
Sustainable Open Access Publishing using
Blockchain, Interledger and Web Monetization

Publicación de acceso abierto sostenible
mediante Blockchain, Interledger y

monetización web

By

Elena Pérez Tirador

Departmento de Ingeniería del Software e Inteligencia Artificial
Universidad Complutense de Madrid

Trabajo Fin de Grado del Doble Grado en Ingeniería
Informática y Matemáticas, Facultad de Informática,
Universidad Complutense de Madrid.

2020/2021

Directors:
Antonio A. Sánchez Ruiz-Granados

Ámbar Tenorio Fronés

iii

Abstract

One of the main problems the academic community faces is the high prices of
publishing and accessing academic papers. Authors and reviewers usually work for
free or even pay for their work to be published, while the revenue generated goes to
the big publishers.

This project is centered around studying the technologies that would be best suited
for the creation of a system or platform for donations to journals and researchers.
Various centralized and decentralized technologies have been studied. Regarding
centralized technologies, PayPal has been the main focus, and regarding decentral-
ized technologies, Blockchain, Interledger and Web Monetization have been
studied. Their advantages and limitations have been analyzed, as well as their differ-
ent integration possibilities.

These technologies have been used to implement a system that allows donations by
different centralized and decentralized means. The donations can be sent between
any two centralized or decentralized currencies. The system’s main feature is a
donation button that can be integrated in any journal’s web page. JavaScript and
React were used for the front-end implementation. This connects with the underlying
subsystems that manage the different types of payments. To test the possibilities of
the decentralized technologies, a new ERC20 token was implemented and integrated
in the system.

It was concluded that centralized technologies are easier to use for implementation,
better documented and more intuitive for the user. However, PayPal, for example,
imposes certain barriers and limitations that block the developers’ work. Decentral-
ized technologies, on the other hand, are newer, so they have less documentation and
are a bit more cumbersome to use. But they have proven to be way more flexible
and adaptable and easier to integrate with. So, despite their limitations, they have
potential to become an important part of online donations and payments in the
future.

Keywords: Academic community, Blockchain, decentralization, donations, Interledger,
PayPal, online payments, Web Monetization

v

Resumen

Uno de los principales problemas que afronta la comunidad académica son los altos
precios para publicar artículos y acceder a ellos. Habitualmente los autores y revisores
trabajan gratis, o incluso tienen que pagar para poder publicar su trabajo, mientras
que son los grandes editores quienes reciben los beneficios generados.

Este proyecto se centra en el estudio de tecnologías que puedan resultar adecuadas
para la creación de un sistema o plataforma para donaciones a revistas académicas
e investigadores. Se han estudiado diversas tecnologías centralizadas y descentral-
izadas. Entre las centralizadas, PayPal ha sido la principal, y entre las descen-
tralizadas, se han estudiado Blockchain, Interledger y Web Monetization. Se
han analizado sus ventajas y limitaciones, así como sus diferentes posibilidades de
integración.

Estas tecnologías han sido utilizadas para implementar un sistema que permite realizar
donaciones por vías centralizadas y descentralizadas. Las donaciones pueden
realizarse entre cualesquiera dos divisas diferentes, ya sean centralizadas o descen-
tralizadas. El elemento principal del sistema es un botón de donación que puede
integrarse en la página web de cualquier revista. Para la implementación del front-end
se utilizaron JavaScript y React. Esto se conecta con el subsistema subyacente que
se encarga de los diferentes tipos de pagos. Para probar las posibilidades de estas
tecnologías descentralizadas, se ha implementado un nuevo token ERC20 y se ha
integrado en el sistema.

Se comprobó que las tecnologías centralizadas son más fáciles de usar en imple-
mentación, están mejor documentadas y son más intuitivas para el usuario. Sin
embargo, PayPal, por ejemplo, impone ciertas barreras y limitaciones que pueden
bloquear el trabajo de los desarrolladores. Las tecnologías descentralizadas, por
contra, son más nuevas, por lo que disponen de menos documentación y son algo más
engorrosas de utilizar. No obstante, han demostrado ser más flexibles, adaptables e
integrables. De modo que, a pesar de sus limitaciones, tiene el potencial de convertirse
en una parte importante de los sistemas de pagos y donaciones en el futuro.

Keywords: Blockchain, comunidad académica, descentralización, donaciones, In-
terledger, PayPal, pagos online, Web Monetization

vii

Acknowledgements

After a long while, this project is coming to an end. This year has undoubtedly been
one of the weirdest up to this day for everyone. Therefore, I would like to thank
everyone that made this project possible, despite the weird conditions we all are in.
So thanks to:

• Antonio Sánchez and Ámbar Tenorio, for directing and supervising this project.

• Grant for the Web and the Interledger Foundation for financing it.

• The Quartz OA team, for making the Quartz project a reality.

• My family, for all the invaluable support.

• My friends, for helping me keep my sanity in this difficult year.

Thank you very much.

ix

Contents

Abstract iii

Resumen v

Acknowledgements vii

1 Introduction 1
1.1 Objectives . 2
1.2 Planning . 2
1.3 Structure of this document . 3
1.4 Source code . 3

2 Web donations and platforms 5
2.1 Introduction . 5
2.2 Analysis and categories . 5

2.2.1 Categories . 6
2.2.2 Analysis and score . 6

2.3 Wikipedia . 6
2.4 PayPal . 7

2.4.1 API . 7
2.4.2 Marketplaces and platforms . 8

2.5 Centralized donation platforms . 8
2.5.1 Ko-fi . 9
2.5.2 Flattr . 10
2.5.3 Plaudit . 11

2.6 Decentralized donation platforms . 12
2.6.1 Giveth . 12
2.6.2 Helperbit . 13
2.6.3 GiveTrack . 14

2.7 Conclusions . 15

3 Technologies for a distributed donation platform 17
3.1 Blockchain . 17

3.1.1 Blockchain . 17
Basic concepts . 17

3.2 Ethereum and ERC20 tokens . 18
3.2.1 Ethereum . 18
3.2.2 ERC20 tokens . 18

3.3 Interledger Protocol . 18
3.3.1 Definitions . 19

3.4 Web Monetization . 19
3.5 Some wallets and applications . 20

x

3.5.1 Rafiki.money . 20
3.5.2 Uphold . 20
3.5.3 Coil . 20

3.6 Other technologies . 21
3.6.1 Docker . 21
3.6.2 Node.js . 21
3.6.3 React (javaScript) . 21

Material-ui . 22

4 System overview 23
4.1 Quartz Ecosystem . 23

4.1.1 Quartz button . 24
4.1.2 Quartz Token . 24
4.1.3 Quartz ILP node . 24
4.1.4 Quartz wallet . 24
4.1.5 Quartz Platform . 25

4.2 Payment methods . 25
4.3 Creating the accounts . 25

4.3.1 PayPal account . 25
4.3.2 Coil account . 26
4.3.3 Uphold account . 26
4.3.4 Quartz account . 26

4.4 The interaction . 26
4.5 Donations . 27

4.5.1 Donor: Explicit donation . 27
4.5.2 Donor: Indirect donation (micropayments) 28
4.5.3 Journals . 29

5 Centralized Implementation 33
5.1 Introduction . 33
5.2 PayPal . 33

5.2.1 Concepts . 34
5.2.2 Platforms and marketplaces . 34

5.3 Architecture . 34
5.3.1 Sequence diagram . 36

5.4 Conclusions . 37

6 Decentralized Implementation 39
6.1 Introduction . 39
6.2 Interledger Protocol . 39

6.2.1 Concepts . 40
6.2.2 Architecture . 41
6.2.3 Flow . 41

6.3 Web Monetization . 43
6.3.1 Flow . 44

6.4 QTZ: An ERC20 token . 45
6.5 Implementation details . 46

6.5.1 Architecture . 47
6.5.2 Implementation . 48
6.5.3 Flow . 50
6.5.4 Web Monetization . 51

xi

7 Conclusions and Future Work 53
7.1 Conclusions . 53

7.1.1 Functionality and integration 53
7.1.2 Technology . 54

7.2 Future work . 55

A Run a local ILP testnet using the Quartz token 59
A.1 Introduction . 59
A.2 Process . 59

A.2.1 Download docker images . 59
A.2.2 Set up the environment . 59
A.2.3 Create the token . 60
A.2.4 Deploy the token . 61
A.2.5 Start the ILP nodes . 62
A.2.6 Perform the payment . 66
A.2.7 Delete the nodes and start over 66

Only deleting the nodes, but keeping the network 66
Remove everything . 66

B Perform transactions using the server 67
B.1 Introduction . 67
B.2 Process . 67

B.2.1 Set up the environment . 67
B.2.2 Configure the server . 67
B.2.3 Run the server . 68
B.2.4 Perform a transaction . 68

Bibliography 69

xiii

List of Figures

2.1 Profile page of one of Ko-fi’s featured creators 9
2.2 Profile page of Gimp in Flattr . 10
2.3 A verified project’s profile page in Giveth 12
2.4 Helperbit main page . 13
2.5 Profile page of a project in GiveTrack. The project has already reached

its milestone. 14

4.1 Quartz button . 24
4.2 Interaction between a donor and a journal 27
4.3 Quartz button integrated in a journal’s web page 28
4.4 Payment dialogue . 29
4.5 Interledger payment screen . 30
4.6 Success and error dialogues . 31
4.7 Success and error dialogues . 31
4.8 Using the Coil extension in a webmonetized website. 32

5.1 Quartz Platform . 35
5.2 Architecture of the system. Highlighted the centralized part. 36
5.3 Sequence diagram for the PayPal donation button 37

6.1 Node scheme in an Interledger Network [26] 40
6.2 Simple Interledger network . 42
6.3 Sequence diagram of a payment in the Interledger network 43
6.4 Sequence diagrams of a payment that is rejected 43
6.5 Web Monetization scheme . 44
6.6 Sequence diagram of a payment using Web Monetization[62] 45
6.7 Architecture of the system. Highlighted in green is the decentralized

part. 47
6.8 Overview of the decentralized subsystem. 48
6.9 Sequence diagram for the Interledger payment button 51

xv

List of Tables

2.1 Comparison of the different platforms studied 15

xvii

List of Abbreviations

API Application Programming Interface
CTA Call To Action
ERC Ethereum Request for Comments
GDPR General Data Protection Regulation
HTML HyperText Markup Language
IDE Integrated Development Environment
ILP InterLedger Protocol
IPFS InterPlanetary File System
JSON JavaScript Object Notation
MVP Minimum Viable Product
ORCID Open Researcher and Contributor ID
QTZ Quartz Token
REST Representational State Transfer
URL Uniform Resource Locator
WM Web Monetization

xix

To my family

1

Chapter 1

Introduction

Scientific production is a very demanding and dedicated job, as well as an immensely
necessary one. But this kind of work, in most cases, is not paid or compensated in any
way [38]. Most authors, editors and reviewers work for free (or almost for free), and
at the same time have to pay huge amounts of money to access the scientific contents
published in most journals [3, 51].

The main reason for this is that academic and scientific publishing is primarily con-
trolled by a reduced group of big publishers (such as Elsevier, Springer Nature or
Wiley) [33]. Although the majority of the work involved in this complex process is
carried out by the academics, taking the role of authors, reviewers, editors, etc. most
of the benefits generated by this market go to these big publishers [32].

These benefits often come from the high prices researchers need to pay to access the
content [5]. There is an option for the authors to publish their articles in Open Access,
so whoever wants to access the content can do it for free, for it is open. However, in
exchange for this, researchers have to pay very expensive prices [60].

It is not uncommon that, for these reasons, academics feel frustrated, since they can
feel like their work is not properly recognised and compensated. And also for some,
publishing in Open Access is not an option, because they can not afford the high
prices [23].

The problem with the academic publishing rises from the centralization of its more
powerful actors (the big publishers). For this reason, it is interesting to study decen-
tralized solutions to try and tackle these kind of problems. Nonetheless, it is known
that these technologies are still not very accessible for most people because of their
sometimes cumbersome usability [1], so it is also necessary to combine these decen-
tralized technologies with some centralized solutions to make adaptation easier.

Another matter that is also worth exploring is the rewards for the academic community
[40]. These rewards could materialize in different forms, whether they be monetary
or not [65]. For these reason it is also interesting to explore the possibilities that
cryptocurrencies or tokens bring to this context.

In this context, several initiatives to help improve the situation of the academic com-
munity begin to appear [18]. One such initiatives is Decentralized Science1 [57, 55],
a project aiming to provide an open community of reviewers, open peer reviews and
a reputation network, providing rewards for the peer reviewing work. As a natural
continuation of Decentralized Science, and thanks to the funding received from Grant

1https://decentralized.science/

https://decentralized.science/

2 Chapter 1. Introduction

For The Web2, the Quartz OA3 project is born, aiming to create a community of aca-
demics and journals that enables donations in a distributed way. By bringing these
additional sources of capital, they strive to make Open Access fairer, more sustainable
and independent [34].

This TFG is part of the Quartz OA project, in collaboration with the ISIA department
of the Facultad de Informática at UCM 4.

1.1 Objectives

The goal of this project is to create a system (the Quartz system) to facilitate dona-
tions to journals and authors, in order to reward their work. Specifically, the project
is centered in exploring what centralized and decentralized technologies can be used
for this purpose, and find out their strengths and weaknesses, while using them to
create the system.

In the case of decentralized technologies, the Interledger Protocol [56] will be studied,
exploring its applicability and limitations in order to introduce it into the system.
Interledger proves to be interesting, as it is a new technology that allows intercommu-
nication among ledgers (both centralized and decentralized). This means exchanges
between any two coins or payment systems are possible. In particular, this project
will explore how new payment systems can be integrated into this system to enable
different kinds of payments.

The concept of microdonations will also be explored, as a way to allow users visiting
websites to pay based on the time they spend in them.

In terms of development, the goal is to create a donation button that can be integrated
in the web page of a journal, allowing the visitors to perform donations in different
ways:

• Via a centralized payment system, such as PayPal.
• Via a decentralized payment system, using any currency. In particular, a specific

coin created for donations to journals.
• Via microdonations, using a browser extension.

1.2 Planning

The development of this project took place between September 2020 and May 2021.
This document was written in the following months.

The first four months of the project were centered in studying the problem, analyzing
the possible solution and developing the first centralized solution. This is, a button
allowing centralized donations.

The next four months of the project were centered in exploring the decentralized
possibilities, essentially Interledger and Web Monetization (both will be explained in
detail in the next chapters of this document), and developing the decentralized solu-
tion. This is, adding the button the possibility to perform donations via Interledger
and integrating with Web Monetization so that the user can send micropayments
while visiting the journal’s website.

2https://www.grantfortheweb.org/
3https://quartz.to/
4https://www.ucm.es/disia

https://www.grantfortheweb.org/
https://quartz.to/
https://www.ucm.es/disia

1.3. Structure of this document 3

The rest of the time was dedicated to polish the application and write this document.

In terms of methodology, scrum [8] was applied, implementing two-week sprints. Every
other Thursday, a meeting was held with the directors of the project to review the
work of the previous two weeks and decide the steps to be taken in the next sprint.

For the final phase of polishing and writing the document, the sprints were changed
to one-week sprints.

1.3 Structure of this document

This document explains the development process of the app, along with initial con-
siderations and final results.

Chapter 2 introduces the current context in which the project is developed. It explains
the importance of donations for open software projects, mentioningWikipedia as a well
known example. It also introduces PayPal as a technology for online payments and
gives various examples of donation platforms, both using centralized and decentralized
currencies.

Chapter 3 explores the technologies that enable the creation of a distributed dona-
tion platform. It introduces the Interledger Protocol and Web Monetization as two
new technologies that can be used for this purpose. It also gives some examples of
applications using these technologies.

Chapter 4 gives an overview of the implemented system from the user’s perspective,
explaining the actors that will interact with it and the main functionalities it provides.
The workflow is explained in detail, illustrated by screenshots of the system.

Chapter 5 explains the implementation of the centralized part of the system. It first
gives some implementation details about PayPal and its API and then shows and
explains the architecture of the system, as well as its flow of interactions (through
sequence diagrams).

Chapter 6 explains the implementation of the decentralized part of the system. It first
gives implementation details about Interledger and the architecture of an Interledger
network. Secondly, it does the same for Web Monetization. It then explains the
integration of new coins in this architecture and finally describes the architecture,
implementations details and flow of interactions of the implemented system.

Chapter 7 analyzes the conclusions that can be extracted from the project, regarding
its initial objectives, and then proposes the next steps that can be taken to further
develop and improve the system and the project.

1.4 Source code

The project has been developed using JavaScript, HTML, CSS and Solidity. The
source code for the project, along with some deployment instructions can be found in
the following GitHub repository:

https://github.com/ElenaPT/TFG_Inf_2021

The project is licensed under a GNU General Public License v3.0.

https://github.com/ElenaPT/TFG_Inf_2021

5

Chapter 2

Web donations and platforms

This chapter studies how web donations are working nowadays. First, an introduction
is given illustrating the importance of donations in open source projects, and why they
are so necessary. Then, Wikipedia is introduced as an example of a well known project
that is financed using donations. After that, PayPal is briefly described as a tool for
enabling donations and payments through the web, since it is the most commonly used
technology for this purpose. Lastly, some donation platforms and similar projects are
listed and analyzed in terms of their usability.

2.1 Introduction

Nowadays, open source projects are very common and serve as a basis to both open
and non open source software development [54]. However, most of the time the work
in open source is not well recognized, and financing this sort of projects can be chal-
lenging [11]. Although multiple funding models exist in the context of open source
creation, donations through platforms such as PayPal or Patreon are one of the most
common practices [45].

Open software development is usually a voluntary work, and there are different opin-
ions on whether or not to accept monetary rewards [58]. Participating in the de-
velopment of open source software can start from both an intrinsic motivation (the
development itself is motivating, for it is interesting or challenging) or an extrinsic
motivation (academic rewords fall in this category) [29].

The importance of donations relies on their voluntary nature, for an obligation or
coercion to finance the developers would defy the philosophy behind open software
itself [52].

From the perspective of the donor, the will to donate can come from different reasons.
It could just be an altruistic decision, but some other factors can be in play, such as
private gains derived from the software being developed in the end, or some kind of
recognition or prestige [31].

We think Open Access publication is not that different from Open Source development
in these aspects, so this same reasoning can be applied [64].

2.2 Analysis and categories

The following sections of this chapter will study existing applications and technologies
that are similar to the one being developed (under the name of Quartz or QuartzOA).

6 Chapter 2. Web donations and platforms

The technologies and applications have been researched and then subjectively ana-
lyzed and scored, based on a group of categories. The goal of this analysis is comparing
the applications and finding out their strengths and weaknesses, in order to learn from
them. This way, the best qualities can be taken as an example and the mistakes can
be avoided.

2.2.1 Categories

The first step is defining the categories around which the analysis will be performed.
These categories define what will be understood as an overall good system.

The categories that will be analyzed are the following:

• Accessibility: This category measures to what degree the donation tool can
be accessed following a fluid process, with no dilatory intermediate stages.

• Interest: This category measures the degree in which the user identifies with
the values and purposes of the tool.

• Usability: This category measures how structured and comprehensive the in-
formation is displayed in the tool, and whether it is distributed through the
channels most frequented by users.

• Dialog: This category measures how agile the exchange of information between
the tool and the user is.

• Effectiveness: This category measures to what degree the process design helps
to achieve the objectives in a reasonable amount of time.

2.2.2 Analysis and score

For every application analyzed that has a specific system for performing donations,
these categories will be studied. For each, a description will be given along with a
numeric score ranging from 0 to 5, where 0 means that the category is not fulfilled at
all by the application and 5 means it is perfectly fulfilled.

It is important to note that both the analysis and the scoring system are subjective.
In any case, they are still very useful measures for gaining a general knowledge of the
current donation tools.

2.3 Wikipedia

Wikipedia1 is a well known free collaborative online encyclopedia. It is maintained as
an open collaboration project by a community of independent volunteer editors using
a wiki-based editing system. The project is managed by a nonprofit organization
(Wikimedia Foundation) that is financed via donations. The organization raised more
than $110M in 2019 and more that $120M in 20202.

Since the project is financed by donations, it has its own built-in system to facilitate
them. It consists of a simple interface that allows the user to select an amount and
choose a way to perform the payment (credit card, PayPal). Usually, the user has to
actively go to the donation page to perform the donations, but occasionally Wikipedia

1https://en.wikipedia.org/
2Wikimedia Foundation Financial Statements, 2019-2020:

https://upload.wikimedia.org/wikipedia/foundation/f/f7/Wikimedia_Foundation_FY2019-
2020_Audit_Report.pdf

https://en.wikipedia.org/
https://upload.wikimedia.org/wikipedia/foundation/f/f7/Wikimedia_Foundation_FY2019-2020_Audit_Report.pdf
https://upload.wikimedia.org/wikipedia/foundation/f/f7/Wikimedia_Foundation_FY2019-2020_Audit_Report.pdf

2.4. PayPal 7

performs donation campaigns, displaying the donation module in every page of the
site.

Regarding the defined categories, the following can be concluded:

• Accessibility: (5/5) The donation page is slightly hidden in the lateral menu.
However, the donation module makes operations easy. The multitude of amounts
and ways that are available also facilitate the operation. In general, clarity of
information.

• Interest: (3/5) The language used is clear and inspiring, but the way the
information is showed is not very attractive.

• Usability: (5/5) The web provides a detailed description of what the user is
doing.

• Dialogue: (4/5) The exchange of information between the page and the user
is agile.

• Effectiveness: (2/5) Effectiveness is somewhat diminished by the fact that the
option is slightly hidden in the menu. Although it is a first level option, the
page is full of information, what makes it difficult for the user to read everything
and find the option. A user willing to make a donation would more likely do a
google search to get to the page than find it in the main page’s menu. It should
also be taken into account that it is one of the most famous websites on the
Internet, with very different targets.

It is also worth mentioning that Wikipedia is a free software.

2.4 PayPal

The first approach that was taken in the development of the project was a centralized
one. For this centralized approach, PayPal was used in order to create a donation
button that could be integrated within the journals’s webpages.

PayPal is one of the most important payment platforms worldwide. It allows users
to transfer money to others and make online payments. It supports over 20 different
currencies, including Euros, Pounds, US Dolars and all the main currencies worldwide.

PayPal offers a REST API, along with several tools for developers. Given the sim-
plicity to access these tools and the wide scope PayPal provides as a technology, it
was regarded to be a good starting point for the implementation of this project.

Unlike the rest of the applications studied in this chapter, PayPal will not be analyzed
in the same way, following the categories and giving a score. The reason for this is that
what PayPal offers is a solution that different applications and tools can integrate.
Therefore, most of the categories would get different scores depending on how said
integration is carried out. Moreover, some of the tools that will be studied use PayPal
as a payment system, and each of them gets different scores depending on how the
application as a whole is designed.

For this reason, PayPal is presented as a tool, and studied as such.

2.4.1 API

PayPal offers a REST API to manage payments among accounts. By creating a
PayPal account, the user is granted credentials which can be used to produce a token

8 Chapter 2. Web donations and platforms

that allows the user to make the REST API calls. Unauthorized calls return a failure.
For this authorization of the API calls, OAuth 2.0 protocol is used [24].

OAuth is an open standard for simple authorization flows in websites, applications or,
as in this case, APIs.

2.4.2 Marketplaces and platforms

Apart from the basic functionalities, PayPal also offers a full-stack solution for pro-
cessing and managing a marketplace commerce platform.

A platform or marketplace is a structure for managing a group of sellers, which are
organizations or entities that are selling products or providing services. The platform
acts as an intermediary between this sellers and the buyers, which are users interested
in purchasing the items they are selling or the services they are providing. It gives
the buyers the tools for sending payments to the sellers.

Quartz’s case is an abstraction of this idea. The sellers are the journals. They are
not directly selling a product or service, but they are providing access to papers and
other valuable resources. In a similar sense, the buyers are the donors. They are not
directly purchasing a product or service, but they are making donations. There is not
a direct exchange of money for goods, but the structure works the same way, since
the goal is to give the donors the tools to send money to the journals, in a context
where multiple journals exist.

In PayPal’s solution, the sellers have to be registered in the platform to be a part
of it and be able to receive payments. The process of registering a seller in the
platform is called onboarding. Once the seller is onboarded, the platform can create
specific payment or donation buttons for the seller. The platform can then manage
the payments, meaning the way the money is sent and when. For example, they can
allow periodic payments, or charge a small fee for the service.

Prior to this, the platform needs to be properly defined. There are two main aspects
that have to be defined. First, PayPal offers different types of accounts for its users,
and the platform has to decide which of them should be allowed to be sellers. Sec-
ond, the platform can decide what payment methods should be implemented (PayPal
accounts, credit card...).

Once the platform is defined, the sellers can onboard, and once they are onboarded,
the payments can begin to be performed.

2.5 Centralized donation platforms

This section centers on the analysis of systems designed to make donations to one
or various projects using centralized payment systems. Namely: Ko-fi, Flattr and
Plaudit.

Goteo, Patreon or PayPal Me are similar systems, that were also considered during
the analysis. However, for the sake of simplicity, these will not be studied in detail in
this document.

2.5. Centralized donation platforms 9

Figure 2.1: Profile page of one of Ko-fi’s featured creators

2.5.1 Ko-fi

Ko-fi [30] is a platform that allows the user to make micro-donations and support
their favorite artists. It is built around the metaphor of inviting the artist to a cup of
coffee, which, in the context of the page, translates into a donation of $3 (at least).

The website harbors a collection of pages, one for each creator inside the community.
In the page, the creator can display their information and other content (images, etc.).
Within the page there is also the option for any user to donate a coffee to the creator.
A creator page can be seen in Figure 2.1.

A Ko-fi button can also be integrated in any website to facilitate the donations. So any
creator that uses the page can integrate the Ko-fi button within their own personal
web page.

Regarding the categories defined in Section 2.2.1, the following can be concluded:

• Accessibility: (5/5) Inside the website, the donation button can be easily found
in the top menu. It is also easy to integrate the button into another web page.

• Interest: (5/5) The website is very attractive and uses inspiring language and
illustrations. There is a “Explore” page with highlights, featured artists, cate-
gories and a browser, which makes it easy and interesting to discover people.
The narrative of the site is social network-like.

• Usability: (4/5) The coffee cup animation makes the button nice and friendly.
The possibility to change the color of the button makes the experience like a
kind of friendly “gamification”. The process for creating a page, as a creator, is
also straightforward.

• Dialogue: (4/5) The exchange of information between the page and the user
is agile.

• Effectiveness: (5/5) The site is very popular among internet content creators
(such as artists, writers, podcasters...).

10 Chapter 2. Web donations and platforms

Figure 2.2: Profile page of Gimp in Flattr

2.5.2 Flattr

Flattr [16] is also a platform that allows the user to make micro-donations and support
their favorite artists. It is similar to Ko-fi, but it focuses on free (in the sense of open)
content creators.

The donations can be made in different ways. As other similar sites, it allows the
user to make a specific donation to a specific artist, that will be directly sent to them.
It also provides the option to pay a monthly subscription, which will distribute the
money among the user’s favorite creators.

The website harbors a collection of pages, one for each creator inside the community.
In the page, the creator provides a small description, links to their personal pages and
the donation button itself (with the option of one-time and monthly donations). A
creator page can be seen in Figure 2.2.

Regarding the categories defined in Section 2.2.1, the following can be concluded:

• Accessibility: (4/5) There is a section to contribute and a list of some featured
creators, but it doesn’t seem like there is a place where all creators can be found.
It is nonetheless easy to contribute. The page is somewhat similar to Ko-fi, but
a little more difficult to navigate. The Log-in button is very clearly accessible
in the homepage. On pages where you can contribute is also quite accessible.
The donation button inside a creator’s page is also easily accessible.

2.5. Centralized donation platforms 11

• Interest: (3/5) The website has clear instructions and is overall correct, but it
is not too attractive. Based on the type of content the page hosts, it is assumed
that the user has interest in free software.

• Usability: (4/5) The situation of the Call to Action for becoming a contributor
is correct and clear. The same applies to the donation button.

• Dialogue: (3/5) It is possible to register both as a contributor or as a creator.
The forms are standard.

• Effectiveness: (4/5) The site is quite popular among free software interested
people.

It is also worth mentioning that Flattr is a free software.

2.5.3 Plaudit

Plaudit [46] is a browser extension that allows the user to endorse academics and their
research. It is designed around the idea that, since these endorsements are made by
respected members of the academic community and are also publisher-independent,
they provide credibility for valuable research.

Regarding the categories defined in Section 2.2.1, the following can be concluded:

• Accessibility: (3/5) Searching the creators is not easy. The page does not have
an explicit search functionality. On the other hand, contributing on the paper’s
website is easy with the Plaudit button. However, the website does not provide
clear examples of how this can be done.

The button to get the extension in the homepage is very clear, and so is the
donation buttons in the pages where it is integrated.

• Interest: (4/5) The website has clear instructions and is overall correct, but it
is not very attractive. The site states that the technology is easy to integrate,
but it requires coding, so it is targeted to an audience that understands code.
They use funny copies in the tutorial (such as Albert Einstein endorsing your
work) in order to show how the product works.

There is a lot of demand for these type of initiatives in the academic world,
so it is likely to generate a lot of interest, although it is not easy to find what
the actual number of people using the system is.

• Usability: (2/5) The situation of the Call to Action is correct. The process
of contributing can only be performed if the user has an ORCID account. The
process for integrating the button within a paper web page is not straightfor-
ward.

• Dialogue: (3/5) The exchange of information between the page and the user
is correct but not too clear. The forms used are standard.

• Effectiveness: (4/5) The site is getting some recognition among certain sec-
tors of the academic community because there is a great need for this type of
initiatives, but it can still be improved upon. It seems that is not yet a very
mature product.

Plaudit is a lesser known system than the rest, and it is not really focused on donations
but on endorsements. However, it was considered as an interesting case study, since
it is a tool targeted for the academic community, just as Quartz.

It has been included in the present section because it is, indeed, centralized and,
although it is not a donation platform, it has much in common with them.

12 Chapter 2. Web donations and platforms

Figure 2.3: A verified project’s profile page in Giveth

2.6 Decentralized donation platforms

This section centers on the analysis of systems designed to allow the user to make
donations using cryptocurrencies and blockchain. Namely: Giveth, Helperbit and
Givetrack.

2.6.1 Giveth

Giveth [21] is a platform that allows the user to make donations to social good projects
without commissions or other secondary charges, by using the blockchain technology.
They describe themselves as a “Decentralized Altruistic Community”.

The website harbors a collection of pages, one for each project inside the community.
Inside each page, there is information about the project and their goals, a section for
updates and a summary of the donations, showing the total amount donated to the
project and a list of the donors ordered from most recent to least recent. A project’s
page can be seen in Figure 2.3.

As for now, the donations can only be done using cryptocurrencies (DAI, YAY, UNI
or ETH). A payment by credit card is being implemented, but is not working yet.

Regarding the categories defined in Section 2.2.1, the following can be concluded:

• Accessibility: (5/5) Inside the website, the donation button can be easily
found in the home page. There is a “Projects” page that is easy to find in the
top menu. From there the donation button for each project is also easy to find
and clear to use. The login button and the one for creating a project are also
very visible in the home page.

• Interest: (4/5) The website is attractive and uses inspiring illustrations and
language. The “Projects” page makes it interesting to discover new projects.
The fact that all the projects featured are for social good helps the user identify
with the values.

It expects the user to be interested in cryptocurrencies and their use (the
donations can only be made using cryptocurrencies).

• Usability: (2/5) The donation button is big and clear. However, the fact that
the donations can only be performed using cryptocurrencies makes the process
a little cumbersome, especially for people not very familiarized with the field.

The process for logging-in and creating a project seems to not be working
well.

2.6. Decentralized donation platforms 13

Figure 2.4: Helperbit main page

• Dialogue: (4/5) The exchange of information between the page and the user
is agile.

• Effectiveness: (3/5) The platform is not very popular yet, although it has
a decent number of users. It has a limited niche, because it requires prior
knowledge and usage of the technology. However, inside its niche it is the most
popular technology for donations.

2.6.2 Helperbit

Helperbit [53] is a platforms that allows the user to make donations to charities using
cryptocurrencies, so the charities can receive the money in a safe way.

The website harbors a collection of pages, one for each charity inside the community.
In the page, the charity can display information about what they do and some related
media, such as photos or videos, that can illustrate their labor. The page also shows
the income goal of the organization and the quantity that has already been donated.
There is a subsection where a list of the donors is displayed. The main page of the
website can be seen in Figure 2.4.

The donations can be done using different cryptocurrencies, via Metamask3 [37] or
from the Helperbit account of the user.

Regarding the categories defined in Section 2.2.1, the following can be concluded:

• Accessibility: (5/5) The main page of the website shows the different charities
that are registered in the community and can receive donations. The button for
donating to a charity is very clear and easy to find. The login button is also
easy to find in the top menu.

• Interest: (4/5) The interface is not the most attractive one, but it is sufficiently
clear. The main page showing the organizations by categories (latest projects,
trending projects...) makes it easy to discover the collectives.

The fact that the page is for donating to charities makes it easy for the user
to identify with the values, which are clear and relatable.

3Metamask is a browser extension for managing crypto wallets and operating with cryptocurren-
cies.

14 Chapter 2. Web donations and platforms

Figure 2.5: Profile page of a project in GiveTrack. The project has
already reached its milestone.

• Usability: (3/5) The donation button is very clear and it stands out. The
donations can be done using cryptocurrencies or through the account created in
the website.

• Dialogue: (3/5) The exchange of information between the page and the user
is agile, although a bit scarce in some situations.

• Effectiveness: (2/5) There is a decent number of charities inside the commu-
nity, but it does not seem like the initiative is very well known. Most of the
charities are quite far from their income goals. Also, it seems that the webpage
will close because the company running it could not sustain itself economically.
So apparently things did not work out well.

Apparently the project will disappear by the end of may 2021, and the page explains
how the charities can do to withdraw their funds.

2.6.3 GiveTrack

GiveTrack [22] is a platform that allows the user to make donations to non-profit
organizations and NGOs using the blockchain technology to provide real-time tracking
of the funds. The project is developed by the BitGive Foundation [4].

The website harbors a collection of pages, one for each nonprofit organization inside
the community. In the page, the organization can display an overview of their project
and goals. The page also shows the fund milestones of the organization and the
quantity that has already been donated. An organization’s page can be seen in figure
2.5.

The donations can be done using different cryptocurrencies or using a credit card.

Regarding the categories defined in Section 2.2.1, the following can be concluded:

• Accessibility: (5/5) Inside the website, in the home page, the button “Explore
projects” is the main call to action and can also be found in the top menu. The
donation button inside each project is also very easy to find and stands out.
The login and sign up buttons are also visible and accessible in the top right.

• Interest: (5/5) The page is very clean and attractive and uses inspiring lan-
guage. The “Explore” page makes it interesting to discover the different initia-
tives.

2.7. Conclusions 15

The fact that the projects are nonprofit and NGOs makes it easy for the
user to identify with the values.

• Usability: (5/5) The donation button is very clear and the bar showing how
much money is left to reach the milestone encourages the user to donate.

The payment can be done using Bitcoin, credit card or via Uphold [59],
which supports a lot of different currencies. The variety of options makes if
quite easy to donate. The user is required to have an account in GiveTrack in
order to donate. Creating an account is easy.

The process for creating a project is straightforward. It requires government
approval, because it is meant for recognized organizations.

• Dialogue: (5/5) The exchange of information between the page and the user
is agile.

• Effectiveness: (4/5) There is a decent amount of organizations and a good
percentage of them are reaching their milestones.

2.7 Conclusions

Each of the platforms that were studied in this Chapter were analyzed following the
categories described in Section 2.2.1. During this analysis, for each of the categories
in each of the applications, a subjective numeric score was given. The score ranges
from 0 to 5, where 0 means that (according to a subjective criteria) the category is
not fulfilled at all by the application and a 5 means it is perfectly fulfilled.

For certain categories, several applications may cover them, to an extent. However,
the score for a certain category for a certain application will be lower if there are
others that fulfill said category more successfully.

These numeric scores serve as a quantitative measure of how adequate each platform
is, in terms of its interaction with the user. It is useful for the development of the
Quartz platform, since it serves as a guide to which practices give the best results, in
order to make the user experience more pleasant.

Table 2.1 shows the scores for each category in each one of the analyzed platforms.

Table 2.1: Comparison of the different platforms studied

Wikipedia is also included in the table, although it is not a donation platform. In its
case, the analysis is made regarding only Wikipedia’s functionality for donations.

At first glance, this analysis may give the impression that there already exist a lot of
alternatives for the Quartz system. However, this is not the case. None of the studied
applications cover the intended scope for one or several reasons.

Platforms such as Ko-fi, Flattr, Giveth or GiveTrack are well built and usable and
already have a decent base of users. However, they are all intended for different

16 Chapter 2. Web donations and platforms

targets. Ko-fi and Flattr are targeted for artists and creators, Giveth is targeted for
social good projects and GiveTrack is targeted for NGOs and non profit organizations.
Furthermore, Ko-fi and Flattr only offer centralized solutions for the payments, while
Giveth only offers decentralized ones.

Plaudit’s target, on the other hand, is the academic community. Nonetheless, it is
not focused on donations but on recognition and endorsements. Moreover, it is quite
cumbersome and not easy to use.

Helperbit does not only have a different target, but is also closed for the time being.

Quartz proposes a solution that has not been covered yet by any of these platforms.
It offers a donation platform for users to donate to academic journals and articles.
For the payments, it allows both centralized and decentralized payments.

From the analysis it is clear that offering only decentralized options for the payments
makes the applications less usable and effective. Most users are not familiar with
this new technologies. For this reason, offering also centralized options seems like the
optimal choice.

The analysis has also showed that it is essential for the donation button to be easy
to find and it should stand out. It is also important that the interactions with the
user are clear and the exchange of information is agile. An attractive design is also
important. All these ideas will be taken into consideration when designing the system.

17

Chapter 3

Technologies for a distributed
donation platform

The previous chapter, Chapter 2, was centered on the donation platforms and appli-
cations that populate the market, an how they are structured, whereas this chapter
explores some decentralized technologies that can be used to create a new kind of
decentralized donation platform.

3.1 Blockchain

Most decentralized technologies and systems rely on the blockchain technology as a
basis. Therefore, giving a brief introduction to blockchain is key for giving context to
the rest of technologies this chapter will explain.

3.1.1 Blockchain

Blockchain is a decentralized technology based on a data structure with the same
name. The data structure, as the name itself indicates, is a chain of blocks [42].

The system was first introduced with the creation of Bitcoin [39]. It served as a basis
for the creation of an electronic payment based on cryptographic proof, so that two
parties or entities would be able to send money to each other without having to trust
a central entity. The system is proven to be secure as long as the majority of the
nodes involved in the system are independent and honest, so they control more CPU
power than any hypothetical group of attackers or dishonest participants.

Basic concepts

A transaction is defined as an exchange of money between two participants. This is,
a sender, a receiver and a quantity.

A block is a set of transactions. It is connected to the previous block and to the next
one, thus forming a chain. A new block is added to the chain once enough transactions
have happened.

The block also contains a timestamp and a link to the previous block (or parent), in
the form of a hash of said block. It also contains a random number, called nonce.
This number is important for the calculations of the block’s hash when the next block
is added to the chain.

The blockchain represents a complete register or ledger of the full history of transac-
tions in the system, since for every new group of transactions, a block is added to the

18 Chapter 3. Technologies for a distributed donation platform

end of the chain. By cryptographic means, blocks can be validated as truthful part of
the chain.

The immutability of the blocks is guaranteed by the hashes. If any data within the
block (any information about any of the transactions) is modified, the hash of this
new modified block will be completely different to the previous one.

3.2 Ethereum and ERC20 tokens

3.2.1 Ethereum

Ethereum [7] is a decentralized blockchain, and one of the main networks as for to-
day. As bitcoin or other systems, it includes a coin, and mechanisms for performing
transactions and payments. But the main interest of the Ethereum blockchain is the
fact that it can run code, in the form of so called smart contracts .

A smart contract is a piece of code that can be executed in the Ethereum blockchain,
autonomously. The language in which smart contracts are written in is Solidity [7].

The advantage of smart contracts is that, since they run over a blockchain, the trust in
the contract relies in itself, rather that in a third party that warranties the compliance
of the contract [43]. For this reason, it is completely impartial and everybody can
trust it will be executed. Whatever rules are written in the contract will be executed
and complied without a doubt.

3.2.2 ERC20 tokens

An ERC20 [15] token is a smart contract running over the Ethereum blockchain
containing code for the definition of a token or coin. This includes operations such
as creating an initial amount of tokens, sending money between accounts or checking
the balance of an account.

ERC20 is the standard that determines the functions and events this sort of contracts
should implement.

The goal behind the creation of the ERC20 tokens is the standardization and compat-
ibility among tokens in the Ethereum network, in order to facilitate interoperability
and create a richer ecosystem.

OpenZeppelin [44] is a standard for building secure blockchain applications. They
provide a library for secure development and deployment of smart contracts.

Among the contracts contained in this library, there are contracts for the deployment
of ERC20 and ERC721 tokens.

3.3 Interledger Protocol

The Interledger Protocol (or ILP, for short) can be used in order to implement a system
that provides both the donor and the receiver the freedom to choose their preferred
currency or cryptocurrency, without having to worry about how the transactions will
be performed.

3.4. Web Monetization 19

3.3.1 Definitions

Interledger [56] is a protocol for sending and receiving payments between systems that
maintain a register of financial transactions. Being a protocol means it is a set of rules
that are publicly accessible.

Before understanding the idea behind Interledger, it is necessary to introduce two
main concepts:

• Ledger: An archive or book storing economic transactions, columns for credit
and debit, initial and final balance for an account. In other words, an account
book.

• Decentralized Ledger Technology: Digitized and decentralized ledger. This
is, decentralized database managed by several participants, without a central
authority for verification.

So, in this sense, Interledger can be understood as a technology for interconnecting
different decentralized ledgers. But this is a simplification.

Interledger can be defined as a system that allows communication among different
payment systems, in order to perform a transaction of a certain value. The systems
communicated by this protocol can (but do not need to) be decentralized ledgers.
Ideally, any two payment systems (or ledgers), centralized or decentralized, can be
connected via Interledger.

In a more technical sense, Interledger is an open protocol suite for the shipment of
payments among different ledgers [27]. In analogy to internet routers, the connectors
route money packages through independent payment networks. Since the architecture
and the protocol are open, interoperability is allowed for any system.

The actors that participate in the system are [26]:

• Sender: The actor that sends the money.
• Receiver: The actor that receives the money.
• Connector: In case the sender and the receiver are not using the same paying

system, they need intermediaries to connect them. So this is the role of the
connectors: they forward money through the network from the sender all the
way to the receiver. They may charge fees for the work. It is expected that
the different connectors in the network compete among themselves in terms of
velocity, reliability, coverage and price.

Any of these participants of the Interledger network is called a node.

The architecture of the Interledger network and how these nodes work together is
further explained in chapter 6.

3.4 Web Monetization

Web Monetization [61] is an API that allows websites to request payments in small
quantities via the browser and the Web Monetization provider.

A Web Monetization provider or Web Monetization sender is a digital entity that
can issue payments in behalf of a user and, in particular, send micropayments to Web
Monetization receivers [63] through ILP. In a similar way, a Web Monetization receiver
is a digital entity that can accept payments performed via Interledger in behalf of a
user and, in particular, receive micropayments through Web Monetization.

20 Chapter 3. Technologies for a distributed donation platform

The Web Monetization receiver provides the user with a so called payment pointer,
which is a URL assigned to a certain Interledger account. This URL is unique and,
therefore, serves as an identifier of the account.

The idea behind Web Monetization is for the user running a website to embed its
payment pointer in the website itself. As long as the users visiting the site have an
application that allows them to send the micropayments (such as Coil - see Section
3.5.3), they will start sending little amounts of money to the payment pointer defined
in the source code of the page.

The concept of micropayments is simple: small amounts of money sent every certain
time. This is, for every unit of time (e.g. every hour or every thirty minutes), a small
amount of money (e.g. a cent, two cents) is sent from the user visiting the page to
the payment pointer registered in the code.

3.5 Some wallets and applications

In order to send or receive payments using ILP or Web Monetization it is necessary to
use an ILP wallet. In the case of Web Monetization, some wallet providers can work
as WM senders or receivers.

This section describes three applications that host ILP wallets: Rafiki.money, Uphold
and Coil.

Both Rafiki.Money and Uphold can be used as standalone wallets and as Web Mone-
tization receivers. In turn, Coil works as a Web Monetization provider.

3.5.1 Rafiki.money

Rafiki.money [47, 25] is an example Interledger wallet prototype developed by In-
terledger themselves. It allows the user to have an account with real money or test
money using a testnet, and send and receive money.

It is not a donation tool. Similarly to Uphold (3.5.2), Rafiki provides the user with
a payment pointer that can be used to receive donations (for example, the donations
issued by Coil (3.5.3)).

It is not a real finished product, but a prototype for testing and experimenting. The
repository itself indicates the project must not be used in production.

3.5.2 Uphold

Uphold [59] is a web exchange for buying and selling digital coins and cryptocurrencies.
It allows the user to have an account with any type of coin and use it to issue and
receive payments, as well as for buying and selling coins.

It is not a donation tool. But if a user wants to receive micropayments, for example,
the ones that Coil issues, they must have a payment pointer to receive them. A
payment pointer is the address of a wallet within a node of an ILP network [10].
Uphold provides the user with a payment pointer, so they can receive the donations.

3.5.3 Coil

Coil [9] is a browser extension and tool for micropayment streaming to web pages and
creators.

3.6. Other technologies 21

A user can pay a subscription fee and download the extension. With the extension
installed and active, every time the user visits a site that is webmonetized (i.e. sup-
ports Web Monetization) [61], Coil starts sending small amounts of money depending
on the time the user expends in said page. In particular, Coil pays $0.36 for every
hour a user expends on a page. The micropayments are sent roughly every second for
each visiting member.

The main interest of this initiative is the fact that it is currency-agnostic. This means
the user that makes the donations can be using any type of currency - being it any
physical currency or a cryptocurrency. The receiver of the donations can also receive
them in whichever currency they decide. Both currencies do not have to be the same,
nor related whatsoever.

Coil is built over Web Monetization, which is the technology that manages the micro-
payments. It works as a Web Monetization Provider.

3.6 Other technologies

There are other technologies that have been used during the development of the
project. The technologies explained in this Section are not the core of the project,
but have been necessary for the implementation nonetheless.

3.6.1 Docker

Docker [12] is an open source software project that provides a system of software con-
tainers, in which the developers can deploy several applications to virtualize networks
and systems.

In the context of this project, Docker is used to simulate a simple Interledger network.
This network is explained in detail in Chapter 6 (see 6.2.2).

Docker containers are used to simulate an Ethereum testnet and three different In-
tereldger nodes, and then they are interconnected to simulate the whole three-node
ILP network.

3.6.2 Node.js

Node.js [41] is a JavaScript runtime environment designed to create scalable network
applications. It is open source and cross-platform. It is oriented to asynchronous
events and it is used to write scripts for the server side in a client-server web applica-
tion.

In the context of the project, Node.js is used to implement the servers to which the
client connects in order to ask for the monetary transactions to be made.

3.6.3 React (javaScript)

React [48] is a JavaScript framework designed to help creating user interfaces. It
facilitates the inclusion of HTML code within the JavaScript code, and it provides
some other advantages, such as lambda expressions.

In the context of the project, it was used to implement the user interface and the
client of the application.

22 Chapter 3. Technologies for a distributed donation platform

Material-ui

Material-ui [36] is a React library that provides components for developing a user
interface following the material design principles.

23

Chapter 4

System overview

In this chapter, an overview of the system’s functionality is given. The two actors that
represent the main users of the system are introduced, followed by further explanation
of how they interact with the system. Use cases and functionality are provided, along
with screenshots of the actual system to illustrate the flow of the interactions. The goal
of this chapter is giving a general high level overview of the system, so the architecture,
design and implementation can be explained in detail in the next chapters (see chapters
5 and 6).

4.1 Quartz Ecosystem

For the purpose of this project, a system to perform donations have been designed.
In a general sense, the application is basically a button than can be integrated within
a journal’s web page and allows the users to perform donations to the journal. The
system contemplates different ways to perform the donations, through various pay-
ment systems. Part of the functionality relies on PayPal as a payment bridge, so it
would require some of the users to have a PayPal account. In the same way, part of
the functionality relies on Interledger as the payment bridge, so the users would be
required to have Interledger accounts.

The system is designed for two main profiles: the journals and the donors. Each of
these actors has a particular goal when using the system:

• For the journals, their goal is to be able to receive donations. In a more particular
sense, they expect to be able to add the system to their website so visitors can
perform donations, and then they want to receive the money in their account.

• For the donors, their goal is to support their favorite journals by sending them
donations. In a more particular sense, they expect to visit the website of the
journal and find a simple way to send money with their preferred currency of
choice.

The interactions and workflow for both of these actors will be studied later in this
chapter.

However, the system is more complex than just an application. It is composed by
several different parts that together form what will be from now on called the Quartz
Ecosystem. The application just described is an abstract description of the function-
ality, but more specifically, the system can be divided as follows.

24 Chapter 4. System overview

4.1.1 Quartz button

The button represents the high level part of the system, and it mainly represents the
functionality that has already been described. In short, it is a button that can be
integrated in a web page and allows the visitor to perform donations using different
methods.

The appearance of the button is showed in Figure 4.1.

Figure 4.1: Quartz button

4.1.2 Quartz Token

The Quartz Token or coin (abbreviated QTZ) is an ERC20 token designed for an
academic context.

It has no value as for today, but it is planned to work as an exchange currency for
academic publication. For example, some of its applications would be: rewarding
good reviews or papers, paying or getting discounts in the publication of papers or
sending donations.

In the context of the project, the token was implemented and deployed to test the
compatibility of Interledger with new tokens and coins, and study the advantages
this provides. For this reason the payments in the test application are done in QTZ,
while the receiver receives the corresponding amount in another currency (XRP, in
this case).

4.1.3 Quartz ILP node

The Quartz node exists as part of the implementation, more than at a user level. Its
existence should be transparent to the user, so it will be explained in more detail in
the implementation chapter (Chapter 6).

Without diving into much detail, this node can be understood as the low-level entity
that makes it possible to make transactions using the QTZ coin. It is an intermediate
node in the network that manages the transactions (the ILP network).

The integration of the token within the ILP network allows any donations to be
performed using QTZ. This means, for example, the donor can send any type of
currency and the journal can receive QTZ (and vice versa). This also means a user
with a Coil subscription payed in dollars can be sending microdonations that will be
received by the journal in the form of QTZ.

4.1.4 Quartz wallet

It is the account that stores the user’s QTZ funds. The wallet can be referenced using
its address and it is necessary in order for the user to own QTZ, send payments using
QTZ and receive QTZ.

4.2. Payment methods 25

4.1.5 Quartz Platform

The Quartz Platform is an internal structure that serves as an intermediary between
the donors and the journals in the case of the PayPal donations (see Section 2.4.2). It
works similarly to how a usual marketplace does: the journals register in the platform,
so they no longer have to worry about the management of the donations. A button
can then be created specifically for them. Then, when a donor sends money using the
button, the platforms forwards it to the corresponding journal. This structure also
offers other possibilities, such as periodic donations.

4.2 Payment methods

The system integrates with different payment systems, so to use some of the function-
alities, users need to create accounts in them. Depending on the actor and the type of
payment to be performed, one type of account or another (or even none) are needed.

For each actor, and for each type of payment, the requirements are as follows:

• Donor:
– Pay using PayPal: In this case, a PayPal account is needed.
– Pay using credit card: In this case, no accounts are needed. The user

is just required to have an active credit or debit card.
– Pay with the Interledger button: In this case, the user needs to have

an Interledger account. In the proof of concept application, this account is
supposed to exist within the Quartz system.

– Web Monetization micropayments: In this case, the Coil1 browser
extension is used. For that reason, a Coil account is needed.

• Journal:
– Receive PayPal and credit card payments: In these cases, a PayPal

account is needed.
– Interledger and Web Monetization payments: In these cases, the

user needs to have an Interledger account, and its corresponding payment
pointer. This account could exist within the Quartz system, or in some
Web Monetization receiver, such as Uphold2.

The creation of each type of account will now be briefly explained.

4.3 Creating the accounts

4.3.1 PayPal account

To create a PayPal account, the user should go to the PayPal website3. In the home-
page there is a big button for creating an account.

There are two options for the accounts. In the case of the donor, the personal account
is enough, for the donors are only supposed to send the donations. However, the
journals need a business account in order to be part of the Quartz platform (integrating
in the platform is a necessary step to be able to receive the donations). See Sections
2.4.2 and 4.1.5 for more detail on this.

1https://coil.com/
2https://uphold.com/
3https://www.paypal.com/es/home

https://coil.com/
https://uphold.com/
https://www.paypal.com/es/home

26 Chapter 4. System overview

To create an account, it is necessary to add in a name, an email, a password and a
phone number. Then, it is possible to add in a credit card and verify the account.
In the case of the business account, some information about the business itself is also
required (such as business name and contact information).

After following the steps the sign in requires, the account should be created and ready
to be used.

4.3.2 Coil account

To create a Coil account, the user should go to the Coil website4. In the home page
there is a big button saying “Become a member”.

To create the account it is necessary to enter an email and a password. Then, the email
has to be verified (via a message sent from Coil to the address that was introduced in
the form).

Once the account is created, the user can configure it by adding a credit card and
a membership, as well as more personal information (such as a name or a profile
picture).

4.3.3 Uphold account

To create an Uphold account, the user should go to the Uphold website5. In the
homepage there is a button for creating an account.

There are two options for the accounts: an individual account and a business account.
In this case, for both the donor and the journal the personal account is enough,
although for the journal it makes more sense to create a business account.

To create an account, it is necessary to enter an email, password and country of
residence. Then, it is also necessary no introduce some personal data, such as name,
date of birth and a phone number.

After following the steps the sign in requires, the account should be created and ready
to be used.

4.3.4 Quartz account

This project is still on an early state, so the Quartz accounts are registered manually
through the command window. However, this process will be automatized in the
future, so the user will be able to create an account via a graphic interface, as it is
the case for the rest of the systems.

In the next sections, it is assumed that the actors already have a Quartz account. In
the case of the donor, it is also assumed this account has some QTZ to pay with.

4.4 The interaction

The system is an intermediary for donations from donors to journals. So there is an
interaction between the two actors, that is carried out through the application. A
simple scheme of the interaction is shown in Figure 4.2.

4https://coil.com/
5https://uphold.com/es

https://coil.com/
https://uphold.com/es

4.5. Donations 27

Figure 4.2: Interaction between a donor and a journal

As the diagram shows, the system offers essentially three payment options: a PayPal
button, an Interledger button and the Web Monetization micropayment protocol.

The donor is the actor that actively interacts with the system to start the process of
a donation. The donor can have a PayPal account, a credit card or an ILP wallet.

In the first two cases, they can choose the option of sending a donation using the
PayPal button. Then, the system will make the necessary operations so that the
money is finally sent to the journal’s PayPal account.

In the last case, by having an ILP wallet, the donor can use the Interledger button,
so that the system can eventually send the money to the journal’s ILP wallet. In
addition to that, by using the Coil browser extension, the donor can also be making
micropayments while visiting the web page of the journal. The system then sends the
corresponding money to the journal’s ILP wallet.

4.5 Donations

Once each user has the appropriate accounts created, the button can be installed in
the website and the payments can begin to be made. In this stage, the use case for
each type of user (or actor) is different, so they will now be explained separately.

4.5.1 Donor: Explicit donation

The donor could be any internet user reading academic papers online. When browsing
the web page of a journal, or a certain article published by the journal, they encounter
the Quartz button (Figure 4.3).

28 Chapter 4. System overview

Figure 4.3: Quartz button integrated in a journal’s web page

By interacting with the button, the application opens a new dialogue, where the user
can select the amount of money to donate and decide the way in which they want to
perform the payment (Figure 4.4):

• Paypal
• Debit or credit card
• Interledger

The first two options open a PayPal popup window, where the user can perform the
payment.

The third option opens a dialog asking the user to write in their credentials for the
Interledger account (see Figure 4.5). For the proof of concept purpose of this project,
all the operations are performed over predefined accounts in a test network, so for
now this is still a placeholder dialog.

If the payment is performed correctly, the application shows a dialogue confirming
everything worked properly and giving the user the option to visit the Quartz website6

and join the community. If there is any error during the process, the application shows
a dialogue stating there has been an error (Figure 4.6).

There is also the Web Monetization payments, that are micropayments sent to the
journal for each time unit a reader expends in the page. This process is a little
different, so it will be explained in the next section (Section 4.5.2).

4.5.2 Donor: Indirect donation (micropayments)

One of the ways the donor can donate to the journal is via microdonatinos.

In the case of the journal, the process for integrating the system into their web page is
the same that was already explained in Section 4.5.3. When the button is integrated
in the page, it makes the proper changes so that the website becomes webmonetized
and can start receiving microdonations.

In the case of the donor, the process is different to the one explained in the previous
section.

6https://quartz.to/

https://quartz.to/

4.5. Donations 29

Figure 4.4: Payment dialogue

First, it is required that the user has a Coil account (see 4.3.2). Then, they have
to download the Coil browser extension. This extension is the one that allows the
user to send microdonations to the webs they visit. In the Coil account, they have
to select a configure a membership. This is, a monthly fee that is payed to Coil and
then redistributed among the webmonetized websites the user visits.

Once the membership is configured and the extension is downloaded, the donor just
has to log in to Coil and then, whenever they visit a webmonetized website - the
journal’s website, in this instance - the extension will indicate that it is sending money
and the micropayments will be performed. Coil will pay $0.36 for each hour the donor
expends in the journal’s website.

Figure 4.7 shows the browser extension before logging in and after logging in, when
visiting a website that is webmonetized. Figure 4.8 shows the extension in context, in
a website that has Web Monetization enabled.

4.5.3 Journals

The use case for the journals is the same for both implicit and explicit donations.

30 Chapter 4. System overview

Figure 4.5: Interledger payment screen

The user representing the journal could be a journal editor or the person in charge of
the journal’s web page. Their goal is to integrate the system in their page and start
receiving donations.

In order to integrate the full system, they need to have one or more accounts in the
various technologies used (although if they prefer to use only one of them, the code
can be easily adjusted). This means the journal needs to have a PayPal account, and
use this account to register in the Quartz PayPal platform. This is needed for the
PayPal and credit card payments. The journal also has to create an account in an
Interledger node, that could be the Quartz Interledger node. This way they obtain a
payment pointer, that is used as an address to send them the money.

Once all the accounts are created, the button can be integrated in the web page7, as
shown in Figure 4.3.

When the donations are made by users visiting the website and interacting with the
buttons, the journal receive the money in the corresponding account. The money sent
via the PayPal buttons (PayPal, Sofort, and credit and debit card) is received in the
Journal’s PayPal account. The balance can be checked in their PayPal profile. The
payments received via Interledger are received in the journal’s Interledger wallet. This
wallet could be in any node providing payment pointers.

7The button is implemented in React (JavaScript, HTML) and it can be integrated by inserting
the button’s code in the code of the website.

4.5. Donations 31

(a) Success dialogue (b) Error dialogue

Figure 4.6: Success and error dialogues

(a) Coil extension before logging in. (b) Coil extension while visiting a webmone-
tized site.

Figure 4.7: Success and error dialogues

32 Chapter 4. System overview

Figure 4.8: Using the Coil extension in a webmonetized website.

33

Chapter 5

Centralized Implementation

In this chapter, details about the centralized implementation of the system are given.
First, the core concepts of a PayPal application are introduced, as well as the dif-
ferent functionalities, components and APIs. Then, the architecture of the system is
explained, followed by a detailed description of the implementation.

The centralized implementation is relatively simple, since all the management of the
transactions is delegated to PayPal, who provides a high-level API. For this reason,
the implementation of the centralized subsystem consists mainly in the integration
with said API.

5.1 Introduction

Chapter 4 introduced the Quartz ecosystem, in terms of its external structure and
how the user interacts with the different functionalities.

This chapter will study the centralized part of said ecosystem, by explaining how it
is implemented.

The main component of this subsystem is the donation button, and the underlying
payment system uses PayPal’s infrastructure to send the payments. The user can
choose to make the payments using a PayPal account or by credit card, but the
differences between both channels are made transparent for both the user and the
developer thanks to the simplicity of PayPal’s API.

For this reason, in order to explain how this subsystem is implemented, it is helpful
to understand the technology that is used for the implementation. This is the PayPal
REST API for marketplaces and platforms. The implementation of the centralized
donations consists in an integration of Quartz’s UI with the functionalities PayPal
provides.

5.2 PayPal

For the creation of the first version of the system, a centralized approach was taken
and PayPal was used to allow payments and donations in a centralized way. PayPal
was chosen for its interoperability and the functionalities it provides for the creation
of marketplaces and platforms.

In brief, a platform can onboard a set of sellers to be part of the marketplace and then
it can manage how the money is forwarded to said sellers.

34 Chapter 5. Centralized Implementation

PayPal offers a REST API to perform the different operations for the development.
The REST API requests are executed combining an HTTP method, such as GET,
POST, PUT, PATCH or DELETE, the URL to the API service, the URI of the
resource to be updated, deleted or queried and optional HTTP headers. PayPal
provides the developer with credentials to make the API calls, and the authorization
is performed using the OAuth 2.0 protocol. These credentials consist of a client-id
and a secret.

5.2.1 Concepts

There are a few concepts that will be used throughout this chapter and are partic-
ular to the PayPal API that has been used for the development of the centralized
subsystem. Some of those concepts are the following:

• Platform/marketplace. A structure used for organizing a group of vendors
(in this case, the journals) so that the payments made by the buyers (in this
case, the donors) can be easily managed. It will be explained in more detail in
Section 5.2.2.

• Client-id and secret key. These are credentials that identify a particular
PayPal App. A user with a PayPal developer account can create apps that
provide them with credentials to access the REST API for both testing and
live transactions [35]. The client-id is the identifier and the secret key is the
password. These credentials vary for each app and are also different for live and
sandbox apps.

• Access token. It is an identifier or key that authorizes the user to use the
PayPal REST API server [20]. It can be obtained by using the client-id and the
secret key.

• Attribution-id. This key identifies the user as a PayPal partner. PayPal
partners are developers that are allowed by PayPal to use all the functionalities
the PayPal REST API provides. This attribution-id is received directly from
PayPal and has to be used as an identifier every time a call to the API is made
[2].

5.2.2 Platforms and marketplaces

PayPal offers an API for marketplaces and platforms.

A platform, as previously explained in Section 2.4.2, acts as an intermediate entity
between the donor and the journal. A journal that wants to participate in a platform
should, first, have a PayPal business account.

Next, by making calls to the PayPal API, using the Authorization token and the
Attribution ID, it is possible to generate an onboarding link, which is specific for the
platform. Onboarding is the process by which a journal, in this instance, integrates
into a platform, so the platform can manage payments donors send to the journal. By
using said link, any journal can onboard.

Figure 5.1 shows a simplified diagram of the structure of a platform.

5.3 Architecture

The architecture of the system has several layers (as illustrated in Figure 5.2). The
user interface is common to both the centralized and decentralized part of the system,

5.3. Architecture 35

Figure 5.1: Quartz Platform

and then each of the subsystems has its own lower layers, in both cases based on a
server-client model.

In this section, the centralized part will be analyzed.

As the Figure shows, the most external layer is the UI (user interface). It is the
layer that allows the communication between the user and the application. This layer
was implemented using React JS and following the directives of material design. In
particular, the library material-ui for React was used.

This layer connects with the clients for both the centralized and the decentralized
subsystems. In the case of the centralized system, the client receives the data inputs
that the user enters via the UI and makes the POST requests to the server. The client
is also implemented using React JS.

The server makes calls to the PayPal API using the information received from the
client. The code for the server is implemented using the Express framework [13] for
JavaScript and it runs on Node.js.

Thereby, these underlying client and server layers follow a theoretical structure, in-
stead of a physical one. In particular, they follow the client-server architectural pat-
tern [49]. As such, the Centralized System Client Controller works as an intermediate
layer between the Client UI and the Server, by parsing the data received from the
UI and forwarding the subsequent petitions to the server. The Server, on the other
hand, manages the petitions and makes the necessary calls to the corresponding API
(PayPal API, in this instance).

It is important to note that, for this is a theoretical structure, both the client and the
server can be running in the same machine. The codes for both layers run indepen-
dently, but there is no need for them to exist in separate machines. This is the case
in the current deployment where, for the sake of facilitating testing, both structures
are running in the same machine. However, the current implementation also allows
for deployment in different machines. This separation would be ideal, since some of

36 Chapter 5. Centralized Implementation

Figure 5.2: Architecture of the system. Highlighted the centralized
part.

the data being managed by the application is sensitive information, and it is safer to
process such data in an independent server.

It is also important to note that the Client Controller and Server for the centralized
implementation are different from the ones for the decentralized implementation. The
source code is different and independent, and they both run and work without any
dependence from one another.

The PayPal API is the access layer through which the PayPal functionalities are
accessed. The PayPal system is the deepest layer of the system, and it is the one in
charge of managing the shipment of the money.

With this general knowledge of the architecture, it is now possible to explain in detail
the sequence of calls among the different layers of the system.

5.3.1 Sequence diagram

The PayPal donation button generated for the sellers works following a server-client
structure.

The server listens to petitions regarding the orders and makes the API requests. The
client reads and manages the options of the user’s order (in this case, a donation) and
forwards the necessary information to the server to perform the calls.

Figure 5.3 shows a sequence diagram illustrating the flow for a transaction through
the PayPal donation button. This applies for both payments using a PayPal account
or a credit card. The flow for a payment would be as follows:

• The user sets the quantity they want to donate and press the “Pay” button.
• The client sends a create-order petition containing the quantity to be donated.
• The server listens to the petition and makes a call to the PayPal API. The access

token and attribution ID of the platform are sent with the call, to authenticate
the platform and assure it has the necessary permissions.

5.4. Conclusions 37

User UI Client Server
PayPal
API

Insert(amount)

Press(PAY)

Pay

create-order(amount)

order(access token, attrib. ID)

Ok (JSON)

Ok

capture-order order(orderID, access

token, attrib. ID)

Success

Success

Print success screen

Show success screen

Figure 5.3: Sequence diagram for the PayPal donation button

• Through the API, PayPal does the corresponding operations to create the or-
der, and returns a JSON containing either an error, if there is any, or some
information about the operation.

• The client receives the response and prints in the prompt the error or the data
received. Among this data, there is an order ID, identifying the order just
created.

• If there is no error, the client sends a capture-order petition.
• The server listens to the petition and makes a call to the PayPal API. The access

token and attribution ID of the platform are sent with the call, along with the
order ID, that identifies the order.

• Through the API, PayPal does the corresponding operations to perform the
order and returns whether there is an error or it has been a success.

• The server returns a state of success if everything worked properly or one of
error if something went wrong.

• The client receives the response and fixes the system’s state to either success or
error, so the front-end knows which screen to show the user.

• The front-end prints the corresponding screen: a success screen if everything
worked properly and an error screen if something went wrong.

5.4 Conclusions

The implementation of a centralized solution was the first approach of the project.
It is an interesting approach, since centralized payments are most common nowadays
in the context of online donations and payments in general. For this reason, they do
not pose a big challenge for the users to overcome, since they are already used to this
kind of systems (unlike newer or more innovative payment systems, where adaptation
could be harder).

Another reason for this approach to be taken first was the fact that there is plenty
of information, documentation and support for the development of systems that use
these technologies (such as PayPal), for they are very popular and have a big user and

38 Chapter 5. Centralized Implementation

developer base. For this reason, it is easier to create a first Minimum Viable Product
(or MVP) using one of these technologies, instead of a decentralized one.

However, the centralized solutions also have some disadvantages. For example, due to
its centralization, PayPal can ultimately decide who can integrate with their system.
This poses several problems when trying to move the Quartz centralized system from
a test environment into production, because to get the permissions needed to do the
migration, PayPal imposes very strict criteria that is almost impossible to fulfill1.

On the other hand, removing the centralized entity that controls the transactions,
would make them more transparent and fair, and would also lower the costs, by
lowering the number of intermediaries. Moreover, a system allowing payments and
donations no matter what monetary systems the senders and the receivers use would
help with the inclusion of any type of collectives.

All these goals can be achieved by implementing a decentralized system with technolo-
gies such as Interledger or Web Monetization. The next chapter is centered around
the implementation of a system with these features.

1For example, a company needs to generate more than $1M per year in order to be granted access
to the Live API.

39

Chapter 6

Decentralized Implementation

In this chapter, details about the decentralized implementation of the system are given.
First, the Interledger Protocol is explained in detail, introducing its architecture and
advantages. Then, the ERC20 tokens are defined and OpenZeppelin is introduced as
a tool for creating such tokens. After that, the architecture of the system is explained,
followed by a more detailed description of the implementation.

6.1 Introduction

Chapter 4 introduced the Quartz ecosystem, in terms of its external structure and
how the user interacts with the different functionalities.

This chapter will study the decentralized part of said ecosystem, by explaining some
of its main components and their implementation.

In short, the main parts of this ecosystem are:

• The Quartz Button, used to send direct donations to the journal it belongs
to. In terms of structure, the button calls the underlying system -in this case,
the ILP network -, and orders it to perform the needed transaction.

• The Quartz Token or coin, abbreviated as QTZ. It is an ERC20 token that
can be sent or received in the donations, and it is meant to exist as an exchange
token for academic publishing processes.

• The Quartz ILP node, a node inside the Interledger network that serves as
a connector for exchanging QTZ with other currencies. It also stores users’
wallets. It is connected to an Ethereum network, inside which the contract for
the QTZ coin is deployed.

• The Quartz wallet, that lives inside the Quartz node, and stores a user’s funds
in QTZ (the Quartz coin).

In order to explain how these components are implemented, it is key to first understand
the technologies that are used for the implementation. These are Interledger and Web
Monetization. The implementation of the Quartz ecosystem consists in subtle but
precise changes in the structure of these technologies, so introducing them in detail is
imperative.

6.2 Interledger Protocol

The Interledger Protocol [27] is a set of publicly accessible rules for sending and re-
ceiving payments between different payment systems or ledgers. The goal is to allow
the exchange of money among systems that have little to nothing in common, apart

40 Chapter 6. Decentralized Implementation

from the fact they are ledgers. They could be centralized or decentralized and operate
with very different currencies.

In a general sense, this protocol works in a similar way the internet does. When
sending a package through the internet, different interconnected routers find the best
path to forward the package from the sender to the receiver. In a similar way, in
Interledger there are intermediate nodes (the connectors) that find the best route (in
terms of connection and price) to forward a certain quantity of money from a sender
- operating in a currency A in A’s ledger - to a receiver - operating in a currency B in
B’s corresponding ledger. The connectors have to find a way in which one currency
can be transformed into the other and the money can reach the destination ledger, all
while not exceeding a certain cost in transactions.

This technology is very interesting for a system that aims to allow donations to differ-
ent collectives from very diverse backgrounds. In this sense, a technology as Interledger
makes it easy to send donations from one country to others, without having to worry
about abusive fees, nor dependence of powerful intermediaries. It also brings the pos-
sibility of the integration with new tokens or currencies, which is specially interesting
in the context of academic donations, where some argue that monetary rewards could
be harmful for the field, while other kind of rewards would be more effective [17].

In order to integrate with this technology, it is essential to understand how it works
with detail. This section explains the Interledger protocol, so the next sections can
analyze how it is used in the Quartz application.

6.2.1 Concepts

Before explaining the Interledger architecture in detail, it is necessary to define some
concepts that are a core part of the protocol.

The protocol is centered around money shipment. The actor (person or entity) sending
the money is called the sender, and the one receiving it is called the receiver. If the
sender and the receiver are in the same monetary system, the shipment of the money is
straightforward. However, if they are not, in order for the money to reach the receiver,
a route has to be found between both ends. The intermediate parties that forward the
money until it reaches the receiver are called connectors. As a general term, the word
node is used to name any of these components of the network (a sender, a receiver or
a connector). A simple graph of nodes can be seen in Figure 6.1.

Sender Connector ReceiverConnector

Figure 6.1: Node scheme in an Interledger Network [26]

Every node within the Interledger network can be referenced using an Interledger
address or ILP address. They provide a universal way to address the nodes, indepen-
dently of their internal nature. These addresses are strings composed by dot-separated
segments that are hierarchically ordered. This means, the first segment is the most
significant and the last one, the least significant.

In the frame of the Interledger protocol, connectors have peers, which are other con-
nectors they consider trustworthy and transact with. A connector can fix a maximum
credit limit for its peers. As the connector forwards packets sent by its peer, the

6.2. Interledger Protocol 41

liabilities of the peer to the connector accrue, and they could potentially exceed the
credit limit, so the connector could reject subsequent packets.

For the connector to be able to send new packets, the peer has to settle their liabilities.
To do so, they can send a payment to the connector using a settlement system they
both have agreed on using. So, in this context, a settlement is the irrevocable discharge
of a liability via an unconditional transfer of an asset or financial instrument [28].
These settlements take place in a settlement system (such as a bank, or a decentralized
ledger or cryptocurrency) through which the funds are exchanged.

Now it is possible to define the settlement engines, which are services that are operated
by two Interledger connectors that are peers and allow them to send and receive
settlements from each other. A connector can have several peers that settle over
the same system, and the settlement engine can manage multiple accounts, each one
connecting to a different peer.

6.2.2 Architecture

In this section, the structure and architecture of an Interledger network will be studied.
To simplify the explanation, a simple network with only three nodes - a sender, a
receiver and one connector - will be used. The architecture explained for this simple
network can be easily extended to a larger network with more nodes.

This simple network is composed by three nodes:

• Alice, the sender, that has an account with Ether in an Ethereum network.
• Charlie, the receiver, that has an account with XRP in an XRP network.
• Bob, a connector that has settlement engines for both Ethereum and XRP

settlements.

The structure of the network is illustrated in Figure 6.2.

As the Figure shows, the nodes include different accounts and are interconnected in
a specific way:

• Alice node: It is composed by the node itself and the Ethereum settlement
engine. It contains Alice’s account, and the Alice ↔ Bob exchange account.

• Bob node: It is composed by the node itself, the Ethereum settlement engine
and the XRP settlement engine. It contains the Alice ↔ Bob exchange account
and the Bob ↔ Charlie exchange account.

• Charlie node: It is composed by the node itself and the XRP settlement
engine. It contains Charlie’s account and the Bob ↔ Charlie exchange account.

6.2.3 Flow

In order to better understand the Interledger architecture, it is necessary to study the
flow of the payments in the network. Figure 6.3 sows a sequence diagram of a payment
performed in the three node network defined in the previous section (Section 6.2.2).
The actors in the diagram are the nodes (Alice, Bob and Charlie) and the settlement
engines and exchange rate provider that the connector interacts with.

Alice has a certain quantity of ETH in her Ethereum account, and also has an In-
terledger wallet associated to said account. Alice wants to send an amount of money
to Charlie, who has an XRP account. Since they both work with different payment

42 Chapter 6. Decentralized Implementation

Figure 6.2: Simple Interledger network

systems, Interledger needs to find a route to send the money from one to the other.
The flow for the payment in the Interledger network is as follows:

• Alice sends a Prepare packet, that represents a certain amount of money and has
an associated condition, that has to be fulfilled in order for the payment to take
place. Alice sends said packet to Bob, a connector with an Ethereum settlement
engine who Alice can settle with. The packet is sent using the crossed accounts
Alice and Bob have in each other’s node.

• Bob, that has settlement engines for ETH and XRP, can settle with both Alice
and Charlie. Bob calculates the exchange rate (in this example, consulting
Coinbase1). It also decides on the rates it wants to charge (in this case, 0).

• Bob forwards the Prepare packet to Charlie, using the crossed accounts Bob and
Charlie have in each other’s node.

• Charlie gets the Prepare packet and evaluates if the quantity to receive (once
the rates are applied) is correct.

• If he thinks it is correct, he fulfills the condition, by sending back a return Fulfill
packet.

• The packet is sent from Charlie to Bob, and Bob confirms the change of balance
in Alice’s and Charlie’s accounts, by using the corresponding settlement engine.

If there were more than one connector, these confirmations would be done
in order from last to first. This is, first the payment from the last connector
to Charlie would be confirmed, then from the second to last connector to the
last one, and so on until reaching the first connector, which would settle with
Alice, thus ending the process. Since these settlements were approved when
forwarding the Prepare packet, they are assured to take place when the Fulfill
packet is being returned.

1https://www.coinbase.com/

https://www.coinbase.com/

6.3. Web Monetization 43

Alice Bob
Exchange

rate provider
ETH settlement

engine
XRP settlement

engine Charlie

Prepare(condition)

getExchangeRate

Exchange rate

Prepare(condition)

Fulfill

changeBalance(Alice)

changeBalance(Charlie)

Fulfill

Figure 6.3: Sequence diagram of a payment in the Interledger net-
work

• Finally, the Fulfill packet reaches Alice’s node, thus confirming the payment has
been made correctly.

• If Charlie does not want to receive the money, or if any connector can not or
does not want to forward it, a Reject packet is forwarded back, until it reaches
Alice.

• If for some reason the condition is never fulfilled nor the packet rejected, the
payment expires after some time.

Figure 6.4 shows the sequence diagrams for the cases in which the packet is reject by
either the connector or the receiver.

Alice Bob Charlie

Prepare(condition)

Reject

(a) The connector rejects the packet

Alice Bob
Exchange

rate provider Charlie

Prepare(condition)

getExchangeRate

Exchange rate

Prepare(condition)

Reject

Reject

(b) The receiver rejects the packet

Figure 6.4: Sequence diagrams of a payment that is rejected

6.3 Web Monetization

Web Monetization[61] is an API that allows websites to request payments in small
quantities via the browser and the Web Monetization provider.

This technology works over an Interledger network, which is the entity in charge of
issuing the payments. Web Monetization manages the shipment of small payments
(or micropayments) over periods of time.

The structure of an application using Web Monetization is showed in Figure 6.5.

As the figure shows, the central node in the structure is the website in which Web
Monetization is enabled.

44 Chapter 6. Decentralized Implementation

Figure 6.5: Web Monetization scheme

The website specifies in a meta tag in its html code that it will allow Web Monetization
payments and the payment pointer that will receive said payments. This payment
pointer points to the web’s wallet, which is provided by a Web Monetization receiver.
This receiver is an entity that can receive Interledger payments in behalf of the user.
In this particular case, the Interledger payments are sent using Web Monetization.

This receiver is connected to the ILP network, so it is capable of receiving payments
sent by any other entity in the network.

On the other side of the transaction is the user that visits the page. The user does
so from a certain browser that has a browser extension installed which allows to send
Web Monetization payments. This browser extension in connected to the user’s wallet,
which is provided by a Web Monetizaiton sender or provider. This sender is an entity
that can send Interledger payments in behalf of the user. In this particular case, the
Interledger payments are sent using Web Monetization.

As the receiver, this sender is also connected to the ILP network, so it is capable of
sending payments to any other entity in the network.

When the user enters a website that is webmonetized, the browser, through the
browser extension, identifies the meta tag that indicates that the website can receive
Web Monetization payments and reads the payment pointer to which the payments
need to be sent. The extension uses this information to make the WM sender issue a
payment to that payment pointer.

6.3.1 Flow

This process of sending Web Monetization payments can be better understood by
studying the flow of the process step by step. Figure 6.6 shows a sequence diagram of

6.4. QTZ: An ERC20 token 45

Figure 6.6: Sequence diagram of a payment using Web Monetiza-
tion[62]

a payment sent using Web Monetization.

It is assumed that the website has Web Monetization enabled. The flow for the
payment is as follows [62]:

• The browser parses the code of the web page looking for the meta tag and, if it
exists, for the payment pointer to where the money needs to be sent.

• The browser calculates the appropriate amount to send to the website per unit
of time.

• In order to keep the anonymity of the user visiting the website, the browser
generates a unique session ID for that specific session.

• To also keep the visited sites anonymous, the browser also gets a unique desti-
nation address for the website’s payment pointer, as well as a shared secret for
the session.

• Optionally, a payment receipt verifier can generate receipt of the operation.
• While the website is still in focus, the browser begins sending payments to the

website (at the rate calculated at the beginning).
• The Web Monetization provider sends the money to the receiver via Interledger.
• Optionally, the receiver can generate a receipt and send it to the provider.
• The Web Monetization provider notifies the website the payment was sent suc-

cessfully.
• The browser sends an event to the website, indicating the payment was success-

ful.
• Optionally, the web page can send the receipt to the receipt verifier to confirm

the payment.

6.4 QTZ: An ERC20 token

Interledger can provide connections to perform payments from any currency or pay-
ment system to any other one in existence, as long as they are correctly connected
to the network. In this context, an ERC20 Quartz token was implemented (ERC20

46 Chapter 6. Decentralized Implementation

tokens are defined in a previous chapter, in Section 3.2.2. The advantages and uses
of the Quartz Token are also explained in a previous chapter, in Section 4.1.5).

In order to be able to either make donations using the token so that the receiver
receives another currency or vice-versa, the token has to be made compatible with
the Interledger network. For the scope of this project, tests were made in a simple
Interledger network, the one described in Section 6.2.2.

Since this new Quartz coin (QTZ) is an ERC20 token, and ERC20 is a token standard,
the process here described for including QTZ in an Interledger network can be trivially
adapted to any other ERC20 token.

Also, being QTZ an ERC20 token, it is deployed over an Ethereum network. For this
reason, it is possible to adapt the scheme described in Section 6.2.2 to fit this new
coin. Ethereum settlement engines can be used to settle between nodes using QTZ.

The first step for integrating the token is creating and deploying the contracts of the
token itself. The code has been adapted from the OpenZeppelin contracts [44]. In the
configuration of the contracts it is necessary to fix the host to the IP of the Ethereum
network where the token should be deployed. In the case of these tests, an Ethereum
testnet. Then, the contracts are compiled and deployed to the network. Once this is
done, the token will exist within the Ethereum network, being therefore possible to
perform transactions using it within said network.

The next step is configuring the Ethereum settlement engines, so they are able to settle
using the correct token. This is achieved by setting the token address of the settlement
engine to the one of the token just deployed. This is, indicating the settlement engine
that, from all of the tokens that may exist in the Ethereum network, QTZ is the one
that it has to use for the settlements.

In order for QTZ to be exchanged for other currencies or tokens, the exchange rates
have to be fixed. In the example network used in Section 6.2.2, the connector that
exchanged ETH for XRP (and vice-versa) consulted the exchange rates from the
exchange platform Coinbase2. This is not extensible for the new token, for none of
these exchange platforms know its value. However, the rates can be set manually for
the Interledger network using the Interledger API. In the test network of the project,
only QTZ and XRP are used, so only those two rates have to be fixed.

When creating the accounts inside the Interledger nodes, the asset each account uses
must be set. In this case, Alice will be using QTZ instead of ETH, as she was using
in the previous test network.

Finally, the payments can be performed. To perform a payment from Alice (in QTZ)
to Charlie (in XRP), it is only necessary to indicate the quantity, Charlie’s payment
pointer and Alice’s password.

The precise process used for creating a token, deploying it and integrating it with the
ILP network is explained in detail in Appendix A. It contains all the commands and
steps necessary to recreate the network and the exchange.

6.5 Implementation details

Now that the decentralized technologies (Interledger and Web Monetization) have
been properly explained, the implementation itself can be described in detail.

2https://www.coinbase.com/es/

https://www.coinbase.com/es/

6.5. Implementation details 47

Figure 6.7: Architecture of the system. Highlighted in green is the
decentralized part.

This section will explain the architecture of the decentralized system of the Quartz
application, its flow and some other implementation details that are key for under-
standing the full implementation.

6.5.1 Architecture

The Interledger architecture (see 6.2.2) is a core part of the project, for the application
is built over it and integrated with it. Nonetheless, the application has more layers,
in order to allow a simple interaction between the user and the underlying system.

Figure 6.7 shows the different layer of the system. Highlighted in green are the ones
corresponding to the decentralized subsystem. As explained in Section 5.3, the user
interface is common to both the centralized and the decentralized part of the system,
and each of the subsystems has its own lower layers, in both cases based on a server-
client model.

In this section, the decentralized part will be analyzed.

As the figure shows, the most external layer is the UI (user interface), which is is the
layer that manages the interaction between the user and the application. It is the
exact same layer that was used in the centralized case, and it is implemented using
React JS and material-ui.

This layer connects with the clients for both the centralized and the decentralized
subsystems. In the case of the decentralized subsystem, the client receives the data
inputs that the user enters via the UI and makes a GET request to the server, indi-
cating the necessary data for the transaction. This code is also implemented using
React JS.

The server makes calls to the Interledger API by sending POST requests, using the
information received form the client. The code for the server is implemented using
JavaScript and it runs on Node.js.

48 Chapter 6. Decentralized Implementation

Figure 6.8: Overview of the decentralized subsystem.

The Interledger API is the access layer through which the functionalities of the ILP
network are accessed. The Interledger system is the deepest layer of the system, and
it is the one in charge of managing the shipment of the money, as well as the balance
checks and other operations.

6.5.2 Implementation

In the context of the project, a test network was deployed to implement this archi-
tecture. The test network (which is a variation of the one described in section 6.2.2)
simulates a small but complete Interledger network with a node that transacts using
the QTZ token.

Figure 6.8 shows an overview of the entire decentralized subsystem, including the test
network.

To simulate this test network locally, Docker (see Section 3.6.1) was used. Docker can
be used to create a network locally by simulating several interconnected machines.
Each machine will run a different service or application, thus creating a simulated
Interledger network that can be run locally.

The detailed process and code for creating such network is explained in detail in
Appendix A. The appendix shows the process in a low-level manner. Now this section
will elaborate on the process at a high level.

First, a docker network is created. It will be referred as local-ilp from now on.

Then, several docker containers are deployed, each one serving a different purpose. A
docker container contains Redis, which is a database for the settlement engines and

6.5. Implementation details 49

the nodes, that will later be deployed. This database can be accessed by the services
deployed in the rest of the containers.

Another docker contains an Ethereum testnet, that in this instance is initiated with
a predefined seed, so that the public and private keys of the accounts are the same
every time the network is redeployed. This is not necessary, but it simplifies the
implementation and testing process.

Then, the QTZ token is implemented and deployed in this Ethereum network that
has been created in a docker container. This way, the token can be accessed from the
different nodes that are connected to this network. It is important to take into account
that the token’s contract has a certain address associated to it once it is deployed in
the network. This address will be important later, when the nodes that use the coin
are created.

The next step is deploying the nodes and their corresponding settlement engines. As
explained in previous sections, settlement engines are entities that allow two inter-
connected nodes to settle with one another, this is, make an irrevocable exchange of
funds between the two.

Three nodes are created. This text will refer to the nodes with the same names that
were used for the deployment shown in Appendix A: Alice, Bob and Charlie. These
names are used for simplicity, and represent the nodes as described in Figure 6.2 3.

First, Alice’s node is created. Alice’s node only operates with QTZ. Therefore, two
docker containers have to be deployed: one for the node itself and one for the Ethereum
settlement engine (for the QTZ token runs over an Ethereum network).

In order to deploy the Ethereum settlement engine, it is necessary to tell the docker
container to work inside the local-ilp network. Inside the container, the service corre-
sponding to the Ethereum settlement engine is deployed and some important param-
eters are passed to the service, such as:

• The URL of the Ethereum testnet.
• The address of the QTZ token.
• The URL of the corresponding node (indicating the port to which the settle-

ment engine will connect to). In this case, the URL for Alice’s node and the
corresponding port.

• The number of decimal positions the token is represented with.

Among others.

Then, Alice’s node is deployed. In this case, the container runs a service meant for
ilp nodes, and several parameters are passed to the service, such as:

• The ILP address of the node.
• A password for the node.
• The port through which it connects with the settlement engine.

Among others.

The procedure for Bob’s and Charlie’s nodes is similar. In the case of Charlie’s node,
it is a node that only operates with XRP (Ripple), so the settlement engine that has
to be initiated is an XRP settlemet engine (it is different than the Ethereum one).

3When compared with Figure 6.8, Alice corresponds to Quartz node; Bob corresponds to Connec-
tor node and Charlie corresponds to Receiver node.

50 Chapter 6. Decentralized Implementation

Bob’s node, on the other hand, is a connector that operates with both QTZ and XRP,
so it has to be able to settle with both currencies. Therefore, two settlement engines
have to be deployed for Bob: one for Ethereum and one for XRP. Note that the
settlement engines depend on the network, not the currency. For this reason, there is
not an specific QTZ settlement engine, but an Ethereum one.

Charlie’s and Bob’s nodes are then created in a similar way Alice’s node was.

For all this nodes and settlement engines, it is important to specify a fixed ip, that
has to be different for each one of them. It is also important to indicate, for every one
of them, that the docker network they work in is local-ilp.

Finally, the different accounts are created within the nodes. These accounts are the
ones that allow the nodes to communicate with one another, send the packets and,
eventually, make the economic exchanges.

Alice will be the node that issues the payment, Charlie the one that receives it and
Bob will act as a connector between the two to make the currency exchange. This
way, it is necessary to create in Alice’s and Bob’s nodes the respective sender and
receiver accounts. This way, an Alice account will be created in Alice’s node and a
Charlie account will be created in Charlies node.

Now, in order for a node to be able to communicate with another one, it has to have
an account inside the node it wants to communicate with. This accounts is not a usual
account for storing funds, but its goal is to allow communication between the nodes.
This way, a Bob account is created in Alice’s node; an Alice and a Charlie account
are created in Bob’s node and a Bob account is created in Charlie’s node. This is,
in addition to the Alice account in Alice’s node and the Charlie account in Charlie’s
node.

With this general knowledge of the architecture, it is now possible to explain in detail
the sequence of calls among the different layers of the system.

6.5.3 Flow

The application follows a simple client-server structure: The client reads and manages
the options for the user’s donation and sends the server the necessary information to
operate. The server listens to petitions regarding the payments and performs the API
calls.

It works in a similar way to what was built for the PayPal payments, but instead of
calling PayPal to perform the payments, the ILP process is called in its place.

Figure 6.9 contains a sequence diagram illustrating the architecture. The flow for a
payment would be as follows:

• The user sets the quantity they want to donate and press the “Pay” button.
• The user is then asked to authenticate using its Interledger credentials (these

being account and password). And there is also an option to choose the node
in which the user has the account. For the purpose of the project, users are
supposed to have an account in Quartz’s node.

• The client sends a petition for a payment, containing the user, the receiver’s
payment pointer and the amount as parameters and the password as a header.
The password is sent as a header instead of a parameter for security reasons.

6.5. Implementation details 51

User UI Client Server API Interledger

Insert(amount)

Press(PAY)

Show authentication form

Insert(credentials)

Press(OK)

Pay

Pay(pointer, acc, amount)

POST(Payment)
Send amount from
sender to receiver

Fulfilled

OK

Status 200

Print success screen

Show success screen

Figure 6.9: Sequence diagram for the Interledger payment button

• The server listens to the petition and makes a call - in the form of a POST
petition - to the Interledger’s API. The parameters and headers received from
the client are used for this call.

• In case of an error, the server returns the headers and the type of errors, and
prints them in the command-line.

• In case of success, it returns a status code of 200, which means everything worked
correctly.

• The client receives the response and fixes the system state to success or error.
This way, the front-end (or UI) can show the corresponding screen: error or
success screen.

6.5.4 Web Monetization

The system also integrates with Web Monetization. The architecture for Web Mone-
tization payments is explained in detail in Section 6.3.

This integration is done in two parts:

First of all, when the Quartz button is included in the web page of a journal, it
automatically modifies the code of the head of the website to include the meta tag.
This way, it enables Web Monetization payments in the website.

Moreover, there is a second layer to the integration, in terms of the Interledger net-
work. The way this works is that the Quartz node in the ILP network can serve as a
Web Monetization receiver or a Web Monetization provider.

For example, by specifying in the meta tag of the website a payment pointer provided
by the Quartz node -this is, a payment pointer to an account that exists within the
Quartz node -, the website, in this case the journal, can receive micropayments in
QTZ.

53

Chapter 7

Conclusions and Future Work

Regarding all the previous work explained in prior chapters, conclusions are given and
some suggestions are laid out to be carried out in the future.

7.1 Conclusions

This project was aimed to exploring how donations to journals and authors can be
implemented in a practical way, and how decentralization can be applied to the task.
In particular, exploring the Interledger Protocol as a technology to achieve these goals.

The tangible outcome of this project has been a functioning web app that provides
functionality for sending donations by different means. As exposed in the Objectives
(see 1.1), these means are:

• Via a centralized payment system (PayPal was used).
• Via a decentralized payment system, using any currency, including a specific

coin created for donations to journals (Interledger was used).
• Via microdonations, using a browser extension (Web Monetization was used)

In this sense, the development goals were achieved.

A more intangible outcome, yet a main one, has been the study of different technologies
and the design of an architecture for integrating both centralized and decentralized
payment systems in a single application. Both approaches have advantages and draw-
backs, but one interesting result of this work is that it is possible to implement a fully
decentralized solution that allows to use different types of currencies and tokens.

The next subsections will provide detail about all these aspects.

7.1.1 Functionality and integration

From a practical point of view, the goal of the project was developing an applications
that provides the functionalities previously described, by integrating with the different
used technologies.

At a functional level, a button has been developed. This button can integrate within
the web pages of the journals and provides them with the three main functionalities:

• With regard to the centralized payments, a button is presented that allows the
user to make payments via PayPal, using a PayPal account or a credit card.

• With regard to the decentralized payments, a button is presented that allows
the user to make payments via Interledger using the user’s Interledger wallet.

54 Chapter 7. Conclusions and Future Work

• With regard to micropayments, the web is transparently integrated with the
microdonations system and the donor can send microdonations using the Coil
browser extension as a tool.

In each of these cases, a different integration was made from a technological point of
view, not only mere functionality.

In the case of PayPal, the integration consists in the creation of a platform (the
Quartz platform) within the PayPal system. This structure allows Quartz to act as
an intermediary, being the entity in charge of managing all the donation buttons and
forwarding the money to the corresponding journal in each case. Before being able to
do so, it is necessary to register all the journals in the system, so that they become
members of the platform.

In the case of Interledger, Quartz integrates as a new node in the network. In particu-
lar, this node has its own coin (QTZ). This node can also hold Interledger accounts for
users using the coin and also serve as a connector to allow exchanges involving the coin.
So the purpose is holding accounts and allowing these accounts to make exchanges
(sending or receiving money) with the rest of the network without problems.

In the case of Web Monetization, Quartz integrates through the Interledger network.
Coil’s browser extension is the one in charge of sending the necessary funds, but the
wallet of either the journal or the donor (or both) could be lodged in the Quartz node.
This way, payments with QTZ are also integrated through microdonations.

7.1.2 Technology

One of the main focuses of this project was studying the adequacy of different tech-
nologies for the creation of a donation platform.

Providing a centralized option was seen as an essential first step to both understand
the way donations and payments usually work and also to make it easier for new users
to interact with the system. Most people are not familiarized with cryptocurrencies
and having the option to pay with a credit card makes the usability easier.

However, despite the convenience of a technology such as PayPal, it proved to have
some problematic restrictions due to its centralization. PayPal, as the central entity,
has the last word in the decision of who can integrate with their systems and who can
not.

For example, a system such as the one presented here, working perfectly in a test
environment, finds difficulties when trying to bring it to a real-world environment
(at a production level), for PayPal restricts the use of its live APIs to only com-
panies that surpass a certain annual income threshold. This way, the functionality
presented in this project can yet be implemented by someone not fitting the criteria,
but some workarounds and adaptations are needed to avoid the blocking imposed by
the centralized entity.

This kind of problems are some of the ones that are avoided by the use of decentral-
ized technologies: a technology such as Interledger has proven to be more open to
new participants, given there is no central entity deciding who can and who can not
integrate with the system. Thereby, integrating with the system as a new member and
even introduce new coins or currencies has no more limitations than the technological
ones.

7.2. Future work 55

At a practical level, the technology has proven to serve correctly to provide the func-
tionality that was initially intended, efficiently and effectively. It has also been proven
that it is possible to integrate with the technology and use it as a bridge between
different monetary systems to make donations, without this causing a big complexity
wall for the users to use the system.

The case of Web Monetization is similar to this one. It has been proven that the tech-
nology can be integrated practically and transparently in the journals’ websites, so
that they can receive donations for the time the visitors expend in the web. Further-
more, since it works over an Interledger network, the previously mentioned integration
of new coins or nodes works in the same way, and Web Monetization simply works in
a higher layer. Using Coil as a tool has also be proven to be rather simple.

For these reasons, the technologies seem promising, given they also present a new
range of possibilities in terms of donations, by allowing to make exchanges between
any two monetary systems, without any intermediate barriers.

However, these technologies (Interledger and Web Monetization) are still very new
technologies, that are still in a very early phase. Moreover, as for today there exist
only a few projects and applications that are working in practice using them. For
all of these reasons, the technologies are not yet fully developed, and using them in
development is still quite complex. This makes the adaptation of these technologies
to apply them in real systems harder.

So, to sum up, at a theoretical level, and in testing environments, both Interledger
and Web Monetization are very promising technologies, that in the coming years may
become essential tools for internet payments. As for today, however, it is still difficult
to bring them out of testing environments - as the one tested in this project - to a
real-life scenario.

Nonetheless, it seems likely that in the near future these technologies will be perfected
enough to be used easily in production applications and systems.

7.2 Future work

Taking into account the work that has been done and the conclusions drawn from it,
some modifications and improvements to the project arise. These improvements could
be at a functional, technological or legal level.

Regarding functionality, there are several new aspects that can be added to the soft-
ware:

• Browser extension. In the present state of the system, the integration with Web
Monetization is done be storing the Interledger account o the journals in a node
owned by Quartz. The donors issue their payments to said account using the
Coil browser extension. For the purpose of a more global integration, a browser
extension similar to the one from Coil could be implemented. A user with a
Quartz account would be able to use the Quartz browser extension to send
microdonations to webmonetized journals. This would have some advantages
for the user, for they would not need to create an account in Coil, which is
an external system, and they also would be able to have QTZ in their origin
account.

• Journal profile. Another possible improvement is the creation of a profile page
for the journals, in which they could consult their total funds and the donations

56 Chapter 7. Conclusions and Future Work

received from each source. The journals’ web managers would be able to use this
profile page to check the total balance of the account, in terms of money received
from donations, as well as how much of that money has been received through
microdonations and how much from direct donations. The specific origin of these
donations could also be shown in the page. In the case of the PayPal donations,
this kind of information is already available within the PayPal web page (in
particular, in the user’s dashboard), so this improvement being discussed is
mainly referred to Interledger donations. The necessary data to implement this
profile page can be consulted through the Interledger API.

On the other hand, there are also several improvements that can be implemented to
the system from a technological point of view:

• Encryption. The current implementation, being a proof of concept for the sys-
tem, does not apply any particular security measures when handling the user’s
data (which is test data for now). However, in order for the system to be used
in a real environment, it is necessary to implement all the necessary measures.
The main place where more security is needed is when the user makes a pay-
ment through Interledger. The password the user enters should be encrypted to
protect it and sent to the server in a secure way.

Moreover, some cryptographic and logical techniques could be used to pro-
tect the anonymity of the users when they make donations. Similarly to what
Coil uses to protect the anonymity of its users [50, 14].

• Centralized payments. PayPal imposes severe restrictions in order to launch a
live application using their API for marketplaces and platforms. It is possible to
find workarounds for these barriers in PayPal’s own APIs, for example using their
“Simplest Chechout API”1. This API gives the possibility to create individual
payment buttons for the journals, without relying in the marketplace or platform
structure.

Another possibility is using a different technology, not necessary PayPal.
For example, Stripe2 seems to be a promising technology for donations and
payments. In this case, the modification would be replacing the centralized
subsystem of the project, that currently relies solely on PayPal, with a new
subsystem that manages the payments using Stripe.

• Integrating new blockchains in the Interledger network. For example, the Bloxberg
[6] blockchain, where the QTZ coin could be deployed. For this integration to
happen, it would be necessary to create a bridge with this new blockchain by
using nodes that connect it to nodes that already exist within the Interledger
network.

Lastly, in order to move this system, now a proof of concept in a test network, to
a real-world environment, it is essential to study in detail the legal implications this
could entail. Since the project revolves around money shipments and personal data
management, it is essential to be careful, so there is still work to be done in this field:

• How should money shipments be declared or managed? The implemented system
is a system for donations that moves money from the donors to the journals.
The shipment of this money could be directly from sender to receiver, but in
some cases, such as the PayPal platforms, the money goes through an inter-
mediate entity managed by Quartz. In is necessary to study what limitations

1https://developer.paypal.com/docs/archive/checkout/integrate/
2https://stripe.com/

https://developer.paypal.com/docs/archive/checkout/integrate/
https://stripe.com/

7.2. Future work 57

and implications exist for these type of structures. Similarly, in the case Quartz
receives a fee for each payment through the application, it is necessary to study
how that money must be declared and, again, if there are any limitations with
respect to it.

• How should the personal data be managed? One of the essential parts of the
system is working as a node in which users have accounts that can store and
receive money. In order for this to be possible, it is necessary to to manage
some of the user’s personal data, as well as even the access to their funds. All
this information is sensitive and might be subject to strict regulations regarding
personal data (such as GDPR [19]). It is necessary to study carefully all these
regulations before starting to store and manage the users’ personal data.

• How are the keys managed? Related to the previous point, in order to make
using blockchain more transparent for the user, it could be interesting to offer
them to manage their blockchain account, as part of the data managed by the
Quartz account (some users might find this useful, for blockchain technology is
still quite cumbersome to use for users that are not used to it). In this case, it
is necessary to study what kind of limitations and regulations exist with respect
to storage and treatment of the users’ keys.

• How does a payment gateway work? In some point of the development, for
example, if a browser extension similar to the one Coil has is implemented, or in
other cases, it could be necessary to be constituted as a payment gateway. As
with the previous points, this is also a delicate process from a legal perspective,
so it is necessary to study in detail all the existing regulation with respect to it.

59

Appendix A

Run a local ILP testnet using the
Quartz token

A.1 Introduction

This appendix contains the detailed steps for deploying the Quartz token contracts
and running a local ILP testnet where the sender node operates with Quartz (QTZ).

The process is an adaptation of the one described in the ILP documentation. But
there are a few subtle yet meaningful changes that have to be made in order for the
new coin to be integrated.

The test network will be running using docker to simulate the different nodes (one
sender, one receiver and one connector).

A.2 Process

A.2.1 Download docker images

First, install Dcoker and download the docker images.

docker pull interledgerrs/ilp-node
docker pull interledgerrs/ilp-cli
docker pull interledgerrs/ilp-settlement-ethereum
docker pull trufflesuite/ganache-cli
docker pull interledgerjs/settlement-xrp
docker pull redis

A.2.2 Set up the environment

Start as explained in the ILP tutorial. The network, the redis container and the local
Ethereum testnet must be initialized:

docker network create --subnet=192.168.128.0/24 local-ilp

docker run -d \
--name redis \
--network local-ilp \
--ip 192.168.128.111 \
redis

https://interledger.org/developer-tools/get-started/spin-up/

60 Appendix A. Run a local ILP testnet using the Quartz token

docker run -d \
--name ethereum-testnet \
--network local-ilp \
--ip 192.168.128.2 \
trufflesuite/ganache-cli \
-m "abstract vacuum mammal awkward pudding scene penalty \
purchase dinner depart evoke puzzle" \
-i 1

A.2.3 Create the token

The code for the Quartz token is available inside the repository for the TFG. If you
download the code from the repository, this section is not needed, and you should skip
to the next one, section A.2.4.

If you have not downloaded the repository, then follow the instructions in this section
to create the contracts for the token.

The token must be deployed in the local ethereum testnet (that is running inside the
container ethereum-testnet).

In the command line, do the following:

mkdir mytoken && cd mytoken
npm init -y

npm i --save-dev @openzeppelin/contracts

npm i truffle -g

npx truffle init

The truffle-config.js file must be modified adding a new network inside networks.
This new network will be called docker and will be as follows:

module.exports = {
networks: {

docker: {
host: "192.168.128.2",
port: 8545,
network_id: "*" // Match any network id

}
}

};

Where host is the ip of the Ethereum network that we are using (in this case, the
testnet ethereum-testnet).

Create a new contract inheriting from ERC20 and implementing the new token.

Once that is done, write a script for the deployment of the contract and add it to the
/migrations folder (in this instance, this will be for deploying the Quartz token).
In this deployment script, the necessary parameters to initialize the contract must be

https://github.com/ElenaPT/TFG_Inf_2021/tree/incoming_branch/src/token

A.2. Process 61

provided (in this case, the amount of tokens that will be minted when the contract is
deployed).

In truffle-config.js, change the compiler version to 0.6.12. Keep an eye in
the Solidity versions. The source files currently work for Solidity versions >=0.6.0
<0.8.0, but this could possibly change.

A.2.4 Deploy the token

If the code for the token was downloaded from the GitHub repository, it is necessary
to first do an npm install. If the code was generated as explained in the previous
section, it is not necessary to do so.

Then, in both cases, proceed by compiling the contracts:

truffle compile

Then, migrate the contracts to the docker network:

truffle migrate --network docker

Copy the contract address that has been generated. This will be later used when
initializing the dockers for the ethereum nodes.

Open the Truffle console in the docker network:

truffle console --network docker

Now that the contract has been deployed, it can be accessed and interacted with by
assigning the contract instance to a variable.

let quartz = await ERC20Quartz.deployed()

This operation can only be performed by the issuer of the contract. For anybody else
with access to the network to have an instance of the contract to interact with, they
must be provided the address of the contract, so they can do:

let quartz = await ERC20Quartz.at(<contract address
in quotes>)

The contract address can be consulted by doing:

quartz.address

To check the accounts existing within the blockchain (to make a transaction to one of
them or consult their balance) they can be consulted from the Truffle console:

accounts

If the initialization of the contract worked correctly, the first of the accounts, which
corresponds to the issuer (and will be later assigned to Alice) should have all the
tokens that have been minted in the initialization.

let balance = await quartz.balanceOf(<public address of the
first account>)

balance.toNumber()

62 Appendix A. Run a local ILP testnet using the Quartz token

toNumber is necessary so the information is displayed in a natural way.

A.2.5 Start the ILP nodes

Following the ILP tutorial, initialize the nodes. A couple considerations have to be
made:

• The token_address is the address of the ERC20Quartz contract.
• The ip’s of the nodes are fixed, based on the ip of the local ethereum testnet

(this initial ip can be checked from the console of the docker where the network
is running). In this case, the ip of the network was set manually.

• The asset scale is fixed to 9.
• The exchange rate is provided by the API, so the parameter exchange_rate.provider

is deleted.

docker run -d \
--name alice-eth \
--network local-ilp \
-e "RUST_LOG=interledger=trace" \
--ip 192.168.128.3 \
interledgerrs/ilp-settlement-ethereum \
--private_key 380eb0f3d505f087e438eca80bc4df9a7

faa24f868e69fc0440261a0fc0567dc \
--confirmations 0 \
--poll_frequency 1000 \
--ethereum_url http://ethereum-testnet:8545 \
--token_address 0x770bC1820890415bB14a3B8f992c19caA74906aD\
--connector_url http://alice-node:7771 \
--redis_url redis://redis:6379/0 \
--asset_scale 9 \
--settlement_api_bind_address 0.0.0.0:3000

docker run -d \
--name alice-node \
--network local-ilp \
-e "RUST_LOG=interledger=trace" \
--ip 192.168.128.4 \
interledgerrs/ilp-node \
--ilp_address example.alice \
--secret_seed 8852500887504328225458511465394229

327394647958135038836332350604 \
--admin_auth_token hi_alice \
--redis_url redis://redis:6379/1 \
--http_bind_address 0.0.0.0:7770 \
--settlement_api_bind_address 0.0.0.0:7771

docker run -d \
--name bob-eth \
--network local-ilp \
-e "RUST_LOG=interledger=trace" \
--ip 192.168.128.5 \

A.2. Process 63

interledgerrs/ilp-settlement-ethereum \
--private_key cc96601bc52293b53c4736a12af9130abf3

47669b3813f9ec4cafdf6991b087e \
--confirmations 0 \
--poll_frequency 1000 \
--ethereum_url http://ethereum-testnet:8545 \
--token_address 0x770bC1820890415bB14a3B8f992c19caA74906aD\
--connector_url http://bob-node:7771 \
--redis_url redis://redis:6379/2 \
--asset_scale 9 \
--settlement_api_bind_address 0.0.0.0:3000

docker run -d \
--name bob-xrp \
--network local-ilp \
-e "DEBUG=settlement*" \
-e "CONNECTOR_URL=http://bob-node:7771" \
-e "REDIS_URI=redis://redis:6379/3" \
-e "ENGINE_PORT=3001" \
--ip 192.168.128.6 \
interledgerjs/settlement-xrp

docker run -d \
--name bob-node \
--network local-ilp \
-e "RUST_LOG=interledger=trace" \
--ip 192.168.128.7 \
interledgerrs/ilp-node \
--ilp_address example.bob \
--secret_seed 16049667259821399005552084586370228

75563691455429373719368053354 \
--admin_auth_token hi_bob \
--redis_url redis://redis:6379/4 \
--http_bind_address 0.0.0.0:7770 \
--settlement_api_bind_address 0.0.0.0:7771

docker run -d \
--name charlie-xrp \
--network local-ilp \
-e "DEBUG=settlement*" \
-e "CONNECTOR_URL=http://charlie-node:7771" \
-e "REDIS_URI=redis://redis:6379/5" \
-e "ENGINE_PORT=3000" \
--ip 192.168.128.8 \
interledgerjs/settlement-xrp

docker run -d \
--name charlie-node \
--network local-ilp \
-e "RUST_LOG=interledger=trace" \

64 Appendix A. Run a local ILP testnet using the Quartz token

--ip 192.168.128.9 \
interledgerrs/ilp-node \
--secret_seed 12323621311221399005552084586370228

75563691455429373719368053354 \
--admin_auth_token hi_charlie \
--redis_url redis://redis:6379/6 \
--http_bind_address 0.0.0.0:7770 \
--settlement_api_bind_address 0.0.0.0:7771

Next, change the exchange rates for the new coin using the API:

curl -X PUT "http://192.168.128.4:7770/rates" \
-H "Authorization: Bearer hi_alice" \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d "{\"QTZ\":1.00,\"XRP\":0.000283}"

curl -X PUT "http://192.168.128.7:7770/rates" \
-H "Authorization: Bearer hi_bob" \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d "{\"QTZ\":1.00,\"XRP\":0.000283}"

curl -X PUT "http://192.168.128.9:7770/rates" \
-H "Authorization: Bearer hi_charlie" \
-H "accept: application/json" \
-H "Content-Type: application/json" \
-d "{\"QTZ\":1.00,\"XRP\":0.000283}"

After that, create the accounts. Also here, a couple considerations have to be taken:

• In the Alice and Bob accounts that used ETH in the example, the asset code is
now QTZ.

• The asset-scale is now 0.

alias alice-cli="docker run --rm \
--network local-ilp interledgerrs/ilp-cli
--node http://alice-node:7770"

alias bob-cli="docker run --rm \
--network local-ilp interledgerrs/ilp-cli \
--node http://bob-node:7770"

alias charlie-cli="docker run --rm \
--network local-ilp interledgerrs/ilp-cli \
--node http://charlie-node:7770"

alice-cli accounts create alice \
--auth hi_alice \
--ilp-address example.alice \
--asset-code QTZ \
--asset-scale 9 \
--ilp-over-http-incoming-token alice_password

alice-cli accounts create bob \
--auth hi_alice \

A.2. Process 65

--ilp-address example.bob \
--asset-code QTZ \
--asset-scale 9\
--settlement-engine-url http://alice-eth:3000 \
--ilp-over-http-incoming-token bob_password \
--ilp-over-http-outgoing-token alice_password \
--ilp-over-http-url http://bob-node:7770/accounts/

alice/ilp \
--settle-threshold 100000 \
--settle-to 0 \
--routing-relation Peer

bob-cli accounts create alice \
--auth hi_bob \
--ilp-address example.alice \
--asset-code QTZ \
--asset-scale 9 \
--max-packet-amount 100000 \
--settlement-engine-url http://bob-eth:3000 \
--ilp-over-http-incoming-token alice_password \
--ilp-over-http-outgoing-token bob_password \
--ilp-over-http-url http://alice-node:7770/accounts/

bob/ilp \
--min-balance -150000 \
--routing-relation Peer

bob-cli accounts create charlie \
--auth hi_bob \
--asset-code XRP \
--asset-scale 6 \
--settlement-engine-url http://bob-xrp:3001 \
--ilp-over-http-incoming-token charlie_password \
--ilp-over-http-outgoing-token bob_other_password \
--ilp-over-http-url http://charlie-node:7770/accounts/

bob/ilp \
--settle-threshold 10000 \
--settle-to -1000000 \
--routing-relation Child

charlie-cli accounts create bob \
--auth hi_charlie \
--ilp-address example.bob \
--asset-code XRP \
--asset-scale 6 \
--settlement-engine-url http://charlie-xrp:3000 \
--ilp-over-http-incoming-token bob_other_password \
--ilp-over-http-outgoing-token charlie_password \
--ilp-over-http-url http://bob-node:7770/accounts/

charlie/ilp \
--min-balance -50000 \
--routing-relation Parent

66 Appendix A. Run a local ILP testnet using the Quartz token

charlie-cli accounts create charlie \
--auth hi_charlie \
--asset-code XRP \
--asset-scale 6 \
--ilp-over-http-incoming-token charlie_password

A.2.6 Perform the payment

Send a certain amount of tokens from Alice to Charlie (in this example, 20):

alice-cli pay alice \
--auth alice_password \
--amount 20 \
--to http://charlie-node:7770/accounts/charlie/spsp

A.2.7 Delete the nodes and start over

Only deleting the nodes, but keeping the network

Delete the accounts:

alice-cli accounts delete alice --auth hi_alice
alice-cli accounts delete bob --auth hi_alice
bob-cli accounts delete alice --auth hi_bob
bob-cli accounts delete charlie --auth hi_bob
charlie-cli accounts delete bob --auth hi_charlie
charlie-cli accounts delete charlie --auth hi_charlie

Remove the dockers:

docker stop alice-node bob-node charlie-node alice-eth \
bob-eth bob-xrp charlie-xrp

docker rm alice-node bob-node charlie-node alice-eth \
bob-eth bob-xrp charlie-xrp

Remove everything

Sometimes removing the nodes but keeping the network results in some issues when
deleting the accounts. When this happens, the best option is to remove everything
and start the process from scratch.

docker stop redis ethereum-testnet alice-node bob-node \
charlie-node alice-eth bob-eth bob-xrp \
charlie-xrp

docker rm redis ethereum-testnet alice-node bob-node \
charlie-node alice-eth bob-eth bob-xrp \
charlie-xrp

docker network rm local-ilp

67

Appendix B

Perform transactions using the
server

B.1 Introduction

This appendix contains the detailed steps for performing transactions through an ILP
network using a server to handle the shipment petitions.

The server1 accepts petitions to send a certain amount of Quartz from a given account
to another. It is assumed that all the accounts that send the money are in the same
host.

B.2 Process

B.2.1 Set up the environment

To start using the server, there has to be an ILP network running. The sender and
the receiver accounts have to exist withing said network.

As a test, the local ILP docker network that was deployed in the previous appendix
(see Appendix A) will be used.

It is assumed that the reader has already downloaded the code for the server from the
repository.

B.2.2 Configure the server

Copy the file serverConfig.json.example into a new file serverConfig.json
and change the host and the port where the accounts that send the money are going
to be.

As previously explained, it is assumed that the server will be managing transactions
coming from accounts in a particular host, although the receivers could be anywhere.

For the test with the docker network, the hostname and port are:

{
"hostname": "192.168.128.4",
"port": 7770

}

1The code for the server can be found in the GitHub repository of the project:
https://github.com/ElenaPT/TFG_Inf_2021/tree/incoming_branch/src/token/ILP_server

https://github.com/ElenaPT/TFG_Inf_2021/tree/incoming_branch/src/token/ILP_server

68 Appendix B. Perform transactions using the server

B.2.3 Run the server

Before running the server, the ILP network has to be up and running. Appendix ??
contains instructions for deploying a local network for testing using docker.

Once that is managed, simply do:

cd ILP_server
node transaction_server.js

B.2.4 Perform a transaction

The server expects the sender, the receiver and the amount of Quartz to be sent as
parameters. It also needs the authorization-token of the sender, and expects it as a
header.

Taking this into account, to perform the transaction do a curl petition as follows:

curl "http://localhost:8080/?from=<sender-account> \
&to=<receiver-payment-pointer>&amount=<amount>" \
-H "Authorization: Bearer <sender-auth-token>"

For instance, to send 20 QTZ from Alice to Charlie in the docker network, the petition
would be:

curl "http://localhost:8080/?from=alice \
&to=http://charlie-node:7770/accounts/charlie/spsp \
&amount=20" -H "Authorization: Bearer alice_password"

69

Bibliography

[1] Abdulla Alshamsi and Prof. Peter Andras. “User perception of Bitcoin usability
and security across novice users”. In: International Journal of Human-Computer
Studies 126 (June 1, 2019), pp. 94–110. issn: 1071-5819. doi: 10 . 1016 /
j.ijhcs.2019.02.004. url: https://www.sciencedirect.com/
science/article/pii/S1071581918301459 (visited on 09/04/2021).

[2] API requests. url: https : / / developer . paypal . com / docs / api /
reference/api-requests/ (visited on 08/08/2021).

[3] Carl T. Bergstrom and Theodore C. Bergstrom. “The costs and benefits of li-
brary site licenses to academic journals”. In: Proceedings of the National Academy
of Sciences 101.3 (Jan. 20, 2004). Publisher: National Academy of Sciences Sec-
tion: Social Sciences, pp. 897–902. issn: 0027-8424, 1091-6490. doi: 10.1073/
pnas.0305628101. url: https://www.pnas.org/content/101/3/
897 (visited on 09/02/2021).

[4] BitGive Foundation - 1st Bitcoin and Blockchain Nonprofit. BitGive Foundation.
url: https://www.bitgivefoundation.org/ (visited on 05/06/2021).

[5] Bo-Christer Björk. “Why Is Access to the Scholarly Journal Literature So Ex-
pensive?” In: portal: Libraries and the Academy 21.2 (2021). Publisher: Johns
Hopkins University Press, pp. 177–192. issn: 1530-7131. doi: 10.1353/pla.
2021.0010. url: https://muse.jhu.edu/article/787862 (visited on
09/04/2021).

[6] Blockchain Infrastructure for Scientific Research. Bloxberg. url: https://
bloxberg.org/ (visited on 08/30/2021).

[7] Vitalik Buterin. Ethereum Whitepaper. ethereum.org. 2013. url: https://
ethereum.org (visited on 05/30/2021).

[8] H. Frank Cervone. “Understanding agile project management methods using
Scrum”. In: OCLC Systems & Services: International digital library perspectives
27.1 (Jan. 1, 2011). Publisher: Emerald Group Publishing Limited, pp. 18–22.
issn: 1065-075X. doi: 10.1108/10650751111106528. url: https://
doi.org/10.1108/10650751111106528 (visited on 05/22/2021).

[9] Coil - A new way to enjoy content. url: https://coil.com/ (visited on
04/29/2021).

[10] Digital Wallet and Payment Pointers. url: https://webmonetization.
org/docs/ilp-wallets (visited on 05/31/2021).

[11] Nadia Eghbal. “Roads and Bridges: The Unseen Labor Behind Our Digital
Infrastructure”. In: Technical Report. Ford Foundation (2016), p. 143. url:
https://www.fordfoundation.org/work/learning/research-
reports/roads-and-bridges-the-unseen-labor-behind-our-
digital-infrastructure/.

[12] Empowering App Development for Developers | Docker. url: https://www.
docker.com/ (visited on 05/31/2021).

[13] Express - Infraestructura de aplicaciones web Node.js. url: https://expressjs.
com/es/ (visited on 08/29/2021).

https://doi.org/10.1016/j.ijhcs.2019.02.004
https://doi.org/10.1016/j.ijhcs.2019.02.004
https://www.sciencedirect.com/science/article/pii/S1071581918301459
https://www.sciencedirect.com/science/article/pii/S1071581918301459
https://developer.paypal.com/docs/api/reference/api-requests/
https://developer.paypal.com/docs/api/reference/api-requests/
https://doi.org/10.1073/pnas.0305628101
https://doi.org/10.1073/pnas.0305628101
https://www.pnas.org/content/101/3/897
https://www.pnas.org/content/101/3/897
https://www.bitgivefoundation.org/
https://doi.org/10.1353/pla.2021.0010
https://doi.org/10.1353/pla.2021.0010
https://muse.jhu.edu/article/787862
https://bloxberg.org/
https://bloxberg.org/
https://ethereum.org
https://ethereum.org
https://doi.org/10.1108/10650751111106528
https://doi.org/10.1108/10650751111106528
https://doi.org/10.1108/10650751111106528
https://coil.com/
https://webmonetization.org/docs/ilp-wallets
https://webmonetization.org/docs/ilp-wallets
https://www.fordfoundation.org/work/learning/research-reports/roads-and-bridges-the-unseen-labor-behind-our-digital-infrastructure/
https://www.fordfoundation.org/work/learning/research-reports/roads-and-bridges-the-unseen-labor-behind-our-digital-infrastructure/
https://www.fordfoundation.org/work/learning/research-reports/roads-and-bridges-the-unseen-labor-behind-our-digital-infrastructure/
https://www.docker.com/
https://www.docker.com/
https://expressjs.com/es/
https://expressjs.com/es/

70 Bibliography

[14] Extended protocol design. Privacy Pass. url: https://privacypass.github.
io/protocol/ (visited on 08/30/2021).

[15] Fabian Vogelsteller and Vitalik Buterin. “EIP-20: ERC-20 Token Standard”. In:
Ethereum Improvements Proposals no. 20 (Nov. 2015). url: https://eips.
ethereum.org/EIPS/eip-20.

[16] Flattr. Flattr - Contributors. Flattr. url: https://flattr.com/ (visited on
04/29/2021).

[17] Armen Yuri Gasparyan et al. “Rewarding Peer Reviewers - Maintaining the
Integrity of Science Communication”. In: Journal of Korean Medical Science
30.4 (2015), p. 360. issn: 1011-8934, 1598-6357. doi: 10.3346/jkms.2015.
30.4.360. url: https://jkms.org/DOIx.php?id=10.3346/jkms.
2015.30.4.360 (visited on 05/31/2021).

[18] Armen Yuri Gasparyan et al. “Rewarding Peer Reviewers: Maintaining the In-
tegrity of Science Communication”. In: Journal of Korean Medical Science 30.4
(Mar. 19, 2015). Publisher: The Korean Academy of Medical Sciences, pp. 360–
364. doi: 10.3346/jkms.2015.30.4.360. url: https://synapse.
koreamed.org/articles/1022863 (visited on 09/02/2021).

[19] General Data Protection Regulation (GDPR) – Official Legal Text. General Data
Protection Regulation (GDPR). url: https://gdpr-info.eu/ (visited on
06/10/2021).

[20] Get an access token. url: https://developer.paypal.com/docs/api/
reference/get-an-access-token/ (visited on 08/08/2021).

[21] Giveth Homepage. url: https://giveth.io/ (visited on 05/05/2021).
[22] GiveTrack™ - The future of philanthropy built upon Bitcoin and Blockchain.

url: https://www.givetrack.org/view/13/chandolo-primary-
school-water-project/updates (visited on 05/05/2021).

[23] Toby Green. “Is open access affordable? Why current models do not work
and why we need internet-era transformation of scholarly communications”. In:
Learned Publishing 32.1 (2019), pp. 13–25. issn: 1741-4857. doi: 10.1002/
leap.1219. url: https://onlinelibrary.wiley.com/doi/10.
1002/leap.1219 (visited on 09/04/2021).

[24] Dick Hardt. The OAuth 2.0 Authorization Framework. Request for Comments
RFC 6749. Num Pages: 76. Internet Engineering Task Force, Oct. 2012. doi:
10.17487/RFC6749. url: https://datatracker.ietf.org/doc/
rfc6749 (visited on 08/09/2021).

[25] Interedger’s GitHub repository for the rafiki.money software. Apr. 29, 2021. url:
https://github.com/interledgerjs/rafiki.money (visited on
04/29/2021).

[26] Interledger: Interledger Architecture. url: https://interledger.org/
rfcs/0001-interledger-architecture/ (visited on 05/10/2021).

[27] Interledger: Overview. url: https://interledger.org/developer-
tools/get-started/overview/ (visited on 05/10/2021).

[28] Interledger: Settlement Engines. url: https://interledger.org/rfcs/
0038-settlement-engines/ (visited on 05/16/2021).

[29] Weiling Ke and Ping Zhang. “The Effects of Extrinsic Motivations and Satisfac-
tion in Open Source Software Development”. In: J. AIS 11 (Dec. 1, 2010). doi:
10.17705/1jais.00251.

[30] Ko-fi | Donations and subscriptions from fans for the price of a coffee. No fees.
Ko-fi. url: https://ko-fi.com/ (visited on 04/29/2021).

https://privacypass.github.io/protocol/
https://privacypass.github.io/protocol/
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://flattr.com/
https://doi.org/10.3346/jkms.2015.30.4.360
https://doi.org/10.3346/jkms.2015.30.4.360
https://jkms.org/DOIx.php?id=10.3346/jkms.2015.30.4.360
https://jkms.org/DOIx.php?id=10.3346/jkms.2015.30.4.360
https://doi.org/10.3346/jkms.2015.30.4.360
https://synapse.koreamed.org/articles/1022863
https://synapse.koreamed.org/articles/1022863
https://gdpr-info.eu/
https://developer.paypal.com/docs/api/reference/get-an-access-token/
https://developer.paypal.com/docs/api/reference/get-an-access-token/
https://giveth.io/
https://www.givetrack.org/view/13/chandolo-primary-school-water-project/updates
https://www.givetrack.org/view/13/chandolo-primary-school-water-project/updates
https://doi.org/10.1002/leap.1219
https://doi.org/10.1002/leap.1219
https://onlinelibrary.wiley.com/doi/10.1002/leap.1219
https://onlinelibrary.wiley.com/doi/10.1002/leap.1219
https://doi.org/10.17487/RFC6749
https://datatracker.ietf.org/doc/rfc6749
https://datatracker.ietf.org/doc/rfc6749
https://github.com/interledgerjs/rafiki.money
https://interledger.org/rfcs/0001-interledger-architecture/
https://interledger.org/rfcs/0001-interledger-architecture/
https://interledger.org/developer-tools/get-started/overview/
https://interledger.org/developer-tools/get-started/overview/
https://interledger.org/rfcs/0038-settlement-engines/
https://interledger.org/rfcs/0038-settlement-engines/
https://doi.org/10.17705/1jais.00251
https://ko-fi.com/

Bibliography 71

[31] Sandeep Krishnamurthy. “Monetary donations to an open source software plat-
form”. In: Research Policy 38 (Mar. 1, 2009), pp. 404–414. doi: 10.1016/j.
respol.2008.11.004.

[32] Vincent Larivière, Stefanie Haustein, and Philippe Mongeon. “Big publishers,
bigger profits : how the scholarly community lost the control of its journals”.
In: Media trope. Media trope. Vol. 5. Accepted: 2020-04-20T18:20:05Z Issue: 2,
Libraries in crisis. Carleton University. Department of English language and
literature, 2015, pp. 102–110. url: https://papyrus.bib.umontreal.
ca/xmlui/handle/1866/23285 (visited on 09/03/2021).

[33] Vincent Larivière, Stefanie Haustein, and Philippe Mongeon. “The Oligopoly
of Academic Publishers in the Digital Era”. In: PLOS ONE 10.6 (June 10,
2015). Publisher: Public Library of Science, e0127502. issn: 1932-6203. doi:
10.1371/journal.pone.0127502. url: https://journals.plos.
org/plosone/article?id=10.1371/journal.pone.0127502 (visited
on 05/19/2021).

[34] Evgeniya Lupova-Henry and Ámbar Tenorio-Fornes. Quartz OA White Paper.
quartz.to. 2021. url: https://quartz.to/wp- content/uploads/
2021/07/Quartz-OA-White-Paper-.pdf (visited on 09/13/2021).

[35] Manage your apps. url: https://developer.paypal.com/docs/api-
basics/manage-apps/ (visited on 08/08/2021).

[36] Material-UI: A popular React UI framework. url: https://material-ui.
com/ (visited on 05/31/2021).

[37] MetaMask. url: https://metamask.io/ (visited on 08/09/2021).
[38] E. Rajpert-De Meyts, S. Losito, and D. T. Carrell. “Rewarding peer-review work:

the Publons initiative”. In: Andrology 4.6 (2016), pp. 985–986. issn: 2047-2927.
doi: 10.1111/andr.12301. url: https://onlinelibrary.wiley.
com/doi/abs/10.1111/andr.12301 (visited on 09/02/2021).

[39] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. url:
https://bitcoin.org/bitcoin.pdf (visited on 05/30/2021).

[40] Peter Newmark. “Peer review and the rewards of open access”. In: Nature 422.6933
(Apr. 2003), pp. 661–661. issn: 1476-4687. doi: 10.1038/422661b. url:
https://www.nature.com/articles/422661b (visited on 09/04/2021).

[41] Node.js. Node.js. Node.js. url: https://nodejs.org/es/ (visited on
05/31/2021).

[42] Michael Nofer et al. “Blockchain”. In: Business & Information Systems Engi-
neering 59 (Mar. 20, 2017). doi: 10.1007/s12599-017-0467-3.

[43] Silas Nzuva. “Smart Contracts Implementation, Applications, Benefits, and Lim-
itations”. In: Journal of Information Engineering and Applications (Oct. 9,
2019). doi: 10.7176/JIEA/9-5-07.

[44] OpenZeppelin. OpenZeppelin. url: https://openzeppelin.com/ (visited
on 05/13/2021).

[45] Cassandra Overney et al. “How to not get rich: an empirical study of dona-
tions in open source”. In: Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. Seoul South Korea: ACM, June 27, 2020,
pp. 1209–1221. isbn: 978-1-4503-7121-6. doi: 10.1145/3377811.3380410.
url: https://dl.acm.org/doi/10.1145/3377811.3380410 (visited
on 05/30/2021).

[46] Plaudit · Open endorsements from the academic community. url: https://
plaudit.pub/ (visited on 04/29/2021).

[47] Rafiki Money. url: https://rafiki.money/ (visited on 04/29/2021).

https://doi.org/10.1016/j.respol.2008.11.004
https://doi.org/10.1016/j.respol.2008.11.004
https://papyrus.bib.umontreal.ca/xmlui/handle/1866/23285
https://papyrus.bib.umontreal.ca/xmlui/handle/1866/23285
https://doi.org/10.1371/journal.pone.0127502
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0127502
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0127502
https://quartz.to/wp-content/uploads/2021/07/Quartz-OA-White-Paper-.pdf
https://quartz.to/wp-content/uploads/2021/07/Quartz-OA-White-Paper-.pdf
https://developer.paypal.com/docs/api-basics/manage-apps/
https://developer.paypal.com/docs/api-basics/manage-apps/
https://material-ui.com/
https://material-ui.com/
https://metamask.io/
https://doi.org/10.1111/andr.12301
https://onlinelibrary.wiley.com/doi/abs/10.1111/andr.12301
https://onlinelibrary.wiley.com/doi/abs/10.1111/andr.12301
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1038/422661b
https://www.nature.com/articles/422661b
https://nodejs.org/es/
https://doi.org/10.1007/s12599-017-0467-3
https://doi.org/10.7176/JIEA/9-5-07
https://openzeppelin.com/
https://doi.org/10.1145/3377811.3380410
https://dl.acm.org/doi/10.1145/3377811.3380410
https://plaudit.pub/
https://plaudit.pub/
https://rafiki.money/

72 Bibliography

[48] React – Una biblioteca de JavaScript para construir interfaces de usuario. url:
https://es.reactjs.org/ (visited on 05/31/2021).

[49] School of Computing Universiti Utara Malaysia Kedah, Malaysia and Haroon
Shakirat Oluwatosin. “Client-Server Model”. In: IOSR Journal of Computer En-
gineering 16.1 (2014), pp. 57–71. issn: 22788727, 22780661. doi: 10.9790/
0661-16195771. url: http://www.iosrjournals.org/iosr-jce/
papers / Vol16 - issue1 / Version - 9 / J016195771 . pdf (visited on
08/08/2021).

[50] Sharafian. Doubling Down on Privacy. May 11, 2020. url: https://write.
as/sharafian/doubling-down-on-privacy (visited on 08/30/2021).

[51] David J. Solomon and Bo-Christer Björk. “A study of open access journals using
article processing charges”. In: Journal of the American Society for Information
Science and Technology 63.8 (2012), pp. 1485–1495. issn: 1532-2890. doi: 10.
1002/asi.22673. url: https://asistdl.onlinelibrary.wiley.
com/doi/abs/10.1002/asi.22673 (visited on 09/02/2021).

[52] Richard M. Stallman and Joshua Gay. Free software, free society: selected es-
says. 1st. ed. OCLC: 253840339. Boston, Mass: Free Software Foundation, 2002.
220 pp. isbn: 978-1-882114-98-6.

[53] Helperbit Team. Home. Helperbit. url: https://app.helperbit.com/
(visited on 05/05/2021).

[54] Technische Universität München, Germany et al. “Code Reuse in Open Source
Software Development: Quantitative Evidence, Drivers, and Impediments”. In:
Journal of the Association for Information Systems 11.12 (Dec. 2010), pp. 868–
901. issn: 15369323. doi: 10.17705/1jais.00248. url: http://aisel.
aisnet.org/jais/vol11/iss12/2/ (visited on 05/30/2021).

[55] Ámbar Tenorio-Fornés et al. “Decentralizing science: Towards an interoperable
open peer review ecosystem using blockchain”. In: Information Processing &
Management 58.6 (Nov. 1, 2021), p. 102724. issn: 0306-4573. doi: 10.1016/
j . ipm . 2021 . 102724. url: https : / / www . sciencedirect . com /
science/article/pii/S0306457321002089 (visited on 09/21/2021).

[56] Stefan Thomas and Evan Schwartz. “A Protocol for Interledger Payments”. In:
interledger.org (2016), p. 25.

[57] Elena Perez Tirador and Antonio Tenorio-Fornes. “Decentralizing peer review-
ing to increase transparency, quality and reliability”. In: Blockchain for Science
Conference (2019), p. 3.

[58] Arvind Tripathi. “Acceptance of monetary rewards in open source software de-
velopment”. In: Research Policy (2013). url: https://www.academia.edu/
24309028/Acceptance_of_monetary_rewards_in_open_source_
software_development (visited on 05/30/2021).

[59] Uphold. Uphold - Compra, Vende y Envía BTC, XRP y MÁS en Segundos.
Uphold. url: https://uphold.com/es/ (visited on 04/29/2021).

[60] Richard Van Noorden. “Open access: The true cost of science publishing”. In:
Nature 495.7442 (Mar. 1, 2013), pp. 426–429. issn: 1476-4687. doi: 10.1038/
495426a. url: https://www.nature.com/articles/495426a (visited
on 09/02/2021).

[61] Web Monetization. url: https://webmonetization.org/ (visited on
05/12/2021).

[62] Web Monetization Explainer. url: https : / / webmonetization . org /
docs/explainer (visited on 05/27/2021).

[63] Web Monetization Providers (Sending Payments). url: https://webmonetization.
org/docs/sending (visited on 05/12/2021).

https://es.reactjs.org/
https://doi.org/10.9790/0661-16195771
https://doi.org/10.9790/0661-16195771
http://www.iosrjournals.org/iosr-jce/papers/Vol16-issue1/Version-9/J016195771.pdf
http://www.iosrjournals.org/iosr-jce/papers/Vol16-issue1/Version-9/J016195771.pdf
https://write.as/sharafian/doubling-down-on-privacy
https://write.as/sharafian/doubling-down-on-privacy
https://doi.org/10.1002/asi.22673
https://doi.org/10.1002/asi.22673
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/asi.22673
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/asi.22673
https://app.helperbit.com/
https://doi.org/10.17705/1jais.00248
http://aisel.aisnet.org/jais/vol11/iss12/2/
http://aisel.aisnet.org/jais/vol11/iss12/2/
https://doi.org/10.1016/j.ipm.2021.102724
https://doi.org/10.1016/j.ipm.2021.102724
https://www.sciencedirect.com/science/article/pii/S0306457321002089
https://www.sciencedirect.com/science/article/pii/S0306457321002089
https://www.academia.edu/24309028/Acceptance_of_monetary_rewards_in_open_source_software_development
https://www.academia.edu/24309028/Acceptance_of_monetary_rewards_in_open_source_software_development
https://www.academia.edu/24309028/Acceptance_of_monetary_rewards_in_open_source_software_development
https://uphold.com/es/
https://doi.org/10.1038/495426a
https://doi.org/10.1038/495426a
https://www.nature.com/articles/495426a
https://webmonetization.org/
https://webmonetization.org/docs/explainer
https://webmonetization.org/docs/explainer
https://webmonetization.org/docs/sending
https://webmonetization.org/docs/sending

Bibliography 73

[64] John Willinsky. The unacknowledged convergence of open source, open access,
and open science. First Monday, ISSN 1396-0466. Archive Location: 1996 - 2005
Publisher: Valauskas, Edward J. Aug. 1, 2005. url: https://firstmonday.
org/ojs/index.php/fm/article/download/1265/1185?inline=1
(visited on 05/30/2021).

[65] Monica Aniela Zaharie and Marco Seeber. “Are non-monetary rewards effective
in attracting peer reviewers? A natural experiment”. In: Scientometrics 117.3
(Dec. 1, 2018), pp. 1587–1609. issn: 1588-2861. doi: 10.1007/s11192-018-
2912- 6. url: https://doi.org/10.1007/s11192- 018- 2912- 6
(visited on 09/04/2021).

https://firstmonday.org/ojs/index.php/fm/article/download/1265/1185?inline=1
https://firstmonday.org/ojs/index.php/fm/article/download/1265/1185?inline=1
https://doi.org/10.1007/s11192-018-2912-6
https://doi.org/10.1007/s11192-018-2912-6
https://doi.org/10.1007/s11192-018-2912-6

	Portada
	Abstract
	Abstract
	Resumen
	Resumen
	Acknowledgements
	Introduction
	Objectives
	Planning
	Structure of this document
	Source code

	Web donations and platforms
	Introduction
	Analysis and categories
	Categories
	Analysis and score

	Wikipedia
	PayPal
	API
	Marketplaces and platforms

	Centralized donation platforms
	Ko-fi
	Flattr
	Plaudit

	Decentralized donation platforms
	Giveth
	Helperbit
	GiveTrack

	Conclusions

	Technologies for a distributed donation platform
	Blockchain
	Blockchain
	Basic concepts

	Ethereum and ERC20 tokens
	Ethereum
	ERC20 tokens

	Interledger Protocol
	Definitions

	Web Monetization
	Some wallets and applications
	Rafiki.money
	Uphold
	Coil

	Other technologies
	Docker
	Node.js
	React (javaScript)
	Material-ui

	System overview
	Quartz Ecosystem
	Quartz button
	Quartz Token
	Quartz ILP node
	Quartz wallet
	Quartz Platform

	Payment methods
	Creating the accounts
	PayPal account
	Coil account
	Uphold account
	Quartz account

	The interaction
	Donations
	Donor: Explicit donation
	Donor: Indirect donation (micropayments)
	Journals

	Centralized Implementation
	Introduction
	PayPal
	Concepts
	Platforms and marketplaces

	Architecture
	Sequence diagram

	Conclusions

	Decentralized Implementation
	Introduction
	Interledger Protocol
	Concepts
	Architecture
	Flow

	Web Monetization
	Flow

	QTZ: An ERC20 token
	Implementation details
	Architecture
	Implementation
	Flow
	Web Monetization

	Conclusions and Future Work
	Conclusions
	Functionality and integration
	Technology

	Future work

	Run a local ILP testnet using the Quartz token
	Introduction
	Process
	Download docker images
	Set up the environment
	Create the token
	Deploy the token
	Start the ILP nodes
	Perform the payment
	Delete the nodes and start over
	Only deleting the nodes, but keeping the network
	Remove everything

	Perform transactions using the server
	Introduction
	Process
	Set up the environment
	Configure the server
	Run the server
	Perform a transaction

	Bibliography

