
Extensión de navegador para la eliminación de metadatos
A browser plug-in for metadata removal

Trabajo de Fin de Grado
Curso 2019–2020

Autor
Diego Ambite Varona

Guillermo García Mansilla
Rosa Olivia Zumaeta Sánchez

Director
Enrique Martín Martín

Grado en Ingeniería Informática
Facultad de Informática

Universidad Complutense de Madrid

Extensión de navegador para la
eliminación de metadatos

A browser plug-in for metadata removal

Trabajo de Fin de Grado en Ingeniería Informática

Autor
Diego Ambite Varona

Guillermo García Mansilla
Rosa Olivia Zumaeta Sánchez

Director
Enrique Martín Martín

Convocatoria: Junio 2020

Grado en Ingeniería Informática
Facultad de Informática

Universidad Complutense de Madrid

26 de JUNIO de 2020

Los metadatos, datos sobre los archivos que generamos digitalmente, dicen m´as sobre nosotros
de lo que creemos, pudiendo llegar a ocasionar un grave riesgo para nuestra privacidad e incluso
para la seguridad de nuestros equipos. Nuestro proyecto ha consistido en la elaboraci´on de una
aplicaci´on web en forma de extensi´on de navegador f´acilmente manejable por el usuario y que
requiere muy poca interacci´on con ella, ofreciendo la posibilidad de limpiar los metadatos
presentes en los archivos, concretamente en im´agenes, que se van a subir a la plataforma
Google Drive.

Para la consecuci´on de esta meta, hemos organizado el proyecto siguiendo una arquitectura
basada en microservicios ofreciendo un f´acil acoplamiento a nuevos formatos cuyos metadatos se
quieran tratar. Para el desarrollo de estos microservicios y de la extensi´on, hemos usado tecnolog
´ıas ampliamente usadas hoy en d´ıa como pueden ser JavaScript, Spring Boot.

Palabras clave: Metadatos, Extensi´on de navegador, Microservicios, Privaci-dad, Google
Drive, peticiones HTTP, webRequest, API REST

Resumen

The metadata, which is data about the documents we generate digitally, tell more about ourselves
that what we could think, potentially being a threat to our privacy and even to the security of our
systems. Our project has been the development of a web application which works as a browser
extension which is easy to handle by the user and which requires very little interaction with it,
offering the possibility to eliminate the metadata present in the documents, specifically in images,
that are going to be uploaded to Google Drive.

For the achievement of this goal, we decided to organize the project following an architecture
based on microservices, offering an easy way to introduce new formats to the system for the
processing of the metadata. For the development of these Microservices and the extension, we used
technologies widely used today, such as JavaScript, Spring Boot.

keywords: Metadatos, Browser Extension, Microservices, Privacy, Google Drive, HTTP
Requests, webRequest, API REST

Abstract

Contents

1. Introduction 1
1.1. Objective . 2
1.2. The work plan . 2

2. Preliminaries 5
2.1. What is Metadata . 5
2.2. Why is Metadata so Important . 6
2.3. What are Microservices? . 8
2.4. Benefits of Microservices . 9
2.5. Browser extensions and JavaScript . 9
2.6. Spring Boot . 11
2.7. Tools for metadata management . 11

3. System Organization 13
3.1. Extension . 14
3.2. Orchestrator . 15
3.3. Cleaning microservices . 15

4. Extension 17
4.1. Collecting requests . 17
4.2. Processing the request . 19
4.3. Data exchange to microservices . 20

4.3.1. Orchestrator . 20
4.3.2. Cleaning microservices . 21

4.4. File cleaned . 22
4.5. Limitations found during development . 22

5. Orchestrator 25
5.1. Performance . 25
5.2. Classes and Interfaces used to create the Orchestrator 26

5.2.1. MSOrchestratorMain . 26
5.2.2. Format . 26
5.2.3. FormatsDAO . 27
5.2.4. FormatsREST . 27

v

5.2.5. SwaggerConfig . 29
5.3. Consistency . 29
5.4. Libraries employed . 30
5.5. Difficulties and considerations . 30

6. Metadata Management 31
6.1. Implementation details . 31

6.1.1. Viewing metadata from a proposed file 31
6.1.2. Remove metadata from a provided file 33

6.2. File formats . 34
6.3. Appendix . 34

7. Contribution 37
7.1. Diego’s contributions . 37
7.2. Guillermo’s contributions . 38
7.3. Rosa’s contributions . 40

7.3.1. Stage 1: Realization of a test browser extension 40
7.3.2. Stage 2: Browser extension study . 41
7.3.3. Stage 3: Feasibility of the proposed browser extension 41
7.3.4. Stage 4: Memory report . 42

8. Conclusions 43
8.1. Future work . 43

8.1.1. Extend the functionality to more formats 44
8.1.2. Extension . 44
8.1.3. Move to from local to online . 45
8.1.4. Extend this service to other platforms 45

Bibliography 47

Chapter 1
Introduction

Metadata (11) is data about data. In other words, it’s information that’s used to
describe the data that’s contained in something like a web page, document, or file. Another
way to think of metadata is as a short explanation or summary of what the data is.

A simple example of metadata for a document might include a collection of information
like the author, file size, the date the document was created, and keywords to describe the
document. Metadata for a music file might include the artist’s name, the album, and the
year it was released.

For computer files, metadata can be stored within the file itself or elsewhere, like is the
case with some EPUB book files that keep metadata in an associated ANNOT file.

Metadata represents behind-the-scenes information that’s used everywhere, by every
industry, in multiple ways. It’s ubiquitous in information systems, social media, websites,
software, music services, and online retailing. Metadata can be created manually to pick
and choose what’s included, but it can also be generated automatically based on the data.

The following are the existing types of metadata:

Descriptive metadata properties include title, subject, genre, author, and creation
date, for example.

Rights metadata might include copyright status, rights holder, or license terms.

Technical metadata properties include file types, size, creation date and time, and
type of compression. Technical metadata is often used for digital object management
and interoperability.

Preservation metadata is used in navigation. Example preservation metadata prop-
erties include an item’s place in a hierarchy or sequence.

Markup languages include metadata used for navigation and interoperability.
Properties might include heading, name, date, list, and paragraph.

1

2 Chapter 1. Introduction

1.1. Objective

Our goal is to offer an online metadata removal service using Google Chrome and
Firefox extension.

On a functional level, this tool offers the user the possibility to remove metadata from
files that he wants to upload to the Internet.

The general objective consists of the following:

To have a microservices architecture, offering scalability and flexibility to the project

Create microservices for cleaning metadata from different file formats, so that the
functionality of the tool is more extensive.

Create an orchestrator, in order to offer the extension information related to the
microservices being created.

Create a browser extension that connects to the cleaning microservices and the or-
chestrator

1.2. The work plan

Initially, we made a study of the Chrome extension to see the viability of making
requests to external services, different browsers for which we could develop the extension
as well, etc.

After this study, the following tasks were proposed:

Extension

Regarding the extension, a study and made a Proof Of Concept (POC) about the
possibility to make requests from an extension, block the request and send it to an
external service with a file attached to it.

microservice in charge of dealing with the metadata

In this area, since metadata can be present in different types of files, such as images,
PDF, office files... we had to decide with which we would deal first. By team
consensus, it was proposed to start the project with a microservice in charge of
processing image files.

For this purpose, we decided the development of a microservice, which will allow the
consumption of two services:

• Consult the metadata of a file
• Remove metadata from a file

Although the project started with a microservice that manages the image files, this
component can be scalable and replicated, and it would be possible to create as many
microservices as formats you want to treat.

1.2. The work plan 3

Microservice Orchestrator

This microservice offers to the extension the possibility to know which are the mi-
croservices which deals with each format. Making in this way easier to the extension
to keep track of what are the URL where each service is hosted. Also, this microser-
vice will be the one in charge of registering the new formats of files that we can be
added.

The orchestrator will consult the address of the microservices in charge of both
consulting and removing the metadata.

After clarifying the existing tasks, the division of tasks was as follows:

• Guillermo was in charge of the extension.

• Rosa was in charge of the microservice that manages the image metadata.

• Diego was in charge of the orchestrator microservice and the coexistence of
microservices in the server.

The tasks are carried out in several phases, which are listed below:

Phase 1: Research and task sharing, October 2019 - December 2019

The research and feasibility research of the initial project proposal is carried out. This
phase involves the following tasks:

Study and viability of the project.

Investigation different possible technologies.

Distribution of tasks among team members.

Phase 2: POC Development, December 2019 - February 2020

The development of a proof of concept for all components is carried out. This phase
involves the following tasks:

Development of a POC of the different components.

Study of limitations and changes in requirements.

Integration of the different components.

Unit tests.

Phase 3: Application development, February 2020 - April 2020

This phase includes the development of the ectension and the two microservices. The
following tasks are included:

Application development with final requirements.

4 Chapter 1. Introduction

Final integration of the components.

Unit tests.

Phase 4: Testing, April 2020 - May 2020

During this phase, we started to integrate the different components, including improve-
ments and corrections that were detected.

Phase 5: Memory, May 2020 - June 2020

The last phase of the project includes the distribution of the different sections of the
memory, as well as one last revision of the code.

Chapter 2
Preliminaries

This chapter introduces and explains a series of different concepts that are important
to know well before continue reading this memory. They go from concepts which will
be continuously mentioned and are the very base of the project itself as the notion of
metadata or browser extension to other more structurally related as Microservice or linked
technologies as Spring Boot. At the end of this chapter in Section 2.7, you will find how is
the metadata handled currently by different programs and websites which have a similar
goal as our project.

2.1. What is Metadata

Metadata is data that tell us information about a certain digital resource. Every time
we create a text file or take a picture with our mobile phone, send a voice message through
our favourite chat application or we install a program on our computer, we are not just
generating the resource itself; in addition to it, a little piece of information is as well built
and attached to it. This information is what we call metadata and it will describe certain
features about the resource such as its size, which title does it have, who is the user who
has created it, and more sensible one such as the kind of software used, the coordinates
and the date in which it was generated. Depending on the resource more or less metadata
will be set up, also this metadata will be modified as the resource is used, enabling it to
evolve among the life of the resource itself.

We could understand metadata as a label, almost any product you could find has some
sort of label, from the clothes you wear to the food you buy on the market or even this
memory has some kind of label telling us information about the memory itself in the first
page. It can vary in shape or form, could be physical like a piece of paper, a barcode
hide somewhere in the product or just some words printed on it. Metadata is the digital
equivalent of this label.

In the case of metadata is much easier to find, you just have to go to your computer and
inspect the properties on any document you wish. Easily you will find the main metadata
of resource, such as its title, size, the type of resource or wherein the disk it is stored. It

5

6 Chapter 2. Preliminaries

is important to mention that most of the times, it requires a deeper search to gather the
whole metadata and what we find with this fast search is just the tip of the iceberg.

2.2. Why is Metadata so Important

From a naive point of view, metadata is a great tool that computer systems have to help
the user dealing with resource discovery and organization. Is in the metadata where the
information we typically use to identify documents is stored, such as the title or the format.
Metadata also stores a unique identifier that tags each resource, which is not that useful
from a user point of view but is what helps the system to avoid duplicity of documents.
As searches are most of the time made using words, for multimedia resources as music,
photos, or video its metadata is the only text present, unlike text-based documents.

Metadata is particularly harmful when shared, as its own name says metadata, after
all, is data that we have generated, so is our information. The distribution of personal
data usually leads to privacy matters. This joined to the fact that metadata is something
many people do not know about and even people who do rarely take care of checking it
out, makes of the metadata a great leak of information and a potential threat to both our
privacy and security.

If you use a photo storing service like Google Photos, Amazon Photos or even your
phone gallery maybe you have detected that your photos are being classified not just by
the day they were taken but also by the place they were taken. This is because photos
taken by most of modern digital cameras and smartphones, in addition to the metadata
that we are more familiarised with like the date and time when the photo was taken or the
size of it, it is also stored the GPS coordinates and the camera model which was used. In
other words, among all the pictures we have stock for years and years, it hides a map of
all the places were when they were taken.

Not many people are aware of the fact that embedded with a picture from your home
or your kid’s school, there may be some GPS coordinates. They are letting anyone who
has access to that picture and knows how to use the resources like the ones mentioned in
Section 2.7, know where your home or your kid’s school are located. Figure 2.1 is shown
the GPS metadata from a mobile phone photo.

Another ground where metadata is telling about us more than what we could think of
is when we exchange emails or text messages with other people using a digital platform.
Most of these services available on the market like Whatsapp or Gmail claim to be secure
and private by performing end-to-end encryption to all our texts avoiding them to be read
even by anyone, including the service itself, but the addressee.

Nonetheless, if the whole message is ciphered (20) and not even the courier company
can read any of it how is it supposed to deliver it? Yes by this point you have probably
guessed it right, by the means of metadata. This is because is the content of the message
itself what has been protected but not its metadata, which will be used to distribute the
message, and once it has been delivered these metadata may not be just deleted but instead
stored.

Thanks to this metadata the companies, even not knowing the messages itself, will get

2.2. Why is Metadata so Important 7

" De ta i l s " : {
" Categor i e s " : [

"GPS"
] ,
"Name" : "VersionOfGps" ," Value " : "2 2 0 0" ,
"Name" : "GpsLatitudeReference " ," Value " : "N" ,
"Name" : " Lat i tude " ," Value " : "40"25 ’1 .54" ,
"Name" : "GpsLongitudeReference " ," Value " : "W" ,
"Name" : "Longitude " ," Value " : "3"39 ’45 .71" ,
"Name" : " Re f e r enceAl t i tude " ," Value " : "Sea l e v e l " ,
"Name" : " Al t i tude " ," Value " : "36675/50 metres " ,
"Name" : "GpsTimestamp" ," Value " : "18 : 37 : 17 UTC" ,
"Name" : "DegreeOfPrecis ionGps " ," Value " : "17399/1000" ,
"Name" : "GpsDatestamp" ," Value " : "2020 :06 :13"

}

Figure 2.1: Content of the metadata of a photo taken from a phone on the street, we have
selected here all the fields with some information about the GPS coordinates, from all the
original metadata.

a lot of information. They will know who are you texting with, the timestamp of those
messages, if it is a one-way or a reciprocal communication and for how much time the
conversation took place. Realizing the popularity of these services, the amount of personal
information gathered is huge.

Finally, we will like to spotlight another thread which can be even more direct than the
ones mentioned above. The insight of your metadata can be a great service for someone
planning on a phishing (21) attack on you.

A phishing attack could be summarized as a way to get some of your personal informa-
tion by pretending to be a trustworthy entity which you will not mistrust. Therefore you
will obey their demands for your personal information like changing a password or directly
telling it to them. But phishing by itself is not such a dangerous tool, after all, pretending
to be your bank or your phone company just by making the mail look official is just useful
to a certain point.

But now imagine that this attacker has been able to gather some of your files, knowing
the number of files we upload every day to the internet is not unthinkable. Maybe they
did not contain any sensitive data, but as we have said before the metadata on it could
contain personal information like your name, the name of your company, mail addresses
of the people you have been in contact with, your professional department, the kind of
software you use, where in your computer the file was stored in, so if the folders of your
computer have descriptive names they will become even more clues about you. With all
this information in his power, the phishing attacker can look way convincing, otherwise,
how would they know that much about you?.

8 Chapter 2. Preliminaries

Figure 2.2: Monolithic architecture in opposition to the Microservices architecture.

2.3. What are Microservices?

Microservices (52) is an architectural and organizational way of building a software
project by disengaging it in smaller and great independent services distributed in different
machines which communicate among themselves through a well-defined API.

A Service in the Software Architecture vocabulary is each of the functionalities that
compose an application and has a unique task. So imagine you are on a website where you
can buy any kind of good. When you add any good to the cart you are using one specific
service, if you search using the different filters that the site offers you are using a second
service, and when finally you proceed to pay for your order, you will make use of a third
service. So on one website and in a few seconds and without noticing you have employed
three different services, all of them working together in the same frame.

Traditionally when Software companies had to develop a project followed what we say
is a Monolithic architecture. In this approach, the entire system functionality is based on a
single application. All the features will be executed on the same machine, communicating
among them to offer different services to the user. As a consequence of this, all had to be
coded on the same programming language, as there was just one machine there was just
one database and one server. This model can be seen on the left side of Figure 2.2.

As the computing power of the systems evolved also did the Software applications,
which became bigger, more complex and demanded a higher Maintainability. This was
hard to accomplish in the frame of a monolithic architecture for obvious reasons: looking
for a certain function in a project which has thousands of lines of code which were not
written by you does not look optimal.

From this need to decentralise the projects into smaller parts, the Microservice Archi-
tecture arise. Here every feature which forms the project will be their application, running
in their machine and having if needed their database and server. As said in the definition
at the beginning of the section, each microservice will communicate with each other using
an API.

2.4. Benefits of Microservices 9

2.4. Benefits of Microservices

The main advantages of adopting the microservice architecture are the following ones:
(51)

Modularity: As each Microservice is widely autonomous from the others, it can be
individually developed and deployed. This helps to split the tasks among the team,
as boundaries of each service are well-defined. As well in the case of any error, it
will be just in the same Microservice where it was caused, enabling the rest of the
system to work as usual.

Scalability: With the split of the project, we can focus our effort on the Microser-
vices which demand a more intensive workload. Once a microservice is already com-
pleted it can be left aside being fully functional and not disturbing the main effort
on the others.

Versatility: Microservices bring us the possibility of using different technologies
and programming languages for each microservice. They will communicate with the
other components in the system by the API, no matter the chosen technology. This
allows the developers to select the technology used in each module to the one which
adjusts the most to the required functionality.

Maintenability: When maintaining any functionality, as they are well distinguished
we could focus on those involved directly in the changes, leaving those not involved
in the maintenance aside. This was harder to get in the monolithic architecture, were
processes were tightly connected, and making a change could cause a domino effect.

Agility: Many common functionalities such as the ones for authentication, the search
of an item or it is traceability have already been well developed as Microservices by
third parties, so there is no need of starting from scratch as you can make use of
them. Moreover, the greater facility to split the work between already established
microservices makes it faster to start developing.

2.5. Browser extensions and JavaScript

Browser extensions are small applications that run on your Internet browser and offer
additional functionality to the ones the browser has by default. They are typically available
on their websites or in an extension store, as many are not free. They require the user to
download and install them but as they are typically quite small it is done easily.

We could classify the most popular browser extensions (19) by the users by the purpose
they have:

Advertisement blocking: Here we could place the two most popular ones: Adblock
and Adblock plus. Their task is to vanish the publicity, the first one is more focused
on website popups while the second in the advertisement on the videos.

10 Chapter 2. Preliminaries

Security: Here we can mention Avast Online Security and Avira Browser Safety.
They try to avoid the download of malware and the tracking of your activities re-
spectively.

Easiness: Unlike the two last categories, this one has a broader variety of purposes
but can be summarized saying that they try to safe you time.

• Avast Safe Price: Compare the prices of the same item across many sites to
offer you the best deal.

• Quick start : In a similar way that browser bookmarks, allow you to get to your
favourite sites by just one click.

• Adobe Acrobat - Create PDF : Downloads a whole web converting it to a PDF
file.

• Hangouts: Allows you to go to the famous Google chatting app without the
need of entering and logging every time in their main site.

It is very encouraging to our project to have a similar character to some of the most
popular extensions on the market, as are the ones previously grouped as security extensions.

Most of the extensions are coded using JavaScript (50) as is one of the most popular
and widely used programming languages (18). JavaScript is an interpreted programming
language, this means that does not require to be compiled as is designed to run on the
browsers. It is mainly employed to execute actions on the client-side but it is also possible
to use it as well in the server-side. Although JavaScript is an object-oriented language,
it is based on prototypes, which means that it does not use classes, also it is an untyped
programming language.

JavaScript indicates the action it wants to perfom to a certain resource by HTTP peti-
tions, JavaScript can do this in two different ways, using fetch(41) or XMLHttpRequest(45):

fetch is a new native JavaScript API, supported by most of the browsers which
provide a friendly interface. The fetch method ease making asynchronous requests
and handle responses better than XMLHttpRequest.

The main difference between fetch and XMLHttpRequest is that the fetch API
uses Promises(42), avoiding callbacks. When we call fetch a Promise is re-
turned, whether it was successful or not. A Promise represents a value that may
be available now, in the future, or never.

Once fetch has preformed the request, a set of methods will response as follows:

• .then() (38) In case the request was successful, the .then() method will
receive a Response object.

• .catch() If the request failed the .catch() method will receive an error
object.

• .json() As the communication among Microservices is carried on by the use
of JSON files, the response must be transformed into a JSON object with the
.json() method. As this method is applied to a Response object, the return
will be a new Promise, so it needs to chain on another .then().

2.6. Spring Boot 11

XMLHttpRequest is a JavaScript object that provides an easy way to get in-
formation from a URL without having to reload the entire page. A web page
can refresh only part of the page without interrupting whatever the user is doing.
XMLHttpRequest can make both synchronous and asynchronous requests but is
not as optimal as fetch (48) because, as said before XMLHttpRequest do not
use Promises. But unfortunately XMLHttpRequest is the only way to make syn-
chronous requests (36).

2.6. Spring Boot

Spring Boot (54) is an open-source framework, based on Java, to develop stand-alone
Java web applications that can rapidly and easily be deployed.

Spring Boot evolves from the Spring (22) framework, but instead of all the configura-
tions needed to finally get a functional application, Spring Boot runs with minimal or zero
configurations. It owns an embedded HTTP server, and to avoid the major number of
configurations, it prioritizes convention over configuration. As well Spring Boot does not
require an XML configuration, replacing it by the annotations which structure the project
using component-scanning.

All the above characteristics make Spring Boot an ideal tool for developing Java Mi-
croservices as it perfectly matches the benefits detailed in Section 2.4.

2.7. Tools for metadata management

From what we have researched there is not a service that offers what we have targeted
in this project. The mix of both an extension that is easily handled and not requires from
working with the files locally and the capability of cleaning the metadata from the browser
itself is something that at least we could not find.

Considering extensions, there are some in the market which allows you to see the
metadata of the website you are on, but there is no one which focuses on the cleaning of
the metadata from uploaded files before sending them. Regarding metadata cleaning, there
are services which labour as desktop programs requiring installation and working locally.
There are also some online applications which require you to upload the files explicitly to
their site, so you have to get them instead of the other way that is what we pretend. We
have discarded the services which require to be bought to try them as BatchPurifier (30)
and centered our attention on the ones we could use for free, as our extension is. Some of
the ones we consider more interesting are:

There is a desktop program called PDF Metadata Editor (29) which helps you to
handle the metadata contained in a certain PDF. It works as follows: first you drag
and drop the PDF you want to work within the program window. After that, all the
metadata contained in the document is displayed in the different panels. The strong
point of this application is how user-friendly it is and how little time it requires to
modify the metadata. It also presents some interesting features like setting some

12 Chapter 2. Preliminaries

default values for future uses. The main differences with our application are the fact
that this one just works locally and targets specifically PDF documents.

Another program worth mentioning is Exiv2 (28) which in a similar way as PDF
Metadata Editor cleans files which are stored in the file system. This program instead
focuses on image files, a total of 25 different image formats are supported (Among
them the most common ones JPG, PNG, TIF and GIF). It is better than PDF
Metadata Editor in terms of supporting a wider range of valid formats. Moreover,
the use of this tool is by commands and is only available for Linux and MacOS
making it less manageable to most of the users. We have in common with it the
formats we can clean, but the fact that this tool just works locally once more makes
it differ from our application.

A tool that matches more with our project in the sense that is an online service is Exif
Viewer (31). However, it is not available as a browser extension and it does not allow
you to modify the metadata found, just to visualize it. Similarly to Exiv2 it focuses
on image formats and it has a complete platform where you can find metadata such
as all the modifications that the image has had since it was created.

A program we can not exclude when talking about dealing with metadata is FOCA
(33) (Fingerprinting Organizations with Collected Archives). Its main purpose is to
audit domains, and it is very used in the practice of penetration testing. FOCA
searches in different search engines (Google, Bing, and Duck Duck Go) for informa-
tion at the domain level downloading all the files related. Then, using the metadata
attached to those files, it elaborates a map where you can see the different operat-
ing systems, applications, emails and the server addressing of the company you are
investigating.

In addition to this powerful tool, FOCA also allows you to scan a set of metadata
which are in your file system. It is better for this task than the programs enumerated
above because offers you the possibility to scan many different formats (PNG, PDF,
Open office...) and to do it in groups and not one by one. It extracts the metadata,
treats it before presenting it, avoiding the repetitions and classifying the metadata
by kind. FOCA is an open-source program which is easily downloaded and which
complete code is on their Github repository (32).

Eleven Paths, the company who owns FOCA, also came up with Metashield (23)
a service-oriented program to protect the metadata of the companies. It is a paid
service, but they have as well a free application which enables you to update just a
file at a time and then it displays all the metadata on it. Then it allows you to clean
it all. Out of all the free services we have checked this is probably the one which
works the best, not just in terms of the number of file formats which accepts but also
because how easy is it to use.

Chapter 3
System Organization

This chapter of the document is dedicated to the distribution of the different compo-
nents that make up the application, where, as a metadata cleaner, it requires the processing
of many different types of files. Each type of file requires a different microservice cleaner,
forming a complex system that works together with the extension and the orchestrator
microservice as shown in Figure 3.1.

Traditionally, applications were designed so that all the elements could be implemented
in the same project where all processes are closely associated and run as a single service.
But when the application requires improvements or added functionality all architecture
must be improved. Adding or improving the features of a monolithic application be-
comes more complex as the code base grows. In contrast, if applications are designed with
microservices (14), these problems are solved and development and responsiveness are
promoted. With microservices, applications are divided into independent elements that
work together to carry out the same tasks.

Figure 3.1: Graphical representation of the internal organization of the system

13

14 Chapter 3. System Organization

Each service is a separate codebase, which can be managed by a small development
team or a single person. Services can be deployed independently without rebuilding and
redeploying the entire application and they do not need to share the same technology stack,
libraries, or frameworks. If developers add more code to a service over time and the service
becomes complex, it can be broken down into smaller services.

To guarantee the correct operation of the microservices in the system, there must be an
orchestrator component that is responsible for placing services in the right place ensuring
that the correct microservices are being used in the right place.

3.1. Extension

The extension is a small piece of software that is attached to the browser and allows
the user to remove all the metadata sent in a file while uploading it. It works as the
main program directing each operation performed in the system. The extension is the
component that makes most of the connections as shown in Figure 3.2, and those are the
following:

Web browser: The extension monitors all requests made by the browser until it
finds a request with a file to be uploaded. This file is extracted from the request
and processed it in the extension, where the file type is used to select the URL
of the microservice that must be called to clean the file thanks to the orchestrator
microservice.

Orchestrator: The orchestrating microservice provides a mapping from file types to

Figure 3.2: Extension tasks and its connections

3.2. Orchestrator 15

microservice URLs that processes them. These connections are made asynchronously
with fetch API (41), sending a GET request to the URL of the orchestrator.

Cleaning microservices: The cleaning microservices receive the file sent by the
extension and return a list with the metadata of the file to be removed. This process
is done synchronously with the XMLHttpRequest API (45), which sends a POST
request sending the file to the corresponding URL. It can also recieve a file and delete
every metadata found on it. hese connections are made asynchronously with fetch
API, sending a POST request to the URL given by the orchestrator.

The extension, as the central program of the system is the one in charge of carrying out
data exchanges with other parts of the system. In addition to performing data exchanges,
it also performs other tasks, such as processing requests to intercept outgoing files, or
processing these files to break them down into valuable information for each microservice.
Lastly, it is in charge of downloading the clean file once it has been received by the cleaning
microservice into the user’s computer. This process is explained in more detail in Chapter
4.

3.2. Orchestrator

The orchestrator provides the extension with information about the types of files that
are supported by the system, that is, if they can be processed or not. Besides, it provides
the extension with the URLs of the microservices for each file type, so that it organizes
the sending of data to other services (this process is further detailed in Chapter 5). These
are the connections made by the orchestrator:

Database: The information that the orchestrator manages is stored in a database.
The orchestrator accesses the database with Spring Data JPA technology (13),
which is part of the large Spring Data family. This allows the orchestrator to query
and add data to the database. This part is explained in detail in Chapter 5.

Extension: As explained before, the extension sends a GET request to the or-
chestrator and receives a list with the names of the file types that are available in
the system, in addition to the URLs where each of the associated microservices are
located.

3.3. Cleaning microservices

The cleaning microservices remove the metadata from the files they receive. There is a
microservice for each type of file that can be cleaned by the system. These microservices
can be implemented in different ways, using different technologies, etc. New cleaning
microservices can be added to the system by notifying the orchestrator that there is a
new type of data that can be cleaned. The connection established by the microservices is
always to the extension, which can be of two types:

16 Chapter 3. System Organization

Figure 3.3: Orchestrator connections

Metadata query: The extension sends a POST request with the file (explained in
Section 3.1) and the microservice sends back a string with the information of all
the metadata found in the file that can be removed.

Cleaning metadata: The extension sends again the file (explained in Section 3.1)
and the microservice removes metadata found in the metadata query.

Figure 3.4: Cleaning microservices connections

Chapter 4
Extension

A browser extension is a small software program that customizes the browsing ex-
perience. The purpose of having this extension is to eliminate unnecessary information
existing in the files, known as metadata. The extension itself has the main task of collect-
ing outgoing requests (where the file uploaded is) and processing them so they can be sent
to the microservices. Cleaning microservices wait for information to arrive and process the
file, delete the metadata from it, and send back the file with no metadata left. This file is
downloaded to the computer by the extension.

4.1. Collecting requests

The browser extension is responsible for collecting outgoing requests, to extract the file
we want to process. This task is possible thanks to webRequest API (16). This API
allows observing, analyzing traffic and intercepting, blocking, or modifying requests on the
fly (before they reach the server).

To capture the requests, we are going to use listeners. These listeners are set with
the addListener() function, that requires 3 parameters:

Callback: Each addListener() call takes a mandatory callback function as the
first parameter. This callback function receives a dictionary containing information
about the current URL request. The information in this dictionary depends on the
specific event type as well as the content of opt_extraInfoSpec and they can be:
requestId, url, method, frameId, type, requestHeaders, requestBody,
etc.

Filter: They can be URLs for limiting the listeners to certain pages only, types for
the request type, tab ID, or window ID.

opt_extraInfoSpec: String array that has listener properties. We can use blocking
if we want the callback function to be received synchronously, which means that the
request will be blocked until this function ends. In this case, the callback can return
a webRequest.BlockingResponse that determines the further life cycle of the

17

18 Chapter 4. Extension

Figure 4.1: Illustration of an event life cycle for successful requests.
Source: ’https://developer.chrome.com/extensions/webRequest’

request. Depending on the context, this response allows canceling or redirecting a
request. For this extension this parameter is crucial since we want to freeze the re-
quest to the point that the user has made a decision, either to cancel the upload of
files, or to clean them.

The webRequest API defines a set of events that follow the life cycle of a web request.
You can use these events to observe and analyze traffic. Certain synchronous events will
allow you to intercept, block, or modify a request.

As shown in Figure 4.1, onBeforeRequest are the events that are processed first
and they are fired when a request is about to occur. This event is sent before any TCP
connection is made and can be used to cancel or redirect requests and the body of the
request can be accessed through this event. The request body stores the file as a binary
array, which is saved in the extension in a global variable. This is due to how the listeners
capture the events on that order (see Figure 4.1) starting by sending the body and then
sending the headers.

Second, we have the onBeforeSendHeaders event that fires when a request is about
to occur and the initial headers have been prepared. The event is intended to allow
extensions to add, modify, and delete request headers. According to these headers, we can
see if it is a file upload. For example, we can look at the method by which this header is
being sent and if it is of the POST type, we are on the right track. Another important
section to consider is the content-type, which tells you the type of content that this request
contains.

The rest of the events in Figure 4.1 are not used because the request already reached
the server and canceling or redirecting the request is not allowed at those stages.

While listeners are active, all requests are processed by the extension, so these requests

4.2. Processing the request 19

have to go through a filter. This filter is applied to onBeforeSendHeaders where the
headers are. These headers have information about the request like the type of the request,
the ID, the type of content inside of the body, etc. First, the filter selects POST requests
to find just the upload request that it is needed.

Once the POST request has been located, the Content-Type has to be filtered to find
the multipart/related. Each request is identified by a request ID. This ID is unique
within a browser session and the context of an extension. It remains constant during the
life cycle of a request and can be used to match events for the same request. Using the
ID of the remaining request from onBeforeSendHeaders, request body can be found
in onBeforeRequest, sharing the same ID. At this point, the body and headers of the
request can be accessed and the information about the files can be obtained.

4.2. Processing the request

When the request has been already found, the body is on binary array format. Raw
data has to be decoded. The extension uses UTF-8 to decode the raw data array and
get a readable format. UTF-8 (8-bit Unicode Transformation Format) is an ISO 10646
and Unicode character encoding format that uses symbols of variable length (60). The
IETF (Internet Engineering Task Force) requires that all Internet protocols indicate which
encoding they use for texts and that UTF-8 is one of the encodings contemplated. TextDe-

Figure 4.2: Data processing graph

coder is a JavaScript interface that represents a decoder for a specific text encoding, such
as UTF-8, ISO-8859-2, KOI8-R, GBK, etc. A decoder takes a stream of bytes as input and
emits a stream of code points (40). For Unicode, the particular sequence of bits is called a
code point, which is normally assigned to abstract characters. An abstract character is not
a graphical glyph but a unit of textual data. Many code points represent single characters

20 Chapter 4. Extension

but they can also have other meanings, such as for formatting (35). When the data is
already decoded, the result is a String with information about the file and a String
with the content of the file expressed in the encoding indicated above.

In a request body containing file uploads, a "multipart" Content-Type field must
appear in the entity’s header. The body must then contain one or more "body parts,"
each one preceded by an encapsulation boundary, and the last one followed by a closing
boundary. So the information obtained decoding the raw data has to be decomposed into
a body part consisting of a header area, a blank line, and a body area, using the boundary
as a guide to finding the correct information (15). The last step before sending the file to
the cleaning microservices is converting the file into a Blob object. Blobs are immutable
objects that represent raw data. It can be created from an ArrayBuffer object and the
content type of the file. ArrayBuffer object is used to represent a generic buffer of raw
binary data of a specific length. The extension converts Base64 strings of data into an
ArrayBuffer. This is made with atob() method which decodes a data string that has
been encoded using base-64 encoding (44).

4.3. Data exchange to microservices

This project is based on microservices, where the extension works as an intermediary,
knowing exactly where the file should be sent. This structure is further explained in
Chapter 2.7.

JavaScript can send network requests to the server and load new information whenever
it’s needed, and both asynchronous and synchronous requests are used.

The extension must be in contact with different servers, the orchestrator, and the
cleaning microservices.

4.3.1. Orchestrator

Using an orchestrator service for our system is critical because there are many types of
data and it is necessary to implement a cleaning microservice for each one of them. The
orchestrator is in charge of managing the URLs of the microservices where the data will
be sent to be cleaned, according to their content type.

When the extension is turned on, his first task is to communicate with the orchestrator
obtaining a list with all the available file formats to be processed by the extension, and
their respective URLs. This process is made asynchronously. The response is stored in
the extension on an array of objects where the key is the Content-Type and the value
is a pair of the URLs of the different functionalities of the cleaning microservice:

Name: This is the name of the Content-Type. It works as a key for searching the
correct address for the corresponding file type.

Url: The address of the cleaning microservice.

Metadata: The address that returns the metadata that can be cleaned.

4.3. Data exchange to microservices 21

Figure 4.3: Example of notification showing metadata from the file

This information can be used every time the extension wants to clean metadata without the
need to make extra requests to the orchestrator. This request must be made asynchronously
sometimes to detect new file types that the extension accepts.

4.3.2. Cleaning microservices

With microservices, applications are divided into their smallest and most independent
elements. The microservices that make up this network have in common the same task:
metadata cleanup. Each microservice is responsible for cleaning one type of data. To
send the file to the microservice we have to convert the Blob obtained previously into a
FormData object (43). The FormData object is used in sending form data but can be
used independently from forms to transmit keyed data. The transmitted data is in the
same format that the form’s submit() method that would be used to send the data if
the form’s encoding type were set to multipart/form-data

Cleaning microservices have 2 different functionalities:

Show metadata: This function receives a file, searches for metadata that can be
removed and sends it back to the extension as a JSON. This function is made syn-
chronously because all the extension must block until the user can see the metadata
and decide whether to delete it or not.

File metadata cleanup: This function receives a file and replaces all the fields
shown previously with a "0" therefore cleaning the metadata. This process is made
asynchronously and a Blob object with the data of the new cleaned file is received.

Before cleaning metadata, the users are asked if they want to delete the metadata displayed
on the screen. If the user decides not to delete them, then the file metadata cleanup is
not done, and the file is uploaded. Otherwise, if the user decides to clean the file, it is
sent to the microservice to be cleaned. The uploading request is canceled by returning
a BlockingResponse with the fields cancel: true on the callback function from
onBeforeSendHeaders listeners.

22 Chapter 4. Extension

4.4. File cleaned

Once the Blob object is received from the cleaning microservice the last step is down-
loading the file. Chrome.downloads API (17) allows you to programmatically initiate,
monitor, manipulate, and search for downloads. This method requires an URL to down-
load. Blob objects can be converted into URL with URL.createObjectURL() static
method. The extension only works for Chrome browser and Firefox (39), although there
is another extension based on chrome.downloads that work for other browsers (46).
This is further explained in section 4.5. The file is downloaded directly into the downloads
folder and the user is notified with notification in the system tray as shown in Figure 4.4.
These rich notifications are made with chrome.notifications API (12).

4.5. Limitations found during development

Initially, the idea of the project was to catch the outgoing upload requests, clean the file,
and modify the initial request so that the process had been as transparent as possible. But
this idea has been refined during the development of the project due to some limitations
found in the webRequest API. The lack of precise documentation about the webrequest
API and the small community using it has made it difficult to use the API. The main
problems we have faced it were:

Modifying ongoing requests: The idea of modifying ongoing requests made the
extension very transparent and easy to use for the user because all he had to do is
uploading the file and all the job was automatically done. This idea was not possible
to make, because webrequest API allows you to modify headers of the request,
but not the body of it, where the file is. Official documentation gives us information
about modifying headers at onBeforeSendHeaders event, but not in onBeforeRequest,
where the body is. This idea was discarded and instead, we decided to download the
new file and canceling the request before it reaches the server.

Canceling upload request: This task should have been easy because canceling
requests just require to return a BlockingResponse on the callback listener. How-
ever, in some web applications like Google Drive, canceling this request produces that
the server keeps waiting for the request to reach the server and the browser sending
requests with no stop. This means that more requests are involved in the uploading
process, adding complexity to the process of canceling the request because there is
no information enough to know about all these requests. The solution we came up
with was refreshing the page once the main request is canceled, and that worked, but

Figure 4.4: Example of notification in the system tray

4.5. Limitations found during development 23

it pops an alert for refreshing and not saving the changes like it is shown in Figure
4.5.

Figure 4.5: Popup when updating the page

This interruption is an automatic alert generated by the browser and cannot be ac-
cessed with code, only the user can close it. This makes the extension less transparent
making the user interact with it more times than expected, and it could cause a worse
experience with it.

API limitations: Webrequest API seems to be incomplete according to some posts
found in chromium forums indicating that some functionalities are incomplete or
bugged (34). The biggest problem was finding those requests that carry the file that
is about to be uploaded. The Google platforms (Google Drive, Gmail, etc.) in theory
have the same file upload protocols. They use multipart/related request types
as it is shown in the documentation for developers, but analyzing traffic requests we
have discovered that multipart/related requests are captured in Google Drive only.
This increases the limitations imposed on the extension, just working in Google Drive.

Another request type we studied was multipart/form-data. These requests
are used in HTML forms, the most simple POST request that can be done. The
uploaded file was traveling in a Request Payload header and webrequest API
does not support this type of headers and the information cannot be handled with
an extension.

Synchronous XMLHttpRequest deprecated: Most of the requests to the mi-
croservices are done asynchronously, but when the metadata query is done, the ex-
tension has to pause its execution until the metadata reaches the extension. The use
of synchronous methods triggers a warning on the console log like the one shown in
Figure 4.6 indicating that synchronous methohds are deprecated (36). As explained

Figure 4.6: Alert due to the usage of synchronous methods on the main thread

in the XMLHttpRequest documentation, these types of requests will stop working
in the near future:

"Synchronous XMLHttpRequest outside of workers is in the process of
being removed from the web platform as it has detrimental effects on the
end user’s experience. (This is a long process that takes many years.)
Developers must not pass false for the async argument when the current
global object is a Window object. User agents are strongly encouraged
to warn about such usage in developer tools and may experiment with
throwing an "InvalidAccessError" DOMException when it occurs."

24 Chapter 4. Extension

Extension compatibility: The usage of APIs like chrome.downloads and
chrome.notificationsmake the extension only compatible with Chrome browser
and Firefox. Chrome implements the APIs using the chrome.* namespace with call-
backs. Firefox implements the namespace browser.* with Promises for all APIs,
and chrome.* (with callbacks) for almost all APIs (all that are cross-compatible
with Chrome) (39). The other API is based on chrome.downloads but it is imple-
mented using the browser.* namespace (46) and this cannot be used on Chrome.

Chapter 5
Orchestrator

We have already spoken before about the advantages of the Microservices Architecture
(MSA) 2.4. But when you follow this architecture, you have to decide on how to integrate
the microservices and therefore how are going to interact among themselves. There are
two options which have are the most popular ones when using MSA; the choreography and
orchestration techniques (56):

Choreography: In this technique microservices directly interact with each other
with no middle man. When a microservice executes a transaction, an event is pub-
lished and it could be subscribed by one or more microservices to trigger their trans-
actions.

Orchestration: Here one service, the central coordinator, conducts the interac-
tions between microservices. Based on an incoming event, it triggers the next local
transactions just in the microservices that concerns.

Having considered both, we decided to follow the Orchestrator technique. This election
lightens the work of the rest of the microservices of the project so they can focus completely
on their tasks. Also, this approach makes the message flow among microservices more
organized, as can be perceived in the representation of both techniques in Figure 5.1. This
chapter details the Spring Boot microservice we have developed to act as Orchestrator,
and how exactly it works.

5.1. Performance

We have developed the orchestrator as an API REST (26) to manage the formats
supported by our system. So basically is a web service with a series of methods, which
are on different URL waiting to provide certain functionality. Any client can use them
by the expected HTTP protocol function, either to get information or to commit it, this
information will always be represented as a JSON file.

25

26 Chapter 5. Orchestrator

Figure 5.1: The two main techniques to coordinate the iteration among microservices

The performance will be as follows: When the extension receives a request from a user,
it will ask the orchestrator microservice for the URL of the service which hosts either the
metadata cleaning or the metadata displaying of that format. The orchestrator will consult
the database where this information is stored, and tell the extension where the service is
hosted.

As well if we want to register any new data format that now is supported, it can be
included to the database just with an API call to the adequate function, as explained in
section 5.2.4. Same can be applied for modification in case the URL in which a microservice
operates changes or the elimination of a format that is not held anymore.

5.2. Classes and Interfaces used to create the Orchestrator

In this section, we will detail the five classes that make up this microservice. All of
them are in the following part of the repository Metadatos-2020/MSOrquestador/
src/main/java/com/init/formatos/.

5.2.1. MSOrchestratorMain

This is a very simple class, only contains the main function of the application. Spring
Boot generates this class by default and it initializes the Tomcat server.

5.2.2. Format

This class will represent each of the formats that are supported by our application. It
is a plain old Java object (POJO) so it extends neither implements any other class. It has
three private class variables which are:

String name: It represents the name of the format which is supported, for example,
"PNG" or "JPEG".

5.2. Classes and Interfaces used to create the Orchestrator 27

String eliminationURL: URL of the service which deals with the format name
and which eliminates the metadata.

String consultURL: URL of the same service but this time of the address which
will just show the metadata instead of eliminating it.

In addition to these class variables it will have methods get and set for each one
of them, so they could be consulted or modified by the methods in FormatsREST, that
will be explained later in Section 5.2.4. It counts with a nullary constructor, and another
constructor with three parameters, to create an object with all the three attributes already
set.

To communicate with the database through JPA (27), we annotate this class as @Entity.
JPA, will turn the objects of this class to rows so they will be able to be stored in the
MySQL database of this microservice, also the transformation will as well be in the other
way turning each row from the table to a different Format object.

To indicate to Spring Boot which table from the database corresponds to this class
we use the annotation @Table(name = formatsDB). As well to create the correspon-
dence among the class attributes and table columns we have to annotate each of the at-
tributes with @Colum(name="columnName", nullable = False), where each at-
tribute "columnName" has to match with the column name of the table. The expression
nullable = False forces to fill these variables, not be possible to leave them with a
null value. We also have to indicate which attribute will act as identification, once again
this is done by annotations, with @Id annotation, the ID in this class will be name.

5.2.3. FormatsDAO

This is the only interface of the microservice. This interface itself extends from another
interface, JpaRepository, which has two generics. The first one tells from which entity
does the DAO, in our case Format. And second interface configures which datatype is its
ID, so for us, it will be String.

Only by doing this, we are implementing all the functionalities that the DAO pattern
in Spring Boot has (2). These functions will us to make use of its functions, which will
come as a great help in the REST class 5.2.4 to perform consults to the database.

Another reason to use the DAO pattern is to separate the functionality of the logic of
this microservice from the storage platform we have chosen. So if for example, we decided
to change our database from MySQL for another one,we tried and is detailed in Section
5.5, all the logic of the system will stay the same as nothing related to it has changed. The
DAO acts as a runway between our database which ensure the persistence and the logic of
our system, so if we commit the change of storing service, only this class will be affected.

5.2.4. FormatsREST

This class has all the REST services that this microservice provides. To indicate
this to Spring Boot we have to use the annotation @FormatsREST. Also to indicate

28 Chapter 5. Orchestrator

the URL where this service will listen to connections we have to use another annotation
@RequestMapping("/formats") which will make this microservice work from the ad-
dress localhost:8085/formats, in Section 5.5 is explained why this port.

It has a FormatsDAO object, the one explained in Section 5.2.3, as the only attribute,
to carry on the communication with the database. To use it we have to make the annotation
@Autowired which will inject a real object. This is necessary because FormatsDAO is
an interface, and interfaces can not be instantiated, but Spring Boot internally generates a
proxy that when running the application will provide us with a valid FormatsDAO object.

The methods of this class has are:

getFormats: This function will return a List of all the Format objects held by
the application. Is going to be annotated as @GetMapping so it can response in the
addres localhost:8085/formats to the methods GET. It uses the FormatsDAO
method findAll() to get them all.

getFormat: This is a similar function of getFormats, but this will only return
one certain Format. It recives as parameter a String name telling the name of
the format we want to consult. As getFormats is already listening in the address
localhost:8085/formats for GET methods we need a different address to listen
it. To solve this we will use @RequestMapping (value = "nameFormat"), so
this function will be listening to @GET methods in the address localhost:8085/
formats/nameFormat, where nameFormat corresponds to each of the names of
the formats present in the database. The search for that particular format this time
will done by the FormatsDAO method findById(). As result of this fucntion
the Format object itself will be return if it was found and a HTTP Status code
no-content otherwise.

createFormat : Will insert a new Format that we are able to handle to the
database. As parameter it recieves the object Format that we want to store. It will
use the annotation @PostMapping so will be listen in the address localhost:
8085/formats like getFormats but this time waiting for POST methods. This
function will use the FormatsDAO method save() to store the Format in the
database. It will return the Format object that we just inserted, in case the service
which made the call wants to check that spellcheck went as expected.

deleteFormat : This function is used to eliminate of formats which do not hold
any more. Same as getFormat it listens in all the addresses corresponding to
each of the Format present in our database. But unlike that, this service will
wait for DELETE methods as is told by its annotation @DeleteMapping(value
= "nameFormat") on the address localhost:8085/formats/nameFormat.
It will have a parameter String nameFormat which indicates the FormatsDAO
which Format to eliminate. The FormatsDAO object will perform the elimination
by using deleteById() being this ID nameFormat. The answer from this method
will be an empty body, but we will be able to know it was successful because also
will produce the code 200.

updateFormat : Is in charge of changing the values of an object Format in case
the URL where the corresponding service is hosted changes. It will work on the
address localhost:8085/formats waiting for PUT methods, this is indicated

5.3. Consistency 29

Figure 5.2: Documentation generated by Swagger, showing all the functions available by
out API REST.

by the annotation @PutMapping. The calls to this service will be done attaching
to them a JSON object, showing how we want that Format to look like after the
update. First we will find that Format by using findById() and then with the
Format setters we modify it to look as the JSON object received. It will return a
Format showing how the update looked like.

5.2.5. SwaggerConfig

This class generates the documentation of the whole microservice. If someone wants
to make use of our services, with no need to look at our code, will be able to know
for each method, in which URL responses, which HTTP method is waiting for, which
parameter is expecting and what will be the answer. Has just one method, api() which
is annotated by @EnableSwagger2 to enable Swagger to auto-document our services.
All the documentation will be displayed in a very useful graphic interface where we can
even try each of the methods, on the address "/swagger-ui.html". An example of
how this documentation looks is in Figure 5.2

5.3. Consistency

To keep the data consistency in this microservice and avoid losing the formats our
application can work with, we decided to use a database to store them. As the amount of
data we store is small, the decision of using MySQL is not optimal, as is a heavy platform
designed to work with huge tables. But due to difficulties which we explain in Section 5.5
and that Spring Boot offers easy integration for MySQL (24), we decided to use it.

As detailed in the class Format in Section 5.2.2, JPA makes the interaction with the
database quite easy, just needing the annotations to do the transformations between objects
and SQL instructions and vice versa. In the MySQL environment, we just need to generate
the table with the same name as the name used in the annotations. To let Spring Boot
know the details of the database connection such as the username or the password we have

30 Chapter 5. Orchestrator

to modify the configuration file, specifying these properties. It is useful also to indicate
in this file the property ddl-auto: update so the table will be filled in automatically
from the entity class every time we lunch the project. Another property which needs to
be set is dialect: org.hibernate.dialect.MySQL5Dialect, which defines the
language used to carry the previously mentioned transformations.

5.4. Libraries employed

Along with the classes and interfaces detailed in Section 5.2 to build this orchestrator
microservice we have used some libraries to simplify certain actions. These libraries are:

Spring Boot starter web (55): When we run the main() method, this library
will start a Tomcat server as an embedded container so we do not have to use an
external server. This in addition to simplifying a lot the architecture of the microser-
vice, allows it to run in just a few seconds.

mysql connector java (24): This one includes the MySQL driver which allow
us to connect to that Database.

spring boot starter data jpa (25): Java Persistence API (JPA) let us con-
vert objects to SQL instructions and the other way, turn the result of a SQL consult
to an object.

sprinfox swagger ui (8): This library give us the possibility to auto-document
our services employing the metadata on the annotations used on the functions.

5.5. Difficulties and considerations

We tried to use a lighter database more lined with our needs, namely SQLite (9)
instead of MySQL. Unfortunately, there was not much documentation on how to
integrate it in Spring Boot and we were not able to modify the properties file to get
it. So finally we stayed with MySQL.

We have decided to run the whole web application in the port 8085, therefore, avoid-
ing the default port, 8080, and the possible port conflicts that usually it causes. As
well the communication with the MySQL database is carried on through the port
3306.

Chapter 6
Metadata Management

This chapter provides the implementation detail of the microservice in charge of man-
aging the metadata of the provided file. As discussed in previous chapters, you can develop
as many microservices as you want to manage

6.1. Implementation details

The microservice has been developed in Java (7) with the main technologies mentioned
above. It provides two resources that will be consumed from the outside, in this case from
the browser extension.

The resources developed in the application are as follows:

Viewing metadata from a proposed file

Remove metadata from a provided file

6.1.1. Viewing metadata from a proposed file

POST service with the following characteristics:

Name: /metadatos/mostrar

Content-Type: multipart/form-data

Produces: aplication/json

The service receives the file as a parameter, and returns the corresponding metadata.

@RequestMapping (value="/metadatos/mostrar " ,method = RequestMethod .POST,
consumes = " mult ipart /form−data " , produces ="app l i c a t i o n / j son ")

pub l i c ResponseEntity<Str ing>

31

32 Chapter 6. Metadata Management

l eerMetadatos (@RequestParam(" f i l e ") Mu l t i pa r tF i l e f i l e) throws
Exception

{
return new ResponseEntity<>(mostrarMetadatos (f i l e) ,

HttpStatus .OK) ;
}

p r i va t e S t r ing mostrarMetadatos (Mu l t ipa r tF i l e f i l e) throws Exception
{

F i l e multToFile =convertToFi le (f i l e) ;
Map<Tag , Str ing> meta =proce s s (multToFile , nu l l) ;
Map<Tag , Str ing> metaNuevo = new HashMap<>() ;
f o r (Map. Entry<Tag , Str ing> entry : meta . entrySet ()) {

i f (entry . getValue () != nu l l && ! entry . getValue () . isEmpty ()
| | ! entry . getValue () . equa l s ("0"))
{

System . out . p r i n t l n (" c l ave=" + entry . getKey () + " ,
va l o r=" + entry . getValue ()) ;

metaNuevo . put (entry . getKey () , entry . getValue ()) ;
}

}
ObjectMapper objectMapper = new ObjectMapper () ;
S t r ing metadatos = objectMapper . wr i teValueAsStr ing (metaNuevo) ;

r e turn metadatos ;
}

Line 6: The mostrarMetadatosmethod, after converting the file using the convertToFile
method, the process method is invoked which queries the metadata. Finally, only the
metadata tags that have a value other than null will be shown.

Line 9: The convertToFilemethod receive as parameter the file in Multipart/form-data
format and returns the file in File format for its later treatment in the subsequent pro-
cesses.

The process method is the transversal process, both for the consultation service and
for the deletion service. In this method, the Exiftool library is used, providing the
interface for method management.

pub l i c s t a t i c Map<Tag , Str ing> proce s s (F i l e image , Map<Tag , Str ing>
meta)

throws Exception {

try {
Exi fTool ex i fToo l = new Exi fToo lBu i lder () . bu i ld () ;
i f (meta!= nu l l) {

ex i fToo l . setImageMeta (image , meta) ;
}

Map<Tag , Str ing> metadatos = new HashMap<Tag , Str ing >() ;
metadatos =ex i fToo l . getImageMeta (image , a sL i s t (

StandardTag . ISO ,
StandardTag .APERTURE,
StandardTag .WHITE_BALANCE,
StandardTag .CONTRAST,

6.1. Implementation details 33

StandardTag .SATURATION,
StandardTag .SHARPNESS,
StandardTag .SHUTTER_SPEED,
StandardTag .DIGITAL_ZOOM_RATIO,
StandardTag .IMAGE_WIDTH,
StandardTag .IMAGE_HEIGHT)

Line 1: This process receives as parameter the file and the metadata, providing two
functionalities, a reading and a writing functionality.

Line 9: On the one hand, if it receives null value in the metadata field, it returns all
the associated tags, corresponding to metadata of the file it receives as parameter.

Line 5: On the other hand, if it receives a value other than null in the metadata field,
it updates the metadata of the received file with the received metadata.

6.1.2. Remove metadata from a provided file

POST service with the following characteristics:

Name: /metadatos/eliminar

Content-Type: multipart/form-data

Produces: ResponseEntity<byte[]>

Line 3 The service leerMetadatos receives the file as a parameter, and returns the
file with the deleted metadata. The service queries the tags related to the metadata that
have value, removing only metadata that have non-null value.

Line 15: The removeMetada method, receive the file and returns the file with the
deleted metadata. Initially, the convertFile method is invoked to obtain the file in the
necessary format for its later treatment.

Line 18: Finally the process method is invoked, which will be the method that
removes the metadata from the file.

@RequestMapping (value="/metadatos/ e l im ina r " ,method = RequestMethod .POST
,

consumes = " mult ipart /form−data ")

pub l i c ResponseEntity<byte [] > el iminarMetadatos (@RequestParam(" f i l e ")
Mu l t i pa r tF i l e f i l e) throws Exception

{
F i l e f i l eNuevo =removeMetadata (f i l e) ;
byte [] f i l eCon t en t = F i l e s . readAl lBytes (f i l eNuevo . toPath ()) ;
i f (f i l eCon t en t != nu l l)

r e turn new ResponseEntity<byte [] >(f i l eContent ,
HttpStatus .OK) ;

e l s e
re turn new ResponseEntity<>(nul l ,

HttpStatus .INTERNAL_SERVER_ERROR) ;

34 Chapter 6. Metadata Management

}

pub l i c F i l e removeMetadata (Mu l t ipa r tF i l e f i l e)
throws Exception {

F i l e fi leMetadataRemoved =convertToFi le (f i l e) ;
Map<Tag , Str ing> meta lectura =proce s s (fi leMetadataRemoved , nu l l) ;
Map<Tag , Str ing> meta = new HashMap<>() ;

f o r (Map. Entry<Tag , Str ing> entry : meta lectura . entrySet ()) {
i f (entry . getValue () != nu l l &&

! entry . getValue () . isEmpty () | |
! entry . getValue () . equa l s ("0")

)
System . out . p r i n t l n (" c l ave=" + entry . getKey () + " ,
va l o r=" + entry . getValue ()) ;
meta . put (entry . getKey () , "0") ;

}

6.2. File formats

Specifically, a microservice has been developed that manages the following formats:

AFCP, AIFF , APE, APP0, ASF, Composite , DICOM, DNG, DV, DjVu ,
Ducky , EXE, EXIF , ExifTool , FITS , FLAC, FLIR , F i l e , Flash ,
FlashPix , Font , GIF , GIMP, GeoTiff , GoPro , H264 , HTML, ISO ,
ITC , JFIF , JPEG, JSON, Jpeg2000 , LNK, Leaf , Lytro , M2TS, MIE,
MPEG, MPF, MXF, MakerNotes , Meta , Ogg , OpenEXR, Opus , PDF,
PICT, PLIST , PNG, PSP, Palm , Parro , PhotoCD , PhotoMechanic ,
Photoshop , PostScr ipt , QuickTime , RAF, RSRC, RTF, Rad Real ,
Re , SVG, SigmaRaw , WTV,XML, XMP, ZIP

6.3. Appendix

The following is a list of the libraries that have been used in the development of the
microservice

Maven

Maven (6) is installed as follows:

Step 1: Download Maven

To do so, access the url https://maven.apache.org/download.cgi. In the upper part
there is the suggested mirror server to download the files.

Step 2: Unzip the file

Unzip the file on the hard disk, in the path you find most convenient. In my case I
unzipped it in C:\Program Files\ApacheSoftwareFoundation\Maven, since the folder

6.3. Appendix 35

Apache Software Foundation already existed in my system previously when I installed
Apache Tomcat.

Step 3: Create the environment variables for Maven

M2_HOME=C:\Program Files\ApacheSoftwareFoundation\Maven\apache-maven-
3.2.2

M2=%M2_HOME%\bin

Step 4: Add the M2 path to the environment variable PATH:

PATH=...;%M2%

Step 5: Finally, we open a command line, and we run

mvn –version

Exiftool

ExifTool (4) is a Java (7) component for reading and writing metadata in a wide
variety of files, including the manufacturer’s note information of many digital cameras from
various manufacturers such as Canon, Casio, DJI, FLIR, FujiFilm,GE, HP, JVC / Victor,
Kodak, Leaf, Minolta / Konica-Minolta, Nikon, Nintendo,Olympus / Epson, Panasonic /
Leica, Pentax / Asahi, Phase One, Reconyx, Ricoh, Samsung, Sanyo, Sigma / Foveon and
Sony

The installation of the library is done as follows:

Step 1: Install Exiftool

Install Exiftool, because when you run the project with the library, it will look
for the *.exe of the application, if this is already included in the system PATH the
application will run without a problem, otherwise, you must add the *.exe in the
base folder of the project as seen in the image below. Referenciado en Figura 6.1

Figure 6.1: Exiftool.exe library integrated in the project

Step 2: Dependence

Add the following dependency:

<dependency>
<groupId>com . github . mjeanroy</groupId>

36 Chapter 6. Metadata Management

<a r t i f a c t I d >ex i f t o o l−l i b </a r t i f a c t I d >
<vers ion >2.1.0</ vers ion>

</dependency>

Spring boot

The installation of Spring boot (5) in eclipse is done as indicated:

Spring Boot (5) dependencies use the org.springframework.boot groupId. Typically
your Maven POM file will inherit from the Spring-boot-starter-parent project
and declare dependencies to one or more “Starter POMs”.

<parent>
<groupId>org . spr ingframework . boot</groupId>
<a r t i f a c t I d >spr ing−boot−s t a r t e r−parent</a r t i f a c t I d >
<vers ion >1 .5 . 3 .RELEASE</vers ion>

</parent>
<dependencyManagement>

<dependencies>
<dependency>

<groupId>org . spr ingframework . boot</groupId>
<a r t i f a c t I d >spr ing−boot−s t a r t e r−web</a r t i f a c t I d >

</dependency>

Chapter 7
Contribution

7.1. Diego’s contributions

Diego was involved for the first weeks after the first meeting with the rest of the team
in the investigation of the feasibility of the initial idea of the project. As his knowledge
in this topic was not as good as it came to be, he did not find some limitations that later
we got, especially related to the extension and the petition handle. Also during those
first weeks of research, he got more familiar with what metadata was. He could find a lot
of bibliography and valuable resources like the books Metadata (53) and Introduction to
metadata (47). Also, he made some hands-on research, proving on different file formats
how and how much metadata was generated with their creation and modification. As well
he proved to share different documents to check if those messenger services cleaned the
metadata or not. After those first weeks of research, with the rest of the components of
the team, he agreed that the initial idea of an online service to eliminate the metadata
form files though a plug-in was something that could be accomplished.

After the second meeting, the idea of organizing the project in independent microser-
vices was accepted. He was assigned to develop the orchestrator microservice among with
looking for applications which target as well the treatment of metadata. For the microser-
vice first of all, he had to investigate what microservices were, as he had just heard of the
concept but never really work with it. Diego enjoyed this part of the project as he learned
a lot, not just about the microservice architecture but also about the development of web
services. All this time of documentation and research came as a great help to him when
writing the memory.

Once Diego had a clear idea of what a microservice was and how did they work, he
looked for what technology employ to carry it out. For the language, there were almost as
many possibilities as programming languages exist. He focussed his quest on those which
he had used before so he could use that background, those were Python (61), PHP (57),
C (49) and Java (58). After this research, Diego thought that the best would be either
Python or Java, as there were the ones with the greatest amount of documentation and
with a wider and most active community of developers, which always is a great help when
looking for common errors. Finally, Diego chose to do it in Java for the next reasons: it was

37

38 Chapter 7. Contribution

the language he was more familiarized with, so the learning curve would be smaller. The
website "Baeldung" (1) offered free high-quality courses on how to develop microservices,
so it was a great start point. The existence of frameworks which helps a lot at the time of
developing application such as Spring Boot.

The next step was starting to code, the integrated development environment (IDE)
chosen by Diego to start to code was Eclipse, as it was the IDE he had used the most. He
employed a tool that Eclipse offers to incorporate all the Spring boot features to Eclipse
(10). Nonetheless, Diego switched to Spring Tool Suite (STS) in a later phase of the
development process. This change was motivated by the difficulty he found in integrating
the database to the microservice using the above-mentioned tool. As STS is completely
focused on developing Spring Boot services, aspects as the configuration of the database
or the use of external libraries were easier to accomplish.

Appart of that complication the development of the orchestrator microservice which
took Diego the next month and a half was placid. He got familiarised with the HTTP
methods which once again was something he had the motion of but never before had the
chance to work with. He programmed some functionalities that he thought could be useful
but when talking with the other components of the team realised that they were not. These
functionalities were: the possibility of not just deleting a certain format but also being able
to delete all the formats stored at once, acting as a reset function. The other discarded
functionality was thought to register a service with only one of the two URL available, this
is having a service which only eliminates or consults the metadata but not both.

Once the orchestrator microservice was finished and Diego had tested it, he tried to
help Guillermo with the extension as it turned to be the part of the project where the
most difficulties were found. In that particular stage of his development, Guillermo was
trying to make the extension work as well in Gmail, as it was already functional in another
Google service as Drive. Unfortunately, there was not much documentation that could
not help them, and the few knowledge Diego had about Javascript, in addition to how to
advance the project was in that point, made Diego not very useful. On the other hand,
the integration of the orchestrator with the extension went very well, being completed in
just some hours.

On the last part of the development process of the project, Diego tried to create a
new microservice to handle the metadata of the PDF formats, as this format is one of the
most commonly used. Following what Rosa accomplished with the images, he looked for a
library which enabled him to work with the metadata of PDF, discovering iText (3). This
library provides a series of functions to work with PDF files, including some oriented to
metadata. Diego was able to clean metadata from files he had stored locally, but he could
not extend this to the files he received online, therefore this service was not included to
the project. However, we believe that is feasible to get this service completely functional
with some extra work in that part.

7.2. Guillermo’s contributions

Guillermo has been in charge of researching and developing everything related to the
extension. In the first weeks of the project, he investigated the development of the extension
due to ignorance of the development of these. In this time he took an online course on

7.2. Guillermo’s contributions 39

YouTube called "Programming from A to Z" by Daniel Shiffman (known as "The coding
train" on YouTube) (59) where he learned how to make his first browser extensions.

To practice, he developed several varied extensions to assimilate the concepts seen in
the online course. The first test with extensions was a Chrome browser extension that
pops up with the phrase "Hello World!" when you click on the extension icon. Next, he
developed an extension that changes all the images on a website into kitten photos. Finally,
he made an extension that had a window that an image would appear when activating the
icon of the extension.

Once the basic concepts of extensions were assimilated, he began with the research on
webrequest API (16) which will be used during the development of the entire project.
The objective at the beginning was to print in the console all the requests of every event
available in the API (more information available in the Chapter 4) and compare them
with the requests of the browsers developer mode (F12 mode). The first attempt working
with these outgoing requests was to make an HTML server where only one file could be
uploaded. At the same time, the same tests would be done on Google Drive, since it is
a more realistic scenario for the use of this extension. Most of the time invested in this
part of the project was spent searching for information on requests and information on the
webrequest API. No information was found on how to extract the files uploaded from
requests in HTML forms, so from that moment, the investigation was done entirely on
Google Drive since there was information about the requests that contained uploaded files.

The following month was dedicated to the processing of the data from the request.
This process was slower since on those dates more time was needed to carry out tasks from
other subjects. To validate that the image was being processed correctly, the base64
code obtained was tested on a page (37) where it converts the base64 code into a visible
image. Many tests were necessary since the information on these requests was not found
until several tests later, failing some of those attempts. The processing of this data involved
many modifications regarding the information obtained from the request, such as dividing
it into information sections to discard unnecessary information, decode, encode, etc. Each
of these operations requires a few days to obtain information and prove that they work
individually.

The next milestone corresponding to Guillermo’s work was to connect all the com-
ponents of the project, that is, the orchestrator and a cleaning microservice. To learn
about making connections with other services, a test extension was first created and then
it was integrated into the project’s extension code. This test consisted of sending infor-
mation to the orchestrator that was written with XMLHttpRequest and seeing if the
database was modified. This option at the beginning was not viable because working with
XMLHttpRequest (45) was confusing and was changed by the fetch API (41) which
simplified the code and the connection with the orchestrator was a success from the first
attempt. This first connection to the orchestrator took about two days of work. The first
connection to the cleaning microservice took approximately one week of work. This is due
to the format incompatibilities that were sent by the extension since they did not coincide
with the microservice. Guillermo also had to know the technologies used for each compo-
nent of the project to be able to make the necessary adjustments so that everything could
fit together. To do this, he had to watch videos on the internet about the basic knowledge
of Springboot since it was unknown to him. Regarding the database, he downloaded and
learned to use My Workbench SQL, which is connected to the orchestrator.

40 Chapter 7. Contribution

Once all the components are working at the same time, the next step for the develop-
ment of the application would be to cancel the request where the processed file is found.
It took several weeks of parallel work with other tasks of the extension to investigate on
canceling this type of requests since the first tests carried out were all unsuccessful. This
functionality would not be perfectly implemented because there is no information about it
in official manuals and an alternative solution had to be chosen.

Another of the tasks that he has tried to solve is being able to use the extension on
every web page. This took 2-3 weeks without any results, as the webrequest API did not
offer enough information. It was not possible to know all the sections where there can be
a file. This was a failure, so, together with the project development team, they decided to
limit the functionality of the project to Google services (such as Google Drive, Gmail, etc.).
This option was still not feasible given that no clear information about file upload requests
could be found in the other Google services, so the team decided to limit the project to
Google Drive only, and then, as future work, it could be implemented in different platforms
or web pages.

The last two weeks of development were spent on optimizing certain parts of the code
and correcting errors. Not many errors were found but enough tests were carried out to
verify its correct operation. Changes were also necessary for the part of the code that
processes the request information for its proper functioning.

7.3. Rosa’s contributions

This chapter describes the contributions that Rosa Olivia Zumaeta Sánchez made to
the project. Those contributions are classified in the different stages that the development
of the process went through.

7.3.1. Stage 1: Realization of a test browser extension

The initial objective we set was to obtain enough knowledge about the development
of browser extension and how do they work. Since we did not have this knowledge, we
dedicated the first weeks to learn about browser extension, doing some tests like displaying
an icon in the browser. At this point, the first problem arose from the version of the
manifest. This was because the latest version of Chrome had changed the field manifest-
version, that now must be included with value two. After finding the correct value, the
browser extension icon could be displayed and visualized in Chrome.

After that initial test, the next objective was to offer more functionalities to the browser
extension. We worked to display a file selector, so the user could select a file, and then
the properties or data of the file would be displayed. At this point, it was a matter of
assigning JS and HTML files to the initial browser extension. After several investigations
of different portals, the changes described were made.

Initially, the code was in Javascript and HTML, although the final idea was to use
jQuery or AngularJS. To end with this stage, we made a small POC, using a FileReader
to display the data of a file selected from a Chrome extension.

7.3. Rosa’s contributions 41

7.3.2. Stage 2: Browser extension study

During this stage, our goal was to check for which browsers we could develop the project.
For practical purposes, we thought that Chrome and Mozilla were great candidates since
they use the same procedures to implement the browser extensions.

7.3.3. Stage 3: Feasibility of the proposed browser extension

For this stage, each member of the team was assigned a task. Rosa, in particular, was
in charge of developing a microservice that could manage the metadata of a file.

When she started with the development she found difficulties with the installation.
Using Eclipse as the IDE to work with Spring Boot, generated lots of errors until she was
able to finally started Eclipse correctly. She was able to accomplish that after configuring
the libraries and properties needed for the inclusion of the dependency with Spring Boot.

During this research process, she observed that a specific IDE, for example, Spring Tool
Suite (STS), could have been a better choice for this task. STS is an Eclipse-based IDE
with Spring Boot integrated on it, offering the developer to get away from configuration
issues, including the configurations needed to develop microservices.

After having an environment working on a Hello world, the next she faced was to start
with the development of the metadata consultation service. Initially, the metadata query
was done completely by Rosa, without using any library. This initial program was the one
she uses for the proof-of-concept she had with the rest of the team. But when she tried to
develop a service to remove the metadata from the file (a task that involved several tests)
the possibility of using a library was considered due to the difficulty of the task.

To continue with the removal of the metadata, she decided to focus on finding a library
that provided image metadata management, finding the library she finally decided to use,
Exiftool. The installation of the library did not work properly the first time since she did
not pay attention to the executable file required the installation, using only the previously
commented dependency.

Once the library was properly installed, and after developing and testing the func-
tionality to remove metadata, the last step was to invoke from a client the services of
consulting and deleting metadata. She found that the content-type for sending images is
multipart/form-data, and therefore was needed to implement a test client, based on an
HTML that allowed the selection of an image file.

The action was modified to invoke the metadata query or metadata deletion service as
appropriate. During the testing phase, she noted that the service queried all the metadata
fields present on the file, even if those fields did not have any information, returning most
of the time a lot of empty data because of those fields. To solve this she had to recode the
program to make it return only those fields which had information.

Something similarly happened for the metadata erased. The query deleted all metadata
tags, even those tags that were not present in that type of file, so she modified it to only
delete those metadata tags which had value.

42 Chapter 7. Contribution

During the integration tests, the team observed that the file that was returned by the
microservice when the metadata was deleted was not supported by the browser extension
developed by Guillermo because the browser extension expected the file as an array of
bytes. To solve this Rosa made a change in the way the resource was being sent so it
matched the expected format.

After the development of the microservice and the fixing, the complications emerged
during the integration, the memory is written.

7.3.4. Stage 4: Memory report

In this part, Rosa’s contribution focused on the following: The introduction of the
report, the chapter in which Rosa’s contributions to the team were detailed, the chapter
corresponding to the implementation of the microservice that manages the metadata of
a file, and along with the other members of the team the conclusions she obtained while
working on this project.

Chapter 8
Conclusions

In general terms we are quite happy with the results of the project, as is quite similar
to those we planned at the beginning of the devolopment. But we should mention the great
amount of complications we faced during the evoluion of it. Most of them occasioned by
the extension, as explained in Chapter 4.

What we have accomplished is a completely functional application which detects the
Google Drive requests, offering the user the possibility of cleaning the metadata of the
uploaded files if these are among the formats we support.

At the moment the application supports image formats such as JPEG, PNG, GIF, etc.
But being designed as a microservices-based architecture, adding new formats would not
be a problem, since there is no need to modify code in the different components of the
system. It is extensible to all the desired formats and for any available platform, being
able to create each microservice in a different technology or programming languages.

Another thing we value very positively is the chance we have had to use modern tech-
nologies, which are widely used in the industry but not so in the academic world. Examples
of these are Spring Boot, JavaScript, microservices architecture, or the use of external li-
braries such as JPA or Spring Boot starter web.

A considerable part of the time we invested in this project was directed to investigation
and discover if different ideas were feasible or not. Having our work in this project as a base,
we believe there is a great potential to include new functionalities making the "browser
plug-in for metadata removal" more useful.

8.1. Future work

The main areas where this project could be extended, with not much worked needed
and making it a more complete product woule be:

43

44 Chapter 8. Conclusions

8.1.1. Extend the functionality to more formats

What we regret the most was not being able to extend the functionality we built to
work with other metadata formats but images. As we were three components in the group,
one was focused on the orchestrator, other on the extension and just one person was dealing
with the formats. Our initial idea at the early stages of the project development was to be
able to treat the metadata in formats like:

PDF.

OpenDocument mainly .odt, .ods and .odp.

The most popular Microsoft Office formats like .docx, .xlsx and .ppt.

Some video formats like .mp4 or .avi.

This was a very optimistic approach, because each of them would require from a dif-
ferent microservice, as each format will have different functions or libraries to deal with
the corresponding metadata. Nonetheless taking advantage that the extension and the
orchestrator are completely developed, future work will be only required on this side of the
project. Using frameworks like the ones we have already used as Springboot will speed up
this development. As well as having already a working microservice like the one we devel-
oped to deal with images, is a great reference. Therefore, finding the the proper library to
deal with the metadata of the new format is the key of any future expansion of the project.

All those suggestions were proved while the development of the microservice we made
to deal with the PDF. This feature is not included in the project as was not completed, but
we were close being able to modify the metadata from PDF documents on the file system,
as is explained in detail in Chapter 7.3.4.

8.1.2. Extension

As detailed in the Chapter 4 the extension has had numerous errors that could not be
solved due to problems with the API or insufficient information. The task that should be
improved the most in the future is to extend the extension for every possible web page that
has to file uploads. This can be implemented as the webRequest API improves, offering
more information on requests so that files that are not in the body of the request can be
accessed by the extension.

Another possible improvement to the project is the cancellation of requests when the
user decides not to upload the file to be cleaned. In the current state of the project it has
not been implemented in an optimal way, so the user has to do some more interaction with
the extension than expected. This can be improved as the API improves or the upload
requests are standardized so that it is the same for all web pages.

Finally, the extension is only available for the Chrome browser and Firefox, so it would
be necessary to rewrite some functions to make them compatible with other browsers or
offer the same extension in other browsers separately.

8.1. Future work 45

8.1.3. Move to from local to online

The project is currently working locally, that is, the orchestrator and cleaning microser-
vices are installed on the user’s computer and working at the same time. Having the entire
project locally is necessary for its proper development since it allows testing with the other
components of the project, but it is not a solution for its use with real users. Therefore,
the services that make up the extension (see Chapter 2.7) must be uploaded to Internet
servers. This allows you to have as many cleaning microservices as you want at different
URLs, notifying the orchestrator where those microservices are located. The user does not
need to start the cleaning microservices for the entire system to function, allowing only the
user to interact with the extension. In addition to the CPU load that these microservices
could be using, it saves having to download and excute these components.

8.1.4. Extend this service to other platforms

We approach this project with the idea of making the project working with the least
interaction from the user as possible. That was the reason we used the browser extension
as the component which looks for outgoing HTTP connections. In that sense, an extension
is an ideal tool, but the microservices we developed could work in very different frames.
One of the advantages of the microservice architecture is the independence they have from
other components of the system, as is explained in Chapter 1.2.

This independence makes them greatly reusable, as to how they communicate is through
API calls, they could be called from very different platforms. For example, if we develop
a desktop application, the only code that would be required will be the one necessary
to develop a user interface and the calls to our microservices. Same could be applied to
a mobile app, as most of the communications people have nowadays is through mobile
phones, this is a very interesting future work. Once again all the part which deals with
both the user and the leaving petitions with a file attached will need to be code, but once
that is done, the treatment of the metadata could be done in our microservices

One last platform is to develop a complete website instead of an extension. This could
be useful if we wanted to have greater interaction with the user, as in the extension this
is limited to the small window it uses. Once again all the microservices and the advances
achieved in this project could we reused for it.

Bibliography

[1] Baeldung website. https://www.baeldung.com/.

[2] A controller, service and dao. https://www.baeldung.com/
jsf-spring-boot-controller-service-dao.

[3] Discover itext pdf. https://itextpdf.com/.

[4] Exiftool by phil harvey. https://exiftool.org/.

[5] Installing spring boot. "https://docs.spring.io/
autorepo/docs/spring-boot/1.0.0.RC5/reference/html/
getting-started-installing-spring-boot.html".

[6] Learn apache maven build automation tool. https://www.tutorialspoint.
com/maven/maven_overview.htm.

[7] Oficial web for java. https://www.java.com/es/download/faq/java8.xml.

[8] Setting up swagger 2 with a spring rest api. https://www.baeldung.com/
swagger-2-documentation-for-spring-rest-api.

[9] Spring boot with sqlite. https://www.baeldung.com/spring-boot-sqlite.

[10] Spring tools for eclipse ide. https://www.eclipse.org/community/eclipse_
newsletter/2018/february/springboot.php.

[11] What is metadata? https://www.lifewire.com/
metadata-definition-and-examples-1019177.

[12] Chrome notifications developer guide. https://developer.chrome.com/apps/
notifications, (accessed June 12, 2020).

[13] Spring data jpa. https://spring.io/projects/spring-data-jpa, (accessed
June 12, 2020).

[14] What are microservices? https://aws.amazon.com/es/microservices/,
(accessed June 12, 2020).

[15] Rfc1341(mime) : 7 the multipart content type. https://www.w3.org/
Protocols/rfc1341/7_2_Multipart.html, (accessed June 5, 2020).

47

https://www.baeldung.com/
https://www.baeldung.com/jsf-spring-boot-controller-service-dao
https://www.baeldung.com/jsf-spring-boot-controller-service-dao
https://itextpdf.com/
https://exiftool.org/
"https://docs.spring.io/autorepo/docs/spring-boot/1.0.0.RC5/reference/html/getting-started-installing-spring-boot.html"
"https://docs.spring.io/autorepo/docs/spring-boot/1.0.0.RC5/reference/html/getting-started-installing-spring-boot.html"
"https://docs.spring.io/autorepo/docs/spring-boot/1.0.0.RC5/reference/html/getting-started-installing-spring-boot.html"
https://www.tutorialspoint.com/maven/maven_overview.htm
https://www.tutorialspoint.com/maven/maven_overview.htm
https://www.java.com/es/download/faq/java8.xml
https://www.baeldung.com/swagger-2-documentation-for-spring-rest-api
https://www.baeldung.com/swagger-2-documentation-for-spring-rest-api
https://www.baeldung.com/spring-boot-sqlite
https://www.eclipse.org/community/eclipse_newsletter/2018/february/springboot.php
https://www.eclipse.org/community/eclipse_newsletter/2018/february/springboot.php
https://www.lifewire.com/metadata-definition-and-examples-1019177
https://www.lifewire.com/metadata-definition-and-examples-1019177
https://developer.chrome.com/apps/notifications
https://developer.chrome.com/apps/notifications
https://spring.io/projects/spring-data-jpa
https://aws.amazon.com/es/microservices/
https://www.w3.org/Protocols/rfc1341/7_2_Multipart.html
https://www.w3.org/Protocols/rfc1341/7_2_Multipart.html

48 BIBLIOGRAPHY

[16] Webrequest api documentation website. https://developer.chrome.com/
extensions/webRequest, (accessed June 5, 2020).

[17] Chrome api for downloading files. https://developer.chrome.com/
extensions/downloads, (accessed June 9, 2020).

[18] Githut 2.0 a small place to discover languages in github. https://madnight.
github.io/githut/#/pull_requests/2020/1, April 12, 2019 (accessed June
10, 2020).

[19] Most popular google chrome browser extensions ever. http://www.skipser.com/
p/2/p/most-popular-chrome-extensions.html, April 12, 2019 (accessed
June 10, 2020).

[20] Why whatsapp (and telegram) messages are not really pri-
vate? https://www.andreafortuna.org/2019/08/12/
why-whatsapp-and-telegram-messages-are-not-really-private/,
April 12, 2019 (accessed June 10, 2020).

[21] Phishing attack. https://www.adarsus.com/phishing-que-es/, April 12,
2019 (accessed June 8, 2020).

[22] Spring framework - spring. https://spring.io/projects/
spring-framework, April 12, 2019 (accessed June 8, 2020).

[23] Metadata analyzer - elevenpaths. https://www.elevenpaths.com/es/
labstools/metashield-analyzer/index.html, April 2, 2019 (accessed June
12, 2020).

[24] Accessing data with mysql. https://spring.io/guides/gs/
accessing-data-mysql/, April 22, 2019 (accessed May 10, 2020).

[25] Accessing data with mysql. https://spring.io/guides/gs/
accessing-data-jpa/, April 22, 2019 (accessed May 12, 2020).

[26] Rest api tutorial. https://restfulapi.net/, April 22, 2019 (accessed May 12,
2020).

[27] What is jpa? introduction to the java persistence
api. https://www.infoworld.com/article/3379043/
what-is-jpa-introduction-to-the-java-persistence-api.html,
April 22, 2019 (accessed May 12, 2020).

[28] Exiv2. c++ metadata library and tools. https://www.exiv2.org/index.html,
April 3, 2019 (accessed June 10, 2020).

[29] Pdf metadata editor. http://broken-by.me/pdf-metadata-editor/, April
3, 2019 (accessed June 10, 2020).

[30] Batchpurifier. batch multi-format hidden data & metadata removal software tool
for windows. http://www.digitalconfidence.com/batchpurifier.html,
April 3, 2019 (accessed June 13, 2020).

[31] Jeffrey’s image metadata viewer. http://exif.regex.info/exif.cgi, April 3,
2019 (accessed June 13, 2020).

https://developer.chrome.com/extensions/webRequest
https://developer.chrome.com/extensions/webRequest
https://developer.chrome.com/extensions/downloads
https://developer.chrome.com/extensions/downloads
https://madnight.github.io/githut/#/pull_requests/2020/1
https://madnight.github.io/githut/#/pull_requests/2020/1
http://www.skipser.com/p/2/p/most-popular-chrome-extensions.html
http://www.skipser.com/p/2/p/most-popular-chrome-extensions.html
https://www.andreafortuna.org/2019/08/12/why-whatsapp-and-telegram-messages-are-not-really-private/
https://www.andreafortuna.org/2019/08/12/why-whatsapp-and-telegram-messages-are-not-really-private/
https://www.adarsus.com/phishing-que-es/
https://spring.io/projects/spring-framework
https://spring.io/projects/spring-framework
https://www.elevenpaths.com/es/labstools/metashield-analyzer/index.html
https://www.elevenpaths.com/es/labstools/metashield-analyzer/index.html
https://spring.io/guides/gs/accessing-data-mysql/
https://spring.io/guides/gs/accessing-data-mysql/
https://spring.io/guides/gs/accessing-data-jpa/
https://spring.io/guides/gs/accessing-data-jpa/
https://restfulapi.net/
https://www.infoworld.com/article/3379043/what-is-jpa-introduction-to-the-java-persistence-api.html
https://www.infoworld.com/article/3379043/what-is-jpa-introduction-to-the-java-persistence-api.html
https://www.exiv2.org/index.html
http://broken-by.me/pdf-metadata-editor/
http://www.digitalconfidence.com/batchpurifier.html
http://exif.regex.info/exif.cgi

BIBLIOGRAPHY 49

[32] Foca github repository. https://github.com/ElevenPaths/FOCA, April 5,
2019 (accessed June 1, 2020).

[33] Foca website - elevenpaths. https://www.elevenpaths.com/es/labstools/
foca-2/index.html#, April 5, 2019 (accessed June 1, 2020).

[34] Discussion in chromium forums about asynchronous methods not implemented or sup-
ported. https://bugs.chromium.org/p/chromium/issues/detail?id=
806283, January, 2018 (accessed June 7, 2020).

[35] Code point information. http://tutorials.jenkov.com/unicode/index.
html, June 2, 2020 (accessed June 9, 2020).

[36] Xmlhttprequest reference. https://xhr.spec.whatwg.org/
#synchronous-flag, June 4, 2020 (accessed June 8, 2020).

[37] Base64 to png converter. https://onlinepngtools.com/
convert-base64-to-png, June 6, 2020 (accessed June 9, 2020).

[38] Promise.prototype.then() - javascript | mdn. https://developer.mozilla.
org/es/docs/Web/JavaScript/Referencia/Objetos_globales/
Promise/then, June 6, 2020 (accessed June 9, 2020).

[39] Referenceerror: browser is not defined. https://github.com/mdn/
webextensions-examples/issues/194, March 13, 2017 (accessed June
9, 2020).

[40] Textdecoder api documentation. https://developer.mozilla.org/en-US/
docs/Web/API/TextDecoder, March 20, 2020 (accessed June 9, 2020).

[41] Fetch api - javascript | mdn. https://developer.mozilla.org/es/docs/
Web/API/Fetch_API, March 23, 2019 (accessed June 9, 2020).

[42] Promise - javascript | mdn. https://developer.mozilla.org/es/docs/Web/
JavaScript/Referencia/Objetos_globales/Promise, March 23, 2019 (ac-
cessed June 9, 2020).

[43] Using formdata objects. https://developer.mozilla.org/es/docs/Web/
Guide/Usando_Objetos_FormData, March 23, 2019 (accessed June 9, 2020).

[44] Windowbase64.atob() function information. https://developer.mozilla.
org/es/docs/Web/API/WindowBase64/atob, March 23, 2019 (accessed June
9, 2020).

[45] Xmlhttprequest - javascript | mdn. https://developer.mozilla.org/es/
docs/Web/API/XMLHttpRequest, March 23, 2019 (accessed June 9, 2020).

[46] Api for downloading files with other browsers. https://developer.mozilla.
org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/downloads/
download, October 25, 2019 (accessed June 9, 2020).

[47] Murtha Baca. Introduction to metadata. Getty Publications, 2016.

[48] Swapnil Bangare. The fetch api, a modern replacement for xmlhttprequest.
https://medium.com/beginners-guide-to-mobile-web-development/
the-fetch-api-2c962591f5c, March 26, 2018 (accessed June 9, 2020).

https://github.com/ElevenPaths/FOCA
https://www.elevenpaths.com/es/labstools/foca-2/index.html#
https://www.elevenpaths.com/es/labstools/foca-2/index.html#
https://bugs.chromium.org/p/chromium/issues/detail?id=806283
https://bugs.chromium.org/p/chromium/issues/detail?id=806283
http://tutorials.jenkov.com/unicode/index.html
http://tutorials.jenkov.com/unicode/index.html
https://xhr.spec.whatwg.org/#synchronous-flag
https://xhr.spec.whatwg.org/#synchronous-flag
https://onlinepngtools.com/convert-base64-to-png
https://onlinepngtools.com/convert-base64-to-png
https://developer.mozilla.org/es/docs/Web/JavaScript/Referencia/Objetos_globales/Promise/then
https://developer.mozilla.org/es/docs/Web/JavaScript/Referencia/Objetos_globales/Promise/then
https://developer.mozilla.org/es/docs/Web/JavaScript/Referencia/Objetos_globales/Promise/then
https://github.com/mdn/webextensions-examples/issues/194
https://github.com/mdn/webextensions-examples/issues/194
https://developer.mozilla.org/en-US/docs/Web/API/TextDecoder
https://developer.mozilla.org/en-US/docs/Web/API/TextDecoder
https://developer.mozilla.org/es/docs/Web/API/Fetch_API
https://developer.mozilla.org/es/docs/Web/API/Fetch_API
https://developer.mozilla.org/es/docs/Web/JavaScript/Referencia/Objetos_globales/Promise
https://developer.mozilla.org/es/docs/Web/JavaScript/Referencia/Objetos_globales/Promise
https://developer.mozilla.org/es/docs/Web/Guide/Usando_Objetos_FormData
https://developer.mozilla.org/es/docs/Web/Guide/Usando_Objetos_FormData
https://developer.mozilla.org/es/docs/Web/API/WindowBase64/atob
https://developer.mozilla.org/es/docs/Web/API/WindowBase64/atob
https://developer.mozilla.org/es/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/es/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/downloads/download
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/downloads/download
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/downloads/download
https://medium.com/beginners-guide-to-mobile-web-development/the-fetch-api-2c962591f5c
https://medium.com/beginners-guide-to-mobile-web-development/the-fetch-api-2c962591f5c

50 BIBLIOGRAPHY

[49] Matt R. Cole. Hands-On Microservices with C. Packt Publishing Ltd, 2016.

[50] David Flanagan. JavaScript: the definitive guide. " O’Reilly Media, Inc.", 2006.

[51] Irakli Nadareishvili, Ronnie Mitra, Matt McLarty, and Mike Amundsen. Microservice
architecture: aligning principles, practices, and culture. " O’Reilly Media, Inc.", 2016.

[52] Sam Newman. Monolith to Microservices: Evolutionary Patterns to Transform Your
Monolith. O’Reilly Media, 2019.

[53] Jeffrey Pomerantz. Metadata. MIT Press, 2015.

[54] Dinesh Rajput. Mastering Spring Boot 2.0: Build modern, cloud-native, and dis-
tributed systems using Spring Boot. Packt Publishing Ltd, 2018.

[55] K Siva Prasad Reddy. Beginning Spring Boot 2: Applications and Microservices with
the Spring Framework. Apress, 2017.

[56] Chaitanya K Rudrabhatla. Comparison of event choreography and orchestration tech-
niques in microservice architecture. INTERNATIONAL JOURNAL OF ADVANCED
COMPUTER SCIENCE AND APPLICATIONS, 9(8):18–22, 2018.

[57] Carlos Perez Sanchez and Pablo Solar Vilariño. PHP Microservices. Packt Publishing
Ltd, 2017.

[58] Sourabh Sharma. Mastering Microservices with Java: Build Enterprise Microservices
with Spring Boot 2.0, Spring Cloud, and Angular. Packt Publishing Ltd, 2019.

[59] Daniel Shiffman. Programming from a to z. https://shiffman.net/a2z/
chrome-ext/.

[60] F. Yergeau. Utf-8, a transformation format of iso 10646. https://tools.ietf.
org/html/rfc3629, November, 2003 (accessed June 8, 2020).

[61] Tarek Ziadé. Python Microservices Development. Packt Publishing Ltd, 2017.

https://shiffman.net/a2z/chrome-ext/
https://shiffman.net/a2z/chrome-ext/
https://tools.ietf.org/html/rfc3629
https://tools.ietf.org/html/rfc3629

	Página de Título
	Índices
	Tabla de Contenidos
	Índice de figuras
	Índice de tablas

	Introduction
	Objective
	The work plan

	Preliminaries
	What is Metadata
	Why is Metadata so Important
	What are Microservices?
	Benefits of Microservices
	Browser extensions and JavaScript
	Spring Boot
	Tools for metadata management

	System Organization
	Extension
	Orchestrator
	Cleaning microservices

	Extension
	Collecting requests
	Processing the request
	Data exchange to microservices
	Orchestrator
	Cleaning microservices

	File cleaned
	Limitations found during development

	Orchestrator
	Performance
	Classes and Interfaces used to create the Orchestrator
	MSOrchestratorMain
	Format
	FormatsDAO
	FormatsREST
	SwaggerConfig

	Consistency
	Libraries employed
	Difficulties and considerations

	Metadata Management
	Implementation details
	Viewing metadata from a proposed file
	Remove metadata from a provided file

	File formats
	Appendix

	Contribution
	Diego's contributions
	Guillermo's contributions
	Rosa's contributions
	Stage 1: Realization of a test browser extension
	Stage 2: Browser extension study
	Stage 3: Feasibility of the proposed browser extension
	Stage 4: Memory report

	Conclusions
	Future work
	Extend the functionality to more formats
	Extension
	Move to from local to online
	Extend this service to other platforms

	Bibliography

