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paciencia, el tiempo dedicado aun estando muy ocupado, y en general todo el

apoyo que me ha dado durante la realización de esta tesis. Su capacidad de

esfuerzo y trabajo constante es una fuente de inspiración.

Asimismo, quiero dar las gracias a Javier Mart́ın Hernández y Javier Mart́ın

Rodrigo sin los cuales tampoco hubiera sido posible la realización de esta

tesis: ha sido una suerte poder realizar el doctorado industrial con ellos y

han contribuido enormemente a mi formación. De igual modo, ha sido muy

importante el soporte del resto del grupo SPOR-DataLab del ICMAT y de mis
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This industrial PhD thesis is devoted to model time series of non-negative in-

tegers (counts). Throughout the dissertation we denote a univariate (sequence

of random variables) or multivariate (sequence of random vectors) time se-

ries with {yt : t = 1, 2, ...}, {yt}t≥1, or just yt for short. Binary time series

(observations taking only two possible values) are usually denoted by zt.

We also denote by Dt all available information up to the end of time period

t. It will typically consist of: the new observation yt; all additional information

that becomes available at time t, It (e.g. information about a new promotion);

and the previous information Dt−1. Thus, we have the recursive definition

Dt = {Dt−1, yt, It}.
Probability distributions (p.d.f. or p.m.f.) will generally be denoted in-

distinctly by π(yt), p(yt) and Pr(yt). The use of one or the other depends

only of the names of the variables in the context, and which one leads to less
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Finally, we denote matrices and vectors with bold letters, e.g. Gt, while

scalars are left without bold emphasis (light), e.g. λt.

Abbreviations
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XIX



AS: Aviation Safety

ARIMA: AutoRegressive Inte-

grated Moving Average

ARMA: AutoRegressive Moving

Average

DCMM: Dynamic Count Mixture

Model

DGLM: Dynamic Generalized

Linear Model

DLM: Dynamic Linear Model

EM: Expectation–Maximization

FP: Functional Programming

GARCH: Generalized AutoRe-

gressive Conditional Heteroskedas-

tic

GLARMA: Generalized Linear

AutoRegressive Moving Average

HS: Hurdle Shifted

IATA: International Air Transport

Association

ICAO: International Civil Avia-

tion Organization

INAR: INteger-valued AutoRe-

gressive

INGARCH: INteger-valued

GARCH

MAE: Mean Absolute Error

MAPE: Mean Absolute Percent-

age Error

MCMC: Markov Chain Monte-

carlo

MLE: Maximum Likelihood Esti-

mation

MSE: Mean Squared Error

NB: Negative Binomial

OOP: Object-Oriented Program-

ming

OoS: Out-of-Stock

SKU: Stock Keeping Unit

SVD: Singular Value Decomposi-

tion

ZAPE: Zero Adjusted Percentage

Error

ZI: Zero Inflated

XX



Abstract

Dealing with uncertainty has been, and continues to be, an important problem

to be taken into account in day-to-day activities of companies and governments.

The uncertainty about some future values, whether it is the price of energy,

the evolution of an epidemic, the intensity of rainfall, etc., poses difficulties for

making adequate decisions. Therefore, the development of accurate forecasting

models is of great importance.

On many occasions, the uncertainty is about future observations that take

non-negative integer (counts) values. For the treatment of the corresponding

count time series, although the use of traditional models is possible, dedi-

cated models that assume non-negative integer observations present numerous

advantages, e.g. point forecasts that are easier to interpret and prediction in-

tervals that will not include unfeasible values. The purpose of this industrial

PhD thesis, is to contribute to the state of the art in the context of time series

modeling with count data. In order to achieve this, three main objectives are

covered:

• Development of models for general count time series.

• Development of models for time series with large numbers of zeros and

overdispersion.

• Development and implementation of efficient and scalable algorithms to

apply the above models to large amounts of data.

The contributions to the field of general count series, commonly found in

relatively aggregated data, are various non-homogeneous Poisson models and
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their corresponding algorithms based on Bayesian analysis. These models are

capable of incorporating multiple combinations of effects frequently found in

time series arising in diverse applications. We illustrate the adequacy of these

contributions with a real example from aviation safety risk management in

which the developed models offer better performance than other well estab-

lished models for time series of this type.

We also contribute to the modeling of time series with large numbers of

zeros and possible overdispersion (second objective), with the development of

univariate and multivariate models. These novel models are based on mix-

tures of Bayesian state-space models, and we show that they outperform other

models in a real-world demand forecasting problem in retail inventory man-

agement.

Lastly, the fulfillment of the third objective has been achieved through the

development of a library to model and obtain predictions of count time series.

This library is designed to offer the greatest flexibility possible, in addition to

implementing the models introduced in this thesis. It also allows the creation

and use of new ones. Furthermore, it provides useful tools for exploratory

analysis and evaluation of forecasting performance. The code of this library is

not open-source as it is a commercial product developed within the Industrial

PhD and owned by the collaborating company.

From the contents of this PhD thesis the following two papers, under diverse

publishing states, have been elaborated:

Flores, B., Rios Insua, D., Alfaro, C. & Gomez, J. (2022).

Forecasting Aviation Safety Occurrences. To appear in Applied Stochas-

tic Models in Business and Industry, https://doi.org/10.1002/asmb

.2675. 2020 ASA-TSIG Student Paper award.

Flores, B. & Rios Insua, D. (2022). Demand Count Time Series

Forecasting in Retail. Submitted.
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sentation at the 11th Bayesian Inference in Stochastic Processes (BISP)

Conference, Spanish Royal Academy of Sciences, Madrid, Spain.

Flores, B., Rios Insua, D., Alfaro, C. & Gomez, J. (March,

2020). Forecasting aviation safety occurrences. Poster presentation

at the Games, Decisions, Risk and Reliability (GDRR) Transportation

Workshop, SAMSI, Durham, United States.

Flores, B. (August, 2020). Forecasting aviation safety occurrences.

Oral presentation at the JSM 2020 TSIG(ASA) Meeting, Virtual.

Flores, B. (December, 2020). Modelos para predecir series temporales

de conteo con un ejemplo de aplicación. Oral presentation at the 1st

IMEIO-DecData: Decisión Optimización y Ciencia de Datos Workshop,

UCM, Madrid, Spain.

Flores, B. (May, 2021). Forecasting count series in retail. Oral pre-

sentation at the 12th Bayesian Inference in Stochastic Processes (BISP)

Conference, Virtual.

Flores, B. (September, 2021). Forecasting count time series in retail.

Oral presentation at the 21st annual European Network for Business and

Industrial Statistics (ENBIS) Conference, Virtual.

Flores, B. (June, 2022). Bayesian predictive forecasting for retailing.

Oral presentation at the 2022 Sociedad de Estad́ıstica e Investigación

Operativa (SEIO) Congress, University of Granada, Granada, Spain.

XXIII



XXIV



Resumen

El tratamiento de la incertidumbre ha sido, y continúa siendo, un importante

problema a tener en cuenta en el d́ıa a d́ıa de empresas y gobiernos. La

incertidumbre sobre ciertos valores ya sea el precio de la enerǵıa, la evolución

de una epidemia, la intensidad de precipitaciones, etc., plantea dificultades

para una toma de decisiones adecuada y, por lo tanto, el desarrollo de modelos

de predicción precisos es de gran utilidad.

En muchas ocasiones, la incertidumbre se refiere a observaciones futuras

que toman valores enteros no negativos o de conteo. Para el tratamiento de

las series temporales correspondientes, aunque sea posible el uso de modelos

tradicionales, los modelos dedicados que consideran observaciones enteras y

no negativas presentan numerosas ventajas, e.g. predicciones puntuales más

fáciles de interpretar e intervalos de predicción que nunca incluyen valores no

factibles. El objeto de esta tesis, resultado de la realización de un doctorado

industrial, es contribuir al estado del arte en el contexto de la modelización

de series temporales con datos de conteo. A fin de lograr esto, se cubren tres

objetivos principales:

• Desarrollo de modelos para series temporales de conteo generales.

• Desarrollo de modelos para series temporales con gran cantidad de ceros

y sobredispersión.

• Elaboración e implementación de algoritmos eficientes y escalables para

aplicar los modelos anteriores a grandes cantidades de datos.
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La contribución al ámbito de las series de conteo generales, comúnmente

encontradas en datos relativamente agregados, se basa en varios modelos de

Poisson no homogéneos y sus correspondientes algoritmos basados en análisis

bayesiano. Estos modelos son capaces de incorporar múltiples combinaciones

de efectos frecuentemente encontrados en series que surgen en diversas aplica-

ciones. Ilustramos la validez de estas contribuciones con un ejemplo real del

campo de la seguridad aérea en el que los modelos desarrollados ofrecen mejor

rendimiento que otros modelos establecidos para series temporales de este tipo.

También contribuimos al modelo de series temporales con gran cantidad de

ceros y posible sobredispersión (segundo objetivo), con el desarrollo de modelos

univariantes y multivariantes. Estos nuevos modelos se basan en mixturas

de modelos bayesianos de espacio de estados. Mostramos que mejoran las

predicciones respecto a otros modelos en un problema real de predicción de la

demanda para la gestión de inventarios en venta al por menor.

Por último, el cumplimiento del tercer objetivo se ha logrado mediante

el desarrollo de una libreŕıa para modelizar y obtener predicciones de series

temporales de conteo. Esta libreŕıa está concebida para ofrecer la mayor flex-

ibilidad posible, además de implementar los modelos introducidos en la tesis,

permite la creación y el uso de otros nuevos. También proporciona herramien-

tas útiles para el análisis exploratorio y evaluación de las predicciones. El

código de esta libreŕıa no es de acceso libre por ser un producto comercial

desarrollado dentro del Doctorado Industrial y propiedad de la empresa colab-

oradora.

A partir de los contenidos de esta tesis doctoral se han elaborado los siguientes

dos art́ıculos en diversos estados de publicación:

Flores, B., Rios Insua, D., Alfaro, C. & Gomez, J. (2022). Fore-

casting Aviation Safety Occurrences. Por aparecer en Applied Stochas-

tic Models in Business and Industry, https://doi.org/10.1002/asmb

.2675. Premio 2020 ASA-TSIG Student Paper.
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Flores, B. & Rios Insua, D. (2022). Demand Count Time Series

Forecasting in Retail. Enviado.

Además, una serie de presentaciones en conferencias nacionales e interna-

cionales también se han derivado de su contenido:

Flores, B. & Martin Hernandez, J. (May, 2019). Large scale dy-

namic forecasting for distributed inventory management. Presentación
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Chapter 1

Introduction

1.1 Motivation

The last decade has seen a boom in the capacity of companies and governments

to exploit numerous advances in information and communication technologies

and statistical modeling, with the aim of collecting and processing relevant

market and population data to support their decision-making processes. In

many cases, a recurrent problem faced is the lack of accurate forecasts of some

quantities of interest, be it the demand of a product, the number of accidents,

or the cases of a new disease. This uncertainty concerning future values can

be dealt with as a time series problem.

One field where time series forecasting has special relevance, and which

motivated part of the research in this thesis, is aviation safety (AS). The de-

velopment of a methodology for AS risk management at national level required

as a major component accurate models to forecast the number of safety oc-

currences, i.e., safety-related events which endanger or which, if not corrected

or addressed, could endanger an aircraft and its occupants; and includes, in

particular, accidents or serious incidents. Despite the high safety levels of the

aviation industry, occurrences continue to take place (ICAO, 2019). These

may entail undesirable consequences like deaths, injured people, delays, air-

craft destruction or reputation loss, among others. Countries develop national
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AS plans, implemented through regulations and/or resource allocation, to try

to make safety occurrences in their airspace less frequent and/or less severe

should they happen. As air freight and passenger traffic is expected to in-

crease in the forthcoming years (IATA, 2019), notwithstanding the current

pandemic, the implementation of effective safety plans in air transportation is

of major importance for governments, not only for the safety of its citizens,

but also because economic prosperity and employment critically depend on a

robust flow of goods and people. Therefore, having good quality occurrence

forecasting models is paramount to properly manage risks, maintain the con-

fidence of its users and preserve the status of aviation as a safe transportation

mode. The problem is involved due to the presence of complex effects like

seasonality, trends or stress that impact the rates of various occurrences and

the uncertainty about future number of operations.

Another field in which we are interested in time series modeling is the other

one which motivates this thesis: inventory management, and, specifically, the

demand forecasting problems faced by many large retail companies. Consider

a company with several hundreds of stores, each one with thousands of prod-

ucts for sale. Stores usually have little storage capacity beyond that available

on their shelves, and, therefore, a limited number of units of each product,

which makes them more susceptible to suffer out-of-stock (OoS) events when

the demand is significantly higher than anticipated. Since increasing the stor-

age capacity induces higher costs, and is generally not an option, the need for

accurate demand forecasting models is crucial to avoid OoS situations entail-

ing negative consequences, like economic or reputation losses. The problem of

forecasting demand in retail has numerous difficulties, there are usually mul-

tiple relevant hierarchies (product family, store section, store, neighborhood,

city, region, country) and we are interested in forecasting both aggregated and

individual demand at any hierarchy level. At the most disaggregated levels,

time series tend to be very diverse with sales of intermittent demand prod-

ucts showing low counts and many days of zero sales; whereas series of high
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demand products will rarely do so. Also, some can show overdispersion, that

is, a variance much higher than the mean, while in others equidispersion is the

norm.

These two motivating problems have in common that the observations of

the involved time series are non-negative integers (counts). Time series count

data are widely observed in practice and usually, unless dealing with very

high counts, greatly benefit from dedicated modeling approaches. This thesis

provides contributions to count time series forecasting, proposing novel models

and their accompanying algorithms, as well as their efficient implementation.

Before detailing our specific research objectives (Section 1.4), let us provide

an introduction and literature review of generic models for count time series in

Section 1.2, and for count time series with frequent zeroes and overdispersion

in Section 1.3. Finally, we end this introductory chapter with a glimpse of the

structure of the dissertation.

1.2 General count time series models

A time series is a set of quantities or observations ordered in time. These can be

collected at equally spaced time points or not; we denote the t-th observation

as yt (t = 1, 2, ...), which can be a scalar (e.g. sales of ice-cream on day t at

shop1) or a k-vector (e.g. sales of ice-cream on day t at shop1, ..., shopk). This

thesis focuses on time series of counts, with entries in yt ∈ Z≥0.

Using the terminology in Cox (1981), time series models for count data

can be divided between observation driven and parameter driven. Let yt be

an observed random variable at time t generated by a distribution that has ϕt

as a time-varying parameter (e.g. the natural parameter ηt of an exponential

family distribution), and y1:t−1 = {y1, ..., yt−1} be all past observations. In

an observation driven model, dependence between the observations in a time

series is represented directly, e.g. through an autoregressive or moving average

structure,

ϕt = ϕ(y1:t−1, ϵt),

3



where ϵt is a random innovation at time t. In a parameter driven model, there

is an underlying latent process that induces dependence between the observa-

tions, e.g. through a state vector evolving according to a Markov process,

ϕt = ϕ∗(ϕ1:t−1, ϵ
∗
t ),

where ϵ∗t is a pure noise innovation process.

In the first group, we have variants for count data of traditional times series

models including integer autoregressive (INAR) (Alzaid & Al-Osh, 1990), gen-

eralized autoregressive moving average (GLARMA) (Benjamin et al., 2003),

integer-valued GARCH (INGARCH) (Ferland et al., 2006), and autoregressive

conditional Poisson (ACP) (Heinen, 2003) models.

The majority of parameter driven models make use of a state-space for-

mulation with the state vectors having a Markovian evolution. Some recent

examples of models in this group are West (2020), Aktekin et al. (2018), Chen

et al. (2018), Aktekin and Soyer (2011) and Gamerman et al. (2013). This

type of models offer several advantages over the observation-driven ones:

• As discussed in Snyder et al. (2008), parameter driven state-space models

tend to be more flexible and provide a closer match to the empirical

properties of series.

• Non-stationary time series are routinely handled by state-space models,

whereas it can be challenging for observation-driven models (McKenzie,

2003). As an example, for low-counts, simple differencing may radically

alter the nature of the time series, since it usually results in negative

values.

• Interpretability is usually much better: the components of the state

vector correspond to easily explainable concepts (level, trend, seasonal

differences,...), which can help the practitioner anticipate reliability or

robustness problems, and facilitates communicating the forecasts to de-

cision makers.
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• Also, as pointed in Yelland (2009), in observation-driven models for count

series, the determinants of the correlation structure being themselves

observations, are therefore restricted to the domain of non-negative in-

tegers. This generally requires the development of specially designed

mechanisms (like the binomial thinning operator of the INAR models)

to describe the correlation structure. On the contrary, state-space mod-

els do not require the development of akin mechanisms, the entries of the

state vector can take any real value, and the correlation structure of the

time series is expressed with conventional algebra (almost always linear).

As a disadvantage, parameter driven state-space models tend to be more

computationally demanding. However, with the constant improvement in com-

putational resources (hardware and software) through the years, this is be-

coming less of an issue. In general, the aforementioned advantages provide the

main reasons of our extensive use of parameter driven state-space models in

this thesis.

One of the first (and still quite common) approaches to forecasting count

data has been the use of relatively simple models that assume Poisson dis-

tributed observations, as in Feller (1991), who fitted a Poisson distribution to

the number of flying-bomb hits in each square of a grid mapping South London

during WWII, or the basic model in Section 2.3.1 that makes use of a Bayesian

conjugate analysis to forecast AS incidents. While these simple approaches can

be adequate for stable time series, when applying them to the complex time

series encountered in practical cases, their performance is lacking in general,

requiring the development of more sophisticated models, as we shall be doing.

The use of Bayesian forecasting techniques in our models offer several ben-

efits. One of the most important, as in many practical cases, will be the

provision of full predictive distributions instead of only giving point forecasts.

This is specially important to assess uncertainty on the one hand, and decision

support, on the other, which is extremely relevant, for example, in the inven-

tory management application for estimating the probability of OoS situations
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and, therefore, order planning. Also, the use of dedicated models for count

data, specially when counts are relatively low, instead of traditional forecast-

ing methods (usually assuming normally-distributed observations) yields more

coherent and usable forecasts in practice (McCabe & Martin, 2005).

In many cases, multivariate data can benefit from joint models. However,

the literature regarding multivariate models for integer-valued time series is

somewhat scarce and has historically been that way because of the computa-

tional challenges they pose. Some recent work using observation-driven models

can be seen in Pedeli and Karlis (2013) with the multivariate INAR approach;

and parameter-driven models in Ravishanker et al. (2014), with a hierarchi-

cal multivariate Poisson time series model using Markov Chain Monte Carlo

(MCMC). Soyer and Zhang (2021) provide an overview of recent advances

in Bayesian modeling and analysis of multivariate time series of counts. As

pointed out by Storvik (2002), the use of MCMC techniques present some dis-

advantages (for every new observation the chains need to be restarted and the

simulation dimension becomes larger) over the particle filter approach we shall

propose for the hierarchical multivariate models presented in Section 2.6.

The general approach adopted in this thesis for general count time series

is based on dynamic Bayesian analysis of non-homogeneous Poisson models.

Several models are proposed to accommodate different effects that might be

encountered in time series to be forecast. Starting with a standard Poisson-

Gamma model, we morph it into novel models (and novel combinations of

standard models) to cover the aforementioned issues including stress, trends,

seasonal, clustering and dependence effects.

1.3 Models for count time series with frequent

zeros and overdispersion

With the aim of modelling time series with large amounts of zeros, Croston

(1972) proposed an approach whereby non-zero values were forecast separately

from the time between them. This approach is quite common when dealing
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with intermittent demand problems (Shenstone & Hyndman, 2005), although

in many practical cases, such as in inventory management, there is a large

quantity of time series to forecast that can be very different from one another

(e.g. high and low demand products in Fig. 1.1). Thus, it is not feasible to

have very specific models for each time series and there is a need for a more

flexible approach.

(a) (b)

Figure 1.1: Examples of time series of sales from high (a) and low (b) or

intermittent demand products.

Another more adaptable approach for dealing with series with a varying

number of zero-observations are zero-inflated (ZI) and hurdle-shifted (HS)

models. Both provide mixtures of a discrete probability mass function (usu-

ally a Poisson or a Negative Binomial distribution) and a Bernoulli to allow for

more flexibility in modeling the probability of zero outcomes. They are becom-

ing popular in business and other applications, e.g. Chen et al. (2016), Chen

and Lee (2017), Snyder et al. (2012), McCabe and Martin (2005), Agarwal et

al. (2002) or Schmidt and Pereira (2011). ZI models, as defined by Lambert

(1992), add additional probability mass to the outcome of zero. As an example,

for a Poisson distribution, this is represented by

p(yt|πt, λt) =

(1− πt) + πt Po(0|λt), if yt = 0,

πt Po(yt|λt) if yt > 0,

i.e. yt = ztxt with zt ∼ Ber(πt) and xt ∼ Po(λt). Hurdle models, on the other

hand, are formulated as pure mixtures of zero and non-zero outcomes. For the
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same Poisson distribution with parameter λt, the probability mass function for

the likelihood is defined by

p(yt|πt, λt) =

(1− πt), if yt = 0,

πt
Po(yt|λt)

1−PoCDF(0|λt)
if yt > 0,

where PoCDF is the cumulative distribution function of the Poisson distribu-

tion. This is equivalent to yt = zt(xt + 1) with zt ∼ Ber(πt) and xt ∼ Po(λt).

The hurdle model is similar to the zero-inflated model, but somewhat more

flexible in that the zero outcomes can be deflated as well as inflated, as neces-

sary.

The other main obstacle to obtaining accurate forecasts is the presence

of time series showing overdispersion, which can pose a problem for many

count models that assume Poisson distributed observations and, thus, that

the mean and variance of the observations is the same. In many practical

cases, some series exhibit overdispersion and others equidispersion. Because

of this, the negative binomial distribution is sometimes used as its variance

is greater than the mean, while having the Poisson distribution as a limiting

case (stopping-time parameter approaching infinity) and, therefore, still ac-

commodating equidispersed series. Another common option is to maintain the

Poisson introducing further randomness, e.g. by considering its parameter as

a random variable that changes according to an autoregresive process (Snyder

et al., 2008), or using discount factors in the predictors (Berry & West, 2020).

We adopt the first approach, using negative binomial distributions (univariate

or multivariate).

The models developed in this thesis to deal with forecasting count time

series with varying levels of zero-observations and dispersion are Bayesian

state-space models, which have proven useful in a range of count time se-

ries contexts, including dynamic network studies (Chen et al., 2018, 2019),

consumer demand (Aktekin et al., 2018) or retail (Berry et al., 2020). These

new models incorporate several of the approaches previously mentioned given

as a result a flexible family of models. In particular, we shall use mixtures of
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Dynamic Generalized Linear Models (West et al., 1985).

Multivariate models frequently use common latent factors for the individual

time series and some form of decouple/recouple strategy. West (2020) gives

a comprehensive review of some recent developments with multivariate count

time series using DGLMs and this approach. We instead, explore the use of

multivariate DGLMs.

1.4 Objectives

The aim of this industrial thesis is the development of new models and method-

ologies that improve the performance of current common approaches used to

forecast two types of counts series: general count time series; and count time

series with frequent zero-observations and overdispersion. The three main ob-

jectives of the dissertation are now detailed.

General count time series

Development of models to forecast common count time series, i.e. those with

relatively high counts and few zero-counts, that can incorporate some combi-

nation of the following effects that are frequent in many practical cases.

• Trends and seasonalities, as e.g. in disease monitoring, where we

can see exponential growth trends and annual seasonality peaking in

winter time. It should be possible to incorporate them in the forecasting

procedure.

• Stress effect. This is really important in safety and reliability environ-

ments: the failure rate of a piece or a process tends to increase with its

use, as is the number of human-caused accidents with the pressure placed

upon the people involved.

• Clustering of some kind, when dealing with a large number of time

series is to be expected. It is only logical to take advantage of this to
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exploit cross series relationships with the objective of obtaining better

forecasts.

• Severities or proportions of the observed quantity that belong to a

finite number of groups, are a quantity of interest in many fields, e.g.

the classification of accidents or infections according to how severe they

are.

• Under-reporting, intentional or not, can appear in numerous appli-

cation domains. For instance, in relation to the previous example, it

is more common among the less severe incidents (due to the lack of a

strong reporting culture) or infections (which could pass unnoticed).

Finally, the models proposed had to improve the performance over other com-

monly used ones in the AS application domain mentioned in Section 1.1.

This led to the paper Flores et al. (2022).

Time series with frequent zeros and overdispersion

Development of novel models to forecast time series with frequent zeros and

overdispersion. These kinds of time series usually appear when dealing with

highly disaggregated data, as in the retail application domain introduced in

Section 1.1. Therefore, they tend to imply working with a much larger number

of time series than when dealing with more aggregated data. Consequently,

more emphasis was placed on the models being:

• Automatic. Large amount of time series to be modeled require that the

intervention of modeling experts be kept to a minimum.

• Scalable. The size of external information in the form of covariates is

usally also big. It is needed to maintain tractability, computation time

and storage capacity, while scaling up.

• Flexible. Often, time series can be very diverse, some can have extremely

low counts and others not, different dispersion levels, etc. Therefore,

models must be adaptive enough.
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As with the models for generic series, models here also had to be able to

exploit cross series relations. Therefore, univariate and multivariate versions,

with their corresponding forecasting procedure needed to be developed. The

application domain in this case was inventory management.

A secondary objective, is the use of the full predictive distributions k-

steps ahead to obtain the corresponding predictive cumulative distribution

to develop a methodology to support informed decisions. For example, in

the inventory management problem, with the stock information and demand

predictions obtained from the models from the previous objective, we were

interested in a methodology to make decisions that reduced the probability of

future OoS events.

This led to the paper Flores & Rios Insua (2022).

Implementation

All the new models and procedures developed to achieve the three previous

objectives had to be implemented in a library under a common programming

language (Python in this case). The algorithms developed and their imple-

mentation had to be conceived in a general enough manner so as to be useful

to forecast any count time series, no matter what the application domain was.

Also, it had to be usable by anyone, regardless of the level of knowledge in

modeling time series.

This led to the countTS Python library.

1.5 Dissertation structure

Chapter 2 deals with the objective of developing general models for count time

series with relatively high counts. We present a framework to forecast these

type of time series. It covers novel models as well as novel combinations of

earlier models. They incorporate effects commonly encountered in these type

of time series. This is illustrated with an application to AS data.
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Chapter 3 introduces methodologies and models for large-scale dynamic

forecasting of non-negative count series with frequent zeros and overdispersion.

We also address the secondary objective of decision making under the results

of the models. A demand forecasting problem faced by a major retail company

exemplifies the developments.

In Chapter 4, the implementation of the models in the previous Chapters 2

and 3, and algorithms for the forecasting in both application domains is given,

with examples.

Chapter 5 summarizes all the research carried out and raises new questions

derived from the work in Chapters 2 to 4, and from where new research lines

emerge.

12



Chapter 2

Models for general count time

series

2.1 Introduction

This chapter fulfills the first objective in Section 1.4, providing new models and

a methodology to forecast general count time series that can present several

combinations of effects. The generic models are illustrated with the motivating

problem of AS introduced in Section 1.1.

In earlier work (Rios Insua et al., 2018), a framework to support AS risk

management at country level was presented. Such framework, which has been

successfully applied in Spain (Elvira et al., 2020), supports a government in de-

ciding how to allocate resources to improve AS levels. It is based on Bayesian

decision analysis (Clemen & Reilly, 2013) and includes, as basic ingredients,

models to: (a) forecast the numbers of various safety occurrences; (b) forecast

occurrence severities; (c) forecast the consequences of safety occurrences; and

(d) assess such consequences through a multi-attribute utility function. Such

models are integrated to monitor safety, screen occurrences and, more impor-

tantly, allocate AS resources. Rios Insua et al. (2019) details ingredients (c)

and (d). The developments in the present chapter supports parts (a) and (b),

providing a methodology to forecast general count time series.
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Most of the literature concerning AS occurrence forecasting has focused

on predicting the circumstances that cause them, e.g. aircraft icing (McCann,

2005) or turbulence (Gill & Buchanan, 2013). While this can be useful for short

horizon and operational planning, AS strategic planning at country or airline

level requires focusing more on medium to long term forecasts of occurrences.

Moreover, due to the many different types of AS occurrences, there is a need

for flexible models capable of forecasting occurrences of very different nature,

instead of models that focus on one particular occurrence, as e.g. those for

runway excursions (Ayra et al., 2019), flight delays (Khanmohammadi et al.,

2016) or go-around/missed approaches (Subramanian & Rao, 2018). Thus, our

aim is at providing a comprehensive modeling approach that can accurately

forecast diverse AS occurrences with long or short horizons, i.e. the interest

lies in modeling time series of non-negative counts, taking into account the

particularities of our application domain.

Note though that while the models in this Chapter are applied to the par-

ticular problem of forecasting AS occurrences, they can also be used to predict

safety and reliability occurrences in other areas, like maritime transport, in-

dustry, or supply chain networks. More generally, they can be applied to any

domain in which there are series with relatively high values that justify the

need for specific models: not so high that they can be adequately modeled

with standard models, but not so low that there are frequent zeros. We revisit

this last case in Chapter 3, and Chapter 4 describes a package covering as well

standard models.

Section 2.2 introduces the problem and provides exploratory analysis illus-

trating key effects in the proposed forecasting domain. They are incorporated

gradually in Section 2.3, stemming from a basic model to which we add one

feature in turn to deal with such effects. These models are then expanded to

account for the uncertainty in the number of operations, an especially impor-

tant theme when interested in long-horizon AS forecasts. Then, Section 2.5

covers models that allow us to predict occurrence severity, and deal with the
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possible under-reporting in some of those severity groups. The models are

illustrated with three cases in Section 2.6.

We use probabilistic influence diagrams throughout (Shachter, 1988) to

graphically support the presentation of models. We propose novel algorithms

to forecast with our models, and whose convergence follows from standard

arguments that can be seen in, e.g., Gelman et al. (2013).

2.2 Exploratory data analysis of aviation safety

occurrences

In our motivating scenario, airlines and national AS agencies periodically regis-

ter occurrences along with the number of operations with the aim of monitoring

and improving their occurrence rate as well as reducing their severity. As an

example, in our case, referring to AS risk management at country level, 86 oc-

currence types are considered, ranging from runway incursions to ground han-

dling events going through low altitude operations or ground collisions. Each

of the occurrences is classified into one of five severity groups as proposed by

the International Civil Aviation Organization (ICAO, 2018): (1) Accident (en-

tailing fatalities and/or aircraft destruction); (2) Serious Incident; (3) Major

Incident; (4) Significant Incident; and (5) Occurrence with no safety effect.

Thus, we may talk, for example, about a severity 2 ground handling occur-

rence. For our analysis, we use daily recorded occurrences from 2010 to 2018.

For each occurrence, the following information is available: date and airport

code; its type and severity; the corresponding number of fatalities, and serious

and minor injuries, if any; and, finally, information concerning the aircraft such

as its model and maximum certificated take-off mass. Furthermore, for each

airport, the recorded data include information such as its ICAO code, latitude

and longitude and number of daily flight operations. In this chapter, as well

as in the strategic risk management aspects of the parent project, we focus on

monthly forecasts aggregating the data as required.
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For a given occurrence type, e.g. runway incursions, the data available

at the end of the k-th forecasting period is denoted with Dk and consist of

the operations-occurrences pairs {(n1, x1), . . . , (nk, xk)}, where ni represents

the number of operations and xi, the number of occurrences during the i-th

period. Hereafter, we introduce the typical effects that can be observed in AS

occurrence data, with the aid of exploratory tools based on the primary data

{(ni, λ̂i)}ki=1, with λ̂i = xi/ni designating the observed occurrence rate at the

i-th period (month).

(a) (b)

Figure 2.1: Stable relation (a) and stress effect (b) in occurrence rates.

Figure 2.1(a) represents occurrence rate versus number of operations for

the Communication, navigation and surveillance failures type, suggesting a

relatively stable occurrence rate. However, several effects may appear altering

such stability. The first one is showcased in Figure 2.1(b) referring to the

TCAS warning occurrence. In it, we observe that higher numbers of operations

induce higher occurrence rates, perhaps due to the increasing pressure over the

involved agents (pilots, controllers). We refer to this as a stress effect.

Some occurrences can show a seasonal effect, typically when affected by

regional weather patterns. This is the case of the bird strike occurrence, Fig-

ure 2.2(a), whose time series of rates shows a pronounced seasonal behavior

produced by natural causes related to the migratory movements of birds and

their passage near airports. The auto-correlation function (ACF) of occur-

rence rates can be used to explore and showcase the presence of this effect,

Figure 2.2(b).
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(a) (b)

Figure 2.2: Seasonal effect of the bird strike occurrence.

Sometimes, we can discern a, possibly piecewise, linear variation in the rate,

expressed through a trend, evolving from one period to another, as Figure 2.3,

displaying the annual wind shear occurrence rate, shows. Other times, certain

grouping effect is appreciated over an occurrence rate, as shown by the two

clusters of airports in Figure 2.4, referring to the bird strike occurrence. As

a possible explanation, airports with akin location face analogous weather

patterns that, in turn, may induce similarities in the corresponding occurrence

rates. It could also be the case that a group of airports is operated by a same

company with specific operational procedures which, consequently, induces

specificities in their occurrence rates.

Figure 2.3: Trend in wind shear oc-

currence.

Figure 2.4: Group effect of bird strike oc-

currence.

Finally, several occurrences show relevant correlation due to common causes,

for technical or physical reasons, or because one of them is a precursor of an-

other. Figure 2.5 portrays correlations between eleven of them. Note, e.g.,

the high correlation between the wind and wind shear occurrence rates, most

likely due to a common cause.
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Figure 2.5: Correlation matrix for eleven occurrence types.

Several cases will include more than one effect, as illustrated in Section 2.6.

Indeed, Table 2.1 summarizes the effects detected through exploratory data

analysis for the 86 types of occurrences relevant in our case. As an example,

twelve of the occurrence types suggested incorporating both seasonal and linear

effects in the corresponding model.

Model Types of occurrences

No Effect 25

Stress 1

Seasonal 1

Linear 44

Stress+Seasonal 3

Seasonal+Linear 12

Table 2.1: Models suggested for the 86 different types of AS occurrences.

2.3 Forecasting AS occurrences with dynamic

Poisson models

Let us describe the class of models used to predict the monthly number of

occurrences for the 86 relevant types. Our emphasis is on monthly forecasts,

although other time granularity forecasts will be required (mainly, annual, for

strategic planning, and weekly, for monitoring purposes). We start with a stan-

dard Poisson-Gamma model (Section 2.3.1) and gradually adapt it producing
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novel models to incorporate procedures to deal with the effects described in

Section 2.2.

2.3.1 Basic model

Let us begin with the basic version of our model. In it (as in Figure 2.1(a))

the occurrence rate remains relatively stable throughout the year (and over the

years), not appreciating the effects suggested in Section 2.2. We deal with it

with a standard Poisson-Gamma model, taking into account the approximation

of the Poisson distribution to the binomial, e.g. Rios Insua et al. (2012), and

that the Gamma is conjugate for the Poisson. Thus, our basic model is

xk|λ, nk ∼ Po(λnk),

λ ∼ Ga(a, p),

where xk is the number of occurrences during the k-th period; nk is the number

of operations during such period; and, finally, λ is the occurrence rate. It is

well known that the posterior distribution for the occurrence rate at the end

of the k-th period, after Dk becomes available, is λ|Dk ∼ Ga(ak, pk), with

ak = ak−1+xk and pk = pk−1+nk; and a0 = a, p0 = p. Moreover, the posterior

predictive distribution for the number of occurrences during the next period is

xk+1|Dk ∼ NegBin(ak, pk/(nk+pk)), from which the predictive mean, variance

and intervals follow easily (Rios Insua et al., 1999).

2.3.2 Variants over the basic model

Several non-trivial variants of the basic model need to be considered to take

into account the effects in Section 2.2 leading to novel models. They are

dealt with one at a time. Section 2.6.1 provides an example with an effect

combination (linear trend, seasonal and group), which aggregates the proposed

modeling ideas.
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Stress effect

Figure 2.6 reflects an influence diagram showing how we deal with stress effects

(Figure 2.1(b)). Its simplest expression would be based on a linear relationship

between the rate and the number of operations as follows:

xk|λ, nk ∼ Po(λnk)

λ = ank + b+ ϵk, ϵk ∼ N(0, σ2),

a ∼ N(µa, σ
2
a), b ∼ N(µb, σ

2
b ), σ2 ∼ Inv-Gamma(α, β).

(2.1)

xk

nk λ

Figure 2.6: Influence diagram for stress effect (k-th period).

Given data Dk, the posterior p(λ, a, b, σ2|Dk) is easily seen to be proportional

to

λ
∑k

i=1 xiσ−3−2α exp

(
− λ

k∑
i=1

ni −
(λ− ank − b)2

2σ2
− (a− µa)

2

2σ2
a

− (b− µb)
2

2σ2
b

− β

σ2

)
.

Then, the conditional posterior distributions are

p(a|λ, b, σ2, Dk) ∼ N

(
a
∣∣∣ σ2µa + nkσ

2
a(λ− b)

σ2 + n2
kσ

2
a

,
σ2

n2
k + σ2/σ2

a

)
,

p(b|λ, a, σ2, Dk) ∼ N

(
b
∣∣∣ σ2µb + σ2

b (λ− ank)

σ2 + σ2
b

,
1

1/σ2
b + 1/σ2

)
,

p(σ2|λ, a, b,Dk) ∼ Inv-Gamma

(
σ2
∣∣∣α +

1

2
, β +

1

2
(b+ ank − λ)2

)
,

p(λ|a, b, σ2, Dk) ∝ λ
∑

xi exp

(
− 1

2σ2

(
λ2 − 2λ

(
ank + b− σ2

k∑
i=1

ni

)))
.
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Based on these, Algorithm 2.1 provides a hybrid scheme to sample from the

posterior, using Gibbs steps to sample from the conditional posteriors of a, b

and σ2 and a Metropolis-Hastings step to sample from the conditional posterior

of λ. Note that the non-negativity of λ is controlled through the support of the

proposal distribution of our MCMC sampler, q(λ). For this, we recommend

using Ga
(
1 +

∑k
i=1 xi,

λ
2σ2 +

∑k
i=1 ni

)
, which guarantees non-negativity of λ.

π(λ) is the expression proportional to the posterior of λ.

Set a0, b0, λ0, σ
2
0, j = 1;

while convergence not detected do

Sample σ2
j ∼ Inv-Gamma

(
α + 1

2
, β + 1

2
(bj−1 + aj−1nk − λj−1)

2
)
;

Sample bj ∼ N (
σ2
jµb+σ2

b (λj−1−aj−1nk)

σ2
j+σ2

b
, 1
1/σ2

b+1/σ2
j
);

Sample aj ∼ N
(

σ2
jµa+nkσ

2
a(λj−1−bj)

σ2
j+nkσ2

a
,

σ2
j

n2
k+σ2

j /σ
2
a

)
;

Sample λ∗j ∼ q(λj−1);

Calculate α = min
(
1,

π(λ∗
j )

π(λj−1)

q(λj−1)

q(λ∗
j )

)
;

Do λj =

 λ∗j with probabilityα

λj−1 with probability (1− α)
;

j ← j + 1;

end

Algorithm 2.1: MCMC sampler for Stress Effect model (2.1).

In particular, note that we may check whether the posterior distribution of

a concentrates around 0 to eventually discard the presence of a stress effect.

We do this by computing the posterior probability of an interval around 0, as

illustrated in Section 2.6.2.

Regarding the predictive distribution for the number of occurrences, we use

Pr(xk+1 = z|Dk) =

∫∫∫∫
Pr(xk+1 = z|λ, nk) p(λ|a, b, σ2, Dk) p(a, b, σ

2|Dk) dλ da db dσ2

≈ 1

N

N∑
j=1

Pr(xk+1 = z|λj , nk) =
nz
k

Nz!

N∑
j=1

exp(−λjnk) (λj)
z
,

based on the sample {λj}Nj=1 from Algorithm 2.1. From it, predictive means,
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variances and intervals follow easily.

Effects dealt with through Dynamic Linear Models

In many cases, one cannot consider the occurrence rate as constant, recall

Figures 2.2 and 2.3. Trend and seasonal effects may be modeled with Dynamic

Linear Models (DLM) (West & Harrison, 1997); however, as observations are

considered to come from a Poisson distribution, they cannot be directly dealt

with a DLM. Then, the model is described through

xk|λk, nk ∼ Po(λknk),

λk = exp(uk),

uk = F kθk + vk, vk ∼ N(0, Vk),

θk = Gkθk−1 +wk, wk ∼ N(0,W k),

θ0 ∼ N(m0,C0),

(2.2)

where F k and Gk are known matrices; and vk and wk are independent se-

quences of normal variables with zero mean and variances Vk and W k, respec-

tively. The exponential transformation in the second equation guarantees the

positivity of the occurrence rate. The model is represented through the influ-

ence diagram in Figure 2.7, in which we obviate the deterministic relationship

between λ and u.

Note that another option would be to use a Dynamic Generalized Linear

Model (DGLM) (West et al., 1985) by eliminating the noise vk above, and

not assuming any particular distribution for wk, just its mean and variance.

However, we prefer to use (2.2) since its dual source of error offers additional

flexibility and adapts better to the motivating case. Models making use of

DGLMs and its sequential updating might be beneficial in applications dealing

with very large number of time series and/or time series with frequent zeros,

which is not our case in this chapter. We return to this problem in Chapter 3.
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Figure 2.7: Influence diagram with log-rate as DLM. Poisson component, solid;

DLM, dash.

Let us briefly discuss modeling possibilities that are convenient in our do-

main. The DLMs considered can be used as building blocks combined through

the superposition principle (Prado & West, 2010) to form a model when both

effects are deemed relevant.

Trend effect. The basic models to deal with a dynamic occurrence rate

are the first order polynomial model, characterized by F = G = 1, and the

second order polynomial model, or linear growth, based on

F 1 =
(
1 0

)
, G1 =

1 1

0 1

 .

We choose the later as it is more general and allows us to deal more adequately

with our data sets, both for modeling and forecasting purposes.

Seasonal effect. With monthly data, when considering the presence of a

seasonal effect of period 12, as in Figure 2.2, we use a DLM with the following

regression vector

F 2 =
(
1 0 0 0 0 0 0 0 0 0 0

)
,

and evolution matrix
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G2 =



−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0



.

Inference and prediction procedures are common in both cases (and their

combination thereof) through this scheme:

Step 0. Forecast at period k. At the beginning of the k-th period, before

observing xk, we have the distributions π(xk|λk, nk), π(λk|uk), π(uk|θk) and

π(θk) (typically, this last one will be characterized by a sample {θi
k}Ni=1, with

weights πi
k ≥ 0, and

∑N
i=1 π

i
k = 1). To make predictions about the number of

occurrences xk, the distribution is

π(xk|nk) =

∫∫∫
π(xk|λk, nk) π(λk|uk) π(uk|θk)π(θk) dλk duk dθk

=

∫∫
π(xk| exp(uk), nk) π(uk|θk) π(θk) duk dθk,

estimated by simulation through

Sample {θi
k}Ni=1 ∼ π(θk) (possibly already available);

Do λik = exp(F kθ
i
k), for i = 1, . . . , N ;

Approximate the predictive π(xk|nk) with

π(xk|nk) ≈
nxk
k

Nxk!

N∑
i=1

exp(−λiknk)(λ
i
k)

xk .
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The predictive mean and second moment are approximated through

ηk ··= E(Xk|nk) =
∑

xkπ(xk|nk) ≈
nk

N

N∑
i=1

exp

(
1− 2F kθ

i
k

2Vk

)
,

E(X2
k |nk) =

∑
x2k π(xk|nk) ≈

nk

N

N∑
i=1

exp

(
1− 2F kθ

i
k

2Vk

)
+

n2
k

N

N∑
i=1

exp

(
2− 2F kθ

i
k

Vk

)
.

Therefore, the predictive variance is approximated through

κ2k ··= V (Xk|nk) ≈
nk

N

N∑
i=1

exp

(
1− 2F kθ

i
k

2Vk

)
+
n2
k

N

N∑
i=1

exp

(
2− 2F kθ

i
k

Vk

)
−

n2
k

N2

(
N∑
i=1

exp

(
1− 2F kθ

i
k

2Vk

))2

.

Step 1. Observation of xk and update. Once xk is observed, it is propagated

to obtain π(θk|xk). From step 0, preserve samples {θi
k}Ni=1 and {λik}Ni=1; for

each θi
k, draw {uihk }Nh=1 ∼ N(F kθ

i
k, Vk), do λ

ih
k = exp(uihk ), h = 1, . . . , N , and

approximate

π(xk|θi
k) =

∫∫
π(xk|λk, nk)π(λk|uk)π(uk|θi

k) dλk duk

≈ nxk
k

Nxk!

N∑
h=1

exp(−λihk nk)(λ
ih
k )

xk .

Suppressing dependence on uk, which is fixed, we get

π(θi
k|xk) =

π(xk|θi
k)π(θ

i
k)

π(xk)
≈

(
1
N

∑N
h=1 π(xk|λihk )

)
π(θi

k)

1
N

∑N
i=1 π(xk|λik)

∝ π(θi
k)

N∑
h=1

exp(−λihk nk)(λ
ih
k )

xk .

(2.3)
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Step 2. Propagation to period (k + 1). We have

π(θk+1|Dk) =

∫
π(θk+1|θk)π(θk|xk)dθk.

Thus, the distribution for the d-dimensional state vector θk is approximated

by

π(θk+1|Dk) ≈
1

N

N∑
i=1

π(θk+1|θi
k)

=
1

N

N∑
i=1

1√
(2π)d|W k|

exp
(
− 1

2
(θk+1 −Gkθ

i
k)

′W−1
k (θk+1 −Gkθ

i
k)
)
,

with {θi
k}Ni=1 a sample of θk|xk, from step 1.

After this, we would be again at step 0 and re-initiate the process. The

particle filter in Algorithm 2.2 summarizes this sequence of steps, at the k-

th iteration, there is a sample {θj
k}Nj=1 from π(θk|Dk) available, with weights

{πj
k}Nj=1. Initially, k = 0, and θj

0 ∼ N(m0,C0), j = 1, . . . , N . Afterwards,

the particles evolve according to the steps in (2.2), and weights are updated

through (2.3) as new observations xk are available. The effective sample size

(NESS) is monitored. When it drops below a certain threshold, we resample.

N is the sample size and T the number of iterations.

An MCMC approach could also be adopted for this model but, as pointed

out by Storvik (2002) and Aktekin et al. (2018), this presents disadvantages

over the particle filter approach.
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Sample {θj
0}Nj=1 ∼ N(m0,C0);

Do πj
0 =

1
N
, j = 1, . . . , N ;

for k ← 1 to T do

for j ← 1 to N do

Sample θj
k ∼ N(Gkθ

j
k−1,W k);

Do ηk =
nk

N

N∑
j=1

exp

(
1− 2F kθ

j
k

2Vk

)
;

Do κ2k =
nk

N

∑N
j=1 exp

(
1−2F kθ

j
k

2Vk

)
+ nk

2

N

∑N
j=1 exp

(
2−2F kθ

j
k

Vk

)
;

−nk
2

N2

(∑N
j=1 exp

(
1−2F kθ

j
k

2Vk

))2
;

Read xk;

∆j = 0;

for h← 1 to N do

Sample uhk ∼ N(F kθ
j
k, Vk);

Do λhk = exp(uhk);

∆j ← ∆j + exp(−λhknk)(λ
h
k)

xk

end

πj
k ← πj

k−1∆j;

end

πj
k =

πj
k∑N

j=1 π
j
k

;

Calculate NESS = (
∑N

j=1(π
j
k)

2)−1;

if NESS < N/2 then

Sample θj∗
k ∼ {θ

h
k, π

h
k}Nh=1, j = 1, . . . , N ;

θj
k ← θj∗

k ;

πj
k ← 1

N
;

end

end

Algorithm 2.2: Particle filter for Poisson DLM (2.2).
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Group effect

A simple approach to dealing with group effects (Figure 2.4) would be to model

each cluster of observations separately. A more elaborate version uses hierar-

chical modeling relating the cluster components through parameters coming

from a same hyperdistribution. For L groups, using the basic model in Sec-

tion 2.3.1, we have

xik|λi, ni
k ∼ Po(λini

k), λi ∼ Ga(ai, pi) i = 1, ..., L

ai ∼ Ga(α, β), pi ∼ Ga(γ, δ).
(2.4)

The posterior distribution is

π(λ1, . . . , λL, a1, . . . , aL, p1, . . . , pL|Dk) ∝
L∏
i=1

 k∏
j=1

π(xij |λi, ni
j)

π(λi|ai, pi)π(ai|α, β)π(pi|γ, δ)

 ∝
L∏
i=1

exp
(
−piλi − aiβ − piδ − λi

∑
ni
j

)
(λi)a

i−1+
∑

xi
j (pi)ai+γ−1βαδγ(ai)α−1

Γ(ai)Γ(α)Γ(γ)

 .

The conditional posterior distributions for each parameter i = 1, ..., L are:

π(λi|ai, pi, Dk) ∝ exp
(
−λi

(
pi +

∑
ni
j

))
(λi)a

i+
∑

xi
j−1

∼ Ga
(
ai +

∑
xij, p

i +
∑
ni
j

)
,

π(pi|λi, ai, Dk) ∝ exp(−pi(λi + δ))pi
(ai+γ−1) ∼ Ga(ai + γ, λi + δ),

π(ai|λi, pi, Dk) ∝
(λipi exp(−β))ai−1(ai)α−1

Γ(ai)
.

The last ones lack a standard form, but can be treated through a Metropolis-

Hastings step as shown in Algorithm 2.3, where f(ai) is the expression pro-

portional to the posterior of ai. We recommend Ga(ai|α,− log(λipi exp(−β)))
as the proposal distribution q(ai).
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Set λ10, . . . , λ
L
0 , a

1
0, . . . , a

L
0 , p

1
0, . . . , p

L
0 , h = 1;

while convergence not detected do

Sample λih ∼ Ga(aih−1 +
∑
xij, p

i
h−1 +

∑
ni
j); i = 1, . . . , L;

Sample pih ∼ Ga(aih−1 + γ, λih + δ); i = 1, . . . , L;

Sample a∗ih ∼ q(aih−1);

Calculate ψ = min
(
1,

f(a∗ih )

f(aih−1)

q(aih−1)

q(a∗ih )

)
;

Do aih =

 a∗ih with probability ψ

aih−1 otherwise.
;

h← h+ 1;

end

Algorithm 2.3: MCMC sampler for Group Effect model.

Dependence of AS occurrence types

So far, we have assumed that occurrence types were independent. However, as

discussed in Section 2.2, it is reasonable to assume that some of them might be

related (Fig. 2.5). Although there are other variants, a relevant representation

for dependent occurrences would be as in Figure 2.8.

x1,k λ1

nk

x2,k λ2

Figure 2.8: Influence diagram for the dependence effect between occurrences.

If the relation between λ1 and λ2 is assumed to be linear, a relevant model

would be
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x1,k|λ1, nk ∼ Po(λ1nk), x2,k|λ2, nk ∼ Po(λ2nk),

λ1 ∼ Ga(r, p), λ2 = aλ1 + b+ ϵ, ϵ ∼ N(0, σ2),

a ∼ N(µa, σ
2
a), b ∼ N(µb, σ

2
b ), σ2 ∼ Inv-Gamma(α, β).

Given data Dk = {(x1,i, x2,i, ni)}ki=1, the joint posterior would be

π(λ1, λ2, a, b, σ
2|Dk) ∝ λ

r−1+
∑k

i=1 x1,i

1 λ
∑k

i=1 x2,i

2 σ−2α−3 exp

(
− (λ1 + λ2)

k∑
i=1

ni−

(λ2 − aλ1 − b)2

2σ2
− pλ1 −

(a− µa)
2

2σ2
a

− (b− µb)
2

2σ2
b

− β

α2

)
.

The conditional posterior distributions are

π(λ1|λ2, a, b, σ2, Dk) ∝ λ
r−1+

∑
x1,i

1 exp
(
− λ1

(
p+

∑
ni +

(λ2 − aλ1 − b)2

2σ2

))
,

π(λ2|λ1, a, b, σ2, Dk) ∝ λ
∑

x2,i

2 exp
(
− λ2

(∑
ni +

(λ2 − aλ1 − b)2

2σ2

))
,

π(a|λ1, λ2, b, σ2, Dk) ∼ N

(
a
∣∣∣ σ2µa + λ1σ

2
a(λ2 − b)

σ2 + λ21σ
2
a

,
σ2

λ21 + σ2/σ2
a

)
,

π(b|λ1, λ2, a, σ2, Dk) ∼ N

(
b
∣∣ σ2µb + σ2

b (λ2 − aλ1)
σ2 + σ2

b

,
1

1/σ2 + 1/σ2
b

)
,

π(σ2|λ1, λ2, a, b,Dk) ∼ Inv-Gamma

(
σ2
∣∣∣α +

1

2
, β +

(λ2 − aλ1 − b)2

2

)
.

Based on them, we build a hybrid MCMC sampler to generate from the pos-

terior as in Algorithm 2.4, with Gibbs steps for σ2, β and α; and Metropolis-

Hastings steps for λ1 and λ2.
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Set λ1,0, λ2,0, α0, β0, σ
2
0, j = 1;

while convergence not detected do

Sample λ∗1,j ∼ q1(λ1,j−1);

Calculate ψ1 = min
(
1,

f1(λ∗
1,j)

f1(λ1,j−1)

q1(λ1,j−1)

q1(λ∗
1,j)

)
;

Do λ1,j =

 λ∗1,j with probabilityψ1

λ1,j−1 with probability (1− ψ1)
;

Sample σ2
j ∼ Inv-Gamma

(
1
2
,
(λ2,j−1−αj−1λ1,j−βj−1)

2

2

)
;

Sample βj ∼ N (λ2,j−1 − λ1,jαj−1, σ
2
j );

Sample αj ∼ N
(

λ2,j−1−βj

λ1,j
,

σ2
j

λ2
1,j

)
;

Sample λ∗2,j ∼ q2(λ2,j−1);

Calculate ψ2 = min
(
1,

f2(λ∗
2,j)

f2(λ1,j−1)

q2(λ2,j−1)

q1(λ∗
2,j)

)
;

Do λ2,j =

 λ∗2,j with probabilityψ2

λ2,j−1 with probability (1− ψ2)
;

j ← j + 1;

end

Algorithm 2.4: MCMC sampler for Dependence of occurrences model.

Similarly to the stress effect model in Section 2.3.2, non-negativity of λ1 and λ2

is guaranteed by using the recommended candidate generating distributions:

Ga(r+
∑
x1,i, p+

∑
ni+(λ2−aλ1−b)2/(2σ2)) for λ1, and Ga(1+

∑
x2,i,

∑
ni+

(λ2 − aλ1 − b)2/(2σ2) for λ2. We denote by f1(λ1) and f2(λ2), the expressions

proportional to the posteriors of λ1 and λ2 respectively.

As a final comment, note that should the rate of one of the occurrences be

higher than that of the other, which does not hold in our domain, we could

alternatively consider the use of McKay’s bivariate gamma model (McKay,

1934).
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2.4 Forecasting AS occurrences with an

uncertain number of operations

The number nk of operations in the k-th period was assumed known in previous

models. This may be realistic for short term forecasts in which there is little

uncertainty about the number of operations to be held. On the other hand, for

long horizons, e.g. in annual operational planning, there is uncertainty about

such quantities, which should be taken into account so as to improve occur-

rence forecasting. Consider thus the case in which the number of operations

is uncertain and both the occurrence rate and such number evolve according

to DLMs. The corresponding influence diagram is reflected in Figure 2.9.

Figure 2.9: Predicting occurrences with uncertain number of operations. Occur-

rence rate DLM, dashed; operations DLM, dotted; Poisson, solid.

The resulting model would be
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nk = Hkϑk + zk, zk ∼ N(0,Σk)

ϑk = Jkϑi−1 + ξk, ξk ∼ N(0,Sk)

ϑ0 ∼ N(η0,S0)

xk|λk, nk ∼ Po(λknk), λk = exp(uk)

uk = F kθk + vk, vk ∼ N(0, Vk)

θk = Gkθk−1 +wk, wk ∼ N(0,W k)

θ0 ∼ N(m0,C0),

where, in addition to the features in model (2.2), ϑk are the state variables

for the number of operations; Hk and Jk are the regression vector and evolu-

tion matrix of the operations DLM; and, finally, zk, ξk would be independent

sequences of normal variables (independent of vk and wk) with zero mean and

variances Σk and Sk, respectively. Contrary to λk, the number of occurrences

nk is modeled directly with a DLM, and therefore some probability is assigned

to non positive values; however, since the minimum aggregation level we are

interested in is the number of operations in an airport during a month, which

is consistently in the tens of thousands, this is not significant and allows to use

the straightforward sequential updating of DLMs for the number of operations.

The prediction procedure at the k-th step would thus be:

Step 0. Prediction of xk and nk at period k. We have distributions π(θk),

π(uk|θk), π(xk|uk, nk), π(nk|ϑk), π(ϑk), and the relation λk = exp(uk) (again,

it could be the case that some of these distributions are expressed through

samples; in particular, that of π(θk) would be given by a sample {θi
k}Ni=1,

with weights πi
k ≥ 0,

∑
πi
k = 1). To predict nk, use the predictive distribu-

tion π(nk) =
∫
π(nk|ϑk)π(ϑk) dϑk, based on the DLM predictive formulae,

Appendix B, having a normal distribution nk ∼ N(fk, Qk). To predict xk, use
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π(xk) =

∫∫∫∫∫
π(xk|λk, nk)π(nk|ϑk)π(ϑk)π(λk|uk)π(uk|θk)π(θk) duk dλk dnk dϑk dθk

=

∫∫∫
π(xk| exp(uk), nk)π(nk)π(uk|θk)π(θk) dnk duk dθk.

We simulate it as follows:

Sample {θi
k}Ni=1 ∼ π(θk) (possibly already available);

Do λik = exp(F kθ
i
k), for i = 1, . . . , N ;

Sample {ni
k}Ni=1 ∼ N(fk, Qk);

Approximate π(xk) ≈ 1
Nxk!

∑N
i=1 exp(−λikni

k)(λ
i
kn

i
k)

xk .

The approximate predictive mean and second moment are

E(Xk) ≈
fk
N

N∑
i=1

exp

(
1− 2F kθ

i
k

2Vk

)
,

E(X2
k) ≈

fk
N

N∑
i=1

exp

(
1− 2F kθ

i
k

2Vk

)
+
f 2
k +Q2

k

N

N∑
i=1

exp

(
2− 2F kθ

i
k

Vk

)
.

Then, the predictive variance would be approximated by

fk
N

N∑
i=1

exp

(
1− 2F kθ

i
k

2Vk

)
+
f 2
k +Q2

k

N

N∑
i=1

exp

(
2− 2F kθ

i
k

Vk

)
−

f 2
k

N2

(
N∑
i=1

exp

(
1− 2F kθ

i
k

2Vk

))2

.

Step 1. Observation of (xk, nk) and update. At the end of the k-th pe-

riod, observe xk, nk and propagate this information to obtain π(θk|xk, nk) and

π(ϑk|nk). First, invert the relation x→ λ. The new distribution at node x is

π(xk|nk,θk) =
∫
π(xk|nk, λk)π(λk|θk) dλk. The posterior for λk is

π(λk|xk, nk,θk) =
π(λk|θk)π(xk|λk, nk)

π(xk|nk,θk)
∝ π(λk|θk)π(xk|λk, nk).
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Propagate now the evidence of xk and nk resulting in

π(θk|xk, nk) =

∫
π(λk|xk, nk,θk)π(θk) dλk.

It can be approximated by

π(θk|xk, nk) ≈
1

N

N∑
i=1

π(λk|xk, nk,θ
i
k) =

1

N

N∑
i=1

π(λk|θi
k)π(xk|λk, nk)∫

π(xk|nk, λk)π(λk|θi
k) dλ

.

The propagation of evidence nk to ϑk is done through

π(ϑk|nk) =
π(nk|ϑk)π(ϑk)

π(nk)
,

with π(nk) =
∫
π(nk|ϑk)π(ϑk) dϑk. Thereupon, the DLM equations for se-

quential updating in Appendix B are used.

Step 2. Propagation to period k + 1. The distribution of the d-dimensional

state vector, π(θk+1|Dk) =
∫
π(θk+1|θk)π(θk|xk, nk) dθk, gets approximated

through

π(θk+1|Dk) ≈
1

N

N∑
i=1

π(θk+1|θi
k) =

1

N

N∑
i=1

exp
(
− 1

2 (θk+1 −Gkθ
i
k)

′W−1
k (θk+1 −Gθi

k)
)√

(2π)d|W k|
,

where {θi
k}Ni=1 is a sample of θk|xk, nk from step 1. The one step ahead pre-

dictive distribution for state ϑk is obtained with the DLM equations in Ap-

pendix B.

After that, we would be back at step 0, re-starting the process. The above

can be grouped into a scheme similar to Algorithm 2.2.
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2.5 Forecasting severities

We also need to predict how many of the xk occurrences in the k-th period

correspond to the five severity classes. Let p = (p1, p2, p3, p4, p5) be a vector

representing their proportions, with pi ≥ 0,
∑5

i=1 pi = 1; s = (s1, s2, s3, s4, s5)

be the vector with the number of occurrences of each severity, with si ≥ 0 and∑5
i=1 si = xk; and Dk−1 = {(sj1, s

j
2, s

j
3, s

j
4, s

j
5)}k−1

j=1 the data at the beginning of

the k-th period, where sji is the number of occurrences of severity i in period j.

Figure 2.10: Influence diagram to forecast aviation occurrences severity.

In our problem, the number xk of occurrences in the k-th period is unknown,

and predicted as in Sections 2.3 and 2.4. For example, if we consider the

initial basic model for xk and a Multinomial-Dirichlet model for the severity,

Figure 2.10, we have

xk ∼ Po(λnk), λ ∼ Ga(a, b),

s|p, xk ∼M(xk; p1, p2, p3, p4, p5),

p ∼ Dir(α1, α2, α3, α4, α5).

The predictions would be

Pr(si|Dk−1) =
∞∑

r=si

(
r

si

)
B(si + α′

i, A+ r − si − α′
i)

B(α′
i, A− α′

i)

bakk
(bk + 1)ak+r

Γ(ak + r)

r! Γ(ak)

≈
h∑

r=si

(
r

si

)
B(si + α′

i, A+ r − si − α′
i)

B(α′
i, A− α′

i)

bakk
(bk + 1)ak+r

Γ(ak + r)

r! Γ(ak)
,
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for big enough h, with α′
i = αi +

∑k−1
j=1 s

j
i , A =

∑5
i=1 α

′
i, ak = a +

∑k−1
j=1 xj,

and bk = b +
∑k−1

j=1 nj. The predictive expected number of occurrences is

E(si|Dk−1) = E(xk)E(pi). As an example, with the basic model, Section

2.3.1, E(si|Dk−1) = (xkakα
′
i)/(bkA), and the predictive variance is E(pi(1 −

pi))E(x
2
k)+(E(pi))

2V ar(xk). Notice that although shown here in combination

with the most basic model, extensions to other cases follow a similar path, as

illustrated e.g. in Section 2.6.1.

2.5.1 The problem of underreporting

A major obstacle to forecast occurrences, would be the unavailability of accu-

rate data, which could hide latent conditions that end up causing more severe

ones. Indeed, in the absence of a strong reporting culture among the agents

involved (pilots, air controllers,...) it would be common not to report low

severity occurrences (Haslbeck et al., 2015).

As an example, Figure 2.11 displays the occurrence rate for animal runway

incursion, which appears to have increased significantly from 2010 to 2016. If

we do not detect a technical or socio-economic explanation of this rising rate,

this is likely a case of underreporting in the early years. In this particular

case, recall however that the 2008 financial crisis, among many other effects,

reduced the possibilities of maintaining airport fences, with the consequent

increase in the entry of animals into airports, which might have eventually

increased runway incursions.

Figure 2.11: Possible underreporting in animal runway incursion occurrences.
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In a case with suspected underreporting, we can apply the logic of the

influence diagram in Figure 2.12, based on our basic model from Section 2.3.1.

Again, extensions to the other models can be developed. Introduce the vector

of reported occurrences for each severity class, z = (z1, z2, z3, z4, z5), and the

vector with the proportion of reported occurrences ϱ = (ϱ1, ϱ2, ϱ3, ϱ4, ϱ5). For

example, ϱ3=0.75 would mean that 75% of severity class 3 occurrences are

reported (and 25% are not).

Figure 2.12: Model for the underreporting problem.

Partial information about ϱi is typically available, in particular, ϱ1 = 1, ϱ2 ≈ 1

and ϱ2 > ϱ3 > ϱ4 > ϱ5, i.e. as occurrences get less severe they are less

likely to be reported, which would represent the fact that, as occurrences get

less severe, they are less likely to be reported. Thus, additional features to

model in Figure 2.10, are ϱ, with ϱi ∼ Be(γi, βi), i = 1, . . . , 5; and z, with

zi|si, ϱi ∼ Bin(si, ϱi), i = 1, . . . , 5.

At the beginning of each period, our goal is to predict s, x and z; then,

after observing z, to propagate that information to the different levels of the

graph in Figure 2.12. To simplify the problem, assume p known1. Due to the

Poisson process partition property, si|λ ∼ Po(piλ) (Rios Insua et al., 2012).

1Extensions to unknown pi’s follow in a straightforward manner.
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Furthermore,

Pr(Zi = zi|λ, ϱi) =
∞∑

si=zi

Pr(Zi = zi|si, ϱi)Pr(Si = si|λ) =
(piλϱi)

zi

zi!
exp(−piλϱi).

Hence, zi|λ, ϱi ∼ Po(piλϱi), and the likelihood of the observed data z is

π(z|λ,ϱ) ∝ λ
∑

zi exp

(
−λ

5∑
i=1

piϱi

)
5∏

i=1

ϱzii .

Assuming all parameters independent, the posterior distribution would be

π(λ,ϱ|z) ∝ π(λ)λ
∑

zi exp

(
−λ

5∑
i=1

piϱi

)
5∏

i=1

ϱzii π(ϱi).

Under the non-informative prior π(λ) ∝ λ−1, the posterior is

π(λ,ϱ|z) ∝ λ
∑

zi−1 exp

(
−λ

5∑
i=1

piϱi

)
5∏

i=1

ϱzi+γi−1
i (1− ϱi)βi−1,

and the posterior conditionals are

π(λ|ϱ, z) ∝ λ
∑

zi−1 exp(−λ
5∑

i=1

piϱi) ∼ Ga

(
5∑

i=1

piϱi,
5∑

i=1

zi

)
π(ϱi|λ, z) ∝ ϱzi+γi−1

i (1− ϱi)βi−1 exp(−λpiϱi), i = 1, . . . , 5.

The last distributions are not standard, but are unimodal and log-concave,

so it is easy to sample from them as in Algorithm 2.5, obtaining samples

{(λj, ϱj1, . . . , ϱ
j
5)}Nj=1.

Set λ0, ϱ01, . . . , ϱ
0
5, j = 1.;

while convergence not detected do

Sample λj ∼ Ga(
∑5

i=1 piϱ
j−1
i ,

∑5
i=1 zi);

Sample ϱji ∝ (ϱji )
zi+αi−1(1− ϱji )βi−1 exp(−λjpiϱji ), i = 1, . . . , 5;

j ← j + 1;

end

Algorithm 2.5: Sampler for Underreporting model.
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Our interest lies in sampling from the distributions si|z. Observe that

Pr(si|z) =
∫∫

Pr(si|λ,ϱ, z)π(λ,ϱ|z) dλ dϱ.

Then si|λ,ϱ, z ∼ zi+Po(piλ(1−ϱi)), and sji ∼ zi+Po(piλ
j(1−ϱji )) constitutes

a sample from si|z. We summarize it with 1
N

∑N
j=1 s

j
i which approximates

E(si|z).

2.6 Cases

As application examples, we present the models used for the wind shear and

TCAS warning occurrences, and to a simulated occurrence type showing de-

pendence. More emphasis is placed on the wind shear model, because it is

the most versatile in general, and the most used in this particular application

domain of AS. Core ideas are given for the other two cases.

2.6.1 Wind Shear

Wind shear consists of a change in wind speed and/or direction over a short

distance (FAA, 2008). It can occur either horizontally or vertically, at high

or low altitude, most often associated with strong temperature inversions or

density gradients. It may significantly affect the airspeed and trajectory of a

plane, being more dangerous the closer to the ground and the slower the aircraft

is. Therefore, AS occurrences reported in relation to wind shear usually happen

during take-off or landing.

Exploratory analysis. Table 2.2 displays the evolution of the number of

occurrences from 2010 to 2018, the number of operations (in blocks of 100,000),

the occurrence rate (number of occurrences per 100,000 operations) as well as

the evolution for the five severities. As we see, the occurrence rate has been

growing annually, especially during the first five years, then stabilizing. Note
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Sev. 1 Sev. 2 Sev. 3 Sev. 4 Sev. 5 Total Occ. Ops. Occ. rate

2010 0 0 5 113 9 127 21.20 5.99

2011 1 0 0 91 5 97 21.40 4.53

2012 0 0 4 160 23 187 19.25 9.71

2013 0 1 2 265 7 275 17.91 15.35

2014 0 1 5 357 46 409 18.33 22.31

2015 0 0 1 385 24 410 19.03 21.55

2016 0 0 2 474 13 489 20.45 23.91

2017 0 0 2 511 10 523 21.74 24.05

2018 0 0 2 518 8 528 23.00 22.95

Table 2.2: Number of occurrences and operations for wind shear, 2010-2018.

that in 2011 there were 23% less occurrences compared to the previous year,

while the number of operations increased slightly.

Regarding occurrence severity, Figure 2.13, observe that every year, severity

4 occurrences were the most reported, followed by those of severity 5. Finally,

note that there has been only two severity 2 occurrences, and one severity 1

during the considered period, suggesting that this event is not very severe,

impact-wise.

Figure 2.13: Wind shear occurrences, period 2010-2018, by severity.
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Effects. Graphical and numerical analyses used to identify the relevant ef-

fects follow.

Stress effect. Figure 2.14(a) shows the scatter plot for the number of operations

versus occurrence rates, as well as the regression line relating both variables.

The correlation coefficient is -0.23 and no stress effect is included.

Seasonal effect. The monthly ACF is in Figure 2.14(b) suggests a seasonal

effect, through the relevance of the lag 12 autocorrelation, due to weather

relevance over this phenomenon. In addition, the first ones, although not

strong, are relevant, suggesting a relationship between rates at consecutive

months.

Linear effect. Figure 2.14(c) represents the annual evolution of occurrence

rates. The annual time series suggests a linear increase of wind shear occur-

rence rates during the first five years. The effect is considerable because, except

for year 2011, in which it was slightly less than the previous one, the rate has

grown annually.

Group effect. A cluster analysis allows us to identify two groups of airports with

similar wind shear occurrence rate, Figure 2.14(d). The first one (triangles)

includes the ten airports in temperate coastal areas. The second group (circles)

would be formed by the remaining airports. Because of the climate differences,

we deal with both groups hierarchically and aggregate the forecasts. Note that

this would also allow for a certain lag between the seasonalities in groups,

which for example would be relevant when dealing with occurrences related to

migratory birds that arrive at airports at different times of the year.
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(a) Stress effect (b) Seasonal effect

(c) Linear effect (d) Group effect

Figure 2.14: Effect analysis for wind shear.

Model. We thus have detected a seasonal effect of period 12, a (possible) lin-

ear growth effect and two groups of airports. Hence, we consider a hierarchical

model for the occurrences xik at group i of airports, based on the Poisson DLM

(2.2) and the hierarchical model (2.4) of Section 2.3.2, with a linear growth

component, a seasonal component of period 12, and a common prior,

xik|λik, ni
k ∼ Po(λikn

i
k), λik = exp(uik), i = 1, 2

uik = Fθi
k + vi, vi ∼ N(0, V i),

θi
k = Gθi

k−1 +wi, wi ∼ N(0,W i),

θi
0 ∼ N(m0,C0),

(2.5)

where F =
(
F 1 F 2

)
and G = blockdiag

(
G1 G2

)
. Matrices W i and V i are

initialised based on the observations, using maximum likelihood (Petris et al.,

2009).
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To complete model specification, we need the prior moments m0 and

C0. These priors aim to be flexible enough and somewhat informative. The

prior mean vector, m0, is initialized2 using the the first year of data (12

observations). Parameter mL2
0 describes the expected growth and it is ini-

tialised with mL2
0 = (y12 − y1)/11, where yk = log(

∑
xik/

∑
ni
k); m

L1
0 de-

scribes the expected level and is initialised with mL1
0 = (

∑12
k=1 yk−78mL2

0 )/12;

mSj
0 describes the j-th seasonal component and, to assess it, we use mSj

0 =

y13−j −mL1
0 + (j − 13)mL2

0 . Hence, for both groups of airports, we have

m0 = (

mL1
0︷ ︸︸ ︷

1.6,

mL2
0︷ ︸︸ ︷

0.0,

mS1
0︷ ︸︸ ︷
−0.3,

mS2
0︷ ︸︸ ︷
−0.7,

mS3
0︷ ︸︸ ︷

0.0,

mS4
0︷ ︸︸ ︷
−0.9,

mS5
0︷ ︸︸ ︷

0.6,

mS6
0︷ ︸︸ ︷

0.8,

mS7
0︷ ︸︸ ︷

0.1,

mS8
0︷ ︸︸ ︷
−0.6,

mS9
0︷ ︸︸ ︷
−0.4,

mS10
0︷ ︸︸ ︷
0.6 ,

mS11
0︷ ︸︸ ︷
1.1 )′

For more accuracy, we could repeat the calculations as many times as years of

data are available, and take the average value for each parameter. Since we

are confident about the suitability of our m0, we use a relatively small prior

variance C0 = I13/10. Also, for both groups of airports, we include the prior

parameters αj (j = 1, . . . , 5) for the different severities and, based on expert

judgement, set at 1, 2, 3, 7 and 5, respectively. They are chosen not very high

to facilitate learning.

We then adjust the previous models using approximations analogous to

those described in Section 2.3.2 for Algorithm 2.2, which in turn result in

Algorithm 2.6. Since there are two groups of airports, L = 2, and we obtain

two samples, one for the predictive distribution of each group of airports. The

aggregation of both samples facilitates a predictive sample for the total number

of wind shear occurrences.

2mLj
0 and mSj

0 indicate the j-th parameters of the linear growth and seasonal blocks

respectively.
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Sample {θi,j
0 }Nj=1 ∼ N(m0,C0), i = 1, . . . , L;

Do πi,j
0 = 1

N
, j = 1, . . . , N, i = 1, . . . , L;

for k ← 1 to T do

for i← 1 to L do

for j ← 1 to N do

Sample θi,j
k ∼ N(Gkθ

i,j
k−1,W

i
k);

Do ηk,i =
ni
k

N

N∑
j=1

exp

(
1− 2F kθ

i,j
k

2V i
k

)
;

Do

κ2k,i =
ni
k

N

∑N
j=1 exp

(
1−2F kθ

i,j
k

2V i
k

)
+

ni
k
2

N

∑N
j=1 exp

(
2−2F kθ

i,j
k

V i
k

)
;

−ni
k
2

N2

(∑N
j=1 exp

(
1−2F kθ

i,j
k

2V i
k

))2
;

Read xik;

∆j = 0;

for h← 1 to N do

Sample uhk ∼ N(F kθ
i,j
k , V

i
k );

Do λhk = exp(uhk);

∆j ← ∆j + exp(−λhkni
k)(λ

h
k)

xi
k

end

πi,j
k ← πi,j

k−1∆j;

end

πi,j
k =

πi,j
k∑N

j=1 π
i,j
k

;

Calculate NESS = (
∑N

j=1(π
i,j
k )2)−1;

if NESS < N/2 then

Sample θi,j∗
k ∼ {θi,h

k , πi,h
k }Nh=1, j = 1, . . . , N ;

θi,j
k ← θi,j∗

k ;

πi,j
k ← 1

N
;

end

end

end

Algorithm 2.6: Particle filter for hierarchical model (2.5).
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Figure 2.15 shows one-month ahead predictions for 2010-2018 observations

(black dots), the predictive mean (solid line) and the 90% probability band

(dashed lines). We also show the 12 step ahead forecast for year 2019 (without

actual observations, since they were not available), for which the uncertainty

in the future number of operations is modeled as in Section 2.4.

Figure 2.15: Prediction of number of occurrences.

Routine forecasting and monitoring will be responsible for checking the

stability of the model and suggesting anomalies, sudden instabilities, and de-

terioration in forecast performance that have not been anticipated through ex-

pert intervention. We would therefore raise alarms whenever observed values

lay outside predictive intervals, like the observations marked with a circumfer-

ence in Figure 2.15. As Figure 2.16 shows, the credible intervals for one-step

ahead predictions (solid blue) adequately capture the observations, showing

only slight under-coverage for credible intervals between 50% and 95%.

Compared to other popular models used with non-negative integer time

series, like GLARMA (Benjamin et al., 2003), and INGARCH (Ferland et al.,

2006), Table 2.3 shows that our proposed model (2.5) offers significantly better

point forecasts than any of them, using either a Poisson or Negative Binomial

distribution for the observations, or a standard DLM. Additionally, as seen in

Figure 2.16, the credible intervals (solid blue line) of our model closely match
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Figure 2.16: Empirical (solid) versus nominal (dashed) coverage of credible

intervals for wind shear.

the nominal coverage probability (45 degree dashed line) and perform nicely

when compared with the analysed competitors: Poisson GLARMA (brown),

NB GLARMA (yellow), Poisson INGARCH (black), NB INGARCH (green)

and DLM (purple).

GLARMA GLARMA INGARCH INGARCH

Our Model (Poi) (NB) (Poi) (NB) DLM

MSE 296.74 350.33 392.35 425.51 471.22 379.7

MAE 11.96 13.35 14.03 14.81 15.37 14.53

MAPE 0.53 0.63 0.65 0.61 0.59 0.8

Theil’s U 0.91 0.94 0.99 1.03 1.09 1.03

Table 2.3: Error metrics for the predictive median of models for wind shear.

The analysis is completed with the prediction of the number of occurrences

of each severity class. Table 2.4 shows a summary of the predictions, with µ′

and σ′ designating the predictive mean and standard deviation of the number

of occurrences for the next period to forecast (in this case, the next month

January 2019), and α′
j, the parameter of the posterior distribution of the j-th
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severity class of such event. Thus, the expected number of occurrences for

each severity would be µ′α′
j /
∑5

h=1 α
′
h, e.g. 33.27 severity 4 occurrences.

µ′ σ′ α′
1 α′

2 α′
3 α′

4 α′
5

35.38 26.55 2 4 26 2881 150

Table 2.4: Prediction summary.

Regarding sensitivity to the hyper-parameters m0, C0 for the prior of the

initial state; the election of a different m0, e.g. the usual vector of zeros which

does not use prior information, has little effect on forecast performance beyond

the first few observations (algorithm particles still arrive relatively quickly to

a zone with high probability) unless we deviate a lot from these values for the

states (with prior values for all states outside the interval [−2, 2]). Moving from

the proposed variance C0 = I13/10 up to I13 results in too much dispersion

and very high predictive intervals during the first observations, more resamples

and overall worse forecasting performance; using lower values for the diagonal

down to I13/100 also worsens the point forecast metrics and coverage of the

predictive distributions, although less dramatically.

2.6.2 TCAS warnings

Traffic Collision Avoidance Systems (TCAS) warn pilots of the presence of

other aircrafts which may present a threat of mid-air collisions. This type of

occurrences, unlike wind shear, presents a stress effect, Figure 2.1(b). Since it

does not show any other of the effects mentioned in Section 2.2, we model it

through stress effect model in Section 2.3.2.

Using Algorithm 2.1 we obtain the one-month ahead forecasts in Fig-

ure 2.17, with predictive mean (solid line) and 99% probability band (dashed

lines), and we check that it adequately predicts time series with this effect.
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Figure 2.17: Observations and forecasts for TCAS warnings.

Figure 2.18 shows that the predictive distributions adequately cover the obser-

vations at different credible intervals (blue line) and that there is an improve-

ment in coverage over the basic model (yellow) from Section 2.3.1.

Figure 2.18: Coverage plot of TCAS occurrence.

This is also the case for the error metrics of the point forecasts (Table 2.5).

Stress model Basic model

MSE 36.57 45.67

MAE 4.78 5.28

MAPE 0.2 0.22

Theil’s U 0.77 0.82

Table 2.5: Error metrics TCAS occurrence.
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Furthermore, as Figure 2.19 shows, the posterior distribution of parameter a

in the model concentrates around 12, away from 0, which is consistent with

the relevance of the stress effect.

Figure 2.19: Posterior distribution of a.

A sensitivity analysis concerning the hyper-parameters of the priors over a,

b and σ2 suggests that, as long as plausible values are chosen, the performance

of the stress effect model (2.1) is robust. For example, for TCAS warnings,

even if we would to select negative values for the means of a and b (µa = µb =

−5), indicating a negative stress effect, with variances σ2
a = σ2

b = 10 we arrive

to similar posterior distributions. Hence we recommend the election of means

consistent with the available data, and relatively high variances that give more

leeaway for misspecification of the means.

2.6.3 Dependence of occurrence types.

The relevance of the dependence model in Section 2.3.2 can be readily exem-

plified with simulated data of a new occurrence type (Figure 2.20) that shows

Figure 2.20: Observations and forecasts of dependent occurrence.
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dependence with TCAS warnings.

The use of the dependence model and Algorithm 2.4 to sample from it,

improves the forecast performance over the basic model from Section 2.3.1

that assumes independence as shown in Table 2.6. Similarly to Algorithm 2.1,

the proposed MCMC sampler is quite robust against reasonable choices of the

values in the hyper-parameters of the priors.

Dependence model Basic model

MSE 159.54 245.25

MAE 9.89 11.51

MAPE 0.21 0.22

Theil’s U 0.78 0.94

Table 2.6: Error metrics dependent occurrence.

2.7 Discussion

We have provided a methodology to forecast general count time series that

can present several combinations of effects based on an initial standard model,

suitable for situations in which the Poisson rate remains relatively stable over

the period of interest.

In most practical cases, several effects impact the rate evolution. Therefore,

the initial model was adapted by adding specific components (stress effect,

seasonal and trend effect, group effect and dependence), and accompanying

algorithms to forecast with these new models were provided. Also, since time

series tend to show more than one effect, we have illustrated how the models

can be combined with a case study in Section 2.6.1.

Additionally, we have described a model to predict the proportion of fu-

ture observations that belong to different classes, and which can be used in

combination with any of the above models. We have also suggested a model

to address the problem of underreporting, which can be a problem in many
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domains, specially in relation to the classification of observations into severity

levels, where less severe ones tend to be underreported.

The models developed in this chapter are illustrated with an application

to AS occurrence data. In fact, the proposed models are fundamental in the

risk management methodology in Rios Insua et al. (2018), feeding its AS re-

source allocation models. They are also important in predicting and monitor-

ing events that allow identifying anomalies related to an unexpected increase

(or decrease) in the number of occurrences. The methodology emphasizes a

management by exception principle (West & Harrison, 1997) with our models

used for routine inference, prediction (and decision support) under standard

circumstances until exceptional ones arise in which case an intervention is re-

quested.

The performance of our model was compared to other popular ones like

dynamic linear models (DLM), generalized linear ARMA (GLARMA), and

integer-valued GARCH (INGARCH) models, showing better forecasting per-

formance with the AS time series studied. However, some of these models

assuming negative binomially distributed observations might be more rele-

vant when exploring approaches at smaller time (weeks) and spatial (airport)

frames, which might present more overdispersion. Also, given the high safety

levels in the aviation system we should expect numerous zero counts. All of

which motivates the development of new models in the following chapter to

address these problems.
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Chapter 3

Models for count time series

with frequent zeros

3.1 Introduction

In this chapter, we focus on meeting the second objective presented in Section

1.4: the development of models for count time series with frequent zeros and

possible overdispersion that improve currently established approaches. We also

present a methodology for using the predictive distributions of said models to

make informed decisions that reduce the risk of reaching critical situations,

therefore addressing the corresponding secondary objective as well.

We propose Bayesian state-space models that are flexible enough to ade-

quately forecast high and low count series and exploit cross-series relationships

within a hierarchical multivariate approach. This methodology is illustrated

with the demand forecasting problem faced by a major retail company, inte-

grated within its inventory management planning methodology, introduced in

Section 1.1. The company has hundreds of stores, each one with thousands of

products whose demand has to be accurately predicted in order to efficiently

manage its stock.

It is worth reiterating that, as in most practical cases, we are interested

in forecasting both aggregated and individual demand at any hierarchy level
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(product family, store section, store, neighborhood, city, region, country).

And, therefore, the time series faced as part of the inventory management

planning system tend to be very diverse (some with low counts and, even,

many days of zero sales, while others have few zero observations).

To better forecast demand, models must be able also to take into account

additional relevant information in the form of regression variables, like promo-

tions or prices, which can significantly improve model performance (Ali et al.,

2009). Another important aspect to consider is the relation among series at a

given hierarchy level or between between stores with similar location (in socioe-

conomic terms, climate,...). We are also interested in giving full distribution

predictions instead of point forecasts of the demand: this is specially useful

in our motivating case as it offers a way of calculating the probability of OoS

events, used to make informed decisions about when to place an order. These

forecast distributions are one of the main inputs to any order planning module

within a decision support system (DSS). In our case study, when looking at

the most disaggregated level, daily sales of a product in a store, we are mainly

interested in forecast demand for the days remaining until the next resupply.

Although we consider as well different forecast horizons for other applications

and aggregation levels.

The frequency of low counts and many zeros in our time series means

that traditional models like ARIMA (Box et al., 2015), exponential smoothing

(Hyndman et al., 2008) and Gaussian DLMs (West & Harrison, 1997) are not

the most adequate. Also, time series of sales are usually non stationary. All

of which encourages the development of new models.

In this chapter we build upon Dynamic Generalized Linear Models (West et

al., 1985) to improve the forecast performance with count time series with the

aforementioned characteristics: many zeroes and possible overdispersion. Our

univariate model, like Berry and West (2020), uses a mixture of two DGLMs,

one for the binary outcome sales/no sales and another for the number of sales,

but the later is modeled through a negative binomial distribution instead of
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a Poisson, which offers more flexibility and more adequately models the series

in our use case, specially those with significant overdispersion.

We begin by introducing our motivating problem and illustrating some key

issues to be considered in forecasting demand count series in Section 3.2. Sec-

tion 3.3 introduces a univariate model to forecast those count series, extended

to the multivariate case in Section 3.4, taking advantage of cross-series infor-

mation (among products within a store, among a product at different stores,

among stores). Some criteria to deal with OoS events are proposed in Sec-

tion 3.5. A case study with real data is presented in Section 3.6. We end up

with some discussion.

3.2 Exploratory Analysis

In our motivating problem, we need to forecast the demand of several thou-

sands of products for a retail company, each one defining a count time series.

Our raw data consists of daily sales of the products at several stores over 194

days, along with relevant information like price, promotions, available stock,

etc. Although the main interest is in forecasting the daily time series, we also

consider other aggregated series (monthly, weekly, product in a region, etc).

Table 3.1 provides summary statistics of examples of the types of time se-

ries to forecast, along with their corresponding Stock Keeping Unit (SKU), a

number that uniquely identifies each product. These are representative of the

type of count time series commonly encountered in retail. Observe two pecu-

liarities common in time series in our application domain: some products like

shaving gel (SKU ’24144’) or shampoo (SKU ’216880’) show many days with

zero sales (84.1% and 82.6%, respectively); others exhibit significant overdis-

persion, as with beers (SKU ’182’, ’14752’, ’29352’ and ’29358’), which have

a variance much higher than its mean. In some occasions, sales time series

might also display long right tail distributions, like SKU ’29352’, with a mean

higher than the median.
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SKU Description Mean Variance Median % 0 sales

182 Beer 1 30.6 331.2 29.0 1.0

14752 Beer 2 30.9 1024.0 24.0 1.0

24144 Shaving gel 0.2 0.2 0.0 84.1

29352 Non-alcoholic beer 1 28.6 1797.8 16.0 2.6

29358 Non-alcoholic beer 2 6.7 139.2 0.0 51.3

33057 Liquid Yogurt 1 0.6 1.0 0.0 59.5

70598 Bathroom cleaner 1.2 2.2 1.0 41.0

117866 Yogurt 1 1.9 2.0 2.0 14.4

123683 Liquid Yogurt 2 0.6 0.6 0.0 56.4

130111 Detergent 0.7 1.2 0.0 59.5

131735 Liquid Yogurt 3 0.6 0.8 0.0 56.9

151114 Yogurt 2 1.6 2.6 1.0 29.7

177427 Diaper 0.0 0.1 0.0 98.5

216880 Shampoo 0.3 1.0 0.0 82.6

Table 3.1: Summary statistics for some time series (daily sales in a store).

It is also common to observe the presence of seasonalities in sales time

series. With daily data, as in our case, we tend to observe weekly (period 7)

and/or yearly (period 365) seasonalities. For example, daily sales of SKU ’182’

beer show seasonality of period 7, Figure 3.1. In some cases, series also exhibit

some local trend, for example when a new product is introduced.

Figure 3.1: Weekly seasonality in the sales of beer (SKU ’182’).
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Besides these, two effects are common in count series in this specific domain.

Promotions The introduction of promotions can cause spikes in product

demand. Retail experts frequently observe that the effect of promotions on

sales is not the same through all its duration; instead, the increase in demand

tends to be lower at the beginning and the end of the promotion. To deal

with this effect, instead of using a simple binary regression variable (with 1

indicating active promotion and 0, no promotion) a categorical variable with

3 levels, beginning, middle and end of promotion can be used (using dummy

coding).

Substitute goods The presence of families of substitute goods, and the

availability of information about the current stock of products in a store,

means that when there is an OoS event with some products, we could an-

ticipate an increase in demand for substitute ones. These products can also

cannibalize sales from others when their price becomes significantly lower than

the alternative.

Figure 3.2: Daily sales of two beer brands (SKU ’29352’, brown; ’29358’, blue).

Figure 3.2 shows the number of sales of two brands of alcohol-free beer in a

store, generally the beer with SKU ’29352’ in brown is a bigger seller, despite

having a slightly higher price on average than the beer with SKU ’29358’ in

blue. Two periods might indicate that both beers can be considered substitute

products: the first one during the second half of Jan ’19, in light blue, corre-

sponds to an interval in which the price of ’29358’ is almost half the price of
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’29352’ and is the only one in which ’29358’ sales are on the same level than

’29352’ sales; the second one, during May ’19, light brown, to a period with the

price of ’29352’ significantly lower than the other brand. Additionally there are

three spikes in ’29352’ sales (red points) that coincide with sudden increases

in ’29358’ price, leading to equal or similar prices for both beer brands.

This effect can be taken into account in several ways, for example by in-

troducing the price difference with the substitute product as a covariate in the

univariate model, or both prices in the multivariate model.

Additionally, sales time series can also show positive correlations, for ex-

ample between Beer 1 and Beer 2 (SKUs ’182’ and ’14752’) in Figure 3.3.

Figure 3.3: Correlation coefficient of sales in the same store of 4 products.

In summary, the presence of these effects justify the introduction of covari-

ates and the development of multivariate models.

3.3 Model

Time series of counts with many zero-valued observations are commonly en-

countered while analyzing data coming from natural disasters, inventory man-

agement or disease surveillance, to name but a few relevant domains.
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State space models consider a time series yt as the output of a dynamic

system perturbed by stochastic disruptions. They offer a flexible framework

for a wide range of applications and lend themselves quite naturally to be

treated within a Bayesian paradigm. One such class are Dynamic Linear Mod-

els (DLM) extensively treated in West and Harrison (1997). A shortcoming of

DLMs for its use with time series of counts is that they assume a normal dis-

tribution for the observations. This might be appropriate for modelling time

series with large counts, where the probability assigned to negative outcomes

is very low. However, the abundance of series with low counts in retail makes

necessary the use of different distributions for the observations. Dynamic Gen-

eralized Linear Models (DGLM) (West et al., 1985) extend the observational

distributions of DLMs to any probability density function (or p.m.f. in the

discrete case) of the exponential family,

p(yt|ηt, Vt) = exp{V −1
t [T (yt)ηt − a(ηt)]}b(yt, Vt), (3.1)

for some defining quantities ηt and Vt, and known functions T (yt), a(ηt) and

b(yt, Vt). The DGLM for the series yt is defined through the components:

Observation model: p(yt|ηt) and g(ηt) = λt = F tθt,

State equation: θt = Gtθt−1 + ωt with ωt ∼ (0,W t), (3.2)

Prior information: θ0 ∼ (m0,C0),

where g is the link function relating to linear predictor λt, and ωt ∼ (0,W t)

denotes that we do not assume any particular distribution for the evolution

errors, only its mean 0, and variance W t. Matrices F t and W t contain (as

diagonal blocks) different factors deemed important to predict series behavior,

like trend, seasonality, or regression variables (Prado & West, 2010).
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3.3.1 DGLM mixture

As mentioned in Section 3.1, the model proposed to forecast time series of

counts with many zeros, as those encountered in the current application do-

main, analogously to DCMM (Berry & West, 2020), is a mixture of two

DGLMs: a Bernoulli for zero/non-zero sales, and a negative binomial for the

number of sales. From the series of counts yt, we define the binary time series

zt = 1(yt>0). The global model would be defined through

zt ∼ Ber(πt) and yt|zt =

0, if zt = 0,

1 + xt, xt ∼ NB(rt, pt) if zt = 1,
(3.3)

i.e. yt = zt(xt + 1) with zt ∼ Ber(πt), xt ∼ NB(rt, pt). The link functions

relating to the linear predictors for the Bernoulli (Ber) and Negative Binomial

(NB) components respectively are

logit(πt) = F 0
tθ

0
t and log(pt) = F+

t θ
+
t . (3.4)

We consider a fixed rt for all t, so that the NB belongs to the exponential

family of distributions. The state equations are

θ0
t = G0

tθ
0
t−1 + ω0

t and θ+
t = G+

t θ
+
t−1 + ω+

t ,

and the prior moments for the states of each DGLM are m0
0,C

0
0,m

+
0 ,C

+
0 .

The conditional model for the positive counts, yt|(zt=1), is a shifted nega-

tive binomial DGLM. This component is only updated when sales are observed,

zt = 1; otherwise, the value yt is treated as missing. This allows for a range of

applications with significant probability of zeros over time. In those cases, the

NB part will play a limited role. Also, the use of a NB instead of a Poisson

(which is a special case, with rt → ∞) allows to better deal with cases of

overdispersion, as will be showed later.
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Due to treating zero observations as missing in the NB part, in the case

of time series with sudden and long intervals with no sales, this part might

take some time to adapt, with forecast performance deteriorating. Although,

as later discussed, this can be mitigated through the adequate use of discount

factors, another option is the use of a zero inflated version of model (3.3), i.e.

without the shifting (yt = ztxt), through

p(yt|πt, rt, pt) ∼

(1− πt) + πtNB(0|rt, pt), if yt = 0,

πtNB(yt|rt, pt) if yt > 0.
(3.5)

3.3.2 Sequential Learning and Forecast

For the NB term, we use the parametrization in Appendix A.1, which with a

fixed rt, can be expressed in the canonical exponential family form (3.1) with

T (yt) = yt, Vt = 1 =⇒ Φt := V −1
t = 1, ηt = log(pt),

a(ηt) = −rt log(1− exp ηt) and b(yt, Vt) =
Γ(rt + yt)

yt!Γ(rt)
.

The update and forecast procedure of this DGLM with distribution yt | ηt, Vt ∼
NB(rt, pt) for the observations, follows the one in (West & Harrison, 1997) with

the following prior, predictive and posterior distributions:

Conjugate Prior for ηt,

π(ηt|Dt−1) = c(αt, βt) exp(αtηt − βta(ηt)) (3.6)

= c(αt, βt) exp(αtηt + βtrt log(1− exp ηt)).

Since it must integrate to one,

c(αt, βt) =
(∫ log 1

log 0

exp(αtηt + βtrt log(1− exp ηt)) dηt

)−1

= B(αt, βtrt + 1)−1.

Therefore π(ηt|Dt−1) = c(αt, βt)B(αt, βtrt + 1)−1.
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Conjugate Prior for pt. With the change of variable pt = exp ηt in (3.6) we

have

π(pt|Dt−1) = B(αt, βtrt + 1)−1pαt−1
t (1− pt)βtrt ∼ Be(αt, βtrt + 1).

Predictive distribution for Yt,

π(Yt|Dt−1) =
c(αt, βt)b(Yt, Vt)

c(αt + ΦtYt, βt + Φt)

=
Γ(rt + Yt)

Yt!Γ(rt)

B(βtrt + 1 + rt, αt + Yt)

B(βtrt + 1, αt)
∼ BNB(βtrt + 1, αt, rt).

Posterior distribution for ηt. After observing Yt, the posterior is the prior

with updated parameters α′
t = αt + Yt, β

′
t = βt + 1

π(ηt|Dt) = B(αt + Yt, βtrt + rt + 1)−1(eηt)αt+Yt(1− eηt)βtrt+rt .

Posterior distribution for pt. Equivalently, we have

π(pt|Dt) = Be(pt|αt + Yt, βtrt + rt + 1).

Note that in the conjugate updating method, the scale parameter Vt is

assumed known for all t, which is the case with the models in the present

thesis. Recent work by Souza et al. (2018) introduces an extension to the

update procedure that allows for an unknown scale parameter that varies over

time.

The update for the Bernoulli DGLM can be obtained in an analogous man-

ner, and the resulting procedure for joint the mixture model (3.3), using the

moment matching technique in West et al. (1985), can thus be summarized,

for each t > 0, as :

• One step ahead prior moments for the states given Dt−1 (y1:t−1 and other

relevant information), θt|Dt−1 ∼ (at,Rt), with

at = Gtmt−1 Rt = GtCt−1Gt
′ +W t
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• One step ahead forecasts are based on the Bernoulli and the Beta-

Negative Binomial (BNB) distributions

zt|Dt−1 ∼ Ber
( α0

t

α0
t + β0

t

)
and xt|Dt−1 ∼ BNB(β+

t rt + 1, α+
t , rt),

with hyper-parameters α0
t , β

0
t , α

+
t , β

+
t satisfying

f 0 = γ(α0
t )− γ(β0

t ), q0 = γ̇(α0
t ) + γ̇(β0

t ),

f+ = γ(α+
t )− γ(α+

t + β+
t rt + 1), q+ = γ̇(α+

t )− γ̇(α+
t + β+

t rt + 1),

where f 0 = f+ = F tat and q
0 = q+ = F tRtF t

′ are the predictive mean

and variance of the corresponding linear predictor λt in (3.4); and γ, γ̇

are the digamma and trigamma functions, respectively.

• Posterior moments for the states after observing yt, θt|Dt ∼ (mt,Ct),

mt = at +RtF t
′(f̂t − ft)/qt, Ct = Rt −RtF t

′F tRt(1− q̂t/qt)/qt,

with

f̂0
t = γ(α0

t + zt)− γ(β0
t + 1− zt), f̂+

t = γ(α+
t + xt)− γ(α+

t + xt + β+
t rt + rt + 1),

q̂0t = γ̇(α0
t + zt) + γ̇(β0

t + 1− zt), q̂+t = γ̇(α+
t + xt)− γ̇(α+

t + xt + β+
t rt + rt + 1).

As mentioned earlier, with the shifted NB in model (3.3) the last step is only

performed after observing a sale, yt > 0. Otherwise, xt = yt − 1 is treated

as missing and m+
t = a+

t and C+
t = R+

t . This is not the case when using

model (3.5), where the number of sales (xt = yt) is modeled directly.

If we denote with 1HS a binary variable that is 1 when using model (3.3),

and 0, when using (3.5), the p.m.f of the resulting predictive distribution for

the observations is given by

p(yt|Dt−1, πt) = (1− πt)δ0(yt) + πtBNB(yt − 1HS|β+
t rt + 1, α+

t , rt), (3.7)
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with (πt|Dt−1) ∼ Be(α0
t , β

0
t ) and δ0 the Kronecker delta function. Equivalently,

we have

yt|Dt−1 = zt(xt + 1HS), zt ∼ Ber

(
α0
t

α0
t + β0

t

)
, xt ∼ BNB(β+

t rt + 1, α+
t , rt).

We, then, have:

• Mean

µzt(µxt + 1HS) =
α0
t

α0
t + β0

t

(
α+
t

β+
t

+ 1HS

)
,

where µzt and µxt are, respectively, the mean of the predictive distribu-

tions of the Bernoulli and the NB DGLMs.

• Variance

(σ2
zt

+ µ2
zt
)(σ2

xt
+ (µxt + 1HS)

2)− µ2
zt
(µxt + 1HS)

2

=
α0
t

α0
t + β0

t

(
α+
t (1 + β+

t )(α+
t + rtβ

+
t )

β+
t

2
(β+

t rt − 1)
+

(
α+
t

β+
t

+ 1HS

)2 )
−

(
α0
t

α0
t + β0

t

)2(α+
t

β+
t

+ 1HS

)2

,

where σ2
zt and σ

2
yt are, respectively, the variance of the predictive distri-

butions of the Bernoulli and the NB DGLMs.

• Median

0, if µzt < 0.5,

QBNB((µzt − 0.5)/µzt ; β
+
t rt + 1, α+

t , rt) + 1HS otherwise,

where QBNB(x; β, α, r) denotes the x-th quantile of the beta negative

binomial with parameters β, α and r. Similarly, we obtain the desired

credible intervals (Figure 3.4).
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Figure 3.4: One step ahead mean (blue), median (red), 90% credible intervals

(light blue) and observations (black) for yogurt sales.

For more than one step ahead forecast distributions, we use Monte Carlo

simulations to generate N random projections up to the desired forecast hori-

zon, as reflected in Algorithm 3.1.

T ≡ ”last index of the time series”; N ≡ ”number of projections”;

P ≡ ”matrix for storing the simulations”;

for p in 1 : N do

for t in T + 1 : T + k do

Calculate prior moments for states, θt|Dt−1 ∼ (at,Rt);

Calculate hyper-parameters α0
t , β

0
t , α

+
t , β

+
t , use them to draw y∗t

from (3.7);

Consider draw as observed value, yt = y∗t ;

Save the draw, P pt = yt;

Update state moments with yt and other relevant information

θt|Dt ∼ (mt,Ct);

end

end

Algorithm 3.1: Forecast k-step ahead via simulations.

At each projection p, and for each time t of the k future observations to pre-
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dict, a random draw from (3.7) is performed and used as the observed value

for the previously explained update procedure. This gives full forecast distri-

butions and facilitates analyzing and performing inference on the projections,

predictive intervals (Figure 3.5) and cumulative outcomes. A useful direct ap-

plication of the sample is the estimation of the probability that the cumulative

demand up to a time point reaches a certain threshold. This is particularly

useful for knowing the probability of an OoS event, raise alarms and plan

orders, as we will show later.

Figure 3.5: Two weeks ahead (14 days) forecast (grey) with intervals and real

values (black points) for SKU ’117866’.

3.3.3 Discount factors

The specification of the unknown state evolution variance matrix W t is cru-

cially important for successful forecasting. Its values control the stochastic

variation in the evolution of the model and, hence, determine stability over

time. In the system equation, W t leads to an increase in uncertainty or,

equivalently, a loss of information about the state vector between times t and

t + 1. Due to the difficulty of correctly specifying this variance matrix, a

common alternative, adopted here, is the use of discount factors (West & Har-

rison, 1997) which are easier to elicit. The discount factor δ takes values in

(0, 1], with 1 being the case of a stable state vector with no stochastic changes
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(W t = 0). In practice, discount factors are usually assigned values between

0.8 and 0.99. The prior variance Rt for the state in the sequential update

procedure changes from GtCt−1Gt
′ +W t to GtCt−1Gt

′/δ.

While it is possible to use a single discount factor for all model compo-

nents, this might not be always adequate. For example, the trend and seasonal

components often require different discount factors: usually, the seasonal char-

acterization is more durable in time and, hence, more accurately represented

through higher values of δ. When using several discount factors for the different

components we divide the corresponding block of matrix Rt in the updating

procedure, by the the discount factor chosen for that component. Addition-

ally, there are occasions when a discount factor that is not constant, and varies

through time (δt) might prove beneficial.

Figure 3.6: One step ahead plots with mean (blue), median (red), 90% credible

intervals (light blue) and observations (black).

Due to the high number of time series to be monitored in the retail domain,

an automatic detection system for unusual bad model performance was imple-

mented, which automatically lowers the discount factor for a predetermined
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number of time instants. This adaptive discount factor reflects our state of

greater uncertainty about the state parameter and enables the model to adapt

faster to the changes in the underlying process, as shown in Figure 3.6: model

with constant discount factor for all components (level, seasonal) above, and

model with the level component discount factor being adaptive below.

The resulting automatic exception detection and handling routine (and

its integration in the updating process) is sketched in Algorithm 3.2. When

several days with zero sales are detected, which could signal the beginning of

an interval without sales like those discussed earlier, the discount factor of the

Bernoulli term momentarily changes from its usual value of 0.95 to 0.8. Also,

when the observations fall outside the 99% credible interval, we reduce the the

NB term discount factor from 0.9 to 0.8, to facilitate faster adaptation.

T ≡ ”last index of the time series”;

k ≡ ”number of time instants to add uncertainty after an exception”;

for t in 1 : T do

Calculate predictive moments for states θ0
t |Dt−1, θ

+
t |Dt−1 ;

Calculate one step ahead predictive distribution yt|Dt ;

Observe yt ;

if yt = 0 and yt−1 = 0 then

δ0t+1:t+k = 0.8 ;

else

if yt ∈ 99% credible interval of p(yt|Dt−1) then

δ+t+1:t+k = 0.8;

end

Calculate posterior moments for states θ0
t |Dt, θ

+
t |Dt;

end

Algorithm 3.2: Exception detection and handling routine.
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3.3.4 Overdispersion

As previously mentioned, one problem with using Poisson distributions for

modeling count time series is that in many instances these present overdis-

persion. This is appreciated in Figure 3.7 through the inability of the model

to adequately forecast infrequent values, specially higher ones, resulting in

under-coverage of the predictive distributions (Figure 3.8). One way to al-

leviate this, while assuming Poisson distributed observations, is proposed for

DCMM, Berry and West (2020) and consists of using random effects, a dis-

count factor ρ ∈ (0, 1] in the variance of the linear predictor λt, so that its

previous variance qt is changed by q∗t ≡ qt/ρ.

Figure 3.7: One day ahead predictions (solid) with 95% credible intervals

(dashed) and real values (dots) for SKU ’182’ with DCMM.

This works particularly well for high values of qt, for which γ(αt) ≈ log(αt)

and γ̇(αt) is a good approximation (West and Harrison (1997) ch. 14) and

the mean of the forecast distribution remains the same while the variance is

increased. However, this is not always a good approximation in practice and

can affect the predictive mean. Moreover, even low random effects values might

continue to inadequately forecast infrequently high values in our domain, e.g.,

Figure 3.8 shows under-coverage with a fairly low rho value of 0.3 at virtually

all intervals; and Figure 3.7 the particular under-coverage of the 95% credible

intervals (0.7 empirical coverage).
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The use of a NB distribution for the positive counts in models (3.3, 3.5)

with the estimation of parameter rt indicating the grade of dispersion improves

the forecasts over the same model (i.e. same F t, Gt) with a Poisson in overdis-

persed products without compromising model performance for equidispersed

products. This approach (Figure 3.9) also improves over the use of the Pois-

son with random effects (DCMM), which offers similar performance for point

forecasts but is sometimes unable to completely remove the under-coverage of

the predictive distributions shown in Figure 3.8.

Figure 3.8: Coverage plot for SKU ’182’

using DCMM with a low random effects.

Figure 3.9: Coverage plot for SKU ’182’

using model (3.3).

3.4 The multivariate case

Figure 3.3 illustrated that there could be dependence between demand time

series, suggesting relevant correlation due to common causes (environment,

location,...) or substitute goods, for example. We expand now the model

introduced in Section 3.3 to the multivariate case, so that we take advantage

of cross-series information to improve the forecasts of individual or aggregated

time series. As an example, demand forecasts of a product like a given beer

can benefit from information on sales from other beers with different SKUs:
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it is common for them to exhibit significant positive correlation as Figure 3.3

shows (and even negative in case of products cannibalizing sales). Indeed,

product sales usually show marked seasonalities which can pass unnoticed for

the univariate model in case of low demand individual series, but might show

on related series with higher demand. Additionally, in many cases we are

also interested in a subset of time series from a hierarchy level that share

similar characteristics, like cake sales in stores situated in neighborhoods with

analogous socio-economic indicators. The multivariate modeling of these time

series can improve the forecast performance as the case study in Section 3.6

will show.

In the multivariate framework, let us denote by yit the observation of the

i-th time series (i = 1, . . . ,m) at time t. Defining zit = 1(yit>0), it is possible

to extend model (3.3) to the multivariate case with

zit ∼ Ber(πit) and yit|zit =

0, if zit = 0,

1 + xit, xit ∼ Neg-Bin(rt, µit) if zit = 1,
(3.8)

which correspond to the marginals of the model zt = xt ◦ (yt + 1m) with

zt ∼ MBer(pt) and xt ∼ MNB(rt,µt). The parameter of the multi-Bernoulli

(MBer) is a vector pt = (p00..00,t, p00..01,t, ..., p11..11,t) of dimension 2m indicating

the probabilities of each possible outcome (mutually exclusive events adding

to one, and πit =
∑

x∈{0,1} pxx..1..xx, where 1 is in the i-th position). The

Multi-Negative Binomial (MNB) has as parameters, a scalar rt indicating the

dispersion of all marginals, and vector µt = (µ1t, ..., µmt) with the means of

each time series. Alternatively, in matrix notation, Y = Z ◦ (X + 1m xT ),

where ◦ is the Hadamard product, that is,
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Y =



z11 . . .

zt︷︸︸︷
z1t . . . z1T

...
...

...

zi1 . . . zit . . . ziT
...

...
...

zm1 . . . zmt . . . zmT


◦





x11 . . .

xt︷︸︸︷
x1t . . . x1T

...
...

...

xi1 . . . xit . . . xiT
...

...
...

xm1 . . . xmt . . . xmT


+ 1m xT


.

We have therefore, as in the univariate case, two DGLMs

zt ∼ MBer(pt), xt ∼ MNB(rt;µt), (3.9)

softmax−1(pt) = F 0
tθ

0
t , log(µt) = F+

t θ
+
t ,

θ0
t = G0

tθ
0
t−1 + ω0

t , ω0
t ∼ (0,W 0

t ), θ+
t = G+

t θ
+
t−1 + ω+

t , ω+
t ∼ (0,W+

t ),

θ0
0 ∼ (m0

0,C
0
0), θ+

0 ∼ (m+
0 ,C

+
0 ),

softmax−1 being the inverse of the softmax function1. This joint model intro-

duces dependence across the states of time series y1t,..., ymt, improving forecast

performance by borrowing strength, i.e. for each yit we exploit the information

provided by the other m − 1 similar time series. Since both distributions,

MBer for the sale/no sale part, and MNB (with fixed rt) for the number of

sales part belong to the exponential family we can use conjugate analysis for

the sequential updating and forecast procedure of the model. This can be done

in parallel for each DGLM as detailed below.

Sale/no-sale part. Multi-Bernoulli DGLM For the the sale/no-sale

part of model (3.8), we have the binary observation vector zt generated from

the original time series, which is modeled through the multivariate Bernoulli

(MBer) DGLM with softmax−1 link function,

1The softmax function is a generalization of the logistic function. Its inverse

softmax−1 generalizes the logit function, softmax−1(pt) = (log(p00..00,t/p11..11,t), ...,

log(p01..11,t/p11..11,t), 0).
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zt ∼ MBer(pt),

softmax−1(pt) = F tθt,

θt = Gtθt−1 + ωt with ωt ∼ (0,W t),

θ0 ∼ (m0,C0),

with MBer following the definition in Dai et al. (2013), and pt = (p00..00,t,

p00..01,t,..., p11..11,t) is a vector of dimension 2m indicating the probabilities of

each possible outcome, with
∑

k∈{00..00,...,11..11} pk,t = 1. Note that, although

2m can grow quickly, we are usually interested in modeling a limited number

of time series together (and with a similar dispersion due to the particularities

of the MNB), and therefore, the computations remain tractable. Using the

exponential family notation in (3.1) we have

T (zt) =


(1− z1,t)...(1− zm−1,t)(1− zm,t)

(1− z1,t)...(1− zm−1,t)zm,t

...

z1,t...zm−1,tzm,t

 , Vt = 1 =⇒ Φt := V −1
t = 1,

ηt = softmax−1(pt), a(ηt) = log
(∑

k

eηk,t
)
, b(zt, Vt) = 1.

Then, the conjugate prior for the linear predictor, softmax−1(pt), is

CPηt
(αt, βt) = π(ηt|Dt−1) = c(αt, βt) exp(αtηt − βta(ηt)) (3.10)

= c(αt, βt) exp
(
αtηt − βt log(

∑
k

eηk,t)
)

= c(αt, βt)
eαtηt

(
∑

k e
ηk,t)βt

= c(αt, βt)
e
∑

k αk,tηk,t

(
∑

k e
ηk,t)βt

,

for some normalizing constant c(αt, βt). As the distribution CPηt
(αt, βt) must

integrate to 1, the normalizing constant is
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c(αt, βt) =

(∫ ∞

−∞
...

∫ ∞

−∞

e
∑

k αk,tηk,t

(
∑

k e
ηk,t)βt

dη00..00,t...dη01..11,t

)−1

,

which, with the change of variable pt = softmax(ηt), is equivalent to

(∫ 1

0
...

∫ φ

0

(
p00..00,t
p11..11,t

)α00..00,t

...
(
p01..11,t
p11..11,t

)α01..11,t
(

1
p11..11,t

)1−βt

p00..00,t...p01..11,t
dp00..00,t...dp01..11,t

)−1

=
Γ(βt)

Γ(α00..00,t)...Γ(α01..11,t)Γ(b− α00..00,t − ...− α01..11,t)
.

where φ = 1 − p00..01,t − ... − p01..11,t and p11..11,t = 1 − p00..00,t − ... − p01..11,t.
Therefore, from (3.10), we get that the conjugate prior pt is

CPpt
(αt, βt) = Dirichlet(α00..00,t, ..., α01..11,t, βt − α00..00,t − ...− α01..11,t).

The hyperparameters α00..00,t,..., α01..11,t, βt are estimated with the moment

method, equalizing the mean and variance of the linear predictor softmax−1(pt)

to f t = F tat and Qt = F tRtF t
′ respectively:

E[softmax−1(pt)|Dt−1] =


γ(α00..00,t)− γ(b)

...

γ(α01..11,t)− γ(b)
0

 ,

V ar[softmax−1(pt)|Dt−1] =

γ̇(α00..00,t) + γ̇(b) γ̇(b) γ̇(b) · · · γ̇(b) 0

γ̇(b) γ̇(α00..01,t) + γ̇(b) γ̇(b) · · · γ̇(b) 0
...

...
...

. . .
...

...

γ̇(b) γ̇(b) γ̇(b) · · · γ̇(α01..11,t) + γ̇(b) 0

0 0 0 · · · 0 0


,
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where b = βt−α00..00,t−...−α01..11,t. Using the approximation γ̇(x) = log(x)− 1
2x

we obtain good approximations for the hyperparameters which we can use as

such, or as starting points for a Newton-Raphson algorithm to obtain even

more accurate values.

The predictive distribution for the observation vector zt is

π(zt|αt, βt) =
c(αt, βt)b(zt, Vt)

c(αt + ϕtT (zt), βt + ϕt)
(3.11)

= MBer
(α00..00,t

βt
, ...,

α01..11,t

βt
,
βt − α00..00,t...− α01..11,t

βt

)
.

After observing the realization zt, the posterior distributions for ηt and pt

have the same form than the priors with updated hyperparameters α̂t = αt +

ϕtT (zt), β̂t = βt + ϕt.

Number of sales part. Multi-Negative Binomial DGLM For the the

number of sales part in model (3.8), we have the observation vector xt modeled

through a DGLM with the multivariate negative binomial (MNB) in Arbous

and Kerrich (1951) (Appendix A)

xt ∼ MNB(rt;µt)

log(µt) = F tθt,

θt = Gtθt−1 + ωt with ωt ∼ (0,W t),

θ0 ∼ (m0,C0),

with µt = (µ1,t, ..., µm,t) being the vector of means of each time series. Using

the exponential family notation in (3.1) we have

T (xt) = xt, Vt = 1 =⇒ Φt := V −1
t = 1, ηt =


log( µ1,t

rt+
∑

k µk,t
)

...

log( µm,t

rt+
∑

k µk,t
)

 ,

a(ηt) = −rt log
(
1−

∑
k

eηk,t
)
, b(xt, Vt) =

Γ(r +
∑

k yk,t)

Γ(rt)
∏

k yk,t!
.
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The conjugate prior for the natural parameter ηt is

CPηt
(αt, βt) = π(ηt|Dt−1) = c(αt, βt) exp(αtηt − βta(ηt)) (3.12)

= c(αt, βt) exp
(
αtηt + rtβt log

(
1−

∑
k

eηk,t
))
,

for some normalizing constant c(αt, βt). As the distribution CPηt
(αt, βt) must

integrate to 1, the normalizing constant is

c(αt, βt)=

(∫ 0

−∞
..

∫ 0

−∞

exp(η1,tα1,t..+ ηm,tαm,t)(1− exp(η1,t)..− exp(η1,t)

(
∑

k e
ηk,t)βt

dη1,t..dηm,t

)−1

,

which, with the change of variable pi,t =
µi,t

r+µi,t
, is the multivariate beta function

(B(α1t, ..., αmt, βtrt + 1))−1.

Then, from (3.12) we get that the conjugate prior for the parameter µt is

CPµt
(αt, βt) =

rt
(

µ1t

rt+
∑

k µkt

)α1−1
...
(

µmt

rt+
∑

k µkt

)αm−1( rt
rt+

∑
k µkt

)βt+1−1

B(α1t, ..., αmt, βtrt + 1)(rt +
∑

k µkt)m+1
.

The hyperparameters α1t,..., αmt, βt are estimated through the moment method,

equalizing the mean and variance of the linear predictor logµt to f t = F tat

and Qt = F tRtF t
′, respectively:

E[log(µt)|Dt−1] =


γ(α1t)− γ(βtr + 1) + log(r)

...

γ(αmt)− γ(βtr + 1) + log(r)

 ,

V ar[log(µt)|Dt−1] =


γ̇(α1t) + γ̇(βr + 1) · · · γ̇(βr + 1)

...
. . .

...

γ̇(βr + 1) · · · γ̇(αmt) + γ̇(βr + 1)

 .
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The predictive distribution for the observation vector xt is

π(xt|αt, βt) =
c(αt, βt)b(xt, Vt)

c(αt + ϕtT (xt), βt + ϕt)
(3.13)

=
B(α1t + y1t, ..., αmt + ymt, (βt + 1)rt + 1)

B(α1t, ..., αmt, βtrt + 1)

Γ(r +
∑

k ykt)

Γ(rt)
∏

k ykt!

≡ MBNB(xt|αt, βt, rt),

which we denote as Multivariate Beta Negative Binomial (MBNB) due to its

marginals being Beta Negative Binomial (BNB) distributions. After observing

the realization xt, the posterior distributions for ηt and µt have the same

form than the priors but with updated hyperparameters α̂t = αt + ϕtT (xt),

β̂t = βt + ϕt.

Therefore, the resulting predictive distribution of the joint mixture model

(3.8) for the observations vector yt is

yt|Dt−1=zt◦(xt+1m) with

zt ∼ MBer
(

α0
00..00,t

β0
t

, ...,
α0
01..11,t

β0
t

,
β0
t−α0

00..00,t..−α0
01..11,t

β0
t

)
,

xt ∼ MBNB(α+
t , β

+
t , rt),

which correspond to the predictive distribution for the marginals yit|Dt−1 =

zit(xit+1m), with zit a Bernoulli and xit a beta negative binomial, the marginals

of (3.11) and (3.13) respectively. This can be written analogously to (3.7) since

p(yit|Dt−1, πit) = (1− πit)δ0(yit) + πitBNB(yit − 1|β+
t rt + 1, α+

it , rt),

with (πit|Dt−1) ∼ Be((β0
t −

∑
x∈{0,1} α

0
xx..0..xx)/β

0
t ) and δ0 the Kronecker delta

function. From this expression, we can obtain the median to use as a point fore-

cast and calculate credible intervals, computing the corresponding percentiles

ρ as
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0, if (1− µzit) >= ρ,

QBNB((ρ− (1− µzit))/µzit ; β
+
t rt + 1, α+

it , rt) + 1, otherwise,

where µzit is the mean of the i-th marginal of the predictive distribution (3.11),

and QBNB denotes the quantile of the i-th marginal of the predictive distribu-

tion (3.13).

Although the equations in this section correspond to the multivariate ver-

sion of hurdle shifted model (3.3), they can easily be modified as in Section 3.3

to obtain the ones for the multivariate zero inflated model (3.5). We explore

the performance of both versions in Section 3.6.

3.5 Out-of-stock events

The information about the likelihood of OoS events is essential in inventory

management to support decisions concerning when to place resupply orders.

It facilitates devising a real time monitoring algorithm to raise alarms that

prompts (or automatically places) orders whenever a potentially critical situ-

ation is predicted.

With the information about current stock and arrival dates of replenish-

ment orders, and the demand forecast up to the (t+ k)-th time, it is possible

to obtain the probability that a product becomes out of stock over the next k

periods. Indeed, the stock at the end of period t for any given product is

stockt = stockt−1 − salest + resupplyt.

Observe that in our specific application domain, the resupplies arrive to the

store at the beginning of the period (day); hence, those units can be used to

satisfy demand in that same period or day t. We consider resupplyt a time

series of non-negative integers (zero when there is no resupply expected) that

is updated whenever a new order is made. If we consider resupplyt as known,
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which is reasonable as it is based on our requests to own or external suppliers

with firm lead times, we can use the predictive distribution of demand to

estimate the probability of an OoS event at time t, P (stockt = 0), as

P (demandt ≥ stockt−1 + resupplyt),

where we note that salest = min(stockt, demandt).

For estimating the probability of an OoS event, from the end of the current

time period t in which we have already observed Dt up to time k, we use

the predictive distributions of the demand obtained via simulation through

Algorithm 3.1: we have approximations for p(yt+1|Dt), ..., p(yt+k|Dt), and, for

any i ∈ {1, ..., k}, the cumulative demand up to that instant ahead, di|Dt ··=
(yt+1 + ...+ yt+i) |Dt, can be approximated with the previous samples. Thus,

we can use it to estimate the probability of an OoS event at or before time

t+ i, until the next resupply,

p(OoSi) ··= 1−
stockt∑
j=0

p(yt+1 + ...+ yt+i = j|Dt),

= 1−
stockt∑
j=0

p(di = j|Dt).

Now, at the current time period t, the previous estimations of the probabil-

ities of OoS events up to some horizon t+ k can be used to make an informed

decision on whether to place an order or not (and when we want that order to

arrive). This can be done according to several criteria, including:

• We place an order before the forecast of the probability of an OoS event

reaches a certain threshold α, that is, if we have the set with the time

periods that surpass the threshold, A = {i ∈ [1, ..., k] : P (OoSi) ≥ α},
and the criterion is,
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- If the set A is empty, then, with the chosen threshold α we

are not worried about OoS events up to t+ k

- Otherwise, we are prompted to make an order that arrives

before or at time period t+min(A)

In case the retailer wants to completely avoid OoS events, the threshold

value α should be low.

• If there is more information that allows calculating the expected benefits

(sell prices, storage costs, etc), we place an order if that monetary profit

is greater than the alternative decision (no order). For that, if the profit

per unit sold is c, and the reputation loss (expressed in monetary terms)

per unit not sold is f , we define the profit at time t+ i (i = 1, ..., k) as

(1− P (OoSi))× (di c)− P (OoSi)× (di − stockt)f.

Now, since we have the predictive distribution of the demand di|Dt up

to time t+ i, if we denote d̂i ··= E[di|Dt] and the expected profit as

EProfiti ··= (1− P (OoSi))× (d̂i c)− P (OoSi)× (d̂i − stockt)f,

then, the set with the instants with negative expected profit is A = {i ∈
[1, ..., k] : EProfiti < 0}. Analogously to the previous criteria, if the set

A is not empty, we would be prompted to make an order that arrives at

time t+min(A) or before.

• Via the use of utility functions that take into account risk aversion. In

this case, we would have the utility at time t+ i,

(1− P (OoSi))× u(di c)− P (OoSi)× u((di − stockt)f),
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where u is the corresponding utility function. Note that if the utility

function u is the identity, we would be in the previous case. The proce-

dure is analogous, we would have a expected utility

EUtili ··= (1− P (OoSi))× E[u(di c)]− P (OoSi)× E[u((di − stockt)f)],

and a corresponding set of instants for which the expected utility is

negative, A = {i ∈ [1, ..., k] : EUtili < 0}. The user would be prompted

to make an order if that set A is not empty.

In any case, with any of the above criteria applied to the time series of a

product, there are two possible results: if the set A is empty, the user is not

recommended to place an order; otherwise, the user is prompted to place an

order arriving at or before the time period t+min(A).

As mentioned, the recommendation to make an order is done generating

an alarm, which can adopt two levels, warning and critical. This is done

based on the number of time periods left (window of opportunity) to take an

action to prevent the OoS situation, i.e., until t+min(A) time period. As an

example, in the proposed application of forecasting daily demand: we would

issue a warning level when there are 3 or more days left until t+min(A), and

a critical level when there are only 1 or 2 days left until t+min(A).

If the user is prompted to make an order now (i.e., at time period t), he

can chose to do it immediately, or wait (specially if the alarm is of the warning

level type) for more products requiring an order. If the order for the product

is performed, the corresponding resupply time series would be updated and

used when facing the ordering decision process at the next time period t + 1

(tomorrow in this case).

Section 3.6 illustrates this methodology, with the threshold technique, ap-

plied to the stock of beer during a week into the future.
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3.6 Case study. Supermarket sales forecasting

The data in our case study consists of the fourteen time series of daily sales

introduced in Section 3.2. We use the models in Sections 3.3 and 3.4 to obtain

forecasts and compare its performance with other models for count time series.

3.6.1 Model specification

To apply the models in Sections 3.3 and 3.4, we first specify the F t and Gt ma-

trices. For the sale/no sale part of the univariate models (3.3, 3.5), Bernoulli

DGLM, we include a second order polynomial, or linear growth, component

with

F 0
t =

(
1 0

)
, G0

t =

1 1

0 1

 . (3.14)

The number of sales part of the model includes also a linear growth compo-

nent, plus a seasonal one of period 7, and two covariates referring to the price

logarithm and a three level promotion variable (as discussed in Section 3.2),

F+
t =

(Linear

growth︷︸︸︷
1 0

Covariates︷ ︸︸ ︷
log(pricet) promot

Sesaonal︷ ︸︸ ︷
1 0 0 0 0 0

)
,

G+
t =



1 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 −1 −1 −1 −1 −1 −1

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0



. (3.15)
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For the multivariate version (3.9), the same components are used for F t

and Gt matrices, but with the dependence structure among state vectors given

by Seemingly Unrelated Time Series Equations (SUTSE) as in Fernández and

Harvey (1990). This joint model introduces dependence across the states of

time series y1t . . . ymt, via the evolution errors ω0
t and ω+

t . The new matrices

are therefore the result of implementing the Kronecker product2, ⊗, between
those in (3.14) and (3.15), and the identity matrix of dimension m, where m

is the number of time series incorporated into the multivariate model

F 0
t ⊗ Im , F+

t ⊗ Im , G0
t ⊗ Im , G+

t ⊗ Im.

State vectors will also change from dimension q to dimension qm, with q = 2

for the sale/no sale part (3.14) and q = 10 for the number of sales part (3.15),


θ1

θ2
...

θq

 −→



θ1,1
...

θm,1

θ1,2
...

θm,2

...

θm,q



. (3.16)

As mentioned in Section 3.3, discount factors are used due to the advantages

they present. After analyzing and modeling several representative data sets,

we decided that the most adequate component discount factors were δ0 = 0.95

for the sale/no sale part (whether it is Bernoulli or MultiBernoulli), and δ+ =

(0.99, 0.995, 0.995, 0.995) for the level, regression and seasonal components of

the number of sales term (NB or MNB). Finally, the dispersion parameter rt

2If A is an m× n matrix and B is a p× q matrix, then the Kronecker product A⊗B

is the pm× qn block matrix,


a11B . . . a11B

...
. . .

...

am1B . . . amnB

.
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is estimated using the EM algorithm, as in Adamidis (1999), with the first 14

observations (two weeks).

3.6.2 Prior information

To complete model specification, we require the prior moments for the state

vector θ. Our priors aim to be flexible enough and somewhat informative.

They are estimated using the first week of data. For the Bernoulli, the prior

moments adopted are:

m0
0 =

(
log(p̂/(1− p̂)) 0

)′
and C0

0 = I2,

where p̂ is the proportion of the first 7 days in which there were sales. For the

NB DGLM, we use

m+
0 =

(
mL1

0 mL2
0 0 0 mS1

0 mS2
0 mS3

0 mS4
0 mS5

0

)′
and C+

0 = I9,

where parameter mL2
0 describes the expected growth and it is initialized with

mL2
0 = (u7 − u1)/6, with ut = log(yt); m

L1
0 describes the expected level and is

initialized with mL1
0 = (

∑7
t=1 ut − 28mL2

0 )/7; mSj
0 describes the j-th seasonal

component and, to assess it, we use mSj
0 = y8−j −mL1

0 + (j − 8)mL2
0 . For the

multivariate version (3.9), the prior mean vector is constructed to be consistent

with the state structure in 3.16, i.e., first assess mL1
0 for each of the m time

series, then the mL2
0 ’s, etc.

We use the identity matrices, I2 and I9, as prior matrix variances for

each of the model blocks, which allows the algorithm to adapt quickly in very

different contexts. This is due to the fact that we try to build a general and

automatic algorithm. However, in each individual case, performance could

improve should there be more precise prior information.
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3.6.3 Results

Univariate model

The proposed univariate model (3.3) in Section 3.3 significantly improves fore-

cast performance over DCMM in Berry and West (2020), as can be seen by

comparing Figure 3.7 with Figure 3.10. Note specially that the 95% credible

intervals cover more adequately days with high demand.

Figure 3.10: One day ahead predictions (solid) with 95% credible intervals

(dashed) and real values (dots) for SKU ’182’ with model (3.3).

In fact, the predictive distributions of this model cover quite adequately the

observations of the studied series at most intervals, as shown in Figure 3.11

with sales for alcoholic beers (SKU 182 and 14752).

Figure 3.11: Coverage plots for SKU 182 beer (bue) and SKU 14752 beer (red).
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Using the samples from the 7-step ahead predictive distributions obtained

with Algorithm 3.1, we estimate the probability of observing OoS events for

those 7 days ahead as explained in Section 3.5. Figure 3.12 shows that the

OoS probability increases significantly the fourth day. Thus, using the first

criteria to avoid OoS situations with threshold α = 0.75, it is recommended

to place a restock order such that it arrives before the end of the 4-th day.

Additionally, conforming to that criteria and the two level notification types,

a warning level notification is issued since there are still four days left to reach

the critical threshold, t+min(A) in Section 3.5.

Figure 3.12: Out of Stock probability for beer (SKU ’182’) for next week.

Multivariate model

The multivariate model (3.4), that uses cross-series dependencies tends to im-

prove the performance over the univariate versions of our model, whether we

use the zero inflated or the hurdle shifted variant. It is worth noting though

that when modeling series where almost all observations are zero, like clean-

ing products (bathroom cleaner with SKU ’70598’ and detergent with SKU

’130111’ in Figure 3.13), we usually observe that the credible intervals cover

the observation way better in the zero inflated case.
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Figure 3.13: Coverage plots for bathroom cleaner in blue, and detergent in red. ZI

version of (3.3) on the left, HS on the right.

Additionally a summary of the performance of point forecasts with different

error metrics is shown in Table 3.2 for the same cleaning products. There,

it can be seen that with these metrics, the multivariate model proposed in

Section 3.4 outperforms a DCMM.

Error Metric Zero Inflated Multiv. Hurdle Shifted Multiv. DCMM

MSE (3.58 ,1.75 ) (2.65,1.65) (3.16,1.82)

MAE (1.14 ,0.70 ) (0.99,0.73) (1.19,0.77)

ZAPE ( 0.59, 0.41) (0.56,0.46) (0.69,0.45)

Theil’s U ( 0.87, 0.83) (0.75,0.81) (0.82,0.85)

Table 3.2: Point forecast error metrics for zero inflated, hurdle shifted, and

DCMM applied to cleaning products (SKUs ’70598’, ’130111’).

3.7 Discussion

We have provided a family of models to forecast individual time series with

frequent zeros and possible overdispersion, and a multivariate extension of the
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proposed model that takes advantage of cross-series dependencies, making bet-

ter use of the available information (among products within a store, among a

product at different stores, among stores, etc.). The models and methodology

introduced are illustrated with a real demand forecasting problem, and shown

to improve the performance of models commonly used in this application do-

main. In fact, are an essential part for any DSS in retail to support optimal

decisions for the company.

Indeed, we present a methodology that with the forecasts of the models plus

additional information (stock, keeping costs, etc in our application domain)

aids in decision making, indicating when actions should be taken to avoid

potentially critical situations.

Finally, though the architecture and methodology was inspired by a massive

scale stock management problem, and developed as part of a Decision Support

System (DSS) for a large retail company, it could equally well be used to

support predictive stock control at SMEs, or any other domain where time

series with frequent zeros and overdispersion arise.
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Chapter 4

countTS. A Python library to

support time series forecasting

4.1 Introduction

In the previous chapters we have introduced several models to forecast count

time series and the corresponding algorithms to obtain forecasts. These algo-

rithms are complex and are not straightforward to implement in any common

programming language using existing libraries. Therefore, because of its rel-

evance for the industrial sponsor of this thesis, we have developed a library

implementing them, which is proprietary.

The package adopts the Object-Oriented Programming (OOP) paradigm

for implementing DLMs and DGLMs on the one hand; and the Functional

Programming (FP) paradigm for the novel models proposed in this thesis and

the auxiliary functions on the other. The general structure of the package is

shown in Figure 4.1 . The syntax for defining the models is similar to that in

the popular dlm package in R (Petris et al., 2009); for the practitioner familiar

with it, this allows a faster transition to our Python package (while providing

additional and enhanced models and functionalities).

The main advantage of this package over dlm is that it implements DGLMs

(West et al., 1985), i.e. extends DLMs to observations from any distribu-
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tion of the exponential family, and, via wrapper functions, the novel models

proposed in this thesis. Additionally, it is implemented in Python, which is

a general-purpose programming language, and currently more popular than

R (Carbonnelle, 2022). Other packages implementing this type of models in

Python are: pyDLM, which only implements DLMs, i.e., only considers normally

distributed observations; and pyBATS, with respect to which, our approach

offers additional features, like more exponential family distributions for the

observations and useful additional tools for modeling and verifying results.

Figure 4.1: UML diagram of the two classes in the package (DLM and DGLM)

in blue, and groups of additional functions in green.

4.2 Model definition

In this section we detail the definition of DLMs and DGLMs, as well as the

different common types of these (linear trend, seasonal, etc) which can be

combined to form new models.

4.2.1 Definition of DLMs

The basic models implemented in the package are DLMs, extensively treated

in West and Harrison (1997), a class of state space models that lend themselves
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quite naturally to be treated from a Bayesian approach. Furthermore, they

allow for a natural interpretation of a time series as the combination of several

components, such as trend, seasonal or regression components (Prado & West,

2010). The standard DLM is defined by equations (B.1) in Appendix B. And,

therefore, observations yt and states θt are normal with

yt |θt ∼ N(F tθt, Vt),

θt |θt−1 ∼ N(Gtθt−1,W t).

Any DLM is thus completely defined by the quadruplet {F t,Gt, Vt,W t}. Ma-

trices F t and Gt contain (as diagonal blocks) the different factors deemed

important to predict series behavior (trend, seasonality,...). A simple exam-

ple on how to buid a simple DLM object called modDLM with a single order

2 polynomial component, corresponding to a linear growth trend, is given by

Listing 4.1, and characterized by the quadruplet

F t =
(
1 0

)
, Gt =

1 1

0 1

 , Vt = 1, W t = I2.

1 import dlm # File with class DLM

2 import numpy as np

3 modDLM=dlm.DLM(type=’Poly’,order=2,V=1,W=np.identity (2))

Listing 4.1: Specification of a simple object of a DLM.

It is also possible to specify directly all the defining matrices of the model

to create a custom model, as modDLMm in Listing 4.2. Note that unlike the

model in Listing 4.1, modDLMm is multivariate, specifically a bivariate model.

Multivariate DLMs can be defined in this fashion, manually specifying matrices

of adequate dimensions, F t would now be of dimension n×m, where n is the

number of states of the model and m the number of time series.
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1 F_t = np.array ([[1, 0],[0, 1], [0, 0], [0, 0]])

2 G_t = np.array ([[1, 0, 1, 0], [0, 1, 0, 1],

3 [0, 0, 1, 0], [0, 0, 0, 1]])

4 V_t = np.identity (2); W_t = np.identity (4)

5 modDLMm=dlm.DLM(F=F_t ,G=G_t ,V=V_t ,W=W_t)

Listing 4.2: Creation of a DLM specifying all matrices.

4.2.2 Definition of DGLMs

DGLMs (West et al., 1985) extend the observational distributions of DLMs

to any probability density function (or p.m.f. in the discrete case) within

the exponential family, p(yt|ηt), and are defined by equations (3.2), which are

equivalent to

g(ηt) = λt = F tθt,

θt |θt−1 ∼ (Gtθt−1,W t).

Note that, unlike a DLM, no particular distribution is assumed for the states

θt or the linear predictor λt relating to the observations yt, only their means

and variances. Also, there is no evolution variance Vt and thus a DGLM is

defined by the triplet {F t,Gt,W t}.
In the current version of the code, the supported observational distributions

from the exponential family are: Poisson, Bernoulli, Multivariate Bernoulli,

Negative Binomial and Multivariate Negative Binomial. The last two require

fixed dispersion parameters so as to belong to the exponential family of distri-

butions. Listing 4.3 shows a Poisson DGLM, modDGLM, with the same polyno-

mial component as Listing 4.1.

1 import dglm # File with class DGLM

2 modDGLM=dglm.DGLM(type=’Poly’,order=2,distrib=’Poi’,

3 W=np.identity (2))

Listing 4.3: Specification of a simple instance of a DGLM.
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As with standard DLMs, the triplet {F t,Gt,W t} can be manually defined

when creating a new object (model) of class DGLM; and matrices F t and Gt

can contain different factors or components.

4.2.3 Components

As mentioned, both DLMs and DGLMs can incorporate different components

as building blocks (which by themselves also constitute standalone models):

• Polynomial trend. Polynomial components are used to model the

trends in the time series. The most commonly used are: the first order

polynomial model, or local level, characterized by F t = Gt = 1; and,

the second order polynomial model, or linear growth. The nth-order

polynomial DLM is defined through

F t =
(
1 0 . . . 0

)
, Gt =


1 1 0

1
. . .

. . . 1

0 1

 ,

with F t, Gt of dimensions n × 1 and n × n respectively. The syntax

for creating a DLM (DGLM is analogous) object with this structure is

dlm.DLM(type= ’Poly’, order=n).

• Seasonal factors. When considering the presence of a seasonal effect of

period s, one of the approaches available to model seasonality is through

a seasonal factor component,

F t =
(
1 0 . . . 0

)
, Gt =


−1 −1 . . . −1

1 0
. . .

0 1

 ,

with F t, Gt of dimensions (s− 1)× 1 and (s− 1)× (s− 1) respectively.

The proposed syntax is dlm.DLM(type=’Seas’, frequency=s).
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• Fourier Form Seasonal. The other approach available to model a

period s seasonality is through a Fourier component, which can include

all harmonics Hj (j = 1, .., ⌊s/2⌋), or only some of them,

F ′
t =



1

0
...

1

0


, Gt = diag

(
H1 . . . H⌊s/2⌋

)
, Hj =

 cos(2πj/s) sin(2πj/s)

−sin(2πj/s) cos(2πj/s)

 ,

with F t, Gt of dimensions (s−1)×1 and (s−1)×(s−1) respectively. The
proposed syntax for a Fourier component with period s and q harmonics

is dlm.DLM(type=’Trig’, s=p, harmcs=q). The use of only a few of

the lower-frequency harmonics reduces the size of the involved matrices

and usually gives a more parsimonious representation of the seasonality,

which is less sensible to noise (useful for example with yearly seasonality

in daily data, s=365).

• Regression. Covariates {xt}Tt=1 are also straightforward to include

through a model with F t = xt andGt = 1. This is done with dlm.DLM(t-

ype=’Reg’, name=’x’), where ′x′ is the name given to the particular co-

variate.

Thanks to the superposition principle (Prado & West, 2010) components

can be combined at will to form new models that more adequately reflect the

underlying process driving the time series under study. Given F 1, G1 from

one component/model; and F 2, G2 from another, their superposition results

in a new model with F =
(
F 1 F 2

)
and G = diag

(
G1 G2

)
. This is done with

the operator +, as shown in Listing 4.4.

1 modDLM=dlm.DLM(type=’Poly’,order =2) + dlm.DLM(type=’Seas’,

frequency =7)

Listing 4.4: Specification of a DLM with linear growth and period 7 seasonality.
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4.3 Prior information

To complete specification, note that it is still necessary to specify the initial

prior moments for the state vector, m0 and C0. If these are not specified

through the arguments m0, C0, the default choice is a vector of zeros for m0,

and the identity matrix for C0 (of conformable dimensions both). However, if

previous observations of the time series to model are available, the moments

can be initialized using MLE. Another alternative, specially when the number

of observations is low, is to directly solve the system of equations without

evolution errors given by (B.1) or (3.2), as illustrated for m0 in the wind shear

example in Section 2.6.1.

When defining a Negative Binomial DGLM (univariate o multivariate), the

fixed dispersion parameter rt, can be specified manually using the argument

rt in the call to the builder dglm.DGLM(). If the parameter is not specified, it

is estimated using an EM algorithm (Adamidis, 1999) when using the wrapper

function NegBinDGLM, which applies a NB DGLM to a series and returns a

DataFrame with the forecast distributions at the desired credible intervals. The

number of observations used by NegBinDGLM to estimate rt is controlled via the

argument obsForR (Listing 4.5); by default, it uses the first 21 observations.

1 DF_NB = NegBinDGLM(series=x, model=modDGLM_NB ,

2 credInterv=CredIntervals , obsForR =21)

Listing 4.5: Forecast of series x with model modNB and rt estimated using EM

with the first 21 observations.

4.4 Discount factors

The specification of the unknown state evolution variance matrix W t is cru-

cially important for obtaining accurate forecasts. However, its elicitation can

be difficult; a common alternative, implemented in this package, is the use

of discount factors (West & Harrison, 1997) which are easier to elicit. The
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discount factor δ take values in (0, 1], with 1 being the case of a stable state

vector with no stochastic changes (W t = 0). In practice, discount factors

are usually assigned a value between 0.8 and 0.99. This is done with the the

argument discFactor of the corresponding builder, as Listing 4.6 shows for a

DLM. In this case, the resulting model modDLM in Listing 4.6 would therefore

have different discount factors for each component. This is quite useful as

trend and seasonal components often require different discounts: usually, the

seasonal characterization is more stable in time and, hence, more accurately

represented with higher values.

1 modDLM=dlm.DLM(type=’Poly’,order=2, discFactor =[0.8]) +

2 dlm.DLM(type=’Seas’,frequency=7, discFactor =[0.9])

Listing 4.6: DLM with two components with different discount factors.

4.5 The DLM class

As seen in Sections 4.2 through 4.4, the instances of the DLM class are essential

for using Dynamic Linear Models to forecast time series. This section gives a

brief overview of the class, its attributes and methods (Figure 4.1).

4.5.1 Attributes

An instance/object of class DLM has thirteen attributes. Nine of them are

used in every DLM:

• type: list of strings that indicates the components of the model, e.g.

[’Poly’,’Seas’].

• name: list of strings that can assign different names to each component

of the model, e.g. [’Price’,’Promotion’].

• F: Observation evolution matrix (F t in equations (B.1)).
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• G: State evolution matrix (Gt in equations (B.1)).

• V: Evolution variance for the observation equation (Vt in equations (B.1)).

• W: Evolution variance matrix for the state equation (W t in equations

(B.1)).

• m0: Prior mean for the state (m0 in equations (B.1)).

• C0: Prior variance for the state (C0 in equations (B.1)).

• discFactor: list of discount factors for each component of the model,

e.g. [0.8,0.9].

Four additional attributes are specific to the different types:

• order: order of the polynomial (’Poly’) component.

• frequency: period of the seasonal factor (’Seas’) component.

• s: period of the Fourier form seasonal (’Trig’) component.

• harmcs: harmonics included in the Fourier form seasonal (’Trig’) com-

ponent (e.g. harmcs=2 indicates that only the two lower harmonics are

to be included).

4.5.2 Update and forecast methods

The learning and one-step ahead forecast procedure is completely defined by

the equations in Appendix B. The package implements this in Python, leaning

on numpy for matrix operations. To avoid possible numerical instabilities,

equivalent equations using singular value decomposition (SVD) (Wang et al.,

1992), replacing those in Appendix B, are used by default. If we denote the

SVD of a matrix A as UADAV
′
A, the predictive variance Rt of the states, is

calculated as
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M =

√DCt−1 U
′
Ct−1

G′
t√

DWt U
′
Wt

 ,

Rt = V M D2
M V ′

M ,

and the posterior variance, Ct, with

N =

√V −1
t F tURt

(
√

DRt)
−1

 ,

Ct = URt (D
−1
N )2U ′

Rt
.

The method update implements this and can be used to evolve the model,

one observation at a time (Listing 4.7).

1 def update(self , obs , discFactor =[], SVD=True , warnings=False):

Listing 4.7: Arguments of update method. In case of not wanting to use SVD,

just set SVD=False.

Whenever there is a missing observation obs=np.nan the posterior moments

of the state distribution are not updated (mt = at and Ct = Rt) since there

is no new observation. This method facilitates the incorporation of the update

procedure into other functions. However, most practitioners will find much

more useful the filter method that takes as argument the whole series and

calls to update (Listing 4.8).

1 def filter(self , series , discFactor =[], dfReg=None , SVD=True ,

warnings=False):

Listing 4.8: Arguments of filter method.

The dfReg attribute of filter is optional and takes the regressor variables of

the model. The format is a DataFrame with each covariate in a column with

the same name used when defining the regression component (Section 4.2.3).
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This corresponds to a time-varying F t. Until now we have only considered

constant entries for Gt, V t and W t; in case these are also time-varying, the

update must be done with the update method after modifying the correspond-

ing time-varying entry directly in the model attribute. Finally, the method

forecast, returns a summary DataFrame of nAhead observations into the fu-

ture (Listing 4.9).

1 def forecast(self , nAhead=None , discFactor =[], dfReg=None):

Listing 4.9: Arguments of forecast method.

4.5.3 Other methods

The rest of the methods of class DLM are related to the loglikelihood. They are

used for estimating model parameters via MLE, and computing the AIC and

BIC of different models for comparison purposes. Method LogLikelihood,

computes the logarithm of the likelihood of observations y1, ..., yn (which are

passed to the method with argument obs), which is,

−1

2
log(2π)− 1

2

n∑
t=1

log(Qt)−
1

2

n∑
t=1

(yt − ft)′Q−1
t (yt − ft).

The AIC and BIC methods use this to compute and return the corresponding

information criterion.

4.6 The DGLM class

The DGLM class implements the generalized version of DLMs. It currently

supports five distributions for the observations (p(yt|ηt) in (3.2)): Bernoulli,

Multivariate Bernoulli, Poisson, Negative Binomial, and Multivariate Negative

Binomial. Its structure is similar to that of the DLM class (Figure 4.1).
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4.6.1 Attributes

An object of class DGLM has fifteen attributes (Figure 4.1): the ones from a

DLM object (Section 4.5.1), except for the evolution variance of the observation

equation V which is not present in a DGLM (3.2), and two new ones:

• rho: real number (float) indicating the discount factor for the random

effects, as explained in Section 3.3. It is only used by the update method

in conjunction with Poisson distributed observations to introduce further

variability in the predictions. This results in wider predictive distribu-

tions which can more adequately model overdispersed time series. It

takes values in (0, 1]; by default, it is assigned a value of 1 when initializ-

ing a DGLM object, i.e. no discount factor or random effects are applied

to the linear predictor λt in (3.2); lower values induce higher variability.

• distrib: string that indicates the distribution from the exponential fam-

ily assumed for the observations in the DGLM. The acceptable values

are: ’Ber’ (Bernoulli), ’MBer’ (Multivariate Bernoulli), ’Poi’ (Pois-

son), ’NB’ (Negative Binomial), and ’MNB’ (Multivariate Negative Bi-

nomial).

4.6.2 Update and forecast

The learning and one-step ahead forecast procedure for a DGLM, see West et

al. (1985), is similar to that defined for a standard DLM by the equations in

Appendix B, and using the moment matching technique. For each t > 0, it

results in:

• One step ahead prior moments for the states given Dt−1 (y1:t−1 and other

relevant information), θt|Dt−1 ∼ (at,Rt), with

at = Gtmt−1, Rt = GtCt−1Gt
′ +W t.
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• One step ahead forecasts are based on the conjugacy-induced predictive

distribution with pdf

p(yt|αt, βt) = b(yt, ϕt)c(αt, βt)/c(αt + ϕtT (yt), βt + ϕt),

where the precision parameter ϕt is the inverse of the variance Vt in

(3.1), and the hyper-parameters {αt, βt} are estimated using moment

matching,

E[g(ηt) = λt|Dt−1] = ft,

V [g(ηt) = λt|Dt−1] = Qt,

where ft = F tat and Qt = F tRtF
′
t.

• Posterior moments for the states after observing yt, θt|Dt ∼ (mt,Ct),

mt=at+RtF
′
tQ

−1
t (f ∗

t −ft), Ct=Rt−RtF
′
tQ

−1
t (Im−Q∗

tQ
−1
t )F tRt,

with f ∗
t = E[g(ηt)|Dt] and Q∗

t = V [g(ηt)|Dt], given that the posterior of

the natural parameter is

p(ηt|Dt)=c
(
αt+ϕtT (yt), βt+ϕt

)
exp

((
αt+ϕtT (yt)

)
ηt−

(
βt+ϕt

)
a(ηt)

)
.

As with DLMs, when an observation is missing, moments mt and Ct are

not updated with new information and we have mt = at and Ct = Rt. The

particular conjugate analysis needed for using the multivariate Bernoulli or

multivariate Negative Binomial distributions was detailed in Section 3.4. This

update procedure is incorporated in the method update of the class, which

automatically uses the appropriate conjugate distribution for the distribution

assumed for the observations (distrib). As shown in Listing 4.10, the method

returns a list with seven elements: the predictive moments at, Rt for the state

vector; the predictive mean, variance and median for the observations; and the

posterior values for the hyperparameters αt, βt.
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1 series = data[’x’]

2 predMeanStates = list()

3 predVarStates = list()

4 for t in range(len(series)):

5 resultFilt = modDGLM.update(series[t])

6 predMeanStates=predMeanStates +[ resultFilt [0]]

7 predVarStates=predVarStates +[ resultFilt [1]]

8 data.loc[t,’mean_t ’]= resultFilt [2]

9 data.loc[t,’var_t’]= resultFilt [3]

10 data.loc[t,’median_t ’]= resultFilt [4]

11 data.loc[t,’alpha_t ’]= resultFilt [5]

12 data.loc[t,’beta_t ’]= resultFilt [6]

13 # 90% credible intervals:

14 data.loc[t,’5%’]= nbinom.ppf (0.05,

15 n=data.loc[t,’alpha_t ’],

16 p=data.loc[t,’beta_t ’]/(1+ data.loc[t,

17 ’beta_t ’]))

18 data.loc[t,’95%’]= nbinom.ppf (0.95,

19 n=data.loc[t,’alpha_t ’],

20 p=data.loc[t,’beta_t ’]/(1+ data.loc[t,

21 ’beta_t ’]))

Listing 4.10: Example of forecasting with update and Poisson DGLM.

There is also the useful filter method. After receiving as arguments

the whole time series (obs), and optionally the possible regression variables

(dfReg) and credible intervals to compute (CredIntervals), it returns the

summary DataFrame with the mean, variance, median and, optionally, the

credible intervals of the predictive distribution for each relevant time instant.

The forecast method has analogous behavior to that of the DLM class

(Section 4.5.2), but with the new argument obsForPreFit that indicates the

number of observations to be used for calculating the dispersion parameter for

the Negative Binomial or Multivariate Negative Binomial cases.
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1 modDGLM.filter(obs=series ,dfReg=data[’price’,’promo’],

2 CredIntervals =[0.2 ,0.5 ,0.8 ,0.9] ,

3 obsForPreFit =21)

4 modDGLM.forecast(nAhead =14,

5 dfNReg=dataNew[’price’,’promotion ’])

Listing 4.11: Example of use of the filter and forecast methods.

4.7 Complex Models

Besides the standard DLM, and the five variants of DGLMs considered, it is

also possible to use these to create new models that rely on them.

4.7.1 Univariate mixtures

One model that can be implemented leaning on the classes and methods of our

package is the univariate model proposed in Section 3.3 to deal with demand

time series with frequent zeros and varying levels of dispersion. This model

uses Poisson and Negative Binomial DGLMs. As it is one of the central models

in this thesis, it has its own auxiliary functions predefined in the file alg.py.

As commented in Section 3.3, and discussed in the example in 3.6, we can

consider two version of the univariate model, one that follows a hurdle shifted

scheme like DCMMs (3.3) and another that follows a zero inflated one (3.5).

Listing 4.12 shows how to do a filtering of both versions.

1 CredibleIntervals = [0.2 ,0.35 ,0.5 ,0.65 ,0.7 ,0.8 ,0.9 ,0.95]

2 y = data[’sales ’]

3 x_ZI = y # ZI

4 x_HS = np.array([np.nan if yy==0 else yy -1 for yy in y]) # HS

5

6 modDGLM_Ber = dglm.DGLM(type=’Poly’,order=1,distrib=’Ber’) +

dglm.DGLM(type=’Trig’,s=7,distrib=’Ber’)

7 modDGLM_NegBin = dglm.DGLM(type=’Poly’,order=1,distrib=’NB’) +

dglm.DGLM(type=’Seas’,frequency=7,distrib=’NB’)
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8 DF_NegBin_ZI = alg.NegBinDGLM(x_ZI ,modDGLM_NegBin ,

CredibleIntervals ,daysforR =21)

9 DF_NegBin_HS = alg.NegBinDGLM(x_HS ,modDGLM_NegBin ,

CredibleIntervals ,daysforR =21)

10 DF_Ber = alg.BernoulliDGLM(z,modDGLM_Ber)

Listing 4.12: Implementation of univariate models (3.3) and (3.5) in

Section 3.3.

Then, it is possible to use the function UnivariateModel implementing the

algorithms to obtain point forecasts and credible intervals of the predictive

distribution (3.7), as in Listing 4.13.

1 DF_UniM_ZI = alg.UnivariateModel(DF_Ber ,DF_NegBin_ZI)

2 DF_UniM_HS = alg.UnivariateModel(DF_Ber ,DF_NegBin_HS)

Listing 4.13: Obtaining predictive distribution of univariate models (3.3) and

(3.5).

By default, alg.NegBinDGLM and alg.BernoulliDGLM forecasts one step

ahead, but it is also possible to obtain forecasts k-steps ahead into the future

by changing the default argument kAhead from 1 to the desired value. This

is done using Monte Carlo samples, drawing from the corresponding predic-

tive distribution and, then, using the drawn value as the observed, update,

and repeating the process until reaching the desired prediction horizon k. As

Algorithm 3.1 reflects, this is done for N different chains or paths.

4.7.2 Multivariate mixture

The multivariate version of the previous model, which consists of the two

DGLMs in 3.9, also has the corresponding functions for its implementation in

the file alg.py, as shown in Listing 4.14.
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1 y1 = data1[’sales’]; y2 = data2[’sales’]

2 x1_ZI = y1; x2_ZI = y2 #

ZERO INFLATED

3 x1_HS = np.array ([np.nan if y==0 else y-1 for y in y1]) #

HURDLE SHIFTED

4 x2_HS = np.array ([np.nan if y==0 else y-1 for y in y2]) #

HURDLE SHIFTED

5

6 modDGLM_MBer = dglm.DGLM(type=’Poly’,order=1,distrib=’MBer’) +

dglm.DGLM(type=’Trig’,s=7,distrib=’MBer’)

7 modDGLM_MNB = dglm.DGLM(type=’Poly’,order=1,distrib=’MNB’) +

dglm.DGLM(type=’Seas’,frequency=7,distrib=’MNB’)

8

9 DF_MBer = alg.MultiBerDGLM ([z1 ,z2],modMBerDGLM)

10 DF_MNegBin_ZI = alg.MultiNegBinDGLM ([y1,y2],[x1_ZI ,x2_ZI],

modDGLM_MNB ,CredibleIntervals ,daysforR =21)

11 DF_MNegBin_HS = alg.MultiNegBinDGLM ([y1,y2],[x1_HS ,x2_HS],

modDGLM_MNB ,CredibleIntervals ,daysforR =21)

12

13 DF_MultiM_ZI = alg.UnivariateModel(DF_MBer ,DF_MNegBin_ZI)

14 DF_MultiM_HS = alg.UnivariateModel(DF_MBer ,DF_MNegBin_HS)

Listing 4.14: Multivariate mixture of two DGLMs.

4.7.3 DCMM

Finally, another family of models implemented in the package are the Dynamic

Count Mixture Models (DCMM) of Berry and West (2020), a mixture of two

DGLMs: a Bernoulli for zero/non-zero sales, and a Poisson for the number of

sales. If we define zt = 1(yt>0), the DCMM is defined through yt = zt(xt +

1) with zt ∼ Ber(πt), xt ∼ Po(rt, pt), with link functions relating to the

linear predictors for the Bernoulli and Poisson components being logit and log

respectively.

This type of model could be implemented using a pair of instances of the

DGLM class, with the caveat that since we are modeling the shifted series
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xt = yt − 1 with a Poisson DGLM, for zero-valued observations of the orig-

inal series (yt=0) we would need to pass a negative value (xt= − 1) to the

update method; this can be dealt with treating those observation as missing

(obs=None). However, as aforementioned, the DCMM family of models is al-

ready implemented and the practitioner can obtain forecasts using the function

DCMM (Listing 4.15).

1 CredibleIntervals = [0.2 ,0.35 ,0.5 ,0.65 ,0.7 ,0.8 ,0.9 ,0.95]

2 y = data[’sales ’]

3 x = np.array ([np.nan if yy==0 else yy -1 for yy in y])

4 modDGLM_Ber=dglm.DGLM(type=’Poly’,order=1,distrib=’Ber’) + dglm

.DGLM(type=’Trig’,s=7,distrib=’Ber’)

5 modDGLM_Pois=dglm.DGLM(type=’Poly’,order=1,distrib=’Poi’) +

dglm.DGLM(type=’Seas’,frequency=7,distrib=’Poi’)

6 DF_Ber = alg.BernoulliDGLM(z,modDGLM_Ber)

7 DF_Pois = alg.PoissonDGLM(x_HS ,modDGLM_Pois ,CredibleIntervals)

8 Res = alg.DCMM(DF_Ber ,DF_Pois)

Listing 4.15: Implementation of a DCMM.

4.7.4 Models for general count time series

The library countTS also implements the models in Chapter 2. They are

preprogramed through several functions in alg.py:

• GammaPois. The basic Gamma-Poisson model introduced in Section 2.3.1,

has as syntax alg.GammaPois(x,n,a 0,p 0), where x and n refer to the

series xk, nk; and (a 0,p 0) are the initial prior values for parameters a

and p of the Gamma distribution.

• StressEffect. Contains the code to implement Algorithm 2.1 for the

stress effect model (2.1) in Section 2.3.2. Its syntax is alg.StressEffect-

(x,n,proposalD,l j,a j,b j,s2 j,mu a,sigma2 a,mu b,sigma2 b,al-

pha,beta,numSamples,burnP), where: x and n are the series xk, nk;
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proposalD is a string indicating the proposal distribution to use, ’Gamma’

for the recommended one, and ’Normal’ for the usual symmetric normal

distribution used in MCMC algorithms; a j, b j, l j, s2 j are the ini-

tial values a0, b0, λ0, σ
2
0; mu a, mu b are the prior values for the means of

a and b respectively, and sigma2 a, sigma2 b for the variances; alpha,

beta are the prior values for the distribution of σ2; lastly, numSamples

is the number of samples that the algorithm will return, and burnP, the

burn-in period.

• ParticleFilter. Contains the code to implement the particle filter in

Algorithms 2.2 of Model (2.2) in Section 2.3.2, and its hierarchical ver-

sion, Algorithm 2.6 of Model (2.5) in Section 2.6.1. The first Algorithm

is used when the function receives as arguments a single pair of series

(xk, nk) corresponding to a single group; and the hierarchical one is used

when it receives more than one (corresponding to different groups, i.e.,

L > 1). The syntax is alg.ParticleFilter(x,n,modDLM,N,Ness,verb-

ose), where: x is a list with series xik (as many as different groups) and

n is a list with series ni
k; modDLM is an object of class DLM defining the

evolution matrices of (2.2) or (2.5); N is the number of chains for the

MCMC; Ness a proportion of N indicating the minimum effective sample

size to accept; finally, verbose is a Boolean that indicates whether the

function displays on the screen information (True) or not (Not) about

each step during the execution.

• Dependence. Contains the code to implement Algorithm 2.4 for the de-

pendence model in Section 2.3.2. Its syntax is alg.Dependence(x1,x2,n-

,proposalD,l1 j,l2 j,a j,b j,s2 j,r,p,mu a,sigma2 a,mu b,sigma-

2 b,alpha,beta,numSamples,burnP), where: r and p are the prior val-

ues for the Gamma distribution of λ1; and the rest of arguments are

analogous to the ones of function StressEffect.

• Severities. Contains the code to implement the severity model in
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Section 2.5, and can be applied in conjunction with any of the previ-

ous models. Its syntax is alg.Severities(samples,dirParam), where:

samples are the samples returned from any of the previous models; and

dirParam a list with the initial prior parameters for the Dirichlet distri-

bution.

4.8 Auxiliary functions

Other important functions and algorithms in the package, essential for example

to effectively use it in the inventory management domain, are detailed in this

subsection. All of them are included in the file alg.py. In the Listings in

the section we assume, such file has already been imported with the command

import alg.

Error metrics for Point Forecast. The function ErrorMetrics returns

five error metrics quite useful to asses the performance of count time series:

Mean Squared Error (MSE), Mean Absolute Error (MAE), Mean Absolute Per-

centage Error (MAPE), Zero Adjusted Percentage Error (ZAPE) and Theil’s

U. Figure 4.2 shows its syntax and exemplifies its use.

Figure 4.2: Metrics returned by function ErrorMetrics.

Error metrics for Predictive Distributions. In order to evaluate if the

credible intervals at different percentages adequately cover the observations,

we provide the function CredibleIntervalsCoverage. It can be called as in

Listing 4.16.
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1 CredibleIntervals

=[0.01 ,0.05 ,0.2 ,0.35 ,0.5 ,0.65 ,0.7 ,0.8 ,0.9 ,0.95 ,0.99]

2 CIdataMNB=alg.CredibleIntervalsCoverage(DF=DF_MNegBin_ZI ,

CredibleIntervals=CredibleIntervals ,title=’Multi NegBin ’)

Listing 4.16: Calculation of the coverage of credible intervals.

The call returns the DataFrame CIdataMNB in Figure 4.3, which indicates the

number of observations that fall in each of the credible intervals selected,

and the empirical coverage (’observations that fall inside’/’number of observa-

tions’).

Figure 4.3: Summary returned by CredibleIntervalsCoverage, for a multi-

variate model with two series, denoted by suffixes ’ˆ1’ and ’ˆ2’.

Additionally the function plots the coverage in Figure 4.4.

Cumulative forecasts and decision making. As mentioned in Chapter 1,

in many applications there is an interest in using the predictive distributions

k-steps ahead to make informed decisions that avoid critical situations. In

inventory management, for example, one of the main reasons why there is

interest in obtaining demand forecasts is to avoid OoS situations. For this
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Figure 4.4: Coverage plot returned by CredibleIntervalsCoverage.

purpose, the package offers the function CumulativeProbDecision, which via

the argument criteria (with possible values alpha, cost or utility) imple-

ments the three approaches for decision making mentioned in Section 3.5. It

returns a summary DataFrame and a plot (Figure 3.12), which, if according

to the selected criteria the user is prompted to take an action, also include a

mark in the time period before which an action must be taken (and its critical

or warning level classification). The resulting DataFrame can then be used,

for example, to feed a Decision Support System software that automatically

recommends a purchase order of a set of products.

Other ancillary functions. The package also offers several useful func-

tions for undertaking the preliminary exploratory analysis of the time series

to forecast, and determine which distributions, components, etc are adequate

for modeling purposes:

• plotACF returns the Auto Correlation Function (ACF) plot with the

number of lags specified by argument lags.

• ForecastPlot (given a data frame and passing as arguments the col-

umn name for the observations (obs), point forecasts (pred), and lower

and upper bounds of credible intervals (lb,ub)) returns a plot (see Fig-

ure 3.10).
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• CorrHeatMap computes the correlation coefficient between all the columns

in the DataFrame that takes as argument and returns a heat-map plot

with the name of the columns, as in Figure 3.3.

4.9 Example

In this section we show an example of how the library countTS can be used to

model and forecast time series, specifically, we reproduce here the procedure to

replicate the univariate example in Section 3.6. We want to fit the univariate

model (3.3) in Section 3.3.1, to the sales time series of beer with SKU ’182’ in

store with id ’173’ (Figure 4.5), and compare its performance with DCMM.

Figure 4.5: Daily sales of beer with SKU ’182’.

First, the code in Listing 4.17 returns a DataFrame with a summary of

some statistics of the time series (Figure 4.6), and the ACF (Figure 3.1).

1 y=data[’173’][’182’]

2 pd.DataFrame(data={’mean’: [np.mean(y)],

3 ’variance ’: [np.var(y)],

4 ’0 days %’: [np.sum(y==0)/len(y)*100],

5 ’r all’:[ fit_nbinom.fit(y)[’size’]],

6 ’mean 21d’: [np.mean(y[:21])],

7 ’variance 21d’: [np.var(y[:21])],

8 ’0 days % 21d’: [np.sum(y[:21]==0)/len(y[:21]) *100],

9 ’r 21d’:[ fit_nbinom.fit(y[:21])[’size’]]},

10 index=[’182’])

11 alg.plotACF(data=data[’173’][’182’], var=’sales’, lags =15)

Listing 4.17: Exploratory analysis of beer ’182’
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Note that all the information about the time series is in data[’173’][’182’],

which has a column named sales, with the daily sales of beer ’182’ in store

’173’. Figure 3.1, suggests the use of a model with weekly seasonality (period

7). Figure 4.6 suggests a dispersion parameter for the NB around 3.

Figure 4.6: Summary statistics of beer with SKU ’182’.

We then apply the univariate model specified in Section 3.6.1, that is, with

a linear growth component for the Bernoulli part; and a linear growth compo-

nent, plus a seasonal one of period 7, and two covariates referring to the price

logarithm and a three level promotion variable for the NB part. Listing 4.18

shows the code for implementing this with countTS. Note that we do not

specify rt when defining modNegBinDLM, and let the algorithm automatically

estimate it.

1 z = np.array ([0 if yy==0 else 1 for yy in y])

2 CredibleIntervals = [0.05 ,0.2 ,0.35 ,0.5 ,0.65 ,0.7 ,0.8 ,0.9]

3

4 # Sale/NoSale part (Bernoulli):

5 modBer = dlm.DLM(type=’Poly’,order=2,distrib=’Ber’,

6 discFactor =[0.995])

7 DF_Ber = modBer.Filter(z,CredibleIntervals ,dfReg=None)

8

9 # NumberSales part (Negative Binomial):

10 modNB = dglm.DGLM(type=’Poly’,order=2,distrib=’NB’) +

11 dglm.DGLM(type=’Seas’,frequency=7,distrib=’NB’) +

12 dglm.DGLM(type=’Reg’,name=[’Promo’],distrib=’NB’) +

13 dglm.DGLM(type=’Reg’,name=[’LogPrice ’],distrib=’NB’)

14 modNB.discFactor =[0.95] # same for the 4 components

15 DF_NB = modNB.Filter(y,CredibleIntervals ,dfReg=None)

16

17 # Univariate model (3.3)

18 DF_UniMod = alg.UnivariateModel(DF_Ber ,DF_NB)

Listing 4.18: Fitting of univariate model (3.3) to beer ’182’ data.
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Likewise, we can apply a DCMM with the same components to the time series

of daily sales of beer ’182’, as shown in Listing 4.19. We use a low random

effects (0.3) discount value to better deal with the overdispersion of the time

series.

1 # NumberSales part (Poisson):

2 modPo = dglm.DGLM(type=’Poly’,order=2,distrib=’Poi’) +

3 dglm.DGLM(type=’Seas’,frequency=7,distrib=’Poi’) +

4 dglm.DGLM(type=’Reg’,name=[’Promo’],distrib=’Poi’) +

5 dglm.DGLM(type=’Reg’,name=[’LogPrice ’],distrib=’Poi’)

6 modPo.discFactor =[0.95] # same for the 4 components

7 modPo.rho =0.3 # ’random effects ’ discount factor

8 DF_Po = modPo.Filter(y,CredibleIntervals ,dfReg=None)

9

10 # DCMM

11 DF_DCMM = alg.DCMM(DF_Ber ,DF_Po)

Listing 4.19: Fitting of a DCMM to beer ’182’ data.

Finally, comparing both models (Listing 4.20) we can see that the univari-

ate model (3.3), offers better point forecasts, as shown in Figure 4.9.

1 alg.ErrorMetrics(y,DF_UniMod[’y_t_hat ’]. values)

2 alg.ErrorMetrics(y,DF_DCMM[’y_t_hat ’]. values)

3 alg.plotResults(DF=[DF_UniMod ,DF_DCMM],interval =0.9)

4 CIdataPoisson=alg.CredibleIntervalsCoverage(DF=[DF_UniMod ,

5 DF_DCMM],CredibleIntervals=CredibleIntervals)

Listing 4.20: Comparison of forecasts from model (3.3) and DCMM.

This seems to prove that the proposed univariate model is more flexible than

DCMM, and better adapts to time series with high dispersion like the current

one (Figure 4.7).
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Figure 4.7: Forecasts from DCMM in brown, and

model (3.3) in blue.

Figure 4.8: Coverage plot of

DCMM and model (3.3).

As seen in Figure 4.8, the predictive intervals from our univariate model (blue),

at all values, capture extremely well the observations; while the ones from the

DCMM (brown) show significant underdispersion.

(a) (b)

Figure 4.9: Error metrics for DCMM, (a), and model (3.3), (b).

4.10 Discussion

We have developed a versatile library that, besides implementing the new

models proposed in the thesis, it also covers DLMs and DGLMs in Python and

offers further functionality over existing libraries like pyDLM and pyBATS. It

allows fitting any model with custom evolution matrices or a combination of

commonly used ones (polynomial trend, seasonal, regression, etc.). We offer

multiple distributions of the exponential family for the observations (Normal,

Bernoulli, Multivariate Bernoulli, Poisson, Negative Binomial and Multivariate

Negative Binomial in the current version) that adapt to many different time

series, not only the ones with non-negative integer observations which have

been central in this thesis. This has primarily been done through the use
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of an OOP paradigm that implements a class for each family and all the

methods necessary for its effortless application to any suitable time series. The

practitioner can access to methods like filter and forecast that provide

summary dataframes and plot the results of the corresponding fitting and

forecast procedure; and also intermediate ones like update that allow using

complex time-varying models.

Additionally, we also provide other important functions and algorithms

in the library which are essential for its effective use in practical cases: to

aid in the initial exploratory analysis and elicit possible models, functions

to asses the performance of point forecasts and predictive distributions and

performing comparisons, etc. The package developed, also aids in the use

of forecast distributions for decision support, through the implementation of

the methodology described in Section 3.5. Finally, there are functions that

implement several complex models introduced in Chapters 2 and 3, and some

brief instructions on how to build new ones that make use of the library are

given.
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Chapter 5

Conclusions and future work

5.1 Introduction

Time series of counts arise in many different areas like finance, epidemiology,

transport or inventory management. Having models that adequately capture

and represent the time series and provide accurate forecasts is essential in those

domains.

This thesis has contributed to this topic by presenting novel models or

novel combinations of previous models for general count time series that could

be affected by several effects, and also for count series with frequent zeros

and overdispersion. Additionally, we also contribute with algorithms for their

effective implementation in a powerful package.

The current chapter provides a synopsis of the developments in Chapters 2,

3 and 4; and proposes new research lines related to the developments in those

chapters.

5.2 Summary

General count time series models. Chapter 2 focused on the problem

of forecasting general time series of counts, that is, those with relatively high
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counts and few zero observations, that can incorporate some combination of

effects commonly encountered in practical cases.

We provided a methodology to forecast future values based on an initial

standard Poisson-Gamma model, suitable for situations in which the Poisson

rate remains relatively stable over the period of interest. In most cases, various

effects impact the rate evolution. Thus, we adapted the original model by

adding specific components (stress effect, seasonal and trend effect, group effect

and dependence) and proposed algorithms to forecast with these new models.

Several of them need to be combined for certain applications, as shown with

the case in Section 2.6.1.

In addition, we have described a model to predict the proportion of future

observations that belong to different classes, illustrated with a problem of

classifying AS occurrences into the five severity levels classification proposed

by the ICAO.

The above models are suitable when all the information about different

types of occurrences is available. However, in some cases there is underreport-

ing and part of the observed values are not recorded, which usually affects in

different intensities to the classes (e.g a higher proportion of mild cases of a

disease go unnoticed than more severe ones). A model is suggested to address

these reporting problem.

In the AS application domain, the proposed models have been fundamental

in a risk management methodology feeding resource allocation models. They

are also important in predicting and monitoring events that allow identifying

anomalies related to an unexpected increase (or decrease) in the number of

occurrences. In particular, the methodology emphasizes a management by ex-

ception principle (West & Harrison, 1997) with our models used for routine

inference, prediction (and decision support) under standard circumstances un-

til exceptional ones arise in which case an intervention is requested.

The forecasting performance of our models was compared to other popular

ones like dynamic linear models (DLM), generalized linear ARMA (GLARMA),
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and integer-valued GARCH (INGARCH) models, showing better forecasting

performance with the AS time series studied. However, some of the models

assuming negative binomially distributed observations might be more relevant

when exploring approaches at smaller time (weeks) and spatial (airport) reso-

lutions, which might present more overdispersion. Also, given the high safety

levels in the aviation system we should expect numerous zero counts and, in

particular, models such as those in Berry and West (2020) or the ones we

propose in Chapter 4 would be relevant.

Models for count time series with frequent zeros. Chapter 3 explored

count time series with frequent zeros and possible overdispersion; as those

commonly encountered in highly disaggregated data. We provided a family of

models to forecast individual time series of this type, while also discussing how

to deal with some peculiarities in series in many application domains.

Moreover, we introduced a multivariate extension of the proposed model

that takes advantage of cross-series dependencies, making better use of the

available information (in the retail domain for example among products within

a shop, among a product at different shops, among shops, etc.). This is done

through an extension of multivariate DGLMs, for which we developed the

necessary algorithms and methodology to incorporate the new information

and obtain forecasts.

Another contribution is the development of a methodology that uses the

full predictive distributions several steps ahead of the previous models, to

obtain the corresponding predictive cumulative distribution to make informed

decisions that avoid critical situations (OoS in inventory management, ICU

overrun in epidemic monitoring, etc).

The contributions in the chapter are illustrated with a large demand fore-

casting problem in the retail industry, and the associated problem of using the

predictive distributions to avoid OoS events. The models and methodology

introduced improve the performance of models commonly used in this type of
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count data, as shown in the in-depth comparison in Section 3.6.

countTS. A Python library to support time series forecasting. Chap-

ter 4 focused on the industrial library developed to implement the models

presented in this thesis. In addition to the novel models, the library also im-

plements DLMs and DGLMs in Python, and offers further functionality over

existing libraries like pyDLM and pyBATS. Models can assume observations

following several distributions of the exponential family: Normal, Bernoulli,

Multivariate Bernoulli, Poisson, Negative Binomial and Multivariate Negative

Binomial. Thus, the package can be used with many different time series, not

only the ones with non-negative integer observations which have been central

in this thesis. Also we allow to fit any model with custom evolution matrices

or with a combination of commonly used ones (polynomial trend, seasonal,

regression, etc.), even time-varying.

The implementation in Python has primarily been done through the use of

an OOP paradigm, which facilitates future changes and the addition of new

functionalities. There is a class for each family and all the methods necessary

for its straightforward application to any suitable time series. The practitioner

can access methods like filter and forecast that provide summary tables

and plot the results of the corresponding fit and forecasting procedure; and also

intermediate ones like update that allow using complex time-varying models.

Functions and algorithms to aid in the initial exploratory analysis and elicit

possible models in any application domain were also provided. Additionally,

the package developed provides functions to asses the performance of point

forecasts and predictive distributions and perform comparisons, aid in decision

making, etc. Lastly, we illustrated the package and its functionalities with an

example concerning a retail time series.
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5.3 Future research lines

In this section, we provide a general overview of future research lines within

the area of forecasting count time series that seem specially interesting.

Common factors and decouple/recouple strategies. The use of a de-

couple/recouple strategy that combines models for disaggregated time series

and the aggregated one can be quite powerful when modeling multivariate time

series (West, 2020) in general, and to incorporate common factors that affect

a set of series (Berry & West, 2020) in particular.

In the Bayesian state-space context, this strategy consists of a separate

univariate model (DLM or DGLM) with an independent prior for the states

for each decoupled time series (therefore its learning and forecast procedure

can be in parallel) and a common model for the factors that affect all the

series. A top-down philosophy is used, that is, the sequential analysis of the

model for the common factor of the coupled time series is done first, and the

resulting posterior predictive distribution is forwarded/fed to the decoupled

univariate models.

It thus seems interesting to apply the common factor ideas to the two types

of time series discussed in the thesis and illustrated by the application cases

of AS and retail in Sections 2.6 and 3.6, respectively, in conjunction with the

proposed multivariate models. We would therefore have a set of multivariate

models {Mi}ni=1, each one for a group of similar time series e.g. sales of a

family of products like time series of ice cream, and, above them, a modelM0

for the common factor.

Further future work that is worth considering refers to the shared latent

factor processes to be multivariate, with dimensions reflecting different ways

in which series are conceptually related. This, in addition to the possibility

for more than one common factor model that affect the decoupled time series,

might present some challenges on their own, specially to maintain scalability

and reasonable computing times for the application.
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Modeling and computational enhancements. The use of Linear Bayes

Estimation and moment matching for updating the moments of the states in

DGLMs is well developed and gives satisfactory results (Section 3.6). However,

specially for multivariate distributed observations, the use of a different ap-

proach might be worth exploring to see if it proves to be more accurate, faster,

or more robust and less sensitive to initial prior parameters. Ferreira and

Gamerman (2010) provide a brief overview of some alternatives for univariate

DGLMs which can be used as a basis for this investigation.

Also, it might be interesting to explore variations of the Particle Filter

algorithms proposed for the models in Sections 2.3.2 and 2.4 and how those

change the sensitivity to initial prior parameters and computing time.

The forecast methodology proposed in Chapter 3 only accounts for possi-

ble overdispersion. In case of also detecting underdispersion in the time series

of counts, it might be worth considering the use of Conway–Maxwell–Poisson

(CMP) distributions, although the lack of a known closed form conjugate dis-

tribution (Kadane et al., 2006) impedes the direct use of the current update

procedure, requiring the development of alternative and possibly more com-

putationally expensive methods. The required algorithm should evidently also

be included in the countTS library. Beside the CMP, another interesting addi-

tion would be to include new distributions from the exponential family in the

DGLM class implementation.

Also, although in the example in Section 3.6 we did not have the item sales

grouped by transaction (shopping basket), it could be interesting to combine

the proposed models with the ideas in (Berry et al., 2020), and see if it results

in an improvement in the forecasts.

Another possible future work to improve the package includes exploring

the use of SVD (or other ’square root filtering’) for avoiding the calculation

of inverse matrices (and possibly obtain even better numerical stability) in

the DGLM updating procedure detailed in Section 4.6.2, similar to what is

done in this library for DLMs. Also, although it is possible to use DLMs
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with time-varying evolution matrices with the current version of the library,

as explained in Section 4.5.2, these are not as straightforward to implement as

other DLMs; future versions would benefit from a modification of the DLM class

offering a simpler implementation for the user, without the need to program

a loop that modifies the corresponding matrix at each time period and then

uses the update method.

Applications. As we have mentioned throughout the thesis, the proposed

model can be applied to other domains where count time series appear, besides

Aviation Safety or Retail. Some of the relevant areas that might be interest

to explore how well can be forecast with the models introduced, and what

changes or additions could be introduced to improve the performance, are:

• Network Flow Monitoring. With the explosive growth in the use of

internet and social networks over the last two decades this topic is ex-

panding significantly, and with increasingly large-scale data. It is easy

to encounter count time series in this context, for example when consid-

ering the number of visits to a given web-page, or the number of likes or

interactions with a publication (which can also be classified into groups).

The forecast of this type of data can benefit from the models introduced

in Chapters 2 and 3, including the severity forecasting in Section 2.5.

Some recent examples of this count series, and the application of Bayesian

state space models in this domain can be seen in Chen et al. (2018) and

Chen et al. (2019).

• Epidemiological monitoring is a topic that has been of special rele-

vance during the ongoing COVID-19 pandemic. There is great interest

in having good forecasts for the evolution in the number of cases of an

epidemic and, in many occasions, also in the severity of each observation.

The infections that might result in ICU admission, hospitalization, or no

special treatment. Zhang and Ma (2021) provide a recent example of

modeling COVID-19 deaths.
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• Natural disasters, like earthquakes or hurricanes (Livsey et al., 2018),

is another field where some of the models and ideas introduced in this

PhD thesis might prove useful. These type are occurrences are quite rare

and, therefore, would probably benefit from the models in Chapter 3, and

the inclusion of ideas from extreme value theory.

• Safety and reliability occurrences in other areas like maritime

or road transport (number of highway accidents), industry (number of

defective pieces), or supply chain networks, give rise to count time series

with many similarities to the ones observed in aviation safety and are an

obvious candidate for the models proposed in Chapter 3.
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Appendix A

Distributions

A.1 Negative Binomial

The variable yt follows a negative binomial distribution with parameters rt, pt,

denoted by yt ∼ NB(rt, pt), if its probability mass function is

NB(yt|rt, pt) =
Γ(rt + yt)

yt!Γ(rt)
(1− pt)rtpytt ,

with support yt = {0, 1, 2, . . . } and parameters rt > 0 and pt ∈ [0, 1]. The

Poisson distribution is a special case, with rt →∞.

A.2 Multivariate Negative Binomial

The variable yt = (y1t, ..., ymt) follows a multivariate negative binomial dis-

tribution (Arbous & Kerrich, 1951) with parameters rt, µt = (µ1t, ..., µmt),

denoted by yt ∼ MNB(rt,µt), if its probability mass function is

MNB(yt|rt,µt) =
Γ(rt +

∑
k ykt)

Γ(rt)
∏

k ykt!

(
µ1t

rt +
∑

k µkt

)y1t

· · ·

(
µmt

rt +
∑

k µkt

)ymt
(

rt
rt +

∑
k µkt

)rt

,

with support yit = {0, 1, 2, . . . } and parameters rt, µit > 0. The marginal

distribution for yit is NB(rt, µit).
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Appendix B

Dynamic linear models

A normal dynamic linear model (DLM) for univariate observations Xt, speci-

fied by the quadruple {F t,Gt, Vt,W t}, is defined through

xt = F tθt + vt, vt ∼ N(0, Vt),

θt = Gtθt−1 +wt, wt ∼ N(0,W t), (B.1)

θ0 ∼ N(m0,C0),

with vt and wt internally and mutually independent (West & Harrison, 1997).

For the univariate DLM, if we denote the available information at the

beginning of period t as Dt = {Dt−1, xt−1}, the sequential update and forecast

procedure is given by the recursion:

• One-step ahead predictive distribution of θt, given Dt. It is N(at,Rt),

with at = Gtmt−1 and Rt = GtCt−1G
′
t +W t.

• One-step ahead predictive distribution of xt, given Dt. It is N(ft, Qt),

with ft = F tat and Qt = F tRtF
′
t + Vt.

• Filtering or posterior distribution of θt, given Dt and xt. It is N(mt,Ct),

with mt = at +RtF
′
tQ

−1
t (xt − ft) and Ct = Rt −RtF

′
tQ

−1
t F tRt.
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