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Abstract This work presents the results of a geo­

chemical and geophysical characterization of the 

Monte Romero and La N aya mine ponds, belonging 

to the Cueva de la Mora and Riotinto mine districts, 

respectively, based on mineralogical, geochemical and 

geophysical techniques. In order to obtain a represen­

tative environmental characterization, two deposits 

showing different mineralogies, physico-chemical 

parameters, chemical compositions of tailings and 

pond conditions were selected. Monte Romero mine 

tailings showed an upper level mainly composed of 

silicates and a deeper level mainly composed of 
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sulfides and barite. The toxic metal content was 

different in both levels but high enough to exceed 

the regional legal concentration limits for agricultural 

soils. An electrical resistivity tomography survey 

revealed a homogeneous upper Wlit (3 m thickness), 

which displayed low resistivity values, corresponding 

to water -saturated silt and clay materials with an 

abWldance of sulfides which was interpreted as the 

pond infilling. The La N aya mine pond presented a 

homogeneous mineralogical composition made up of 

quartz as the main mineral and chlorite-smectite and 

jarosite as accessory phases. The absence of sulfide 

phases and the low contents of metal elements are 

directly related to the reworking processes of the 

sludge dumped in this pond. The geophysical survey 

revealed that the pond infilling did not have a 

constant thickness, but ranged between 15 and 

20 m. An inner groundwater flow in the infilling 

was recognized. The low resistivity values allowed 

the presence of acid waters and related subsurface 

flows to be identified in both mine ponds, but no acid 

water drainage occurred across their vessels. \\Then 

compared to the Ama1c6llar tailings spill, the La 

Naya pond is large enough to release a similar amoWlt 

of sludge, but of a very low metal content. The Monte 

Romero sludge displays a similar, potentially toxic 

metal content to the Azna1c6llar sludge, but its size is 

significantly smaller. 
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1 Introduction 

The volcano-sedimentary rocks of the Iberian Pyrite 
Belt, in the southwest (SW) of the Iberian Peninsula, 
host one of the largest concentrations of massive sulfide 
mineralizations in the world, which were fonned during 
the Variscan Orogeny (e.g. Leistel et al. 1998; Sitez et 
al. 1996; Tomos 2006; and references therein). Pyrite 
is the main metallic mineral, although sphalerite, 
galena, cha1copyrite and arsenopyrite are also found 
in lower quantities. An intense mining activity in this 
province, which goes back to the Third millennium B. 
C. (van Geen et al. 1997; Nocete et al. 2005; Ruiz et 
al. 1998), is related to the exploitation of S-Gu-Pb-Zn 
from the sulfide ore bodies and, to a lesser extent, to 
Ag-Au (Fig. 1). 

Owing to the extraction and metallurgic processes, 
a huge amoWlt of mine installations, galleries and 
waste deposits has been generated in SW Iberia, and 
they are a continuing source of severe environmental 
contamination. Pollution from these sources can be 
originated via mining spills, leakages or wind-blown 
dust, and toxic elements with a high mobility can 
cause huge environmental problems by accumulating 
in flora and fauna and reducing the quality of streams 
and groundwater (Siegel 2002). Several studies have 
highlighted the elevated concentrations of certain 
trace elements in sediments and soils surroWlding 
mining or waste sites in the Iberian Pyrite Belt as a 
consequence of extraction and metallurgic processes 
(Chopin and Alloway 2007; Femimdez-Caliani et al. 
2009; Galim et al. 2002; L6pez et al. 2008). This 
mine-related contamination also reaches the waters of 
the Tinto and Odiel fluvial systems, with low pH 
values and large volumes of sulfates, metals and 
metalloids (Cimovas et al. 2007, 2008; Femimdez­
Remolar et al. 2005; Hudson-Edwards et al. 1999; 
Simchez Espaiia et al. 2005, 2008; Sarmiento et al. 
2009). Finally, a significant amount of metal is 
transferred to the sediments of the Tinto-Odiel estuary 
(van Geen et al. 1997; Ruiz et al. 1998). 

A great amoWlt of fine waste material from mining 
activities is specifically disposed of in a slurry fonn in 
tailings dams, i.e., structures designed to settle and 
store tailings and process water (Vick 1990). These 
watery sludges are composed of medium-to-fine­
grained particles (0.01-1.5 mm) resulting from 
grinding and mineral processing. Although the metal 
content is removed in the metallurgic process, some 

ores and sulfides (e.g., pyrite, cha1copyrite and 
arsenopyrite) can be deposited, either because they 
were not sufficiently for use, or due to a deficient 
extraction technology. Oxidation of the sulfide grains 
accumulated in the abandoned mine tailings may take 
place which results in (1) acid leakages and highly 
contaminating acid mine drainage (AMD) and (2) the 
mobilization of significant quantities of trace elements 
such as As, Cd, Cu, Hg, and Pb (Cimovas et al. 2007; 
Siegel 2002). Because of this, it is necessary to 
identify and characterize these hazardous areas where 
large quantities of potentially toxic elements can be 
released into the environment. 

The mining industry in the province of Hue Iv a left 19 
tailings dumps; 11 are in an abandoned state (IGME 
1998) and represent an important contamination 
problem (Acero et al. 2007; Alvarez-Valero et al. 
2009; Hudson-Edwards et al. 1999; Perez-L6pez et al. 
2007; Simchez Espaiia et al. 2005). Remediation has 
only been carried out in a few of the dumps, although 
they still show significant environmental problems 
(Martin-Crespo et al. 2010). In fact, an environmental 
disaster occurred in the SW of Spain in 1998, when the 
tailings dam of the Los Frailes Pb-Zn mine at 
Azna1c6llar (Seville; Fig. 1) was ruptured, and -2 x 
106 m3 of heavy metal-bearing sludge and -4x 106 m3 
of acidic waters were released (Aguilar et al. 2004, 
2007; Galim et al. 2002; Hudson-Edwards et al. 2003). 

In order to obtain a representative characterization of 
mine ponds as a result of the extensive mining activity at 
the Riotinto district (the Iberian Pyrite Belt), two 
different ore deposits were selected: the Monte Romero 
and La Naya mine ponds (Fig. 1). Different mineralo­
gies, physico-chemical parameters, chemical composi­
tions of tailings and different pond conditions (size, 
geometry, structure, thickness, water flows, and visual 
integration with the environment, amongst others) have 
been described. Monte Romero comprises two small 
contiguous mine ponds located at the Cueva de la 
Mora mine site, where Pb- and Zn-bearing minerals 
were mined and processed (IGME 1998). La Naya is a 
mine pond located 2.5 km to the southeast of Minas de 
Riotinto town, in the heart of the Iberian Pyrite Belt, 
and is one of the largest deposits generated during the 
extensive mine works in the Riotinto mining group. 
Pyrite and Cu-bearing minerals were the main minerals 
extracted (IGME 1998). 

In this work, we applied mineralogical and geochem­
ical characterization techniques (X-ray diffraction, 
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Fig. 1 Location of the Monte Romero and La Naya mine 

ponds, the different metalogmic domains and the main massive 

sulfide deposits of the Iberian Pyrite Belt. Modified from 

environmental scanning electron microscopy (ESEM) 

coupled with energy dispersive X-ray analysis (EDX), 

X-ray fluorescence, instrumental neutron activation 

analysis (INAA) and inductively coupled plasma mass 

spectroscopy-ICP-MS) and a shallow, non-destructive 

geophysical technique (electrical resistivity tomography) 

to obtain a detailed picture of the mine pond geometry, 

composition and thickness of infilling, the possible 

existence of water flows within and the occurrence of 

acid mine drainage leakages. The pH parameter was also 

TOffiOS (2006). Metalogmic domains: 1 Western Domain, 11 
Puebia de Guzman Domain, III Sotid-Aznalc611ar Domain, IV 

Rio Tinto Domain, VPaymogo Domain, VI Northern Domain 

meaS'Ured to determine the acidic conditions of the 

impOlmdments. Thus, the main objective was to 

characterize the present conditions of the ponds to 

identify any related environmental problems. The 

goal of this research was particularly relevant 

because although the mining activity in this region 

has decreased over the past few decades, mine 

wastes remain a continuing source of AMD and 

metal contamination, and soils and watercourses in 

southwest Iberia are still highly polluted. 



2 Location and Features of the Mine Ponds 

The Monte Romero mine ponds, nowadays aban­

doned, are located near the Cueva de la Mora village 

(Fig. 2a, b). Both are quite similar and were produced as 

a result of metallurgic extraction of sphalerite and galena 

by the company Asturiana de Zinc S.A. (IGME 1998). 

Their gray tailings lie over Carboniferous shales, which 

represents the main outcropping lithology in the area 

The layout of this storage installation had a side-hill 

impOlmdment design with an upstream method of 

construction (lGME 1998). The dimensions of the 

ponds are 125 x 80 m for the westernmost one and 

90x70 m for the easternmost one, both of which are 

divided by a small topographic escmpment During the 

field survey, both mine ponds become flooded in the 

Fig.2 a Gmeral view of the westemMonte Romero mine pond. 

The tailings sampling(s) was done in a previous SUlYey with a 

lower level of the ponded water; b a ditch in the mine sludges of 
Monte Romero shows the shallow water table in the tailings and 

the acid nature of the water, denoted by the characteristic red 

northernmost parts and the water table in the western 

pond was located at a maxirmun depth of 0.5 m, as 

would be observed in a small ditch. For these ponds, 

Blanco et aL (2003) described water table depths 

ranging from 0.5 m during \¥:inter to about 3 m during 

summer. Moreover, water flows towards the tailing 

surfaces were described in shallower levels (50 cm 

depth) after intense rainfall-evaporation episodes by 

Blanco et al. (2003). In this case, water drains from 
the ponds into a small local creek (Monte Romero 

creek) by means of a plastic pipe. 

The La Naya mine pond (Fig. 2c e), with an 

extension of 500x300 m, was formed as a result of 

the exploitation of an old mine belonging to the 

Riotinto mining district, mainly for pyrite, copper and 

gold, by the company Riotinto Minera S.A. (IGME 

color; c general view of the La Naya mine pond and its long 

discharge channel, where the tailings sampling (s) was per­

fonned; d La Naya dam and impotmdmmt deposited over the 
Devonian shales; e detail of the sampling in the laminated 

tailings of the channel wall in the la Naya mine pond 



1998). Its northernmost part lies directly over Car­
boniferous basic lava flows and tuffs, whereas the 
southern part of the pond is located over a succession 
of Devoruan shales, greywackes, and quartzites. A 
significant feature of these tailings is the marked 
contrast between their yellow to light brown color and 
the dark green color of the surrounding environment. 
A raised embankment was constructed using an 
upstream method with a valley dam configuration 
(IGME 1998). This deposit is one of the largest ponds 
in the Riotinto district, and visual integration with the 
environment has not been achieved. The pond 
includes drainage systems to control the phreatic 
surface and to minimize the chance of a build-up of 
pore-water pressures. Thus, chimney drains were 
installed within the slurry impoundment. This kind 
of structure is well suited to conditions where large 
volumes of water may be stored along with solid 
tailings (Vick 1990). Regardless of these drainage 
systems, the tailings dam shows a marked evidence of 
rain water erosion. 

3 Methodology 

3.1 Sampling Description 

Samples from the mine tailings were collected with 
an Eijkelkamp soil core manual sampler for 
Wldisturbed samples with a known volume and 
diameter, at a sampling depth of 2 m in Monte 
Romero western pond and 2.7 m in the La Naya 
pond (Fig. 2a, c). Sampling was sequential with a 
vertical constant spacing of 10 cm, except for the 
deepest samples from the Monte Romero pond with 
an increased spacing. In the Monte Romero mine 
pond, sampling was carried out by digging down 
below the pond surface, casting aside the parts 
corresponding to superficial sealing and avoiding 
falling perforation wall material. Using this proce­
dure, 15 samples were collected between 10 and 
200 cm depth. In the La Naya mine pond, sampling 
was carried out at different depths at the wall of a 
discharge charmel between 190 and 270 cm and nine 
samples were collected (Fig. 2e). The climate of both 
mine sites is continental Mediterranean; the average 
temperature is 18°C, with mild winters and hot summers 
denoting a seasonal variability. The sampling was 
conducted in IWle. 

3.2 Mineralogical and Geochemical Methods 

The techniques applied in the present study were the 
usual ones used for these kinds of residues. Mineralogical 
characterization of the mine tailings was performed by 
X-ray diffraction (XRD), using a Philips X'Pert powder 
device with a Cu anticathode and standard conditions: 
speed 2° 2e/min between 2° and 70° at 40 mA and 
45 KV The study of the total sample was made by 
crystalline powder diffraction (non-oriented powder) on 
a side-loading sample holder. Semi-quantitative results 
were obtained by the normalized reference intensity 
ratio method. The mineralogy of the samples was also 
studied by ESEM, coupled with EDX, using a Philips 
XL30 microscope. The ESEM was operated at a low­
vacuum mode, at a pressure of between 0.5 and 0.6 Torr 
under a water vapor atmosphere and an operating 
voltage of 20 kV The XRD and ESEM-EDX analyses 
were performed at the Centro de Apoyo Tecnol6gico 
(CAT Universidad Rey Juan Carlos, M6stoles, Spain, 
http://www.UJjc.es/cat). The Fe;,03totti and trace elements 
were analyzed by INAA at Activation Laboratories Ltd. 
(1428 Sandhill Drive, Ancaster, Ontario, Canada, http: // 
www.actJabs.com). Copper and Pb were analyzed by 
X-ray fluorescence with a SHIMADZU EDX-900HS 
analyzer at the Escuela Universitaria Politecnica de 
Almad6n (Ciudad Real, Spain). The certified reference 
standard used was NIST2711. 

In total, 37 minor trace elements were analyzed, 
although only 12 were chosen for this study (Ag, As, 
Au, Ba, Co, Cr, Cll, Hg, Pb, Sb, Sc, and Zn) owing to 
their abundance in these types of sludges and also 
because most of them are included in the priority 
contaminant list of the Andalusian regional government 
(Aguilar et al. 1999) and environmental protection 
agencies (US EPA 1993). 

3.3 pH Determination 

The pH of the tailings was measured in each 
sample from both mine ponds using an electronic 
pH-meter (CRISON) which was calibrated at two 
points (PH 7 and pH 4) using standard buffer 
solutions. This parameter was determined in a 
slurry system with an air-dried sample (10 g) mixed 
with distilled water (25 mL). Before reading the pH 
values, these solutions were vigorously stirred in a 
mechanical shaker for 10 min and left to stand for 
30 min. 



3.4 Geophysical Methods 

Electrical resistivity tomography (ERT) is a geo­
physical prospecting technique designed for the 
investigation of areas with a complex geology. 
This technique is usually carried out using a 
large number of electrodes, 24 or more, connected 
to a multi-core cable. A laptop microcomputer 
with an electronic switching unit is used to 
automatically select the four relevant electrodes 
for each measurement (Loke 2004). Since an 
increasing separation between the electrodes pro­
vides information from increasing depths, the 
apparent resistivity measured can be inverted to 
provide a cross-section of the true resistivity along 
the survey line (Reynolds 1997; Telford et al. 1990). 
Several standard electrode arrays are available 
with different horizontal and vertical resolutions, 
penetration depths and signal-to-noise ratios (e.g. 
Sasaki 1992). Among them, the most frequent 
are the dipole-dipole, Wenner, and Wenner­
Schlumberger arrays. In order to combine a good 
penetration depth, a reasonable vertical and horizon­
tal resolution and a good signal-to-noise ratio, the 
Wenner-Schlumberger array was chosen for this 
study. This array was successfully used in similar 
studies (e.g., Martin-Crespo et al. 2010; Martinez­
Pagim et al. 2009). 

A Syscal Junior Switch 48 was used in this 
work. Three ERT profiles were performed to obtain 
a full characterization of the mine ponds. Their 
lengths range from 87.25 to 235 m and electrodes 
were spaced at distances of 1.75 and 5 m apart, 
respectively, to obtain an approximate maximum 
penetration depth of 25 m (Bernard 2003). The field 
data included resistance measurements between the 
various electrodes and related geometrical informa­
tion. An apparent resistivity value was calculated 
using the resistance measurements and the geometry 
of the array. These data were plotted as a pseudo­
section, which is a plot of the distribution of the 
apparent resistivity values based on the geometry of 
the electrodes. Pseudosections are inconclusive; 
therefore, they need to be inverted into sections of 
true resistivity values and depths via a data 
inversion procedure which facilitates interpretation. 
In this study, the inversion of resistivity data was 
performed using the RES2DINV code (Loke and 
Barker 1995, 1996). 

4 Results and Discussion 

The results of the mineralogical and geochemical 
characteriwtion of the sampled mine tailings and of the 
geophysical study concerning the geometry and structure 
of the pond and the possible presence of acid water flows 
circulating from the surfuce to depths are presented here. 

4.1 Mineralogical Characterization 

The semi-quantitative data on the mineralogical 
composition of the Monte Romero and La Naya mine 
ponds are displayed in Table 1. 

4.1.1 Monte Romero Mine Ponds 

Two levels showing different and homogeneous 
mineralogical compositions can be inferred from the 
X-ray diffraction data (Table 1): (1) an upper level 
mainly composed of silicates as the dominant phase 
and (2) a deeper level mainly composed of sulfides 
and sulfates as the dominant phases. Samples from 
the first level (1), from the surface to 70 cm in depth, 
were mainly composed of quartz, illite, feldspar, and 
chlorite as the main minerals, with jarosite, pyrite, 
gypsum, copiapite, and galena in minor quantities. 
The scheme of Jambor and Owens (1993) was used for 
tailing-mineral identification: primary minerals or those 
minerals that constitute ore and gangue assemblages and 
which were originally deposited in the waste dumps; 
and secondary minerals, which were deposited within 

the dumps by precipitation from metal-rich waters 
derived from ArvID. From the semi-quantitative analyses 
it could be observed that silicate minerals made up 70-
90 wt. % of the total minerals, from which quartz made 
up 55 wt. %. Pyrite and gypsum were only identified in 
the deepest samples of this shallower zone (50-70 cm 
depth), which yielded the lowest quartz content. 
Jarosite, a hydrated K-Fe sulfate (KFe3+(S04h' 
(OH)6), was identified in all of the studied samples 
from 10 to 70 cm depth, although the highest contents 
were associated with non-sulfide samples (10-40 cm 
depth). Copiapite, a hydrated Fe sulfate (Fe2+Pe43+ 
(S04MOHh-20(lhO)), was been identified in samples 
collected at 40-50 cm depth as an accessory mineral. 
The presence ofjarosite and copiapite in this first level 
could be related to Fe-sulfide oxidation and water 
flows. Primary sulfide minerals (e.g., galena) identified 
in low amounts by X-ray diffraction were also 



Table 1 Semi-quantitative 
Zone Sample Depth (cm) Qtz Fsp III Chi Ja Op Co Ga Py Sp Ba Gt mineralogical composition 

(wt. %) of the studied 
samples from the mine Monte Romero R-IO 10 
tailings R-20 20 

M-30 30 

M-40 40 

M-50 50 

M-60 60 

M-70 70 

M-80 80 

M-90 90 

M-lOO 100 

M-110 1 10  

M-120 120 

M-140 140 

M-150 150 

M-200 200 

La Naya N-190 190 

N-200 200 

N-2l O  210 

N-220 220 

N-230 230 
Qtz quartz, Fsp feldspar, III N-240 240 
illite, Chl chlorite, Ja 

N-250 250 jarosite, Gp gypSlll1l, Co 

copiapite, Ga galena, Py N-260 260 
pyrite, Sp sphalerite, Ba N-270 270 
barite, Gt goethite 

recognized in this upper level as minor species by 
ESEM-EDX. Galena occurred as idiomorphic isolated 
cubic crystals commonly showing octahedron exfoliated 
fuces. Secondary electron images revealed that pyrite 
crystals frequently occurred intergrowing with other 
primary gangue minerals such as quartz and chlorite­
smectites or hydrated Fe sulfutes. Barite and sphalerite 
were not recognized by either ESEM-EDX or XRD . 

The deeper level (2) was mainly composed of 
sulfides (pyrite and sphalerite) and sulfates (barite) 
and comprises samples from 80 to 200 cm depth 
(M80 to M-200). The pyrite content ranged between 
35 and 45 wt.%, sphalerite between 10 and 15 wt.% 

and barite between 15 and 25 wt. %. At this level, only 
a 30 wt.% of silicate minerals (quartz and feldspar) 
were determined. The primary gangue, host rock 
minerals and secondary minerals were identified from 
the ESEM-EDX studies. Idiomorphic crystals of 
barite, galena and pyrite frequently occurred as 
aggregates, as part of the ore paragenesis. 

50 10 20 5 10 - 5 

55 10 15 5 10 - 5 

55 10 15 5 10 - 5 

50 15 15 5 10 - 5 

40 10 25 to 5 5 5 10 -

35 10 20 5 5 5 10 -

35 15 20 5 5 10 - 10 -

20 5 45 10 20 -

25 5 45 to 15 -

25 5 35 10 25 -

25 5 35 15 20 -

20 10 40 15 15 -

20 10 45 10 15 -

25 5 40 15 15 -

25 10 40 10 15 -

85 to 5 

85 to 5 

80 to 5 5 

75 to 5 5 

85 to 5 

90 5 5 

70 to 5 10 5 

85 5 5 5 

85 5 5 5 

The Monte Romero mine pond still preserves a 
relatively high proportion of primary ( original ore) 
mineral phases, such as abWldant pyrite with subor­
dinate sphalerite and traces of galena, accompanied 
by gangue minerals. The mineralogical composition 
determined (Table 1) is similar to that previously 
reported by Acero et al. (2007) for 50 cm depth 
sludge from this mine pond. The distribution of 
phases was clearly arranged in two different levels; 
the shallower level concentrated secondary minerals, 
mainly represented by hydrated iron sulfates Uarosite, 
copiapite) and gypsum, whereas the deepest level 
retained abundant sulfides and barite. It is noteworthy 
that at the depth of 70 cm the boundary between these 
two zones was very sharp with a complete doWll­
wards disappearance of some gangue minerals, such 
as illite and chlorite, whereas others exhibited an 
abrupt increase, as was the case for barite. This may 
indicate two different provenances for each of the 
distinguished levels. 



4.1.2 La Naya Mine Pand 

A homogeneous minemlogical composition made up 

of quartz as the main mineral, and chlorite-smectite 

and jarosite as accessory mineral phases, was defmed 

in the X-ray diffraction study in all samples from La 

Naya (Table I). Goethite was only identified as an 

accessory mineral phase in three samples (N-210, 

N-260, and N-270). Quartz made up 90 wt.% of the 

total minerals. Gypsum was only identified in one 

sample (N-220). Other silicate phases such as illite or 

feldspar were not identified. Although sulfide phases 

are typically present in this type of mine tailings, only 

pyrite and sphalerite were identified in significant 

amounts (10 and 5 wt.%, respectively) in one sample 

(N-250, 250 cm depth). It is important to highlight 

that jarosite was identified in all of the studied 

samples. Other sulfide phases such as arsenopyrite, 

chalcopyrite and galena were not detected by X-ray 

diffraction. The main secondary mineral phases recog­

nized by ESEM-EDX were Fe-oxyhydroxides. Ochreous 

to brown cryptocrystalline Fe-oxyhydroxides commonly 

occurred around other mineml phases such as quartz, and 

completely or partially replaced primary sulfide grains 

such as pyrite and sphalerite. Pyrite was the main sulfide 

mineral in the tailings, occurring as submillimetric 

idiomorphic cubic crystals, some of which were pseudo­

morphologically replaced by aggregates of Fe­

oxyhydroxides. Flake-shaped Fe-rich chlorite-smectite 

crystals were detected in minor quantities in the alteration 

rims of sulfide grains, together with Fe-oxyhydroxides. 

The La N aya mine pond composition was strongly 

dominated by quartz with very low contents of 

primary sulfides and even secondary minerals. Such 

a "residual" composition probably indicates that 

reworking of the slag-heaps and their processing with 

enhanced metallurgic techniques had taken place, 

leaving a much more sterile and thus less hazardous 

situation from the environmental point of view than in 

Monte Romero. 

4.2 Geochemical Constraints 

The chemistry analyses also confirmed that the two sites 

studied were very different in terms of their major and 

trace element concentrations. The F�03 tota}, trace 

element concentrations and pH measurements at the 

different sampling depths from Monte Romero and 

La N aya mine ponds are shown in Table 2. In 

addition to this, the tailings samples show an 

important acidity with a pH interval from 2.5 to 

3.5. The most acidic values corresponded to the 

Monte Romero mine pond, with the lowest at 50 cm 

depth (pH�2.5) and a mean pH level of pH 2.9. The 

La Naya deposit had a mean pH level of pH 3.2, 

although an increasing trend with depth was found. 

4.2.1 Monte Romero Mine Ponds 

The composition of the Monte Romero mine sludge 

was characterized by high contents of Ba, As, Fe and 

other heavy and transitional metals. Such a high Ba 

content was related to the ore mineml assemblage, 

where barite was one of the paragenetic phases. The 

Fe203 total content ranged between 2.1 and 27.2 wt. %, 

Cu between 914 and 16,582 ppm, Pb between 295 

and 12,610 ppm and the Zn content was up to 

41,800 ppm. Other trace elements which displayed 

high values were: Au (up to 720 ppm), As (up to 

2,740 ppm) and Sb (up to 861 ppm). These are 

important amounts in all cases, although unsurprisingly 

due to the type of mineralization that was exploited, 

which was fimdamentally composed of pyrite (FeS2), 

chalcopyrite (CuFeS2), sphalerite (ZnS) and galena 

(PbS), with arsenopyrite (FeAsS), magnetite (Fe304) 

and tetrahedrite-group minerals in minor amounts 

(rornos 2006). Galena appeared to be associated with 

the minor gold values found in the ores. The Hg 

content was related to the formation of a replacive 

mineralization, the precipitation of an epithennal trace 

element suite (Au, As, Sb, and Hg), barite-rich zones 

and a high sulfidation mineral assemblage (Tornos 

2006). The Ni content was below the detection limit 

(20 ppm) in each of the analyzed samples. Significant 

variations as a function of depth were identified in all 

of the analyzed element contents (Table 2; Fig. 3). This 

variation defmed a pattern with the two depth intervals 

showing different metal contents. These depth intervals 

are separated with a dotted line at 70 cm depth in 

Fig. 3. This pattern correlated with the mineralogy in 

that the lowest metal contents occuned between 10 and 

70 cm depth, whereas the highest contents were 

located between 80 and 200 cm depth. Mercury, Pb, 

Sb, and Sc displayed an inverse concentration pattern 

compared to the rest of the elements, with their lowest 

concentmtions occurring in the deeper interval. Within 

the shallower depth interval, the preferential concen­

tration of copper at the 60-70 cm depth was 



Table 2 Fe203 total and trace elements content, and pH values in the Monte Romero and La Naya mine tailings 

Zone Sample Depth Ag As Au Ba Co er eu Fe203 Hg Pb Sb Se Zn pH 
(cm) (ppm) (ppm) (ppb) (ppm) (ppm) (ppm) (ppm) ,�.l 

(wt.%) 
(ppm) (ppm) (ppm) (ppm) (ppm) 

Monte R-IO 
Romero R-20 

10 70 

20 55 

30 50 

40 42 

50 37 

60 8 1  

70 59 

1190 412 7740 b.d. b.d. 1799 4.31 25 

914 2.12 30 

2320 2.81 26 

2880 4.34 21 

1944 4.73 18 

12610 502 

10602 449 

1 1658 487 

9876 432 

7739 318  

6835 861 

4979 395 

6.8 

6.8 

6.7 

8 

1200 2.97 

520 3.05 

710 2.95 

1410 2.56 

1 1 1 0  450 6840 b.d. b.d. 

M-30 

M-40 

M-50 

M-60 

M-70 

1320 365 7560 b.d. b.d. 

2740 3 1 1  7020 2 b.d. 

M-80 80 43 

M-90 90 39 

M-lOO 100 36 

M-11O 110 45 

M-120 120 53 

M-140 140 47 

M-150 150 36 

M-200 200 3 1  

La N-190 190 b.d. 
Naya N-200 200 b.d. 

N-210 210 b.d. 

N-220 220 b.d. 

N-230 230 b.d. 

N-240 240 b.d. 

N-250 250 b.d. 

N-260 260 b.d. 

N-270 270 b.d. 

h.d. below detection 

2530 299 1 1700 2 

2320 596 20700 8 

1580 665 23400 7 

1560 720 45900 49 

1710 629 60300 39 

1580 662 99000 3 1  

1450 703 59400 25 

1380 652 50400 50 

1580 744 46800 55 

1410 613 51300 49 

1300 554 53100 40 

191 81 

347 68 

909 85 

674 77 

401 100 

201 49 

451 49 

618 65 

458 55 

710 4 

990 10 

590 5 

860 16 

520 8 

440 3 

520 62 

270 1 1  

440 3 

accompanied by the highest Sb and Ag contents. 

Cobalt, Ba, Fe203 toh,]' and Zn showed a significant 

increase in their contents in the 8G--200 cm depth 

interval when compared to the moderate increase of 

Au. Mercury and Ag, however, showed an irregular 

distribution with depth, displaying their maximum 

concentrations at 60 cm, and their second relative 

maxima located, respectively, at 110 and 120 cm. 

Possible mining explanations for these contents 

and variations could be: (1) periods in which the 

mineral benefit was higher, either due to improve­

ments in metallurgic processes or to the mineral being 

of a higher grade, which alternated with periods in 

which a greater proportion of the ore mineral particles 

were not efficiently well-exploited and ended up 

within these residual mine tailings; (2) a change in 

the exploitation targets, which originally were mainly 

24 6.9 2120 2.51 

b.d. 15278 9.81 45 5 7970 2.79 

15 16582 8.89 25 5.2 6350 3.00 

b.d. 

16 

24 

b.d. 

21 

19 

8 

b.d. 

13 

5 

5 

7 

6 

6 

8 

5 

6 

5751 26 18 

3758 21.8 19 

1401 19A 11  

5642 18.3 34 

6752 21.8 21 

3953 27.2 16 

2149 24.5 1 1  

1993 22.6 10 

306 8.51 b.d. 

579 9A5 b.d. 

684 13.9 b.d. 

772 1 1 .2 b.d. 

485 8.65 b.d. 

583 1 1 .2 b.d. 

45 1 1  12.7 b.d. 

652 14.1 b.d. 

412 13.9 b.d. 

675 219 

709 186 

295 186 

396 211 

1136 240 

755 222 

499 190 

467 168 

0.5 16100 2.99 

1 . 1  14600 3.16 

0.6 5180 3.06 

0.8 41800 3.21 

0.8 20500 3.13 

0.5 12700 3.01 

0.8 6990 2.95 

0.8 5870 2.87 

101 3 1 .3 2 

187 33.4 1.7 

82 50A 2.5 

222 42.8 3 .1  

163 3 1  1.8 

89 26.8 l A  

5 1  28.2 3.9 

124 37.5 1.5 

181 35.7 1.2 

180 2.88 

120 3.20 

210 2.84 

200 3.28 

120 3.51 

50 3.04 

260 3.52 

70 3.13 

80 3.43 

focused on galena (Pb) mining but were re-directed 

from the 1970s to pyrite (Fe) and sphalerite (Zn) 

mining due to environmental policies that banned the 

use of lead in many industrial fields; and (3) a change 

in the ore paragenesis between different zones within 

the same mine or between different mines. According 

to the long mining history of this mine site, the first 

and second options are probably the most likely ones. 

Moreover, the drastic decrease in pyrite concentra­

tions, together with the occurrence of jarosite, 

copiapite, and gypsum in the shallow level (Table I), 

attest for pyrite alterations releasing suI fate into this 

superficial zone. This could also have contributed to 

highlighting the differences. 

Apart from recognizing features inherited from the 

respective mining histories of both mine ponds, some 

evolution processes in each sub-system were recognized 
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Fig. 3 Distribution-with-ckpth p'ofiles for fotal ferric iron and trace elements concentrations from Monte Romero mine tailings 

which allowed us to estimate the polluting potential of 

each mine. With this idea in mind, we constructed 

correlation matrices for both the surface (Table 3) and 

deep (Table 4) levels of the Monte Romero mine pond. 

The superficial level of the Monte Romero mine pond 

(10 70 cm depth) only contained pyrite as the essential 

sulfide phase, together with traces of galena. High, 

positive correlations beween Fel03 total and Ba, Co, 

Cu, and Zn, and the absence of a correlation with Pb, 

indicated that Pb (galena) was not mined at this leveL 

Elements which were not mined were concentrated at 

this level of the pond and showed good correlations 

behVeen them, confirming the results of previous work 

(Lillo et aL 2008). On the contrary, the mined 

elements, like Pb, showed negative correlations 'Nith 

the majority of the other elements. The presence ofHg 

in the Monte Romero ponds indicates that this element 

was not mined and that it became concentrated in the 

mine ponds. The pattern is different in the deeper zone 

(80 200 cm depth) of the Monte Romero mine ponds. 

Within this level, correlations behVeen the elements 

were the same as those expected in a zone where 



Table 3 Correlation matrix 
between elements of the Ag As An 

shallow level (10 to 70 cm 
depth) of Monte Romero Ag 1.00 
mine tailings (n=7; As -0.31 1.00 
significance p<0,05) An 0.70 -0.26 1.00 

Ba 0.46 0.19 0.85 

Co 0.48 0.39 0.78 

Cu 0.56 0.16 0.89 

Fe203 tot 0.56 0.35 0.77 

Hg 0.83 -0.08 0.62 

Pb -0.09 -0.44 -{).63 

Sb 0.83 0.08 

Zn 0.59 0.30 

sulfide mineralogy predominates. Thus, galena seemed 

to control both Ag and Sb (high, positive correlations, 

respectively; see Table 4) and, consequently, Ag and 

Sb showed a high correlation coefficient, which was 

interpreted as meaning that both elements play the 

same geochemical role as sulfosalts or impurities in 

galena. Moreover, the very high correlation coefficient 

(r�0.99) between Zn and Hg could indicate that 

sphalerite, at least, in the primary ore was rich in Hg. 

This is relatively common in massive, volcanic sulfide 

ore deposits, where Hg coexisting with different 

sulfides is preferentially hosted first by sphalerite, then 

by chalcopyrite and then by pyrite. The occurrence of 

Hg-rich sphalerite has been described in this type of 

ore deposit in British Columbia, Canada (Grammati­

kopoulos et aL 2006). The occurrence of secondary 

minerals comprising hydrated iron sulfates, gypsum 

and Fe-Mn oxides or oxyhydroxides typically 

reflects extensive weathering of primary minerals 

Table 4 Correlation matrix 

0.46 

0.82 

between elements of the Ag As An 

deep level (80 to 200 cm 
depth) of Monte Romero Ag 1.00 
mine tailings (n=8; As 0.09 LOO 
significance p<0,05) An 0.66 0.48 1.00 

Ba -0.35 0.28 -0.09 

Co 0.32 -0.04 0.15 

Cu 0.87 0.00 0.52 

Fe203 tot 0.10 0.10 0.26 

Hg 0.61 0.07 0.48 

Pb 0.75 -0.Ql 0 .17 

Sb 0.97 0.04 0.71 

Zn 0.58 -0.04 0.45 

Ba Co Cu Fe203 tot Hg Pb Sb Zn 

1.00 

0.95 1.00 

0.97 0.96 LOO 

0.95 0.97 0.95 1.00 

0.45 0.55 0.55 0.52 1.00 

-{).90 -0.88 -0.82 -0.81 -0.21 1.00 

0.36 0.51 0.49 0.53 0.94 -0.10 1.00 

0.96 0.99 0.96 0.98 0.63 -0.83 0.59 LOO 

in the tailings, where sulfate can fonn insoluble 

complexes with metals such as Ag, Pb, Sb, As, and 

Au. In fact, all of these elements except Au showed 

their maximum concentrations in this weathering 

zone. On the other hand, Pb concentrations were at 

a maximum from 10 to 40 cm depth, steadily 

decreasing from there downwards. This depth interval 

corresponded to a zone of abWldant jarosite (10%, see 

Table 1), where Pb released from the weathering of 

galena was incorpomted and immobilized in the form of 

plumbojarosite. 

4.2.2 La Naya Mine Pond 

The geochemical composition of the La Naya mine 

sludge was also characterized by high contents of 

heavy and transitional metals, but they were at least 

one order of magnitude lower than the Monte Romero 

values (Table 2, Fig. 4). The contents of Fe203 toW 

Ba Co Cn Fe203 tot Hg Pb Sb Zn 

1.00 

-0.65 1.00 

-0.52 0.18 1.00 

-0.64 0.90 0.04 1.00 

-0.19 -0.41 0.75 -0.42 1.00 

-0.56 0.67 0.68 0.37 0.15 LOO 

-0.40 0.42 0.85 0.23 0.51 0.71 LOO 

-0.21 -0.42 0.73 -0.43 0.99 0.10 0.49 1.00 
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Fig. 4 Distribution-with-ckpth p'ofiles for total ferric iron and trace eionents concentrations from La Naya mine tailings 

and Se were similar to the Monte Romero mine pond 

values, ranging between 8.5 and 14.1 \Vt.% and 

<4 ppm, respectively_ The absence of elements such 

as Ag, Hg and Ni, and the absence of variations in the 

contents with depth, are significant features of these 

tailings (Lillo et aL 2008), contrasting with the 

geochemicai features of the Monte Romero mine 

ponds. Arsenic, Sb and Fel03 total contents displayed 

a slight increase with depth whereas Au and Ba 

showed an inverse pattern (Fig. 4). Sample N-250 

showed the highest Cu, Co, Se and Zn contents and 

the lowest Au, Ph, and Sb contents. The contents of 

Ni were below the detection limit (20 ppm) in all of 

the analyzed samples. 

Atthe La Naya mine pond, the concentrations of all of 
the elements were not only much lower, but also they 

showed practically no correlations between them 

(Table 5). Among the correlations that were present, 

the only prominent ones were those due to a high 

geochemical affinity, such as the positive As Sb 

correlation. This indicates that the original geochemistry 

in this pond has been almost completely transformed by 

the metallurgic processes of the ore minerals dmnped in 

the tailings. As in the superficial level of the Monte 

Romero mine ponds, Pb in La Naya showed almost no 

correlation \Vith any of the other analyzed elements, 

which could be interpreted as resulting from the mining 

of galena. 

4.3 Geometry of the Mine Pond Vessel 

The internal and vessel geometries of the Monte 

Romero and La Naya mine ponds were determined 

from the electrical resistivity tomography survey. 

4.3.1 Monte Romero Mine Ponds 

The ERT profiles for the westemmost Monte Romero 
pond, where the tailings sampling was performed, are 
sho\Vll in Fig. 5. Profile 1 (longitudinal to the dyke) 

has a length of 141 m, with an electrode spacing of 

3 m. The minimum absolute error during the 

inversion process was 7.8%, reached during the 

seventh iteration. The maximum penetration depth 

obtained was 13.5 m, and two units with very 

different resistivity values were identified (Fig. 5a). 



Table 5 Correlation matrix 
between elements of the La As An 

Naya mine tailings (n=9; 

significance p<O,05) As 1.00 

An 0.27 1.00 

Ba -0.06 0.28 

Co 0.05 -0.38 

Cu 0.04 -0.45 

Fe203 tot 0.64 -0.47 

Pb 0.07 0.28 

Sb 0.91 0.40 

Zn 0.36 0.20 

The upper unit A extended from 12 to 135 m along 

the profile, with lateml boundaries dipping steeply at 

the surface and flattening towards increasing depths, 

and exhibited the lowest resistivity values ranging 

from <1 to 25 ohm ill. The lower unit B showed 

resistivity values ranging from 25 to >2,000 ohm m. 

The slightly undulating boundary between the two 

Wlits was located, on average, at a depth of 3 m. 

The length of the transverse profile 2 was 70.5 m, with 

an electrode spacing of 1.5 m and a maximum penetration 

depth of 7 m (Fig. 5b). The absolute enor obtained 

during the inversion process was 2.3%, reached during 

the sixth iteration. In this profile, the thickness of unit A 

decreased from 3.5 m near the dam to 1.5 m fur away 

from it. Furthermore, unit B was not as homogeneous as 

in profile 1, in such a way that two sectors with different 

resistivity values could be distinguished, which probably 

indicated differences in the degree of weathering of the 

shales: >88 ohm m southwards, and 25-88 ohm m from 

25 m towards the north. 

4.3.2 La Naya Mine Pond 

Due to its greater dimensions in comparison to the 

Monte Romero mine ponds, the La Naya mine pond 

was surveyed in a single ERT profile, transverse to 

the darn (Fig. 6). This profile had a length of 235 m 

with an electrode spacing of 5 m, and reached a 

maximum penetration depth of 25 m. The minimum 

absolute error during the inversion process was 8.9%, 

reached during the sixth iteration. As in the Monte 

Romero mine ponds, two units with very different 

resistivity values were observed (Fig. 6b): an upper 

unit (unit A) located along the whole profile with 

resistivity values ranging from <1 to 30 ohm m; and a 

lower Wlit (Wlit B), with resistivity values ranging 

Ba Co Cn Fe203 tot Pb Sb Zn 

1.00 

-0.03 1.00 

-0. 1 1  0.98 1.00 

-0.56 0.18 0.24 1.00 

0.46 -0.40 -0.52 -0.23 1.00 

0.16 -0.27 -0.29 0.46 0.22 1.00 

0.39 0.64 0.62 -0.02 -0.28 0.28 LOO 

from 30 to 650 ohm m. However, in contrast to the 

Monte Romero mine ponds, unit A from La Naya was 

not homogeneous and two different subWlits were 

identified: the first one (AI) extended from the 

beginning of the profile up to 185 m and was defmed 

by resistivity values ranging from 10 to 70 ohm ill. 

This subWlit showed a maximum thickness of 10 m, 

decreasing towards the north. Below it, subunit A2 

extended laterally from 185 m to the end of the profile 

and vertically down to 20 m depth. Subunit A2 

exhibited a gradual change in resistivity values from 

20 ohm m at the southern end to <1 ohm m towards 

the north. It is noteworthy that the lowest resistivity 

values were found along the 185-235 m interval of 

the profile. During the field survey, secondary sulfate 

patches were observed on the surface of the pond at 

this section of the profile. This is important since the 

relationship between the sulfate patches and the low 

resistivity values, indicating patches corresponding to 

surface areas with high water contents, defme the 

recharge area of the pond. During the summer, when 

evaporation rates are at a maximum, evapotranspira­

tion promotes oversaturation and the precipitation of 

sulfates in recharge areas. Unit A did not have a 

constant thickness: the maximum value (20 m) 

corresponded to the first 135 m of the profile, whereas 

at a distance of 150 m a sharp step existed in the base 

of the pond which decreased the thickness of unit A 

from 20 to 15 ill. 

4.4 Acid Water Flows 

The low resistivity values associated with the occurrence 

of AMD allowed us to identify the presence of such acid 

waters and related subsurfuce flows in both the Monte 

Romero and La N aya mine ponds. 
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Fig. 5 a Location of ERT profiles (lines 1-7) and the tailings 

sampling (s) in the Monte Romero mine pond (dotted line); b 

Longitudinal (1) and transverse (2) ERT profiles. White dashed 

The survey carried out at the Monte Romero 

mine pond showed that most of its unit A, 

interpreted as the pond infilling, showed resistivity 

values lower than 2 ohm m (Fig. 5b). These low 
values corresponded to water-saturated silt and clay 

materials with an abundance of sulfides, mainly 

pyrite. Moreover, the existence of a small trench in 

the western pond allowed us to identify the presence 

of the acid water table at a depth of 0.5 m (Fig. 2b). 

In addition to this, lUlit B, interpreted as being 

related to the Carboniferous shales which constitute 

lines indicate the botmdary between the tailings impotmdment 

(tmitA) and the Carboniferous shales (tmit B) 

the base of the mine pond, exhibited very high and 

homogeneous resistivity values. This fact corroborates 

the theory that no acid water drainage occurred across 

the bedrock of the pond. 
In contrast, the infilling of the La Naya mine pond 

had a more heterogeneous character. Its upper lUlit 

(unit A) could be divided into wo different subunits 

(AI and A2) according to their resistivity ranges 

(Fig. 6b). SublUlit A2 exhibited the lowest resistivity 

values « 5  ohm m), extending from 65 m to the end 

of the profile. This was interpreted in terms of the 
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profile where are distinguished the tailings impotmdment (units Ai-A2) and the metamOlphic·yolcanic materials at the base (unit B) 

occurrence of an inner grOlUldwater flow which 

recharged the pond at its northeastemmost end, 

moved deeper into the pond towards the south, and 

finally emerged at the surface (at 65 m from the origin 

of the profile) due to the occurrence of a vertical low­

permeability barrier. This barrier corresponded to an 

abandoned evacuation chimney constructed inside 

the mine pond that could be easily recognized on 

the surface. This interpretation agrees well with the 

occurrence of a small swamped zone in the field, 

located just on the low resistivity area (at 65 m 

from the origin of the profile). Unit B was much 

more homogeneous and corresponded to the metamor­

phic and volcanic rocks which constitute the base of the 

mine pond. Its high resistivity values, as was the case for 
the Monte Romero ponds, were also interpreted as being 

indicative of an absence of leakage through the bedrock; 

therefore, the internal grOlUldwater flow described from 

the interpretation of lUlit A was confined to the interior 

of the pond. 

4.5 Environmental Concerns 

After the closure of the mining industry in the Huelva 

province during the last cenhlry, economic activities are 

now centered on agriculture, and the degradation of soil 

and water resources as a consequence of the oxidation 

of pyritic wastes has became a matter of concern. 

Specifically, agricultural soils in the sUITOlUldings of the 

hVo studied mine ponds (Cueva de la Mora and Riotinto 

ore deposits) are contaminated by Cu, Pb, Zn, and As. 

The contents of these contaminants exceed the 90th 

percentile of the geological dominimn of the South 

Portuguese Zone (L6pez et aL 2008). These features 

indicate that the cause of their enrichment in the soils 

must be leachates, mining spills orwind-blo\VO. dust from 
the mining facilities. Worldwide, the Tinto and Odiel 

rivers are hVo of the hydrological resources most affected 

by AMD (Canovas et al. 2007; Hudson-Edwards et aL 

1999; Sancilez Espaiia et aL 2005; Sarrniento et aL 

2009). On the basis of pH levels and metal concentrations, 



the waters of the Tinto river are mainly classified as 

high-acid high-metal, and those of the Odiel river are acid 

high-metal (Canovas et aL 2007). 

The metal contents in the Monte Romero levels (upper 

and deeper) significantly exceeded the Andalusian 

regional government legal limits for As, Cu, Hg, Pb, 

and Zn (Fig. 7) in agricultural soils (Aguilar et al. 1999). 

In contrast, the contaminant contents in the La Naya 

samples only exceeded the legal limits for As and Cu. It 
is important to determine how these metals can still be 

found. If they are present in the primary phases 

(sulfides, gangue, and host rock minerals) they represent 

a potential hazard when these minerals become affected 

by AMD processes. If the metals are incorporated in the 

secondary phases, it is important to evaluate the ability 

of these minerals to stably store these elements. The 

mineralogical characterization and the positive correla­

tions confnmed that the metals are mostly present \Vithin 

sulfides in the deeper level of the Monte Romero ponds 

and that they can be released during weathering of the 

material containing them. The low metal content and the 

negative correlations reflect the nature of the dmnped 

material in La Naya (poorly mineralized sludge and 

volcanic-bearing waste rocks), with a lower potential for 

the metals to be released 

Several papers have dealt with leachates from the 
wastes of the abandoned Cueva de la Mora and Monte 

Romero mines (Acero et aL 2007; Sanchez Espaiia et 

aL 2005). Weathering of the Monte Romero pyritic 

tailings generates acidic waters with high concentra­

tions of potentially toxic contaminants (mainly Fe, Zn, 
Cu, AI, Mg and Ca). The pore-water pH measured by 

Acero et aL (2007) in the vadose zone remained 

Fig. 7 Composition of 

Monte Romero (UL upper 
level, DL deep level) and La 

Naya samples (selected 

hazardous minor and trace 

elements) nonnalized to the 
Andalusian law limits for 

concentrations in 

agricultural soils 

(from Aguilar et aL 1999) 
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beween 2.3 and 2.9, values which are similar to those 

determined in this study (Table 1). On the other hand, 

different remediation experiments on the Monte 

Romero wastes have focused on acid neutralization 

and metal retention in the sulfide tailings and the 

polluted streams by means of the addition of strongly 

alkaline substances (Caraballo et aL 2009; P6rez-L6pez 

et aL 2007). However, there are no estimations of the 

total amOlmts of contaminant elements in the impound­
ment In some mining deposits of the Iberian Pyrite 

Belt, the contribution of toxic elements has been 

determined as the basis for the assessment of their 

environmental impacts in case of a dam collapse or 

rainfall erosion (Nvarez-Valero et aL 2008, 2009; 

P6rez-L6pez et aL 2008). In this particular case, the 

maximmn amOlmts of potential contaminants were 

obtained taking into account the mean content of 

potentially toxic elements (Table 1, As, Co, Cu, Hg, 

Pb, Sb, and Zn) and the volmne and mass of the wastes 

(Table 6). The volume of tailings was calculated 

including the mean depth from the electrical resistivity 

profiles and assmning wedge geometry (Fig. 5). The 

easternmost mine pond, \Vith a trough geometry 

(G6mez-Ortiz et aL 2010), was also included in the 

estimation because of the identical mining histories of 

both ponds. Even though geophysical analysis showed 
wo different units in each impoundment, a mean bulk 

density of 2.64 gfcm
3 

was calculated from the mineral 

particle density and the porosity (%) given by Acero et 

aL (2007) for these tailings. These authors calculated a 

bulk density of 2.24 gfcm
3 

for the first 70 cm. The 

significant content of denser minerals (pyrite, sphalerite, 

and barite) identified at the deeper level highly increased 

_ Monle Romero (UL) 
_ Monte Romero (OLl 
...... La Naya 



Table 6 Main physical features of the mine ponds and amounts of metals contained in the tailings 

Mine pond Area (m2) Average thickness (m) Vohll1le (m3) Mass (t) Total element amount (t) 

Monte Romero W 8854 3 13281 

Monte Romero E 7549 3.5 26422 

La Naya 100430 17.5 1757525 

the mean bulk density of the ponds. The metals 

presented in the Monte Romero sludge amount more 

than 2,200 t (Table 6). Despite the relatively small 

dimensions of this mine residue, an intense minfall 

episode could release its toxic load along the Monte 

Romero creek and reach the Olivargas reservoir (4 km 

dO\vnstream), producing serious effects on water quality 

and aquatic life. 

The oxide terraces in the Tinto River and the 

ferruginous paleosols that pre-date the Pliocene 

highlight a natural origin 0 the headwaters emiched 

in sulfuric acid and ferric iron (Fernandez-Remolar et 

al. 2005). However, the extensive mine deposits of 

the Riotinto district, in the catchment area of the Tinto 

River, are an important source of AMD and have 

seriously altered the environment (Hudson-Edwards 

et aL 1999; Romero et aL 2006). Specifically, the pH 

value in the stretch near the La N aya mine pond is 

only 1.6. The potential toxicity of the metal content in 

this mining residue was also determined (Table 6). 

The bulk density was calculated from the mineral 

particle density assuming a porosity of 50%, and a 

mean value for mine the ponds was derived from the 

processing of these types of Ag-Au-Pb-Zn deposits 

(Bjelkevik and Knutsson 2005). Thus, the La Naya 

irupoundment contains more than 5,800 t of potentially 

toxic elements. Despite the great volume occupied by 

this deposit, its potential impact is proportionately less 

than the Monte Romero sludge since the tailings of this 

deposit have been reworked and have lower concen­

trations of metals. However, although the upper unit 

does not contain pyrite or any other sulfides (Table 1), 

the dissolution of the sulfute phases Uarosite) could 

transfer their metal contents to the environment and 

contribute to potential global toxicity. Moreover, 

tailings erosion is significant in the southeastern sector 

of the waste. 

The volume of the La Naya mine pond is similar to 

the sludge involved in the Azna1c6llar mining 

As Co Cu Hg Pb Sb Zn Z; 

35041 58 171 162 12 336 740 

69710 1 1 5  2 340 2 322 24 669 1473 

3277784 1548 44 3272 - 437 1 1 5  470 5887 

accident, whereas the Monte Romero deposit only 

represents a small fraction. The pyrite tailings which 

spilled from Ama1c6llar into the de Agrio and 

Guardiamar rivers contained very high levels of 

several metals: As (4,300-4,500 ppm), eu (1,438-

2,095 ppm), Hg (15.38-16.90 ppm), Pb (8,389-

10,493 ppm), and Zn (5,546-7,880 ppm; Galim et 

aL 2002). Despite the different remediation actions 

which were carned out, there is still a residual pollution 

in the soils and sediments which exceeds the advisable 

liruits for cultivation (Aguilar et aL 2004, 2007; Galim 

et aL 2002; Hudson-Edwards et aL 2003). The 

comparison of this geochemical composition with 

Table 2 highlights the lower metal contents of the La 

Naya impoundment. Metal contents of the Monte 

Romero mine ponds exceed the Aznalc6llar values. 

Therefore, in the case of a dam failure, the potential 

irupact of the Monte Romero sludge would have a 

similar effect on water and soil quality due to its metal 

load, although a significantly smaller area would be 

affected. 

Finally, the pollutant potential of the sulfide tailings 

depends on their capacity to release toxic elements 

(which can be evaluated by means of a sequential 

extraction procedure, e.g., Alvarez-Valero et al. 2009; 

Perez-L6pez et aL 2008), and the chemical species 

involved in the mobilization of metals. Therefore, 

future work in these mine ponds must be focused on 

the factors controlling the bio-availability of heavy 

metals. 

5 Conclusions 

The two selected deposits from the lbetian Pyrite Belt 

(Spain) display different mineralogies, physico-chentical 

parameters, chemical compositions of the tailings, and 

pond conditions. The Monte Romero mine tailings show 

an upper level mainly composed of silicate phases and a 



deeper level mainly composed of sulfide and barite. In 

both levels, the potentially toxic metal content is different 

but high enough to exceed the regional legal concentra­

tion limits for agricultural soils. The electrical resistivity 

tomogmphy survey revealed a homogeneous upper unit 

corresponding to water-satorated silt and clay materials 

with an abundance of sulfides, which was intetpreted as 

the pond infilling. The La Naya mine pond presents a 

homogeneous mineralogical composition made up of 

quartz as main mineral and chlorite-smectite and jarosite 

as accessory phases. The absence of sulfide phases and 

the low contents of metal elements are directly related to 

the reworking processes of the sludge dumped in this 

pond. The geophysical survey revealed that the pond 

infilling range is between 15 and 20 m. An inner 

groundwater flow in the infilling was recognized. The 

low resistivity values allowed the presence of acid waters 

and related subsurfuce flows to be identified in both the 

Monte Romero and La Naya mine ponds, but no acid 

water drainage occurs across their vessels. 'When 

compared to the Aznalc6llar tailings spill, the La Naya 

pond is large enough to release a similar amount of 

sludge, but of a very low metal content. The Monte 

Romero sludge displays a similar toxic metal content to 

the Amalc6llar sludge, but its size is significantly lower. 

This work revealed that the joint use of geophysical and 

geochenrical techniques allows a complete environmental 

characterization of mine sludge structures, allowing the 

monitoring and estimations of potential pollution. 
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