ventricular activation time.

QTc is greater than the
values specified in Ta-

ble

The ventricular repolarization has slowed
down, which can be due to acquired or con-
genital causes. It is related to the appea-
rance of arrhythmias.

QTc is lower than the
values specified in Ta-

ble

This problem is usually related to the use
of some medicines, hypercalcemia or hy-
perpotassemia.

only during certain periods of time and may be asymptomatic. To overcome
this problem, a plethora of projects on telemedicine and health monitoring
started in recent years: MyHearth [LSD™06|, Health@Home [SSS™10], Mo-
biHealth [vHBW™04|, CodeBlue [KKGOT], etc. The interest in this field outli-
nes the importance of telemedicine and remote health monitoring for future



90 CHAPTER 4. Application-level optimizations

development of medical assistance and drives ICT services and technologies
development to new frontiers [Bea08|. Thus, in this work we advocate the use
of WBSN technologies, to enable continuous and advanced biomedical mo-
nitoring of the patients in real-time and therefore automated early diagnosis
for better healthcare.

I
|
P wave replaced |
by a chaotic |
v

AF

electrical activity

» &
» <

v

A

Non-regular Heart Beat Rate

Figure 4.15: ECG signal during normal sinus rhythm (above) and an AF
episode (below). During AF episodes, HBR is not regular and P wave is
replaced by a chaotic electrical activity between consecutive QRS complexes

The main characteristics of AF are an irregular heart beat rate (HBR)
and the absence of the P wave, which is replaced by a sawtooth pattern [Fea(6].
This is observed in Figure [4.15 which shows an ECG signal during normal
sinus rhythm (NSR, above), where the different ECG waves can be clearly
distinguished and the HBR is regular, and an AF episode (below), where
the HBR is completely irregular and the P wave is replaced by a chaotic
electrical activity between consecutive QRS complexes. Many studies on the
development of algorithms able to recognize these two features and there-
fore automatically detect the occurrence of an AF episode can be found in
the literature [Cea97, TG00, LHO5, [Cea02, [Ceal8), ISSST10]. However, the
implementation of such algorithms in a WBSN platform that can provide
real-time monitoring and diagnosis is unheard of.

During the last two decades, several algorithms and techniques for the
automatic detection and classification of AF episodes were presented. Such
algorithms analyze the ECG signal and search for anomalies and peculiar
characteristics of AF episodes.

When AF occurs, the cardiac frequency becomes highly irregular, leading
to a dramatic increase of the R-R interval variance. R-R interval dynamics
are analyzed by Cerutti et al. [Cea97] to detect AF episodes. This work
proposes the use of linear and non-linear indexes for characterization of R-
R series. Experimental results suggested a possible application of them for
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automatic detection of AF episodes. Tateno and Glass [TGO0| describe a
method for automatic detection of AF episodes based on R-R intervals using
the Kolmogorov-Smirnov test to estimate the similarities between standard
and test density histograms. This technique is able to reach 93.2 % sensitivity
and 96.7 % specificity. Logan et al. [LHO5| propose an approach based on the
variance of the R-R intervals over a sliding window, achieving 96 % sensitivity
and 89 % specificity. However, these approaches require high computation
and storage requirements, which do not make them applicable for WBSN
platforms, since they work offline using the whole ECG signal or very long
windows of it.

Other main characteristic of the AF episodes is the absence of the P
wave. A different approach based on this feature is proposed by Clavier et
al. in [Cea02], which presents a single-lead automatic P wave analysis of pa-
tients prone to atrial fibrillation. The P wave segmentation was done using a
hidden Markov model by taking into account some statistical and electrophy-
siological properties of the signal. Even if the paper does not present very
good results in terms of sensitivity and specificity, it suggests that combining
various symptoms can be a key point for the implementation of accurate and
efficient automatic detection algorithms. Concerning the combination of va-
rious AF symptoms, an interesting work was presented by Couceiro et al.
in [Cea08§|. In this paper, the authors combine three different algorithms to
detect AF episodes: P wave detection, heart rate analysis and atrial activity
analysis. The output of these algorithms is subsequently combined using a
neural network classifier which is able to detect the presence of AF episodes.
According to their measurements, the proposed algorithm outperforms exis-
ting techniques with 93.8 % sensitivity and 96.09 % specificity. However, the
atrial activity analysis involves quite complex frequency-domain calculations
that exceed the capabilities of state-of-the-art WBSN nodes [BGM™10]. Also,
the neural network classifier is very expensive in terms of computing power
and memory resources to be implemented in such limited WBSN platforms.

In addition, advances in electronics and development of portable and
energy efficient devices for medical care allow the development of innovative
applications for medical assistance and monitoring. Regarding AF detection,
Sanchez-Tato et al. [SSST10| address the necessity of an affordable monito-
ring and tele-healthcare system for patients. In particular, they present AF
detection as one of the most relevant case studies for a diffusion of mobile
healthcare systems to end users. Therefore, real-time detection of AF episo-
des in people with risk of cardiac failure is one of the main concern in current
development of telemedicine.

4.3.2.1. Atrial Fibrillation Detection Approach

As aforementioned, the AF detection approach proposed in this work re-
lies on two algorithms that perform, for each heart beat, an analysis of the
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HBR and the detection of the absence of the P wave, respectively. Then,
the outputs of both algorithms are combined using fuzzy logic to classify the
heart beat under analysis as AF or normal. The scheme of the proposed tech-
nique, depicted in Figure is similar to the one described in [Cea08§|, but
avoids the complex atrial activity analysis and replaces the neural network
classifier by a much simpler, but yet highly accurate, fuzzy classifier. These
changes allow the algorithm to meet the limited resources of the Shimmer™,
especially in terms of memory and processing power. This section provides
a detailed description of these algorithms as well as our new fuzzy classifier.

Heart rate
analysis
Fuzzy
ECG data |— g
Classifier
P wave
detection

Figure 4.16: Overview of the proposed AF detector algorithm

Heart Rate Analysis
Heart rate analysis is based on the R-R interval variance, which is higher
during AF episodes due to the irregular activity of the heart. First we need
to detect the most significant peaks of the ECG signal (i.e., the R peaks),
that are related to the contraction of the myocardium. For this purpose, we
use as starting point the delineation algorithm introduced in Section 4.2.2.2
This algorithm performs wavelet-based single-lead detection of the major
ECG characteristic waves (i.e., the QRS complex, P and T waves), i.e., ECG
delineation.

Then, when the R peaks are detected, we calculate the time difference
between two consecutive peaks to obtain the R-R intervals. Next, we norma-
lize the R-R intervals according to the following equation:

RR

RRyorm = 7R * 100; (4.53)
where RR is the current R-R interval, RR = %R7R+%R_}%/ and RR' is the ave-
rage of the R-R intervals in a 10-second window centered in the current beat.
This formula is inspired by the feature normalization proposed in [MMS83],
and updates RR with local information about the current R-R interval, com-
pensating for different patient resting HBR. The variance of RRyorm is then

computed over a 10-second sliding window.
At this point, [LHO5] applies hard thresholding to the variance in order to
compute an initial AF detection. This initial classification is then smoothed
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to eliminate spurious errors using a majority voting scheme over a 600-beat
window. Instead, in order to reduce the computational complexity and sto-
rage requirements to be able to run in real-time in WBSN nodes, we provide
the variance to our newly developed fuzzy classifier, that will interpret this
data accordingly. Moreover, this new approach we propose enables a much
faster diagnosis, with an average delay to classify a beat of only 5 seconds,
since it uses a 10-second sliding window centered in the current beat, while
the average delay of the method proposed in [LHO5] is 300 heart beats, which
means 225 seconds for a typical HBR of 80 beats per minute.

P wave detection

We perform the P wave detection by comparing the candidate P wave au-
tomatically obtained by the previously mentioned wavelet-based delineation
algorithm with a model of the P wave, inspired on the approach proposed
by [Cea08|. However, in our case this model, depicted in Figure was
built by averaging all the annotated P waves found in the QTDB [LMGM97].
Then, for each beat, we calculate the correlation coefficient between the P
wave detected by the delineation algorithm and our P wave model. This
correlation value is then given as an input to our fuzzy classifier.

Amplitude(mV)

0 0.05 0.1 0.15
t(s)

Figure 4.17: P wave model
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4.3.3. Fuzzy Classifier

To combine the outcome of both sub-algorithms and to deal with limited
resources, we have developed a specific fuzzy classifier for AF detection.
Thanks to its low complexity, it can be implemented with very few resources
and, therefore, it fits in the limited resources of state-of-the-art WBSN nodes,
such as the Shimmer™.

A

NO AF UNK AF

>
>

0 A; A, Az A; Var(R-R interval)

AF UNK NO AF

0 B, B, Bs B, P-wave 1

correlation

Figure 4.18: Membership functions of our fuzzy classifier

The classifier takes, as input, the output of the sub-algorithms and provi-
des, as output, the outcome of classification process (NSR or AF). Trapezoi-
dal membership functions are used to calculate fuzzy values. They translate
the raw output of the two sub-algorithms into a fuzzy value that is subse-
quently used by fuzzy rules to detect and classify AF episodes. Each mem-
bership function is characterized by four parameters, which are represented
by A (for HBR analysis) and B (for P wave correlation), that define the
borders of fuzzy values in the process of fuzzification and can be changed
to tune the algorithm for specific needs. In this specific problem, each fuzzy
variable can be represented with three fuzzy values. They indicate the out-
put of the corresponding sub-algorithm. These values are: AF, NO AF and
UNK. AF indicates that an AF episode is detected, NO AF indicates a
normal sinus rhythm, and when the output is equal to UNK, it is not clear if
an AF episode is happening or not; in the latter case, additional information
is required (i.e. the output of the other membership function). To reliably
detect AF episodes, membership function parameters should be set correctly.
After a careful experimental exploration, we have set these parameters to the
values indicated in Table which provide the best results. The developed
membership functions are depicted in Figure [4.18

To detect AF episodes, our proposed classifier combines fuzzy values
with a set of rules. Rules are weighted according to the accuracy and the
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Table 4.11: Configuration of the parameters of our fuzzy classifier

A, 150 || Bo | 05
Ay | 200 || By | 0.6
A; | 250 || Bs | 0.7
A, | 300 [ By | 08

Table 4.12: Fuzzy rules used for AF classification

Var(R-R interval) | P wave correlation | output value | output weight
AF AF AF 1
AF - AF 0.5

- AF AF 0.2
AF UNK AF 0.8
UNK AF AF 0.4
NO AF UNK NO AF 1
UNK NO AF NO AF 0.5
NO AF - NO AF 0.9
- NO AF NO AF 0.5
NO AF NO AF NO AF 1

correlation between symptoms and correct AF classification. The set of rules
I used in this work is summarized in Table .12

The configuration of the parameters of the fuzzy classifier shown in Ta-
ble [A.11] was set to obtain the best results on all the ECG records of the
database used to validate the proposed approach, each of which belongs to a
different patient. However, since the ECG signals differ from patient to pa-
tient and depend on physiological aspects like heart size or chest structure,
the parameters of the classifier can be tuned further by training to improve
classification accuracy on a specific patient. In fact, our results indicate that
a personalized configuration for each patient always enhances the accuracy of
the AF detection, achieving up to 100 % sensitivity and specificity for several
signals of the used database. This training can be done using small excerpts
of available ECG traces of each patient that have been previously annotated
by the cardiologist. Moreover, training not only improves classification itself,
but can be used to improve single-algorithm accuracy.

4.3.3.1. Real-Time Embedded AF Detection

The actual implementation of the proposed algorithm has been optimized
for the Shimmer™ WBSN node. The algorithm is optimized to reduce the
memory usage and execution time, in order to achieve a long lifetime of the
platform while performing AF detection in real-time.
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One of the most important parts in the design of the proposed AF de-
tection approach is the module that performs the detection of the R peaks,
which is needed by the heart rate analysis algorithm to compute the R-R
interval variance. In particular, a precise computation of the R-R intervals
relies on an accurate detection of the R peaks. As previously mentioned, the
algorithm that performs this duty is the wavelet-based delineator presented
in Section [4.2.2.2] We mainly selected this algorithm for its low memory usa-
ge (it only needs 7.2 kB of RAM) and its low computation requirements (in
only requires a 6.78 % duty cycle). This algorithm also performs the delinea-
tion of the P and T waves, and therefore we can reuse the delineation of the
P wave as an input for our own module of the AF detection algorithm that
performs the analysis of the absence of the P wave. We have optimized this
algorithm for the target Shimmer™ WBSN platform, and the implementa-
tion details are described next.

To enable the real-time implementation of the proposed AF detection
approach, I needed to perform several code optimizations. Since the MSP430
microcontroller of the Shimmer™ platform is not equipped with a floating-
point unit, the first adaptation needed is the conversion of all the floating-
point operations to use 16-bit integers. This caused a dramatic fall in the
performance of the algorithm, due to the significant loss of accuracy in the
calculation of the variance and the correlation coefficient needed by the heart
rate analysis and the P wave detection modules, respectively. Therefore,
the operands involved if these operations were converted to 32-bit integers.
However, this conversion did not solve the accuracy loss, and I had to increase
the width of 28 % of the operands to 64 bits in order to overcome the problem.
In addition, I optimized the computation of the correlation coefficient, which
needs a square root operation to calculate the deviation of the P wave under
analysis. Hence, the C library function sqrt, that involves several floating-
point operations, was replaced by our own implementation of the Longhand
square root algorithm [Rol87], that only uses integer operands and performs
well on platforms without hardware division support, such as typical WBSN
nodes.

After these optimizations, the total amount of memory used by our com-
plete AF detection approach algorithm is 8.4 kB of RAM, which means that
all the required processing for ECG classification and AF detection after
the delineation algorithm only needs 1.2 kB of RAM. This low memory usa-
ge is mainly due to the use of our new fuzzy classifier, that requires very
few resources while achieving a highly accurate classification. Overall, the
duty cycle of the complete real-time AF detection approach is only 7.73 %,
enabling the MSP430 to go to sleep mode during the remaining 92.27 % of
the time and therefore resulting in an extended lifetime of the Shimmer™.
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4.3.3.2. Validation and experimental results

To assess the AF detection accuracy of the proposed algorithm, I have
used the MIT-BIH AF database (AFDB) [MMS3|, which is composed of
23 10-hour ECG recordings sampled at 250 Hz, with manual annotations
of the AF episodes that appear in the signals. To this end, a beat-to-beat
comparison between the results obtained by the algorithm and the manual
annotations of the database is performed. Then, we calculate the sensitivity
(Se) and specificity (Sp), which are defined as:

B TP Sp— TN
~TP+FN "PT TN+ FP
where TP is the number of true positive detections, F'IN is the number of

false negative detections, T'N is the number of true negative detections and
FP is the number of false positive detections.

Se (4.54)

Table 4.13: Performance comparison between the proposed AF detection
approach and state-of-the-art offline algorithms

Algorithm Se (%) | Sp (%)
Proposed AF detection algorithm 96 93
Couceiro et al. [Cea08] 93.8 96.09
Moody et al. [MMS83] 93.58 | 85.92
Cerutti et al. [Cead7] 93.3 94|
Tateno et al. [TGOO] 93.2 96.7
Shkurovich et al. [Sead8| 78 92.65
Logan et al. [LHO5| 96 89

The results obtained after running the algorithm over the AFDB show
that the proposed system achieves 96 % sensitivity and 93 % specificity. These
results are comparable to state-of-the-art offline AF detection algorithms,
even outperforming several of them as Table shows, while the proposed
AF algorithm is able to operate online in WBSN nodes and provides real-
time AF monitoring and detection.

4.4. Energy versus performance trade-off study

Based on the power characterization of the Shimmer™ node, which was
introduced in Section this section proposes a comparison of the energy
consumption of a Shimmer™ node running a simple ECG streaming appli-
cation and the algorithms considered in this chapter, in order to evaluate

!These values correspond to positive predictivity (P+ = miles)

TP+FP
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how onboard processing affects the total energy consumption of the sensor
node

4.4.1. ECG delineation

Table[t.14]reports the energy consumption of a Shimmer™ node an ECG
streaming application and the various ECG delineation algorithms proposed
in Section The first row reports the duty cycle in percentage of ECG
signal acquisition time, while the second row indicates the time interval bet-
ween the generation of two consecutive data packets of 114 bytes. Given that
a sample is represented using 1.5 bytes and that the considered sampling fre-
quency is 250 Hz, the streaming application for instance generates one packet
every 304 ms. For the delineation algorithms, on the other hand, 30 bytes
of data (i.e., amplitude and timing information of the 9 fiducial points of
the ECG beat) are generated every time a heart beat is detected. Thus, a
packet can store up to 3 heart beats. Assuming a typical heart beat rate of
80 beats per minute, a full packet is queued for transmission every 2250 ms.
The third row shows the beacon interval, which is adjusted according to the
time interval between consecutive packets. The fourth row reports the total
energy consumption per second for every algorithm. Finally, the last row is
directly calculated from the fourth one, assuming the energy supply of the
Shimmer™ platform is a 280 mAh Li-ion battery at 3.7 V.

Table 4.14: Node lifetime for the delineation algorithms

ECG Single | Single | 2-lead | 2-lead
Stream. | lead lead Morph. | spline
WT MMD | filt. filt.

Duty cycle (%) 0 6.78 18.25 | 19.17 33.22
Packet ready every... (ms) | 304 2250 | 2250 2250 2250
Beacon interval (ms) 983 7864 | 7864 | 7864 7864
Energy consumption (mJ) | 7.70 7.44 8.62 8.71 10.15
Lifetime (h) 134.6 139.2 | 120.2 | 1189 102.1

Table shows that the total energy consumption increases with the
computational burden of the delineation algorithm. Surprisingly, it also evi-
dences that even the computationally-light single-lead WT-based delineation
algorithm, which only consumes 6.78 % of the CPU time and significantly
reduces the amount of data to transmit (from 3.29 to 0.44 packets per se-
cond), offers a marginal lifetime extension with respect to the plain ECG
streaming. These results highlight that, for WBSN applications, the radio
is not always responsible for most of the energy consumption of the node,
as widely assumed. To understand the limited lifetime extension provided
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by embedded signal pre-processing, we subsequently characterize and analy-
ze the energy consumption breakdown of the considered platform. The two
main sources of energy consumption are the radio and the microcontroller.

The radio

The energy consumption of the radio depends on the MAC protocol [Std03],
which adds communication overhead to control the access to the shared me-
dium. The fraction of energy consumption due to the used MAC protocol
only represents 1.3 % for the cubic spline delineation, and 14.3 % for strea-
ming. Therefore, the considered GTS-based protocol is a good choice for the
continuous ECG monitoring with periodic reporting scenario. It is worthw-
hile mentioning that this energy characterization was done for line-of-sight
communications between the sensing node and the WBSN coordinator. A
detailed study of the impact of various body-area propagation conditions
should be performed. It is however outside of the scope of this thesis.
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Figure 4.19: Breakdown of energy consumption of Shimmer™

The microcontroller

The consumption due to the CPU has a significant impact on the node life-
time for delineation algorithms that require more computational power than
wireless ECG streaming. Except for single-lead WT-based delineation, the
increased CPU activity leads to a shorter node lifetime, although the ra-
dio energy consumption is decreased by a factor of 8.6x (from streaming to
delineation). Thus, the code execution can be very expensive if the power
consumption of the microcontroller is high or the algorithm to be executed
has not been carefully optimized for the target platform. Therefore, a care-
ful study must be done when choosing or designing the microcontroller of
each final WBSN platform. Indeed, it is key to take into account the po-
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wer consumption in active mode as well as the possibility of having a low
voltage operation or using low-power modes that disable some parts of the
microcontroller when they are not used.

Nevertheless, for the Shimmer™ platform, the dominant process of the
microcontroller in terms of energy consumption is not the code execution.
As illustrated in Figure most of the energy consumption is due to
sampling the ECG signal (i.e., 65.2% for multi-lead delineation with cubic
spline baseline estimation and 85.7 % for the streaming scenario). Therefore,
the sampling process can be very expensive in terms of energy consumption
depending on the hardware implementation and the sampling frequency. In
this particular case, for the considered sampling frequency of 250 Hz, it was
not possible to turn the internal reference voltage of the A /D converters off
and on between two consecutive samples, because the time that the internal
voltage regulator takes to reach the appropriate level for the conversion is
longer than the sample duration. Therefore, the voltage reference is always
active, increasing significantly the total energy consumption. Hence, a careful
choice of an ultra-low-power A/D converter can potentially decrease to a
large extent the energy consumption of the whole system, as the sampling
process has proven to be the greatest energy-draining task in the design of
our wearable ECG WBSN system.

4.4.2. Arrhythmia diagnosis

Table 4.15: Node lifetime for streaming and the proposed arrhythmia diag-
nosis applications

ECG General | AF

streaming | diagnosis | detection
Duty cycle (%) 0 6.85 7.73
Packet ready every... (ms) | 304 21000 21000
Beacon interval (ms) 983 62915 62915
Energy consumption (mJ) | 7.70 7.32 7.41
Lifetime (h) 134.6 141.5 139.9

This section provides an energy consumption analysis of the arrhyth-
mia diagnosis algorithms proposed in Section as well as a comparison
with ECG data streaming. Table shows the energy consumption of the
Shimmer™ running an ECG streaming application, as well as the proposed
algorithms for general arrhythmia diagnosis and AF detection. Both algo-
rithms send only the obtained results (i.e., the decision of the classifier for
each ECG beat, indicating whether or not an arrhythmia was detected). The
first row shows the code execution in percentage of ECG signal acquisition
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time, while the second row shows the time interval between the generation of
two consecutive packets. In the case of the arrhythmia diagnosis algorithms,
only the results of the classification are sent to the WBSN coordinator, which
means that, for each beat, the node sends the time where the beat was de-
tected (28 bits) and a code that contains the result of the classification (4
bits). This code has 9 possible values, to indicate if the heart beat is normal,
or if an AF or any other of the 7 pathologies described in Table was
detected. Therefore a packet can store 28 heart beats. Assuming a typical
HBR of 80 beats per minute, a packet is generated every 21 s. The third row
shows the beacon interval, that is adjusted taking into account the maximum
throughput required by the algorithm. The fourth row shows the energy con-
sumption of the considered sensor platform per second. Finally, the last row
indicates the total lifetime of the node by considering the energy supply of
the Shimmer™, which has a 280 mAh Li-ion battery at 3.7 V.

From Table we can conclude that, although advanced processing
is performed in the Shimmer™ WBSN node and therefore the energy con-
sumption of the microcontroller increases, the total lifetime of the WBSN
node including the real-time AF detection algorithm is higher than using
a baseline ECG raw transmission. The reason for this situation is the sig-
nificant reduction in the amount of transmitted information to the WBSN
coordinator. In fact, thanks to this reduction, the algorithm only generates
a packet every 21 s, which decreases the energy consumption of the radio
to only 0.22% of the total energy consumed by the whole platform in the
case of AF detection. However, if the packet generation frequency is reduced
even more, which is possible if the node only sends an alarm packet when
an arrhythmia is detected, the additional energy savings would be negligible.
For example, if no alarm is detected, the radio’s energy consumption would
be 0.04 % of the total, and the lifetime would be only increased from 139.9 to
140.1 hours. Hence, this observation concludes that the only way to further
reduce the energy consumption of the platform lies in the optimization of
the ADC or the microcontroller.






Chapter 5

Conclusions

Pioneering spirit should continue,
not to conquer the planet or space. . .
but rather to improve the quality of life.

Bertrand Piccard

This chapter summarizes the conclusions that can be extracted from the
work presented in this Ph. D. thesis. Moreover, several lines of promising
research work will be proposed. Finally, the applications and achievements
of this work are described and a list of the publications produced during this
thesis is provided.

5.1. Final remarks

As previously mentioned in the introduction of this thesis, cardiovascular
diseases are the major cause of mortality worldwide, responsible for 30 % of
deaths worldwide in 2005 and economic fallout in billions of Dollars [PW10].
Their burden is only expected to rise due to the fast aging of the world
population and the increasing prevalence of unhealthy lifestyles. WBSNs for
health monitoring, diagnosis and emergency detection are gaining popularity
and will deeply change healthcare delivery in the next years. This technology
will help to decrease the high healthcare costs and medical management
needs of ECG analysis and diagnosis that, otherwise, are expected to be
unsustainable for traditional healthcare delivery systems in the next years.

This thesis proposes the development of a long-lived wireless ECG mo-
nitoring system that not only continuously acquires and displays the ECG
signal of the patient, but it also features on-board real-time analysis and
diagnosis, instantly providing information about the operation of the heart.
To this end, first, a study of the available WBSN architectures was conduc-
ted in chapter 2| and the Shimmer™ platform was chosen to be used, since
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it is one that best fits the requirements of this work. This platform featu-
res a great flexibility to implement the different techniques that have been
proposed, and it offers enough computational and memory resources to deal
with the herein considered applications. Furthermore, it is a good represen-
tative of a WBSN platform, therefore all the results provided in this thesis
are similarly applicable to other WBSN nodes.

Moreover, this work seeks to improve WBSN energy efficiency, while mee-
ting the data fidelity requirements of the application. To achieve this goal,
chapter [3| presents a MAC protocol especially tailored to fulfill the require-
ments of WBSNs. This MAC protocol is a reduced version of the beacon-
enabled mode of the IEEE 802.15.4 protocol using guaranteed time slots
(GTS). It uses a TDMA-like approach, which has been proven to be advan-
tageous in star-topology WBSN;, since its schedule-based nature eliminates
the possibility of having collisions and overhearing, while keeping the control
packet overhead very low and dramatically reducing idle-listening. The use of
this MAC protocol contributes to improve WBSN energy efficiency, since it
significantly reduces the energy consumption of the wireless communication.

Chapter [3| also proposes the use of FreeRTOS, a very light real-time
OS that enables an efficient and energy-aware management of the hardware
resources of the WBSN node. In addition, FreeRTOS provides an effective
scheduling of the different tasks to be executed by the node, such as signal
processing algorithms, MAC protocol management or sensing, as well as
interprocess communication. Finally, the use of this OS allows to decouple
the hardware and software resources of the node, providing more flexibility.

Then, chapter [4] presents several algorithms for real-time ECG filteri-
ng, delineation and arrhythmia diagnosis that provide the nodes with the
ability to evaluate the heart’s state and detect potentially dangerous car-
diac disturbances. These algorithms, which were optimized and ported to
the Shimmer™ platform, can also contribute to the reduction of the WBSN
node’s energy consumption, since they significantly reduce the amount of in-
formation that needs to be transmitted by the node. To achieve this energy
consumption reduction, a trade-off between CPU usage and radio communi-
cation needs to be explored.

In particular, chapter [] proposes two real-time single-lead ECG deli-
neation algorithms, based on the wavelet transform and on the multiscale
morphological transform, respectively. The excellent accuracy of these online
ECG delineators was established using a commonly used standard databa-
se. Then, this chapter proposes two RMS-based multi-lead ECG delineation
algorithms using two different techniques for baseline wander removal: cu-
bic spline baseline estimation and morphological filtering. The multi-lead
delineation performs equivalently to the best single-lead delineation for the
2-lead QTDB, within a fraction of a sample duration of the CSE tolerances.
This confirmed that this multi-lead approach alleviates the dependency of
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delineation results on specific leads or lead systems, and on expert interven-
tion. Moreover, the two evaluated baseline wander removal approaches were
shown to provide different trade-offs between positive predictivity, on the
one hand, and computational burden and memory footprint, on the other
hand.

Then, chapter [4] proposes two approaches for real-time arrhythmia diag-
nosis. The first one uses a set of rules that take into account the timing
and morphological information extracted after the delineation of the ECG
signal to evaluate, for each beat, whether it is normal or presents any irre-
gularity that may indicate an abnormal behavior of the heart. The second
approach, which is more accurate since it is especially tailored to detect
a particular arrhythmia, consists of an AF detection algorithm that relies
on the observation of two characteristic irregularities of AF episodes in the
electrocardiogram (ECG) signal, namely the R-R interval irregularity and
the absence of the P wave. This further shows the importance of a sensible
design and optimization of the AF detection approach for the limited pro-
cessing and storage capabilities of the target WBSN platform. As a result,
the performance results of the complete real-time AF detection system are
similar to state-of-the-art off-line AF detectors, achieving 96 % sensitivity
and 93 % specificity for the AFDB.

Chapter [4] also presents a comprehensive evaluation of the Shimmer™"s
energy consumption for the various delineation and arrhythmia detection
implementations investigated, with respect to a simple raw ECG streaming
application. The resulting energy consumption breakdown showed:

1. Although advanced signal processing is performed in the sensor node
and thus the energy consumption of the microcontroller is higher, the
lifetime of the overall system can be increased with respect to strea-
ming, since the amount of information that needs to be sent to the
WBSN coordinator is dramatically reduced.

2. Provided an optimized schedule-based MAC protocol and correspon-
ding optimized radio shutdown, a single-lead embedded delineation
only offers a marginal node lifetime extension.

3. This marginal advantage vanishes for multi-lead approaches, which en-
tail up to 5 times increase of CPU usage.

4. The ECG sampling is the greatest energy-draining task for the consi-
dered sampling frequency.

Accordingly, our system-level exploration suggests that a careful choice of
the WBSN platform’s components, taking into account the final application
during design time, can potentially decrease to a large extent the energy
consumption of the whole system, therefore node lifetime extension can be
achieved provided:
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1. An ultra-low-power A/D converter and associated architecture is used
to rationalize the ECG sampling cost.

2. A truly ultra-low-power microcontroller is chosen to carry out signal
pre-processing.

3. Last, but not least, a sensible algorithmic and software optimization of
the embedded signal processing is performed to take into account the
limited processing and storage resources of wireless sensor nodes.

5.2. Applications and achievements of this Ph. D.
Thesis

All the algorithms presented in this thesis have been first implemented
and tested on a PC. Then, they have been ported for their real-time execu-
tion on the Shimmer™ platform and validated using standard databases, in
order to evaluate their performance and compare them to other similar state-
of-the-art algorithms. Finally, these algorithms have been carefully optimized
to reduce as much as possible their execution time and memory footprint,
and used in real conditions. To this end, I invested a great amount of time in
implementation and experimental validation, until everything perfectly and
smoothly worked. Everyone that has ever dealt with hardware will unders-
tand me when I say that this task has been many times extremely unpleasant
and frustrating. But at the end, the satisfaction of seeing the system wor-
king and used by people, and obtaining useful results, compensates for all
those bad moments. There is an extra motivation in this thesis that makes it
exciting and rewarding, beyond reducing healthcare cost and energy consum-
ption, which is making people’s lives better, since wearable round-the-clock
monitoring devices will bring about new types of analysis, leading to new
treatments and ultimately save lives all around the world.

In order to make the proposed ECG monitoring system easily usable by
patients and doctors, graphical user interfaces for PC, iPhone, iPod Touch,
iPad, Nintendo DS and Android tablets have been developed, with the co-
llaboration of Nicolas Boichat, Rubén Braojos, Karim Kanoun, Rafael de la
Hoz, Pablo Fernandez and Miguel Marquez. Figure shows a Shimmer™
node with four electrodes, which is wirelessly connected to an iPhone. The
developed application displays on the iPhone the ECG signal of the pa-
tient, the heart beat rate and the results of the delineation received from
the Shimmer™ in real-time, and records all the data in a file. Moreover,
if an arrhythmia detection algorithm is being used, the application shows
the real-time diagnosis of the ECG signal and sends an email to the doctor
when an abnormal event is detected. The email includes a diagnosis of the
arrhythmia and a few seconds of the ECG signal around the detected event.
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Figure 5.1: Electrode sensors on the skin link to the Shimmer™ platform
clipped to a patient’s belt sending continuous data to an iPhone, which
displays the ECG signal, heart beat rate and delineation results

Many demonstration of this system have been shown in conferences, exhi-
bition booths, university research days, etc. During one of these demonstra-
tion, the EPFL media services recorded a video that was given widespread
coverage in blogs, newspapers, radio and TV, including its appearance in
CNN [Lab].

Moreover, this system has been used under real settings during the first
Solar Impulse virtual flight [Imp]. During this event, which took place in
the installations of Solar Impulse in Diibendorf (Switzerland) in February,
2012, André Borschberg (one of the pilots and founders of the project) was
at the controls for a flight simulation of 72 hours in a full-size mock-up of the
cockpit of the HB-SIB solar airplane. For the whole duration of the flight
the pilot was using the ECG delineation system and his ECG signal was
recorded, as well as the delineation results. With the help of Rubén Braojos
and Professor Jean-Marc Vesin, from EPFL, the recorded results were used
to evaluate the fatigue and vigilance of the pilot. To this end, the heart
rate variability was studied, and the relation between the sympathetic and
parasympathetic nervous systems was extracted, to be able to detect when
the pilot is feeling fatigue and is not fully concentrated in controlling the
plane. This information is extremely important for the sleep management,
enabling to develop the best flight and rest strategy for the pilot during the
real flight. The use of the system was monitored by a team of doctors from
the Hirslanden Private Hospital Group, and the results for fatigue detection
were approved by them. Figure shows Rubén Braojos and I placing the
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Figure 5.2: The ECG delineation system is installed on the pilot some mi-
nutes before the “virtual” takeoff.

ECG monitoring system on André Borschberg, just a few minutes before the
beginning of the virtual flight. The system recorded and analyzed the ECG
signal of the pilot during the whole mission.

The use of the proposed ECG monitoring and diagnosis system is not
limited to humans, but it can also be applied to animals. In this regard,
several experiments were conducted in a farm in La Forclaz (Switzerland),
where the ECG signal of sheep was monitored. It has been proved that sheep
can feel a dangerous situation and detect the presence of wolves. The aim
of these experiments is to extract the stress level of sheep from their ECG
to anticipate the potential attack of a wolf. Figure shows the system
installed on a sheep, as well as a screenshot of the iPhone that receives and
displays the ECG signal and delineation results.

Finally, this work gave rise to the US patent entitled “Automatic online
delineation of a multi-lead electrocardiogram bio signal”, which covers all the
herein presented ECG signal processing algorithms.

5.3. Ongoing work derived from this thesis

During the development of this thesis, two lines of work have been initia-
ted, motivated by some of the conclusions that have been extracted. The
first one involves the creation of a general analytical model targeted to no-
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Figure 5.3: ECG delineation system installed on a sheep. The received ECG
signal and delineation results are displayed on an iPhone (cf. right image)

des whose architecture is similar to the Shimmer™"’s. The model is part of
an optimization framework that performs an evaluation of the node con-
figurations and the corresponding performance tradeoffs to find the opti-
mal solution in the design space, contributing to a further reduction of the
WBSN node’s energy consumption. The second line is related to the design of
energy-efficient microcontrollers for online biomedical processing that exploit
low-voltage computing.

5.3.1. Multi-objective model-based design for WBSN plat-
forms

As discussed in the previous chapters of this thesis, the design of WBSN
nodes is mainly focused on maximizing the lifetime of the node by reducing
the energy consumption, while keeping into account performance require-
ments such the delay and quality of the delivered data. Since a design may
depend on tens of parameters, an efficient multi-objective optimization fra-
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mework is required to explore the design space and to identify the Pareto-
optimal solutions. The most critical part of this process is to provide a fast
yet reliable estimation of all the optimization metrics. There are three pos-
sible techniques to evaluate a solution: a) an exhaustive set of experiments,
which however cannot be automated; b) a network simulation, which is slow
and hence impractical when a large number of potential solutions needs to
be explored; ¢) an analytical model of the node, which favors a quick opti-
mization and a better analysis of the node behavior.

Model-based evaluation has a long history, as many models have been
proposed to describe the basic components of a node (e.g., memory, ra-
dio, etc. [KOKEOQG]||[GCI7|[SRS03|). However, combining those components
to form a model of the entire node is not an easy task, as the model should
include meaningful information of the specific node, while being reusable and
not requiring a massive amount of experimental data to be constructed. In
order to cope with the difficulty of building reliable node characterizations, a
promising trend is to generate statistical models from a properly-selected set
of experimental data [BDCDII1|. The experimental data is used to estimate
the parameters of a set of simple equations, which however do not provide
an application-aware evaluation of the node.

This research line tackles the model-based optimization problem from a
different perspective, i.e., by narrowing the scope of the model to WBSNs
and focusing on their most typical features (defined in [UHB™10]). In parti-
cular, this allows us to discard those aspects that are not generally required,
such as complex networking or task assignment. In this way, we are able to
analytically capture aspects like lifetime, transmission quality and applica-
tion performance with a high precision, while still keeping the model general
and reusable. Then, if the size of the design space is not too big, we can simply
use an exhaustive search to perform the design space exploration. Otherwise,
we need to use a more sophisticated approach, like the adapted version of
the multi-objective simulated annealing algorithm proposed in [BRK™12b],
to perform the design space exploration and find the Pareto-optimal configu-
rations. The proposed model has been tested on a real application for ECG
monitoring that uses compressed sensing [MKAV11], and is implemented on
the Shimmer™platform.

5.3.1.1. Related work

Model-based optimization of wireless sensor nodes is a topic that has
been already explored in the literature. However, most of the related works
characterize the energy consumption of one of the node components shown in
Figure whereas just few of them aim at optimizing multiple components
and performance metrics, which is instead the purpose of our work.

Power models of single components such as the microcontroller [GC97]
and the memory [KOKEOQG| are available outside the scope of WSNs. Ho-
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wever, most of the effort in the context of sensor networks with low-power
requirements has been devoted to the wireless communication part, with
the design of new MAC protocols and the characterization of the radio.
In [SRDV0S], the authors propose an alternative MAC protocol for the Zig-
Bee standard that introduces new power-saving policies. In [LZA09], a model
that relates the routing performed at the MAC level to the node lifetime is
proposed. However, both works assume a multi-hop routing, and thus they
cannot be applied to the star topologies used in WBSNs [UHB™10|. A cha-
racterization of the radio has been proposed in [SRS03|, where the energy
consumption is related to parameters like the bit error rate and the modu-
lation. Similarly, [CCGCGI10| provides a model for an IEEE 802.15.4 trans-
mitter, which is supported by a set of physical measurements. However, the
models of the single components cannot capture the interdependencies that
exist between the different parts of the node, and in particular they often
discard the effects of the application.

A few existing works have tried to propose an optimization that considers
several components of the node. In [BCSV06| the authors propose a platform-
based design methodology for industrial control. Although the work considers
all the aspects of the node design, it is not based on an analytical model,
and it mainly focuses on the generation of a complex network, which is not a
critical aspect in WBSNs. In [KMWO0S], different energy/delay tradeoffs are
explored by exploiting voltage and modulation scaling. Similarly, [YEGO07]
proposes a model-based optimization framework for star-topology networks,
and a genetic algorithm to reduce the energy consumption by acting on
the voltage and the modulation level. However, the number of parameters
involved in the optimization is a small subset of the ones that can be tuned
on real nodes. In [NWP10|, the authors propose an optimized transmission
schedule to minimize the packet delay. The work shows good potential if
transmission delay is the main objective, but it is not proved to scale in
more sophisticated multi-objective optimization scenarios. A very relevant
example of application-driven design is proposed in [HECT08], where a multi-
objective optimization involving all the system components is provided in the
field of wildlife monitoring. The work shows how a deep knowledge of the final
application can lead to an optimized node lifetime, while guaranteeing the
quality of service (high data rate and low distortion). However, it heavily
relies on the experimental data and hence is very specific for the target
domain.

5.3.1.2. The proposed analytical model

The proposed model is targeted to WBSN nodes whose architecture is
similar to the one depicted in Figure[5.4] which was introduced in Section 2.1
This model, which estimates the relevant quality metrics associated to the
system, can be part of an optimization framework that also includes an
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Figure 5.4: Block diagram of the reference WBSN node architecture

algorithm to find the optimal configurations. Due to the limited size of the
design space in this work the algorithm can be reduced to a simple exhaustive
search that will always find the best solution.

The node model includes fundamental parts that describe the common
structures of every WBSN node, and advanced parts that can be further
detailed according to the specific scenario (e.g., the application, the com-
munication channel), and parameters that need to be determined through
experimental data. The contribution to the energy consumption of each com-
ponent depicted in Figure is characterized, although the level of detail
differs from component to component depending on the number of relevant
design parameters.

The proposed model is comprehensive as it captures the interdependen-
cies between different components. The main metric, i.e., the overall energy
consumption, is expressed as a function of all the hardware components of
the system (sensor, microcontroller, memory and radio), whose behavior is
influenced by the applications and the OS. In particular, the energy consum-
ption per second is expressed as:

Enode = Esensor + E,uC + Ememory + Eradio (51)

However, since the straightforward reduction of the energy consumption
may lead to the loss of performance in one or more components of the no-
de, we defined a set of performance metrics that only involve one or two
components, in order to keep them monitored during the design.

Sensor
The sensor component consists of a transducer to detect the signal, and a
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hardware circuit to sample the data at a frequency fsumpiing and quantize it
with a resolution of pspc bytes. The energy consumption of the former can
be considered as a constant related to the specific sensor, while the latter is
linearly related to the sampling frequency [BB95:

Esensor - Etransducer + [041 : fsampling + Ck()] ) (52)

where a; is a constant depending on the capacitance and the square of the
supply voltage [BB95] of the A /D converter, while g describes leakage effects
and is determined experimentally.

Although specific metrics can be defined to estimate the performance
of the sensor, e.g. the signal-to-quantization-noise ratio, a more meaningful
evaluation can be obtained by combining it with the subsequent application
component.

Applications

The applications are software programs that do not directly dissipate energy,
but influence the performance of the microcontroller, the memory and the
radio. In particular, the applications define the duty cycle (¢qpp) of the mi-
crocontroller, the memory requirement (ogp,) and the average number of
memory accesses per second (Yqpp), Which can be determined using software
profiling. In this case, we assume that data can be compressed at the appli-
cation level with ratio C R, which generates the following amount of packets
to be transmitted per second (R)):

B CR - papc
Rp - fsampling : Hi
payload

(5.3)

where Hy,qy1004 s @ parameter that defines the number of data bytes included
in each communication packet, and hence Hpqyio0ad/papc denotes the number
of samples per packet.

In order to evaluate the performance of the applications, domain-specific
metrics can be defined. If compression is the only processing performed at the
application level, such a metric is defined as the quality of the reconstructed
signal.

Operating system

The OS is composed of software routines that implement services such as
the packet queue and the MAC layer. The software routines of the OS can
be modeled as any other software application, thus requiring a duty cycle
1Yog from the microcontroller, and a maximum memory opg that is accessed
Yos times per second on average. For the sake of analysis, we separate the
memory required by the transmission queue from the remaining memory
occupied by the OS, because a detailed model of the transmission queue is
crucial to characterize the throughput of the system.
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The MAC layer implemented in the OS manages the access to the wireless
channel shared among a known number of nodes (Nyqes) connected to the
WBSN coordinator. The access policy defined by the MAC algorithm can be
modeled using two quantities: a transmission window of length A, when the
node can transmit without conflicts, and the number of times this window
is repeated per second, N¢,. Those quantities can be directly computed for
contention-free access mechanisms, but they can also be determined statis-
tically for contention-based policies. In order to enforce the access policy,
the algorithm may require a number of control messages to be exchanged
from the node to the coordinator. We denote this number as ® yyge—c, and
the length of those messages as Hnode— ), and the opposite as @ noge, Of
length Ho_ noge- Finally, the MAC protocol defines the control information
that must be included in each packet (typically a header and a checksum),
thus determining the final length Hp,cxer of each packet. The transmission
queue, which can contain up to A packets, has then a size of AHp,cret bytes.

A set of performance metrics can be defined for the OS component, and
in this work we focus on the throughput and the packet delivery delay. In
particular, the system should guarantee a throughput of R, packets per se-
cond as required by the application, but certain packets might need to be
retransmitted with a probability equal to PER. We define R,(f) as the packet
rate including the retransmissions, which is equal to R,,-[1 + w(PER)], whe-
re w(PER) is the estimated number of retransmissions, including possible
multiple retransmissions of the same packet. Then, a sufficient condition to
guarantee that the desired throughput is met is the following:

Atx
Tpacket

Niz { J >R A NNy >R, , (5.4)

where Tpgcrer is the packet transmission time, and N - [Avr/Tpacket]) is
the maximum channel capacity guaranteed by the MAC layer. The second
condition prevents the capacity of the queue from being a bottleneck and
to avoid dropped packets. If the conditions are satisfied, we can provide the
following worst-case estimation of the packet delivery delay:

Nig—1
1 i, i R
Dela — -M7yz 7pNx , 55

TN F R I

where v indicates the fraction of the Ny, transmission windows that are
required to send R, packets. Delay is then computed by considering that all
the retransmissions occur before the R, packets are transmitted.

Microcontroller
Similarly to the sensor, the consumption of the microcontroller is expressed
as a function of its frequency f,c. The processor needs to be active for a duty
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cycle defined by the application and the OS, before switching to a low-power
mode where only leakage effects occur:

EuC = (wapp + wOS) ’ /81 ' fuC’ + 60 3 (5-6)

where (31 depends on the capacitance and on the square of the supply voltage,
and [y describes the leakage effects and should be determined experimentally.
Note that, if the specific scenario does not allow the microcontroller to switch
to a low power state, Y4y, + Y05 should be set equal to one.

Memory

The system memory is used for the execution of the applications and the OS,
and to store the packets queue. The memory size M, which is also the main
quality metric for the design of the memory component, can be written as:

M = Oapp + 005 + )\Hpacket . (5.7)

The energy consumption of a memory component is due to two factors [KOKEQG]:
a dynamic consumption due to the memory accesses, and a leakage that is
known to be proportional to the memory size and appears when the memory

is not being accessed. The software applications and the OS access the me-
mory Yapp and yps times per second, respectively. The transmission queue

is filled with a number R, of packets per second and, since we defined the
throughput to guarantee that no packet is dropped, it is eventually read at
the same rate. Assuming that the memory access in read and write modes
has the same cost, we can express the energy consumption as:

Ememory = (2 : Rp =+ Yapp + ’YOS) “Trnem - <access+

(5.8)
[1 - (2 : Rp + Yapp + 'YOS) : Tmem] M - Gigre

where Tyem is the access time in read or write mode, while (g and Cuecess
are hardware parameters that define the consumption in idle and accessing
modes.

Radio

The energy consumed by the radio depends on the number of packets that
are sent and received. In particular, when a transmission of one bit takes
place, the energy consumption can be expressed as:

Et:v - [Pcarrier + Pr] : Tbit 5 (59)

where P.gprier 18 the power required to generate the signal carrier, P, is the
remaining consumption related to the radio circuit. Tp;; indicates the avera-
ge time to transmit one bit, which also includes all the control information
added by the physical layer [SRS03]. The value of P.gyrier can be determined
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according to the desired PER. In particular, given the level of noise at the
receiver, it is possible to compute the signal-to-noise ratio and consequently
the bit error rate (BER), as a function of P.grier and the modulation sche-
me [SRS03]. Once the BER is known, the packet error rate can be expressed
as the probability of one bit being erroneous in a packet of length H bytes,
ie,1—(1— BER)SH.

The energy required to receive a bit (E,.,) is computed as in Equation
where P.qprier is equal to zero, and P, has a different value during the recei-
ving phase. As a consequence, the energy consumption of the radio can be
expressed as:

Eradio =Etz - [R;(;r) ’ 8Hpacket + P Node—C - 8HNode—>C} (5 10)

+ Erz : [(I)CHNode : 8HC%Node] .

5.3.1.3. A case study

This section shows how the previously proposed model can be easily adap-
ted to cope with real WBSN applications and widely-adopted standards, and
how the design space can be explored to find the optimal solution considering
different performance tradeoffs.

Case Study Overview

We consider a real system that samples the ECG and uses the compressed
sensing [MKAVTI] to reduce the amount of data to be transmitted. The com-
pressed signal is then sent to a smartphone that acts as a central coordinator,
reconstructs the ECG and performs analysis and detection tasks. The choice
of compressed sensing is motivated by the improved node lifetime, indeed,
experimental results [MKAVT1I] showed that compressing and sending data
can increase the node lifetime by 9.7 % when compared to transmission of
the raw ECG.

The system is implemented on the Shimmer™platform [BGMT10]. On
the software side, FreeRTOS |bibal was ported on the node, and it controls
the sensing, the queue services and the beacon-enabled mode of the IEEE
802.15.4 MAC layer [Std03]. In this MAC protocol, previously introduced
in Section [3.2] a beacon is periodically sent by the coordinator to define
the time structure in terms of superframes. A superframe is a time interval
divided into an inactive and an active part, the latter being further divided
into a contention-free and a contention-active portions. In this case study,
only the contention-free part is used, so the transmission only occurs during
guaranteed time slots (GTSs).

Mapping the case study on the analytical model
The model introduced in Section [5.3.1.2| provides a good characterization of
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many parts of the target node, but additional information can be included
to further describe the application, the memory, the MAC and the radio
modulation.

At the application level, we estimated the duty cycle 14y, required by
the compressed sensing, and in the current implementation it only margi-
nally depends on the value of C'R. The performance metric considered for
this component is the percentage root-mean-square difference (PRD), which
quantifies the difference between the original ECG and the one reconstructed
by the coordinator from the compressed data. By analyzing the experimen-
tal data provided in [MKAVTI]|, the PRD can be expressed as a fifth-order
polynomial function of C'R:

PRD:(JJ5CR5_CU4CR4+CU30R3—CUQCR2+W10R_WO R (5.11)

where the coefficients w,, are positive constant values.

The total available memory on the node is 10 kB. According to the expe-
rimental results, 6.5 kB are required by the compressed sensing application
(0app), while 3.5 kB are reserved for the FreeRTOS routines (cpg) and for
the transmission queue, whose size is then upperbounded. In particular, for
a packet length Hp,eper of 127 B (i.e., the maximum value for the selected
MAC), X must be lower than 10.

The beacon-enabled IEEE 802.15.4 MAC layer can also be easily inclu-
ded in the node. Two protocol-specific parameters need to be defined: the
superframe order (SFO), and the beacon order (BCO). The former determi-
nes the active period or superframe duration (SD), while the latter defines
the interval between two beacons (BI) as follows:

SD = 15.36ms - 257 | BI = 15.36ms - 28¢© (5.12)

The superframe structure can be mapped on the transmission window
A4, of our model, as the average transmission time per second is equal to
SD divided by the number of nodes in the network. Similarly, BI defines
how many times a superframe is repeated, hence it can be related to Ny;:

SD 1

Nppg = —, tzzﬁ

1
Nnodes (5 3)

In terms of control messages, the standard does not require any control
message from node (thus ®ny4ec = 0), whereas the coordinator sends a
number of beacons that depends on BI, and an acknowledgment for each
transmitted packet, hence:

DcyNode = RY) + (5.14)

BI’
Finally, the estimation of the PER for this case study can be obtained

by computing the BER for the 4-PSK modulation [SRS03] with the selected
value of P,grrier-
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Node optimization

The design parameters available on the target platform are f,c, CR, Hpayioad,
A, BCO, SFO, and P, while the cost function includes E,,oq., PRD, Delay,
and PER. For the sake of illustration, we adopted a coarse discretization of
the parameters and reduced the design space to 10% solutions, which can be
explored by an exhaustive search algorithm. In case the size of the design
space is higher, we can use an algorithm like the MOSA approach proposed
in [BRK™12b| in order to optimize the search of the Pareto-optimal node
configurations.

The estimation provided by the proposed model proves to be effective
as the error with respect to the experimental data is very low (i.e., it does
not exceed the 1.9%). Moreover, results show that the MOSA algorithm
proposed in |[BRKT12b| effectively explores the Pareto set, as the optimal
solutions found by the MOSA perfectly match the ones found by the ex-
haustive algorithm, and cardinality of the Pareto set scales well with the
number of executions. The solutions show a wide range of tradeoffs, e.g., the
difference between the extreme values of Ey, exceeds 44 %, the values of the
PRD span from 0 to 93 (the maximum range is up to 100), and it is possible
to achieve real-time transmission as well as packet latencies of tens of se-
conds. In Figures[5.5 and we can see a comparison between the solutions
found by the MOSA algorithm and an exhaustive search to analyze the delay
vs. energy consumption (Figure and the PRD vs. energy consumption

(Figure IBRK™12a.
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Figure 5.5: Delay and energy consumption of the solutions found by the
approach proposed in [BRKT12b| (on the left), and an exhaustive search
(on the right)
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Figure 5.6: PRD and energy consumption of the solutions found by the ap-
proach proposed in [BRK™12b| (on the left), and an exhaustive search (on
the right)

5.3.2. Low-power microcontroller design

In order to illustrate the work on low-power microcontroller design, we
introduce two different processing cores, Firat and TamaRISC |[DCAT12],
to compare different architectural choices in terms of energy efficiency and
performance for online biomedical processing requirements, while exploiting
low-voltage computing. Firat is a custom implementation of a PIC24 from
Microchip [Tecc], a well-established ISA, whereas TamaRISC is a custom
ISA with a very reduced number of instructions. In the specific architecture
of the processing cores, we compare the power vs. performance of different
architectural choices, including sequential and parallel processing for diffe-
rent biomedical workloads while exploiting near-threshold computing. We
limit the scaling of the operating voltage to the transistor threshold voltage
level to avoid performance variability and functional failure issues occurring
mainly at sub-threshold voltages.

The first processing core, Firat [DCAT12|, is shown in Figure Fi-
rat is a Reduced Instruction Set Computer (RISC)-like architecture with a
Harvard memory model. The simple three-stage pipeline with partial data
bypassing is able to provide the low-to-moderate performance required by
biomedical applications. The core operates on a data word length of 16 bits,
comprises 16 working registers, 2 external data and 1 instruction memory
ports. The instruction word size is 24 bits and almost all the instructions
use only one word. Each single-word instruction consists of an 8-bit opco-
de, which specifies the instruction, and one or more operands, which further
specify the operation of the instruction. The instruction set is a subset of the
PIC24’s and includes totally 66 instructions. Among them, the ISA provides
16-bit signed/unsigned multiplication as well as signed/unsigned 32/16-bit
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Figure 5.7: Architecture of the Firat microcontroller

integer division. Moreover, a barrel shifter is used for both arithmetic and lo-
gic single or multi-bit right /left shifts. Most of the instructions are executed
in only one clock cycle, except program-flow (3 cycles), double data-move
(2 cycles) and division (17 clock cycles). The instructions operate on either
two or three operands. Both operands of the two-operand instructions can
be either a register (with different addressing modes for the first operand),
a direct memory address or a literal of various sizes (from 4 to 16 bits). The
instructions with three operands have always the first operand as a working
register, the second operand can be either a register with different addressing
modes or a literal, and the third operand is always a register with different
addressing modes. The supported addressing modes are register direct, regis-
ter indirect (with pre or post-increment and decrement, and signed offset).
The second presented processing core, TamaRISC, is a custom-designed
RISC architecture, shown in Figure [5.8] The core architecture focuses on
minimizing the instruction set complexity, while still providing enough hard-
ware support, especially regarding addressing modes, for efficient execution
of biomedical signal processing applications. The processor has a three-stage
pipeline (fetch, decode and execute stages). The core operates on a data
word length of 16 bits, comprises 16 working registers and 3 external me-
mory ports, for one instruction read, data read and data write, each in the
same cycle. The core architecture is therefore similar to the Firat architec-
ture, but with reduced complexity. The instruction word length is 24 bits,
and every instruction has a single-word size. All instructions are executed
in one cycle, which is guaranteed by the complete data bypassing inside the
core for register and memory-write-back data. The main reduction of com-
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Figure 5.8: Architecture of the TamaRISC microcontroller

plexity lies in the ISA, which comprises a total of 11 unique instructions,
with 8 arithmetic logic unit (ALU), 1 general data-move and 2 program flow
instructions. All ALU instructions work on 3 operands, using the exact same
addressing mode options for each instruction, which reduces the complexity
of the architecture, since the operand fetch logic and the arithmetic opera-
tion are completely decoupled. Additionally, the instruction word encoding is
designed as regular (fixed bit positions) and as simple as possible to allow for
very efficient decoding of the operands and the different instruction words in
general. The supported addressing modes are register direct, register indirect
(with pre or post-increment and decrement) as well as register indirect with
offset. The second operand also supports the use of 4-bit literals.

—+— PIC24
—p— Firat

Wl —_———— tamaRISC

Power (mW)
3

L L L L L
0 10 20 30 40 50 60
Number of Operations (MOps/s)

Figure 5.9: Power vs. Performance comparison of the processing cores

To compare the power vs. performance of the processing cores, Firat and
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TamaRISC architectures have been implemented in a 90nm low leakage pro-
cess technology. Figure shows the power consumption of the processing
cores and the PIC24HJ12GP201 microcontroller for various processing requi-
rements. The power consumptions of the PIC24 microcontroller for different
workloads are obtained from the datasheet, available online in [Tecd]. As
opposed to the PIC24, both Firat and TamaRISC exploit voltage scaling by
operating at the minimum voltage level satisfying processing requirements.
As it can be seen in the figure, Firat achieves up to 890x power saving with
respect to the PIC24. However, this saving is not achieved free of tradeoffs.
As opposed to the PIC24, Firat architecture lacks of built-in units such as
clock generator, voltage regulator, complete suite of mature and compatible
peripherals, etc.

TamaRISC, is even more power efficient, achieving up to 52 % power sa-
vings with respect to Firat. This advantage is due to the reduced instruction
set, as well as the efficient decoding of instructions and addressing modes of
this architecture. TamaRISC also achieves higher energy efficiency compa-
red to other state-of-the-art cores, developed for biomedical signal processing.
On average, TamaRISC consumes only 11.8 pJ/Ops at 1.0 V. For the sa-
me supply voltage level (1.0 V), and although a 130 nm process was used,
Kwong et al. [KC1I]| report 47 pJ/cycle energy consumption for their 16-bit
core where the number of clock cycles per instruction is higher than one.
In another work, Ickes et al. [ISPT11] introduce a 32-bit core implemented
in 65 nm, and the energy consumption of the core |[ISPT11] is estimated
to be between 19.7 pJ/Ops and 27.0 pJ/Ops for 1.0 V. Compared to these
state-of-the-art processing cores, TamaRISC features a significantly lower
energy consumption per operation due to its simple architecture as well as
its reduced instruction set.

5.4. Future lines of work

This thesis found an answer to each of the questions that were initially
posed, but along the way, many other queries have popped up. Therefore,
this section proposes the following ideas to be studied in the future:

1. Tackle the design of more efficient microcontrollers that use the benefits
of advanced power reduction techniques such as sub-threshold voltage
operation.

2. Include hardware blocks that work in collaboration with the microcon-
troller, performing tasks like filtering or compression. The implemen-
tation of these tasks in hardware instead of software will increase the
energy efficiency of the WBSN platform.

3. Increase the size of the memories, since they are in most cases the main
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bottleneck to port and optimize signal processing algorithms to the
WBSN platform. The use of more power-efficient memory architectures
or the definition a memory hierarchy will also help to reduce the energy
consumption of this hardware block.

4. Consider the design of an ultra-low-power A/D converter, optimized
for the requirements of biomedical applications, which require higher
sampling frequency than other parameters typically used in generic
WSNEs.

5. Use energy scavenging mechanisms that can harvest energy from exter-
nal sources (thermal gradient, kinetic energy, etc.), in order to achieve,
in the best case, a zero external-energy WBSN.

6. Create multi-hop network topologies, where other intermediate nodes
are used to reach the WBSN coordinator. Using this approach, the
transmission range, and therefore the energy consumption, of the nodes
can be significantly reduced.

7. Perform a detailed study of the impact of various body-area propaga-
tion conditions to obtain a realistic model of the wireless signal com-
munication on the human body. This knowledge enables to accurately
tune the transmission power of the radio to save as much energy as
possible.

8. Low-complexity encryption and security of the network, since WBSN
applications involve the transmission and storage of sensitive personal
data.

9. Use more advanced sensing techniques like multiparametric or distri-
buted sensing, which combine various signal measured by the same or
different WBSN platforms.

10. Use high-level algorithms that not only consider the data of an indi-
vidual, but combines and analyzes the data of a population. This can
include the use of complex algorithms that can run on a PC, server or
even a data center.

5.5. Publications
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